Chemical composition of the obtained alloys (at.%) and their hardness after heat treatment at 1000°C/24 h and furnace-cooling.
\r\n\t
",isbn:"978-1-83881-922-4",printIsbn:"978-1-83881-921-7",pdfIsbn:"978-1-83881-923-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dcfc52d92f694b0848977a3c11c13d00",bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",keywords:"Agricultural Engineering, Technologies, Application, Sustainable Agriculture, Information Technology in Agriculture, Food Security, Renewable Energies, Precision Farming, Smart Agriculture, Farm Mechanization, Robotics, Post Harvest Technologies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 23rd 2020",dateEndThirdStepPublish:"February 21st 2021",dateEndFourthStepPublish:"May 12th 2021",dateEndFifthStepPublish:"July 11th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Ahmad is a researcher in the field of agricultural mechanization and agricultural equipment engineering, in-charge of Farm Machinery Design Laboratory at Bahauddin Zakariya University, with expertise in modeling and simulation. He applied for two patents at the national level.",coeditorOneBiosketch:"Renowned researcher with a focus on developing energy-efficient heat- and/or water-driven temperature and humidity control systems for agricultural storage, greenhouse, agricultural livestock and poultry applications including HVAC, desiccant air-conditioning, adsorption, Maisotsenko cycle (M-cycle), and adsorption desalination.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/338219/images/system/338219.jpg",biography:"Fiaz Ahmad obtained his Ph.D. (2015) from Nanjing Agriculture University China in the field of Agricultural Bioenvironmental and Energy Engineering and Postdoc (2020) from Jiangsu University China in the field of Plant protection Engineering. He got the Higher Education Commission, Pakistan Scholarship for Ph.D. studies, and Post-Doctoral Fellowship from Jiangsu Government, China. During postdoctoral studies, he worked on the application of unmanned aerial vehicle sprayers for agrochemical applications to control pests and weeds. He passed the B.S. and M.S. degrees in agricultural engineering from the University of Agriculture Faisalabad, Pakistan in 2007. From 2007 to 2008, he was a Lecturer in the Department of Agricultural Engineering, Bahauddin Zakariya University, Multan-Pakistan. Since 2009, he has been an Assistant Professor in the Department of Agricultural Engineering, BZ University Multan, Pakistan. He is the author of 33 journal articles. He also supervised 6 master students and is currently supervising 5 master and 2 Ph.D. students. In addition, Dr. Ahmad completed three university-funded projects. His research interests include the design of agricultural machinery, artificial intelligence, and plant protection environment.",institutionString:"Bahauddin Zakariya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Bahauddin Zakariya University",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:{id:"199381",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sultan",slug:"muhammad-sultan",fullName:"Muhammad Sultan",profilePictureURL:"https://mts.intechopen.com/storage/users/199381/images/system/199381.jpeg",biography:"Muhammad Sultan completed his Ph.D. (2015) and Postdoc (2017) from Kyushu University (Japan) in the field of Energy and Environmental Engineering. He was an awardee of MEXT and JASSO fellowships (from the Japanese Government) during Ph.D. and Postdoc studies, respectively. In 2019, he did Postdoc as a Canadian Queen Elizabeth Advanced Scholar at Simon Fraser University (Canada) in the field of Mechatronic Systems Engineering. He received his Master\\'s in Environmental Engineering (2010) and Bachelor in Agricultural Engineering (2008) with distinctions, from the University of Agriculture, Faisalabad. He worked for Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) for two years. Currently, he is working as an Assistant Professor at the Department of Agricultural Engineering, Bahauddin Zakariya University (Pakistan). He has supervised 10+ M.Eng./Ph.D. students so far and 10+ M.Eng./Ph.D. students are currently working under his supervision. He has published more than 70+ journal articles, 70+ conference articles, and a few magazine articles, with the addition of 2 book chapters and 2 edited/co-edited books. Dr. Sultan is serving as a Leading Guest Editor of a special issue in the Sustainability (MDPI) journal (IF 2.58). In addition, he is appointed as a Regional Editor for the Evergreen Journal of Kyushu University. His research is focused on developing energy-efficient heat- and/or water-driven temperature and humidity control systems for agricultural storage, greenhouse, livestock, and poultry applications. His research keywords include HVAC, desiccant air-conditioning, evaporative cooling, adsorption cooling, energy recovery ventilator, adsorption heat pump, Maisotsenko cycle (M-cycle), wastewater, energy recovery ventilators; adsorption desalination; and agricultural, poultry and livestock applications.",institutionString:"Bahauddin Zakariya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Bahauddin Zakariya University",institutionURL:null,country:{name:"Pakistan"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61063",title:"Technological Aspects of Production and Processing of Functional Materials Based on Intermetallic Fe-Al",doi:"10.5772/intechopen.76701",slug:"technological-aspects-of-production-and-processing-of-functional-materials-based-on-intermetallic-fe",body:'\nFe-Al alloys with an ordered solid solution structure belong to the group of modern heat-resistant engineering materials with favorable physicochemical and mechanical properties at elevated and high temperature [1, 2]. The properties of Fe-Al alloys, such as low density, high melting point, high strength, and good oxidation resistance, combined with fracture toughness, create broad perspectives for industrial applications [3, 4]. These properties are the result of the existing ordering of the crystal structure, which reduces the free energy of the ordered alloys and thus their greater durability. In addition, alloys from the Fe-Al system are characterized by high fatigue strength [5]. Particular properties of alloys from the Fe-Al system make them a favorable material used for construction, as an alternative for stainless steels containing expensive alloying elements and for superalloys, as a coating material, as a material for elements operating under high-temperature corrosion, and as a starting material for complex alloys and composites [1, 2, 3, 4, 5, 6, 7]. Their application options are oriented toward filling the gap between the currently used conventional steels having particular properties and nickel superalloys in manufacturing of products for aircraft, automotive, and power industries. Despite many advantages of the Fe-Al alloys, their practical use is limited by their low creep strength at high-temperature, insufficient plasticity at moderate and low temperatures, as well as susceptibility to brittle cracking at room temperature [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]. In some cases long-range ordering occurring in these alloys, on the one hand, limits the use of typical processing technologies such as cold plastic working and, on the other hand, provides a set of unique mechanical, physical, and chemical properties. According to the Fe-Al phase equilibrium system (Figure 1) [14], aluminum dissolves with iron α up to 54 at.% at 1102°C and 48 at.% at a temperature of about 200°C. During cooling, the constant limit solution Al in Fe is changed to the order Fe-Al. Further cooling affects to replace superstructure Fe-Al into the superstructure of Fe3Al.
\nFe-Al system.
For alloys from the Fe-Al system, the most important factors affecting their properties are aluminum content and the content of alloy microadditions. Fe-Al alloys show an increase in the yield stress with an increase of Al content. Two groups of alloying additives can be distinguished in Fe-Al alloys due to their effect:
Additives forming separations that affect the increase of strength. These include Nb, Zr, B, C, Cu and Ta.
Alloy additions affecting the strengthening of the solid solution, which may include Cr, Ti, Mn, Si, Mo, V, and Ni.
Fe-Al-based alloys have the highest concentration of thermal vacancies as the only of the long-range intermetallic alloy group. Their presence exerts influence on mechanical properties and, as a result, on the possibilities of industrial-scale application. The concentration of vacancies in Fe-Al alloys increases with the increase of Al content. Alloy additions, such as Cu, Ni, Mn, Cr, V, and Ti, which increase the hardness, affect the slight increase in the concentration of thermal vacancies; however, the addition of B is significant here because it affects the acceleration of the elimination of vacancies. At low temperatures, triple defects and their diffusion dominate by jumping the Fe atoms to the Al subnet. Then, the process of pushing back the anti-position Fe atoms from the Al subnet to the Fe network takes place. At a higher temperature, double vacancies are formed, and their movement is made by double jumps. The increase in the concentration of vacancies causes the increase of the yield stress [16, 17, 18].
\nTime perspective of application of this group of materials depends particularly on thorough understanding of the dependence between, on the one hand, the production processes and the microstructure, and on the other hand, physical properties, such as thermal conductivity and thermal expansion, phase transition temperatures, and defecting and structural ordering of these compounds [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Such an approach will provide a range of information which allows for anticipating ways of influencing the process plasticity of these alloys.
\nBinary and complex alloys from the Fe-Al system (Table 1) were the materials for studies. An analysis of available Fe-Al and Fe-Al-Me equilibrium systems and literature research indicate that the chemical composition of alloys for plastic working should be in the range of 25% at. Al to 60% at. Al, and it may contain additives such as molybdenum, zirconium, carbon, and boron, with contents in the following ranges (at.%): Mo (0.2 ± 0.1), Zr (0.1 ± 0.05), C (0.1 ± 0.1), and B (0.02 ± 0.01). Most of all, the indicated microadditions serve the purpose of strengthening of grain boundaries, as well as grain refining.
\nChemical composition of the obtained alloys (at.%) and their hardness after heat treatment at 1000°C/24 h and furnace-cooling.
An analysis of chemical composition carried out by optical emission spectrometry (OES) confirmed obtaining chemical compositions assumed for melting.
\nCurrently, the alloys from the Fe-Al system used as casting materials do not pose major technological problems during melting and casting. However, the requirements set for these alloys increase if semifinished products intended for a further processing are manufactured from them. Such alloys must exhibit a set of features ensuring their technological plasticity, including high-purity, uniform, and fine-grained structure with a minimal level of casting defects such as shrinkage porosities, cracks, and microporosity. Melting was carried out using a conventional melting technique in an IS5/III induction vacuum furnace from Leybold-Heraeus, using a compacted magnesia crucible (from MgO·Al2O3 spinel) with a granulation of 0.05–2 mm, under a vacuum of 13.5 Pa. Melting of alloys under vacuum allows for avoiding the use of protective covers and refiners and enables to use pure metals instead of master alloys as charges. It also promotes alloy degassing and protects from oxidation, but it requires taking into account the melting loss of the components in the result of their evaporation. The following constituents were used during the melting process: as charge components (ARMCO iron, aluminum of 99.98 wt.% purity, electrolytic chromium) and as microadditions (technically pure molybdenum in the form of a compressed powder, technically pure iodine zirconium, crystalline boron, carbon in the form of anthracite). Due to the form of the charge materials, the melting loss was assumed for molybdenum, zirconium, carbon, and boron. Mechanically, purified and dried pieces of the main alloy components, i.e., iron and aluminum, were placed together in the crucible. After melting and homogenization, the charge was overheated to a temperature of approx. 1600°C, and the following microadditions were added to the melt: zirconium, molybdenum, carbon, and boron. After reducing the temperature to approx. 1530÷1550°C and maintaining it for homogenization and degassing, the alloy was cast. After melting, the alloys were remelted once. Preparation of casts both having circular (the so-called bars) and rectangular (the so-called flats) cross sections was planned. The alloys were cast under the same conditions into cold graphite molds (Figure 2). In the upper sections of the mold, double insulating felt with a thickness of 3÷4 cm was used, serving the purpose of protection from rapid solidification of the liquid metal. Figures 1–4 show the applied graphite molds and dimensions of the obtained ingots.
\nGraphite mold for ingots having dimensions (a) Ø12 mm, l = 120 mm, (b) l = 45 mm and diameters (a) Ø50 mm, (b) Ø30 mm, and (c) Ø22 mm, (c) of approx. 160 mm × 30 mm × 20 mm.
The alloys after casting were characterized by a coarse-grained structure. In the case of the alloys without microadditions, occurrence of grains with diversified dimensions was observed, while in the alloys containing microadditions, the shape of the grains is typical for a primary dendritic structure. In Figure 3, selected microstructures of the studied alloys after homogenizing at 1000°C for 24 h and furnace-cooling are shown. In the alloys not containing the Cr alloying element, both binary (Fe-28Al, Fe-38Al) and complex (Fe-28Al-0.2Mo-0.05Zr-0.1C-0.02B, Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B) occurrence of precipitations both at the grain boundaries and inside the grains was found (Figure 3).
\nMicrostructures of the alloys after annealing 1000°C/24 h/furnace.
Microstructures of the alloys after annealing 1000°C/24 h/furnace. The presence of phases inside the grains and at their boundaries.
To identify the precipitations found in the studied alloys, investigations using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and transmission electron microscopy (TEM) were carried out. Non-etched and etched samples were examined. Due to the fact that phases of the same type were found in the Fe-28Al, Fe-28Al-0.2Mo-0.05Zr-0.1C-0.02B, Fe-38Al, and Fe-38Al-5Cr-0.2Mo-0.05Zr-0.1C alloys, the phase identification results are presented for the Fe-28Al alloy only. The results of qualitative and quantitative analyses of chemical composition for the Fe-28Al alloy are presented in Figure 5.
\nResults of microstructure studies (SEM, STEM) and analysis of chemical composition together with the X-ray spectra (EDS) of the Fe-28Al alloy after annealing at 1000°C for 24 h and furnace-cooling: (a) etched microsection, (b) non-etched microsection, (c) surface distribution of the elements, and (d) collation of characteristic radiation spectra for the matrix and the phase.
The results of studies of chemical composition microanalysis obtained by scanning electron microscopy (analysis in microzones and surface distribution of the elements) indicate existence of phases with chemical composition close to that of the matrix. The obtained results (SEM) are confirmed by qualitative analysis of chemical composition, carried out by scanning transmission electron microscopy, where also the presence of iron and aluminum only was found in the identified phases. Figure 5 presents a collation of X-ray spectra obtained by STEM for the matrix and for the investigated phase. No differences in characteristic radiation spectra for the matrix and for the phase were found, which proves comparable concentrations of elements in both studied microzones.
\nThen, studies using electron backscatter diffraction were carried out. The obtained pattern of Kikuchi lines of the disclosed phase is shown in Figure 6. An analysis of geometry of the line pattern indicated occurrence of a Fe3Al phase in the Fe-28Al alloy. This fact was confirmed by studies of electron diffraction on a transmission electron microscope. Its results are depicted in Figure 7.
\nResults of studies of the microstructure (EBSD) of the Fe-28Al alloy after annealing at 1000°C for 24 h and furnace-cooling.
Microstructure of the Fe-28Al alloy after annealing at 1000°C for 24 h and furnace-cooling (TEM): (a) experimental zone (white area) and (b) diffraction pattern from the analyzed phase and diffraction solution.
The results are consistent with the phase equilibrium system, because in both studied systems, the Fe3Al phase may form during slow cooling at a temperature from approx. 500°C (for Fe-28Al) and from approx. 300°C (for Fe-38Al).
\nDue to the hot plastic working process planned in further steps, a structural analysis in the state after the high-temperature annealing was carried out, using rapid cooling in oil for vacancy freezing. In the case of the studied alloys, rapid cooling eliminates the formation of phase in the microstructure, exemplified in Figure 8. It suggests a lack of influence of the Fe3Al phase disclosed in the heat treatment process on the planned course of the hot plastic working process in the studied alloys.
\nMicrostructures of the studied alloys after the high-temperature annealing for 24 h and oil cooling.
Thermomechanical behavior of intermetallic alloys at a high temperature is connected with the existing state of structural ordering and with the complex defect structure, including the characteristic phenomenon of supersaturation with vacancies [1, 2]. Both the structure ordering and the presence of multiple defect types affect the properties of the studied alloys significantly. From the point of view of the plastic working process, it is necessary to determine the characteristic temperatures in relation to changes in the ordering type and the temperature of transition into a disordered state, in which the plastic working process may be realized. Characteristic transition temperatures were determined by dilatometric method and confirmed by DTA. The results obtained for the selected alloys are gathered in Figure 9. Critical temperature of the change in the ordering type in the alloys with 28 at.% Al was identified, connected with the transition from the B2 ordering-type state into DO3 at a temperature of approx. 550°C. For alloys with 38 at.% Al, a thermal effect was observed at a temperature of approx. 1260°C, which may be connected with the process of transition from a disordered (A2) into an ordered (B2) solid solution, and another one at a temperature of approx. 1060°C, which is probably a result of changes in physical properties within the phase B2 occurrence area, and precisely, with the B2(h) → B2′ transition, the changes being connected with a rebuilding of the defect structure [6].
\nTransition temperatures for the Fe-28Al and Fe-38Al alloys recorded by dilatometric method and differential thermal analysis method.
Technological plasticity and thus the deformabilities of the studied alloys are significantly affected by the value of flow stress. In the case of the Fe-Al alloys, the more important factors affecting their behavior during deformation at a given temperature include Al content and, consequently, the obtainable different structure types of the alloy matrix, i.e., a matrix with an ordered structure of DO3 or B2 type. The type of the alloy matrix should be related to phase transitions, occurring with the given chemical composition, which may be used while selecting the parameters of the plastic working so as to decrease the value of flow stress at the given value of deformation. Also, the different deformation mechanism, depending on the Al content in this case, should be taken into account.
\nThe obtained results of plastometric examinations indicate that at a temperature below 900°C, the discussed alloys undergo a strong hardening. Deformation at a higher temperature affects a decrease of the flow stress value (Figure 10). A tendency to increase the hardening with the increasing Al content was found in the plastometric tests. The highest σp values among the studied alloys are exhibited by the Fe-38Al alloy.
\nInfluence of the deformation temperature on maximum flow stress of the studied alloys (deformation rate 1 s−1).
Analysis of the shape of the flow curves and evaluation of the structure of the studied alloys indicated that the prevailing rebuilding mechanism of the defected structure changes depends on the Al content. In alloys containing 28 at.% Al, a phenomenon of grain defragmentation is observed in the microstructure (Figure 11). Inside the primary grains, new grains nucleate. In the substructure, climb of dislocation, polygonization, and subgrain coalescence prevail phenomena characteristics for dynamic recovery process (Figure 12). In alloy with a higher Al content, prevalence of the wide-angle migration process of the grain boundaries and formation of new grains and phenomena accompanying the process of stricture rebuilding in the result of dynamic recrystallization were observed (Figures 11 and 13).
\nMicrostructures of the alloys after deformation with a rate of 0.1 s−1 at T = 1000°C.
Substructure of the Fe-28Al alloy after deformation with a rate of 0.1 s−1 at T = 1000°C: (a) subgrain structure and (b) dislocation rearrangement-polygonization effect.
After plastometric studies, rolling tests under laboratory conditions were carried out. Ingots of Fe-28Al, Fe-28Al-5Cr, and Fe-38Al alloys having dimensions of approx. 160 × 30 × 20 mm (Figure 2) after homogenizing annealing constituted charge materials. Hot rolling was carried out on a two-high reversed rolling mill with roller diameter of 65 mm at VSB-TU Ostrava. The samples were heated to a temperature of 1150°C and then rolled in three roll passes. The following percentage reductions were applied: 15, 15, and 15%. Rotational speed of the rollers was 80 rpm. After rolling, the samples were cooled in air. The process was carried out for ingots without covers and using covers made of ferritic steel (AISI 430) in order to protect the alloy surface from oxidation and cracking in the result of contact with cold rollers. In Figure 13, views of obtained profiles are collated. It was observed that in the case of binary alloys, it was necessary to use covers during hot rolling. A particularly evident net of deep cracks was observed after rolling without covers in the Fe-38Al alloy. In the case of the Fe-28Al-5Cr alloy, a qualitatively good surface was obtained even after rolling without covers (Figure 14).
\nSubstructure of the Fe-38Al alloy after deformation with a rate of 1 s−1 at T = 1000°C: (a) wide-angle boundaries migration and (b) subgrain structure with a diversified dislocation density.
Photographs of surfaces of the flats obtained after hot rolling.
For selected flats, a further rolling process was carried out using percentage reductions 15, 15, and 15% to a thickness of 6 mm, obtaining semifinished products (Figure 15) of satisfactory quality.
\nThen, tests of corrosion resistance in the “acid rain” environment – pH = 3.5 and 3% NaCl aqueous solution, for samples after homogenizing annealing and rolling was carried out. The scope of the tests included potentiostatic, galvanostatic, and potentiodynamic examinations as well as investigation of the condition of the sample surface after corrosion. It was proven that, in most cases, the tested alloys are characterized by a tendency for activation (depassivation) of the surface under the aforementioned conditions. The best corrosion resistance was exhibited by samples of the Fe-38Al alloy. For the samples of this alloy, the lowest values of current density for a potential both of E = Ekor + 300 mV and E = Ekor + 500 mV were recorded. A significant increase in the current density from the value of the corrosion current density to the value of the current density for the potential of E = Ekor + 300 mV was characterized here. Comparing the tests results for the samples with various degrees of deformation, one may see that a higher deformation degree under nonstationary conditions, or those closer to the actual corrosion conditions, does not cause an acceleration of the corrosion but, unlike under stationary conditions, a slowdown. For all studied alloys, the corrosion has a local character and leads to the formation of small point pits (Figure 16).
\nViews of the profiles after rolling with total reduction of ~70% to a thickness of 6 mm.
Surface of the Fe-38Al alloy (condition after rolling with a total reduction of ~70% to a thickness of 6 mm) after corrosion tests.
The studies carried out hitherto allowed for ascertaining that further technological tests should be carried out for the alloy with 38 at.% Al content. However, realization of tests for the alloy with such aluminum content with microadditions was planned at this stage. It was imposed, most of all, by the role of microadditions in the hardening process of grain boundaries.
\nRealizing the planned research program intended for obtaining semifinished products in the form of thin sheets, a sheet production process from the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy was applied, consisting of heat treatment and plastic working. A semifinished product with a thickness of ~2 mm (Figure 17) was obtained.
\nFlats made of the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy.
Successful results of the realized rolling tests induced realization of further planned goals, i.e., preparation of bars from the tested alloy by two techniques: rolling and hydrostatic extrusion. Execution of these tests was planned using metal covers.
\nRolling of ingots from the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy with initial diameters of Ø30 mm and Ø22 mm (Figure 2) was carried out on a three-high mill. Before the rolling, the ingots were heated for approx. 45 min; the heating temperature was higher by 30°C than the planned initial rolling temperature, i.e., 1250°C. The rolling was carried out without reheating. In the first step, rolling of the ingots to a diameter of Ø12 mm was planned. Figure 18shows cross sections of the produced bars. Considering the occurrence of an uncontrolled material flow, further reduction of the cross section was canceled. However, it should be emphasized that in spite of the technological difficulties, a homogeneous and fine-grained structure was obtained (Figure 19).
\nCross sections of the bars formed in the hot rolling process (uncontrolled material flow).
The hot hydrostatic extrusion process was carried out for an ingot of the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy, having a diameter of 30 mm after homogenization at a temperature of 1000°C. Cross sections of the prepared bars are shown in Figure 20.
\nMicrostructure of the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy after the hot rolling process.
Cross sections of the bars formed in the hot hydrostatic extrusion process.
An effective structure refinement was obtained after the hydrostatic extrusion process. Figure 21 presents the alloy microstructure after the homogenization process and after the extrusion process.
\nMicrostructure of the Fe-38Al-0.2Mo-0.05Zr-0.1C-0.02B alloy: (a) after casting and heat treatment and (b–c) after the hot hydrostatic extrusion process (diameter 2 mm).
The tests carried out proved that melting of the studied alloys in induction vacuum furnaces is technically possible while maintaining the given process parameters. In the results of the application of the charge in the form of very pure components, melting and single refinement remelting, alloys with an assumed chemical composition, and a very low total content of gaseous impurities of the order of several ppm are obtained. It was found that the produced alloys are characterized by a very low castability and a high casting shrinkage (from 3.30 to 3.40%), leading to a coarse-grained primary structure and occurrence of shrink-type defects being deposited in the ingots.
\nIn the process of heat treatment, during cooling, Fe3Al phase forms in the studied alloys. According to the phase equilibrium system, the Fe3Al phase may form during slow cooling at a temperature from approx. 500°C (for Fe-28Al) and from approx. 300°C (for Fe-38Al). In order to eliminate the influence of the Fe3Al phase disclosed in the heat treatment process on the planned hot plastic working process, a heat treatment operation with oil cooling was used for the studied alloys to freeze the structure. Therefore, lack of influence of the aforementioned phase on the deformation process was confirmed.
\nFrom the point of view of the plastic working process, it was necessary to determine the characteristic temperatures in the studied alloys, particularly in relation to the changes in the ordering type and the temperature of transition into a disordered state, in which the plastic working process could be realized. Critical temperature of the change in the ordering type in the alloys with 28 at.% Al was identified, connected with a transition from the ordered state of B2 type into DO3 type at a temperature of approx. 550°C. For alloys containing 38 at.% Al, a temperature of transition from a disordered (A2) into an ordered (B2) solid solution was identified, and temperatures of transitions are connected with a rebuilding of the defect structure within the B2 phase.
\nThe obtained results of the plastometric studies indicated possibilities of technological forming of the studied alloys in the temperature range from 900 to 1200°C. At a lower temperature, strong hardening renders the deformation process more difficult. The technological hot plastic forming tests proved a possibility to obtain flat hot-rolled products consistent with the assumptions while maintaining the final rolling temperature not lower than 950°C, using metal covers. A proper method for production of bars consistent with the assumptions is the high-temperature hydrostatic extrusion process. A product obtained by this method warrants meeting the dimensional requirements, which has not been obtainable by rolling. In the case of both technologies applied, manufacturing of products in the form of bars requires an additional operation for jacket removal.
\nPotentially, the use of the developed flat products in heating systems of heat exchangers as substitutes for stainless steels used hitherto may be planned. Moreover, application of the developed products in the form of bars as elements of operational systems of motor vehicles may be envisaged, including particularly the use for roller axles of the supercharging pressure system of turbo.
\nDue to the reduced size, cost and low power consumption as well as very high precision, MEMS applications have extended from mere pressure and temperature sensors to vast array of applications viz., Aerospace, Automobile, Biotechnology, Consumer products, Defense and the most important and pertinent Telecommunications [1]. Hence RF MEMS devices have the advantage of increased functionality, substantial performance improvements, high agility, modularity and reconfigurability [2]. These devices are applicable to high performance communication systems such as satellite communication and m applications [3].
\nRF MEMS switches are the first and foremost MEMS devices designed for RF technology. RF MEMS switches compared to their semiconductor counterparts such as FET and PIN diodes show far superior performance. The current–voltage non-linearity that is the bane of semiconductor devices is non-existent in the case of RF MEMS switches. The power consumed by these switches is far less since most of the switches using electrostatic and piezoelectric actuation require negligible power requirements. They are also not plagued by issues of harmonics and intermodulation of signals. They exhibit very low insertion loss in the range − 0.05 to −0.2 dB at a frequency of 40 GHz. They also possess very high isolation in the range of −40 dB at 40 GHz [4, 5]. The only drawback is that their switching speed is far inferior compared to their semiconductor counterparts. However, there are several high performance communication circuits such as in defense and satellite systems where speed may not be the criteria whereas low power consumption and high RF performance would be the key features required. Due to these features they improve the overall performance of the systems into which they are integrated. Hence, the focus of this work is on RF MEMS switches which are a superior alternative to existing semiconductor switches.
\nMEMS devices are fabricated by the use of special techniques called micromachining. Micro fabrication or micromachining or micro manufacturing is the use of a set of manufacturing tools based on thin and thick film fabrication techniques commonly used in the electronics industry. It is also a technology for creating small three dimensional structures with dimensions ranging from sub centimeters to sub micrometers. A vast majority of MEMS structures are fabricated using bulk micromachining process. This involves etching of bulk wafer leading to three dimensional structures such as beams, cantilevers and cavities. These processes can be realized on substrates such as Silicon, Glass and Gallium Arsenide etc. The thickness of the structures can range from a few micrometers to 200 mm. The resulting dimensions of microstructures are much larger compared to surface micromachining process. Surface micromachining is a process based on building up of material layers and then selectively retaining or etching by continued processing. The bulk of the substrate remains untouched. LIGA processes combine IC lithography and electroplating and molding to obtain depth. Patterns are created in a substrate and then electroplated to create 3D molds. These molds can be used as the final product, or various materials can be injected into them. This process has two advantages. Materials other than Silicon can be used e.g. metal, plastic and devices with very high aspect ratios can be built [6].
\nThis chapter provides the complete details of the unit step processes used for the fabrication and packaging of RF MEMS switches. The focus is on fabrication of low actuation voltage RF MEMS switches [7, 8, 9, 10]. There are several challenges involved in the fabrication of MEMS switches such as, structural deformation, residual stress, non-release of structural layer to name a few. These challenges are overcome and addressed throughout the fabrication process by optimization of several unit processes. The unit processes used is discussed in each section of this chapter.
\nSurface micromachining process is used for fabricating the switches. In the present work, fabrication costs were brought down by
low resistivity Silicon wafers as substrate
Use of only four masks for fabrication [11]
The sections below give the detailed description of the fabrication steps followed for successful fabrication of RF MEMS shunt switches.
\nThe test wafers used in this work is P-type {100} low resistivity 4″ wafers with resistance ranging from 1 to 100 Ω. Using low resistivity wafers to fabricate RF MEMS switches has the advantage that integration with CMOS circuits is easier. However, use of low resistivity Silicon wafer leads to higher insertion loss due to inherent parasitics.
\nThe following are the process steps used for fabrication:
Cleaning of test wafer: Using RCA-1 and RCA-2 processes.
Oxidation of the test wafer: Using wet oxide process
CPW metal layer patterning: Using sputtering and lithography steps
Dielectric deposition and layer patterning: Using PECVD for Silicon Nitride depostion followed by lithography steps.
Sacrificial layer deposition and patterning: Using Photoresists and lithography steps
Top layer deposition and patterning: Using sputtering and lithography steps.
Top layer release: Using Critical point dryer.
\nFigure 1 gives pictorial representation of the process steps followed for fabrication of the RF MEMS shunt switches.
\nSteps involved in fabrication of capacitive shunt switches.
The cleaning of the Silicon wafer is the first process employed to removing any organic residue or films on the Silicon wafers. The cleaning process is performed in two parts [12]. The first part of the cleaning process is the famous RCA-1 named after the laboratory at which it was developed. In this process five parts of water is mixed with one part of Ammonium Hydroxide (NH4OH) and one part of Hydrogen Peroxide (H2O2). This mixture is then heated to 75°C on a hot plate. Once the solution bubbles vigorously the Silicon wafer is soaked in this solution for 15 minutes. The wafer is then dipped in a solution made of one part of Hydrofluoric acid (HF) and 50 parts of water for 30 seconds. This solution serves the purpose of etching out the thin oxide layer developed on the wafer. The wafer is again washed with DI water. The next step also called RCA-2 involves the use of Hydrochloric (HCl) acid, Hydrogen Peroxide (H2O2) and DI water in the ratio of 1:1:6. This solution is then heated to a temperature of 75°C for 15 minutes after which the Silicon wafer is placed in this solution. RCA-2 completely removes the traced of ionic contaminants from the wafer surface.
\nThe oxidation of Silicon wafer leads to the formation of a layer of native oxide i.e., Silicon Dioxide on the wafer surface. It is seen that only Silicon material has the ability to form a native oxide which has led to its wide usage in the IC industry. This layer serves a number of purposes. It acts as a surface passivation layer by protecting the surface from moisture and other atmospheric contaminants.
\nThe main aim of using Silicon dioxide for RF MEMS switches is for the need for isolation and insulation from the low resistivity silicon wafer used as the substrate. By using Silicon Dioxide it is seen that the parasitics between the Co-Planar Waveguide (CPW) layer and the silicon substrate underneath are drastically reduced. This approach leads the application of silicon substrate for RF circuits and wireless communication systems [13, 14, 15, 16]. The formation of oxide layer in this work is through the wet oxidation process since the requirement is only for passivation.
\nThe wafer was placed in a Nano pyrogenic furnace as shown in Figure 2 to obtain a Silicon Dioxide layer of 1 μm thickness. The following steps were followed to oxidize the wafers. The time required for the Silicon Dioxide thickness of 1 μm was calculated to be approximately 4 hours, 30 minutes.
The furnace temperature is ramped to 500°C with Nitrogen gas flow at 5 liters/min. The furnace temperature is then raised to a temperature of 1100°C. This process of heating up takes 1–2 hours.
Once the set point temperature is reached, the wafers are put into a Quartz boat and loaded into the tube utilizing a furnace loader.
During the heating up process, pure oxygen and hydrogen flows through the water bubbler for 4 hrs and 30 minutes resulting in gas saturation with water vapor.
The wafers were then annealed using Nitrogen gas with the gas allowed to flow at 5 litre/min for 10 minutes.
The wafers are then cooled for ten minutes and checked for oxide thickness.
Details of oxidation furnace at CeNSe, IISc.
The thickness of the oxide layer was measured using an ellipsometer and was found to be around 1.063 μm.
\nThe proposed RF MEMS capacitive shunt switches have been integrated with a CPW line. The fabrication of CPW lines is easily integratable with the fabrication steps required for the RF MEMS switch, which justifies the choosing of CPW lines over microstrip lines. This section gives fabrication steps for the CPW layer formation on the Silicon wafer.
Sputtering of Gold layer: The sputtering of gold layer depends on various parameters such as temperature, target distance, deposition pressure and Argon flow rate [17]. TECPORT sputter coater is used for obtaining the Chrome/Gold layer as shown in Figure 3. The process parameters of the sputter coater were set at a base pressure of 5x10−6 Torr, deposition pressure of 6.5x10−3 Torr, target to substrate distance set at 7.5 cm, with the Argon flow rate at 250 Scc/m. A seed layer of 10 nm is sputtered using a DC power of 100 W, a pre-sputtering time of 600 seconds and a deposition time of 22 seconds. For Gold DC Power was set at 25 W with a pre sputtering time of 30 seconds followed by a deposition time of 220 seconds with the deposition rate at 5 0A/sec. This was followed by Chrome sputtering to form a layer of 15 nm thickness. This process step would ensure good adhesion of the anchors of the top Gold beam with the bottom layer.
Lithography for CPW layer: The first photolithography step is used to pattern the CPW lines. A positive Photoresist (PR) AZ5214E is spin coated at speed of 4000 rpm using the spin coater for 40 seconds. It is then soft baked at 110°C for 1 minute. The wafer is then loaded into the EVG Mask aligner for PR exposure as shown in Figure 4. The proximity of the mask aligner is set at 30 μm and the energy for UV rays is set at 15 mJ. The mask used for this layer is as shown in Figure 4. The wafer is then post baked at 110°C for 1 minute and flood exposed using 75 mJ. The wafer is then immersed in the developer MF 26 A for around 20–30 seconds. The wafer is then subjected to a hard bake at 110°C for 3 minutes. The wafer is then inspected under the microscope to ascertain that the PR has developed.
Gold/Chromium etch: The etching of Gold (Au)/Chromium (Cr) is achieved by Potassium Iodide and Iodine (KI/I2) solution in a ratio of KI: I2: H2O = 4 g: 1 g: 40 ml. At room temperature etch rate is approximately 1 μm/min for Chrome/Gold. For the Cr/Au/Cr thicknesses of 10 nm/100 nm/15 nm respectively the time is set to 10 to 20 sec for Cr etch, 60 to 120 sec for Au etch and 10 to 20 sec for Cr etch. Figures 5 and 6 represent the mask for patterning and the resulting CPW layer respectively.
TECPORT sputter coater.
EVG mask aligner at CeNSE, IISc.
Mask 1 for CPW layer patterning.
Optical microscope image.
The following process steps were followed for the deposition and patterning of dielectric Silicon Nitride (Si3N4) on the central signal line of the CPW layer.
Deposition of Si3N4: This layer provides the dc isolation between the signal line and the ground line when the switch is actuated to the down-state position. A thinner layer of Si3N4 will result in a higher capacitance in the downstate but would lead to pinhole problems which occur in thin dielectric layers. Also, the thin dielectric layer must be able to withstand the actuation voltage without breakdown.
Oxford Instruments Plasma technology Plasma Enhanced Chemical Vapor Deposition (PECVD) system is used for deposition of Si3N4 as shown in Figure 7. PECVD is a process by which thin films are deposited from the conversion of gaseous materials into solid state, due to a chemical reaction occurring in the presence of plasma. PECVD uses electrical energy to generate the plasma. Due to the presence of plasma, the gas mixture is transformed into highly reactive ions and molecules, which leads to low temperature requirements as compared to CVD processes. PECVD processes results in high quality films which have good adhesion, uniformity and good step coverage [18].
Silane (SiH4) is usually supplied along with an inert gas like Nitrogen, Argon or Helium. Silane reacts with Ammonia (NH3) to produce Si3N4 and a by-product Hydrogen. This reaction is as depicted by the chemical reaction as given below.\n
Lithography for Si3N4: The patterning of Si3N4 is achieved by first depositing a positive photoresist AZ4562 by placing it on a spin coater. The spin coater rotates at 4000 rpm for 40 sec. After soft baking at 110°C for 1 minute, the PR is exposed to UV rays through a mask aligner at proximity of 30 μm and energy of 110 mJ. The PR is then developed using the developer AZ 351B for 45–60 seconds. Next, the wafer is hard baked on an oven at 110°C for 3 minutes.
Etching of Si3N4: The etching of Si3N4 is performed using a dry etch process called Reactive Ion Etch (RIE). Reactive Ion etching is a process wherein the reactive species react with the material to be etched only when the surfaces of the material are activated by the collision of incident ions from the plasma. The etching characteristics like etch rate, etch profile, etch uniformity, etch selectivity can be controlled very precisely by selecting the right combination of recipes of chamber pressure, flow rate of gases, applied RF power and electrode bias. The etch rates are slow typically about 10 nm/ min up to 50 nm/min.
The RIE-F equipment used at CeNSe, IISc is as shown in Figure 8. For etching of Si3N4 the chamber pressure is set at 10 mTorr, RF power at 50 W with the main power at 2000 W. The flow rate of Sulfur Hexa Flouride (SF6) is set at 45 scc/m with the temperature at 5°C. For etching out 100 nm of Si3N4 the required time was 12 seconds. The mask used for the patterning of the Si3N4 layer is as shown in Figure 9.
Photoresist strip: This is followed by the wet etching of the photoresist by dipping the wafer in acetone for 5 minutes followed by immediate cleaning using Isopropyl Alchohol (IPA). This is to prevent the re-deposition of stripped photoresist on the substrate since Acetone has high vapor pressure. This is followed by cleaning with Ultrsonicate Acetone for 3 minutes. Figure 10 shows the patterned silicon nitride layer.
Oxford PECVD for Si3N4 deposition at CeNSE.
RIE F CeNSe, IISc.
Mask 2 for silicon nitride.
Optical microscope image of silicon nitride layer formed.
The sacrificial layer is the layer which will be etched out to release the top metal layer. The topography and planarity of the top membrane is defined by the sacrificial layer planarity. Several materials like metals, dielectrics and photoresists have been used as the sacrificial layer. The choice of the sacrificial layer is based on the processing steps that follow the deposition of this layer, the temperature range, the required planarity and profile of surface. Here, a positive Photoresist (PR) S1813 is used as the sacrificial layer. This PR has to be deposited with utmost accuracy in order to define the gap between the top electrode and bottom electrode of the RF MEMS switch. The complete process of sacrificial layer deposition and patterning can be explained by the following steps:
\nSacrificial layer Optimization: The PR S1813 is a positive photoresist which has excellent adhesion, excellent coating uniformity with effective broadband exposure. This PR is used for a wide variety of process flow requirements such as lift-off, dry etch, wet etch, the thickness of the PR to name a few. The plot in Figure 11 gives the resist thickness versus spin for the Shipley family of PRs. Thick PR layers can be achieved in one step, however they have the disadvantage of being non-uniform over the wafer surface. In order to achieve uniform and thick PR coating, the coating process is performed in three steps. In the first step, the spin coater is run at low speeds of 500 rpm for 30 sec. This low spin speed and reduced spin time will result in uniform coating of thick resist on the wafer. In the second step the speed is ramped upto 1000 rpm within a time of 30 sec. A solid film of the photoresist is formed with the complete evaporation of the solvent. This step decides the thickness and uniformity of the photoresist. The third step consists of the spin coater speed set at 2000 rpm for 40 sec. This last step ensures that any leftover solvent is completely evaporated. The complete cycle of spin coating is as shown in Figure 11. Using a Dektak optical profiler the thickness of this layer was confirmed to be 3 μm.
\nPR deposition using multiple step method.
Sacrificial layer patterning: The patterning of the sacrificial layer photoresist is processes by first depositing one more layer of positive PR S1813 on this layer. This was achieved by the spin coater speed set to 500 rpm for 30 seconds, followed by a ramp up of 1000 rpm for 30 sec and 200 rpm for 40 sec. After soft baking the PR is exposed to UV rays through a mask aligner at a proximity of 30 μm and energy of 75 mJ. The mask used for generating the pattern for this layer is as shown in Figure 12.
\nMask 3 for PR layer.
The PR is then developed using the developer AZ 351B for 30–60 seconds. Next, the wafer is hard baked on an oven at 90°C for 30 minutes. The PR layer thickness shrunk from 3 μm to 2.09 μm after development and baking.
\nThe top layer or beam formation defines the performance of the RF MEMS switch. The top layer designs were simulated using Coventorware™. These designs have been chosen due to their lower pull-in voltages. Gold is the choice for the top layer due to its favorable characteristics such as, its high conductivity, non-tarnishing property, high Young’s Modulus and compatibility with micromachining processes. The top metal layer deposition and patterning is described in the following sections.
Gold layer deposition: The deposition of this layer was carried out using the TECPORT sputtering equipment. It may be recalled that the bottom layer has the composition of Cr/Au/Cr. This composition would lead to excellent adhesion of the top layer anchors with the previously deposited Chrome layer. Several Iterations were carried out in order to sputter the top Gold layer without residual stress. Several parameters such as temperature, rate of deposition were optimized in order to arrive at top layers without buckling after release process.
Finally, with the optimized parameters setting temperature and rate of deposition a stress free top layer was arrived at. The stress free top layer is of critical importance for reduction in actuation voltage. The process parameters of the sputter coater were set at a base pressure of 5x10−6 Torr, deposition pressure of 6.5x10−3 Torr, target to substrate distance set at 7.5 cm, with the Argon flow rate at 250 sccm. The DC Power was set at 25 W with a pre sputtering time of 30 seconds followed by a deposition time of 1100 seconds with the deposition rate set at 50A/sec.
Gold layer patterning: The four switch designs chosen for the top Gold layer are shown as four respective masks in Figure 13. The lithography involved the use of AZ5412E positive PR. This was spin coated at 4000 rpm for 40 sec. The wafer was then soft baked aligner at a proximity of 10 μm and energy of 50 mJ The PR is then developed using the developer MF 26A with the wafer dipped in the developer of 20–140 sec. Next, the wafer is hard baked on an oven at 90°C for 30 minutes. For Gold etch, freshly made Potassium Iodide and Iodine (KI/I2) solution in a ratio of KI:I2:H2O = 4 g:1 g:40 ml is used. The unwanted Chrome deposition on the bottom layer is also etched out using a Chrome etchant for 5 to 10 seconds.
Four top layer designs for RF MEMS switch. (a) Fixed-fixed beam switch. (b) Fixed-fixed Flexure switch. (c) Fixed-Fixed Single Flexure switch. (d) Crab leg Flexure switch.
The release of the top switch membrane is the most crucial step in the whole fabrication process. There are many methods to release the top layer without deformation and stiction. The first step in the top layer release is to etch the sacrificial layer. This could be achieved by using dry etching or wet etching. In wet etching, conventional liquid solvents are used to completely remove the sacrificial layer followed by drying. The drying could be through the process of air drying or through critical point drying.
\nCritical Point Drying (CPD) was found to be the best method for MEMS devices [19]. In this work the wet etch was followed by CPD to release the top layer. PR layer first stripped by using Piranha solution. The Piranha solution is prepared by mixing Sulfuric Acid and Hydrogen Peroxide in the ratio of 3:1. This is an extremely strong oxidizing agent which removes organic residues and especially PRs from the substrate.
\nCritical point drying.
\nThere was the requirement of a drying technique wherein surface tension could be reduced to zero and a continuity of state of the liquid could be obtained. It was found that if the temperature of the liquefied gas is increased the resulting pattern of the meniscus is flat indicating a reduction in surface tension. This results a very low surface area of the liquid which in turns leads to the evaporation of the liquid. This is called the critical point of the liquid. The critical phenomena can be utilized as a drying technique as it achieves a phase change from liquid to dry gas without the effects of surface tension and is therefore suitable for delicate biological specimens. MEMS devices. Of all the gases that were tested for the critical point, Carbon Dioxide (CO2) remains the most common medium for the CPD procedure and is termed the ‘Transitional Fluid’. However, CO2 is not miscible with water and therefore water has to be replaced in the specimen with another fluid which is miscible with CO2, this is termed the ‘Intermediate Fluid’. IPA is solvable in CO2 and hence most of the MEMS devices are place in this liquid for CPD process.
\nThe critical point dryer used in this work was the Tousimis Samdri® line of Supercritical Point Drying machine as shown in Figure 14. The wafer after the Piranha dip was placed with great care in a petri dish containing IPA. This was then carefully transferred to the CPD equipment. Once the release cycle was finished, the Switches were inspected under a microscope and then using Scanning Electron Microscope (SEM) and were found to be free of residual stress on the top beam. Also, the gap between the top membrane and the bottom electrode was clearly visible without any PR residues.
\nTousimis Samdri critical point dryer at CeNSE, IISc, Bangalore.
The main objectives of packaging of MEMS devices are to protect the actual functioning of the device from external environmental influences like chemicals, temperature, electromagnetic influences. The packaging forms a foundation on which the actual device is mounted thus giving much needed mechanical support. Packaging also helps in routing of interconnections of the chip with the outside world.
\nThe most critical factor for the successful commercialization of micro level devices is packaging. With the maturity gained in IC (integrated circuits) fabrication over the past many years, the packaging of ICs also has gained great maturity and sophistication. The same cannot be said about MEMS packaging. Although some of the advancements of IC packaging can be applied to meet the requirements of MEMS devices, some specialized techniques are required for MEMS packaging. Packaging of MEMS devices is much more complex and expensive than conventional IC packaging. This is because MEMS devices usually consist of three dimensional structures with free movement. This leads to the requirement of encapsulated cavities. Microsystem packaging also involves, bonding, interconnecting, and assembly of micro scale component to form a microsystem product. Packaging is the last and crucial step in the lifecycle of MEMS devices and may cost anywhere between 20–90% of the total device cost. Important functions of packaging are listed below:
Mechanical reinforcement and ruggedness
Environment invulnerability against temperature, electromagnetic aberrations, chemical reactions
Interfacing with outside world
Hermetic sealing
Assimilation of multiple chips to form a multifunctional system
In the case of MEMS devices the requirement of hermetic sealing may vary from device to device since some of the MEMS devices need an exposure to the environment in which they work and some other devices do not. It is also necessary to note that the packaging needs are special and case specific due to the micro mechanical structures. MEMS packaging involves key design and packaging considerations such as wafer thickness, wafer dicing, thermal issues, stress effects, isolation, protective coatings and hermetic sealing.
\nThe packaging for RF MEMS devices has to meet more stringent specifications due to the high frequency range of interest. Also, the demand is for high performance, low cost strategies which is usually a challenge. Furthermore, apart from the general MEMS packaging issues, the packaging of RF-MEMS devices has the following concerns.
Hermiticity of the packages should be ensured to provide high reliability RF MEMS devices since their operation depends on the ambient conditions under which they perform.
Interconnects, package substrates and passivation layers through the package to the outside world should offer low loss and low intermodulation.
Footprint of the total packaged device must be small, keeping with the requirement of miniaturization and high component densities especially for satellite and wireless communication systems.
The packaging of RF MEMS devices can be classified into two broad categories, one, wafer level packaging and the other, die level packaging. This work focuses on die level packaging hence the following paragraphs will focus on this.
\nThis is a type of packaging used for low volume requirements. Die level packaging is also called 1-level of packaging. The 1-level package usually consists of a pre-fabricated metal can/ceramic/plastic package with leads for connecting to the outside circuits or systems. These packages come with the base as well as the lid. For both ceramic as well as metal packages the cavity formation in the base of the package is an established method. The MEMS chip is attached to the base package using low temperature solder based epoxies and baked for removal of gaseous by products of the solder or epoxy. The next step involves the placement of the top cover over the base package in a vacuum or nitrogen atmosphere. Next, hermetic sealing is done along the package rim which is performed using localized heating.
\nThis method of packaging is expensive and is suitable for telecommunication base stations, satellites and defense systems but not for high volume applications like mobile phone handsets. Furthermore, the additional costs are mainly due to the great care with which the MEMS chips are to be handled after their release. Furthermore, standard scribing procedures cannot be used for dicing the wafer into chips since there is a high possibility of introduction of contaminants on wafer surface. These contaminants cannot be removed by mere cleaning. This cleaning will furthermore require a critical point drying for every chip which would further escalate the costs. A generic 1-level packaging is as shown in Figure 15.
\nSimplified one level RF MEMS packaging flow.
In this thesis the focus is on die level packaging using available surface mount style RF packages. However, the whole packaging process is performed under low temperature in order to free the MEMS structures of thermally induced stress which otherwise would affect the performance of the switch. The details of the packaging process starting from the design of RF feed throughs on the Alumina substrates to the die attachment, wire bonding and hermetic sealing are discussed in details in the following sections.
\nThe packaging of RF MEMS switches involves the following steps:
Dicing of wafer
Design of RF feed throughs on Alumina substrate
Attachment of the base package to Alumina substrate
Die bonding to package base
Wire bonding
Hermetic sealing
Wafer dicing is the process by which the individual unit of dies are separated from the wafer. This process may be carried out by using mechanical sawing, scribing, breaking or laser cutting. Of the several issues and challenges of RF MEMS packaging, dicing is one of the foremost challenges. In the case of ICs, the resultant contaminants or debris due to the dicing process, on the surface of the die can be easily removed by a post-dicing cleaning process, however, in the case of MEMS devices the fragile mechanical structures on the die may get damaged by these contaminants. Dicing methods such as mechanical sawing, scribing and breaking lead to debris from the dicing process which may scatter on to the die leading to buckling or breaking of the delicate MEMS structures. Therefore, the choice of the dicing process is of utmost importance in the case of RF MEMS devices.
\nIn order to obtain least residues from the dicing process, Chicago Laser System (CLS 960) Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser has been employed. This is shown in Figure 16. Nd:YAG
Chicago laser system (CLS 960) laser dicer.
The wafer to be diced was mounted on the dicing platform with the alignment set. The wafer is then diced into unit chips or dies with high precision. The unit dies obtained were observed under a microscope. It was visually confirmed that the RF MEMS switches were undamaged. The samples of diced chip are as shown in Figure 17.
\nDiced chips as seen under a microscope.
There are several choices of substrates for packaging like Quartz, Silicon, Aluminum nitride (AlN) and Alumina (Al2O3) to name a few. Ceramic substrates such as Aluminum Nitride and Alumina are most commonly used packaging materials for MEMS. Alumina is the primary choice because it combines economic, physical and electrical advantages [20]. Also, Alumina is readily available in sizes that range from tiny chips to large ceramics in thicknesses from 0.25 mm to 1.5 mm and in a variety of shapes and designs. The finished substrate can be drilled or cut with diamond tools and lasers.
\nSome of the key properties of Alumina are as given below:
Good thermal conductivity
High strength and stiffness
Resistance to strong acid and alkali attack at high temperatures
Excellent size and shape capability
Excellent dielectric properties from DC to GHz frequencies
compatibility with thick film resistors and dielectrics
Excellent adhesion with thick film conductors
Having chosen Alumina as the substrate material, the RF feedthroughs on the Alumina substrate had to be designed. The generic CPW line is as shown in Figure 18. The design of the CPW lines on the Alumina substrate was based on many parameters such as trace (S) and ground line (G) lengths, permittivity of Alumina (€r), material properties of conductor and the operating frequency. The designed layout for CPW lines on the Alumina substrate is as shown in Figure 19.
\nSchematic of CPW line.
CPW layout on alumina substrate. (1) Front view. (2) Back view.
Silver Palladium paste (7474 Ag/Pd) is used to form the CPW conductors on the Alumina substrate. This paste is chosen for its excellent solderability and excellent aged adhesion on substrates like Alumina and it’s comparatively low cost. The three steps involved in the formation of CPW lines on the Alumina substrate is as given below.
Scribing
Screen-Making
Printing, Drying and Firing
Scribing: Scribing is basically designing on the substrate using laser. The blank substrate is first divided into a number of regions by scribing. The laser used in this process is a combination of Nitrogen, Carbon Dioxide (CO2) and helium gases. At higher temperatures, the valence electrons combine to produce laser light.
The advantages of laser scribing are
High edging steepness
Small edge roughness
No micro cracks
Small thermal influence by optimized uv treatment
Contact free material processing
High precision and positional accuracy.
After the scribing process the plates are subjected to the de-burring process. De-burring is done to remove the ceramic particles that accumulate on the surface due to laser penetration. De-burring is done using another ceramic plate. The plates are cleaned in de-ionized water and then dried in an oven at 120°C.
Screen-Making: This is the preliminary process for printing. Here, the stainless steel mesh is first stretched with hydraulic force. The frames are then attached to the mesh. The chromo difloro film, is first stuck on to the wet screen and dried in the oven after which they are exposed to UV light with the respective photo film layer. The film is developed using water. After screen making process is over, printing is performed on the Alumina substrate.
These are the following precautions to be observed in screening:
The screen should be free of foreign particles.
The screen tension should be within the specification of workmanship.
Printing: In this process, the conductors are printed on the substrate. The conductor paste is (7474 –Palladium Silver) is screen printed. It is then dried at 150o C for 15–20 minutes in order to remove the solvents and then fired at 850o C in a fast firing furnace. At this temperature sintering takes place with a dwell time of 10 min and then ramp down takes place after which the paste starts behaving like a conductor. At the end of this process CPW lines on the Alumina substrate were formed.
Surface mount packages are used for packaging the diced chips. The current packaging methodology proposes the use of surface mounted plastic packages supplied by Elecsys technologies, USA. These packages are suitable for DC to 18 GHz range which is also the frequency of interest of the RF MEMS switches. These packages also have their leads to be co-planar compatible. These packages have a conductive metal base attached to an Alumina ceramic ring frame with a cup shaped lid with a b-stage epoxy preform for sealing. Figure 20 shows the layout details of the SMX series packgae used for packaging the RF MEMS shunt switches. Figure 20(a) shows the base of the package with leads made of Copper and Gold. Figure 20(b)shows the top view of the base package showing the jutting leads.
\nLayout details of the SMX series package. (a) inside view (b) top view.
The attachment of Base Package to the substrate is achieved by using a non-conductive epoxy named 8700 K. This epoxy is a high thermal conductivity, low temperature curing, microelectronics grade adhesive. It is then cured at 150°C for 2 hours. In order to connect the base package pins to the CPW conductor lines, a conductive epoxy 84–1 LMINB1 is used. This conductive epoxy used, is a high purity silver filled die attach adhesive ideal for application by automatic dispenser.
\nDie bonding or die attach is one of the most crucial steps in the packaging process especially in the case of MEMS devices. This requires careful handling of the diced MEMS chip/die since the die contains fragile mechanical structures. The dies have to be picked from the wafer either using manual methods or by automatized grippers. They have to be then placed on the base package cavity. The choice of die bonding process depends upon package sealing strategy, operating conditions and environmental and reliability requirements. The die attach can be achieved through the following bonding methods:
eutectic bonding
solder attach
epoxies, silver filled glass or polymide
Eutectic bonding uses a die bonding technique with an intermediate metal layer (Au/Al) which would result in a eutectic system. The most important feature of this type of bonding is that the eutectic temperature can be much lower than the melting temperature of individual elements. Solder Attach is the most preferred type of die bonding since the solder provides for good thermal conductivity. But this type of die bond would lead to large amount of heat generation during the attachment process which may lead to a large thermal stress on the mechanical structure in the case of a MEMS device.
\nEpoxy bonding is achieved by attaching die to the substrate by using epoxy glue. A drop of the epoxy is first dispensed on the substrate and the die is placed on it. In order to cure the epoxy the substrate or package may need to be heated. Most commonly used adhesives are polyimide, epoxy and silver filled glass. Epoxy bonding has the following important features such as low curing temperature, used for wide range of die sizes and can be reworked easily [21, 22]. Epoxy is used for die attachment in this work.
\nThe bare die is attached to the Base Package using non- conductive epoxy (H74 epoxy) and curing at room temperature of 25°C for 48 hours, keeping in mind the low temperature requirement for packaging in this work [23]. H74 epoxy is a thermally conductive epoxy designed for hybrid circuit assembly including die attach. The outstanding feature of this epoxy is that its curing process is fast even at low temperatures and also has a built in color change when the adhesive is cured. The adhesion of the dies is good and is confirmed by the non-destructive pull test (NDPT) and die shear test. It is passing the NDPT of greater than 16 grams and the die shear strength is greater than 6.55 kgs. The tested samples are as shown in the Figure 21.
\nDie shear test.
Wire bonding is a process by which interconnections are made between the die to the suitable location on the substrate or package. Wire bonding has the advantage of being low cost and flexible method of interconnection and is widely used to assemble majority of semiconductor packages. They also have the advantage that they can be used upto a frequency of 100 GHz if properly designed. Thus it is most suitable for RF MEMS switches.
\nThermosonic bond is formed by the combination of three parameters, ultrasonic, thermal and mechanical force. A thermosonic bonding machine uses a piezoelectric transducer which converts the electrical energy to a vibratory/ultrasonic motion. This is in turn converted to an amplified oscillatory motion using a velocity transformer. This oscillatory motion is delivered to a heated bonding tip. The thermal energy and the ultrasonic motion together create a softening of the lead wire and hence its deformation leading to a required contact area using low temperature and low force.
\nHence, in the proposed work thermosonic bonding has been chosen as the wire bonding technique due to its desirable properties of operation at low temperature and low force. A Kuilelle and Soffa thermosonic bonder is as shown in Figure 22 which is used for the wire bonding process. Ball and wedge bonds of Gold wire of 2 mil are used for wire bonding between bare die to the package base pads as shown in Figure 23(a). The NDPT test was also performed to ensure the strength of the wire bonds. The wire bonds were then covered with Epotek-301-2FL, a low stress adhesive especially used for glob top encapsulation over wire bonds. The curing for this adhesive was done at room temperature of 25°C for 72 hours. Figure 23(b) shows the adhesive covered wire bonds.
\nKulicke and Soffa thermosonic ball bonder.
Wire bonding. Hermetic sealing and soldering of SMA. (a) Gold wire bonding. (b) Gel dispensed on bonding Wedge.
Hermetic seals are airtight seals that prevent the invasion of oxygen, moisture, humidity, and any outside contaminant to enter a sealed environment. This kind of a sealing is of utmost importance in semiconductor devices and MEMS devices. In the case of MEMS devices this is a top priority since the performance of a MEMS sensor or actuator directly depends on the ambient conditions under which they operate.
\nThis work proposes the use of epoxy resins to seal the package lid to the base package. The top can/case is attached to the base package using a non-conductive epoxy H74 and cured at a room temperature of 25°C for 48 hours. The package with the top case attached is as shown in Figure 24. This method of curing was tested on samples in order to ascertain the complete curing. The specification sheets states that this epoxy requires a temperature of 150°C for 5 minutes and a temperature of 100°C for 20 minutes, for curing. However, curing at room temperature of 48 hours has led to the complete sealing. This was ascertained by performing a leak test on the packed RF MEMS switch. There are several types of leak tests to confirm the hermiticity of sealed packages. The Helium leak test was performed following a procedure as explained below. The vacuum method is the most sensitive leak detection technique. It requires that part of the package be placed under hard vacuum and the other part to be pressurized with helium. The side which is placed under vacuum is connected to the leak detector. If there is a leak, the helium that penetrates this side will be detected by the leak detector. The package under test passed the standard leak test with a test value of 5.0 x 10−8 std. atm.cc/sec.
\nLid sealed package.
In order to characterize the packaged MEMS switches Sub Miniature version A (SMA) connectors have been used. These connectors are designed to be used between DC and 18 GHz. The SMA’s chosen for this work with part number 1367–000-G91P-35 were procured from Delta Electronics Manufacturing Corporation. These connectors were soldered to the Alumina substrate using solder wire (Sn 63:Pb37) as shown in Figure 25.
\nPackage with SMA connectors.
The objective is to fabricate the simulated designs using low cost fabrication processes. Considering the ease of implementation and complications of the processes involved, it is focused to fabricate only the capacitive shunt switches using a low cost, low resistivity silicon wafer as the substrate and using only four masks for the whole process. Surface micromachining process was used to fabricate these switches. During the fabrication several challenges such as residual stress of top gold film, planarization of sacrificial layer, release of top beam were encountered and are overcome. Several rounds of optimization of unit process led to the successful fabrication of these switches. Packaging the fabricated switches, was done using low temperature methods to minimize the effect of packaging on the structure. The packaging of these switches used SMAs. The packaging involved several steps such as wafer dicing, conductor screen printing on substrate, die bonding, wire bonding and hermetic sealing. The switches are packaged and hermetically sealed by using a unique method of curing and sealing using room temperature methods, in order to avoid thermally induced stress in the fragile MEMS beams of the switches. The proposed packaging methodology has passed both the shear test and the hermeticity tests. By optimizing the fabrication process to cater to batch processing and also finding methods of CMOS compatible methods, this technology will help meet the ever growing demands of wired as well as wireless communication for low loss high performance RF switches.
\nMy sincere thanks to Dr. Premila Manohar, Professor and Head, Department of Electronics and Instrumentation, Ramaiah Institute of Technology who has encouraged me throughout the research project towards its completion and implementation. My sincere thanks to Dr. N. Sayanu Pamidhighantam, who introduced me to the beautiful world of MEMS. His discussions on the subject were highly enlightening and thought provoking. I deeply acknowledge his guidance and advice throughout this endeavor of mine. I owe a lot to Dr. K. Natarajan, former Professor and Head, Department of Telecommunication, for support during the project based on my work which led to fabrication of my devices which I thought was a distant dream.
\nI think my research would have been only in the simulations stage if not for the project funded by National Program on Smart Materials and Structure (NPMASS) ADA, INDIA. This opportunity changed my perspective of my research since I was able to fabricate devices hands on in one of the best laboratories of the world.
\nThe fabrication was carried out at the Centre for Nano Science and Engineering, IISc, Bangalore. I would like to express my deep sense of gratitude to Dr. K. N Bhat, Professor Emeritus, CeNSe, IISc, Bangalore for his time and valuable inputs during the fabrication of RF MEMS switches. With his repertoire of knowledge, he was able to guide us through difficult phases of fabrication. I also would like to thank the team at CeNSe for their co-operation throughout the project.
\nI owe a lot to my family who supported me in every way possible for the completion of my research work.
\nAll publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"7724",title:"Climate Issues in Asia and Africa - Examining Climate, Its Flux, the Consequences, and Society's Responses",subtitle:null,isOpenForSubmission:!0,hash:"c1bd1a5a4dba07b95a5ae5ef0ecf9f74",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7829",title:"Psychosis - Phenomenology, Psychopathology and Pathophysiology",subtitle:null,isOpenForSubmission:!0,hash:"a211068a33e47af974e3823f33feaa43",slug:null,bookSignature:"Dr. Kenjiro Fukao",coverURL:"https://cdn.intechopen.com/books/images_new/7829.jpg",editedByType:null,editors:[{id:"32519",title:"Dr.",name:"Kenjiro",surname:"Fukao",slug:"kenjiro-fukao",fullName:"Kenjiro Fukao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8950",title:"Birds - Challenges and Opportunities for Business, Conservation and Research",subtitle:null,isOpenForSubmission:!0,hash:"404a05af45e47e43871f4a0b1bedc6fd",slug:null,bookSignature:"Dr. Heimo Juhani Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/8950.jpg",editedByType:null,editors:[{id:"144330",title:"Dr.",name:"Heimo Juhani",surname:"Mikkola",slug:"heimo-juhani-mikkola",fullName:"Heimo Juhani Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9016",title:"Psychoneuroendocrinology",subtitle:null,isOpenForSubmission:!0,hash:"cb4ce09b8e853bef06c572df42933500",slug:null,bookSignature:"Dr. Ifigenia Kostoglou-Athanassiou",coverURL:"https://cdn.intechopen.com/books/images_new/9016.jpg",editedByType:null,editors:[{id:"307495",title:"Dr.",name:"Ifigenia",surname:"Kostoglou-Athanassiou",slug:"ifigenia-kostoglou-athanassiou",fullName:"Ifigenia Kostoglou-Athanassiou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9046",title:"Amyloidosis History and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"371a4ad514bb6d6703406741702a19d0",slug:null,bookSignature:"Dr. Jonathan Harrison",coverURL:"https://cdn.intechopen.com/books/images_new/9046.jpg",editedByType:null,editors:[{id:"340843",title:"Dr.",name:"Jonathan",surname:"Harrison",slug:"jonathan-harrison",fullName:"Jonathan Harrison"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:307},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"124",title:"Vehicle Engineering",slug:"vehicle-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:24,numberOfAuthorsAndEditors:654,numberOfWosCitations:700,numberOfCrossrefCitations:546,numberOfDimensionsCitations:1110,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"vehicle-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8840",title:"Intelligent and Efficient Transport Systems",subtitle:"Design, Modelling, Control and Simulation",isOpenForSubmission:!1,hash:"74ab35ec9e85ba37428df986d3a280ff",slug:"intelligent-and-efficient-transport-systems-design-modelling-control-and-simulation",bookSignature:"Truong Quang Dinh",coverURL:"https://cdn.intechopen.com/books/images_new/8840.jpg",editedByType:"Edited by",editors:[{id:"181747",title:"Dr.",name:"Truong Quang",middleName:null,surname:"Dinh",slug:"truong-quang-dinh",fullName:"Truong Quang Dinh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7377",title:"Diesel and Gasoline Engines",subtitle:null,isOpenForSubmission:!1,hash:"dab9fe312a28dd603ac4b21628070d59",slug:"diesel-and-gasoline-engines",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/7377.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7408",title:"Transportation Systems Analysis and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"1a950b01c0e05eda01c6d2364c7af3aa",slug:"transportation-systems-analysis-and-assessment",bookSignature:"Stefano De Luca, Roberta Di Pace and Boban Djordjevic",coverURL:"https://cdn.intechopen.com/books/images_new/7408.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"De Luca",slug:"stefano-de-luca",fullName:"Stefano De Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7198",title:"Propulsion Systems",subtitle:null,isOpenForSubmission:!1,hash:"fd56f1620b0b201a3de0cd3f7e04d15c",slug:"propulsion-systems",bookSignature:"Alessandro Serpi and Mario Porru",coverURL:"https://cdn.intechopen.com/books/images_new/7198.jpg",editedByType:"Edited by",editors:[{id:"217145",title:"Dr.",name:"Alessandro",middleName:null,surname:"Serpi",slug:"alessandro-serpi",fullName:"Alessandro Serpi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6767",title:"New Trends in Electrical Vehicle Powertrains",subtitle:null,isOpenForSubmission:!1,hash:"92949d7c2133b98bbddb02a9037c1dc7",slug:"new-trends-in-electrical-vehicle-powertrains",bookSignature:"Luis Romeral Martínez and Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/6767.jpg",editedByType:"Edited by",editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6065",title:"Modern Railway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"77a5fae5e9451d4e52e9f7cd8f39bdcb",slug:"modern-railway-engineering",bookSignature:"Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/6065.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5910",title:"Hybrid Electric Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"92354b49c166c70707d576852b82a9f1",slug:"hybrid-electric-vehicles",bookSignature:"Teresa Donateo",coverURL:"https://cdn.intechopen.com/books/images_new/5910.jpg",editedByType:"Edited by",editors:[{id:"139190",title:"Prof.",name:"Teresa",middleName:null,surname:"Donateo",slug:"teresa-donateo",fullName:"Teresa Donateo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5299",title:"Modeling and Simulation for Electric Vehicle Applications",subtitle:null,isOpenForSubmission:!1,hash:"42a1e112f18751417613cf1524500467",slug:"modeling-and-simulation-for-electric-vehicle-applications",bookSignature:"Mohamed Amine Fakhfakh",coverURL:"https://cdn.intechopen.com/books/images_new/5299.jpg",editedByType:"Edited by",editors:[{id:"35742",title:"Dr.",name:"Mohamed Amine",middleName:null,surname:"Fakhfakh",slug:"mohamed-amine-fakhfakh",fullName:"Mohamed Amine Fakhfakh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4789",title:"Railway Research",subtitle:"Selected Topics on Development, Safety and Technology",isOpenForSubmission:!1,hash:"2dc03e93f4357a3a62292097597576ad",slug:"railway-research-selected-topics-on-development-safety-and-technology",bookSignature:"Krzysztof Zboinski",coverURL:"https://cdn.intechopen.com/books/images_new/4789.jpg",editedByType:"Edited by",editors:[{id:"174599",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Zboinski",slug:"krzysztof-zboinski",fullName:"Krzysztof Zboinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2432",title:"Diesel Engine",subtitle:"Combustion, Emissions and Condition Monitoring",isOpenForSubmission:!1,hash:"cb6fadd8a5559c52b00c5ee471200cea",slug:"diesel-engine-combustion-emissions-and-condition-monitoring",bookSignature:"Saiful Bari",coverURL:"https://cdn.intechopen.com/books/images_new/2432.jpg",editedByType:"Edited by",editors:[{id:"128876",title:"Dr.",name:"Saiful",middleName:null,surname:"Bari",slug:"saiful-bari",fullName:"Saiful Bari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3512",title:"Advances in Internal Combustion Engines and Fuel Technologies",subtitle:null,isOpenForSubmission:!1,hash:"dad7da72b338235c14a67b3f2fa400a9",slug:"advances-in-internal-combustion-engines-and-fuel-technologies",bookSignature:"Hoon Kiat Ng",coverURL:"https://cdn.intechopen.com/books/images_new/3512.jpg",editedByType:"Edited by",editors:[{id:"150667",title:"Dr.",name:"Hoon Kiat",middleName:null,surname:"Ng",slug:"hoon-kiat-ng",fullName:"Hoon Kiat Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:24,mostCitedChapters:[{id:"13349",doi:"10.5772/14086",title:"High Mn TWIP Steels for Automotive Applications",slug:"high-mn-twip-steels-for-automotive-applications",totalDownloads:12196,totalCrossrefCites:46,totalDimensionsCites:118,book:{slug:"new-trends-and-developments-in-automotive-system-engineering",title:"New Trends and Developments in Automotive System Engineering",fullTitle:"New Trends and Developments in Automotive System Engineering"},signatures:"B. C. De Cooman, Kwang-geun Chin and Jinkyung Kim",authors:[{id:"16743",title:"Prof.",name:"Bruno Charles",middleName:null,surname:"De Cooman",slug:"bruno-charles-de-cooman",fullName:"Bruno Charles De Cooman"}]},{id:"13343",doi:"10.5772/13286",title:"Materials in Automotive Application, State of the Art and Prospects",slug:"materials-in-automotive-application-state-of-the-art-and-prospects",totalDownloads:64267,totalCrossrefCites:35,totalDimensionsCites:73,book:{slug:"new-trends-and-developments-in-automotive-industry",title:"New Trends and Developments in Automotive Industry",fullTitle:"New Trends and Developments in Automotive Industry"},signatures:"Elaheh Ghassemieh",authors:[{id:"13695",title:"Dr.",name:"Elaheh",middleName:null,surname:"Ghassemieh",slug:"elaheh-ghassemieh",fullName:"Elaheh Ghassemieh"}]},{id:"42787",doi:"10.5772/55492",title:"Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks",slug:"smart-vehicles-technologies-and-main-applications-in-vehicular-ad-hoc-networks",totalDownloads:5960,totalCrossrefCites:12,totalDimensionsCites:44,book:{slug:"vehicular-technologies-deployment-and-applications",title:"Vehicular Technologies",fullTitle:"Vehicular Technologies - Deployment and Applications"},signatures:"Anna Maria Vegni, Mauro Biagi and Roberto Cusani",authors:[{id:"19747",title:"Dr.",name:"Anna Maria",middleName:null,surname:"Vegni",slug:"anna-maria-vegni",fullName:"Anna Maria Vegni"},{id:"19749",title:"Prof.",name:"Roberto",middleName:null,surname:"Cusani",slug:"roberto-cusani",fullName:"Roberto Cusani"},{id:"159351",title:"Dr.",name:"Mauro",middleName:null,surname:"Biagi",slug:"mauro-biagi",fullName:"Mauro Biagi"}]}],mostDownloadedChaptersLast30Days:[{id:"19583",title:"DC/DC Converters for Electric Vehicles",slug:"dc-dc-converters-for-electric-vehicles",totalDownloads:21596,totalCrossrefCites:9,totalDimensionsCites:30,book:{slug:"electric-vehicles-modelling-and-simulations",title:"Electric Vehicles",fullTitle:"Electric Vehicles - Modelling and Simulations"},signatures:"Monzer Al Sakka, Joeri Van Mierlo and Hamid Gualous",authors:[{id:"27098",title:"Dr.",name:"Monzer",middleName:null,surname:"Al Sakka",slug:"monzer-al-sakka",fullName:"Monzer Al Sakka"},{id:"40637",title:"Prof.",name:"Joeri",middleName:null,surname:"Van Mierlo",slug:"joeri-van-mierlo",fullName:"Joeri Van Mierlo"},{id:"40638",title:"Prof.",name:"Hamid",middleName:null,surname:"Gualous",slug:"hamid-gualous",fullName:"Hamid Gualous"}]},{id:"52321",title:"Passenger Exposure to Magnetic Fields in Electric Vehicles",slug:"passenger-exposure-to-magnetic-fields-in-electric-vehicles",totalDownloads:2738,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"modeling-and-simulation-for-electric-vehicle-applications",title:"Modeling and Simulation for Electric Vehicle Applications",fullTitle:"Modeling and Simulation for Electric Vehicle Applications"},signatures:"Pablo Moreno‐Torres, Marcos Lafoz, Marcos Blanco and Jaime R.\nArribas",authors:[{id:"182907",title:"Dr.",name:"Pablo",middleName:null,surname:"Moreno-Torres",slug:"pablo-moreno-torres",fullName:"Pablo Moreno-Torres"}]},{id:"64509",title:"Options and Evaluations on Propulsion Systems of LNG Carriers",slug:"options-and-evaluations-on-propulsion-systems-of-lng-carriers",totalDownloads:2962,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"propulsion-systems",title:"Propulsion Systems",fullTitle:"Propulsion Systems"},signatures:"Tu Huan, Fan Hongjun, Lei Wei and Zhou Guoqiang",authors:[{id:"265951",title:"Mr.",name:"Huan",middleName:null,surname:"Tu",slug:"huan-tu",fullName:"Huan Tu"}]},{id:"56754",title:"Wheel-Rail Impact by a Wheel Flat",slug:"wheel-rail-impact-by-a-wheel-flat",totalDownloads:972,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Lin Jing",authors:[{id:"199850",title:"Dr.",name:"Lin",middleName:null,surname:"Jing",slug:"lin-jing",fullName:"Lin Jing"}]},{id:"60938",title:"Electric Vehicles Integrated with Renewable Energy Sources for Sustainable Mobility",slug:"electric-vehicles-integrated-with-renewable-energy-sources-for-sustainable-mobility",totalDownloads:2878,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"new-trends-in-electrical-vehicle-powertrains",title:"New Trends in Electrical Vehicle Powertrains",fullTitle:"New Trends in Electrical Vehicle Powertrains"},signatures:"Michela Longo, Federica Foiadelli and Wahiba Yaïci",authors:[{id:"238927",title:"Prof.",name:"Michela",middleName:null,surname:"Longo",slug:"michela-longo",fullName:"Michela Longo"},{id:"240528",title:"Dr.",name:"Wahiba",middleName:null,surname:"Yaïci",slug:"wahiba-yaici",fullName:"Wahiba Yaïci"},{id:"240529",title:"Prof.",name:"Federica",middleName:null,surname:"Foiadelli",slug:"federica-foiadelli",fullName:"Federica Foiadelli"}]},{id:"44437",title:"Combustion and Exhaust Emission Characteristics of Diesel Micro-Pilot Ignited Dual-Fuel Engine",slug:"combustion-and-exhaust-emission-characteristics-of-diesel-micro-pilot-ignited-dual-fuel-engine",totalDownloads:10157,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"diesel-engine-combustion-emissions-and-condition-monitoring",title:"Diesel Engine",fullTitle:"Diesel Engine - Combustion, Emissions and Condition Monitoring"},signatures:"Ulugbek Azimov, Eiji Tomita and Nobuyuki Kawahara",authors:[{id:"142408",title:"Dr.",name:"Ulugbek",middleName:null,surname:"Azimov",slug:"ulugbek-azimov",fullName:"Ulugbek Azimov"},{id:"142429",title:"Prof.",name:"Eiji",middleName:null,surname:"Tomita",slug:"eiji-tomita",fullName:"Eiji Tomita"},{id:"142431",title:"Prof.",name:"Nobuyuki",middleName:null,surname:"Kawahara",slug:"nobuyuki-kawahara",fullName:"Nobuyuki Kawahara"}]},{id:"61412",title:"Model Based System Design for Electric Vehicle Conversion",slug:"model-based-system-design-for-electric-vehicle-conversion",totalDownloads:1794,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-trends-in-electrical-vehicle-powertrains",title:"New Trends in Electrical Vehicle Powertrains",fullTitle:"New Trends in Electrical Vehicle Powertrains"},signatures:"Ananchai Ukaew",authors:[{id:"239213",title:"Dr.",name:"Ananchai",middleName:null,surname:"Ukaew",slug:"ananchai-ukaew",fullName:"Ananchai Ukaew"}]},{id:"69204",title:"Fuels of the Diesel-Gasoline Engines and Their Properties",slug:"fuels-of-the-diesel-gasoline-engines-and-their-properties",totalDownloads:558,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"diesel-and-gasoline-engines",title:"Diesel and Gasoline Engines",fullTitle:"Diesel and Gasoline Engines"},signatures:"Selçuk Sarıkoç",authors:[{id:"308175",title:"Dr.",name:"Selçuk",middleName:null,surname:"Sarıkoç",slug:"selcuk-sarikoc",fullName:"Selçuk Sarıkoç"}]},{id:"42787",title:"Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks",slug:"smart-vehicles-technologies-and-main-applications-in-vehicular-ad-hoc-networks",totalDownloads:5960,totalCrossrefCites:12,totalDimensionsCites:44,book:{slug:"vehicular-technologies-deployment-and-applications",title:"Vehicular Technologies",fullTitle:"Vehicular Technologies - Deployment and Applications"},signatures:"Anna Maria Vegni, Mauro Biagi and Roberto Cusani",authors:[{id:"19747",title:"Dr.",name:"Anna Maria",middleName:null,surname:"Vegni",slug:"anna-maria-vegni",fullName:"Anna Maria Vegni"},{id:"19749",title:"Prof.",name:"Roberto",middleName:null,surname:"Cusani",slug:"roberto-cusani",fullName:"Roberto Cusani"},{id:"159351",title:"Dr.",name:"Mauro",middleName:null,surname:"Biagi",slug:"mauro-biagi",fullName:"Mauro Biagi"}]},{id:"51389",title:"Simulation in the Loop of Electric Vehicles",slug:"simulation-in-the-loop-of-electric-vehicles",totalDownloads:2159,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"modeling-and-simulation-for-electric-vehicle-applications",title:"Modeling and Simulation for Electric Vehicle Applications",fullTitle:"Modeling and Simulation for Electric Vehicle Applications"},signatures:"Bogdan Ovidiu Varga, Dan Moldovanu, Florin Mariaşiu and Călin\nDoru Iclodean",authors:[{id:"182876",title:"Prof.",name:"Varga",middleName:null,surname:"Bogdan Ovidiu",slug:"varga-bogdan-ovidiu",fullName:"Varga Bogdan Ovidiu"},{id:"183632",title:"Ph.D.",name:"Moldovanu",middleName:null,surname:"Dan",slug:"moldovanu-dan",fullName:"Moldovanu Dan"},{id:"183633",title:"Prof.",name:"Mariașiu",middleName:null,surname:"Florin",slug:"mariasiu-florin",fullName:"Mariașiu Florin"},{id:"183634",title:"Dr.",name:"Iclodean",middleName:null,surname:"Călin Doru",slug:"iclodean-calin-doru",fullName:"Iclodean Călin Doru"}]}],onlineFirstChaptersFilter:{topicSlug:"vehicle-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/142961/ranieri-urbani",hash:"",query:{},params:{id:"142961",slug:"ranieri-urbani"},fullPath:"/profiles/142961/ranieri-urbani",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()