Specifications investigated lithium-ion battery brands [12].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"1004",leadTitle:null,fullTitle:"Viral Hepatitis - Selected Issues of Pathogenesis and Diagnostics",title:"Viral Hepatitis",subtitle:"Selected Issues of Pathogenesis and Diagnostics",reviewType:"peer-reviewed",abstract:"There are a lot of important issues related to viral hepatitis studies: molecular biology of viruses, laboratory diagnostics, epidemiology, treatment etc. However, there is a number of special textbooks and monographs on the subject. Considering this fact and rather fast progress in our understanding of the problem this book focuses on the important sections of the problem immune pathogenesis of parenterally transmitted viral hepatitis and some aspects of hepatitis diagnostics.\nSeven chapters were prepared by several groups of researchers to share information and results of studies with specialists working in the field and persons who are interested to learn about the viral hepatitis issue. \nThe Nobel Prize Committee (the field of physiology and medicine, 2011) awarded Bruce A. Beutler and Jules A. Hoffmann for their discoveries concerning the activation of innate immunity whilst Ralph M. Steinman was awarded for his discovery of the dendritic cell and its role in adaptive immunity. We are proud to say that our book is in line with these discoveries, because 3 chapters cover the problems of innate and adaptive immune response in case of viral hepatitis.",isbn:null,printIsbn:"978-953-307-760-4",pdfIsbn:"978-953-51-6555-2",doi:"10.5772/1510",price:119,priceEur:129,priceUsd:155,slug:"viral-hepatitis-selected-issues-of-pathogenesis-and-diagnostics",numberOfPages:164,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"4e981b67dfda0da757dbb2d9351761bd",bookSignature:"Sergey L. Mukomolov",publishedDate:"November 7th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/1004.jpg",numberOfDownloads:18450,numberOfWosCitations:7,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 26th 2011",dateEndSecondStepPublish:"February 23rd 2011",dateEndThirdStepPublish:"June 30th 2011",dateEndFourthStepPublish:"July 30th 2011",dateEndFifthStepPublish:"November 27th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"65615",title:"Dr.",name:"Sergey",middleName:null,surname:"Mukomolov",slug:"sergey-mukomolov",fullName:"Sergey Mukomolov",profilePictureURL:"https://mts.intechopen.com/storage/users/65615/images/1986_n.jpg",biography:"Professor Sergey L. Mukomolov MD, PhD, DSc is the Head of Epidemiology department and Viral hepatitis Laboratory in Saint-Petersburg Pasteur Institute. He is also a professor in Tropical Medicine department at North-Western State medical university named after I.I.Mechnikov. \nHe started his professional career in 1981 after graduating from Leningrad (now Saint-Petersburg, Russia) medical university. His first PhD thesis (1984) was focused on clinical and epidemiological features of chronic Hepatitis B virus carriers; second one (1994) discussed the acute and chronic Hepatitis C viral infection. Now professor Mukomolov is one of the leading researchers in the field of diagnostics, epidemiology and prevention of viral hepatitis in the Russian Federation. He is the author of 230 publications and inventor of 7 patents. The results of his most important studies were published in well known journals like Journal of Viral Hepatitis, Journal of Virology, Journal of Medical Virology and many others.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Saint Petersburg Pasteur Institute",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1046",title:"Infectious Diseases",slug:"infectious-diseases"}],chapters:[{id:"22628",title:"HBV & HCV Immunopathogenesis",doi:"10.5772/25832",slug:"hbv-hcv-immunopathogenesis",totalDownloads:3501,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Megha U. Lokhande, Joaquín Miquel, Selma Benito and Juan-R Larrubia",downloadPdfUrl:"/chapter/pdf-download/22628",previewPdfUrl:"/chapter/pdf-preview/22628",authors:[{id:"64704",title:"Dr.",name:"Juan R",surname:"Larrubia",slug:"juan-r-larrubia",fullName:"Juan R Larrubia"},{id:"118378",title:"BSc.",name:"Megha U",surname:"Lokhande",slug:"megha-u-lokhande",fullName:"Megha U Lokhande"},{id:"118379",title:"Dr.",name:"Joaquín",surname:"Miquel",slug:"joaquin-miquel",fullName:"Joaquín Miquel"},{id:"118380",title:"BSc.",name:"Selma",surname:"Benito",slug:"selma-benito",fullName:"Selma Benito"}],corrections:null},{id:"22629",title:"Toll Like Receptors in Chronic Viral Hepatitis – Friend and Foe",doi:"10.5772/25967",slug:"toll-like-receptors-in-chronic-viral-hepatitis-friend-and-foe",totalDownloads:1899,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ruth Broering, Mengji Lu and Joerg F. Schlaak",downloadPdfUrl:"/chapter/pdf-download/22629",previewPdfUrl:"/chapter/pdf-preview/22629",authors:[{id:"65141",title:"Prof.",name:"Joerg",surname:"Schlaak",slug:"joerg-schlaak",fullName:"Joerg Schlaak"}],corrections:null},{id:"22630",title:"Immunopathogenesis and Immunotherapy for Viral Hepatitis",doi:"10.5772/25666",slug:"immunopathogenesis-and-immunotherapy-for-viral-hepatitis",totalDownloads:1496,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yukihiro Shimizu",downloadPdfUrl:"/chapter/pdf-download/22630",previewPdfUrl:"/chapter/pdf-preview/22630",authors:[{id:"48390",title:"Dr.",name:"Yukihiro",surname:"Shimizu",slug:"yukihiro-shimizu",fullName:"Yukihiro Shimizu"}],corrections:null},{id:"22631",title:"Evolution of Viral Hepatitis: Role of Psychosocial Stress",doi:"10.5772/25219",slug:"evolution-of-viral-hepatitis-role-of-psychosocial-stress",totalDownloads:1686,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Cristin Constantin Vere, Costin Teodor Streba, Ion Rogoveanu, Alin Gabriel Ionescu and Letitia Adela Maria Streba",downloadPdfUrl:"/chapter/pdf-download/22631",previewPdfUrl:"/chapter/pdf-preview/22631",authors:[{id:"55543",title:"Dr.",name:"Cristin Constantin",surname:"Vere",slug:"cristin-constantin-vere",fullName:"Cristin Constantin Vere"},{id:"55546",title:"Dr.",name:"Costin",surname:"Streba",slug:"costin-streba",fullName:"Costin Streba"},{id:"55547",title:"Prof.",name:"Ion",surname:"Rogoveanu",slug:"ion-rogoveanu",fullName:"Ion Rogoveanu"},{id:"55548",title:"Dr.",name:"Alin Gabriel",surname:"Ionescu",slug:"alin-gabriel-ionescu",fullName:"Alin Gabriel Ionescu"},{id:"119881",title:"Dr.",name:"Letitia Adela Maria",surname:"Streba",slug:"letitia-adela-maria-streba",fullName:"Letitia Adela Maria Streba"}],corrections:null},{id:"22632",title:"Viral Hepatitis in Solid Organ Transplant Recipients",doi:"10.5772/26719",slug:"viral-hepatitis-in-solid-organ-transplant-recipients",totalDownloads:2349,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Lisa B. VanWagner and Josh Levitsky",downloadPdfUrl:"/chapter/pdf-download/22632",previewPdfUrl:"/chapter/pdf-preview/22632",authors:[{id:"67636",title:"Dr.",name:"Josh",surname:"Levitsky",slug:"josh-levitsky",fullName:"Josh Levitsky"},{id:"71144",title:"Dr.",name:"Lisa",surname:"VanWagner",slug:"lisa-vanwagner",fullName:"Lisa VanWagner"}],corrections:null},{id:"22633",title:"Hepatitis A: Clinical, Epidemiological and Molecular Characteristics",doi:"10.5772/27110",slug:"hepatitis-a-clinical-epidemiological-and-molecular-characteristics",totalDownloads:3939,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Zahid Hussain",downloadPdfUrl:"/chapter/pdf-download/22633",previewPdfUrl:"/chapter/pdf-preview/22633",authors:[{id:"68872",title:"Dr.",name:"Zahid",surname:"Hussain",slug:"zahid-hussain",fullName:"Zahid Hussain"}],corrections:null},{id:"22634",title:"Structure and Function of the Hepatitis E Virus Capsid Related to Hepatitis E Pathogenesis",doi:"10.5772/27635",slug:"structure-and-function-of-the-hepatitis-e-virus-capsid-related-to-hepatitis-e-pathogenesis",totalDownloads:3580,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Zheng Liu, Yizhi Jane Tao and Jingqiang Zhang",downloadPdfUrl:"/chapter/pdf-download/22634",previewPdfUrl:"/chapter/pdf-preview/22634",authors:[{id:"70912",title:"Prof.",name:"Jingqiang",surname:"Zhang",slug:"jingqiang-zhang",fullName:"Jingqiang Zhang"},{id:"71989",title:"Dr.",name:"Zheng",surname:"Liu",slug:"zheng-liu",fullName:"Zheng Liu"},{id:"123423",title:"Dr.",name:"Yizhi Jane",surname:"Tao",slug:"yizhi-jane-tao",fullName:"Yizhi Jane Tao"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"825",title:"Current Topics in Tropical Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ef65e8eb7a2ada65f2bc939aa73009e3",slug:"current-topics-in-tropical-medicine",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/825.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"799",title:"Salmonella",subtitle:"A Dangerous Foodborne Pathogen",isOpenForSubmission:!1,hash:"ba452d8a24ef16b1267d2854b28f6e6a",slug:"salmonella-a-dangerous-foodborne-pathogen",bookSignature:"Barakat S. M. Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/799.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3842",title:"Leishmaniasis",subtitle:"Trends in Epidemiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"861f3ca84eede677ba6cd863093d62f8",slug:"leishmaniasis-trends-in-epidemiology-diagnosis-and-treatment",bookSignature:"David M. Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/3842.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2068",title:"Understanding Tuberculosis",subtitle:"New Approaches to Fighting Against Drug Resistance",isOpenForSubmission:!1,hash:"077a11a53e4b135020092b8c1143f93c",slug:"understanding-tuberculosis-new-approaches-to-fighting-against-drug-resistance",bookSignature:"Pere-Joan Cardona",coverURL:"https://cdn.intechopen.com/books/images_new/2068.jpg",editedByType:"Edited by",editors:[{id:"78269",title:"Associate Prof.",name:"Pere-Joan",surname:"Cardona",slug:"pere-joan-cardona",fullName:"Pere-Joan Cardona"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"322",title:"Flavivirus Encephalitis",subtitle:null,isOpenForSubmission:!1,hash:"269535b3a2f21a46216f4ca6925aa8f1",slug:"flavivirus-encephalitis",bookSignature:"Daniel Růžek",coverURL:"https://cdn.intechopen.com/books/images_new/322.jpg",editedByType:"Edited by",editors:[{id:"33830",title:"Dr.",name:"Daniel",surname:"Ruzek",slug:"daniel-ruzek",fullName:"Daniel Ruzek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"971",title:"Malaria Parasites",subtitle:null,isOpenForSubmission:!1,hash:"d7a9d672f9988a6d5b059aed14188896",slug:"malaria-parasites",bookSignature:"Omolade O. Okwa",coverURL:"https://cdn.intechopen.com/books/images_new/971.jpg",editedByType:"Edited by",editors:[{id:"99780",title:"Prof.",name:"Omolade",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"544",title:"Anemia",subtitle:null,isOpenForSubmission:!1,hash:"6b166fa7f2a834360680a40d0f170dc3",slug:"anemia",bookSignature:"Donald S. Silverberg",coverURL:"https://cdn.intechopen.com/books/images_new/544.jpg",editedByType:"Edited by",editors:[{id:"78753",title:"Dr.",name:"Donald",surname:"Silverberg",slug:"donald-silverberg",fullName:"Donald Silverberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2061",title:"Salmonella",subtitle:"Distribution, Adaptation, Control Measures and Molecular Technologies",isOpenForSubmission:!1,hash:"64584b0d61f32814e0ed682bf052b088",slug:"salmonella-distribution-adaptation-control-measures-and-molecular-technologies",bookSignature:"Bassam A. Annous and Joshua B. Gurtler",coverURL:"https://cdn.intechopen.com/books/images_new/2061.jpg",editedByType:"Edited by",editors:[{id:"101172",title:"Dr.",name:"Bassam",surname:"Annous",slug:"bassam-annous",fullName:"Bassam Annous"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3436",title:"Tuberculosis",subtitle:"Current Issues in Diagnosis and Management",isOpenForSubmission:!1,hash:"282ed814f4951ebc84e53bae46815973",slug:"tuberculosis-current-issues-in-diagnosis-and-management",bookSignature:"Bassam H. Mahboub and Mayank G. Vats",coverURL:"https://cdn.intechopen.com/books/images_new/3436.jpg",editedByType:"Edited by",editors:[{id:"143284",title:"Dr.",name:"Bassam",surname:"Mahboub",slug:"bassam-mahboub",fullName:"Bassam Mahboub"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",title:"Corrigendum: The Physiological Ecology of White-Nose Syndrome (WNS) in North American Bats",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79672.pdf",downloadPdfUrl:"/chapter/pdf-download/79672",previewPdfUrl:"/chapter/pdf-preview/79672",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79672",risUrl:"/chapter/ris/79672",chapter:{id:"78750",slug:"the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",signatures:"Craig L. Frank",dateSubmitted:"September 1st 2021",dateReviewed:"September 8th 2021",datePrePublished:"October 15th 2021",datePublished:"April 20th 2022",book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"423579",title:"Dr.",name:"Craig L.",middleName:"L.",surname:"Frank",fullName:"Craig L. Frank",slug:"craig-l.-frank",email:"frank@fordham.edu",position:null,institution:{name:"Fordham University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"78750",slug:"the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",signatures:"Craig L. Frank",dateSubmitted:"September 1st 2021",dateReviewed:"September 8th 2021",datePrePublished:"October 15th 2021",datePublished:"April 20th 2022",book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"423579",title:"Dr.",name:"Craig L.",middleName:"L.",surname:"Frank",fullName:"Craig L. Frank",slug:"craig-l.-frank",email:"frank@fordham.edu",position:null,institution:{name:"Fordham University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12050",leadTitle:null,title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tBecause of the rapid growth of sustainable energy, energy technologies have garnered a lot of interest. Biodiesel has been recognised as a sustainable means of reducing reliance on fossil fuels and a solution to address the rising problem of global climate change policy. The monoalkyl esters of vegetable oils or animal fats are referred to as biodiesel. In comparison to petroleum-based diesel, biodiesel would provide benefits of non-toxicity, biodegradability, better air quality after combustion owing to reduced harmful emissions, energy security, and safety to handle, store, and transport, among others. The goal of this book is to explore the science in this field and educate the reader on a wide range of technologies for converting third and fourth-generation feedstocks to sustainable advanced biodiesels. The key sections address the overview of biodiesel production, technologies, innovative technologies for the latest generation of biodiesels, and socioeconomic and life cycle analysis of advanced biodiesel. In recent years, the advanced biorefinery idea has received a lot of interest as a model of decentralised production of advanced biodiesels, especially in rural regions. Such decentralised, small-to-medium scale biorefineries seem to have the most promise for expanding biodiesel production and hastening rural economic revival. Acquiring fresh scientific information and quickly integrating new knowledge and experience into plans and activities are critical in the renewable energy sector's dynamics. It is vital to equip experts, policymakers, and the general public with relevant and timely information so that they may make educated choices.
",isbn:"978-1-83768-138-9",printIsbn:"978-1-83768-137-2",pdfIsbn:"978-1-83768-139-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"bb86ab5c5ca0dab95f01941eb350f920",bookSignature:"Dr. IMR Fattah",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",keywords:"Biodiesel Production Technologies, Advanced Biodiesel Feedstocks, Enzymatic Catalytic Transesterification, Transesterification Using Co-solvents, Innovative Catalysts, Nanotechnology and Nanomaterials, Production of Glycerol-Free Biodiesels, Socioeconomic Perspective, Environmental Perspective, Policy Perspective, Advanced Biodiesel Driven Biorefinery, Life Cycle Sustainability Assessment",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 20th 2022",dateEndSecondStepPublish:"July 28th 2022",dateEndThirdStepPublish:"September 26th 2022",dateEndFourthStepPublish:"December 15th 2022",dateEndFifthStepPublish:"February 13th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"18 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An emerging researcher in bioenergy, 'Top 2% of Scientists in the World' in 2020 and 2021 by Elsevier BV and Stanford University, editorial board member in four prestigious journals, and author of over 80 articles.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"463663",title:"Dr.",name:"IMR",middleName:null,surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah",profilePictureURL:"https://mts.intechopen.com/storage/users/463663/images/system/463663.jpg",biography:"Dr IMR Fattah is a Research Fellow in the School of Civil and Environmental Engineering, Faculty of Engineering and IT at the University of Technology Sydney, where he is researching the effective use of waste for sustainable energy applications. His research interests stem from the PhD in the combustion of renewable fuels he completed at the University of New South Wales in 2019, where he focused on the reduction of emissions (particularly PM/soot) from diesel combustion. Dr IMR Fattah was named one of the Top 2% of Scientists in the World in 2021 by Elsevier BV and Stanford University. He was also featured as one of the 'Research Rising Stars' (Top 40 researchers who are less than 10 years into their careers) for his outstanding achievements in a September 2019 Special Report by 'The Australian'. He is actively engaged in the field by publishing over 80 articles and gaining over 5900 citations of his works. He is serving as an 'Associate Editor' at 'Frontiers in Energy Research' and as an editorial board member at ''Energies (MDPI)', ''Highlights of Sustainability (Highlights of Science)’ and ‘Advances in Environmental and Engineering Research (LIDSEN Publishing)’. He is managing/has managed ten topical/special issues as 'Guest Editor'. He has also peer-reviewed over 275 journal articles throughout his career.\n\nDr IMR Fattah would like to remain at the forefront of research in the field of renewable and sustainable energy.",institutionString:"University of Technology Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Technology Sydney",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41417",title:"Batteries and Supercapacitors for Electric Vehicles",doi:"10.5772/53490",slug:"batteries-and-supercapacitors-for-electric-vehicles",body:'Due to increasing gas prices and environmental concerns, battery propelled electric vehicles (BEVs) and hybrid electric vehicles (HEVs) have recently drawn more attention. In BEV and HEV configurations, the rechargeable energy storage system (RESS) is a key design issue [1–3]. Thus, the system should be able to have good performances in terms of energy density and power capabilities during acceleration and braking phases. However, the thermal stability, charge capabilities, life cycle and cost can be considered also as essential assessment parameters for RESS systems.
Presently batteries are used as energy storage devices in most applications. These batteries should be sized to meet the energy and power requirements of the vehicle. Furthermore, the battery should have good life cycle performances. However, in many BEV applications the required power is the key factor for battery sizing, resulting in an over-dimensioned battery pack [4,5] and less optimal use of energy [4]. These shortcomings could be solved by combination of battery system with supercapacitors [6–8]. In [9], it is documented that such hybridization topologies can result into enhancing the battery performances by increasing its life cycle, rated capacity, reducing the energy losses and limiting the temperature rising inside the battery. Omar et al. concluded that these beneficial properties are due to the averaging of the power provided by the battery system [4,6,9]. However, the implementation of supercapacitors requires a bidirectional DC–DC converter, which is still expensive. Furthermore, such topologies need a well-defined energy flow controller (EFC). Price, volume and low rated voltage (2.5–3 V) hamper the combination of battery with supercapacitors [6,10]. In order to overcome these difficulties, Cooper et al. introduced the Ultra-Battery, which is a combination of lead-acid and supercapacitor in the same cell [11]. The new system encompasses a part asymmetric and part conventional negative plate. The proposed system allows to deliver and to absorb energy at very high current rates. The Ultra-Batteries have been tested successfully in the Honda Insight. However, this technology is still under development. In the last decade, a number of new lithium-ion battery chemistries have been proposed for vehicular applications. In [12–15], it is reported that the most relevant lithium-ion chemistries in vehicle applications are limited to lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), lithium manganese spinel in the positive electrode and lithium titanate oxide (LTO) in the negative electrode. In this chapter, the performance and characteristics of various lithium-ion based batteries and supercapacitor will be evaluated and discussed. The evaluation will be mainly based on the electrical behavior. Then the characteristics of these RESS systems will be investigated based on the electrical and thermal models.
It is well known that the key consideration in the design of rechargeable energy storage systems in PHEV and BEV applications mainly depend on the power density (kW/kg) and energy density (Wh/kg) due to the design concept. However, the battery technology also should be able to have good performances in the terms of energy efficiency, lifetime, and charging rate [12-15]. In this section all these parameters have been analyzed for 10 lithium-ion battery types as presented in Table 1.
\n\t\t\t\t | \n\t\t
Specifications investigated lithium-ion battery brands [12].
In [16] the main design concepts of PHEV applications are discussed, compared to the three sets of influential technical goals, and explained the trade-offs in PHEV battery design. They mentioned that the energy and power requirements according to the U.S. Advanced Battery Consortium (USABC) should be in the range of 82 Wh/kg and 830 W/kg for PHEV-10 and 140 Wh/kg and 320 W/kg for PHEV-40. Pesaran specified these two battery types as high power/energy ratio battery (PHEV-10) and low power/energy battery (PHEV-40). The first category PHEV-10 is set for a “crossover utility vehicle” weighing 1950 kg and PHEV-40 is set for a midsize sedan weighing 1600kg [16]. In this study, only the battery performance characteristics for PHEV-40 (40 miles All Electric Range) is investigated based on the USABC goals [16].
Figure 1 shows the results of the Dynamic Discharge Performance test (DDP) and the Extended Hybrid Pulse Power Characterization (HPPC) test [12,17-19]. As one can see, the energy density of nickel manganese cobalt oxide (LiNiCoMnO2) based battery types D&E is in the range of 126 – 149Wh/kg while the cells using iron phosphate in the positive electrode show energy density being in the range of 75 – 118Wh/kg. In [20], is reported that the high energy density values for the LiNiCoMnO2 batteries is mainly due to the higher nominal voltage (e.g. 3.7V) and good electrode specific capacities. However, the situation regarding the power density is not clear due the fact that power is varying over a wide range. Figure 1 shows that only cell type D using LiNiCoMnO2 has the highest power density around 2100Wh/kg. This result is mainly due to the good specific impedance [20].
The results indicate also that iron phosphate based battery types B and H have good power performances being in the range of 1580-1650 W/kg. However, based on the USABC goals, all the tested cells can meet the power requirements of 320W/kg with exception of battery F 290W/kg. Although the battery type E has the best energy density, the power capabilities of this battery are limited in comparison to the batteries types B, D and H, which indicates that this battery is more appropriate for BEV applications as reported in [12]. The presented results in Figure 1 are based on the maximum discharge C-rate at 50% state of charge.
Power density versus energy density at room temperature [
In PHEV applications, energy efficiency during charge and discharge phases can be considered as one of the key factors. High-energy efficiency is desired to limit the temperature rise inside a battery pack. In this section, the energy efficiency of the proposed battery types has been considered based on the DDP test [19].
It is well pointed out in Figure 2, that the energy efficiency of the nickel manganese cobalt oxide based cells is around 94 – 96%. While the iron phosphate and nickel cobalt aluminum in the positive electrode show generally a lower efficiency in the range of 88 – 93%. The lower energy efficiency for lithium iron phosphate based batteries can be explained due to the relative lower conductivity of cathode material compared to NMC based batteries.
Energy efficiency versus energy density at room temperature [
It is generally known that PHEV applications are an important factor for improving the impact of traffic on healthier living environment by emitting a lower amount of CO2 than the conventional vehicles. However, the advantages of PHEV applications mainly depend of the energy storage device. On the other hand, in order to enhance the suitability of the battery technology in PHEV applications, the battery requires besides good power, energy and energy efficiency performances also acceptable fast charging capabilities. In [21], it is well reported that the charging process of battery typically involves two phases:
The main charging phase, where the bulk of energy is recharged into the battery (constant current),
The final charge phase, where the battery is conditioned and balanced (constant voltage).
In this section, the fast charging performances of the different batteries until the main charging phase have been analyzed. In this study the main charging phase has been considered at different charge current rates (0.33 It, 1 It, 2 It and 5 It). The reference test current It can be expressed as according to the standard IEC 61434 [22]:
Figure 3 shows clearly that lithium-ion battery technology have high charge performances. For most lithium-ion batteries, the stored capacity up to Vmax is above 60% at 5 It. Due to the higher charge current rates, the charge time can be reduced with a factor 10. The discharge time is less than 1 hour instead of 8 hours as mentioned in [15]. Here it should be noted that battery cells with high energy density, which are designed for BEVs and PHEVs show high performances between 1 It and 2 It but indicate less performances at higher current rates (> 2 It) [12].
Evolution of stored capacity during main charging phase [
According to the United States Advanced Battery Consortium, the battery system in HEVs, PHEVs and BEVs should operate over a wide operating temperate (from -40°C until 60°C) In order to illustrate the battery behavior at different working temperatures, the same dynamic discharge performance test as described above has been performed at -18°C, 0°C, 25°C and 40°C as described in the standard ISO 12405-1/2 and IEC 62660-1 [23-25].
Figure 4 illustrates that the nickel manganese cobalt oxide based battery (type E) has an energy density of 150-125 Wh/kg in the temperature range of 40°C and 0°C. While the energy density of lithium iron phosphate (type H) and lithium nickel cobalt aluminum oxide in the positive electrode (type F) seem to have less favorable performances 108-101 Wh/kg for LFP and 94 74 Wh/kg, for NCA. However, the performances at -18°C are less beneficial for NMC battery type around 50 Wh/kg against 54 Wh/kg and 86 Wh/kg for NCA and LFP, respectively. These results show that the energy density reduction is 60% for NMC, 40% for NCA and 20% for LFP cells. This means that a heating system will be more than desired for NMC and NCA cells in order to keep the battery cells in the appropriate temperature envelope (40°C-0°C), where the energy performances are relative high. The high energy density in the case of NMC at 40°C and 25°C are due to the good specific capacity and the higher nominal voltage. The obtained energy density for nickel cobalt aluminum in the positive electrode is quite small against what is documented by Burke [9]. The reason is that the investigated cells (see Table 1) are dimensioned for hybrid applications rather than battery propelled electric vehicles. In [26] is reported that the limitation of the energy density at low temperatures is mostly related to the considerable increasing of the internal resistance. However, Figure 5 indicates that the aspect does not apply for LFP based battery. The normalized internal resistance increases in the case of the latter mentioned cell chemistry is 650% compared at the reference temperature (25°C). The internal resistance has been determined at 100% SoC and the applied current was 0.1 It and 1 It.
Evolution of energy density as function of working temperature [
Evolution of the internal resistance as function of the working temperature [
In order investigate the behavior of the proposed LFP and NMC based batteries in depth, a number of capacity tests have been carried out at current rates 2 It, 5 It and 10 It at 0°C. Figure 6 and Figure 7 show the favorable performances of the LFP chemistry against the NMC. Especially at 0°C, the LFP battery demonstrates the excellent performances due to the self-heating mechanism that occur at high current rates. In Figure 6, we observe that the voltage at 10 It drops fast but remains above the minimal voltage: 2V. Then, the voltage recovers when the battery temperature considerable increases (43°C) due to the higher internal resistance. The battery is able to attain almost the same discharge capacity as at lower current rate and high working temperature as it is illustrated in Figure 8. Here, we can notice that the Peukert number in the temperature range (0°C – 40°C) is close to one as is reported by Omar et al. [7]. However, at low temperatures (-18°C and forward) the Peukert number increases (1.85) due to the reducing of the discharge capacity, which is caused by the significantly high internal resistance. It should be pointed out that in the region 0.33 It and 2 It, the Peukert number is smaller than 1, which is in contradiction with the Peukert phenomena. The explanation of this behavior is due to the fact that the Peukert relationship has been extracted particularly for lead acid batteries and for relative low current rates and in operating temperatures, which is close to the room temperature. However, for lithium-ion batteries and mainly at low temperatures (-18°C), there are another complex phenomena that occur that only cannot be explained by Peukert.
Illustration of the voltage and temperature evolution of LFP based battery versus depth of discharge at different current rates at 0°C [
Illustration of the voltage and temperature evolution of NMC based battery versus depth of discharge at different current rates at 0°C [
In development of an appropriate battery pack system, the battery management system can be assumed as a key system [27]. The accuracy and the performances of this system depend on the developed balancing system and an accurate electrical and thermal battery model which can predict the battery cell behavior under all operational conditions. The electrical model is required for prediction of the battery behavior such as energy, power, internal resistance, life cycle and energy efficiency. On the other hand the thermal model is needed to predict the surface temperature of the battery cell for operating of the cooling and heating system when required. Further, the output of the thermal model will be used as an input for the electrical model due to the dependency of the model parameters as a function of the temperature. In this section the performances of the well-known first order FreedomCar battery model will be analyzed by using a dedicated test protocol and a new estimation technique. Then, the analysis is extended with a novel developed thermal model that has been developed at the Vrije Univeriteit Brussel for lithium-ion batteries.
Illustration of the Peukert as function of the operating temperature (LFP) [
As reported above, the BMS requires an accurate electrical battery model for prediction of the battery behavior during the short and long term. Therefore, in the literature, one can find a number of electrical models such as Thévenin, FreedomCar, second order FreedomCar and RC battery model [28, 29]. The Thévenin battery model is a modified model of the FreedomCar battery model as it is presented in Figure 9. The Thévenin model is during steady state operations less accurate than the FreedomCar model due to the absent of the fictive capacitor 1/OCV’. The second order FreedomCar battery model has relatively higher performances than the Thévenin battery model, but this model is also more complicated due to the present of two RC-circuits in the system, which seems in the reality too heavy for BMS in PHEVs and BEVs where 100 battery cells are connected in series. Therefore, the processing unit should be very powerful.
In the framework of this section, only the characteristics of the first order FreedomCar battery model will be addressed and compared with experimental results. As it presented in Figure 9, the FreedomCar model exists mainly of an ohmic resistance (Ro), a fictive capacitor (1/OCV’) which represents the variation of the voltage over the time, an open circuit voltage OCV and a RC circuit existing of a polarization resistance Rp and capacitor C. The model assumes that the battery model parameters should be as function of state of charge and temperature. However, the researchers at the Vrije Universiteit Brussel found that the impact of the current rate and cycle life are also important parameters that cannot be avoided [28]. Then, the researchers found also that the ohmic resistance should be divided into two parts: the charge ohmic resistance and the discharge ohmic resistance due to the battery hysteresis [28].
First order FreedomCar battery model [
Prior starting with validation of the proposed battery model, the model has been calibrated by performing a new developed test profile at the Vrije Universitiet Brussel as it is presented in Figure 10. As we can observe, there is a good agreement between the simulation and the experimental results. According to these results, the error percentage is not higher than 3.5%. This indicates the powerful performances of the proposed battery model with the developed estimation technique.
Calibration of the first order FreedomCar battery model at room temperature [
Regarding the prediction the thermal behavior of a battery, this can be performed by using high accurate thermal sensors or by dedicated thermal battery models. However, thermal models have many advantages against thermal sensors. The sensors can only measure one specific point. As it is generally know the heat distribution over the surface temperature of the battery is not uniform. In order to have a good sight of the heat development inside the battery, several thermal sensors are needed. This issue will complicate the BMS and the processing time of the BMS will be significantly longer. Therefore, it is more of high interest to issue thermal model which can predict the heat development and distribution over the battery surface. Further, such models allow in advance the battery pack designer to investigate the weakness in the battery pack and to dimension the cooling system more accurately. Finally, the development cost of such battery model is less than the cost of the significant higher number thermal sensors that are needed. In this perspective, a novel thermal model has been developed at the Vrije Universiteit Brussel that can be used for lithium-ion batteries and supercapacitors [30, 31]. In Figure 11 the thermal model is illustrated. As we can observe, the model exists of the following components [30, 31]:
Pgen represents the heat generation (irreversible heat)
Cth stands for the thermal capacitance,
Rthi is the thermal resistance,
Rcon represents the convection thermal resistance,
In order to verify the developed thermal battery model, series of comparisons are made based on simulation and experimental results. The first test is presented in Figure 12. As we observe, the model is in good agreement with experimental results. The errors percentage based on this test is in the range of 1°C. In this test, the model has been compared with experimental results based on the load profile as proposed in Figure 13 until the surface temperature has reached the steady stated condition.
Novel thermal batter model for lithium-ion batteries and electrical double-layer capacitors [
Comparison of simulated and measured at 25°C working temperature [
Used load profile for extraction of the thermal model parameters [
However, there is a need for validation step to evaluate the performances and accuracy of the developed battery model at other conditions without to perform any calibration in the model. In Figure 14 a validation test has been carried out at room temperature about 24°C. The corresponding simulation and experimental comparison are illustrated in Figure 15. Here again, we recognize that the high accuracy of the battery model against the experimental results. Based on these results, we can conclude that the developed battery model is able to predict the surface temperature of the battery cell with significantly low errors.
Load profile for validation [
Comparison of experimental and simulation results at room temperature (~24°C) [
Supercapacitors, also known as Electric Double-Layer Capacitors (EDLCs)or ultra capacitors, have a high energy density when compared to conventional capacitors, typically thousands of times greater than a high capacitance electrolytic capacitor. For example, a typical electrolytic capacitor will have a capacitance in the range of tens of milli-farads. The same size supercapacitor would have a capacitance of several farads. Larger supercapacitors have capacitance up to 5000 farads. The highest energy density in production is 30 Wh/kg. Although supercapacitors have very high power density and capacitance values of thousands of Farads are possible, the cell voltage is limited to about 2.7 V to avoid electrolysis of the electrolyte with the consequent emission of gas and deterioration of the supercapacitor cell. The structure of a basic cell is mostly cylindrical. However, there are also now commercial pouch supercapacitors available. The technology achievement is identical to that used for conventional capacitors. The supercapacitors cells used in this study are the BCAP310F and BCAP1500F. Their properties are based on the double layer capacitance at the interface between a solid conductor and an electrolyte. The elementary structure consists of two activated carbon electrodes and a separator impregnated with an electrolyte. The electrodes are made up of a metallic collector, coated on both side with an active material, which has a high surface area part which is required for the double layer. The two electrodes are separated by a membrane (separator), which prevents the electronic conduction by physical contact between the electrodes but allows the ionic conduction between them. This composite is subsequently rolled and placed into a cylindrical container. The system is impregnated with an organic electrolyte. The two electrodes are metalized and connected to the outside (+) and (-) terminal connections of the supercapacitor.
Equivalent series resistance and capacitance of supercapacitor calculation methods:
Electrochemical impedance spectroscopy (EIS) is used in the characterization of electrochemical behavior of energy storage devices. Impedance analysis of linear circuits is much easier than analysis of non-linear ones. Electrochemical cells are not linear. Doubling the voltage will not necessarily double the current. However, the electrochemical systems can be pseudo-linear. In normal EIS practice, a small (1 to 10 mV) AC signal is applied to the cell. With such a small potential signal, the system is pseudo-linear.
The supercapacitor is polarized with a dc voltage. A small voltage ripple, typically 10mV, is superimposed on the dc component. The ripple frequency is swept between 1 mHz and 1 kHz. The measurement of the current amplitude and phase with respect to the injected voltage permits the determination of the real and imaginary components of the impedance as a function of the frequency. The measurements were performed in a controlled climatic chamber. The supercapacitor capacitance C and the series resistance (ESR) are deduced from the experimental results, respectively.
Where:
Im(z) is the imaginary component of the supercapacitor impedance,
Re(z) is the real component of the supercapacitor impedance,
F is the frequency.
The Maxwell BCAP310F and BCAP1500F supercapacitors used in this study are based on activated carbon technology and organic electrolyte. These devices were characterized using the Electrochemical Impedance Spectroscopy (EIS) [32].
Figure 16 and Figure 17 represent the BCAP310F and the BCAP1500F capacitance and ESR as a function of frequency.
At low frequency, the capacitance is maximum, for example at 10mHz the capacitance value is in order of 1660F for the BCAP1500F and 315F for the BCAP310F. At 50mHz the ESR value is in order of 1mΩ for BCAP1500F and 5.2mΩ for BCAP310F. The BCAP310F ESR is relatively high because this device was fabricated, by Maxwell Technologies, especially for these thermal tests; it is including 4 thermocouples type K inside.
BCAP1500F and BCAP310F capacitance as function of frequency with a bias voltage respectively of 2.7V and 2.5V and a temperature of 20°C.
BCAP1500F and BCAP310F series resistance as function of frequency with a bias voltage respectively of 2.7V and 2.5V and a temperature of 20°C.
The standard IEC (International Electro-technical Commission) 62576 [33,34] defines the calculation methods of the equivalent series resistance and the capacitance of electric double-layers capacitors.
Figure 18 presents the calculation method of the equivalent series resistance. The supercapacitor is charged at constant current to its nominal voltage, this voltage should be maintained at this value during 30 min. Then, the supercapacitor is discharged at constant current up to 0V. The value of the constant current depends on the applications. The IEC 62576 suggests to choose 10xC, 4xCxUr, 40*C*Ur and 400xCxUr mA for the supercapacitors applied as memory backup (class 1), energy storage (class 2), power unit (class 3) and instantaneous power unit (class 4), respectively [33,34]. Where, C is the capacitance and Ur represents the rated voltage.
Charge and discharge of the supercapacitor at constant current
The ESR value is calculated based on the following expression:
Where ΔV3 is the voltage drop obtained from the intersection of the auxiliary line extended from the straight part and the time base when the discharge starts, and I is the constant discharging current.
Figure 19 presents the calculation method of the capacitance.
Discharge at constant current of the supercapacitor
The capacitance value is calculated using the following expression:
Where I is the constant discharging current, Δt=t2-t1 and ΔV=V1–V2, V1=80%*Vmax, V2=40%*Vmax and Vmax is the maximum voltage of the supercapacitor.
Experimental results of BCAP1500F voltage and current as a function of time.
The BCAP1500F capacitance and ESR were calculated according to the IEC 62576 standard. The supercapacitor is discharged at constant current 100mA/F. Figure 20 represents the BCAP1500F voltage and current versus time during the discharge. ESR and C are 1.07mΩ and 1525F, respectively.
Heat production in supercapacitor is related exclusively to Joule losses. The supercapacitors support currents up to 400A or more depending on cell capacitance and used technology. The repetitive charge and discharge cycles of the supercapacitor cause a significant warming even though the equivalent series resistance value is around the mΩ according to the capacitance. Several authors showed that the supercapacitor ESR varies according to the temperature [35-37]. In [38] the authors have studied the effect of the temperature and the voltage on the supercapacitors ageing. They have established a model which allows analyzing self-accelerating degradation effects caused by elevated voltages and temperatures, this model is a holistic simulation model that combines electrical and thermal simulation of supercapacitor modules with an ageing model.
In the reference [39] the authors have studied and modeled the temperature effect on the supercapacitor self discharge.
This rise in temperature can have the following consequences:
The deterioration of the supercapacitor characteristics, especially ESR, self discharge and lifetime [39,40], which affect its reliability and its electrical performance.
The pressure inside the supercapacitor is increased.
A premature aging of metal contacts, in fact the repetitive heating and significant temperatures can deteriorate rapidly the terminal connections of the supercapacitor.
The evaporation of the electrolyte and hence the destruction of the supercapacitor if the temperature exceeds 81.6°C which is the boiling point of the electrolyte.
Therefore, it is important to know and understand the heat behavior of supercapacitor cells and modules. This leads to an estimation of the space-time evolution of the temperature.
This study deals with the thermal modeling and heat management of supercapacitor modules for vehicular applications. The thermal model developed is based on thermal-electric analogy and allows the determination of supercapacitor temperature. Relying on this model, heat management in supercapacitor modules was studied for vehicle applications. Thus, the modules were submitted to real life driving cycles and the evolution of temperatures of supercapacitors was estimated according to electrical demands. The simulation results show that the hotspot is located in the middle of supercapacitors module and that a forced airflow cooling system is necessary.
For supercapacitor thermal behavior, the device was characterized by using the EIS for different temperature. Figure 21 presents the Maxwell BCAP0310F ESR variations according to the temperature. The ESR increases at negative temperature values. The ESR variation is higher for negative temperature than for positive one. This is due to the fact that the electrolyte’s conductivity is strongly temperature dependent. Above 0°C ESR varies slowly with the temperature. Below 0°C the temperature dependency is stronger. Higher ESR is due to the increase of the electrolyte’s viscosity at low temperatures limiting ionic transport speed which increases the resistance of the electrolyte.
BCAP310F equivalent series resistance as function of temperature.
In the case of the capacitance, the experimental results show that the capacitance is lower at negative temperature as shown in Figure 22. For example, at f=10mHz there is no variation of the capacitance with temperature. At 100mHz, C=335F at -20°C whereas C= 361F at 20°C. At negative temperature, the supercapacitor capacitance decreases with temperature.
Capacitance evolution according to the temperature for 10mHz and 100mHz
In conclusion, it is clear that the supercapacitor electric performances and lifetime depend on the temperature.
In literature, several supercapacitors have been developed for different purposes [47-51]. In [47], a model has been proposed by Faranda et al (see Figure 23). The model exists of three branches. The first branch containing R0 represents the fast response of the supercapacitor in term of few seconds. The second branch contains a resistance and a large capacitor. Then the second branch demonstrates the long-term behavior in term of few minutes. However, the analysis that has been carried out by Chalmers University showed that the error between the simulated and experimental results for such model is in the range of 10%, which is statistically high.
Three branches model [
In [48] a second order model has been proposed to demonstrate the supercapacitors behavior. The proposed model is strong similar to the second order Thévenin battery model. The model has significantly higher accuracy (error between the simulated and experimental results <5%) than the previous supercapacitor model due to the non-linear behavior of the model.
In [49-51] a new model has been developed based on electrochemical characterization of the supercapacitors on electrode and electrolyte level. Therefore, the model as presented in Figure 24 below has been proposed.
Electrochemical model [
Here it should be underlined that this model needs dedicated test procedures for determining the model parameters, which only can be carried out by chemists. Therefore, the use of the model in the vehicular applications is useless.
Then for the first two models, the model parameters can be extracted from the electrical approach. However, the simulation time and the complexity of such models is an obstacle in HEV applications. Therefore, in this section the model as presented in Figure 25 seems the most interesting model in real applications.
RCC model of the supercapacitor
A supercapacitor cell can be modeled by an equivalent RCC circuit as shown in Figure 25, where ESR is the series equivalent resistance, C0 is a constant capacitor and Ck=k*V varies according to the supercapacitor voltage. These parameters are identified by charging and discharging at constant current [40-46] and the obtained values for the BCAP310F were ESR=4.25mΩ, C0 = 282 F and Ck=46*V. This model is suitable for applications where the energy stored in the capacitor is of primary importance and the transient response can be neglected.
The thermal model developed is based on thermal-electric analogy and allows the determination of supercapacitor temperature inside and at the surface. The developed model can be easily implemented in different simulation programs. It can be used in the modeling of supercapacitors in order to study the heat management of a supercapacitors module. This model makes it possible to size the supercapacitors module cooling system when necessary. This is in order to maintain the temperature of the module within the operating temperature range given by the manufacturer. A Matlab/Simulink® simulation model was developed in order to calculate the Rth and Cth of a supercapacitor cell. Calculated values were compared to experimental values and the simulation model was validated. Thus a supercapacitor can be modeled as succession of RC and current source circuits. This application permits to calculate the evolution of the temperature in each layer of the supercapacitor cell. It can be used to perform detailed analysis of the temperature variation within a supercapacitor. When using supercapacitor modules which are composed of several cells in series and /or in parallel, it is necessary to study the thermal management of these modules [31]. The aim is to calculate and locate the maximum temperature in order to size the cooling system if needed. In this case, to reduce simulation time, the thermal model can be simplified as shown in Figure 26.
Thermal-electric model of the supercapacitor.
The thermal model gives the evaluation of the temperature on the external surface of the supercapacitor depending on the electrical power, the ambient temperature and the convective heat transfer coefficient. The total power dissipated in the supercapacitor is given by:
Where:
ESR : the equivalent series resistance of the supercapacitor,
I(t) : the RMS current value passing through the supercapacitor.
The resistance Rconv represents the heat transfer between the surface of the supercapacitor and the ambient air. Its value depends on the convective heat transfer coefficient h and the heat exchange surface of the supercapacitor Ssc.
This coefficient can be calculated by using the following expression:
In order to validate this model, the parameters were calculated for a 1500F supercapacitor cell. This supercapacitor cell was experimentally tested; it was charged and discharged at 75A with a thermocouple type K placed on the outer surface. Figure 27 shows a zoom of the supercapacitor current and voltage during the receptive cycle which was applied to the 1500F supercapacitor. It shows the warming phase in which the supercapacitor is charged and discharged at 75A constant current then the phase of no cycling where the current is zero.
Current and voltage of the 1500F supercapacitor.
Figure 28 shows the evolution of the outside surface temperature of the 1500F supercapacitor. The warming phase is about 133 minutes where the supercapacitor is charged and discharged at 75A constant current. The ambient temperature is around 17.5°C.
Evolution of measured and simulated temperatures of 1500F cell versus time (75A).
Results presented in Figure 28 show a good correlation between the experimental and simulation. Good agreements were also obtained with 10A and 20A constant currents for charging and discharging cycles.
In this chapter, the performance and characteristics of various lithium-ion based batteries are evaluated and discussed taking into account the power and energy densities, the capacity and the current rates. The evaluation is mainly based on the electrical and the thermal behavior. Different types of batteries were characterized at different current rates and different temperatures. The Peukert relationship was evaluated in function of various operating conditions. Electrical and thermal models are developed and presented. The battery electrical model is based on the first order FreedomCar model. The parameters of the electrical model were obtained and calibrated based on a new developed test profile. A battery thermal model is proposed, discussed and validated. Electrical and thermal characterizations of supercapacitors were studied. The different basic calculation methods based on the EIS and the IEC 62576 of the Equivalent Series Resistance (ESR) and the capacitance of a supercapacitor are presented. An electrical model of the supercapacitor based on RCC circuit is presented. A thermal model of the supercapacitor is presented and it is based on the thermal-electric analogy. The model was validated using experimental results of the BCAP1500F supercapacitor cell. The simulation results of the thermal model can be used to find out if a cooling/heating system is necessary for the use of supercapacitor in order to improve its efficiency. The models developed are simple enough to be implemented in different simulation programs and thermal management systems for hybrid electric vehicles.
Medicinal plants are getting more demand because of their distinctive features as an abundant source of curative phytochemicals that may be used to develop new medications. Approximately 20% of all known plants have been employed in pharmacological investigations, positively improving the healthcare system by treating cancer and other ailments [1]. Many of these medicinal plants are good sources of phytochemicals like polyphenols, carotenoids, flavonoids, anthocyanins, and vitamins that possess antioxidant activities. Today, medicinal plants are finding diverse use in society from medicine to cosmetics, nutraceuticals, herbal drinks, herbal foods, and other articles in their daily uses. Plant phytoconstituents are created as secondary metabolites, which are produced through a variety of biological routes in secondary metabolism. The choice of solvents for extracting phytoconstituents from plants is critical. A suitable solvent has an appropriate extraction capacity as well as the ability to maintain the chemical structure of the desired molecules stable [2].
Green technologies are increasingly being employed in practically every scientific sector to promote ecologically acceptable activities that do little or no harm to humans. Ionic liquids, aqueous biphasic systems, and pressurized hot water have all become attractive research topics in recent years [3]. Traditional techniques of extracting phytoconstituents require the use of more powerful and toxic solvents (nonenvironmentally friendly), as well as more energy. Each method’s extraction time varies, ranging from minutes to 7 days in the case of maceration [4]. Another problem is that none of the current plant processing methods meets all the economical, safety, and scalability requirements. Other concerns include security hazards, solvent toxicity, and the existence of solvent remnants in the extracts. The high cost of feedstock, the high cost of extracting desirable bioactive compounds, their comparatively low yield, and the resulting substantial concentration of residual waste biomass are the major roadblocks to commercially viable phytochemical production [5]. In many process sectors, microwave-assisted extractions like ultrasound-assisted extraction, pulsed electric field extraction, and molecular distillation have been reported. Green chemistry, as ecological and economic chemistry, could be one of the solutions to humanity’s future [6]. The entire process of green extraction of phytoconstituents from natural sources is concluded in the Figure 1.
Extraction of crude drugs using green solvent, green extraction process, and purification techniques.
A vast diversity of plants, animals, and microorganisms can produce a wide spectrum of chemical compounds with amazing health-care properties in nature. Science is steadily changing our world by finding the possibilities of natural products [7]. Natural product extraction has been practised since civilization. Extraction methods are used in the perfume, cosmetics, pharmaceutical, food, and chemicals sectors. Recent extraction technique advancements have mostly focused on creating solutions that employ lower solvents [8].
Soxhlet extraction, maceration, and hydro distillation (HD) are examples of traditional/conventional extraction processes. The choice of specific solvents has a considerable impact on any extraction rate. The polarity of the target biochemical is the most significant factor to consider, and when choosing a solvent, the solvent’s molecular affinity for the solute, as well as its environmental friendliness, toxicity, and economic efficiency, must all be considered. Simple, safe, repeatable, low-cost, and adaptable to a variety of applications are all desirable characteristics in an extraction procedure. High-temperature extraction (e.g., Soxhlet technique, HD) has been shown to cause changes in the composition due to phytoconstituent degradation [9].
To circumvent the constraints of classic extraction procedures, green extraction techniques can be employed to extract phytoconstituents from plants. The majority of these include less harmful chemical synthesis, nontoxic chemicals, safe solvent aides, energy efficiency patterns, use of sustainable feedstock, fewer derivatives, catalysis, design to avoid deterioration, and time scheduling for pollution avoidance, hazardous air pollutants, and naturally safer chemistry for safety programs. The development of effective and selective technologies for extracting and isolating bioactive phytoconstituent is crucial. This article aims to provide a detailed overview of green solvents employed, as well as the methods for extracting and isolating natural compounds form natural sources. Green solvents can help to improve old procedures significantly, especially when incorporated with new and novel methodologies. Hydrolysis of cellulose from biomass with supercritical water and the extraction of hydrophobic compounds using supercritical CO2 are few examples of green extraction process.
Solvents, their vapors, and mists have a variety of health impacts. Many contain narcotic properties, causing lethargy, dizziness, carcinogens, etc. Solvents irritate the eyes and respiratory system, as well as causing skin problems. High doses can cause unconsciousness and death in certain people. Petroleum-based solvents, which are mostly sourced from fossil fuels, are commonly utilized in various stages of the analytical process [10]. Solution preparation, extraction, and enrichment of phytoconstituents, washing of extracts, solvent exchange, sample preservation, dilution, cleaning of glassware, liquid desorption, derivatization, analytical separation, and detection are all activities that involve solvents in phytochemistry. A suitable solvent has an appropriate extraction capacity as well as the ability to maintain the chemical structure of the desired molecules stable.
Water is one such “green” solvent that can have its properties changed by changing the temperature. Water’s polarity allows it to be employed as an extraction solvent for both natural and inorganic substances that are aqueous soluble, like proteins, carbohydrates, and organic acids. Water is an important green solvent for the extraction of phytoconstituents. It has no harmful health or environmental consequences [11]. Furthermore, it is the safest and cheapest solvent. The technology used has an impact on the extractability of biologically active chemicals. Water is used as the only extractant in several ways, including decoction, infusion, and hydro distillation. Water as a solvent can be used in a variety of traditional and modern procedures. Extraction with pressurized hot water is one of the most promising new green extraction techniques and procedures, especially in a dynamic mode [11]. Water, on the other hand, has several drawbacks in terms of the less solubility of nonpolar molecules and energy required to enrich products. This difficulty can be overcome in part by employing supercritical water or a mixture of alcohol and water.
When using hydro distillation, high temperatures and long distillation times might cause volatiles to change and be lost. Supercritical water extraction (SWE) was shown to have a quicker extraction time, cheaper costs, and higher purity than hydro distillation. In terms of oxygenated components, SWE’s products yielded higher valuable essential oil. To boost extraction yields, microwave-assisted extraction with water as a solvent has been proposed.
Alcohols like methanol, ethanol, and isopropyl alcohol have similar solvent properties such as solvent strengths, dielectrics, critical points, and hydrogen donating abilities. However, due to its nontoxic nature, ethanol has ascended to the top [12]. Alkanes (heptane, hexane) and simple alcohols (methanol, ethanol) are healthier for the environment than dioxane, acetonitrile, acids, formaldehyde, and tetrahydrofuran [13]. The main disadvantage of alcohol is that they are flammable and some of them are toxic (i.e., methanol). In addition, extended exposure to their vapors can also lead to health problems.
CO2 as a liquid or supercritical solvent possesses multiple features of an admirable green solvent. They are incombustible, nonpoisonous, nonenvironmentally harmful, plentiful, inexpensive, easy to produce, simple to eliminate from a product, do not add to smog, and do not contribute to global warming [14]. Purified CO2 is produced, pressurized, and cooled to a liquid state at 20 psi and −20°C before being stored or transported in insulated bulk containers for use in a variety of liquid and supercritical CO2 processes. The viscosity of CO2 is extremely low, and supercritical CO2 has negligible surface tension [15]. The strong diffusivity, along with the low viscosity, causes significant improvements in the condensed phases. Supercritical fluid extraction of a crude drug is achieved by passing supercritical CO2 over a column packed drug material. Until the substrate is depleted, supercritical CO2 travels over the column of packed material and dissolves soluble components. The loaded solvent is then transported through a separator, where the soluble components precipitate as pressure and temperature are reduced. The CO2 is recirculated once it has been condensed. It is employed in the removal of caffeine from coffee and tea, the removing fatty material from cacao, the production of hops extracts, sesame seed oil, and pesticide extraction from rice. Under high pressure, SC CO2 is used to extract triglycerides and volatile compounds. Volatile, triglyceride and phenolic chemicals etc. are extricated at high pressure (300–400 bars) with EtOH. Add water or alcohols like ethanol or iso-propyl-alcohol to the SC-CO2 extraction has already been used to modify the polarity [16].
DES is formed when the melting point of a mixture of substances is much lower than the melting points of the two constituents. A hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) are required to build a DES system, and when mixed in the right proportions, they generate a novel “mesh” of hydrogen-bond-interconnected molecules with remarkable physicochemical features [17]. Their extraordinary physicochemical features (like ionic liquids) combined with remarkable green properties, low cost, and ease of handling are piquing researchers’ attention in a variety of sectors. The eutectic composition of DESs is formed by heating and stirring two or more solid starting components to generate a transparent, viscous homogenous liquid. Other techniques involve grinding (combining and powdering solid components till clear liquid forms), evaporation (dissolving all starting elements in water and then removing the water via evaporation at reduced pressure), and freeze-drying (dissolving all starting components in water and then draining the water via evaporation at reduced pressure).
Among them, heating and stirring below the melting points of the individual constituents is possibly the most acceptable method [18]. Because DESs are nonflammable and nonvolatile, they are easier to store. They are also biodegradable, unlike standard organic solvents. Furthermore, DES manufacture is cost-effective, simple to run, and requires no modification, making their use on a broad scale possible. DESs can be made by mixing molecules derived from natural sources (e.g., glycerol and glucose), which makes them environmentally friendly. Within the HBD section, polymerized deep eutectic solvents (PDEs) are a novel category of DESs that can be polymerized [17].
The high viscosity of DES is a key disadvantage that can limit their usage as extraction solvents since it prevents the solvent from penetrating the extraction matrix. Although increasing the temperature of the extraction process helps reduce viscosity, this is not always the best solution because it consumes energy, and some heat-sensitive phytochemicals may not withstand the higher temperature. The addition of a co-solvent to the extraction medium is a straightforward technique to remedy this problem. Most of the time, this co-solvent is water, which keeps the process green; nevertheless, organic solvents like methanol have also been utilized. Alkaloids, phenolic acids, flavonoids, and saponins are all extracted using DES [19].
The DES is called natural deep eutectic solvents (NADES) when amino acids, organic acids, sugars etc. are used to make DES [20]. Due to the natural nature of its ingredients, NADESs are deemed environmentally beneficial and “readily biodegradable,” and the resulting extracts can use in food, pharmaceutical, and cosmetics preparations. Because of their great stability and solubilization properties, NADES is ideal candidates to replace traditional solvents. NADESs combinations have efficiently extracted bioactive compounds including flavonoids, phenolic acids, alkaloids, natural pigments, sugars, peptides, and volatile components from natural matrices [21].
ILs were a type of organic salt that consisted of an organic cation (e.g., imidazolium, pyrrolidinium, pyrrolidinium tetra alkyl ammonium, pyrrolidinium tetra alkyl phosphonium) and an inorganic or organic anion (e.g., tetrafluoroborate, hexafluorophosphate, and bromide) that form of liquid below 100°C [22]. Because of their distinctive and construction dependent features, like low nucleophilicity, mixability with water or organic solvents, and good extractability, ILs have been frequently used [23]. A variety of organic and inorganic substances are perhaps enriched and separated using IL-based methods. As a result, they have been frequently used in food safety, drug testing, environmental monitoring, biological analysis, and other areas. The ability of ILs could be tailor-made for the extraction of alkaloids, flavonoids, terpenoids, phenylpropanoids, quinones, and other phytoconstituents from plants. A vast number of research organizations have also created IL-based silica and polymers that can improve the extraction/separation of target chemicals.
Extraction is an important step in the isolation of bioactive chemicals from plant matter. However, because of the existence of complex cell wall polysaccharides including cellulose, hemicellulose, lignin, pectin alginate, and carrageenan, the extraction yield of bioactive chemicals is poor. Researchers are now considering modern methods of extracting these compounds because of the low specific gravity of bioactive compounds, the low productivity of the solvents used to extract these compounds, high energy, high durability, solvent residue in the extracts, and the decline in the quality of the final product, as well as environmental concerns [23]. The use of enzymes to extract bioactive chemicals from plants could be a viable substitute for traditional solvent extraction methods. Enzymes are excellent catalyzers for extracting, modifying, or synthesizing complex bioactive substances from nature. The natural ability of enzymes to accelerate reactions with perfect particularity, regiospecificity, and the ability to employ under gentle processing conditions in an aqueous medium facilitate enzyme-based extraction [24]. The use of enzymes for sugar extraction is a new topic that needs further research. To improve extraction processes, custom enzymes must be developed, either by biodiversity screening, genetic engineering perspective, or a mix of the two. From plant sources, enzyme-aided extraction can be utilized to obtain lipophilic, polyphenolic, and hydrophilic chemicals [25]. Factors including high enzyme production and downstream processing costs, extended incubation times, and an extra stage (de-emulsification) in the process are still preventing aqueous enzyme extraction from becoming commercially viable. Commercial enzyme production has been accelerated, and enzyme synthesis has now become more affordable. The downstream processing expenses could be reduced by using appropriate technology rather than the traditional technique [26].
The predominant element of essential oils derived from citrus fruit peels is d-limonene, which belongs to the terpene family. Since its cleaner and degreaser properties were discovered and considered, d-limonene has sparked a surge of interest. In this sense, this chemical has been classified as a viable alternative to halogenated carbon hydrates or traditional degreasing chemicals commonly used in industry and households. Several authors have attempted to create a commercial application for d-limonene. Sustainable chemistry has generated a lot of study into the processing of renewable fuels due to the demand for environment-friendly techniques and products [27].
Because d-limonene has a higher boiling point (175°C) than n-hexane (69°C), it uses more energy to recover the solvent by evaporation. To minimize the difficulty of solvent recovery caused by high d-limonene’s boiling point, a technique based on steam or hydro-distillation employing Clevenger can be used. Distilled water was added to the extracted oil and d-limonene mixture after Soxhlet extraction with d-limonene. D-limonene and extracted oil were separated using a Clevenger device and azeotropic water distillation at less than 100°C [28]. It is a valuable and practical method for determining the lipids and oils in olive seeds. Waste minimization, rapid operation, and energy saving are all possible with Soxhlet microwave-integrated with limonene and microwave Clevenger distillation [29]. Limonene has a dielectric constant that is very similar to that of hexane and has been used to extract rice bran oil, oil from olive leftovers, carotenoids from tomatoes or algae and, more recently, algal lipids from wet algae [30].
Solvent-free extraction of a variety of important natural products (essential oils, fragrances, edible oils, antioxidants, and other organic compounds) eliminates the price and threats correlated with large amounts of solvent. It minimizes the amount of wastewater after extraction and uses a fraction of the energy that a traditional solvent-solid extraction process does.
In 2008, Chemat et al. developed the MHG method, which uses
Crude drugs can be extracted in fresh or dried form. Grinding and drying of plant materials are examples of pre-preparation. This has an impact on the preservation of phytochemicals in final extracts. Air drying takes anywhere from 3 to 7 days. To optimize extraction operations and save energy, mechanical disruption pre-treatments can be employed alone or in combination. Bead milling, high-pressure homogenization, and hydrodynamic cavitation are all methods for mechanical disruption. The extraction of lipids has been demonstrated to be aided using a bead mill. Powdered samples, on the other hand, have a more homogenized and smaller particle size, developing in substantial surface contact with extraction solvents [31].
Nanotechnologies, including microwave, ultrasound, and pulse electric field, were found to improve operation efficacy as a pre-treatment before drying. After size reduction and before extraction, microwave pre-treatments upgraded the extraction of polyphenols, sugars, and other compounds. Pre-treatments with a pulsed electric field (PEF) improved extraction efficiencies in terms of yield and extract standard. PEF pre-treatment of rapeseed, apple, and sugar beet fruit extracts before mechanical expression resulted in higher yields [26]. Oven-drying is one more pre-extraction method that uses heat energy to eliminate moisture from substances. This procedure for preparing a sample is regarded as particular easiest and most rapid thermal processing method available for phytochemicals.
Costly drugs can be dried by freeze-drying. In freeze-drying before use, the sample is frozen at −80°C to −20°C to lyophilize any liquid (e.g., solvent, moisture) in the body samples. The mouth of the test tube or other container holding the sample is wrapped in needle-poked-parafilm to avoid sample loss during the operation. Freeze-drying resulted in a greater phenolic content compared to air-drying because most phytochemicals are preserved. This strategy is used to keep phytoconstituents safe. Freeze-drying, on the other hand, is a difficult process. Microwave drying is more expensive than traditional air drying. As a result, only fragile, heat-sensitive goods and high-quality materials are permitted [32].
The main goal of green extraction procedures is to obtain a rapid extraction, increased efficient energy usage, higher mass and heat transfer, smaller apparatus, and fewer processing stages [3]. Several novel alternatives to traditional techniques for obtaining target compounds from a variety of crude drugs have been proposed, such as ultrasound-assisted extraction (UAE), subcritical and supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and accelerated solvent extraction (ASE) [33]. These extraction methods, which are alternatives to traditional procedures, have piqued the curiosity of academics, who see future applications for recovering bioactive molecules from plants in less time using green solvents. Most of these new methods have already shown promise in extracting high-value chemicals, particularly natural antioxidants, from various sources such as plants or food processing by-products [34].
It is a physical technique in which pressure is employed to extract the oil or juice from a material. A tincture press was used to do this. When essential oils are temperature sensitive, this approach is used. It’s used to extract essential oils from citrus peels like lemons and oranges. Squeezing any plant material at high pressures to extract oils or other liquids is known as expression. In remote rural locations, hand-operated presses or crushes are used, while in industrial hubs, massive mechanical presses are used. However, the products obtained are impure and frequently contain impurities such as water, mucoid particles, and cell tissues, making them murky, and pressing the volatile oil in plants completely is difficult. As a result, the crushed residue is frequently steam distilled to remove all volatile oils. Black soybean oil, for example, is frequently extracted using the low-temperature pressing process [31].
Enfleurage is the method of extracting aroma from flowers by absorbing it through contact with cold lipids. This method is used for fragrant flowers like jasmine and tuberose, which retain their unique aroma even after being plucked. To prevent fat odors from entering, fats should be saturated and odorless. It’s best to use refined lard or beef suet. On both sides of a glass plate mounted on a rectangular hardwood frame or chassis, fat is thinly deposited. On a fat-coated chassis, fresh aromatic flowers are delicately stacked. Enfleurage produces far more floral oil than other processes.
Ultrasound extractions can now be finished in minutes with high reliability, reducing solvent consumption, clarifying control and work-up, improving final product purity, removing wastewater after treatment, and consuming only a fragment of the fossil energy required for a traditional extraction method [35]. USAE (ultrasound-assisted extraction) has been used to extract polyphenols from vegetable tissues, protein, sugar, and starch from cereals and legumes, oil, and flavor components. Extraction efficiency and rate are improved by sonication. It lowers the required temperature, saves solvents, and promotes the solubilization of the desired chemicals. Solubility is enhanced by a significant increase in the very temperature [36].
To extract phytochemicals from plants, both the cell wall and the cell membrane must be broken. Because of this, ultrasounds are used in ultrasound-assisted extraction for cell disintegration. Ultrasounds are sound waves that are above the human hearing range, with frequencies ranging from 20 kHz to a few gigahertz. Plant materials and liquids absorb the energy emitted by ultrasonic waves and convert it to heat. The frequency, intensity, and duration of ultrasonic therapy affect the amount of heat created in plant materials [37]. This heat energy debases proteins, destroys plant cells, and causes therapeutic substances to be released from plant cells. In most cases, the highest extraction rate is attained in the initial few minutes, which is also the most profitable time [38].
The extraction of thermally labile chemicals is possible because of carbon dioxide’s low critical temperature (304.1 K). It can replicate a variety of organic solvents by adjusting the density of SCF carbon dioxide. Because of its variable solvating strength, this feature allows for selective extraction, purification, and fractionation techniques. SCF carbon dioxide media provide the prime possibility for fractionation of reaction products and solvent separation, which can be performed by simply depressurizing the media. This is because SCF quickly penetrates and leaves solid matrices, compared to the use of organic solvents with a higher viscosity [39]. It has a broad variety of applications, including the extraction of common spices such as black pepper, celery seed, cumin, cinnamon, clove bud, and nutmeg. Extraction of Natural Colors: Paprika Pigments, etc. Dry Ginger, Saw Palmetto, Rosemary, and other botanicals are used to extract active ingredients. Forskolin, Turmerones—from Turmeric,
Nontraditional ways are more prominent when it comes to improving the quality and quantity of desired items. By directly linking microwave energy with the bulk reaction mixture, microwave irradiation creates efficient internal heating. The magnitude of energy transfer is determined by the molecules’ dielectric characteristics. Radiation absorption and heating can be quite selective in this approach (Hoz et al.). The reduction in operating time and solvent use are two major benefits of microwave treatments. However, during microwave processing, acceleration in chemical reactions of target substances such as epimerization, oxidation, and polarization should be considered with dielectric heating.
Microwave-assisted extraction without solvents is a long-term technology for extracting and separating chemicals from natural plant resources. Microwave heating is directed at the moisture content of new material. Under microwave irradiation, plant cell water and charged molecules are stimulated; this internal alteration causes a significant amount of pressure to be imposed on plant cell walls, resulting in cell swelling. Due to the rupturing of plant cells, this swelling causes an increase in the mass transfer of solutes. As a result, phytochemical leaching from the plant cellular matrix into the extractant is facilitated during MAE [40]. The best extraction conditions were a microwave power of 150 W for 90 min. Concerning the efficiency and yield of essential oils, solvent-free microwave extraction was superior. As a result, increased rates of adsorption, diffusion, and separation of phytochemicals from the plant matrix into the extracting solvent are more likely [41].
An MAE can be performed using two different types of equipment. The apparatus runs at atmospheric pressure in the open mode, which is often coupled with a refluxing mechanism. Domestic microwaves are frequently modified to accommodate this model. The closed mode, on the other hand, allows for high-pressure operation. Pumping inert gas into the extraction chamber increases the pressure. During the heating of the extraction mixture, however, vapor pressure may generate a degree of pressure. Since these molecules were stable at microwave heating settings of up to 100°C for 20 min, this approach was confined to small-molecule phenolic compounds like phenolic acids (gallic acid and ellagic acid), quercetin, isoflavones, and trans-resveratrol. Due to compound oxidation, more MAE cycles (e.g., from 2 10 s to 3 10 s) resulted in a considerable reduction in phenolic and flavanone yields. Because tannins and anthocyanins are prone to temperature degradation, they may not be suitable for MAE [32].
Microwave-assisted hydro distillation (MAHD) is like standard hydro distillation, with the exception that the solvent is heated using microwaves. The solvent (typically water) and plant parts are placed inside a microwave oven (normally running at 2.45 GHz), and different output powers and reaction periods can be used to improve the extraction process. Again, using microwaves for the heating process speeds up the extraction of chemicals, requiring shorter timeframes to generate comparable amounts of extracts. Furthermore, the chemical makeup of extracts obtained by standard hydro distillation and MAHD is not comparable.
In batch mode, the electric field strength (EFS) ranges from 100 to 300 V/cm, while in continuous mode, the EFS ranges from 20 to 80 kV/cm. An external electrical force is used in electro-permeabilization or electroporation to increase the permeability of cell membranes. The cell membrane is perforated by the formation of hydrophilic holes, which result in the opening of protein channels. When high-voltage electrical pulses are applied across the electrodes, the sample experiences a force per unit charge termed the electric field. The plant material is removed once the membrane loses its structural functioning [41]. Anthocyanin, carotenoids, lycopene, lutein, polyphenols, alkaloids, lactase, protein, polysaccharides, fat, oil, and other bioactive compounds are extracted using PEF. PEF-assisted extraction provides more bioactive component extracts, uses less energy, and takes less time to process, according to the study, resulting in the optimal process parameters [42].
The extracts, which contain numerous phytoconstituents, must be separated and purified further to obtain the fraction or pure phytoconstituents. The techniques utilized for isolation and purification from the extract are determined by the physical and chemical properties of the component to be separated. The physical approaches employed for this goal are as follows.
The point of supersaturation in the solvent in which phytopharmaceuticals are soluble causes them to crystallize. The processes involved in the crystallization of phytoconstituents are slow concentration, slow evaporation, and chilling. Crystallization is an ideal purification procedure. It is operationally easy, very inexpensive, and may be done in quantities ranging from a few micrograms to hundreds of kilograms. The results are normally highly pure (unlike the mixes that can sometimes be obtained with distillation). Using chromatography to purify that much material is a nightmare. Another key point to remember about crystallization is that X-ray crystallography can be used to discover the structure of unknown molecules. With very few exceptions, X-ray crystallography is the gold standard for structure determination: if you can get a substance to crystallize, you can determine its structure. The only issue is that not all compounds crystallize, and finding circumstances that can preferentially recrystallize one chemical can take a long time [43].
This is a process of purifying phytoconstituents from a mixture. It’s commonly used to separate hydrocarbons like crude oil, citral, and eucalyptol. Purification is accomplished by comparing the boiling points of the different substances. When heat is applied, the fractional distillation equipment is built in such a way that each chemical evaporates and separates at its boiling point. As a result, each fractionated chemical will condense and be collected separately via numerous syphons coupled to fractional distillation apparatus [44].
The fractional distillation method is based on differences in compound volatility and is affected by physicochemical properties of the components, as well as the pressure and temperature of the distillation process. The mass and energy transition between the fluid and vapor stages of the mixture has an impact on separation efficiency. Most terpenes are thermally unstable, dissolving, or oxidizing when exposed to high temperatures, light, or oxygen. As a result, the distillation technique is typically used at vacuum pressures to lower the vaporization temperature of the volatile mixture. Due to the boiling temperature reduction, the vacuum also slows processes such as thermal deterioration in temperature-sensitive chemicals. In the chemical industry, vacuum fractional distillation is used to separate compounds with extremely high boiling points that would need a lot of energy to separate under atmospheric pressure [45].
Fractional liberation separates some components from a mixture. The weakest base in the free salt is liberated first when an aqueous solution of alkaloid salts is treated with aliquots of alkali, followed by base liberation in ascending order of basicity. After each addition, shake the mixture with an organic solvent to get a fractionated sequence of bases. Organic acids that are soluble in water-immiscible solvents take a similar route. It is feasible to fractionally liberate acids in this case by adding mineral acids to a mixture of acid salts.
Chromatography on a column separates and purifies phytochemicals on a laboratory and industrial scale without the use of complicated technology. The “eluent” is the liquid employed as the mobile phase, and the stationary phase is usually a solid or a liquid. The sample solution is supplied to a porous stationary phase, and the mobile phase is delivered at a greater pressure via the column, causing separation depending on the solute’s affinity for the stationary phase. The development of HPLC (High-Performance Liquid Chromatography) was aided by the need for a higher degree of separation and faster analysis, which was met by refining the stationary phase packing material to a size of 3–10 m and eluent delivery via a high-pressure pump. Despite its extensive and time-consuming nature, commercial use of column chromatography is comparable to that of other techniques. The advantages of column chromatography include efficient sample handling regardless of the number or nature of the samples, the availability of a wide range of adsorbents, the selection and recyclization of a large solvent system, improved purity of the product, and minimal space requirements. Column chromatography has a few disadvantages, including the use of a large amount of mobile phase, compared to other techniques it is a complicated technique, time consumption, the requirement for an expert, and a greater cost of identifying the separated product.
The fundamental disadvantage of column chromatography is that it is a time-consuming technique; however, vacuum liquid chromatography can solve this problem. In vacuum chromatography, rather than using pressure, vacuum is employed to improve the flow rate and hence speed up the fractionation process. The stationary phase is usually 40–60 mesh particle size silica or reversed-phase silica, and the crude extracts are separated by gradient elution. TLC is a typical method for examining eluted fractions [43].
In the pharmaceutical sector, simulated moving bed (SMB) technology is an economical and eco-friendly process for purifying crude extracts and fractions [46]. It has a higher purity and yield than other techniques. A traditional Simulated Moving Bed system has 4–24 columns divided into four zones. In general, a four-column SMB should be sufficient for testing and optimizing purification conditions. Purification of sugars, proteins, monoclonal antibodies, separation of organic solvents, optical isomers, charged molecules, and desalting are all common applications. For the separation of crude medicines, the SMB technique utilizes extremely less solvent. The SMB technique is simple to adapt to a continuous process and can be integrated with other equipment such as evaporation. SMB, on the other hand, necessitates meticulous process control and is less adaptable than traditional elution chromatography.
CE provides several advantages, including a smaller sample, high efficiency leads to shorter analysis time, cheap, environmental friendliness, reduced solvent usage, and a powerful tool appropriate for drug discovery [47]. CE is a new method for analyzing different phytochemical groups. Variations in mass to charge ratios are used to separate phytochemicals in capillary electrophoresis. Because borate can form compounds with the flavonoid nucleus’ ortho dihydroxyl groups and the sugar’s vicinal cis-dihydroxyl groups, borate buffers with a pH of 8–11 and a concentration of 25–200 mM are generally used [48].
Capillary zone electrophoresis (CZE) is the most basic characteristic, and it’s been utilized to isolate a variety of target molecules, especially polyphenolic compounds like epicatechin, catechin, quercetin, gentistic acid, caffeic acid, gallic acid, trans-resveratrol, myricetin, and rutin from wine and grape samples. A CZE technique was also used to isolate antioxidants in Ginkgo leaf extracts. For the separation of anthocyanins in wine, a new CZE approach was developed recently [49]. Food analysis, environmental monitoring, clinical diagnostics, and pharmaceutical analysis have mostly used capillary electrophoresis. Since it allows the use of chirality selectors with limited aqueous solubility, nonaqueous capillary electrophoresis can be utilized to separate enantiomeric drugs. Furthermore, the low dielectric constant of organic solvents can let chiral counter-ions that have less selectivity in aqueous environments form ion pairs and therefore increase their selectivity. CE-MS is one of many multidimensional techniques used in the pharmaceutical and biotechnology industries, particularly for drug development. Because high resolution and structural and/or molecular weight information of an analyte may be collected along with using a mass spectrometer as a detector for CE splitting, could be useful. CE has various advantages (for example, high speed, efficiency, and low price); yet, combining CE with MS produces several problems. CE solvents, for example, are not accepted by MS.
Molecular imprinting knowledge has been a prominent isolation method in the last years because of its distinctive qualities, such as high selectiveness, economical, and ease of preparation. Many correlative cavities with the memory of the template molecules’ size, shape, and functional groups are produced when the template molecules are removed from the molecular imprinted polymer (MIP). As a result, the template molecule and its analogues will be able to recognize the MIP and adsorb it selectively. MIPs have been extensively used in the isolation of phytoconstituents and as sorbents for solid-phase extraction of herbal materials to enrich phytoconstituent components. MIP was made with methyl methacrylate as the monomer, solanesol as the template molecule, and ethylene glycol as the crosslinker by a suspension polymerization method. This technique is used for the purification of enriching in water extract of
Plant materials go through several processes to acquire the necessary secondary metabolites and/or extract, including drying, extraction, separation, and purification. To produce better eco-friendly processes, the current investigation of the use of green solvents in the field of extraction needs more awareness for a greater perception of different factors such as innate solvent properties (polarity, viscosity, solubility, and pH), external factors (temperature, time, and solid-liquid ratio), and cytotoxicity. However, more study is needed on green or smart solvents that have high specificity for phytochemical compounds, as well as improved stability, recovery, and reduced operational costs. Until now, the framework has only been used to evaluate organic solvents. To expand the currently established techniques to new solvents, more study is required. This entails looking into novel waste-solvent treatment technologies as well as alternative solvent production techniques. Will the eventual transfer of DES/NADES-based extraction technologies to industrial sectors need further investments? Would their use result in a shorter lifespan for the extractors and the analytical tools required for their identification and quantification in the long run? All the questions are still open, and there are a lot of options for answers in the future.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:495},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"4",title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities",parent:null,numberOfBooks:301,numberOfSeries:3,numberOfAuthorsAndEditors:5499,numberOfWosCitations:2993,numberOfCrossrefCitations:3255,numberOfDimensionsCitations:5962,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"4",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editedByType:"Edited by",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editedByType:"Edited by",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11258",title:"Innovation, Research and Development and Capital Evaluation",subtitle:null,isOpenForSubmission:!1,hash:"a644b267db0cddd8a16f0dfadf03bad6",slug:"innovation-research-and-development-and-capital-evaluation",bookSignature:"Luigi Aldieri",coverURL:"https://cdn.intechopen.com/books/images_new/11258.jpg",editedByType:"Edited by",editors:[{id:"246585",title:"Prof.",name:"Luigi",middleName:null,surname:"Aldieri",slug:"luigi-aldieri",fullName:"Luigi Aldieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10889",title:"Aphasia Compendium",subtitle:null,isOpenForSubmission:!1,hash:"f2c0b1c302f68d0c86ae8e057d1cc90e",slug:"aphasia-compendium",bookSignature:"Dragoș Cătălin Jianu and Dafin Fior Mureșanu",coverURL:"https://cdn.intechopen.com/books/images_new/10889.jpg",editedByType:"Edited by",editors:[{id:"45925",title:"Prof.",name:"Dragoș",middleName:null,surname:"Cătălin Jianu",slug:"dragos-catalin-jianu",fullName:"Dragoș Cătălin Jianu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11004",title:"Medical Education for the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"f8863875cdefa578f26a438ea21bdc1e",slug:"medical-education-for-the-21st-century",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/11004.jpg",editedByType:"Edited by",editors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:301,seriesByTopicCollection:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],seriesByTopicTotal:3,mostCitedChapters:[{id:"42656",doi:"10.5772/55538",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:10042,totalCrossrefCites:18,totalDimensionsCites:75,abstract:null,book:{id:"3054",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"58010",doi:"10.5772/intechopen.72304",title:"Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities",slug:"fourth-industrial-revolution-current-practices-challenges-and-opportunities",totalDownloads:6445,totalCrossrefCites:44,totalDimensionsCites:70,abstract:"The globalization and the competitiveness are forcing companies to rethink and to innovate their production processes following the so-called Industry 4.0 paradigm. It represents the integration of tools already used in the past (big data, cloud, robot, 3D printing, simulation, etc.) that are now connected into a global network by transmitting digital data. The implementation of this new paradigm represents a huge change for companies, which are faced with big investments. In order to benefit from the opportunities offered by the smart revolution, companies must have the prerequisites needed to withstand changes generated by “smart” system. In addition, new workers who face the world of work 4.0 must have new skills in automation, digitization, and information technology, without forgetting soft skills. This chapter aims to present the main good practices, challenges, and opportunities related to Industry 4.0 paradigm.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Antonella Petrillo, Fabio De Felice, Raffaele Cioffi and Federico\nZomparelli",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"},{id:"205141",title:"Dr.",name:"Federico",middleName:null,surname:"Zomparelli",slug:"federico-zomparelli",fullName:"Federico Zomparelli"},{id:"208748",title:"Dr.",name:"Raffaele",middleName:null,surname:"Cioffi",slug:"raffaele-cioffi",fullName:"Raffaele Cioffi"}]},{id:"35715",doi:"10.5772/38693",title:"The Role and Importance of Cultural Tourism in Modern Tourism Industry",slug:"the-role-and-importance-of-cultural-tourism-in-modern-tourism-industry",totalDownloads:41085,totalCrossrefCites:31,totalDimensionsCites:62,abstract:null,book:{id:"2298",slug:"strategies-for-tourism-industry-micro-and-macro-perspectives",title:"Strategies for Tourism Industry",fullTitle:"Strategies for Tourism Industry - Micro and Macro Perspectives"},signatures:"Janos Csapo",authors:[{id:"118766",title:"Dr.",name:"János",middleName:null,surname:"Csapó",slug:"janos-csapo",fullName:"János Csapó"}]},{id:"38973",doi:"10.5772/51460",title:"Risk Management in Construction Projects",slug:"risk-management-in-construction-projects",totalDownloads:102568,totalCrossrefCites:36,totalDimensionsCites:59,abstract:null,book:{id:"2175",slug:"risk-management-current-issues-and-challenges",title:"Risk Management",fullTitle:"Risk Management - Current Issues and Challenges"},signatures:"Nerija Banaitiene and Audrius Banaitis",authors:[{id:"139414",title:"Dr.",name:"Nerija",middleName:null,surname:"Banaitiene",slug:"nerija-banaitiene",fullName:"Nerija Banaitiene"},{id:"149658",title:"Dr.",name:"Audrius",middleName:null,surname:"Banaitis",slug:"audrius-banaitis",fullName:"Audrius Banaitis"}]},{id:"40977",doi:"10.5772/53885",title:"The Emergence of Scientific Reasoning",slug:"the-emergence-of-scientific-reasoning",totalDownloads:4554,totalCrossrefCites:8,totalDimensionsCites:59,abstract:null,book:{id:"654",slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Bradley J. Morris, Steve Croker, Amy M. Masnick and Corinne Zimmerman",authors:[{id:"154336",title:"Prof.",name:"Bradley",middleName:null,surname:"Morris",slug:"bradley-morris",fullName:"Bradley Morris"},{id:"154337",title:"Prof.",name:"Steve",middleName:null,surname:"Croker",slug:"steve-croker",fullName:"Steve Croker"},{id:"154338",title:"Prof.",name:"Amy",middleName:null,surname:"Masnick",slug:"amy-masnick",fullName:"Amy Masnick"},{id:"154339",title:"Prof.",name:"Corinne",middleName:null,surname:"Zimmerman",slug:"corinne-zimmerman",fullName:"Corinne Zimmerman"}]}],mostDownloadedChaptersLast30Days:[{id:"58890",title:"Philosophy and Paradigm of Scientific Research",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:14074,totalCrossrefCites:9,totalDimensionsCites:17,abstract:"Before carrying out the empirical analysis of the role of management culture in corporate social responsibility, identification of the philosophical approach and the paradigm on which the research carried out is based is necessary. Therefore, this chapter deals with the philosophical systems and paradigms of scientific research, the epistemology, evaluating understanding and application of various theories and practices used in the scientific research. The key components of the scientific research paradigm are highlighted. Theories on the basis of which this research was focused on identification of the level of development of the management culture in order to implement corporate social responsibility are identified, and the stages of its implementation are described.",book:{id:"5791",slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"74550",title:"School Conflicts: Causes and Management Strategies in Classroom Relationships",slug:"school-conflicts-causes-and-management-strategies-in-classroom-relationships",totalDownloads:2328,totalCrossrefCites:1,totalDimensionsCites:10,abstract:"Conflicts cannot cease to exist, as they are intrinsic to human beings, forming an integral part of their moral and emotional growth. Likewise, they exist in all schools. The school is inserted in a space where the conflict manifests itself daily and assumes relevance, being the result of the multiple interpersonal relationships that occur in the school context. Thus, conflict is part of school life, which implies that teachers must have the skills to manage conflict constructively. Recognizing the diversity of school conflicts, this chapter aimed to present its causes, highlighting the main ones in the classroom, in the teacher-student relationship. It is important to conflict face and resolve it with skills to manage it properly and constructively, establishing cooperative relationships, and producing integrative solutions. Harmony and appreciation should coexist in a classroom environment and conflict should not interfere, negatively, in the teaching and learning process. This bibliography review underscore the need for during the teachers’ initial training the conflict management skills development.",book:{id:"7827",slug:"interpersonal-relationships",title:"Interpersonal Relationships",fullTitle:"Interpersonal Relationships"},signatures:"Sabina Valente, Abílio Afonso Lourenço and Zsolt Németh",authors:[{id:"324514",title:"Ph.D.",name:"Sabina",middleName:"N.",surname:"Valente",slug:"sabina-valente",fullName:"Sabina Valente"},{id:"326375",title:"Prof.",name:"Abílio Afonso",middleName:"Afonso",surname:"Lourenço",slug:"abilio-afonso-lourenco",fullName:"Abílio Afonso Lourenço"},{id:"329177",title:"Dr.",name:"Zsolt",middleName:null,surname:"Németh",slug:"zsolt-nemeth",fullName:"Zsolt Németh"}]},{id:"58969",title:"Corruption, Causes and Consequences",slug:"corruption-causes-and-consequences",totalDownloads:27687,totalCrossrefCites:13,totalDimensionsCites:15,abstract:"Corruption is a constant in the society and occurs in all civilizations; however, it has only been in the past 20 years that this phenomenon has begun being seriously explored. It has many different shapes as well as many various effects, both on the economy and the society at large. Among the most common causes of corruption are the political and economic environment, professional ethics and morality and, of course, habits, customs, tradition and demography. Its effects on the economy (and also on the wider society) are well researched, yet still not completely. Corruption thus inhibits economic growth and affects business operations, employment and investments. It also reduces tax revenue and the effectiveness of various financial assistance programs. The wider society is influenced by a high degree of corruption in terms of lowering of trust in the law and the rule of law, education and consequently the quality of life (access to infrastructure, health care). There also does not exist an unambiguous answer as to how to deal with corruption. Something that works in one country or in one region will not necessarily be successful in another. This chapter tries to answer at least a few questions about corruption and the causes for it, its consequences and how to deal with it successfully.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Štefan Šumah",authors:[{id:"228073",title:"Mr.",name:"Stefan",middleName:null,surname:"Sumah",slug:"stefan-sumah",fullName:"Stefan Sumah"}]},{id:"55499",title:"Human Resources Management in Nonprofit Organizations: A Case Study of Istanbul Foundation for Culture and Arts",slug:"human-resources-management-in-nonprofit-organizations-a-case-study-of-istanbul-foundation-for-cultur",totalDownloads:2399,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The aim of this study is to investigate the efficiency and importance of human resources management in nonprofit organizations. The understanding was included to the literature as personnel management at the beginning of the twentieth century and it turned into an approach as human resources management in the 1980s. It could be observed that many organizations, which deem the human as the most critical stakeholder, adopt a traditional way of personnel management in operating human resources. The employees play a key role in the success of an organization. For this reason, subjects such as recruitment, training, development, career management, performance appraisal, occupational health, and safety are the fundamental functions of human resources management. The study examines to what extent these roles are evaluated through a case study. The subject matter of the study is the most powerful culture and art foundation in Turkey. Compared to many other nonprofit organizations, the foundation actively performs a variety of services within a year worldwide. The fact that the total number of employees might rise up to 800, including the field personnel, indicates the need of a good functioning human resources management. The human resources practices of the foundation are examined and evaluated within that scope.",book:{id:"5826",slug:"issues-of-human-resource-management",title:"Issues of Human Resource Management",fullTitle:"Issues of Human Resource Management"},signatures:"Beste Gökçe Parsehyan",authors:[{id:"189113",title:"Dr.",name:"Beste",middleName:null,surname:"Gokce Parsehyan",slug:"beste-gokce-parsehyan",fullName:"Beste Gokce Parsehyan"}]},{id:"59152",title:"Marketing Strategies for the Social Good",slug:"marketing-strategies-for-the-social-good",totalDownloads:1669,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Social network sites (SNS) have proven to be a good environment to promote and sell goods and services, but marketing is more than creating commercial strategies. Social marketing strategies can also be used to promote behavioral change and help individuals transform their lives, achieve well-being, and adopt prosocial behaviors. In this chapter, we seek to analyze with a netnographic study, how SNS are being employed by nonprofits and nongovernment organizations (NGOs) to enable citizens and consumers to participate in different programs and activities that promote social transformation and well-being. A particular interest is to identify how organizations are using behavioral economic tactics to nudge individuals and motivate them to engage in prosocial actions. By providing an understanding on how SNS can provide an adequate environment for the design of social marketing strategies, we believe our work has practical implications both for academicians and marketers who want to contribute in the transformation of consumer behavior and the achievement of well-being and social change.",book:{id:"6583",slug:"marketing",title:"Marketing",fullTitle:"Marketing"},signatures:"Alicia De La Pena",authors:[{id:"196878",title:"Dr.",name:"Alicia",middleName:null,surname:"De La Pena",slug:"alicia-de-la-pena",fullName:"Alicia De La Pena"}]}],onlineFirstChaptersFilter:{topicId:"4",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83075",title:"Practices and Challenges of Community Services at Debre Markos University, Ethiopia: A Case Study",slug:"practices-and-challenges-of-community-services-at-debre-markos-university-ethiopia-a-case-study",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105896",abstract:"Universities are the main actors that deliver community service in Ethiopia. Community service is among the three pillars of the university’s business along with teaching and research tasks. Employing a qualitative case study design, this research inspects the practices of community services against the ascribed principles and identifes the pitfalls of community service in Debre Markos University. Both primary and secondary data were collected. Primary data were collected through key informants interviews, semistructured interviews, and non-participant observation. Thirteen participants, five through key informant interview and eight through a semistructured interview were addressed. Participants were purposively selected from both the university and the nearby community. Lecturers, vice-presidents, and directors have participated in the interview. Articles, books, different reports, newspapers, and magazines were reviewed and used as sources of secondary data. Thematic data analysis technique was employed to analyze the primary data, and document analysis was used to analyze the data gained from secondary sources. The results show that, though community service is rendered since 2006 at Debre Markos University, there are still limitations in adhering to the principles of community service. These include shortage of budget, low level of University-Industry Linkage (UIL), less commitment of the staff, and the low level of monitoring and evaluation.",book:{id:"11602",title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg"},signatures:"Adane Mengist"},{id:"83053",title:"Apologies in L2 French in Canadian Context",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106557",abstract:"This article presents the results of an analysis of apology strategies in native and non-native French in Canadian context. The data used were obtained through a Discourse Completion Task questionnaire that was completed by a group of native French speakers (FL1) and a group of learners of French as a second language (FL2). The goal was to identify and compare pragmatic and linguistic choices made by both groups when apologizing in three different situations. Several differences and similarities emerged between the two groups regarding the use of exclamations to introduce apologies, direct apologies, indirect apologies, and supportive acts. For instance, it was found that the FL1 speakers used “expressions of regret”, “offers of apology” 15 and “requests for forgiveness” to apologize directly, while the FL2 speaking informants used 16 only “expressions of regret” and “offers of apology”. While the respondents of both groups 17 mostly chose “offers of repair” to apologize indirectly, they displayed divergent preferences 18 regarding the use of other indirect apology strategies. Differences were also documented 19 with respect to the use of intensification devices in direct apologies and the use of supportive acts. Implications of the findings for L2 French pedagogy were also discussed.",book:{id:"11480",title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg"},signatures:"Bernard Mulo Farenkia"},{id:"83049",title:"An Ethnographic Study on Sense of a Community: The “Awramba” Experience",slug:"an-ethnographic-study-on-sense-of-a-community-the-awramba-experience",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.105953",abstract:"The study was conducted on “Awramba” Community who are living in “Amhara” region, south “Gondor” Zone, Ethiopia. The general objective of this study was to capture an understanding of sense of community in “Awramba” community. The study tried to answer the following questions: How the community was established? What are the criteria to be part of the community? What are the shared values of social practice that has survived for the test of time? What is the historical background of the “Awramba” Community? The researcher used realist ethnography method to achieve the above objective and to answer the questions. In-depth interview and observational guide techniques were applied to collect reliable data for the study. The observation and in-depth interview data were analyzed qualitatively. The study showed the following themes: Membership criteria of the community are based on adhering to the community norm. They have a strong sense of community based on shared story, cooperative work, marriage and mourning values, religious view, gender equality, commitment to be honest, and solving their problem by themselves. The emotional connection of the “Awramba” community is strengthened by their common celebration of the yearly anniversary of New Year and scheduled meeting.",book:{id:"11429",title:"Sustainability, Ecology, and Religions of the World",coverURL:"https://cdn.intechopen.com/books/images_new/11429.jpg"},signatures:"Nassir-Maru Yesuf"},{id:"83027",title:"Coping Strategies and Meta-Worry in Adolescents’ Adjustment during COVID-19 Pandemic",slug:"coping-strategies-and-meta-worry-in-adolescents-adjustment-during-covid-19-pandemic",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106258",abstract:"With the beginning of the COVID-19 pandemic, several limitations and stressful changes have been introduced in adolescent’s daily life. Particularly, Italian teenagers were the first among western populations to experience fears of infection, home confinement, and social restrictions due to a long lockdown period (10 weeks). This study explores the role of coping strategies (task-oriented, emotion-oriented, and avoidance coping) and meta-beliefs about worry as vulnerability factors associated with adolescents’ anxiety. A community sample of adolescents (N = 284, aged 16–18 y.o.) answered questionnaires assessing anxiety symptoms (RCMAS-2), meta-cognitive beliefs and processes about worry (MCQ-C), and coping strategies (CISS). Results show that 37% of participants report clinically elevated anxiety. Emotion-centered coping predicted higher anxiety, whereas task-centered coping resulted associated with decreased anxiety. Cognitive monitoring about their own worry contributes, but to a lesser extent, to higher levels of anxiety. The implications for the intervention are discussed, especially the need to enhance the coping skills of adolescents and mitigate the stress of the COVID-19 pandemic, which could last for a long time.",book:{id:"10671",title:"Adolescences",coverURL:"https://cdn.intechopen.com/books/images_new/10671.jpg"},signatures:"Loredana Benedetto, Ilenia Schipilliti and Massimo Ingrassia"},{id:"83023",title:"Gestational Tryptophan Fluctuation Underlying Ontogenetic Origin of Neuropsychiatric Disorders",slug:"gestational-tryptophan-fluctuation-underlying-ontogenetic-origin-of-neuropsychiatric-disorders",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.106421",abstract:"Neuropsychiatry underlies personality development and social functioning. Borderline personality disorder exhibits high trait aggression and is associated with tryptophan hydroxylase polymorphisms. The acute tryptophan depletion reduces plasma and cerebrospinal fluid tryptophan availability and brain serotonin concentrations, leading to alterations in personality and trait-related behaviors. Tryptophan is essential for fatal neurodevelopment and immunomodulation in pregnancy. Gestational tryptophan fluctuation induced by maternal metabolic disorders or drug administrations may account for the maternal-fetal transmission determining neurogenesis and microbial development, consequentially shaping the long-standing patterns of thinking and behavior. However, it is not possible to assess the gestational tryptophan exposure effects on fetal brain and gastrointestinal system in humans for ethical reasons. The maternal–fetal microbe transmission in rodents during gestation, vaginal delivery, and breastfeeding is inevitable. Chicken embryo may be an alternative and evidence from the chicken embryo model reveals that gestational tryptophan fluctuation, i.e., exposed to excessive tryptophan or its metabolite, serotonin, attenuates aggressiveness and affects peer sociometric status. This chapter discusses the gestational tryptophan fluctuation as a risk factor of personality disorders in offspring and the prevention of personality disorders by dietary tryptophan control and medication therapy management during pregnancy.",book:{id:"11782",title:"Personality Traits - The Role in Psychopathology",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg"},signatures:"Xiaohong Huang, Xiaohua Li and Heng-Wei Cheng"},{id:"83014",title:"Culture: A Pillar of Organizational Sustainability",slug:"culture-a-pillar-of-organizational-sustainability",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.106523",abstract:"Sustainability is a concern that permeates all levels of society and is premised on meeting the needs of the present without compromising the ability of future generations to meet theirs. More recently, policies and research have emerged that guide organizations to align their activities with the broader sustainable development agendas, including cultural issues, not just economic, social, and environmental ones. Culture is the material and immaterial attribute of society. It incorporates social organizations, literature, religion, myths, beliefs, behaviors and entrepreneurial practices of the productive segment, use of technology, and expressive art forms on which future generations depend. Thus, cultural sustainability is a fundamental issue and is configured as the fourth pillar of sustainability, equal to social, economic, and environmental issues, which has to do with the ability to sustain or continue with cultural beliefs and practices, preserve cultural heritage as its entity, and try to answer whether any culture will exist in the future. The importance of cultural sustainability lies in its power to influence people. Their beliefs are in the decisions made by society. Thus, there can be no sustainable development without including culture.",book:{id:"11429",title:"Sustainability, Ecology, and Religions of the World",coverURL:"https://cdn.intechopen.com/books/images_new/11429.jpg"},signatures:"Clea Beatriz Macagnan and Rosane Maria Seibert"}],onlineFirstChaptersTotal:282},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",slug:"marcio-oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:113,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:198,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:113,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:112,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/146748",hash:"",query:{},params:{id:"146748"},fullPath:"/profiles/146748",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()