\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5885",leadTitle:null,fullTitle:"Consumer Behavior - Practice Oriented Perspectives",title:"Consumer Behavior",subtitle:"Practice Oriented Perspectives",reviewType:"peer-reviewed",abstract:"No time in the history, consumption is considered to be as important as in today's world. It defines who we are, how well/perfect we perform our multiroles within the society (buying the most expensive clothes means being the best mom for instances), what symbolic meanings we attribute to our belongings, and how rich/clever/fashion conscious or innovative we are. Due to multidisciplinary and multimethod character of the concept of consumer behavior, it is appropriate to study it accordingly in order to understand the subject with its different aspects and holistically. Especially with the cultural, social, and technological changes within today's world, this issue becomes prominent. This book is a modest try for that end.",isbn:"978-953-51-3620-0",printIsbn:"978-953-51-3619-4",pdfIsbn:"978-953-51-4604-9",doi:"10.5772/65839",price:119,priceEur:129,priceUsd:155,slug:"consumer-behavior-practice-oriented-perspectives",numberOfPages:134,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"bd1a24c1e99de6bec66636c6f4491706",bookSignature:"Senay Sabah",publishedDate:"November 21st 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5885.jpg",numberOfDownloads:11538,numberOfWosCitations:3,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:8,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:15,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 18th 2016",dateEndSecondStepPublish:"November 8th 2016",dateEndThirdStepPublish:"July 16th 2017",dateEndFourthStepPublish:"August 16th 2017",dateEndFifthStepPublish:"October 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"187210",title:"Dr.",name:"Senay",middleName:null,surname:"Sabah",slug:"senay-sabah",fullName:"Senay Sabah",profilePictureURL:"https://mts.intechopen.com/storage/users/187210/images/6473_n.png",biography:"Şenay Sabah is an assistant professor of Marketing at the Faculty of Political Sciences at Ankara University, Turkey. She has an MBA and Ph.D. degree from Ankara University in Marketing. She teaches macro-marketing, principles of marketing, marketing management, and marketing research. Her research also involves studies on cities and tourism related marketing phenomena. Identity, fandom, memory and self-related consumer research, materialistic consumption, consumption behavior of football fans, narcissism related consumption, need/desire discussion and its relevance to consumption, disposal and cognition are among her research interest. She has several conference proceedings, book chapters and other papers on these issues.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ankara University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"467",title:"Trade",slug:"marketing-trade"}],chapters:[{id:"57276",title:"Introductory Chapter: Consumer Behavior in New Era",doi:"10.5772/intechopen.71269",slug:"introductory-chapter-consumer-behavior-in-new-era",totalDownloads:1507,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Şenay Sabah",downloadPdfUrl:"/chapter/pdf-download/57276",previewPdfUrl:"/chapter/pdf-preview/57276",authors:[{id:"187210",title:"Dr.",name:"Senay",surname:"Sabah",slug:"senay-sabah",fullName:"Senay Sabah"}],corrections:null},{id:"55892",title:"The Mystique of Customers’ Saturation in Online Brand Communities",doi:"10.5772/intechopen.69193",slug:"the-mystique-of-customers-saturation-in-online-brand-communities",totalDownloads:1351,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Most research studies in the area of online brand communities have largely studied the positive aspects of online brand communities, ignoring the negative influences, mainly the growing threat from customers’ saturation within these communities. Given the lack of understanding on the concept of customer saturation in online brand communities, this study establishes the necessary early understanding on this important concept by combining various streams of marketing and brand literature as well as information system. This study enhances understanding through the development of five propositions focusing on the role of customers’ saturation on (1) customers’ experience within online brand communities, (2) brand relationship, and (3) the co‐creation of value. The discussion and review of the current literature produces five important propositions. The propositions develop the direction that customer saturation in online brand communities is likely to impact three key areas.",signatures:"Zahy B. Ramadan and Ibrahim Abosag",downloadPdfUrl:"/chapter/pdf-download/55892",previewPdfUrl:"/chapter/pdf-preview/55892",authors:[{id:"200481",title:"Dr.",name:"Ibrahim",surname:"Abosag",slug:"ibrahim-abosag",fullName:"Ibrahim Abosag"},{id:"200647",title:"Dr.",name:"Zahy",surname:"Ramadan",slug:"zahy-ramadan",fullName:"Zahy Ramadan"}],corrections:null},{id:"57321",title:"Consumer between Web 2.0 and Web 3.0",doi:"10.5772/intechopen.71268",slug:"consumer-between-web-2-0-and-web-3-0",totalDownloads:1419,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Along with the digital technologies’ advance over the last decade, more sales and marketing channels have emerged, causing consumers to change their habits and purchasing behavior. This paper appears in the context of such an issue and aims both to present the increasingly omni-channel nature of the consumer behavior and to identify and emphasize the needs and expectations of the customers, in line with the development of the Internet. Therefore, the paper presents the evolution of the modern consumer considering the Web conversion from a static environment to an interactive community. During the two intertwined phases of Web development presented in this paper, namely Web 2.0 and Web 3.0, customers have evolved from a highly informed and socially connected to a more empowered and engaged customer, defined by the ability to adapt and apply new technologies to meet their specific individual needs and seeking for an even emotional bond with brands. The paper also exposes how the social media landscape has generated a power shift from the business organizations toward the consumer and how social media can be a powerful tool with which consumers can react if they feel that their rights are aggrieved by business organizations.",signatures:"Cristian Bogdan Onete, Irina Albăstroiu and Răzvan Dina",downloadPdfUrl:"/chapter/pdf-download/57321",previewPdfUrl:"/chapter/pdf-preview/57321",authors:[{id:"212932",title:"Dr.",name:"Bogdan",surname:"Onete",slug:"bogdan-onete",fullName:"Bogdan Onete"}],corrections:null},{id:"55200",title:"Understanding Consumer Behavior toward Social Enterprise Products",doi:"10.5772/intechopen.68743",slug:"understanding-consumer-behavior-toward-social-enterprise-products",totalDownloads:2013,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Social enterprise is an emerging global trend to solve society’s major problems through the means of business. After microfinance, Yunus Social Business (Bangladesh) is now getting worldwide attention for its distinctive principles and application. This study attempted to investigate the impact of consumer knowledge and understanding about the social enterprises on their buying behavior. Moreover, consumers’ perceived ethical and environmental awareness or rational considerations have also been investigated. Descriptive statistics shows that 26% respondents have clear understanding about social enterprise and 80% respondents believe that social enterprises can contribute to achieve sustainable development goals (SDGs). Findings of regression analysis show that consumers’ purchase decisions are not influenced by their prior knowledge about social enterprise, ethical perception, and attitude, rather their decision is highly influenced by the information available on the product (P value.001, β.602) and rational behavior that are stimulated through the rational pricing and availability of the product (P value.000, β.258). Thus, the study draws conclusion that to get increased consumer response, social enterprises should provide adequate information about their social and environmental mission and must maintain highest quality and ethical standards to create a trusted brand for all ethical, ecological, and rational consumers.",signatures:"Farhana Ferdousi",downloadPdfUrl:"/chapter/pdf-download/55200",previewPdfUrl:"/chapter/pdf-preview/55200",authors:[{id:"198685",title:"Dr.",name:"Farhana",surname:"Ferdousi",slug:"farhana-ferdousi",fullName:"Farhana Ferdousi"}],corrections:null},{id:"55716",title:"Measuring Public Acceptance Value of Rural Biogas Development through Logistic Regression and Willingness to Pay",doi:"10.5772/intechopen.69191",slug:"measuring-public-acceptance-value-of-rural-biogas-development-through-logistic-regression-and-willin",totalDownloads:1314,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The development of renewable energy technologies (RETs) in rural areas requires acceptance of technical solutions by key stakeholders, such as consumers and decision‐makers, as well as energy providers. This study aims to identify the current status of public acceptance of RETs, especially biogas technology, the associated influencing factors, and the villager’s preference of role to biogas management. Questionnaires were distributed to the respondents in Bendosari village to collect the required data for logistic regression and measurement of willingness to pay (WTP). Bidding game format was used to assess the WTP of three different groups, that is, biogas farmer, non‐biogas farmers, and non‐farmers. Three regression models were generated from the analysis, describing the factors influencing the public acceptance of each group toward biogas technology. The determinants of one group differed from the other group, reflecting the customer behavior in deciding toward certain goods which is biogas technology in this case. Measurement of public acceptance in percentage indicates the high acceptance and low acceptance of biogas technology for biogas farmers and for other two groups, respectively. This is affirmed by the result of the WTP‐ATP comparison where WTP is lower than ATP and indicates that biogas technology has no important value for most non‐biogas farmers and non‐farmers. Furthermore, the preference of role as a consumer in biogas technology development is higher than as provider or co‐provider. Biogas technology in rural areas is more sustainable when most farmers have roles as a co‐provider.",signatures:"Christia Meidiana, Zuqnia Gita Ramadhani and Dian Dinanti",downloadPdfUrl:"/chapter/pdf-download/55716",previewPdfUrl:"/chapter/pdf-preview/55716",authors:[{id:"197631",title:"Dr.",name:"Christia",surname:"Meidiana",slug:"christia-meidiana",fullName:"Christia Meidiana"},{id:"199756",title:"BSc.",name:"Zuqnia",surname:"Gita Ramadhani",slug:"zuqnia-gita-ramadhani",fullName:"Zuqnia Gita Ramadhani"},{id:"199757",title:"MSc.",name:"Dian",surname:"Dinanti",slug:"dian-dinanti",fullName:"Dian Dinanti"}],corrections:null},{id:"55527",title:"Children’s Consumer Behavior",doi:"10.5772/intechopen.69190",slug:"children-s-consumer-behavior",totalDownloads:2841,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:"Children’s consumer behavior is a field that has lately been given attention by marketing, psychology, sociology, and pedagogy. The reason is the understanding that a child is an important part that has an influence on family’s shopping. At the same time, there is a concern about the abuse of natural child naivety and trustfulness. That is why the experts turned their focus on the knowledge about child’s cognitive development and all manners of consumer socialization and economic socialization. It is possible to accept protective measures to ensure the safety of the child consumer only when we know how the consumer develops. The chapter is therefore focused on these essential topics, and the research demonstrates the consumer and economic socialization of the children in preoperational period of the cognitive development from the perspective of the children and their parents.",signatures:"Blandína Šramová",downloadPdfUrl:"/chapter/pdf-download/55527",previewPdfUrl:"/chapter/pdf-preview/55527",authors:[{id:"201698",title:"Associate Prof.",name:"Blandína",surname:"Šramová",slug:"blandina-sramova",fullName:"Blandína Šramová"}],corrections:null},{id:"57463",title:"Explicative Factors Driving the Tomato Consumption in the Mediterranean Basin: A Panel Data Approach",doi:"10.5772/intechopen.71267",slug:"explicative-factors-driving-the-tomato-consumption-in-the-mediterranean-basin-a-panel-data-approach",totalDownloads:1093,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter studies the consumer behavior of the tomato market in six Mediterranean countries, four of them belong to the European Union, EU—Spain, France, Italy, and Portugal, one to North Africa—Morocco, a highly competitive market with a major trade agreement with the EU since 2004, and another in Asia—Turkey. The main objective of the chapter is to analyze which are the most important explanatory factors, of a series of 13, that explain tomato consumption in the Mediterranean Basin. These factors, which are assumed as significant, are analyzed with an approach that uses panel data (fixed effects) models, a type of models that has clear advantages over the traditional methodologies. The results show significant differences between countries, that there are empirical evidence between consumption of tomatoes and price, imports and exports, production, growth area, technological developments and euro-dollar exchange rate; some importance lies on the EU-Morocco trade agreement; less empirical evidence was found between consumption and the exchange rates of the Turkish and Morocco currencies (Turkish pound and the Morocco dirham).",signatures:"Jaime de Pablo Valenciano, José Ramos Pires Manso, Miguel Ángel\nGiacinti Battistuzzi, Juan Milan García and Juan Uribe Toril",downloadPdfUrl:"/chapter/pdf-download/57463",previewPdfUrl:"/chapter/pdf-preview/57463",authors:[{id:"216121",title:"Dr.",name:"Jaime",surname:"De Pablo Valenciano",slug:"jaime-de-pablo-valenciano",fullName:"Jaime De Pablo Valenciano"},{id:"216124",title:"Mr.",name:"Juan",surname:"Milán García",slug:"juan-milan-garcia",fullName:"Juan Milán García"},{id:"221275",title:"Dr.",name:"José Ramos",surname:"Pires Manso",slug:"jose-ramos-pires-manso",fullName:"José Ramos Pires Manso"},{id:"221398",title:"Dr.",name:"Miguel Angel",surname:"Giacinti Battistuzzi",slug:"miguel-angel-giacinti-battistuzzi",fullName:"Miguel Angel Giacinti Battistuzzi"},{id:"221399",title:"Dr.",name:"Juan",surname:"Uribe Toril",slug:"juan-uribe-toril",fullName:"Juan Uribe Toril"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editedByType:"Edited by",editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-hysteresis-behavior-of-pre-strained-shape-memory-alloy-wires-subject-to-cyclic-loadings-an-e",title:"Erratum - Hysteresis Behavior of Pre-Strained Shape Memory Alloy Wires Subject to Cyclic Loadings: An Experimental Investigation",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71025.pdf",downloadPdfUrl:"/chapter/pdf-download/71025",previewPdfUrl:"/chapter/pdf-preview/71025",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71025",risUrl:"/chapter/ris/71025",chapter:{id:"69064",slug:"hysteresis-behavior-of-pre-strained-shape-memory-alloy-wires-subject-to-cyclic-loadings-an-experimen",signatures:"Shahin Zareie and Abolghassem Zabihollah",dateSubmitted:"June 13th 2019",dateReviewed:"July 8th 2019",datePrePublished:null,datePublished:"January 15th 2020",book:{id:"8879",title:"Emerging Trends in Mechatronics",subtitle:null,fullTitle:"Emerging Trends in Mechatronics",slug:"emerging-trends-in-mechatronics",publishedDate:"January 15th 2020",bookSignature:"Aydin Azizi",coverURL:"https://cdn.intechopen.com/books/images_new/8879.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"234387",title:"Prof.",name:"Aydin",middleName:null,surname:"Azizi",slug:"aydin-azizi",fullName:"Aydin Azizi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"289897",title:"Mr.",name:"Shahin",middleName:null,surname:"Zareie",fullName:"Shahin Zareie",slug:"shahin-zareie",email:"shahin@alumni.ubc.ca",position:null,institution:null}]}},chapter:{id:"69064",slug:"hysteresis-behavior-of-pre-strained-shape-memory-alloy-wires-subject-to-cyclic-loadings-an-experimen",signatures:"Shahin Zareie and Abolghassem Zabihollah",dateSubmitted:"June 13th 2019",dateReviewed:"July 8th 2019",datePrePublished:null,datePublished:"January 15th 2020",book:{id:"8879",title:"Emerging Trends in Mechatronics",subtitle:null,fullTitle:"Emerging Trends in Mechatronics",slug:"emerging-trends-in-mechatronics",publishedDate:"January 15th 2020",bookSignature:"Aydin Azizi",coverURL:"https://cdn.intechopen.com/books/images_new/8879.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"234387",title:"Prof.",name:"Aydin",middleName:null,surname:"Azizi",slug:"aydin-azizi",fullName:"Aydin Azizi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"289897",title:"Mr.",name:"Shahin",middleName:null,surname:"Zareie",fullName:"Shahin Zareie",slug:"shahin-zareie",email:"shahin@alumni.ubc.ca",position:null,institution:null}]},book:{id:"8879",title:"Emerging Trends in Mechatronics",subtitle:null,fullTitle:"Emerging Trends in Mechatronics",slug:"emerging-trends-in-mechatronics",publishedDate:"January 15th 2020",bookSignature:"Aydin Azizi",coverURL:"https://cdn.intechopen.com/books/images_new/8879.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"234387",title:"Prof.",name:"Aydin",middleName:null,surname:"Azizi",slug:"aydin-azizi",fullName:"Aydin Azizi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12293",leadTitle:null,title:"Cobalt",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c841e0833d63ee0f5962a22defe6d0b0",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12293.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2022",dateEndSecondStepPublish:"May 30th 2022",dateEndThirdStepPublish:"July 29th 2022",dateEndFourthStepPublish:"October 17th 2022",dateEndFifthStepPublish:"December 16th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65754",title:"Optical Impression in Restorative Dentistry",doi:"10.5772/intechopen.84605",slug:"optical-impression-in-restorative-dentistry",body:'\nSince its first application in restorative dentistry by Francois Duret in 1973, computer-aided design/computer-aided manufacture (CAD/CAM) has become engrained in dental practice. The workflow of the manufacturing of prostheses via digital restorative dentistry can be divided into three steps: image acquisition, in which the structure inside the oral cavity is documented; CAD, the acquired images are imported to a computer program to design the desired restoration; and CAM, the restoration is manufactured from the desired material based on the design data. In the image acquisition stage, an intraoral scanner may be used to scan the oral cavity, or a stone model can be scanned after impression making and stone pouring procedure. In the CAD step, different software (S/W) modules can be used to design various types of prostheses, such as a crown, removable partial denture, complete denture, and implant surgical guide. The methods used in the CAM step include computerized numerical control (CNC) milling and 3D printing, which is also called as rapid prototyping or additive manufacturing. The milling process can be further split into the tool-path-calculation and milling processes; the former converts the path that the milling drill must pass through into numeric values to inform the latter process, the three-dimensional subtractive production of the designed prosthesis. 3D printing can be divided into the support positioning and slicing processes; the former entails the formation of supports to hold the designed prosthesis from below, while the latter refers to the actual printing of the designed prosthesis.
\nDental CAD/CAM systems are categorized according to how data is acquired and whether the restoration can be fabricated within the dental office on the same day. Hence, such the systems can be divided into in-office or in-lab systems, the former of which is further distinguished according to whether the dental office is equipped with a milling machine. The material used in an in-office system is relatively expensive because it uses a Mandrill type, which is used in small milling machines and manufactured exclusively for dental application; moreover, the material is also limited to manufacturing inlays and single crowns. However, it offers the advantage of being an all-in-one system that allows the finished product to be obtained within the dental office. An in-lab system involves transferring the data scanned from the patient to a laboratory equipped with the capacity to manufacture a range of prostheses. With traditional LAVA and Procera systems, the laboratory can produce zirconia crowns by scanning a plaster model with a desktop scanner; or the plaster modeling process can be precluded by directly acquiring a digital impression with an intraoral scanner, which further shortens the time required for the model preparation and allows the manufacture of the prosthetic to be completed at any laboratory in the world.
\nThe intraoral scanner was originally invented by Mörmann and Brandestini, and was first applied to patient care in 1985. The technology was confronted by the difficulty of accurately scanning a wide area: the intraoral scanner was limited by the size of the optical window of its scanner tip; spatial data of the oral cavity consequently needed to be aggregated to complete an image of the entire area. Recent advances in optical systems and image processing S/W have led to the gradual expansion of their applicability. Indications that were limited to just inlays or single crowns are now being used in larger cases, including longer fixed dental prostheses and implant prostheses, as well as various intraoral devices, such as implant surgical guides, individual trays for dentures, and metal frameworks of removable partial dentures. Accordingly, this chapter will examine the current state of using intraoral scanners in restorative dentistry for optical impressions and considerations when assessing the performance of intraoral scanners.
\nThe in-office system has a lengthy history that spans over 30 years since the introduction of CEREC in 1987. It now allows for the same-day manufacture and installation of dental restorations using a small dental milling machine. This system is also referred to as an all-in-one system since it is equipped with an intraoral scanner for image acquisition, CAD and tool-path calculation S/W for restoration design, and milling machine. Dentsply Sirona is the supplier of CEREC-branded products, and together with monochrome photography-based Bluecam, color video-based Omnicam, and the low-cost APOLLO Di, it offers various systems according to the different grades of intraoral scanners. In addition, the E4D dentist system that partially includes CEREC technology has continued to evolve, and now Planmeca supplies this intraoral scanner system called PlanScan. Carestream has introduced photography-based CS3500 and video-based CS3600 intraoral scanner systems. On account of being all-in-one systems, many are closed architecture systems with a limited ability to export scanned data for use in other S/W; however, there is a growing trend favoring open architecture systems.
\nCAD/CAM systems already feature a broad range of applications in dentistry, even without the added benefits of an intraoral scanner. The CNC milling process that allows for enlarged manufacture at the same magnification to overcome the properties of zirconia by showing change in volume during sintering is an outcome that has long since been integrated into dental practice. Desktop scanners used in laboratories to scan plaster models use a traditional method based on the principle of active triangulation; as a result, the image acquisition unit is fixed on the upper part of the scanner. It is consequentially difficult for the scanner to register areas where undercuts may occur, such as the sub-marginal area and proximal surface of the abutment teeth, which require die work to separate the abutment teeth after producing the plaster model (Figure 1). To ease the time constraints associated with pouring the plaster and separating the dies, attempts have been made to directly scan the impression without pouring plaster over the impression or acquiring data directly from the impression taken with a plastic tray by using a cone beam CT scanner, which is installed in most dental offices today. Difficulties with scanning thin, long teeth with impression scanning technique and low data-resolution images acquired by CT scanning still remain to be addressed. The latest trend in desktop scanners have evinced progress towards making scanning more convenient and efficient, and there is a change towards creating open designs that lack a door by using light sources with shorter wavelengths.
\nModel scanning process through the desktop scanner. Because of the undercut area, an abutment scan is required separately. It is necessary to perform the die trimming process of the stone model.
Ever since intraoral scanners became readily available in dentistry, they have played a role in the first step of workflow for the fabrication of prostheses. The acquired data can be sent instantaneously anywhere in the world, which offers the advantage of overcoming any temporal or spatial constraints. Because an intraoral scanner must acquire data from a limited space by imaging small structures in the oral cavity with many undercuts, it is based on a principle different than that which informs desktop scanners, which fix the image acquisition unit to the upper part of the scanner and use proprietary technology patented by the company that manufactured the scanner. The CEREC system featured a “closed system” in which all workflow takes place within the in-house system. After the introduction of iTero scanners (Align Technology Inc.) in 2006, which are based on an “open system” that acquires scanned data usable in various S/W, intraoral scanner became increasingly popular among clinical dentistry practices.
\nThe operating principles behind intraoral scanners include the active triangulation used mostly in the CEREC system and confocal microscopy chosen by iTero and Trios (3Shape) systems. The operating methods of intraoral scanners can be divided into image-stitching and video-sequencing methods. Intraoral scanners underwent rapid advances in hardware since the mid-2000s, which included various advances in anti-fog heating devices, color scanning, portable design, and video imaging methods. Advances in S/W have followed suit, including improvements in the stitching of scanned data and upgrades in intuitive scan S/W interfaces. Recently introduced intraoral scanners reflect endless improvements in their convenience and efficiency in actual clinical practice by making them smaller, wireless, light-weight, and cost-effective, as well as supporting database through cloud computing. Further, the availability of intraoral scanners has risen sharply owing to the reduction in patient discomfort and increased clinical efficiency of dentists.
\nWe have examined various scanning systems in restorative dentistry that apply CAD/CAM technology. Here, we will examine how digital technology is actually being used and applied based on actual clinical cases.
\nWhen the 3D positional relationships between teeth need to be determined for diagnosis and treatment planning in cases with poor occlusal relationship between upper and lower teeth, it is common to perform alginate impression taking, followed by the analysis of the diagnostic model mounted on the articulator. In particular, much information can be gained from the contact relation during lateral movement and relationship of the upper and lower molars from the distal-to-mesial direction that cannot be seen inside the oral cavity, a considerable amount of preparation time is required to build the plaster model and mount it, which makes it impossible to see the outcome on the same day the patient was admitted. However, using an intraoral scanner to obtain a digital impression of the region of interest allows the data to be used immediately for diagnosis without the delay required for plaster setting time. An oral examination was performed on a patient who was admitted to the department of prosthodontics after placement of three implants in the left upper molar region. The patient showed poor occlusion due to a buccally collapsed upper second molar, which is the antagonist tooth. In this case, it was difficult to decide whether to fabricate the implant restoration as is or to do so after restoring the occlusal relationship first by performing a root canal treatment on the collapsed opponent tooth and covering it with a single crown. By taking an optical impression on the day of diagnosis and importing it into CAD software, the superstructure was designed on top of the implant and the occlusal relationship with the opponent tooth could be assessed from the distal direction. This was helpful in determining the treatment plan during patient consultation on the day of the visit and the patient was highly satisfied after implant prosthesis was installed (Figure 2).
\nCases of using an intraoral scanner as a diagnostic tool. After taking a digital impression, the treatment plan was established by diagnosing the occlusal relationship in the distal direction, which obscures the interior of the patient’s oral cavity.
For esthetic restoration performed by acquiring data on anterior teeth via intraoral scanning, crowns may be fabricated via a direct wax-up of the cast to reproduce the 3D characteristics of teeth surface. The crown fabrication and installation involves 3D printing of a model based on data from intraoral scanning, wax-up on the die, investment and burn-out, and pressing of the esthetic material.
\nA male patient in his 20s was admitted for restoration of two upper central incisors at a stage when he was about to complete his orthodontic treatment. Because the orthodontic bracket remained on the labial surface of his anterior teeth, the impression body could not be removed once the impression material hardened with the traditional impression method using silicon impression material; blocking out the bottom portion of the bracket with utility wax would not allow the shape in that area to appear on the impression body. Accordingly, instead of using such method, digital impression was taken using intraoral scanner (Trios, 3shape). After designing the rapid prototype in a model builder program, the model was obtained by 3D printing. After assuring the esthetic surface texture of the anterior teeth via wax-up on the printed die, it was fabricated by investment and pressing with lithium disilicate (eMax, Ivoclar) (Figure 3).
\nA digital impression was taken to fabricate the prosthesis without removing the orthodontic bracket. After model fabrication by 3D printing, the detailed features of the anterior teeth surface were reproduced via a wax-up process, and the prosthesis fabricated by pressing using lithium disilicate was installed.
A female patient in her 30s visited the clinic for fabrication of a 5-unit fixed dental prosthesis. The patient was pleased with the shape of the provisional teeth and its shape was replicated for permanent restoration. The optical impression was obtained for abutment and provisional restoration and the restoration was designed by the “double scan” technique. While referencing the relationship between the opponent and adjacent teeth on the 3D printed model, porcelain was built on top of the zirconia coping to complete the final restoration (Figure 4).
\nThe outer appearance of the provisional restoration that the patient had become accustomed to from prolonged use after extraction was replicated via a double scan technique after optical impression.
Because an intraoral scanner is a device that reproduces a 3D structure based on images, functional impression that selectively presses the tissues or border molding that physically takes an impression of the maximum vestibular depth without impeding the movement of the cheeks and tongue by moving the neighboring muscles is impossible. Moreover, because an edentulous arch does not have 3D features, continuously stitching small images determined by the size of the scanner tip can introduce multiple errors and the tissue surface being shiny makes it even more difficult. Therefore, instead of using an intraoral scanner, a desktop scanner obtaining image of master cast made from a traditional functional impression is recommended for cases of removable dentures.
\nConcerning a 74-year-old male patient who wanted a mandibular partial denture, zirconia surveyed restoration fabricated by milling based on a design that considered the path of insertion and removal of the denture in CAD S/W after digital intraoral scanning (iTero, Aligntech) was installed into the oral cavity of the patient. Subsequently, a master cast was obtained by functional impression taking, which was scanned and the design S/W, exclusive for partial dentures (Freeform, SensAble), was used for electronic surveying to determine the optimal path of insertion and removal by adjusting the inclination of the cast in consideration of the amount of undercut in the entire arch in a virtual space. To design the metal structure, the area that would be covered with the denture base was determined and the finish line was set after forming a lingual bar major connector. A rest was designed and a butt-joint was added. After designing the lattice-structure of the minor connector that joins the denture base to the major connector, a retentive arm determined via electronic surveying was added to the undercut area of the retentive tip to complete the framework design. After reviewing the overall design, sprues for the metal casting were also designed. Plastic material that could be burned out was used for 3D printing to invest and cast the metal structure, after which the denture was completed by a traditional denture curing process for installation (Figure 5). The function of the retentive arm operated clearly during denture installation and removal due to electronic surveying. This system uses a unique input tool called a haptic interface. Once the mouse arrow touched the polygon wall, the arrow could not move any farther inward through a forced feedback effect, whereby the 3D shape of the teeth model could be formed with tactile feedback.
\nA surveyed restoration was fabricated according to the path of insertion and removal of denture shown on data obtained from intraoral scanning. After using burn-out resin to print the framework structure designed by electronic surveying, the partial denture was fabricated by investment casting.
For the digital complete denture, a model scanning is mainly performed. Several companies have introduced systems that shorten patient visits by integrating treatment steps. Denture base resin materials must prevent discoloration and contamination while functioning inside the oral cavity for an extended period. Therefore, the materials must have particles that are smooth and densely packed. Heat-curing resin has therefore been used as the material for a complete and partial denture base. To withstand the packing pressure of resin, a frame with plaster material and metal flask are made. Subsequently, the complete curing of resin is induced by boiling it in a water tank. In the digital process, the denture profile can be milled or 3D printed after CAD design. Companies that manufacture and supply digital complete dentures use their own proprietary methods to overcome these limitations, including the use of hard resin with densely packed particles, milling a resin disk block that is larger than the complete denture being fabricated. Another attempt involves 3D printing the flask itself, which functions as a negative mold of the denture base through the traditional packing and curing process. After designing the denture, a try-in denture may be provided to check whether the denture fits the lips and facial shape of the patient. Moreover, to improve communication between the dentist and lab technician with regard to denture design, webpages are available with interfaces allowing the dentist to check and freely modify the design once the alignment of the prosthetic has been completed (Figure 6).
\nThe individual tray was designed and 3D printed on the edentulous data obtained by the intraoral scanner, and the functional impression was made. The complete denture module was used to design the shape of the tooth array and the denture base. The denture base was machined with a milling machine, and then the artificial teeth which are the same as the library were bonded on it.
When fabricating a computer-guided implant surgical template, guides with replication of radiographic template tissue surface obtained from CT data have poor internal adaptation due to limitations in the resolution on CBCT, which can lead to poor stability during the surgery and diminish the accuracy of implant placement. These deficiencies can be improved by matching the cast scan or intraoral scan data with CT results. A 52-year-old male patient visited the clinic, wanting three implants in his lower right molar region. The implant placement was planned by matching the data obtained from iTero intraoral scanner and CBCT. A surgical guide was fabricated using a 3D printed wax model. Because the fabrication used high-resolution data, the guide functioned stably during the procedure, despite the fact that it was a dentulous case that did not use a separate fixing pin. After implant healing, the digital intraoral impression was made and the customized abutment and superstructure were fabricated (Figure 7).
\nThe CBCT and intraoral digital impression data were matched to establish an implant plan that avoided the inferior alveolar nerve. A computer-guided implant surgical template was made on the 3D-printed model to assist the surgery. Digital impression taken after healing was used to fabricate the customized abutment and superstructure.
The digital workflow for fabricating implant prosthesis is easier than fabricating restoration for natural teeth. For the latter, the crown margin must be scanned precisely, whereas with implants, after connecting a digital impression coping or scan body on the implant, only the shape of the scan body needs to be accurately captured; the margin between the abutment and superstructure is accurately aligned by the computer. When forming an occlusal relationship in the implant case, the implant restoration should be fabricated to minimize interference in lateral movement. A digital impression (Trios) was obtained for the fabrication of an implant superstructure in a 56-year-old male patient with overdeveloped masseter muscles. To ensure the patient was guided to centric occlusion when taking an optical impression of the buccal bite, the scan was performed with the occlusal point marked by articulating paper. Because a color intraoral scanner was used, the occlusal point appeared on the occlusal surface in a colored display mode. By comparing the pattern of occlusal point distribution and the markings of the distance of the computer-generated occlusal alignment by buccal bite, it was determined that both data indicated the same occlusal points; otherwise, the positional adjustment handle could have been used to finely adjust the relation between the maxilla and mandible. The articulator function can be used by aligning the maxilla and mandible on the occlusal plane of a virtual articulator. In the present case, group-function occlusion with a large premolar cusp inclination was identified and the area with early contact by implant prosthesis during eccentric movement was adjusted in the CAD software to allow fabrication of prosthesis with minimal lateral pressure (Figure 8).
\nThe color function of the digital intraoral scanner was used to compare the marked occlusal points and computer-generated occlusal alignment in testing the accuracy of occlusal registration. A virtual articulator was used to adjust the cusp angle in a patient with an overdeveloped masseter muscle to ensure that excessive lateral force was not exerted on the implant.
When a digital impression is obtained via an intraoral scanner, the outcome is 3D data consisting of a set of triangles or polygons, which are the smallest units that form a plane. The data are imported to dental CAD S/W to design the prosthesis and the final product is obtained through the CAM process, but because the scanned data cannot be physically handled, consideration should be given as to whether a separate model should be built for any additional work. Producing a working model of the digital impression usually involves CNC milling or 3D printing.
\nThe methods for using the digital impression data from an intraoral scanner can be divided into three types depending on whether production of a model is needed (Figure 9). First is the model-free production method, in which only the prosthesis is fabricated and the process of model production is omitted; this is employed when only a small area is being restored. Second is the method by which a model is built to complete the final form of the prosthesis or for fitting. As the reference for porcelain firing, a model may be used to test the fit of a prosthesis against opposing and adjacent teeth. The last method is the active use of a separately built model. It is used in cases for direct wax-up to reproduce the fine details of the 3D characteristics of anterior teeth surfaces. The prosthesis would be fabricated by the traditional method of direct wax-up on the die of the model built by milling or 3D printing.
\nMethods for using a digital impression data from an intraoral scanner according to the need for modeling.
With the gradual expansion of the clinical application of monolithic zirconia or full-contour zirconia crown without the build-up of feldspathic porcelain, the clinical technique of model-free prosthesis fabrication using an intraoral scanner has gained broader use (Figure 10). Formerly, the lack of knowledge concerning coloration techniques and shallow penetration of coloring material resulted in unsatisfactory esthetic outcomes due to the opaque-white color of zirconia appearing after occlusal adjustment. However, as a result of deeper color penetration and the introduction of more transparent, naturalistic zirconia blocks, this problem has practically disappeared.
\nCase of fabrication of prosthesis based on model-free concept.
There are differences in tooth preparation design depending on the clinician, especially axial-wall taper and rounding of the abutment teeth edges. Therefore, when starting the model-free clinical process for the first time, it is necessary to adjust the values of the parameters for the inner surface of zirconia crown inputted into the prosthesis design S/W to match the teeth preparation tendencies of the clinician. When the internal gap of restorations fabricated by inputting several different CAD parameters were measured, the restorations fabricated by means of the model-free workflow exhibited a marginal gap that was slightly higher than 100 microns, which would be within the clinically allowable range as reported by McLean et al. The line angle and occlusal surface showed large internal gaps, just like zirconia crowns fabricated by in-lab process using a model scanner. In addition, the margins of the zirconia crowns fabricated via the model-free workflow showed a slightly over-contoured tendency as compared to the conventional emergence profile. In such a case, plaque retention below the margin occurs more readily and the likelihood of gingival inflammation increases as well. The reasons for over-contouring in the margins of the crown are as follows: Because the thin portion of the zirconia crown margin may break off during fabrication if the amount of abutment tooth preparation is insufficient, the crown is milled to leave enough thickness so that the thickness can be adjusted manually relative to the die of the stone cast. However, in the model-free concept, the work is based on intraoral scan data. The traditional silicon impression material can express the contour of the tooth root on the stone die to a certain degree by penetrating up to 5 mm below the margin of the abutment tooth; whereas the intraoral-scanner method is based on an imaging technique, and the undercut below the margin does not scan very well. Therefore, there is no root contour that can be referenced during the CAD process, and the root contour is insufficiently reproduced in the die milled/printed, limiting the ability to refine the marginal area of the zirconia crown that was fabricated with extra thickness. In other words, the root contour below the margin of the impression body must be registered to a certain degree to allow for a prosthetic design with a naturalistic emergence profile; however, the digital impression taken with an intraoral scanner does not register enough of the area below the margin when compared with the traditional silicon impression. Therefore, when using a model-free workflow with an intraoral scanner, clinicians need to consider these points and reaching an understanding with the laboratory.
\nThe cases that require a physical model are those that require additional finishing work after the fabrication of coping. In such cases, the intraoral scan data may be sent separately to the model production center. Both CNC milling and rapid prototyping can be applied to model production. The milling process uses a polyurethane block with wear resistance against subsequent wax-up work, while rapid prototyping by 3D printing also uses comparable resin as the material. As 3D printers have become readily available for in-office use and are supplied with model building materials, many dental offices are starting to print models in the office.
\nModel production requires the scanned data to be processed. An example using Model builder (3shape, Denmark) S/W is as follows (Figure 11). First, any area unrelated to the area being restored or the movable tissue away from the alveolar bone are deleted to reduce the overall size of and optimize the data. By setting the position of the scanned dental arch to match the occlusal plane of the virtual articulator and checking the occlusal relationship automatically aligned by the lateral bite scan acquired together with the upper and lower jaw scan, the position of the upper and lower jaw is carefully revised on CAD when necessary. After setting the margin line of abutment teeth to separate the die portion from the other parts of the model, the path of insertion and removal is determined to match the direction of adjacent teeth. After aligning the finished model to appear in the center of the simple articulator, sending data to a 3D printer or milling machine for output can yield the shape of the simple articulator, while also reproducing the occlusion that the patient had at the time of intraoral scanning by physically holding the upper and lower jaw models in hand. Although limited in scope, such model building S/W helps to inform the revision of data, which can be used to modify the impression of the abutment teeth in the marginal area that may not have been acquired well. Such work may be performed in cases where the patient cannot return to the dental office and the prosthesis must be fabricated immediately. Data are not perfect immediately after the acquisition of digital impression with an intraoral scanner, and the data must therefore be reviewed before the patient returns to home to make sure that important parts, including the margins, have been imaged properly.
\nProcessing of intraoral scan data for model building.
Models built by milling or printing are usually used in cases of porcelain fused to zirconia restoration. It is also used in implant restoration cases where the implant prosthesis is generally fabricated as an abutment-superstructure dual structure. If pretreatment is needed to check a model due to the range of the prosthesis being too large, a model can be built separately and used accordingly.
\nIn addition to the indirect purpose of using a model to check the fit of prostheses fabricated by CAD/CAM process, it can be used for wax-up on top of a die model. The reason for its separate categorization is because only the steps from impression taking to model building are performed digitally, while all subsequent processes follow a traditional workflow. Although most of the processes in restorative dentistry are performed digitally, there are still limitations in expressing the fine surface texture of the anterior teeth by milling or printing, and materials used for milling have limitations in expressing various color characteristics. To overcome these deficiencies, the final restoration can be fabricated by a wax-up of the die. If optical impression of the marginal area was properly obtained, a favorable clinical outcome may be expected. However, in cases that require the reproduction of very thin bevels in the margins, such as with gold inlay, it should be avoided: there are limitations to the availability of ultra-high-resolution scanners that can register such fine details of tooth shape or equipment and mill or print fine details at the inlay-bevel level. Moreover, a meta-analysis by Chochlidakis et al. that reviewed the fit of 339 digital and analog restorations reported that digitally fabricated restorations showed a comparable level of marginal fit as restorations fabricated by traditional methods. However, restorations fabricated by the model-free method using intraoral scan data were more accurate than those fabricated on 3D printed or milled model. This is because equipment errors that may occur during the model building process can be disregarded when compared to the model-free workflow; moreover, solutions to this problem can continually be improved as the precision of the equipment advances in the future (Figure 12) [1].
\nFor crowns and bridges fabricated on a model built by intraoral scan data, restorations by traditional methods can be fabricated, but there are limitations in expressing narrow bevels in gold inlays due to insufficient resolution.
With the emergence of 3D digital scanners, existing impression acquisition technique is being replaced with digital technology. While intraoral scanners, various CAD S/W, milling machines, and 3D printers are needed to create a digital office, acquiring such expensive equipment can be a burden for private clinics. Therefore, it is prudent for clinicians to obtain various details concerning the accuracy and clinical efficacy of intraoral scanners before investing. The points that dentists should consider when selecting an intraoral scanner can be categorized as shown in the figure (Figure 13). The accuracy of an intraoral scanner can be determined by assessing the following aspects: resolution, accuracy of the range of the quadrant arch, accuracy of the range of the full arch, accuracy of the range of the individual tooth, and accuracy of color reproduction. For hardware characteristics of an intraoral scanner, the following factors can be assessed: scanner-wand size, the need for a scan spray or powder, the maximum depth of field recognized by the scanner, anti-fog function, and durability based on the sterilization of the scanner tip. With respect to clinical efficacy, the following should be considered for actual clinical application: ease-of-operating of the S/W interface; ability to find the scan position or direction during mid-scan; whether the scanned data can be exported to a standard format of an .stl file; the learning curve for assuring the accuracy of data, shortening the scan time, and becoming familiar with the intraoral scanner; and cost-effectiveness of the equipment.
\nCriteria that dentists should consider when selecting an intraoral scanner.
The most important criterion for an intraoral scanner is accuracy. Currently, the accuracy of intraoral scanners is sufficient in cases limited to a quadrant, but caution should be taken with long restorations that extend beyond the median line. In a questionnaire surveying preferences in digital impression acquisition after using two types of intraoral scanners (image stitching versus video sequencing), the responses were predominantly positive regardless of the type of intraoral scanner. Such preference was even higher in the age group that was more familiar with digital technology; based on such high preference, it is expected that intraoral scanners will be increasingly implemented and actively used in dentistry [2].
\nAn intraoral scanner collects intraoral images of the patient and recombines the images as a 3D object. While this procedure is being executed, the computer limits the data resolution in the scan S/W. A polygon formed by three points serves as a criterion for assessing the resolution of scanned data. The higher the number of polygons, the higher the resolution. Assessment has been performed by using intraoral scanners to scan the upper central incisor abutment tooth that was prepared for crown. When the polygons that formed the surface of the model were counted, different scanner systems showed variance in the number of polygons to express the same tooth shape (from 6000 to 400,000 polygons). A higher number of polygons is more favorable for expressing sharp lines in the tooth margin. In addition to the number of polygons, the shape of the polygons is also important. Images with uniformly-sized equilateral triangles lead to faster processing speeds during CAD work and a lower probability of errors than do those with many long, needle-like polygons found between more regular planes (Figure 14) [3].
\nData acquired with various intraoral scanners for the same abutment tooth. It can be confirmed that the size, shape, and distribution of the polygons vary according to the systems.
When fabricating a fixed dental prosthesis for natural teeth by using an intraoral scanner, the ability to scan by differentiating the fine gap between the gingiva and abutment tooth margin is an important feature. When gaps ranging in size between 50 and 1000 microns were created and scanned with intraoral scanners, scanners evinced different levels of performance: some were unable to differentiate gaps smaller than 300 microns, whereas others were able to detect 50-micron gaps. Accordingly, it is advantageous to use the latter in clinical practice.
\nWhen the jig presented in ISO 12836 was scanned to test the performance of various intraoral scanners, most intraoral scanners, excluding True definition (3 M LAVA), could not scan geometric shapes. Intraoral scanners have a limited optical window size and can perform a scan only when the target object fills more than half of the optical window. Moreover, the algorithm in the system automatically deletes the image when nearby oral tissues, such as the lips or tongue, are included in the scan, which often prevents the intraoral scanners from producing normal images of repetitive shapes that can be easily aligned. Accordingly, it may be unreasonable to use ISO 12836 as the testing standard for intraoral scanners.
\nIn addition, trueness and precision should be calculated and considered together when assessing the accuracy of intraoral scanners; when the archer shot all arrows inside the bull’s eye, both the trueness and precision is good; if the arrows are concentrated in other areas, such as the second target, precision may be good, but trueness would be poor; if the arrows are observed in the third target, trueness may be good, but precision would be poor; when the arrows are spread apart, both trueness and precision would be poor.
\nCrowns, 3-unit fixed dental prostheses, and inlay abutment teeth were fabricated using a commercial high-precision milling machine to assess the intraoral scan data for the unilateral dental arch. Compared to the E4D Dentist and Zfx Intrascan, Fastscan, iTero, and Trios intraoral scanners evinced better accuracy in most cases. Systems that use active triangulation among their scan principles or spray powder showed high accuracy, while there were no statistically significant differences between image stitching and video sequencing methods [4].
\nWhen anterior teeth, including canines, are scanned, arch form distortion may occur. Patzelt et al. mentioned widening and narrowing of the molar region, while a clinical trial by Park et al. observed molar distortion and changes in anterior incisal length [5, 6]. Ender and Mehl reported that accuracy may vary according to scanning strategies, while Ahn et al. reported that differences in accuracy were found when the scan direction and order were changed when scanning a complete-arch orthodontic model [7, 8]. For this same reason, intraoral scanner companies specify that the recommended scanning strategy should be used during the whole dentition scan.
\nBecause of the limited optical window size, image recombination errors in the scan S/W of intraoral scanners may occur under certain conditions. When mandibular anterior teeth with the same size and shape were aligned by varying the interdental gap and scanned using iTero and Trios, both systems detected arch form distortion; the variance where the distortion occurred appeared to be due to differences in the optical system and recombination algorithm of the systems [9].
\nPark et al. reported on the accuracy of full dentition scan data when a bracket was installed for orthodontic treatment. Each intraoral scanner varied in its ability to reproduce different types of brackets with various materials. In particular, lingual orthodontics with the bracket mounted on the lingual side achieved lower accuracy than did buccal orthodontics; the extent of decrease in accuracy varied among intraoral scanners [10]. Fortunately, there was very little difference in accuracy based on the presence or absence of orthodontic wire. However, even in this, differences in performance among intraoral scanner systems were found [11].
\nPark et al. reported on the complete-arch scan accuracy of nine different intraoral scanners. A high-precision industrial scanner with an accuracy of <10 microns and over 100,000 scan points was used as the reference in assessing the trueness and precision of intraoral scanners. Various cases of abutment teeth that can be encountered in clinical practice were fabricated precisely with the industrial milling machine to build phantom models that were used in the study. For qualitative assessment on the differences in trueness, comparison of color maps showed that the distortion of the full dentition was not significant in most recently introduced intraoral scanner systems, whereas systems that have been on the market relatively longer showed poorer accuracy; this finding may have been due to differences in the optical system and 3D recombination function of their respective S/W. When the polygon pattern was analyzed at the same position and angle for a more detailed comparison, the results showed that the intraoral structure was differentially expressed. Similar to the deformation of the impression body observed when an impression is obtained using a traditional silicon impression material, such scan errors can also occur in a digital impression body. Therefore, it is recommended that clinicians should consider the possibility of such an error and personally check the important areas in completing the scan. While some intraoral scanner systems were able to accurately reproduce intraoral conditions, other systems were not able to do so. Fortunately, most of the recently introduced systems show clear and accurate results [3].
\nOne of the most common questions concerning the use of an intraoral scanner is how much occlusal adjustment is needed when a crown is fabricated. Although it varies by system, occlusion between the upper and lower jaw is in most cases registered by scanning the buccal bite under maximum intercuspation. For comparative assessment on the accuracy of a buccal bite scan, metal cylinders with various lengths were used to create a space between the teeth on the measurement side, and a buccal bite scan from the opposite side was acquired. Here, occlusal reproducibility of the intraoral scanners was measured by comparing the amount of interdental spacing on the measurement side against the reference scan. The bite was registered higher or lower depending on the system, and the extent of such differences varied. Therefore, when using intraoral scanners in clinical practice, it would be necessary to assess the accuracy of a buccal bite scan [12]. When the buccal bite-scan accuracy was compared in implant cases, the results also showed differences according to the systems used [13]. In addition to such variance in the performance of the intraoral scanners themselves, it should also be kept in mind that the final prosthesis height may become inaccurate if the patient does not bite down with centric occlusion.
\nDepending on the principle on which the intraoral scanner system is based, the scan distance or depth recognized by the scanner can vary. When the abutment tooth is too long or the gap from adjacent teeth is too narrow, the intraoral scanner must be lowered and rotated to the side to scan that area, since the focal length is limited. In doing so, if the S/W that superimposes the data has poor performance, it is difficult to obtain an image of the target area with a single scan and the scan time may be prolonged. When six different intraoral scanner systems were used to acquire digital impressions of various inlay cavities with narrow and deep cavities to assess the depth performance of intraoral scanners, the results showed that the pulpal floor depths of the cavities were different than the actual depths. If the cavity is shallow, the fabricated inlay is also thin and gap is filled with cement, which increases the possibility of inlay fracture after long-term use. If the cavity is deep, inlay with high occlusion is fabricated, which requires more time for occlusal adjustment. The bottom surface and lower corners of the inlay cavity box that are difficult to approach with an intraoral scanner on account of their being too close to adjacent teeth show various patterns of scan errors depending on the intraoral scanner system.
\nRecently introduced intraoral scanners feature polychrome systems that display mapping of natural color texture. Therefore, whether the color information obtained from intraoral scanning can replace the tooth shade selection process when restoring anterior teeth is worth consideration. Color differences in images obtained from digital intraoral scans and clinical photography were compared against a reference obtained from spectrophotometer to investigate clinical applicability. The color shade information obtained from intraoral scan data tended to be slightly bluer than the actual color shade and would thus be problematic to use as absolute data. However, since it is useful as a color map of teeth with white lines or brown spots, it would be best employed as a supplement [14].
\nEach intraoral scanner system has its own proprietary operating principle, as each manufacturer has registered patents for the operating principles of its own intraoral scanners; thus, the products are developed to not infringe on existing patents. Moreover, the scanner wands also have different shapes and sizes; recently, there has been a trend towards producing lighter scanners with smaller scanner tips that has led to reduced patient discomfort and shorter scanning times. Indeed, intraoral scanners with scanner tips about the size of a handpiece used for tooth preparation—or even smaller—have been introduced. However, as the size of the optical window becomes smaller, more images need to be stitched together; moreover, because the amount of surrounding structures needed for stitching decreases, the accuracy of the scanned data decreases. S/W development would therefore need to develop in tandem with the decrease in hardware size to use small intraoral scanners with high accuracy that can easily scan the distal surface of most posterior molars in clinical practice.
\nThe need for spray or powder during scanning is another H/W characteristic related to the performance of intraoral scanners. Powder is used to increase the recognition rate of scanners by balancing the reflective conditions of materials with different surface reflectance rates. Nedelcu et al. reported that applying an excessive amount of powder does not have a statistically significantly negative effect on accuracy [15]. However, in actual clinical practice, it is difficult to apply the powder to hard-to-reach areas inside the narrow oral cavity, such as the distal surface of most posterior molars. Moreover, in cases wherein it is difficult to control how much powder is being applied due to the applicator used, an excessive amount of powder may accumulate to cause the scan data to appear differently than the actual condition. In healthy young adults with active saliva secretion, if saliva covers the area where powder was applied, powder may clump together to affect the scan results. Since there are reports indicating that fine and ultrafine particles contained in scanning spray may be harmful to respiratory tract, using powder-free intraoral scanner system is recommended whenever possible. Meanwhile, many manufacturers are introducing intraoral scanners that do not need scanning spray and can overcome the problem of scattered reflection.
\nThe maximum depth of field recognized by the scanner has a significant influence on the intraoral scanning process. If the range of depth is shorter, systems that terminate the scan if the surface being scanned does not maintain a certain distance from the scanner tip require close attention and are difficult to use, meaning the learning curve becomes very steep. If the scan can be performed without any problem when the scanner tip touches the teeth or even when the distance becomes longer, then the clinical efficacy of such an intraoral scanner would increase.
\nBecause the scanner tip of intraoral scanners consists of a mirror and a glass window, fogging can occur on the optical window when the tip is suddenly inserted into the oral cavity; this can interfere with the scan and slow the scanning speed. To prevent fogging, the scanner tip is heated with a heat wire or air is blown into it. Systems with a heat wire require a waiting time to allow the scanner tip to be sufficiently heated, while systems with airflow can dry the inside of the oral cavity. Lastly, most intraoral scanners feature the ability of changing the scanner tip for sterilization, and thus, durability of the scanner tip based on EO gas or autoclave sterilization must be considered. Small cracks may form on the glass window after 20–30 rounds of sterilization, and images acquired thereafter would contain noise, which may slow the scanning speed and require replacement of the scanner tip.
\nWith good S/W support, the intraoral scanner system can offer convenience and high efficacy in clinical practice. With respect to such clinical efficacy, ease-of-operation of the graphic user interface (GUI) of the scan S/W itself can be helpful. Input of patient and abutment tooth information must not be unwieldy, and the system must allow all necessary information to be inputted without omission. Further, it must be easy to send the data obtained after completion of scanning to the design center. Recently, many intraoral scanner manufacturers allow for the uploading of data to a cloud server and the notification of the design center. Since scanned data can be viewed in a 3D orientation via a web browser or a separate application, it has become possible to relay work instructions while viewing the data when consulting with the lab technician –not only in the office but also while on the move.
\nSystems with an excellent S/W recombination algorithm feature a higher clinical efficacy. During digital impression acquisition, additional scans are needed for areas that were not scanned properly. When applying the intraoral scanner to the areas that require additional scanning, and scanning of surrounding area is re-initiated, systems should be able to find the area again quickly and accurately. In particular, when scanning natural tooth abutment, it is effective to scan the mesial and distal surfaces by rotating the intraoral scanner to a 90° angle from the dentition. Systems that reinitiate the scan by automatically recognizing the rotated direction after the scanning is halted are more convenient to use in clinical practice. This is possible if the system has a function that recognizes the change in angle within the algorithm that searches and matches previously scanned data. In addition, intraoral scanners that use video sequencing add data in real-time, and thus, when moving tissues that contact the teeth, the area around the teeth may become messy and contain unwanted data that require deletion from the screen and necessitate the performance of additional scans. To address this issue, systems with an “undo” function that regresses a few seconds to a point prior to the displacement of the tissues being added to the scanned data have been introduced.
\nRecently, dental CAD S/W with a variety of functions have been introduced; however, whether the operator can export scan data from the intraoral scan system easily as the standard format of .stl is an important point to consider before using them. Many manufacturers of intraoral scanner systems emphasize that their scanners are based on an open architecture. However, there were cases of reduced resolution in which only low-resolution data marred by an unexpected decrease in the number of polygons in the data were exported; inverted surface shell in which the scanned data were converted to an inverted form, rendering them unusable for CAD work; and loss of bite information in which the positional relationships of the maxillary and mandibular data returned to their original points and data on the inter-arch relationship were lost.
\nLastly, the learning time required to become familiar with handling the intraoral scanner to shorten the intraoral scanning time and increasing the accuracy of scanned data should be considered. Kim et al. reported the results from an in vivo study that investigated the learning curve for intraoral scanners. A total of 29 volunteers who wished to learn how to use an intraoral scanner participated in 10 sessions of digital impression acquisition lessons over 4 days. Because the volunteers had used an intraoral scanner for the first time, they made several errors, including widening of the posterior arch, lengthening of anterior length, and not combining two or more dental arch fragments together. If the problem could not be resolved by the erase and add scan function, the scan was started again from the beginning. Based on these results, the learning curve was derived. The analysis divided the participants into the groups that used intraoral scanners with image stitching versus video sequencing; both groups showed that adequate learning was achieved after repeated practice. The former achieved a higher learning rate since scanning was difficult, but even after 10 rounds of lessons, scan time was longer than that of the video-sequencing group [16].
\nLim et al. reported on the assessment of changes in data accuracy after repeated practice scanning compete-arch maxillary and mandibular dentition using the two of the same intraoral scanners. In the group that used the difficult image-stitching method, repeated practice influenced the accuracy of scanned data, indicating that practice must be invested to use the method in clinical practice. The group using video sequencing demonstrated a weak learning effect with better accuracy of scanned data relative to the other group. This group was not influenced by clinical experience or the oral structure of the patient, suggesting that video sequencing can be used more easily in clinical practice [6].
\nAlthough intraoral scanners have many advantages, there are many unresolved issues with respect to impression acquisition time. Unlike implant cases where the margin between the customized abutment and zirconia crown is arbitrarily set by a computer, impressions cannot be acquired accurately if the margin is not exposed in natural teeth cases. Therefore, the same processes as conventional technique, such as the insertion of a gingival cord and controlling saliva and bleeding, must be performed. Unlike the traditional method of waiting after injecting the impression material, images must be acquired continuously with an intraoral scanner, which necessitates supervision and, hence, more man-hours. As a method for overcoming such limitations, the dentist and dental hygienist must cooperate. Following the insertion of the gingival cord or while the patient is waiting, the dental hygienist can acquire a preliminary scan. Subsequently, the dentist can delete data from the abutment tooth area and perform a precision scan in only that area. By utilizing functions that are only possible by digital method, such limitations can thus be overcome. In addition, the development of next-generation intraoral scanners that feature the application of ultrasonography and optical coherence tomography is underway. If a digital impression can be acquired easily without having to control bleeding via the gingival cord immediately after tooth preparation, then intraoral scanners will become an essential tool to all dental offices.
\nCompared to the traditional prosthesis fabrication process, the advantages of intraoral scanners and CAD/CAM include the simplification of the work process; qualitative standardization of the lab process; effective and informed communication between dentist and lab technician; improved work efficiency; and permanent preservation of patient data that can be re-used when necessary. Indeed, there was a case in which a patient for whom we fabricated a partial denture contacted us to tell us that the denture has been lost. This was a case that underwent digital workflow, and the metal framework design was therefore stored in the hospital database. Accordingly, the metal frame was 3D printed and cast to prepare in advance of the patient’s arrival to the hospital. As a result, the denture-fabrication time was halved.
\nToday, intraoral scanner technology has become more advanced, its interface has become more convenient, and the price of equipment has become more reasonable. As a result, it is becoming increasingly used in dentistry. Because there are many advantages that can be gained should clinical dentistry adopt a digital workflow, there is a bright future for digital dentistry.
\nThis work was supported by the Yonsei University College of Dentistry (6-2018-0012).
\nNone.
Both coins and banknotes are frequently identified as materials for various microorganisms [3]. Fomites are inanimate objects capable of absorbing, storing, and transmitting infectious microorganisms [4]. Whether in the form of coins or banknotes, money is probably the item most people handle daily worldwide. It may become contaminated with microorganisms from the respiratory and gastrointestinal tracts during counting using saliva, coughing and sneezing on hands followed by currency exchange, placement or storage on dirty surfaces, poor handwashing after toilet. The banknote then acts as a bacterial vehicle to the following user [5, 6]. Most pathogens such as
Currency notes could potentially function as a fomite in transmitting microorganisms such as
Another study showed that banknotes assessed through microbiological culture, microscopic visualization, and biochemical techniques identified
In Indonesia, it is quite difficult to find literacy that identifies
The presence of bacteria on banknotes is strongly influenced by the material made of banknotes [3]. Banknotes are made from fibers that are coarse and provide an environment that is comfortable for the bacteria to survive. In addition, bacteria will have more surviving life in money paper that made fibers naturally dissolve in the mixed material plastic. Money paper does not give effect toxic on bacteria.
Research on Iranian currency also shows that
Research conducted by Gedik in 2013 concluded that the material that forms and composes money significantly affects the presence of microorganisms on the surface of money [13]. Banknote paper is manufactured from cotton fiber, which gives the paper its strength, durability, and distinctive feel. The cotton is sometimes mixed with linen, abaca, or other textile fibers. Banknote paper is infused with polyvinyl alcohol or gelatin to give it extra strength. This study also proves that Romanian banknotes are currencies whose ingredients can support the survival of microorganisms. In the same study, a microorganism transfer test was carried out on three respondents; the results showed that three respondents holding Romanian money were contaminated by the same microorganism [13]. The results of this study can be considered for countries that use money with the same materials and ingredients, especially for countries whose currencies are used globally, such as the US dollar and the euro.
Susanna, in 2019, researched banknotes and coins circulating at one of the universities in Depok, Indonesia. The communities taken are students and traders in the canteen. The sample money is money with large values such as 50,000 rupiahs to low-value banknotes, namely 1000 rupiahs. Based on the laboratory analysis results, there were no
The presence of bacteria on coins does not last as long as on banknotes due to the direct toxic effect of coins on bacteria [3]. However, bacteria can adapt to the presence of coinage in their environment and increase their life span by the time they have adapted to the presence of coinage.
Like paper money, Susanna in 2019 also researched coins circulating at one of the universities in Depok, Indonesia. The sample money is money worth 1000 Indonesia Rupiah (IDR) to 100 IDR. Based on the laboratory analysis results, there were no
The method used is total plate count (TPC) [7]. The working principle of TPC analysis is the calculation of the number of bacterial colonies present in the sample by dilution as needed and carried out in duplicate. All work is carried out aseptically to prevent unwanted contamination, and multiple observations can improve accuracy. The number of bacterial colonies that can be counted is a petri dish that has bacterial colonies between 30 and 300 colonies [16].
There are several media used to isolate microorganisms in agar, including potato dextrose agar (PDA) [17], mannitol salt agar (MSA), xylose lysine deoxycholate (XLD) agar, MacConkey agar (MAC), eosin methylene blue (EMB) agar, bile salts citrate thiosulfate (TCBS) agar,
The total viable count (TVC) is a simple way to dissect the microbial community’s composition. It is used to indicate the different types and numbers of bacteria in a given sample. It is possible to isolate various bacteria from a single environmental sample, whether a soil sample or a wound swab [20].
Total feasible amount serial dilutions were made from 1 mL sample and 9 mL standard saline solution, two drops surface plated on plate count agar (PCA) for TVC. Plates were incubated at 37°C for 24 h. The number of different colonies on each plate was calculated using a colony counter, colony-forming units (CFU) per mL or cm2 of the sample were calculated using the respective dilution factors and converted to log10, CFU/cm, or mL values.
Whether in the form of paper or coins, money is one of the media that can be a source of
The existence of
The authors are grateful to the Ministry of Research and Technology of the Republic of Indonesia for granting financial support in contract no. NKB-47/UN2.RST/HKP.05.00/2020.
The authors declare no conflict of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:268},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:156,numberOfSeries:0,numberOfAuthorsAndEditors:3657,numberOfWosCitations:4735,numberOfCrossrefCitations:2323,numberOfDimensionsCitations:5090,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"20",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11002",title:"Colorimetry",subtitle:null,isOpenForSubmission:!1,hash:"4d1a97ef4f3979a9d08d56f8f034dc3c",slug:"colorimetry",bookSignature:"Ashis Kumar Samanta",coverURL:"https://cdn.intechopen.com/books/images_new/11002.jpg",editedByType:"Edited by",editors:[{id:"42763",title:"Prof.",name:"Ashis Kumar",middleName:null,surname:"Samanta",slug:"ashis-kumar-samanta",fullName:"Ashis Kumar Samanta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10966",title:"Acoustic Emission",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"e4cbf5fe77dcf581393247bd9ac4277a",slug:"acoustic-emission-new-perspectives-and-applications",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10966.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:"Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics",isOpenForSubmission:!1,hash:"cfe87b713a8bee22c19361b86b03d506",slug:"nonlinear-optics-nonlinear-nanophotonics-and-novel-materials-for-nonlinear-optics",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",middleName:"I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10209",title:"Quantum Computing and Communications",subtitle:null,isOpenForSubmission:!1,hash:"588d044631767881b7490cd9cb2c052b",slug:"quantum-computing-and-communications",bookSignature:"Yongli Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/10209.jpg",editedByType:"Edited by",editors:[{id:"199527",title:"Associate Prof.",name:"Yongli",middleName:null,surname:"Zhao",slug:"yongli-zhao",fullName:"Yongli Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10168",title:"Electromagnetic and Acoustic Waves in Bioengineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fab55a6aa34e666274aabfdd3dc7f32d",slug:"electromagnetic-and-acoustic-waves-in-bioengineering-applications",bookSignature:"Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik",coverURL:"https://cdn.intechopen.com/books/images_new/10168.jpg",editedByType:"Authored by",editors:[{id:"314791",title:"Dr.",name:"Ivo",middleName:null,surname:"Čáp",slug:"ivo-cap",fullName:"Ivo Čáp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:"Technology and Biology",isOpenForSubmission:!1,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:"bioluminescence-technology-and-biology",bookSignature:"Hirobumi Suzuki and Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!1,hash:"d7481712cff0157cd8f849cba865727d",slug:"topics-on-quantum-information-science",bookSignature:"Sergio Curilef and Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10205",title:"Quantum Chromodynamic",subtitle:null,isOpenForSubmission:!1,hash:"0d9403b5c874f6e63b0686cd7c432e00",slug:"quantum-chromodynamic",bookSignature:"Zbigniew Piotr Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/10205.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10017",title:"Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"e20f25706d03f0c52ac852f7fa2375e7",slug:"optoelectronics",bookSignature:"Mike Haidar Shahine",coverURL:"https://cdn.intechopen.com/books/images_new/10017.jpg",editedByType:"Edited by",editors:[{id:"102474",title:"Dr.",name:"Mike Haidar",middleName:null,surname:"Shahine",slug:"mike-haidar-shahine",fullName:"Mike Haidar Shahine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:156,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74812,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8753,totalCrossrefCites:37,totalDimensionsCites:84,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:4549,totalCrossrefCites:30,totalDimensionsCites:49,abstract:null,book:{id:"2018",slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]},{id:"30963",doi:"10.5772/34176",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6801,totalCrossrefCites:29,totalDimensionsCites:48,abstract:null,book:{id:"1505",slug:"scanning-electron-microscopy",title:"Scanning Electron Microscopy",fullTitle:"Scanning Electron Microscopy"},signatures:"Pranshoo Solanki and Musharraf Zaman",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",slug:"pranshoo-solanki",fullName:"Pranshoo Solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",slug:"musharraf-zaman",fullName:"Musharraf Zaman"}]},{id:"49655",doi:"10.5772/61830",title:"Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition",slug:"electrical-discharge-in-water-treatment-technology-for-micropollutant-decomposition",totalDownloads:5019,totalCrossrefCites:32,totalDimensionsCites:44,abstract:"Hazardous micropollutants are increasingly detected worldwide in wastewater treatment plant effluent. As this indicates, their removal is insufficient by means of conventional modern water treatment techniques. In the search for a cost-effective solution, advanced oxidation processes have recently gained more attention since they are the most effective available techniques to decompose biorecalcitrant organics. As a main drawback, however, their energy costs are high up to now, preventing their implementation on large scale. For the specific case of water treatment by means of electrical discharge, further optimization is a complex task due to the wide variety in reactor design and materials, discharge types, and operational parameters. In this chapter, an extended overview is given on plasma reactor types, based on their design and materials. Influence of design and materials on energy efficiency is investigated, as well as the influence of operational parameters. The collected data can be used for the optimization of existing reactor types and for development of novel reactors.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Patrick Vanraes, Anton Y. Nikiforov and Christophe Leys",authors:[{id:"49112",title:"Prof.",name:"Christophe",middleName:null,surname:"Leys",slug:"christophe-leys",fullName:"Christophe Leys"},{id:"176861",title:"Dr.",name:"Anton",middleName:null,surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"},{id:"176862",title:"Mr.",name:"Patrick",middleName:null,surname:"Vanraes",slug:"patrick-vanraes",fullName:"Patrick Vanraes"}]}],mostDownloadedChaptersLast30Days:[{id:"49562",title:"Laser-Induced Plasma and its Applications",slug:"laser-induced-plasma-and-its-applications",totalDownloads:4805,totalCrossrefCites:12,totalDimensionsCites:26,abstract:"The laser irradiation have shown a range of applications from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution. Laser induced plasma has used for different diagnostic and technological applications as detection, thin film deposition, and elemental identification. The possible interferences of atomic or molecular species are used to specify organic, inorganic or biological materials which allows critical applications in defense (landmines, explosive, forensic (trace of explosive or organic materials), public health (toxic substances pharmaceutical products), or environment (organic wastes). Laser induced plasma for organic material potentially provide fast sensor systems for explosive trace and pathogen biological agent detection and analysis. The laser ablation process starts with electronic energy absorption (~fs) and ends at particle recondensation (~ms). Then, the ablation process can be governed by thermal, non-thermal processes or a combination of both. There are several types of models, i.e., thermal, mechanical, photophysical, photochemical and defect models, which describe the ablation process by one dominant mechanism only. Plasma ignition process includes bond breaking and plasma shielding during the laser pulse. Bond breaking mechanisms influence the quantity and form of energy (kinetic, ionization and excitation) that atoms and ions can acquire. Plasma expansion depends on the initial mass and energy in the plume. The process is governed by initial plasma properties (electron density, temperature, velocity) after the laser pulse and the expansion medium. During first microsecond after the laser pulse, plume expansion is adiabatic afterwards line radiation becomes the dominant mechanism of energy loss.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Kashif Chaudhary, Syed Zuhaib Haider Rizvi and Jalil Ali",authors:[{id:"176684",title:"Dr.",name:"Kashif Tufail",middleName:null,surname:"Chaudhary",slug:"kashif-tufail-chaudhary",fullName:"Kashif Tufail Chaudhary"},{id:"176867",title:"Dr.",name:"Syed Zuhaib",middleName:null,surname:"Haider Rizivi",slug:"syed-zuhaib-haider-rizivi",fullName:"Syed Zuhaib Haider Rizivi"},{id:"176868",title:"Prof.",name:"Jalil",middleName:null,surname:"Ali",slug:"jalil-ali",fullName:"Jalil Ali"}]},{id:"52164",title:"An Overview on Quantum Cascade Lasers: Origins and Development",slug:"an-overview-on-quantum-cascade-lasers-origins-and-development",totalDownloads:3255,totalCrossrefCites:2,totalDimensionsCites:11,abstract:"This chapter presents an introductory review on quantum cascade lasers (QCLs). An overview is prefaced, including a brief description of their beginnings and operating basics. Materials used, as well as growth methods, are also described. The possibility of developing GaN-based QCLs is also shown. Summarizing, the applications of these structures cover a broad range, including spectroscopy, free-space communication, as well as applications to near-space radar and chemical/biological detection. Furthermore, a number of state-of-the-art applications are described in different fields, and finally a brief assessment of the possibilities of volume production and the overall state of the art in QCLs research are elaborated.",book:{id:"5389",slug:"quantum-cascade-lasers",title:"Quantum Cascade Lasers",fullTitle:"Quantum Cascade Lasers"},signatures:"Raúl Pecharromán-Gallego",authors:[{id:"188866",title:"Dr.",name:"Raúl",middleName:null,surname:"Pecharromán-Gallego",slug:"raul-pecharroman-gallego",fullName:"Raúl Pecharromán-Gallego"}]},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4325,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6112,totalCrossrefCites:11,totalDimensionsCites:36,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10155,totalCrossrefCites:11,totalDimensionsCites:33,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]}],onlineFirstChaptersFilter:{topicId:"20",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82973",title:"Compact Incoherent Multidimensional Imaging Systems Using Static Diffractive Coded Apertures",slug:"compact-incoherent-multidimensional-imaging-systems-using-static-diffractive-coded-apertures",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105864",abstract:"Incoherent holographic imaging technologies, in general, involve multiple optical components for beam splitting—combining and shaping—and in most cases, require an active optical device such as a spatial light modulator (SLM) for generating multiple phase-shifted holograms in time. The above requirements made the realization of holography-based products expensive, heavy, large, and slow. To successfully transfer the holography capabilities discussed in research articles to products, it is necessary to find methods to simplify holography architectures. In this book chapter, two important incoherent holography techniques, namely interference-based Fresnel incoherent correlation holography (FINCH) and interferenceless coded aperture correlation holography (I-COACH), have been successfully simplified in space and time using advanced manufacturing methods and nonlinear reconstruction, respectively. Both techniques have been realized in compact optical architectures using a single static diffractive optical element manufactured using lithography technologies. Randomly multiplexed diffractive lenses were manufactured using electron beam lithography for FINCH. A quasi-random lens and a mask containing a quasi-random array of pinholes were manufactured using electron beam lithography and photolithography, respectively, for I-COACH. In both cases, the compactification has been achieved without sacrificing the performances. The design, fabrication, and experiments of FINCH and I-COACH with static diffractive optical elements are presented in details.",book:{id:"11860",title:"Holography - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg"},signatures:"Vijayakumar Anand, Soon Hock Ng, Tomas Katkus, Daniel Smith, Vinoth Balasubramani, Denver P. Linklater, Pierre J. Magistretti, Christian Depeursinge, Elena P. Ivanova and Saulius Juodkazis"},{id:"82958",title:"Electromagnetic Relations between Materials and Fields for Microwave Chemistry",slug:"electromagnetic-relations-between-materials-and-fields-for-microwave-chemistry",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106257",abstract:"We consider the application of microwave energy to a material. The effects of the electromagnetic field on the material and of the material on the electromagnetic field will be described, focusing on the dielectric relaxation phenomenon of the liquid. The dielectric permittivity of mixtures is discussed by extending Debye relaxation to explain how the material behaves with respect to an electric field. We will also consider the energy that the electric field imparts to the material, both thermally and nonthermally. We will develop this relation and describe what form it should take if there is a nonthermal effect in the chemical reaction field under microwave irradiation.",book:{id:"11494",title:"Electric Field in Advancing Science and Technology",coverURL:"https://cdn.intechopen.com/books/images_new/11494.jpg"},signatures:"Sugiyama Jun-ichi, Sugiyama Hayato, Sato Chika and Morizumi Maki"},{id:"82961",title:"Mixed Reality Applications in Business Contexts",slug:"mixed-reality-applications-in-business-contexts",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.106582",abstract:"Mixed reality is becoming increasingly relevant in business. In the corporate environment, such as logistics or maintenance, the use of data glasses allows extensive possibilities for process optimization and quality assurance. In the area of construction, virtual models either as augmentation of reality or mapped in virtual reality offer new approaches to experience ability. The goal of this paper is to show the manifold possibilities of mixed reality in the enterprise environment. For this purpose, selected application scenarios with corresponding realization stages will be shown and analyzed regarding their added value.",book:{id:"11860",title:"Holography - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg"},signatures:"Anett Mehler-Bicher, Lothar Steiger and Dirk Weitzel"},{id:"82951",title:"Decoupling Techniques for Coupled PDE Models in Fluid Dynamics",slug:"decoupling-techniques-for-coupled-pde-models-in-fluid-dynamics",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105997",abstract:"We review decoupling techniques for coupled PDE models in fluid dynamics. In particular, we are interested in the coupled models for fluid flow interacting with porous media flow and the fluid structure interaction (FSI) models. For coupled models for fluid flow interacting with porous media flow, we present decoupled preconditioning techniques, two-level and multilevel methods, Newton-type linearization-based two-level and multilevel algorithms, and partitioned time-stepping methods. The main theory and some numerical experiments are given to illustrate the effectiveness and efficiency of these methods. For the FSI models, partitioned time-stepping algorithms and a multirate time-stepping algorithm are carefully studied and analyzed. Numerical experiments are presented to highlight the advantages of these methods.",book:{id:"11862",title:"The Essence of Large-Eddy Simulations",coverURL:"https://cdn.intechopen.com/books/images_new/11862.jpg"},signatures:"Mingchao Cai, Mo Mu and Lian Zhang"},{id:"82787",title:"Spinor Fields",slug:"spinor-fields",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.105569",abstract:"A spinor representation of the generalized energy-momentum density 4-vector is proposed, and examples of such representations for various particles and fields are given. This representation corresponds to the classical representation of the particle’s own rotation, which is described by the diagonal matrix of the moment of inertia. The concept of self-angular rotation of a particle is defined as a spatial characteristic of the field, at each point of which there is a local vortex rotation with an angular velocity Ω – a spinor field. The matrix representation of the vortex rotation Ω (spinor) and the values of the components of such a representation are derived from the matrix representation of the Lorentz transformation. The traditional concept of spin-orbit interaction, as the interaction of the magnetic moment of a particle with the magnetic field of orbital motion, is presented as the interaction of a charged particle with a spinor field. Solutions to the problems of particle motion in an external spinor field in the case of a hydrogen-like atom and planetary motion, splitting of the electron energy levels of an atom in an external magnetic field, deflection of a photon by the gravitational field, and representations in metric spaces are presented.",book:{id:"11496",title:"Quantum Field Theory",coverURL:"https://cdn.intechopen.com/books/images_new/11496.jpg"},signatures:"Vahram Mekhitarian"},{id:"82739",title:"Experimental Breeder Reactor II",slug:"experimental-breeder-reactor-ii",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.105800",abstract:"The Experimental Breeder Reactor II (EBR-II) operated from 1964 to 1994. EBR-II was a sodium-cooled fast reactor operating at 69 MWth producing 19 MWe. Rather than using a loop approach for the coolant, EBR-II used a pool arrangement where the reactor core, primary coolant piping, and primary reactor coolant pumps were contained within the pool of sodium. Also contained within the pool was a heat exchanger where primary coolant, which is radioactive, transferred heat to secondary, nonradioactive, sodium. The nuclear power plant included a sodium boiler building where heat from the secondary sodium generated superheated steam, which was delivered to a turbine/generator for electricity production. EBR-II fuel was metallic uranium alloyed with various metals providing significant performance and safety enhancements over oxide fuel. The most significant EBR-II experiments occurred in April 1986. Relying on inherent physical properties of the reactor, two experiments were performed subjecting the reactor to loss of primary coolant flow without reactor SCRAM and loss of the secondary system heat removal without reactor SCRAM. In both experiments, the reactor experienced no damage. This chapter provides a description of the most important design features of EBR-II along with a summary of the landmark reactor safety experiments.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Chad L. Pope, Ryan Stewart and Edward Lum"}],onlineFirstChaptersTotal:41},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"