Summary of hybrid perovskite RRAMs in this review.
\r\n\tOne basic topic is that of expression manipulation: combining, expanding etc, and the applications of this scholar topic needs focusing on.
\r\n\r\n\tThe general topic of "polynomials" is very large, and here the focus is both on scholar/student basics of it, and on applications of some special polynomials in science and research.
\r\n\r\n\tAn important topic of the book is "algebraic curve". Here the approaches are multiple: basic/scholar on one hand, and applications on the other hand. It must be noticed the use of algebraic curves properties in the field of differential equations, for example for finding the singularities.
\r\n\r\n\tGrobner basis is a very modern and applied topic of algebra. Here we must outline the great importance of Grobner basis and polynomial ideals manipulation, in the differential equations field, an example being in fast finding normal forms of differential systems.
\r\n\r\n\tRelated to this last topic of the book, but applying to all specified topics, it must be noticed the importance of numeric algorithms. The importance of software algorithms in all fields of science is continuously increasing. Therefore, computational approach of the specified algebraic topics is very useful, with applications in other mathematical and scientific fields.
",isbn:"978-1-83968-393-0",printIsbn:"978-1-83968-392-3",pdfIsbn:"978-1-83968-394-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"2a81efb05ce334905cc672188033b15d",bookSignature:"Dr. Adela Ionescu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9907.jpg",keywords:"expand, factoring, combining, simplifying, random polynomials, special polynomials, orthogonal polynomials, polynomial factorization, two variables polynomials, homogenization, parameterization, singularity, monomial order, polynomial ideal, leading monomial, normal form",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 26th 2019",dateEndSecondStepPublish:"December 17th 2019",dateEndThirdStepPublish:"February 15th 2020",dateEndFourthStepPublish:"May 5th 2020",dateEndFifthStepPublish:"July 4th 2020",remainingDaysToSecondStep:"10 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,editors:[{id:"146822",title:"Dr.",name:"Adela",middleName:null,surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu",profilePictureURL:"https://mts.intechopen.com/storage/users/146822/images/system/146822.jpg",biography:"Dr. Adela Ionescu is a lecturer at the University of Craiova, Romania. She received her PhD degree from the Polytechnic University of Bucharest, Romania. Her research focuses on development and implementation of new methods in the qualitative and computational analysis of differential equations and their applications. This includes constructing adequate models for approaching the study of different industrial phenomena from a dynamical system standpoint and also from a computational fluid dynamics standpoint. By its optimizing techniques, the aim of the modeling is to facilitate the high understanding of the experimental phenomena and to implement new methods, techniques, and processes. Currently, Dr. Ionescu is working in developing new analytical techniques for linearizing nonlinear dynamical systems, with subsequent applications in experimental cases. The bifurcation theory and its applications in related fields is also a domain of interest for her. She has published six monographs and few scientific papers in high-impact journals. She is also a member of few scientific international associations and has attended more than 45 international conferences.",institutionString:"University of Craiova",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Craiova",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6217",title:"Computational Fluid Dynamics",subtitle:"Basic Instruments and Applications in Science",isOpenForSubmission:!1,hash:"0fb7b242fd063d519b361e5c2c99187b",slug:"computational-fluid-dynamics-basic-instruments-and-applications-in-science",bookSignature:"Adela Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/6217.jpg",editedByType:"Edited by",editors:[{id:"146822",title:"Dr.",name:"Adela",surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"5195",title:"Authoring Emotion",doi:"10.5772/6169",slug:"authoring_emotion",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/5195.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/5195",previewPdfUrl:"/chapter/pdf-preview/5195",totalDownloads:1689,totalViews:127,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"May 1st 2008",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/5195",risUrl:"/chapter/ris/5195",book:{slug:"affective_computing"},signatures:"Nelson Zagalo, Rui Prada, Isabel Machado Alexandre and Ana Torres",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3789",title:"Affective Computing",subtitle:null,fullTitle:"Affective Computing",slug:"affective_computing",publishedDate:"May 1st 2008",bookSignature:"Jimmy Or",coverURL:"https://cdn.intechopen.com/books/images_new/3789.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"132978",title:"Prof.",name:"Jimmy",middleName:null,surname:"Or",slug:"jimmy-or",fullName:"Jimmy Or"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3448,totalCrossrefCites:3,signatures:"Hamit Soyel and Hasan Demirel",authors:[null]},{id:"5176",title:"Facial Expression Recognition in the Presence of Head Motion",slug:"facial_expression_recognition_in_the_presence_of_head_motion",totalDownloads:3066,totalCrossrefCites:0,signatures:"Fadi Dornaika and Franck Davoine",authors:[null]},{id:"5177",title:"The Devil is in the Details the Meanings of Faces and How They Influence the Meanings of Facial Expressions",slug:"the_devil_is_in_the_details_-_the_meanings_of_faces_and_how_they_influence_the_meanings_of_facial_",totalDownloads:2291,totalCrossrefCites:0,signatures:"Ursula Hess, Reginald B. Adams, Jr. and Robert E. Kleck",authors:[null]},{id:"5178",title:"Genetic Algorithm and Neural Network for Face Emotion Recognition",slug:"genetic_algorithm_and_neural_network_for_face_emotion_recognition",totalDownloads:6030,totalCrossrefCites:3,signatures:"M. Karthigayan, M. Rizon, R. Nagarajan and Sazali Yaacob",authors:[null]},{id:"5179",title:"Classifying Facial Expressions Based on Topo-Feature Representation",slug:"classifying_facial_expressions_based_on_topo-feature_representation",totalDownloads:2543,totalCrossrefCites:1,signatures:"Xiaozhou Wei, Johnny Loi and Lijun Yin",authors:[null]},{id:"5180",title:"Layered Fuzzy Facial Expression Generation: Social, Emotional and Physiological",slug:"layered_fuzzy_facial_expression_generation__social__emotional_and_physiological",totalDownloads:3080,totalCrossrefCites:0,signatures:"Xia Mao, Yuli Xue, Zheng Li and Haiyan Bao",authors:[null]},{id:"5181",title:"Modelling, Classification and Synthesis of Facial Expressions",slug:"modelling__classification_and_synthesis_of_facial_expressions",totalDownloads:2347,totalCrossrefCites:2,signatures:"Jane Reilly, John Ghent and John McDonald",authors:[null]},{id:"5182",title:"The Development of Emotional Flexible Spine Humanoid Robots",slug:"the_development_of_emotional_flexible_spine_humanoid_robots",totalDownloads:2700,totalCrossrefCites:5,signatures:"Jimmy Or",authors:[null]},{id:"5183",title:"The Perception of Bodily Expressions of Emotion and the Implications for Computing",slug:"the_perception_of_bodily_expressions_of_emotion_and_the_implications_for_computing",totalDownloads:2712,totalCrossrefCites:0,signatures:"Winand H. Dittrich and Anthony P. Atkinson",authors:[null]},{id:"5184",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:2837,totalCrossrefCites:34,signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:[null]},{id:"5185",title:"The Art of Expressing Emotions in Virtual Humans",slug:"the_art_of_expressing_emotions_in_virtual_humans",totalDownloads:3954,totalCrossrefCites:0,signatures:"Celso de Melo and Ana Paiva",authors:[null]},{id:"5186",title:"Computational Emotion Model for Virtual Characters",slug:"computational_emotion_model_for_virtual_characters",totalDownloads:2617,totalCrossrefCites:1,signatures:"Zhen Liu",authors:[null]},{id:"5187",title:"SIMPLEX Simulation of Personal Emotion Experience",slug:"simplex_-_simulation_of_personal_emotion_experience",totalDownloads:2635,totalCrossrefCites:3,signatures:"Henrik Kessler, Alexander Festini, Harald C. Traue, Suzanne Filipic, Michael Weber and Holger Hoffmann",authors:[null]},{id:"5188",title:"From Signals to Emotions: Applying Emotion Models to HM Affective Interactions",slug:"from_signals_to_emotions__applying_emotion_models_to_hm_affective_interactions",totalDownloads:2116,totalCrossrefCites:1,signatures:"Rita Ciceri and Stefania Balzarotti",authors:[null]},{id:"5189",title:"The Information Processing Role of the Amygdala in Emotion",slug:"the_information_processing_role_of_the_amygdala_in_emotion",totalDownloads:5257,totalCrossrefCites:0,signatures:"Wataru Sato",authors:[null]},{id:"5190",title:"A Physiological Approach to Affective Computing",slug:"a_physiological_approach_to_affective_computing",totalDownloads:3178,totalCrossrefCites:3,signatures:"Mincheol Whang and Joasang Lim",authors:[null]},{id:"5191",title:"iFace: Facial Expression Training System",slug:"iface__facial_expression_training_system",totalDownloads:4315,totalCrossrefCites:1,signatures:"Kyoko Ito, Hiroyuki Kurose, Ai Takami and Shogo Nishida",authors:[null]},{id:"5192",title:"Affective Embodied Conversational Agents for Natural Interaction",slug:"affective_embodied_conversational_agents_for_natural_interaction",totalDownloads:2746,totalCrossrefCites:4,signatures:"Eva Cerezo, Sandra Baldassarri, Isabelle Hupont and Francisco J. Seron",authors:[null]},{id:"5193",title:"Exploring Un-Intentional Body Gestures for Affective System Design",slug:"exploring_un-intentional_body_gestures_for_affective_system_design",totalDownloads:2322,totalCrossrefCites:0,signatures:"Abdul Rehman Abbasi, Nitin V. Afzulpurkar and Takeaki Uno",authors:[null]},{id:"5194",title:"Towards Affect-sensitive Assistive Intervention Technologies for Children with Autism",slug:"towards_affect-sensitive_assistive_intervention_technologies_for_children_with_autism",totalDownloads:2387,totalCrossrefCites:3,signatures:"Karla Conn, Changchun Liu, Nilanjan Sarkar, Wendy Stone and Zachary Warren",authors:[null]},{id:"5195",title:"Authoring Emotion",slug:"authoring_emotion",totalDownloads:1689,totalCrossrefCites:0,signatures:"Nelson Zagalo, Rui Prada, Isabel Machado Alexandre and Ana Torres",authors:[null]},{id:"5196",title:"Computer-Assisted Regulation of Emotional and Social Processes",slug:"computer-assisted_regulation_of_emotional_and_social_processes",totalDownloads:2223,totalCrossrefCites:1,signatures:"Toni Vanhala and Veikko Surakka",authors:[null]},{id:"5197",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:2868,totalCrossrefCites:1,signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:[null]}]},relatedBooks:[{type:"book",id:"1915",title:"Practical Applications of Agent-Based Technology",subtitle:null,isOpenForSubmission:!1,hash:"f8b3cc5e7b1d82005f4412bc9c99a362",slug:"practical-applications-of-agent-based-technology",bookSignature:"Haiping Xu",coverURL:"https://cdn.intechopen.com/books/images_new/1915.jpg",editedByType:"Edited by",editors:[{id:"106838",title:"Dr.",name:"Haiping",surname:"Xu",slug:"haiping-xu",fullName:"Haiping Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"33776",title:"Agent-Based System Applied to Smart Distribution Grid Operation",slug:"agent-based-technology-applied-to-smart-distribution-grid-operation",signatures:"D. Issicaba, M. A. Rosa, W. Franchin and J. A. Peças Lopes",authors:[{id:"117261",title:"Dr.",name:"Mauro",middleName:null,surname:"Rosa",fullName:"Mauro Rosa",slug:"mauro-rosa"},{id:"118150",title:"M.Sc.",name:"Diego",middleName:null,surname:"Issicaba",fullName:"Diego Issicaba",slug:"diego-issicaba"},{id:"146507",title:"MSc.",name:"Wagner",middleName:null,surname:"Franchin",fullName:"Wagner Franchin",slug:"wagner-franchin"},{id:"146508",title:"Prof.",name:"João Abel",middleName:null,surname:"Peças Lopes",fullName:"João Abel Peças Lopes",slug:"joao-abel-pecas-lopes"}]},{id:"33777",title:"Conflict Resolution in Resource Federation with Intelligent Agent Negotiation",slug:"conflict-resolution-in-resource-federation-with-intelligent-agent-negotiation-",signatures:"Wai-Khuen Cheng and Huah-Yong Chan",authors:[{id:"107418",title:"Dr.",name:"Wai Khuen",middleName:null,surname:"Cheng",fullName:"Wai Khuen Cheng",slug:"wai-khuen-cheng"},{id:"111973",title:"Dr.",name:"Huah Yong",middleName:null,surname:"Chan",fullName:"Huah Yong Chan",slug:"huah-yong-chan"}]},{id:"33778",title:"Homogeneous and Heterogeneous Agents in Electronic Auctions",slug:"homogeneous-and-heterogeneous-agents-in-electronic-auctions",signatures:"Jacob Sow, Patricia Anthony and Chong Mun Ho",authors:[{id:"109668",title:"Mr.",name:"Jacob",middleName:null,surname:"Sow",fullName:"Jacob Sow",slug:"jacob-sow"},{id:"115648",title:"Prof.",name:"Patricia",middleName:null,surname:"Anthony",fullName:"Patricia Anthony",slug:"patricia-anthony"},{id:"115649",title:"Prof.",name:"Chong Mun",middleName:null,surname:"Ho",fullName:"Chong Mun Ho",slug:"chong-mun-ho"}]},{id:"33779",title:"Developing a Multi-Issue E-Negotiation System for E-Commerce with JADE",slug:"developing-a-multi-issue-e-negotiation-system-for-e-commerce-with-jade",signatures:"Bala M. Balachandran",authors:[{id:"112579",title:"Dr.",name:"Bala",middleName:null,surname:"Balachandran",fullName:"Bala Balachandran",slug:"bala-balachandran"}]},{id:"33780",title:"Adaptive Virtual Environments: The Role of Intelligent Agents",slug:"adaptive-virtual-environments-the-role-of-intelligent-agents",signatures:"Marcus S. de Aquino and Fernando da F. de Souza",authors:[{id:"114636",title:"Dr.",name:"Marcus",middleName:"Salerno De",surname:"Aquino",fullName:"Marcus Aquino",slug:"marcus-aquino"},{id:"117215",title:"Dr.",name:"Fernando",middleName:null,surname:"Souza",fullName:"Fernando Souza",slug:"fernando-souza"}]},{id:"33781",title:"Software Agent Finds Its Way in the Changing Environment",slug:"software-agent-finds-its-way-in-the-changing-environment",signatures:"Algirdas Sokas",authors:[{id:"114148",title:"Dr.",name:"Algirdas",middleName:null,surname:"Sokas",fullName:"Algirdas Sokas",slug:"algirdas-sokas"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"68174",title:"Perovskite Materials for Resistive Random Access Memories",doi:"10.5772/intechopen.86849",slug:"perovskite-materials-for-resistive-random-access-memories",body:'\nResistive random access memory (RRAM) devices use the resistance switching (RS) behavior to save information, which has attracted much attention due to its outstanding performance compared with traditional semiconductor electronic devices. In comparison to charge-based memory cells, RRAM device possesses various advantages, such as multi-bit capability, simpler device structure (electrode/active layer/electrode), as well as lower energy consumption (~fJ/bit) [1]. Another advantage of RRAM is its good compatibility to the conventional CMOS, which allows it to be integrated into current integrated circuit (IC) technology [2].
\nRRAM has various potential applications. First, RRAM is considered as the most promising candidate as the next-generation memory device because it acts excellently as both main memory and working memory. As main memory, RRAM is nonvolatile with high memory capacity. As working memory, the operation voltage and power of RRAM are very low, and the write/erase rate is very high. Apart from the memory application, RRAM is also utilized in low-energy-consumption computing as nonvolatile logic circuit [3, 4] and in neuromorphic computing as a synaptic cell, with the latter being a research hotspot in recent years [1].
\nA typical RRAM device is a metal/insulator/metal (MIM) stack, in which an insulating active layer is sandwiched between the top and the bottom metal electrodes, as shown in Figure 1. The device resistance can be tuned by applying an electric bias across two electrodes, forming high resistance state (HRS) and low resistance state (LRS). So the nonvolatile memory phenomenon in RRAM device is realized by electrically modulating the RS between HRS and LRS.
\n(a) Schematic diagram of an RRAM device; (b) cross-sectional view of a RRAM device with conductive filament mechanism. Reproduced with permission [2]. Copyright 2016, Elsevier.
The transformation from HRS to LRS is normally named the Set process, and the transformation from LRS to HRS is named the Reset process. There are three kinds of RS switching behaviors. One is unipolar switching, in which the Set and Reset processes can happen at the same polarity of the external bias. Second is bipolar switching, in which RS switching occurs at different polarities of the applied bias. The third is nonpolar resistive memory, in which both RS switching from HRS to LRS and RS switching from LRS to HRS can be achieved without altering the voltage polarity (unipolar), while they can also be achieved by altering the polarity (bipolar).
\nThe schematic I-V characteristics of unipolar switching and bipolar switching are illustrated in Figure 2, respectively. In addition to the Set and Reset processes, a Forming process typically exists for many initially prepared RRAM devices, in which an applied forming voltage (Vform) drives the formation of CFs with the compliance current limitation. The forming process is normally accomplished before the RRAM device enables to work, and the Vform is usually larger than the setting voltage (Vset).
\nTypical current voltage (I-V) characteristics of memory devices with (a) unipolar switching and (b) bipolar switching. Reproduced with permission [1]. Copyright 2018, Springer.
As aforementioned, a basic RRAM device usually consists of two electrodes and an active layer. The top and bottom electrodes can use various materials, including elementary substantial metals (Ag, Cu, Al, Au, Pt, W, etc.) [5], metallic alloys (Pt-Al, Cu-Ti, etc.) [6], and oxides (ITO, SrRuO3, Nb:SrTiO3, etc.) [7, 8, 9]. Based on the functions in RS conversion, the electrode materials can be divided into two types. One is active electrodes (Cu, Ag, etc.), which contribute to the RS conversion by the migration and/or redox reaction of the electrode ions around the electrode/active layer junction. The other is inert electrodes (Pt, Au, etc.), which do not directly participate in the RS conversion.
\nAs for the active layer, various materials have been utilized in memory devices, such as amorphous metal oxides, polymers, hybrid composites, perovskite oxides, and perovskite halides [10, 11]. The material choice of RRAM active layer has significant influence on the device performance. In this chapter, we will mainly introduce oxides and halides with perovskite structures. Perovskite oxides are a conventional active material family for memories. In addition to high-endurance, chemically stable, and high-speed operation, the strong electron correlation induces many unique properties for perovskite oxides, which makes it remain as one of the most promising materials for RRAM yet. Compared with conventional RRAMs, perovskite halides can make flexible devices with low-cost fabrication, compositional flexibility, and excellent optoelectronic properties, enabling the perovskite halides as a promising next-generation memory material family. Next, we will introduce the memory devices with perovskite oxides and halides separately.
\nIn 2002, perovskite oxide Pr0.7Ca0.3MnO3 was firstly utilized in a 64-bit RRAM array by a 500-nm complementary metal oxide semiconductor (CMOS) process [1]. Nearly two decades passed, transition metal perovskite oxides are still one of the best materials for RRAM active layers. Perovskite oxides possess stable crystal structure with high defect tolerance and structure flexibility, which enables the accommodation of nonstoichiometric ions. The nonstoichiometric ions contribute to the local ionic migration and thermochemical reaction therefore allowing for the RS conversion. In addition, the strongly correlated electrons in perovskite oxides provide various electronic phases and bring out multifunctionality, e.g., colossal magnetoresistance/electroresistance, ferroelectricity, multiferroics, superconductivity, etc. [12]. Also, the competing behavior among different electronic phases brings out the metal-insulator transition (MIT) phenomenon, which allows a significant change of resistance with a tiny electric stimulus [12, 13]. In the following, based on different resistance switching mechanisms, we will introduce RRAM with transition metal perovskite oxides via filament mode and uniform mode, respectively.
\nConductive filament (CF) is the most common mechanism to explain the resistance switching of memristor devices, in which the formation and the breakage of filaments are in Set and Reset process, respectively. Many works have proven the conductive filament in RRAM devices. For instance, a co-doped BaTiO3-based device is forming as LRS, and the top electrode is divided into two portions (TE-I and TE-II). Then people measured the resistance between the bottom electrode and TE-I or TE-II. Significantly different resistances are found for two parts, which indicates inhomogeneous conductivity inside the whole memory device [14]. Besides, in an YMnO3-based memory device, people found that the switching I-V curves of devices with various electrode areas are not remarkably different and that the lateral distribution of filaments is not uniform [15]. Real-time observation of conductive filament was also conducted by TEM in oxide-based memory devices, which shows direct evidence of conductive filament mechanism [16, 17].
\nNext, we will give a brief introduction on the microscopic mechanisms of filaments, mainly including two types: ion migration and metal-insulator transition.
\nFor the conductive filaments caused by ion migration, the presence of CFs is very random owing to the random distribution of ions and defects in the active layer. Therefore, the formation and rupture of the CFs are strongly dependent on the initial distribution of ions and defects. For bipolar RRAM devices, the microscopic mechanism of ion migration can be classified into three types.
\nFirst, the filament is formed by the local redox reaction of metallic cations from the active metal electrode. For example, in an Ag/a-LSMO (amorphous Sr-doped LaMnO3)/Pt device, Ag is demonstrated as the main component of the CFs [18]. When a positive bias is applied to the Ag electrode, some Ag atoms around the Ag/a-LSMO interface will be oxidized into Ag cations, and these Ag cations will move toward the opposite cathode under the external electrical field and are eventually reduced back to Ag atoms around the cathode/a-LSMO interface, therefore forming the CFs between two electrodes. Now if we apply a negative bias to the Ag electrode, the Ag atoms around the cathode will be re-oxidized into Ag+ and move back toward the Ag electrode, thus leading to the breakage of the filaments. A typical RRAM device of this mode is an insulating active layer sandwiched between an active metallic electrode and an inert electrode [17].
\nA second mechanism of ion migration is that the positive-charged defects drift under the external voltage. The charged defects, such as oxygen vacancies and excess cations, can tune the Fermi level and correspondingly change the electrical conductivity in the local area. For instance, in a TiO2-based memory device, the filaments are formed by the oxygen-deficient Ti4O7 phase under positive voltage [19]. When applying a negative voltage, the reverse redox occurs with the backward electric field and the parasitic Joule heating and consequently leads to the rupture of CFs [20].
\nRedox reactions both exist in the aforementioned two microscopic mechanisms. However, bipolar RS phenomenon also can be caused by the ion migration without redox. Pt/NSTO (Nb-doped SrTiO3) device is taken as an example. Under electrical field, the movement of oxygen vacancies can change the Schottky barrier height and the depletion width of the Pt/NSTO junction at some local areas of the interface, resulting in the change of the electrical conductivity alongside the Pt/NSTO interface [21, 22].
\nFor unipolar RS behavior with ion migration, the rupture of the CFs is different from that in the bipolar counterparts. In bipolar devices, the filament rupture is caused by the retraction of the initially moved ions or by the change of interfacial junction barriers. However, in unipolar memory devices, the filament rupture is driven by the Joule heat-assisted thermochemical reaction. For example, in a Au/YMn1−δO3/Pt unipolar memory device, after the filament is formed under forward bias, a reverse bias with a similar value cannot supply sufficient energy to retract the initially migrated ions and activate the local reverse redox [15]. Instead, the electrical current can provide enough Joule heat in local areas of the filament; sometimes the local temperature can be increased by several hundreds of Kelvin [15, 23], thus assuring the local reverse redox and the corresponding rupture of CFs. As for the HRS to LRS transformation, accompanied by the ion migration, the electron hopping barriers and the related trapping states which exist in HRS are removed by the further increase of the applying voltage [15, 17, 24]. The same mechanism has also been proven in the Au/co-doped BaTiO3/Pt unipolar memory device [14].
\nMetal-insulator transition (MIT) effect has been found in many perovskite oxides, in which the electronic charges are injected into the insulating material to induct the current with an external bias [25, 26, 27]. Pr1−xCaxMnO3 (PCMO), now one of the most developed memory materials for neuromorphic computing, is taken as an example, in which resistive switching behavior was first discovered in late 1990s [25]. The electron injection distorts the superlattice structure and the mixed valence band in the strongly electronic correlated PCBM system, which acts as an ion doping process. The rebuilding of the electronic phase separation state can also contribute to the MIT, induced by the external electrical stimulus and parasitical Joule heating, which exhibits CFs-based unipolar RS phenomenon [28]. In addition, filament-type RS behavior may also derive from the Mott transition, which has been demonstrated in many transition metal perovskite oxides [26, 29, 30].
\nIn CF-based memory devices, the conductive filaments are formed under electric stimuli in local areas. The I-V characteristics are not proportional to the electrode area due to the random distribution of the filaments. Apart from the CF-based RRAMs, uniform resistance switching mechanism has already been demonstrated, in which the device resistance variation is spatially uniform. Thus the variations of HRS and LRS are both proportional to the electrode area. Uniform RS behavior mainly includes two types, one is the carrier trapping/detrapping, and the other is the ferroelectric polarization.
\nCarrier trapping/detrapping and the migration of charged defects can tune the Schottky barrier at the metal-insulator interface thus modulating the device resistance. This modulation could occur in local regions near the interface (i.e., filament mode) or occur laterally uniform near the interface (i.e., uniform mode), which is strongly dependent on the interfacial electrical and morphological uniformity. A smooth interface with uniform distribution of charges and defects may bring out uniform RS. Otherwise, filaments may tend to form with nonuniform interfaces. Researchers found that the uniform migration of charged defects (e.g., oxygen vacancies) is too slow thus leading to very slow RS [31]. Nevertheless, the charge trapping/detrapping at the junction can be very fast, enabling uniform RS with fast response, which has been confirmed in the Au/Nb-doped SrTiO3 heterojunction [14].
\nFor the uniform RS by ferroelectric polarization, ferroelectric tunnel junctions (FTJs) are utilized for the RRAM devices, including a ferroelectric tunnel barrier sandwiched by two electrodes. Many perovskite oxide materials have been utilized in the FTJ-based memory devices, such as Pt/BaTiO3/SrRuO3 [8], Pt/BiFeO3/SrRuO3 [32], Co/BaTiO3/La0.7Sr0.3MnO3 [33], etc. The polarization at the ferroelectric/metal junction has a significant influence on the junction barrier profile and modulates the electron tunneling. Thus when the polarization is varied with the external electric field, the resistance state is obviously changed.
\nAlthough uniform RS behavior exhibits many advantages, currently the practical application of uniform-type memory devices is still restricted by some intrinsic demerits. The key issue is that the uniform-type device performance is closely dependent on the quality of the films and the junction [6]. For the carrier trapping-/detrapping-based devices, the LRS and the HRS often show considerable relaxation, which deteriorates the device performance [9]. An effective interfacial modification is commonly required to solve this problem. For the FTJ-based devices, the tunneling current tuned by the polarization is normally remarkably small, which hinders its actual application. In addition, the ferroelectric layer is usually ultrathin, and how to maintain the ultrathin film uniformity in a large scale is another technical issue.
\nIn recent years, halide perovskites (HPs) have become a star material due to its excellent optical and charge transport properties. The rapid advance in power-conversion efficiency (PCE) of perovskite solar cells has exceeded by 20% [34], and the simple and solution-based preparation enables low-cost production. HPs have excellent electron migration ability and good optical absorption. With the development of HPs, the hysteresis in the current voltage curve was observed and described [35]. It is found that the hysteresis has a strong dependence on the voltage scanning rate and transient response. Ion migration is thought to be a possible origin of the slow response [36]. This discovery paves the way for HPs’ applications in other electronic devices, for example, resistive switching memory (memristors) [37, 38, 39], field-effect transistors [40, 41, 42], and artificial synapse devices [43, 44]. Owing to its unique features and manufacturing advantages, rapid progress has been made, and HPs are considered as a promising candidate for the next generation of electronic devices [45, 46].
\nThe perovskite material is an ABX3 compound with a 3D framework (Figure 3a), where A is a monovalent cation. A-site can be an inorganic or organic cation, for example, methylammonium (MA+, CH3NH3+), formamidinium (FA+, HC(NH2)2+), or Cs+; B is a divalent cation, and X is an anion. B is typically Pb (also Sn) and X is a halide such as Cl, Br, or I. Based on the composition flexibility of HPs, the bandgap can be tuned by replacing elements at each position. In addition, the bandgap can be tuned by controlling the crystalline structure of HPs and the grain size [50].
\n(a) Crystal structure of HPs [47]. (b) A schematic diagram of device structure halide perovskite memory [48]. (c) FETs based on CsPbBr3 and fabrication method [47]. (d) Biological synapse compared to artificial synapses [49]. (a, c) Reproduced with permission [47]. Copyright 2015, American Chemical Society. (b) Reproduced with permission [48]. Copyright 2018, American Chemical Society. (d) Reproduced with permission [49]. Copyright 2019, American Chemical Society.
It is a feasible method to change the length of the bonds between A and B/C sites. In theory, the crystal lattice of the perovskite ABX3 is expandable, and the gap of the forbidden band is narrow. For example, the material obtained by replacing the MA+ in the MAPbI3 with an ethylamine, a propylamine, a long-chain alkyl, or an arylamine cation is generally a two-dimensional layered structure. The length of alkylammonium cations at position A was reported in 1990 by Calabrese et al., and the synthesized HPs demonstrated a two-dimensional layered structure [51]. With the increase of the length of cation at site A, the maximum absorption peak is red-shifted from 390 to 450 nm [51]. The modulation of the perovskite bandgap by the substitution of A-site has been demonstrated by the density functional theory (DFT), showing an obvious change, i.e., FA (1.5 eV), MA (1.55 eV), and Cs (1.73 eV) [52, 53]. The angle of B-X-B bond in perovskite structure plays an important role in regulating the bandgap of perovskite materials. Therefore, the change of different metal ions (B) to regulate the structure and properties of perovskite materials is also of great concern. By substituting Pb by Sn at B site, MASnI3 (1.3 eV) exhibits a smaller bandgap than MAPbI3 (1.55 eV) [53]. For the X site, when I ions in MASnI3 are doped with Br in different proportions, the bandgap of the materials can be modulated between 1.3 and 2.15 eV, and the corresponding absorptions are between 950 and 650 nm [54].
\nAnother important way to adjust the bandgap is to control the quantum confinement in the nanoscale. Compared with 0D quantum dots or 1D nanowires, 2D geometry provides a natural way to accurately control the thickness of quantum wells for perovskite halides, resulting in a confinement effect. Huang et al. found that a two-dimensional MAPbBr3 perovskite layer could be regulated by the concentration of oleic acid and the balance between surfactant and precursor in two phases [55]. Two-dimensional MAPbBr3 nano-sheets with different layers show different representative absorption spectra and photoluminescence spectra [55].
\nMany perovskite photovoltaic cells have exhibited I-V hysteresis behavior, as shown in Figure 4 [36, 56, 57]. Ion migration is thought to be an origin of the photocurrent hysteresis. Low formation energy of ionic defects combined with low activation energy for ion migration enables easy and fast ion migration in perovskite halide materials. Although raising potential stability is an issue in HP solar cells, the ion migration combined with the excellent optical and electrical properties of the material also provides an opportunity for new devices such as optically controlled memory and switched diodes.
\nA typical I-V hysteresis behavior of perovskite solar cells, with forward bias to short circuit sweep (FB-SC) and short circuit to forward bias sweep (SC-FB) [36]. Reproduced with permission [36]. Copyright 2014, American Chemical Society.
HPs are good ionic conductors with fast ion migration ability. There are many factors affecting ion migration, such as component ions, defects, cation rotation, etc. We first briefly introduce the defect ions in perovskite crystals. HPs possess various intrinsic point defects, such as vacancies, interstitial defects, and antisite defects. Shao et al. found that ion migration at grain or grain boundary of MAPbI3 perovskite membrane is different [58]. Ion migration in perovskite membranes can be regulated by the introduction of other foreign substances into grain boundaries, such as large fullerene derivatives (PC60BM) or small chloride ions [59, 60]. The modulation of ion migration is desirable for the development of high-performance perovskite-based optically adjustable resistors and synaptic devices [60]. Perovskite has been proven as an excellent ion conductor. Because of the ion motion, the semiconductor material can be changed from p-doped to n-doped. By applying external bias, the device structure can be changed from p-i-n structure to n-i-p structure, thus gradually changing the resistance of the device. This memory characteristic of perovskite materials can simulate the signal processing, learning, and memory functions of the nervous system [61]. Perovskite memristors can reduce the energy consumption required for the primary signal transmission of artificial synaptic devices to femto-Joule/(100 nm)2 which is similar to the ultralow energy consumption required for primary signal transmission in biological synapses. Due to the excellent optical and electrical properties of perovskite materials, some biological functions read by optical signals have also been discovered [62].
\nFlexible devices have enormous potentials for applications in emerging areas such as wearable electronics, portable chargers, remote power supplies, automobiles, and aircrafts. The fabrication of the substrate is very important for the flexibility of the final device, and the flexible device based on the polymer substrate is usually needed, resulting in general processing, and manufacturing only in low-temperature environments cannot withstand high-temperature processes. But HP materials do not require high temperatures and can be processed at low temperatures, and HPs provide mechanical flexibility. These make HPs a great advantage in flexible device applications (Figure 5). For typical HPs, MAPbBr3, they have weak interactions between organic elements. This combination is relatively weak, so the shear between perovskite surfaces is easy to occur, which explains why this perovskite can provide elasticity under mechanical deformation. The annealing temperature of HPs is generally only one hundred degrees. Therefore, high flexible polymer substrates can be used in HP-based flexible devices because of the low processing temperature. Many repeated bending tests of HP solar cells and storage devices have been reported. These studies show that the materials have a good mechanical flexibility.
\n(a) Photograph of a flexible RRAM device with the Al/CsPbBr3/PEDOT:PSS/ITO structure [63]. (b) Memory device based on flexible substrate of the Au/perovskite/ITO structure and I-V characteristics [37]. (a) Reproduced with permission [63]. Copyright 2017, American Chemical Society. (b) Reproduced with permission [37]. Copyright 2016, American Chemical Society.
HP-based flexible resistive switch storage device has been fabricated on a plastic substrate. After more than 100 times of bending radius of 1.5 cm, the storage device still has electrical performance (Figure 5b) [37]. The first fiber-shaped perovskite memristor was developed in 2016 [64]. In particular, fiber morphology is expected to promote the application of perovskite materials in wearable memory and computing device. Therefore, thanks to the good mechanical and electrical reliability, HP-based devices are very promising for the next-generation flexible memory devices.
\nIn the field of perovskite solar cells, it is necessary to improve the photoelectric conversion efficiency of perovskite solar cells with good thin film preparation technology [65, 66]. Generally good perovskite thin films have smooth surface and large grain size with relatively few defects. In order to achieve high-performance devices, controlling the uniformity, thickness, and grain size of the HP layer is of great importance in the fabrication process.
\nIn the early preparation of the solar cell, the perovskite precursor solution is usually spin-coated on the hydrophilic TiO2 layer, and due to the hydrophilicity, the perovskite is easily deposited on the TiO2 [67, 68]. Resistive switch memory and logic device is a kind of device with an insulating layer sandwiched between two metal layers. Thus when we use a solution method to prepare HP layers for the memristor devices, the perovskite precursor solution needs to be deposited on the hydrophobic metal layer. However, it is difficult to use the solution method to deposit a HP film on a hydrophobic metal surface. Because of the hydrophobicity of metal electrodes, for example, a simple spin coating method of MAPbI3 precursor solution may produce island growth on the metal surface. One-step spin coating therefore is not suitable for the fabrication of memory and logic device structures without interfacial modification. In order to solve this problem, the surface of metal electrode is usually treated with ultraviolet ozone (UVO) or O2 plasma to change the hydrophobicity of metal electrode. However, it is still not easy for HP thin films to get a good uniformity, both in one-step spin coating and two-step spin coating. This mainly originates from the difference between the general perovskite layer annealing temperature and the solvent boiling point temperature. For example, the annealing temperature of MAPBI3 is generally 100–150°C, while for the solvent perovskite, such as γ-butyrolactone and N,N dimethylformamide, possessing high boiling points of 204 and 153°C, respectively [44]. Thus the nucleation during the substrate annealing could be very slow, which tends to achieve poor film morphology, such as cracks or even pores. Anti-solvent engineering can be applied in spin coating process to eliminate this issue. In anti-solvent engineering, toluene, chloroform, and other substances are often used as anti-solvents. Because they are insoluble to perovskite, when anti-solvent is added, the anti-solvent begins to diffuse and permeate into HPs solution. It is helpful for rapid nucleation. Anti-solvent engineering has been successfully used in the fabrication of HP-based flexible resistive switch memory [37]. However, the use of anti-solvent engineering will also bring some problems. With the addition of anti-solvent, it gradually begins to diffuse and permeate in HP solution. However, it is not possible for the anti-solvent to diffuse and penetrate uniformly throughout the perovskite film, which may result in a large distribution of the perovskite crystal size throughout the film. In order to prepare more uniform membranes, it is usually necessary to add additives such as alkane dimercaptan to control the crystallization kinetics of perovskite [69].
\nWith the advent of the information age and the rapid development of the Internet, the information that needs to be stored has been explosively increased, and the traditional storage equipment is more and more difficult to meet the demand. As a new-generation storage device, the memristor has great potential in the field of storage. In terms of storage performance, excellent memory devices need to have the advantages of fast working time, long service life, low power consumption, and low cost.
\nFor memristor applications, many materials have been used, from organic materials and binary metal oxides to perovskite halide. Among them, metal oxide-based resistive switch devices have been extensively studied and applied in many fields. However, the technology has many demerits, such as high-power consumption and complicated fabrication process, which is not suitable for fabrication of flexible/wearable devices. As discussed above, perovskite halides are an ideal alternative to fabricate flexible devices [46].
\nFor example, the change in the resistance switching for the MAPbI3 memristor is a filament-type mechanism with the direct reaction of the charge carriers with the defects [39]. For RRAMs, fast charge transfer can reduce energy consumption. In HPs, the carrier transport capacity can be enhanced with appropriate concentrations of defects. For instance, doping MAPbI3 with Br reduces the “SET” voltage, thereby reducing the power consumption of the device. This is because the activation energy of ion migration with Br vacancies is smaller than that with I. Thus, the HRS to LRS switching energy is reduced, and the switching response is accelerated.
\nAt mentioned above, anti-solvent engineering has been utilized in the preparation of HP thin Films. The MAPbI3 thin films treated with toluene as anti-solvent exhibit extremely low electric field about 3.25 × 103 V/cm and high switch-specific resistance switching behavior [70].
\nAs a low-cost material, HPs have a great potential for the development of wearable and portable devices. Yan et al. developed the first fiber-shaped perovskite memristor [64]. In particular, fiber morphology is expected to promote the application of perovskite materials in wearable memory and computing device.
\nAs the volume of information increases, devices that can store more data in the same size are the trend in the future. So, it is important to develop the memory device into a device with high storage density. Hwang et al. fabricated MAPbI3 layer for nano-RRAM devices on 250 nm perforated silicon wafers by vapor deposition [71]. The device has the characteristics of bipolar resistance switch, low operating voltage, high switching speed (200 ns), high durability, and high data retention time (>105 s). In addition, the continuous vapor deposition technology is extended to MAPbI3 memristor with a cross-point array structure. This method enables large area device fabrication for high-density memory devices [71].
\nAll-inorganic perovskite halides, such as CsPbBr3, have also demonstrated as working flexible nonvolatile memories, with a filament-type RS mechanism (Figure 6a) [63]. CsPbBr3 quantum dots are also developed for the memory cells [73, 74]. Besides, due to lead in HPs being a component that pollutes the environment and is harmful to humans, it is also necessary to develop lead-free devices. Han et al. successfully fabricated RRAMs based on lead-free inorganic cesium iodide (CsSnI3) perovskite material, as shown in Figure 6b [72]. Some typical HP-based RRAMs are compared, as shown in Table 1.
\n(a) Schematic drawing of the CsPbBr3-based flexible resistive switching memory [63]. (b) Schematic diagram of the Ag or Au/PMMA/CsSnI3/Pt/SiO2/Si vertical stack structure [72]. (a) Reproduced with permission [63]. Copyright 2017, American Chemical Society. (b) Reproduced with permission [72]. Copyright 2019, American Chemical Society.
Device structure | \nSet voltage [V] | \nOn/off ratio | \nRetention [s] | \nEndurance [cycles] | \nRef. | \n
---|---|---|---|---|---|
Au/MAPbI3−xClx/FTO | \n0.8 | \n10 | \n1 × 104 | \n102 | \n[38] | \n
Ag/MAPbI3/Pt | \n0.13 | \n106 | \n1 × 104 | \n400 | \n[70] | \n
Ni/ZnO/CsPbBr3/FTO | \n−0.95 | \n105 | \n1 × 104 | \n— | \n[75] | \n
Al/CsPbBr3/PEDOT:PSS/ITO/PET | \n−0.6 | \n102 | \n— | \n50 | \n[63] | \n
Ag/PMMA/CsPbI3/Pt | \n0.18 | \n106 | \n— | \n300 | \n[62] | \n
Graphene/PEA2PbBr4/Au | \n2.8 | \n10 | \n1 × 103 | \n100 | \n[76] | \n
Ag/PMMA/CsSnI3/Pt/SiO2/Si | \n0.13 | \n103 | \n7 × 103 | \n600 | \n[72] | \n
Au/MAPbI3/Au | \n0.96 | \n108 | \n1 × 104 | \n1000 | \n[77] | \n
Summary of hybrid perovskite RRAMs in this review.
In addition to the traditional perovskite halides with ABX3 structure, other new types of materials have also been utilized in memory devices. 2D perovskite is another promising candidate for RRAM. The conductivity of HPs is low, but it has a good carrier transport ability. At present, most of the HP RRAMs are based on 3D MAPbX3 and some 2D Ruddlesden-Popper (RP) phase perovskite. 2D perovskite material has high Schottky barrier, 2D anisotropic structure, and electrothermal activation energy characteristics. Compared with 3D perovskite devices, the off current of 2D perovskite devices can be greatly reduced. Tian et al. reported the utilization of single-crystalline 2D (PEA)2PbBr4 and graphene for RRAM [76]. The two sides of 2D HPs are entrapped by graphene and Au, respectively. Due to the low conductivity of 2D HPs caused by multilayer organic ligands, there is no leakage current channel in perovskite grain boundaries of 2D HPs. The off current is limited to 1 pA. It is proven that the switching behavior has good reproducibility by switching devices at 10 pA program current circulate 100 times. Cheng et al. fabricated into Al/2D (CH3NH3)2PbI2(SCN)2 perovskite film/indium-tin oxide [78]. The RRAM shows ternary switching. The three states have a conductivity ratio of 1:103:107, with long retention over 10,000 s. A transparent 2D perovskite (C4H9NH3)2PbBr4 has also been developed for compliance-free multilevel RS devices [79]. Ultrathin bismuth halide Cs3Bi2I9 is also used as an electronic memory device with a typical bipolar RS behavior [80].
\nFor most exploited devices, the data only transiently converts the optical signal into a circuit under illumination, which requires the use of additional converters to further store the output signal and record the occurrence of optical stimuli. HPs have a very strong optical absorption ability, low exciton binding energy, and long life carrier transmission time, so HPs can display a short signal under illumination, which can be used in light-stimulated devices. Chen et al. first introduced the concept of floating gate flash memory and successfully fabricated HP floating gate photomemory with a multilevel memory behavior [81]. Wang et al. first introduced a photonic RRAM based on CsPbBr3 quantum dots. The CsPbBr3 quantum dot layer is sandwiched by two PMMA layers. Silver is selected as the top electrode by thermal evaporation [82]. In the absence of light, the device displays a bipolar resistive switch memory. By inputting the light field and electric field signals, the current will be used as the output signal to realize the switching logic operation.
\nThe traditional von Neumann architecture requires a large amount of data transmission directly in CPU and memory (memory wall). This leads to increased power consumption. In order to solve this problem, Tian et al. proposed a fully distributed architecture based on optical synapse. The optical synapse based on layered 2D (PEA)2PbI4 perovskite structure was prepared [83]. This 2D perovskite-type optical synapse is similar to the biologic optical synapse with light-induced excitation/inhibition. Based on the unique optical gate control effect, the ultrahigh light response rate can reach 730 a/w. Lead-free 2D perovskite was also utilized for the first time in the study of flexible optical synaptic devices [84]. A flexible optical synapse based on 2D perovskite (PEA)2SnI4 can mimic the short-term plasticity of biological synapses.
\nIn addition to the single device operation, we should also pay attention to cross-array arrangement of RRAMs. A large number of RRAMs can be connected to each other in micro-space to form a cross-array structure. This architecture combines the memory advantage of the RRAMs and the massively parallel processing of the cross array. Cross arrays exhibit the characteristics of large-scale parallel processing, distributed information storage, self-organization, self-adaptation, etc. RRAM cross array provides a more convenient storage structure for binary images and a new storage scheme for gray-scale images. Hwang et al. prepared homogeneous perovskite thin films by sequential evaporation deposition and then prepared 16 × 16 cross-point array of RRAM [71]. The I-V characteristics of the memory cells show a variation among different points, while the setting voltages remain similar, and the on/off ratios are large for all devices. The memory characteristics prove the feasibility of HPs in the application of high-density cross-point memory. Kang et al. fabricated perovskite RRAM devices with high yield in 8 × 8 cross-bar arrays using solution-treated perovskite films [77]. Among the 64 memory cells, 55 cells are functional. These results are of great significance for the practical perovskite storage equipment with low cost and high density through a simple solution.
\nIn this chapter, we have outlined an overview of the application of perovskite oxides and perovskite halides in memory devices. In the new era, artificial intelligence and IoTs are dramatically developing. Correspondingly, memory cells are getting more and more important, especially in low-power information storage and in neuromorphic computing. Although already developing for around two decades, perovskite oxides are still one of the most promising materials for RRAM owing to its high-endurance, chemically stable, and high-speed operation. However, more efforts are expected for perovskite oxide-based memories. Technologically, improving the endurance of the RS is still required for better actual application. Fundamentally, the basic operational mechanism of perovskite oxide RRAM device needs further investigation, especially considering the strong electron correlation system. For the perovskite halide, as a rising star, it has exhibited a great potential in the application of memristors. Flexible devices, low-cost fabrication, compositional flexibility, and excellent optoelectronic properties enable the perovskite halides to obtain potential application into wearable memory devices and artificial synapse. However, the film quality of HPs should be further improved, because the memory device performance is significantly dependent on the film uniformity. In addition, the intrinsic stability issue needs to be addressed by intended doping and interfacial passivation. Overall, further investigation is required to fulfill the expectation on these promising materials for the next-generation electronics.
\nJZ acknowledges the National Science Foundation of Jilin Province (grant: 20190201208JC), the Science and Technology Foundation of Department of Education, Jilin Province (grant: JJKH20190136KJ), and the Open Foundation of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University (grant: 2019-24).
\nThe authors declare that they have no conflict of interest.
IntechOpen celebrates Open Access academic research of women scientists: Call Opens on February 11, 2018 and closes on March 8th, 2018.
",metaTitle:'Call for Applications: "IntechOpen Women in Science 2018" Book Collection',metaDescription:"IntechOpen celebrates Open Access academic research of women scientists: Call Opens on February 11, 2018 and closes on March 8th, 2018.",metaKeywords:null,canonicalURL:"/page/women-in-science-book-collection-2018/",contentRaw:'[{"type":"htmlEditorComponent","content":"On February 9th, 2018, which marks the official celebration of UNESCO’s International Day of Women and Girls in Science, we have announced we are seeking contributors for the upcoming “IntechOpen Women in Science 2018” Book Collection. The program aims to support women scientists worldwide whose academic needs include quality assurance, peer-review, fast publishing, collaboration among complementary authors, immediate exposure, and post-publishing citations reporting.
\\n\\nAPPLYING FOR THE “INTECHOPEN WOMEN IN SCIENCE 2018” OPEN ACCESS BOOK COLLECTION
\\n\\nWomen scientists can apply for one book topic, either as an editor or with co-editors, for a publication of an OA book in any of the scientific categories that will be evaluated by The Women in Science Book Collection Committee, led by IntechOpen’s Editorial Board. Submitted proposals will be sent to designated members of the IntechOpen Editorial Advisory Board who will evaluate proposals based on the following parameters: the proposal’s originality, the topic’s relation to recent trends in the corresponding scientific field, and significance to the scientific community.
\\n\\nThe submissions are now closed. All applicants will be notified on the results in due time. Thank you for participating!
\\n"}]'},components:[{type:"htmlEditorComponent",content:"On February 9th, 2018, which marks the official celebration of UNESCO’s International Day of Women and Girls in Science, we have announced we are seeking contributors for the upcoming “IntechOpen Women in Science 2018” Book Collection. The program aims to support women scientists worldwide whose academic needs include quality assurance, peer-review, fast publishing, collaboration among complementary authors, immediate exposure, and post-publishing citations reporting.
\n\nAPPLYING FOR THE “INTECHOPEN WOMEN IN SCIENCE 2018” OPEN ACCESS BOOK COLLECTION
\n\nWomen scientists can apply for one book topic, either as an editor or with co-editors, for a publication of an OA book in any of the scientific categories that will be evaluated by The Women in Science Book Collection Committee, led by IntechOpen’s Editorial Board. Submitted proposals will be sent to designated members of the IntechOpen Editorial Advisory Board who will evaluate proposals based on the following parameters: the proposal’s originality, the topic’s relation to recent trends in the corresponding scientific field, and significance to the scientific community.
\n\nThe submissions are now closed. All applicants will be notified on the results in due time. Thank you for participating!
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5314},{group:"region",caption:"Middle and South America",value:2,count:4818},{group:"region",caption:"Africa",value:3,count:1466},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108152},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"title"},books:[{type:"book",id:"9306",title:"2D Materials",subtitle:null,isOpenForSubmission:!0,hash:"7d1bdb7cdf5a05ed67443906889aaf71",slug:null,bookSignature:"Dr. Karthikeyan Krishnamoorthy",coverURL:"https://cdn.intechopen.com/books/images_new/9306.jpg",editedByType:null,editors:[{id:"278690",title:"Dr.",name:"Karthikeyan",surname:"Krishnamoorthy",slug:"karthikeyan-krishnamoorthy",fullName:"Karthikeyan Krishnamoorthy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9442",title:"A Comprehensive Approach in Medico Legal Examination in Sexual Assault Cases",subtitle:null,isOpenForSubmission:!0,hash:"fa63d39e368a24bc2fe15356bed434b4",slug:null,bookSignature:"Dr. Adithi Shetty and Dr. B Suresh Shetty",coverURL:"https://cdn.intechopen.com/books/images_new/9442.jpg",editedByType:null,editors:[{id:"300329",title:"Dr.",name:"Adithi",surname:"Shetty",slug:"adithi-shetty",fullName:"Adithi Shetty"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10082",title:"Accelerators and Colliders",subtitle:null,isOpenForSubmission:!0,hash:"7774bddf707cc21601de7051625e30b6",slug:null,bookSignature:"Dr. Ozan Artun",coverURL:"https://cdn.intechopen.com/books/images_new/10082.jpg",editedByType:null,editors:[{id:"255462",title:"Dr.",name:"Ozan",surname:"Artun",slug:"ozan-artun",fullName:"Ozan Artun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9951",title:"Acetic Acid-Production and Applications in the Food Industry",subtitle:null,isOpenForSubmission:!0,hash:"d7666e2b4abc4663a3418bdf3f2c2fd5",slug:null,bookSignature:"Dr. Miguel Fernández-Niño",coverURL:"https://cdn.intechopen.com/books/images_new/9951.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9073",title:"Acne",subtitle:null,isOpenForSubmission:!0,hash:"6a7a4ab615c572fa07a704b44a35b0cf",slug:null,bookSignature:"Dr. Usma Iftikhar",coverURL:"https://cdn.intechopen.com/books/images_new/9073.jpg",editedByType:null,editors:[{id:"310225",title:"Dr.",name:"Usma",surname:"Iftikhar",slug:"usma-iftikhar",fullName:"Usma Iftikhar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10042",title:"Acoustics of Materials",subtitle:null,isOpenForSubmission:!0,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:null,bookSignature:"Dr. Daniela Siano",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:null,editors:[{id:"9960",title:"Dr.",name:"Daniela",surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7800",title:"Activism in the Construction Industry",subtitle:null,isOpenForSubmission:!0,hash:"776779e213ef3e51e73bd6cd4f5676af",slug:null,bookSignature:"Dr. Nthatisi Khatleli",coverURL:"https://cdn.intechopen.com/books/images_new/7800.jpg",editedByType:null,editors:[{id:"247856",title:"Dr.",name:"Nthatisi",surname:"Khatleli",slug:"nthatisi-khatleli",fullName:"Nthatisi Khatleli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10034",title:"Adaptive Robust Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"e73af24bc4df698a1c6e0fd01f6ae2c2",slug:null,bookSignature:"Dr. Mario Alberto Jordán",coverURL:"https://cdn.intechopen.com/books/images_new/10034.jpg",editedByType:null,editors:[{id:"152460",title:"Dr.",name:"Mario",surname:"Jordán",slug:"mario-jordan",fullName:"Mario Jordán"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9750",title:"Adenosine Triphosphatase - Updated View",subtitle:null,isOpenForSubmission:!0,hash:"a9df7d0f048e44e1806942eaf6a74c5f",slug:null,bookSignature:"Prof. Mohammed Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/9750.jpg",editedByType:null,editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10049",title:"Advanced Functional Materials",subtitle:null,isOpenForSubmission:!0,hash:"58745a56d54c143e4de8433f3d6eb62e",slug:null,bookSignature:"Dr. Nevin Tasaltin",coverURL:"https://cdn.intechopen.com/books/images_new/10049.jpg",editedByType:null,editors:[{id:"94825",title:"Associate Prof.",name:"Nevin",surname:"Tasaltin",slug:"nevin-tasaltin",fullName:"Nevin Tasaltin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis",subtitle:null,isOpenForSubmission:!0,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:507},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"799",title:"Industrial Engineering",slug:"industrial-engineering-and-management-industrial-engineering",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:2,numberOfAuthorsAndEditors:42,numberOfWosCitations:3,numberOfCrossrefCitations:7,numberOfDimensionsCitations:30,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-industrial-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7454",title:"Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7008bbdc804192f8969a34deda417b05",slug:"industrial-engineering",bookSignature:"Ainul Akmar Mokhtar and Masdi Muhammad",coverURL:"https://cdn.intechopen.com/books/images_new/7454.jpg",editedByType:"Edited by",editors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",middleName:null,surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5257",title:"Joining Technologies",subtitle:null,isOpenForSubmission:!1,hash:"aa9de032631d6887271e067f23fdb91f",slug:"joining-technologies",bookSignature:"Mahadzir Ishak",coverURL:"https://cdn.intechopen.com/books/images_new/5257.jpg",editedByType:"Edited by",editors:[{id:"104098",title:"Dr.",name:"Mahadzir",middleName:null,surname:"Ishak",slug:"mahadzir-ishak",fullName:"Mahadzir Ishak"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"51396",doi:"10.5772/64159",title:"A Mesh-Free Solid-Mechanics Approach for Simulating the Friction Stir-Welding Process",slug:"a-mesh-free-solid-mechanics-approach-for-simulating-the-friction-stir-welding-process",totalDownloads:940,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Kirk Fraser, Lyne St-Georges and Laszlo I. Kiss",authors:[{id:"181027",title:"Mr.",name:"Kirk",middleName:null,surname:"Fraser",slug:"kirk-fraser",fullName:"Kirk Fraser"},{id:"186075",title:"Prof.",name:"Laszlo",middleName:null,surname:"Kiss",slug:"laszlo-kiss",fullName:"Laszlo Kiss"},{id:"186076",title:"Prof.",name:"Lyne",middleName:null,surname:"St-Georges",slug:"lyne-st-georges",fullName:"Lyne St-Georges"}]},{id:"51805",doi:"10.5772/64524",title:"Current Issues and Problems in the Joining of Ceramic to Metal",slug:"current-issues-and-problems-in-the-joining-of-ceramic-to-metal",totalDownloads:3058,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Uday M.B., Ahmad-Fauzi M.N., Alias Mohd Noor and Srithar Rajoo",authors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"},{id:"182065",title:"Prof.",name:"Alias",middleName:null,surname:"Mohd Noor",slug:"alias-mohd-noor",fullName:"Alias Mohd Noor"},{id:"182066",title:"Dr.",name:"Srithar",middleName:null,surname:"Rajoo",slug:"srithar-rajoo",fullName:"Srithar Rajoo"},{id:"190437",title:"Prof.",name:"Ahmad-Fauzi",middleName:null,surname:"M. N.",slug:"ahmad-fauzi-m.-n.",fullName:"Ahmad-Fauzi M. N."}]},{id:"51413",doi:"10.5772/63525",title:"Magnetic Pulse Welding: An Innovative Joining Technology for Similar and Dissimilar Metal Pairs",slug:"magnetic-pulse-welding-an-innovative-joining-technology-for-similar-and-dissimilar-metal-pairs",totalDownloads:1804,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"T. Sapanathan, R. N. Raoelison, N. Buiron and M. Rachik",authors:[{id:"181191",title:"Dr.",name:"Raoelison",middleName:null,surname:"Rija",slug:"raoelison-rija",fullName:"Raoelison Rija"},{id:"182250",title:"Dr.",name:"Thaneshan",middleName:null,surname:"Sapanathan",slug:"thaneshan-sapanathan",fullName:"Thaneshan Sapanathan"},{id:"186383",title:"Dr.",name:"Nicolas",middleName:null,surname:"Buiron",slug:"nicolas-buiron",fullName:"Nicolas Buiron"},{id:"186384",title:"Dr.",name:"Mohamed",middleName:null,surname:"Rachik",slug:"mohamed-rachik",fullName:"Mohamed Rachik"}]}],mostDownloadedChaptersLast30Days:[{id:"51805",title:"Current Issues and Problems in the Joining of Ceramic to Metal",slug:"current-issues-and-problems-in-the-joining-of-ceramic-to-metal",totalDownloads:3058,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Uday M.B., Ahmad-Fauzi M.N., Alias Mohd Noor and Srithar Rajoo",authors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"},{id:"182065",title:"Prof.",name:"Alias",middleName:null,surname:"Mohd Noor",slug:"alias-mohd-noor",fullName:"Alias Mohd Noor"},{id:"182066",title:"Dr.",name:"Srithar",middleName:null,surname:"Rajoo",slug:"srithar-rajoo",fullName:"Srithar Rajoo"},{id:"190437",title:"Prof.",name:"Ahmad-Fauzi",middleName:null,surname:"M. N.",slug:"ahmad-fauzi-m.-n.",fullName:"Ahmad-Fauzi M. N."}]},{id:"51537",title:"Diffusion Bonding: Influence of Process Parameters and Material Microstructure",slug:"diffusion-bonding-influence-of-process-parameters-and-material-microstructure",totalDownloads:1610,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Thomas Gietzelt, Volker Toth and Andreas Huell",authors:[{id:"100737",title:"Dr.",name:"Thomas",middleName:null,surname:"Gietzelt",slug:"thomas-gietzelt",fullName:"Thomas Gietzelt"},{id:"180682",title:"Mr.",name:"Volker",middleName:null,surname:"Toth",slug:"volker-toth",fullName:"Volker Toth"},{id:"180683",title:"Mr.",name:"Andreas",middleName:null,surname:"Huell",slug:"andreas-huell",fullName:"Andreas Huell"}]},{id:"65764",title:"Supplier Evaluation and Selection in Automobile Industry",slug:"supplier-evaluation-and-selection-in-automobile-industry",totalDownloads:357,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"industrial-engineering",title:"Industrial Engineering",fullTitle:"Industrial Engineering"},signatures:"Lokpriya Gaikwad and Vivek Sunnapwar",authors:[{id:"246830",title:"Prof.",name:"Lokpriya",middleName:null,surname:"Gaikwad",slug:"lokpriya-gaikwad",fullName:"Lokpriya Gaikwad"},{id:"251857",title:"Dr.",name:"Vivek",middleName:null,surname:"Sunnapwar",slug:"vivek-sunnapwar",fullName:"Vivek Sunnapwar"}]},{id:"51862",title:"Introductory Chapter: A Brief Introduction to Joining and Welding",slug:"introductory-chapter-a-brief-introduction-to-joining-and-welding",totalDownloads:1293,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Mahadzir Ishak",authors:[{id:"104098",title:"Dr.",name:"Mahadzir",middleName:null,surname:"Ishak",slug:"mahadzir-ishak",fullName:"Mahadzir Ishak"}]},{id:"51572",title:"Applying Heat for Joining Textile Materials",slug:"applying-heat-for-joining-textile-materials",totalDownloads:1365,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Simona Jevšnik, Savvas Vasiliadis, Senem Kurson Bahadir, Dragana\nGrujić and Zoran Stjepanovič",authors:[{id:"11871",title:"Dr.",name:"Savvas G.",middleName:null,surname:"Vassiliadis",slug:"savvas-g.-vassiliadis",fullName:"Savvas G. Vassiliadis"},{id:"48882",title:"Dr.",name:"Senem",middleName:null,surname:"Kurşun Bahadır",slug:"senem-kursun-bahadir",fullName:"Senem Kurşun Bahadır"},{id:"180695",title:"Prof.",name:"Simona",middleName:null,surname:"Jevšnik",slug:"simona-jevsnik",fullName:"Simona Jevšnik"},{id:"181507",title:"Prof.",name:"Dragana",middleName:null,surname:"Grujić",slug:"dragana-grujic",fullName:"Dragana Grujić"},{id:"181508",title:"Prof.",name:"Zoran",middleName:null,surname:"Stjepanovič",slug:"zoran-stjepanovic",fullName:"Zoran Stjepanovič"}]},{id:"51668",title:"New Approaches to the Friction Stir Welding of Aluminum Alloys",slug:"new-approaches-to-the-friction-stir-welding-of-aluminum-alloys",totalDownloads:1153,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Marcello Cabibbo, Archimede Forcellese and Michela Simoncini",authors:[{id:"180609",title:"Prof.",name:"Marcello",middleName:null,surname:"Cabibbo",slug:"marcello-cabibbo",fullName:"Marcello Cabibbo"},{id:"185540",title:"Prof.",name:"Archimede",middleName:null,surname:"Forcellese",slug:"archimede-forcellese",fullName:"Archimede Forcellese"},{id:"185542",title:"Prof.",name:"Michela",middleName:null,surname:"Simoncini",slug:"michela-simoncini",fullName:"Michela Simoncini"}]},{id:"51851",title:"Laser and Hybrid Laser-Arc Welding",slug:"laser-and-hybrid-laser-arc-welding",totalDownloads:1137,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"G. A. Turichin",authors:[{id:"181965",title:"Prof.",name:"Gleb",middleName:"Andreevich",surname:"Turichin",slug:"gleb-turichin",fullName:"Gleb Turichin"}]},{id:"51413",title:"Magnetic Pulse Welding: An Innovative Joining Technology for Similar and Dissimilar Metal Pairs",slug:"magnetic-pulse-welding-an-innovative-joining-technology-for-similar-and-dissimilar-metal-pairs",totalDownloads:1804,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"T. Sapanathan, R. N. Raoelison, N. Buiron and M. Rachik",authors:[{id:"181191",title:"Dr.",name:"Raoelison",middleName:null,surname:"Rija",slug:"raoelison-rija",fullName:"Raoelison Rija"},{id:"182250",title:"Dr.",name:"Thaneshan",middleName:null,surname:"Sapanathan",slug:"thaneshan-sapanathan",fullName:"Thaneshan Sapanathan"},{id:"186383",title:"Dr.",name:"Nicolas",middleName:null,surname:"Buiron",slug:"nicolas-buiron",fullName:"Nicolas Buiron"},{id:"186384",title:"Dr.",name:"Mohamed",middleName:null,surname:"Rachik",slug:"mohamed-rachik",fullName:"Mohamed Rachik"}]},{id:"51554",title:"Gas Tungsten Arc Welding with Synchronized Magnetic Oscillation",slug:"gas-tungsten-arc-welding-with-synchronized-magnetic-oscillation",totalDownloads:1097,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Thiago Resende Larquer and Ruham Pablo Reis",authors:[{id:"76198",title:"Dr.",name:"Ruham",middleName:"Pablo",surname:"Reis",slug:"ruham-reis",fullName:"Ruham Reis"},{id:"182463",title:"MSc.",name:"Thiago",middleName:null,surname:"Larquer",slug:"thiago-larquer",fullName:"Thiago Larquer"}]},{id:"51282",title:"The Analysis of Temporary Temperature Field and Phase Transformations in One-Side Butt-Welded Steel Flats",slug:"the-analysis-of-temporary-temperature-field-and-phase-transformations-in-one-side-butt-welded-steel-",totalDownloads:763,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Jerzy Winczek",authors:[{id:"181382",title:"Prof.",name:"Jerzy",middleName:null,surname:"Winczek",slug:"jerzy-winczek",fullName:"Jerzy Winczek"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-industrial-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/14669/helena-oliveira",hash:"",query:{},params:{id:"14669",slug:"helena-oliveira"},fullPath:"/profiles/14669/helena-oliveira",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()