\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8873",leadTitle:null,fullTitle:"Optical Coherence Tomography and Its Non-medical Applications",title:"Optical Coherence Tomography and Its Non-medical Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"Optical coherence tomography (OCT) is a promising non-invasive non-contact 3D imaging technique that can be used to evaluate and inspect material surfaces, multilayer polymer films, fiber coils, and coatings. OCT can be used for the examination of cultural heritage objects and 3D imaging of microstructures. With subsurface 3D fingerprint imaging capability, OCT could be a valuable tool for enhancing security in biometric applications. OCT can also be used for the evaluation of fastener flushness for improving aerodynamic performance of high-speed aircraft. More and more OCT non-medical applications are emerging. In this book, we present some recent advancements in OCT technology and non-medical applications.",isbn:"978-1-78984-262-3",printIsbn:"978-1-78984-261-6",pdfIsbn:"978-1-83880-801-3",doi:"10.5772/intechopen.81767",price:119,priceEur:129,priceUsd:155,slug:"optical-coherence-tomography-and-its-non-medical-applications",numberOfPages:224,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"04048c4d925e4a7256014a26cf19c40c",bookSignature:"Michael R. Wang",publishedDate:"May 27th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8873.jpg",numberOfDownloads:7139,numberOfWosCitations:6,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:17,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 1st 2018",dateEndSecondStepPublish:"February 28th 2019",dateEndThirdStepPublish:"June 7th 2019",dateEndFourthStepPublish:"March 18th 2019",dateEndFifthStepPublish:"September 8th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!0,featuredMarkup:null,editors:[{id:"6356",title:"Dr.",name:"Michael",middleName:null,surname:"Wang",slug:"michael-wang",fullName:"Michael Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/6356/images/system/6356.jpg",biography:"Michael R. Wang is Professor of the Department of Electrical and Computer Engineering, University of Miami. He received his PhD degree in 1992 from the Department of Electrical Engineering, University of California, Irvine. His research is focused on integrated photonic devices, optical interconnects, holography, lithography, spectral imaging, and optical coherence tomography. He has developed optical coherence tomography systems to support various medical and industrial 3D imaging applications. Dr. Wang has been a principal investigator and/or project leader in many US government-sponsored projects. He has been an invited author and editor on lithography by IntechOpen. He has authored/coauthored more than 200 journal papers, proceedings, and conference presentations. He is a fellow of SPIE, a senior member of OSA, and a member of ARVO.",institutionString:"University of Miami",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Miami",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"228",title:"Optics and Lasers",slug:"optics-and-lasers"}],chapters:[{id:"68161",title:"Dynamic Range Enhancement in Swept-Source Optical Coherence Tomography",doi:"10.5772/intechopen.88084",slug:"dynamic-range-enhancement-in-swept-source-optical-coherence-tomography",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The imaging penetration depth of an optical coherence tomography (OCT) system is limited by the dynamic range of the system. In a common case that signals exceed the dynamic range of a Fourier domain OCT (FDOCT) system, saturation artifacts degrade the image quality. In this chapter, we demonstrate some new cost-effective techniques to improve the dynamic range of a swept-source OCT (SSOCT) system. For example, one method is based on a dual-channel detection technique to enhance the dynamic range by reconstructing the saturated signals due to strong reflection of the sample surface. Another method utilizes a tunable high-pass filter to compensate the attenuation of light signal in deep tissue. It was demonstrated that these techniques can improve the dynamic range of an SSOCT system by more than 10 dB with a low bit-depth analog-to-digital converter.",signatures:"Jun Zhang, Xinyu Li and Shanshan Liang",downloadPdfUrl:"/chapter/pdf-download/68161",previewPdfUrl:"/chapter/pdf-preview/68161",authors:[{id:"293458",title:"Prof.",name:"Jun",surname:"Zhang",slug:"jun-zhang",fullName:"Jun Zhang"},{id:"304957",title:"Dr.",name:"Xinyu",surname:"Li",slug:"xinyu-li",fullName:"Xinyu Li"},{id:"304958",title:"Dr.",name:"Shanshan",surname:"Liang",slug:"shanshan-liang",fullName:"Shanshan Liang"}],corrections:null},{id:"72186",title:"Multi-Frame Superresolution Optical Coherence Tomography for High Lateral Resolution 3D Imaging",doi:"10.5772/intechopen.92312",slug:"multi-frame-superresolution-optical-coherence-tomography-for-high-lateral-resolution-3d-imaging",totalDownloads:742,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We report that high lateral resolution and high image quality optical coherence tomography (OCT) imaging can be achieved by the multi-frame superresolution technique. With serial sets of slightly lateral shifted low resolution C-scans, our multi-frame superresolution processing of these special sets at each depth layer can reconstruct a higher resolution and quality lateral image. Layer by layer repeat processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution with a subsequent deconvolution processing could break the diffraction limit as well as suppress the background noise. In experiment, about three times lateral resolution improvement has been verified from 24.8 to 7.81 μm and from 7.81 to 2.19 μm with the sample arm optics of 0.015 and 0.05 numerical apertures, respectively, as well as the image quality doubling in dB unit. The improved lateral resolution for 3D imaging of microstructures has been observed. We also demonstrated that the improved lateral resolution and image quality could further help various machine vision algorithms sensitive to resolution and noise. In combination with our previous work, an ultra-wide field-of-view and high resolution OCT has been implemented for static non-medical applications. For in vivo 3D OCT imaging, high quality 3D subsurface live fingerprint images have been obtained within a short scan time, showing beautiful and clear distribution of eccrine sweat glands and internal fingerprint layer, overcoming traditional 2D fingerprint reader and benefiting important biometric security applications.",signatures:"Kai Shen, Hui Lu, Sarfaraz Baig and Michael R. Wang",downloadPdfUrl:"/chapter/pdf-download/72186",previewPdfUrl:"/chapter/pdf-preview/72186",authors:[{id:"6356",title:"Dr.",name:"Michael",surname:"Wang",slug:"michael-wang",fullName:"Michael Wang"},{id:"283389",title:"Ph.D.",name:"Kai",surname:"Shen",slug:"kai-shen",fullName:"Kai Shen"},{id:"283446",title:"Dr.",name:"Hui",surname:"Lu",slug:"hui-lu",fullName:"Hui Lu"},{id:"283447",title:"Dr.",name:"Sarfaraz",surname:"Baig",slug:"sarfaraz-baig",fullName:"Sarfaraz Baig"}],corrections:null},{id:"68213",title:"OCT in Applications That Involve the Measurement of Large Dimensions",doi:"10.5772/intechopen.88186",slug:"oct-in-applications-that-involve-the-measurement-of-large-dimensions",totalDownloads:649,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The application of optical coherence tomography (OCT) technique is not very common when measuring large dimensions is required. This type of measurements can be critical to achieve satisfactory results in the manufacturing process of precision parts. Components and structures ranging from submillimeter to several centimeters size can be found in many fields including automotive, aerospace, semiconductor, and data storage industries to name a few. In this chapter, an interferometric system based on the swept source optical coherence tomography (SS-OCT) technique, which has a wide measurement range and good axial resolution, is presented and its constituent parts are analyzed. The scheme includes a self-calibration stage based on fiber Bragg gratings (FBGs) that allows monitoring the spectral position of the light source in each scan, having the advantage of being a passive system that requires no additional electronic devices. Several applications of the system are described, including measurement of distances up to 17 cm, characterization of multilayer transparent and semitransparent structures, simultaneous determination of thickness of the wall, internal and external diameter of glass ampoules or similar containers, thickness measurements in opaque samples or where the refractive index is unknown, etc.",signatures:"Nélida A. Russo, Eneas N. Morel, Jorge R. Torga and Ricardo Duchowicz",downloadPdfUrl:"/chapter/pdf-download/68213",previewPdfUrl:"/chapter/pdf-preview/68213",authors:[{id:"297408",title:"Dr.",name:"Nelida",surname:"Russo",slug:"nelida-russo",fullName:"Nelida Russo"},{id:"297410",title:"Dr.",name:"Eneas",surname:"Morel",slug:"eneas-morel",fullName:"Eneas Morel"},{id:"297413",title:"Dr.",name:"Jorge",surname:"Torga",slug:"jorge-torga",fullName:"Jorge Torga"},{id:"297414",title:"Dr.",name:"Ricardo",surname:"Duchowicz",slug:"ricardo-duchowicz",fullName:"Ricardo Duchowicz"}],corrections:null},{id:"68072",title:"Low Cost Open-Source OCT Using Undergraduate Lab Components",doi:"10.5772/intechopen.88031",slug:"low-cost-open-source-oct-using-undergraduate-lab-components",totalDownloads:762,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Instrument cost is one of the factors limiting the adoption of optical coherence tomography (OCT) from a wider range of applications. We present a couple of OCT devices using optical components which are commonly found in undergraduate-level optics laboratories. These low-cost devices have lower signal-to-noise ratios (SNR) than top-of-the-line commercial offerings, yet can serve most of the needs of academic laboratories. A time-domain full-field (TD-FF-) OCT device has been assembled with Arduino control, which yields sub-4-μm axial and lateral resolutions. This device is useful where quick sample acquisition is not critical, but high resolution is paramount, for example with samples from material-science, or ex-vivo stabilized biological samples. Next, we discuss a spectral-domain (SD-) OCT device which delivers real-time video rate B-scans. This device is useful where real-time signal acquisition is desirable, for example with in-vivo biological samples. Cross-platform open-source software control for both these devices is also made available.",signatures:"Hari Nandakumar and Shailesh Srivastava",downloadPdfUrl:"/chapter/pdf-download/68072",previewPdfUrl:"/chapter/pdf-preview/68072",authors:[{id:"293593",title:"Mr.",name:"Hari",surname:"Nandakumar",slug:"hari-nandakumar",fullName:"Hari Nandakumar"},{id:"293601",title:"Dr.",name:"Shailesh",surname:"Srivastava",slug:"shailesh-srivastava",fullName:"Shailesh Srivastava"}],corrections:null},{id:"70478",title:"Optical Coherence Tomography for Polymer Film Evaluation",doi:"10.5772/intechopen.90445",slug:"optical-coherence-tomography-for-polymer-film-evaluation",totalDownloads:663,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Development of functional polymer films and film stacks has been under increasing demand to create new generations of novel, compact, light-weight optics. Optical coherence tomography (OCT) is capable of evaluating all the important optical properties of a film or film stack, including topology of surfaces or layer-to-layer interfaces, the refractive index and thickness, and polarization property. By engineering the scanning architecture of an OCT system, high-precision metrology of films of either flat or spherical geometry is achieved. In this chapter, the system design, metrology methodologies, and examples of OCT for film metrology are discussed to provide both the knowledge foundation and the engineering perspectives. The advanced film metrology capabilities offered by OCT play a key role in the manufacturing process maturity of newly developed films. Rapid advancement in the field of OCT is foreseen to drive the application toward in-line film metrology and facilitate the rapid growth of innovative films in the industry.",signatures:"Jianing Yao and Jannick P. Rolland",downloadPdfUrl:"/chapter/pdf-download/70478",previewPdfUrl:"/chapter/pdf-preview/70478",authors:[{id:"307465",title:"Dr.",name:"Jianing",surname:"Yao",slug:"jianing-yao",fullName:"Jianing Yao"},{id:"309133",title:"Prof.",name:"Jannick",surname:"Rolland",slug:"jannick-rolland",fullName:"Jannick Rolland"}],corrections:null},{id:"68363",title:"Fouling Monitoring in Membrane Filtration Systems",doi:"10.5772/intechopen.88464",slug:"fouling-monitoring-in-membrane-filtration-systems",totalDownloads:581,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Membrane filtration systems are employed in the water industry to produce drinking water and for advanced wastewater treatment. Fouling is considered the main problem in membrane filtration systems. Fouling occurs when the biomass deposited on the membrane surface leads to a membrane performance decline. Most of the available techniques for characterization of fouling involve the analysis of membrane samples after membrane autopsies. This approach provides information ex-situ destructively at the end of the filtration process. Optical coherence tomography (OCT) gained attention in the last years as noninvasive imaging technique, capable of acquiring scans in-situ and nondestructively. The online OCT monitoring enables visualizing and studying the biomass deposition over time under continuous operation. This approach allows to relate the impact of the fouling on the process. In the last years, the suitability of OCT as in-situ and nondestructive tool for the study of fouling in membrane filtration systems has been evaluated. The OCT has been employed to study the fouling in different membrane geometry and configuration for the treatment of seawater and wastewater. Nowadays, the OCT is employed to better understand the role of biomass structure on the filtration mechanisms.",signatures:"Luca Fortunato",downloadPdfUrl:"/chapter/pdf-download/68363",previewPdfUrl:"/chapter/pdf-preview/68363",authors:[{id:"293639",title:"Dr.",name:"Luca",surname:"Fortunato",slug:"luca-fortunato",fullName:"Luca Fortunato"}],corrections:null},{id:"69295",title:"Nondestructive Characterization of Drying Processes of Colloidal Droplets and Latex Coats Using Optical Coherence Tomography",doi:"10.5772/intechopen.89380",slug:"nondestructive-characterization-of-drying-processes-of-colloidal-droplets-and-latex-coats-using-opti",totalDownloads:603,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter, we review the applications of optical coherence tomography (OCT) on the nondestructive characterization of the drying processes of colloidal droplets and latex coatings. Employing time-lapse, high-speed imaging, OCT can be used to monitor the dynamic process of drying colloidal droplets. With the aid of high-scattering, micron-sized tracer particles, fluid flows have been captured; phase boundaries are also visible in liquid crystal droplets; and the speckle contrast analysis differentiates the dynamics of particles, showing the packing process and the coffee ring phenomenon. In a waterborne latex coat, time-lapse OCT imaging reveals spatial changes of microstructures, i.e., detachment of latex, cracks, and shear bands; with speckle contrast analysis, 1D and 2D particles’ packing process that is initiated from latex/air interface can also be monitored over time. OCT can serve as an experimental platform for fundamental studies of drying colloidal systems. In the future, OCT can also be employed as an in-line quality control tool of polymer coatings and paints for industrial applications.",signatures:"Yongyang Huang, Hao Huang, Zhiyu Jiang, Lanfang Li, Willie Lau, Mohamed El-Aasser, Hsin-Chiao Daniel Ou-Yang and Chao Zhou",downloadPdfUrl:"/chapter/pdf-download/69295",previewPdfUrl:"/chapter/pdf-preview/69295",authors:[{id:"296946",title:"Prof.",name:"Chao",surname:"Zhou",slug:"chao-zhou",fullName:"Chao Zhou"},{id:"310491",title:"Dr.",name:"Yongyang",surname:"Huang",slug:"yongyang-huang",fullName:"Yongyang Huang"},{id:"310492",title:"Dr.",name:"Hao",surname:"Huang",slug:"hao-huang",fullName:"Hao Huang"},{id:"310493",title:"Mr.",name:"Zhiyu",surname:"Jiang",slug:"zhiyu-jiang",fullName:"Zhiyu Jiang"},{id:"310494",title:"Dr.",name:"Lanfang",surname:"Li",slug:"lanfang-li",fullName:"Lanfang Li"},{id:"310495",title:"Dr.",name:"Willie",surname:"Lau",slug:"willie-lau",fullName:"Willie Lau"},{id:"310496",title:"Prof.",name:"Mohamed",surname:"El-Aasser",slug:"mohamed-el-aasser",fullName:"Mohamed El-Aasser"},{id:"310497",title:"Prof.",name:"H. Daniel",surname:"Ou-Yang",slug:"h.-daniel-ou-yang",fullName:"H. Daniel Ou-Yang"}],corrections:null},{id:"68201",title:"OCT for Examination of Cultural Heritage Objects",doi:"10.5772/intechopen.88215",slug:"oct-for-examination-of-cultural-heritage-objects",totalDownloads:670,totalCrossrefCites:5,totalDimensionsCites:10,hasAltmetrics:1,abstract:"Optical coherence tomography (OCT) was first time reported as a tool for examination of cultural heritage objects in 2004. It is mainly used for the examination of subsurface structure of easel paintings (such as varnishes and glazes) and has also been successfully used for inspection of other types of artworks, provided that they contain layers that are permeable to the probing light. This chapter discusses the last applications of OCT in this area with an emphasis on synergy with some other noninvasive techniques such as large-scale X-ray fluorescence (XRF) scanning and reflective Fourier transform infrared (FTIR) spectroscopy. After this part, there is a detailed description of the high-resolution OCT instrument developed by the authors specifically for the study of works of art. Next, two examples are given for the structural examination of works of art: in the former, the subsurface layers of an easel painting are presented, and in the latter, the painting on reverse of the glass is examined, when the inspection must be carried out through the glass. Finally, an application for the assessment of chemical varnish removal from an easel panel painting is discussed in details.",signatures:"Piotr Targowski, Magdalena Kowalska, Marcin Sylwestrzak and Magdalena Iwanicka",downloadPdfUrl:"/chapter/pdf-download/68201",previewPdfUrl:"/chapter/pdf-preview/68201",authors:[{id:"285270",title:"Prof.",name:"Piotr",surname:"Targowski",slug:"piotr-targowski",fullName:"Piotr Targowski"},{id:"285353",title:"Dr.",name:"Magdalena",surname:"Iwanicka",slug:"magdalena-iwanicka",fullName:"Magdalena Iwanicka"},{id:"307981",title:"Dr.",name:"Magdalena",surname:"Kowalska",slug:"magdalena-kowalska",fullName:"Magdalena Kowalska"},{id:"307982",title:"Dr.",name:"Marcin",surname:"Sylwestrzak",slug:"marcin-sylwestrzak",fullName:"Marcin Sylwestrzak"}],corrections:null},{id:"68190",title:"Quantitative Mapping of Strains and Young Modulus Based on Phase-Sensitive OCT",doi:"10.5772/intechopen.88068",slug:"quantitative-mapping-of-strains-and-young-modulus-based-on-phase-sensitive-oct",totalDownloads:697,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter we consider mapping of local strains and tissue elasticity in optical coherence tomography (OCT) based on analysis of phase-sensitive OCT scans. Conventional structural OCT scans correspond to spatially resolved mapping of the backscattering intensity of the probing optical beam. Deeper analysis of such sequentially acquired multiple OCT scans can be used to extract additional information about motion of scatterers in the examined region. Such detailed analysis of OCT scans has already resulted in creation of OCT-based visualization of blood microcirculation, which has been implemented in several commercially available devices, especially for ophthalmic applications. Another functional extension of OCT emerging in recent years is the OCT-based elastography, i.e., mapping of local strains and elastic properties in the imaged region. Here, we describe the main principles of local strain mapping in phase-sensitive OCT with a special focus on the recently proposed efficient vector method of estimation of interframe phase-variation gradients. The initially performed mapping of local strains is then used for realization of quantitative compressional elastography, i.e., mapping of the Young modulus and obtaining stress-strain dependences for the studied samples. The discussed principles are illustrated by simulated and experimental examples of elastographic OCT-based visualization. The presented elastographic principles are rather general and can be used in a wide area of biomedical and technical applications.",signatures:"Vladimir Y. Zaitsev, Lev A. Matveev, Alexander A. Sovetsky and Alexander L. Matveyev",downloadPdfUrl:"/chapter/pdf-download/68190",previewPdfUrl:"/chapter/pdf-preview/68190",authors:[{id:"294983",title:"Dr.",name:"Vladimir",surname:"Zaitsev",slug:"vladimir-zaitsev",fullName:"Vladimir Zaitsev"},{id:"307118",title:"Dr.",name:"Lev",surname:"Matveev",slug:"lev-matveev",fullName:"Lev Matveev"},{id:"307119",title:"Mr.",name:"Alexander",surname:"Sovetsky",slug:"alexander-sovetsky",fullName:"Alexander Sovetsky"},{id:"307120",title:"Dr.",name:"Alexander",surname:"Matveyev",slug:"alexander-matveyev",fullName:"Alexander Matveyev"}],corrections:null},{id:"70108",title:"OCT with a Visible Broadband Light Source Applied to High-Resolution Nondestructive Inspection for Semiconductor Optical Devices",doi:"10.5772/intechopen.90117",slug:"oct-with-a-visible-broadband-light-source-applied-to-high-resolution-nondestructive-inspection-for-s",totalDownloads:497,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Optical coherence tomography with a visible broadband light source (vis-OCT) was developed for high-resolution and nondestructive measurements of semiconductor optical devices. Although a near-infrared (NIR) light source should be used for medical OCT to obtain deep penetration of biological samples, a visible broadband light source is available as a low-coherence light source for industrial products. Vis-OCT provides higher axial resolution than NIR-OCT, because the axial resolution of an OCT image is proportional to the square of the center wavelength of the light source. We developed vis-OCT with an axial resolution of less than 1 μm in air and obtained cross-sectional profiles and images of ridge-type waveguides having heights and widths of several μm. Additionally, we performed cross-sectional measurements and imaging of a stacked semiconductor thin layer. The measured values were similar to those measured by scanning electron microscopy, and the effectiveness of vis-OCT for nondestructive inspection of semiconductor optical devices was demonstrated.",signatures:"Nobuhiko Ozaki, Kazumasa Ishida, Tsuyoshi Nishi, Hirotaka Ohsato, Eiichiro Watanabe, Naoki Ikeda and Yoshimasa Sugimoto",downloadPdfUrl:"/chapter/pdf-download/70108",previewPdfUrl:"/chapter/pdf-preview/70108",authors:[{id:"173222",title:"Dr.",name:"Nobuhiko",surname:"Ozaki",slug:"nobuhiko-ozaki",fullName:"Nobuhiko Ozaki"},{id:"312411",title:"Mr.",name:"Kazumasa",surname:"Ishida",slug:"kazumasa-ishida",fullName:"Kazumasa Ishida"},{id:"312412",title:"Mr.",name:"Tsuyoshi",surname:"Nishi",slug:"tsuyoshi-nishi",fullName:"Tsuyoshi Nishi"},{id:"312414",title:"Dr.",name:"Hirotaka",surname:"Ohsato",slug:"hirotaka-ohsato",fullName:"Hirotaka Ohsato"},{id:"312415",title:"Dr.",name:"Eiichiro",surname:"Watanabe",slug:"eiichiro-watanabe",fullName:"Eiichiro Watanabe"},{id:"312417",title:"Dr.",name:"Naoki",surname:"Ikeda",slug:"naoki-ikeda",fullName:"Naoki Ikeda"},{id:"312418",title:"Dr.",name:"Yoshimasa",surname:"Sugimoto",slug:"yoshimasa-sugimoto",fullName:"Yoshimasa Sugimoto"}],corrections:null},{id:"70723",title:"Optical Coherence Tomography for Non-Contact Evaluation of Fastener Flushness",doi:"10.5772/intechopen.90753",slug:"optical-coherence-tomography-for-non-contact-evaluation-of-fastener-flushness",totalDownloads:568,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Outside of the medical field, spectral domain optical coherence tomography (SD-OCT) is sparsely used. As such, we explored the possibility and practicality of using SD-OCT as a tool to evaluate fastener flushness and countersink surface profiles. A SD-OCT device was built with a handheld galvanometer scanner that weighed only 0.5 lb. Not only it does not require scan center alignment, but it is also capable of quickly producing measurements of fastener flushness, radius, slant angle, countersink edge radius, and surface angle. With the X-Y two-line scanning method, measurements take only 90 ms. The SD-OCT device used to obtain these measurements uses a lens with 60 mm focal length and a broadband light source of 840 nm center wavelength and 45 nm spectral bandwidth. With these components, the SD-OCT device is able to provide an axial depth resolution of 8.5 μm and a lateral resolution of 19 μm. The axial depth resolution can be improved by using a wider bandwidth light source. Furthermore, the device is able to produce 3D surface profiles of fasteners and countersinks using multi-line scans.",signatures:"James H. Wang and Michael R. Wang",downloadPdfUrl:"/chapter/pdf-download/70723",previewPdfUrl:"/chapter/pdf-preview/70723",authors:[{id:"6356",title:"Dr.",name:"Michael",surname:"Wang",slug:"michael-wang",fullName:"Michael Wang"},{id:"285195",title:null,name:"James",surname:"Wang",slug:"james-wang",fullName:"James Wang"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3195",title:"Lithography",subtitle:null,isOpenForSubmission:!1,hash:"c5fd876b252a6338c5eaf446f9de4548",slug:"lithography",bookSignature:"Michael Wang",coverURL:"https://cdn.intechopen.com/books/images_new/3195.jpg",editedByType:"Edited by",editors:[{id:"6356",title:"Dr.",name:"Michael",surname:"Wang",slug:"michael-wang",fullName:"Michael Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71364",slug:"erratum-the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",title:"Erratum - The Mechanism of Misalignment of Saw Cutting Crack of Concrete Pavement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71364.pdf",downloadPdfUrl:"/chapter/pdf-download/71364",previewPdfUrl:"/chapter/pdf-preview/71364",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71364",risUrl:"/chapter/ris/71364",chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]}},chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]},book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12062",leadTitle:null,title:"Public Transportation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c045089da37d46be1ee7e5e74f93cc93",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54381",title:"Organic Waste Torrefaction – A Review: Reactor Systems, and the Biochar Properties",doi:"10.5772/67644",slug:"organic-waste-torrefaction-a-review-reactor-systems-and-the-biochar-properties",body:'\n
Torrefaction is a biomass/waste thermal decomposition process that produces a carbon-rich product—Biochar [1]. Biomass partly decomposes during this process, generating both condensable and noncondensable gasses. The resulting product is a solid substance rich in carbon, referred to as biochar, torrefaction biomass, or biocarbon [2]. In industry and literature, the torrefaction process is also referred to as roasting, slow and mild pyrolysis, wood cooking, and high-temperature drying [3].
\nTemperature and retention time are two main parameters that influence torrefaction process efficiency [4]. Torrefaction is usually conducted at temperatures between 200 and 300°C and the designated temperature is maintained for 15–60 min [5]. Choosing specific value of those two key parameters for different types of biomass is essential for cost-effective biomass treatment.
\nTorrefaction is a biomass treatment method for future utilization in cofiring in gasification process [3]. The process is commonly applied for lignocelluloses biomass treatment [6]. Lignocelluloses are built of three polymers: hemicelluloses, lignin, and cellulose. Hemicelluloses are the most reactive form of those three polymers, and their carbonization and devolatilization occur at temperatures below 250°C [6]. Vegetable biomass is used most commonly as the stock in torrefaction process. This biomass can be divided into two groups—green waste and energetic forestry products. Plants with the highest lignocelluloses percentage compared to sugars and fats have best energy potential [6]. Torrefaction feedstock used commercially or in research is mainly lignocellulosic (wood pellets or chips, crop residue, or tree bark) although organic nonlignocellulosic waste (bagasse from sugarcane industry, olive mill waste, poultry waste and litter, paper sludge, dairy cattle manure, or distillers grain) are being used more often [7].
\nFurthermore, all the considered biomass types are not just lignocellulosic by nature. Some waste biomass types, such as sewage sludge, digestate from biogas plants and agricultural animal waste, food waste, and spacecraft solid wastes (chemical composition of fecal simulant), consist of fats, proteins, and other organic matter, with very low lignocellulose content [7–9].
\nDue to the above studies, torrefied biomass/waste with very low lignocellulose wide-scale urbanization, production of such waste has increased substantially and the torrefaction process may help utilize this large volume of nonlignocellulosic biomass, including refuse derived fuel (RDF). The current absence of direct research in this particular area renders torrefaction decidedly underutilized.
\nDue to that, this technology is being found perspective, but the relation between process parameters, and biomass, and biocarbon properties should be still optimized. One of the methods is design and application of efficient torrefaction reactor.
\nTorrefaction process may be conducted in different types of reactors, with diverse technologies. From this variety, two main groups of reactors can be distinguished, with direct and indirect heating. The review of torrefaction reactor types will be presented and discussed.
\nTorrefaction reactor can be divided into two main groups, based on the substrate heating—reactors with indirect and direct heating. Two subgroups can be distinguished in indirect heating reactors group: auger and rotary type. Direct heating group may be divided because of the oxygen content in the heating medium into several subgroups: (1) the reactors in which the heating medium does not contain oxygen and (2) reactors wherein the heating medium contains a small amount of oxygen and other types (Figure 1).
\nTorrefaction reactors division based on Ref. [
The specific types of torrefaction reactors are described further.
\nAuger-type reactor is constructed of one or more screw conveyors (auger). Its location relative to the ground may be vertical, horizontal, or at an angle. Biomass is fed to the reactor and then transported by a screw conveyor. During transport, the biomass is indirectly heated by a heating medium or directly by the heating elements located in the reactor wall. In both cases, there is a problem with uneven heating of biomass and excessive charring of the product. This phenomenon is linked to insufficient mixing of the substrate and local heating of the material [11, 12]. The residence time in the reactor depends on the length and speed of the conveyor.
\nThe advantage of auger-type reactors is their relatively low price, simplicity of adaptation to a large industrial scale, and low inert gas demand. The disadvantages include limited production capacity [11]. One example of the auger type reactor with indirect heating was described in patent published 15 October 2015 titled
The material supplied for processing is fed to the feeding screw from where it is transported to the first reactor, where drying process is conducted. After passing through the first reactor, material falls by gravity into a second reactor, wherein torrefaction is carried out. At the end of the torrefaction reactor in the lower part, there is an opening that allows the material to fall on the conveyor transporting the product to the storage. Lower part of the reactor is equipped with rods that can be replaced when wear down caused by friction of the material during transportation. Auger transporting material inside the reactor for drying and torrefaction are powered by two independent electric motors (which can rotate in both directions). Conveyors drive shafts have been secured by a special latch (couplings), allowing quick removal of the tray in case of failure by inspection hatches located on the side of the engine.
\nThe ventilation system for gases produced during the process is divided into two parts: an exhaust for gases discharge from the drying and torrefaction reactors. Gasses produced in the first process are not used due to the high moisture that affects its low calorific value. Torgas formed in the second reactor is purged of dust and partially of the condensate in cyclone, and is combusted to provide heat for the process (in the case of excessive production gas may be stored). Heating is indirect, provided by heat exchangers inside the reactor. Literature review shows that auger reactors with direct heating system does not differ significantly from the patent described above, due to that fact, their description is omitted. It is worth mentioning that torrefaction technology based on the chamber equipped with several screw conveyors that can create autonomous chambers or one large compartment can be seen [14].
\nRotating reactor is a technology that allows for continuous operation without stoppage for loading or unloading. Process heat can be supplied directly or indirectly. In the first type, the heat is usually applied by the medium in the form of gas produced in the torrefaction process, which is recycled to the reactor and heated by the heat generated in the combustion of overabundance torgas. Direct heating is performed by the drum walls. Drum torrefaction reactors can be controlled by rotating speed adjustment or length and angle of drum inclination. The construction of the reactor ensures good substrate mixing, resulting in the uniform heating. This technology is simple and easy to scale. The disadvantages of such solutions include the production of a significant amount of fines that is formed by friction between walls and the substrate. Drum reactors also have a lower capacity than fluidized bed reactors, within the range of 1.5–4.5 mg∙h−1 [15]. In the literature and in registered technologies at the patent office, various torrefaction technologies using the drum reactor can be found.
\nPatented reactor by Teal W. B. and R. J. Gobel is equipped with screw conveyor or other mechanism for biomass feeding. The inlet is equipped with a gutter, followed by a single or double lock. The lock is designed to prevent the oxidant penetration into the processing chamber during substrate feeding [15, 16]. The reactor heating system consists of three parts: a furnace, heat exchanger, and ventilation system. During reactor start-up, the fuel is supplied from the outside. Heat produced during combustion is used to warm up the air drawn from the outside, which is then transferred to a heat exchanger by a fan, positioned in front of the drum reactor. Heat is exchanged between the air heated in the furnace and the gas circulating in a closed circuit between the drum and the heat exchanger. Following a star up, the surplus torgas produced during torrefaction is burned inside the furnace. It is worth mentioning that biomass is heated before entering the drum reactor [15]. This reactor scheme can be seen in Ref. [16].
\nMain part of the reactor, the drum, rotates around its vertical axis. It is driven by the electric motor, which can be controlled to regulate the amount of drum rotation. Torrefaction chamber interior is equipped with a special blade to move or mix the processed substrate [16].
\nBehind the drum, there is a separator, which isolates biocarbon and torgas. Particles of biocarbon descend under gravity to the bottom of the separator and are disposed by screw conveyor or other transporting mechanism. In the bottom of the separator, valves are installed to prevent oxygen from getting to the system, which could adversely affect the process. Produced torgas from the separator is sucked by the fan and then directed to the combustion furnace or heat exchanger. Cyclone is installed before the fan to purify the gas from the fine particles and dust [16].
\nA. D. Livingston and B. J. Thomas registered patent proposing another drum reactor with indirect heating technology. Fuel delivery and its heating (ventilation inlets) differ this technology from the previously discussed reactor [17]. The biomass fed to the reactor first goes to the screw conveyor driven by an electric motor. This mechanism transports the substrate directly into the drum and in contrast to previous technology is not mixed with the heating medium.
\nThe next element is a drum. In this case, it rotates inside a sealed casing and is driven by an electric motor. Shape of the blades responsible for moving and mixing of the material inside the process chamber differs from previous technology [17].
\nThe system of heating the reactor operates in the same manner as in the first case. The difference is the method of heating medium delivery into the reactor chamber. Three air inlets were installed and located in the upper part of the drum casing. This reactor scheme can be seen in Ref. [17].
\nOutput unit behind the drum acts as a gravity separator. The solid fraction falls to the bottom and the volatiles escape through a hole located in the top of the unit. Openings to receive the products are equipped with locks, tasked with preventing oxidant to enter the reactor. In addition, the separator is equipped with inspection doors, allowing reactor review without the demolition of the individual elements [17].
\nDirect heating reactor was divided into three parts: the substrate input, the drum reactor, and the products output, where the latter element is coupled with the reactor heating system.
\nTechnical line begins with an airlock, which prevents air from entering into the reactor. Behind the latch, mechanical feeder is located for transporting the substrate into the processing chamber. The next element is the drum, which is mounted on bearings, allowing its rotation. Rotation is provided by electrical motor. The drum itself is sloping toward the outlet end allowing material movement in its interior. The authors assumed that the reactor should be tilted by about ½ inch per foot of the drum length. Collection of solid products takes place at the end of the reactor. Biochar falls by gravity to a conveyor installed at the end of the reactor through the rectangular holes.
\nThe resulting exhaust gasses can be drawn through the ventilation system. The hood is positioned in the upper part of the back of the reactor forming a metal casing through which the process gases escape. This process is mechanical, powered with a fan. Produced gasses can be used for the purpose of the process. Ventilation system allows creating small vacuum for technological purposes.
\nA heating system is located in the rear part of the reactor. It consists of a rotary joint connecting the inlet and outlet of the reactor heating medium with the wires forming a heat exchanger inside the reactor (they are divided into sections and their number depends on the size of the reactor). The principle of the system is very simple. A heating medium which may be water, oil, propylene glycol, or other thermal transfer fluid is heated in a heating system to 315°C. Then, the medium is transported in tubes to the rotary coupling; there, depending on the size of the reactor, it is split into heat exchanger sections. The tubing forms a ring inside the drum and is attached to it in the front part of the reactor prior to the inlet of the substrate. Pipes forming a heat exchanger are equipped with thermal expansion joint in order to prevent damages during operation. The liquid after transferring heat to the reactor is recycled to the rotary coupling and then to the heating system where the cycle begins again [18]. Schematic drawing of inlet, outlet, and reactor heating systems is shown in Ref. [18].
\nMultiple Hearth Furnace technology is used on an industrial scale because it scales easily, and it can be adjusted to the individual preferences of the customer. Also, it provides stable process temperatures, mixing of substrate, and leak free gas flow. The disadvantages of this technology should include slow heat transfer to the substrate, compared to other direct reactors, the limited volume of the converted substrate, which results in larger dimensions of the reactor and requires good seal of the shaft [15]. Multiple hearth torrefaction reactors do not differ significantly from each other. Design differs mainly on configuration of heating and ventilation system, and therefore, one design will be presented to describe the principles of this technology. Multiple hearth reactors are cylindrical, and their interior is divided into multiple levels formed of trays which are fixed to the centrally placed shaft which rotates about an axis of symmetry. It is driven by a motor with a built-in gearbox. The substrate is fed to the reactor from above by a mechanical conveyor, equipped with airlock located at the end of the conveyor, preventing oxidant from entering the reactor. Biomass can be predried in a separate drying system. In this case, the reactor has only a section in which the torrefaction process occurs. If separate drying system is not installed, the reactor is divided into a drying and torrefaction section [19, 20].
\nThe substrate supplied to the first level begins to be heated and distributed evenly using a roller located over the tray. After one full rotation, overabundant biomass is pushed by the roller to the hole where it falls by gravity to the lower level and the process begins again.
\nThe product is collected at the bottom of the reactor and goes to the cooling system. Heating system can be divided into two types depending on whether the reactor has a drying zone. In the first case, the heat is supplied with heated gas into the drying and torrefaction zone independently. Reason behind this design is that during the process of drying, the moisture contained in the biomass evaporates, hence decreases the gas calorific value (the resulting gas is not suitable for energy production). After heating medium passes through the drying zone, excessive gas is released to the atmosphere, and the remaining volume is returned to the heat exchanger for reheating and back to the reactor. Torrefaction zone is heated in the same way as described above with the difference that the overabundant gas formed in the torrefaction process is used as fuel to provide the heat for the process [19, 20]. Reactors with only torrefaction zone are heated by the heating medium consisting of inert gases circulating in a closed loop between the reactor and the heat exchanger—same design as a two-zone reactor. Excessive gas is used for the purposes of the process as a fuel [19].
\nIn this type of reactor, the heat is provided by microwave radiation. This technology is characterized by rapid and uniform heating of the material. The process duration depends on the type, size, and microwave radiation absorption capacity of the processed material and on the reactor power [15]. The main problem with this technology is the high energy consumption required for the production of microwave radiation. Torgas is not used for process purposes and it adversely affects the process efficiency and increases the operation costs [12]. Technology shown in patent titled
The reactor consists of a closed process chamber, where biomass is fed from the top. The reactor has no moving parts, responsible for moving the biomass that falls down freely during the process. The substrate is heated by a heating medium, a gas that has an inlet located at the bottom part of the reactor. Torgas outlet is located at the top of the chamber. Single cycle duration range from 30 to 40 min, and the maximum temperature that can be obtained is 300°C [12]. Simple design, high bed density, and a good heat transfer are main advantages of this design. Difficulty of controlling the temperature and maintaining heating medium pressure are clear disadvantages of this technology [15].
\nThe main part of the reactor is a vibrating belt that is responsible for biomass transporting. Flow rate of the substrate is controlled by intensity of vibration. Biomass is heated indirectly by the gaseous heating medium [12].
\nIn order to standardize the resulting product, reactor has many levels. The advantages of this type of reactor include simplicity of process time adjustment and the possibility of converting the biomass of larger dimensions. Clogging of the apertures with tar and dust generated during the process (cleaning of the reactor is associated with a long maintenance brake, since it must be disassembled) is a main disadvantage. Temperature control of the process is difficult, because it must be correlated with flow of the heating medium and the intensity of the vibration. These reactors require a large space, which also causes problems with their use if space is limited. High risk of corrosion is also associated with this design [12].
\nPresented torrefaction belt reactor consists of four parts: feeder, the reactor chamber with conveyor belts, screw conveyor, and the heating system [23]. This reactor was presented in Ref. [23].
\nThe biomass supplied to the reactor with conveyor goes into the torrefaction chamber, wherein three conveyor belts segments are located. Each of the conveyors is rotating in the opposite direction as the previous one in order to transport the substrate to the bottom of the reactor. Torrefaction chamber is heated directly using a heating medium, produced during the combustion of torgas or the fuel supplied from the outside. The temperature inside the chamber does not exceed 800°C and is controlled by the volume of injected heating medium. Process chamber is equipped with heating ducts, which have been separated from the gas space of the reactor in order to prevent mixing of heating medium and torgas. After the process, biomass goes to the chute located at the bottom of the reactor and then is received by the externally cooled screw conveyor.
\nReactor production capacity range from 100 to 500 kg h−1, and the plant can operate in temperature range 220–350°C.
\nReactors technology described above has been applied on an industrial scale. There are more than 50 companies involved in the implementation of torrefaction technology [12]. Table 1 shows the characteristics of said technologies.
Developer | \nTechnology | \nHeating mode | \nCapacity, mg∙h−1 | \nCountry | \n
---|---|---|---|---|
4 Energy | \nBelt conveyor | \nDirect | \n5.5 | \nThe Netherlands | \n
Agritech | \nScrew conveyor | \nIndirect | \n8 | \nUSA | \n
AIREX | \nCyclonic bed reactor | \nDirect | \n0.25 | \nCanada | \n
Atmoclear | \nBelt | \nDirect | \n5 | \nUK | \n
Bio Energy Development North AB | \nRotary drum | \nDirect | \n3.5 | \nSweden | \n
Biolake | \nMoving bed | \nDirect | \n5 | \nThe Netherlands | \n
BTG | \nScrew conveyor | \nIndirect | \n5 | \nThe Netherlands | \n
CanBiocoal | \nMicrowave | \nDirect | \n12 | \nUK | \n
EBES | \nRotary drum | \nDirect | \n1.5 | \nGermany | \n
ECN | \nMoving bed | \nDirect | \n5 | \nThe Netherlands | \n
Earth Care Products | \nRotary drum | \nDirect | \n1.5 | \nUSA | \n
ETPC | \nRotary drum | \nIndirect | \n4.3 | \nSpain | \n
Foxcoal | \nScrew conveyor | \nIndirect | \n4.2 | \nThe Netherlands | \n
Horizon Bioenergy | \nOscillating belt conveyor | \nDirect | \n6.5 | \nThe Netherlands | \n
IDEMA | \nMoving bed | \nDirect | \n2.5 | \nFrance | \n
Integro | \nMultiple hearth | \nDirect | \n2 | \nUSA | \n
New Biomass Energy | \nScrew reactor | \nIndirect | \n5 | \nUSA | \n
New Earth | \nOscillating belt conveyor | \nDirect | \n2 | \nUSA | \n
RFT | \nScrew conveyor | \nIndirect | \n5 | \nUSA | \n
Stramproy | \nOscillating belt conveyor | \nDirect | \n5 | \nThe Netherlands | \n
Thermya/LMK Energy | \nMoving bed | \nDirect | \n2.5 | \nFrance | \n
Topell | \nTorbed | \nDirect | \n8 | \nThe Netherlands | \n
Torr-coal | \nRotary drum | \nIndirect | \n4.5 | \nThe Netherlands | \n
West Creek Energy | \nRotary drum | \nDirect | \n10 | \nUSA | \n
WPAC | \nUnselected | \nUnknown technology | \n5 | \nCanada | \n
Torrefaction products (biochar and biocarbon) can be characterised by specific properties. Biochar has high energy density, it contains 80–90% of potential energy, while decreasing its mass to 70–80%, hence energy density can be increased by 30% [24]. Biochar does not absorb moisture or its equilibrium moisture contents drop to 1–3%, thus it can be described as hydrophobic [6]. Fixed carbon content increases during the process, depending on process parameters (temperature and duration), values ranged between 25 and 40%, making biochar a potentially attractive reducing agent [24]. Torrefaction reduced oxygen content significantly, thus reducing O/C ratio, this makes biochar attractive substrate for gasification [6]. Mechanical processing (grindability andpalettization) of biochar improves significantly. The output of a pulverizing mill can increase by 3–10 times [25, 26] comparing it to a raw biomass. Torrefied biomass takes less time to ignite due to lower moisture and it burns longer due to larger percentage of fixed carbon compared to raw biomass [27].
\nTypical lower calorific value (LCV) of biocarbon from lignocellulosic biomass (LB) wood chips—torrefaction ranges between 18 and 23 MJ/kg [27]. Due to low biocarbon moisture (1–6%), the difference between higher calorific value (HCV), and LCV is small [28]. LB biocarbon has relatively low bulk density 180–300 kg/m3, it is fragile and homogenous [29]. Additional advantage of LB biocarbon is its hydrophobic nature. The absorption of water by torrefied biomass is strongly limited by dehydration processes during thermal decomposition of organic matter. Destruction of OH− groups causes the inhibition of formation of bonds between water and hydrogen. Therefore, biocarbon may be a storage outdoor without risk of biological decay. Torrefaction of LB brings benefits in biocarbon incineration, due to decreasing ignition temperature and shortening the time of ignition [30]. Additionally, many researchers [24, 27, 31] proved that during torrefaction, biocarbon retains potential energy (around 90%), while decreasing substrate mass to 70–80%. All of these properties make biocarbon a desirable fuel for processes like incineration, co-combustion, and gasification.
\nAnother possible pathway is to recycle biocarbon from LB and nonlignocellulosic biomass (NLB) for improving soil properties agent by its application on weak soils (arable and forest) and on the former land after mining of aggregates such as sand or gravel. Soil deposit of biocarbon from lignocellulosic crops (biological coal) according to many research reports has been considered as the method of effective soil improvement and significant element of carbon sequestration in the process of climate change mitigation [32, 33]. It is known that beneficial effect of biocarbon on soil properties is caused by improvement of soil texture, porosity that reflects in modifications of many physical and chemical properties, and soil biology. But simultaneously, the processes of biochar decomposition and impact on soil biology are fragmented and require closer research attention.
\nDissolved organic matter is a labile fraction, which can rapidly respond to changes in carbon pools, as they are potentially easy-mineralizable. These labile parts of organic carbon have been suggested as sensitive indicators of soil organic matter changes and important indicators of soil quality [33]. Mineralization of organic carbon compounds promotes the release of carbon dioxide into ambient air as one of greenhouse gases (GHG). Most “active” and susceptible to transformations form of soil organic carbon (SOC) is labile organic carbon. Soil labile organic carbon (SLOC) is composed of amino acids, carbohydrates, microbial biomass, and other simple organic compounds [34]. SLOC is cycling fast in the environment [35]. Circulation of SLOC lasts for not more than several years, while the refractory carbon cycle may last even several thousand years [35]. Soluble carbon and nitrogen are important, as they have a great impact on dissolved organic fraction concentrations in freshwater [36]. Hot water-extractable carbon is the fraction of organic matter, which is naturally labile and its content is correlated with the mass of microorganisms simultaneously being an excellent indicator of qualitative changes in organic matter [36]. This fraction is potentially the most susceptible to oxidation of CO2 [33], and therefore has the greatest impact on global climate change.
\nIntroducing biocarbon into soil causes decrease of solubility of SLOC and finally decreases the GHG emission. Therefore, the interesting aspect of biocarbon recycling into soil is proposed in this project examination of GHG emissions from soil enriched biocarbon and the degree of pollutants elution form biocarbon including organic compounds and heavy metals.
\nBiocarbon has heterogeneous highly porous structure and its outer and inner surfaces are very big and have a lot of “niches” of different water properties – hydrophilic and hydrophobic of basic and acid reaction etc. It makes biochar important in water holding capacity, which is especially an important treatment on weak soils. Thanks to stable nature of biocarbon (with half-lives estimated in broad ranges from hundreds to thousands of years); the positive impact of biochar may be prolonged for years. In this context, it is also important to build the knowledge on long term impact of biochar on groundwater. Méndez et al. [37] examined the influence of biocarbon obtained from sewage sludge on plants. The concentration of cupper in biocarbon was about 80% higher than in raw sewage sludge and about 40% in case of other heavy metals, but their bioavailability and mobility were significantly lower. The increase of torrefaction temperature caused the increase of heavy metal content in biocarbon, but their bioavailability and mobility decreased. Authors determined also that within the increase of temperature up to 300°C, the content of nitrogen slightly increased, but levels of P and K were constant. Presented data indicate that also in NLB torrefaction, it is possible to generate biocarbon with valuable properties.
\nGiven torrefaction reactors review showed a variety of technical and technological solutions. Most of the differences are related to material flow through reactor, material heating mechanism, the source of heat for the process, and torrgas treatment. As the torrefaction process is classified between high temperature drying and low temperature pyrolysis, most reactor systems are similar to those commonly used in biomass/waste drying, and/or pyrolysis. Actually, it is difficult to distinguish a specific type or solution of the reactor, which would be a characteristic only for torrefaction. Therefore, it seems that application of torrefaction of some biomass may be easily implemented just by adaptation of pyrolysis reactors. The problem may be related to torrefaction energy balance due to relatively low calorific value of torrgas or problem with mechanical movement of the feedstock trough the reactor caused by friction and/or melting of such materials like plastics.
\nEach presented reactor type has its advantages and disadvantages. Some are cheap, easy to construct, and operate. Some have problems with material mass flow, heat flow. Some are good for laboratory test, but some may have potential for industrial purposes. At this stage of the torrefaction technology development, it is hard to specify which type of reactor should be recommended. The torrefaction may be dedicated for different types of biomass and waste. The choice of torrefaction reactor should be based on the biomass/waste type and properties, the components of energy balance, pollution degree of the torrgas, desired biocarbon properties, energy demand, economy, and the current situation of the biomass/waste, and biocarbon utilization market. The torrefaction technology is relatively new and it is perspective. Not all problems have been solved, yet. Many new ideas arise each day at this field. Therefore, there is a room for innovations and inventions, which may move the torrefaction technology at the higher level of development. Intensive research and development activity in this field is then required and justified.
\nPresented work was done under financial support of the project titled “Innovative organic waste conversion technological line into innovative, high-quality solid fuels”, run in frame of Action. 1.1. – “Research, and development projects for enterprises”, Sub-action 1.1.1. – “Industrial research and development works executed by enterprises”, Intelligent Development Operational Program for years 2014–2020, call 1/1.1./2015), cofounded by European Regional Development Found, and The National Centre of Research and Development. Project No. UDA-POIR.01.01.01-00-0334/15.
\nGaseous particles are ionized to bring them in the form of plasma through the various heating techniques. One of the popular heating techniques is the injection of high frequency microwaves (MW) to a cylindrical cavity that has comparable dimension to the injected MW wavelength. The MW plasma generated by the continuous or pulse feeding of the MW is used in the applications of industrial and accelerator fields for the material science and nuclear applications, respectively. In both of the feeding cases, the plasma is basically produced due to the power absorption by the electrons from the space-time dependent electric field of the MW. The spatio-temporal dynamics and also the steady-state behaviors of the plasma are governed by the ways the MW are coupled to the plasma sustained inside a cavity. The behavioral pattern of the electric field during the plasma evolution can help us to comment on the different MW coupling ways/mechanisms that are involved in the formation of plasma particles and their confinement scenarios. By mastering the basic concepts on those different coupling mechanisms, the coupling efficiency and so the performance of that particular plasma source can be optimized. Performance optimization for this kind of plasma source is indispensable as these are involved in various kinds of applications as mentioned above. One of the important plasma devices is the microwave ion sources that are operated in continuous as well as pulse mode to extract the ion beam during the transient and steady state periods of plasma loading conditions [1, 2, 3, 4, 5]. The beam qualities are influenced by the MW coupling mechanisms as they are involved in deciding the plasma parameters during the extraction of a particular instant of the plasma evolution time. Several studies have already reported the electric field evolution during few 10 s of microsecond range when the plasma density was increasing in the very similar plasma device. The electric field was dropped by about more than 50% within a span of few microseconds after the MW launch (t = 0 s) into the cavity [6, 7, 8, 9, 10, 11].
\nSince the electric fields can affect the different power coupling mechanisms during the gas ignition moment (ns to μs), the spatio-temporal plasma parameters are influenced significantly especially in the low pressure regime. Many researchers have used the kinetic models like PIC/MCC or even the hybrid fluid/PIC to obtain more precise results in the MW plasma discharge. But they failed to estimate the hot electron dynamics efficiently in lower pressure condition, as these models demand intensive computational hardware due to its particle approach. Therefore, the current chapter presents the electric field evolution and its impact on the plasma parameter build-up during low pressure plasma state. Here, the model used is based on the finite element method (FEM) that gives more appropriate results for the transient plasma parameters through fluid modeling approach and time-dependent, partial differential equation solver (TDPDE) using fewer computer resources [11]. The different MW-plasma coupling mechanisms (ECR, UHR and electric field polarity reversal associated with ES wave heating) during the plasma density evolution after the MW launch (t = 0 s) can be understood from the behaviors of electric fields.
\nThe study on the propagation and interactions of the microwave with the plasma is important to optimize the performance of any plasma devices like the microwave ion sources. The microwave propagation in the plasma is affected by the dielectric prosperities of the plasma medium. The dielectric property, i.e., the permittivity or the refractive index of the plasma, depends on the external magnetic field distribution that is used to confine the plasma particles and also the electrostatic fields that are present in the plasma. Therefore, the microwave while propagating in different directions within the plasma encounters different values of the refractive index as well as the permittivity that makes the magnetized plasma to be anisotropic and inhomogeneous, respectively. To generate a high plasma density, which is one of the primary requirements in some microwave plasma devices, viz., the microwave discharge ion source (MDIS) or electron cyclotron resonance ion sources (ECRIS), an optimum coupling of the microwave energy through the different interaction mechanisms to the plasma medium is necessary. The microwave propagation and the coupling mechanisms are also influenced by the boundary conditions present in the plasma devices and the geometrical shape of the plasma device. In most cases, the dimension of the plasma reactor used for the purpose of ion sources lie in the comparable range of the launched microwave wavelength. This means the microwave electromagnetic field propagation within the ion source reactor (or cavity) is guided by the boundary conditions and the geometrical shape of the ion source cavity. So, the microwave electromagnetic field coupling to the plasma is affected if the cavity geometry is perturbed. Due to the modification of the cavity geometry, the resonating properties of the cavity resonator are no longer dominated by the fundamental cavity resonant mode. The cavity can resonate with some additional resonating frequencies including the fundamental one. The additional resonating frequencies can lie near to the fundamental one. Due to this reason, if the microwave is launched to the modified cavity, the total microwave field is shared among the cavity resonant modes including the fundamental one and contributes to the power coupling to the plasma.
\nFrom the electromagnetic theory of a resonant cavity, only particular cavity resonant modes can exist having fixed frequencies that are given by [12, 13]
\nwhere \n
A theoretical calculation for the cavity resonant modes from the eigenvalue equations for the electromagnetic field [12, 13] is performed from the empty and completely closed cavity. By considering a simplest cylindrical cavity of radius r and the length ‘
Here, \n
In case of magnetized plasma, the microwave propagation is influenced by the plasma particle dynamics. As the plasma particle dynamics are represented by the particle velocity, the thermal velocity of the plasma particles should be considered when the microwave propagation in plasma is discussed. If the thermal velocity of the plasma particles is negligible with respect to the phase velocity of the microwave, i.e., \n
For the un-magnetized plasma case in which the plasma is considered to be isotropic and the condition, \n
If the microwave electric field (\n
where the \n
where \n
In the overdense plasma, if \n
So, before encountering the overdense plasma, the electric field becomes an evanescent wave as its magnitude decays exponentially within a distance of approximately the skin depth value; (\n
Under the externally applied magnetic field, the dielectric constant for the anisotropic plasma becomes a tensor quantity. It means the microwave propagation becomes dependent on the plasma dielectric properties while propagating in various directions with respect to the externally applied magnetic field. If the magnetic field is oriented axially (\n
Now if the plasma motion follows the \n
where the symbol \n
The solution to this equation brings out the relation between the velocity (\n
where
The wave equation can be derived from the Maxwell’s curl equation for the electric field by following the standard procedure that shows
\nThe above equation is rewritten by assuming the \n
The equation can be represented in matrix form by assuming the angle between the wave vector and magnetic field to be ‘
The solution to these equations can exist if the determinant is zero. This condition brings out the dispersion relation of the microwave in the plasma. By making the determinant to be zero, two solutions are obtained that are written as:
\nwhere the symbols ‘
From the solutions, the microwave propagation and damping properties can be explained considering the values of the electron density, magnetic field and the angle of propagation. By the definition, the refractive index \n
It is clear that the wave can resonate at the resonance angle (
To visualize the cut-offs and resonances for the different types of microwaves in a better way, the dispersion plots are shown in a single diagram, also known as Clemmow-Mullaly-Allis (CMA) diagram. Figure 1 is applicable to the ‘cold plasma’ approximation case as discussed before. In the CMA diagram, the
The CMA diagram shows the propagation of microwave launched from high and low magnetic field side. The arrow bend implies the cut-off region and the mode conversion region near the upper hybrid resonance location.
The polarization of the electric field of the microwaves also plays important role on the damping of microwave power into the plasma. From Eq. (17), the relation between the
\nEq. (20) indicates that the waves become circularly polarized and linearly polarized when the cut-off condition (\n
As discussed above, the ECR heating is an attractive tool in direct energy transferring to the plasma specifically in the ion source applications. The working principle of ECR mechanism is based on the frequency matching condition in which the microwave frequency with same polarization matches with electron cyclotron motion. It looks pretty much simpler in a qualitative approximation. But in case of quantification, it appears to be a non-deterministic method. It means along with the frequency, the phase difference between the microwave and electron motion also plays important role in energy transferring through ECR mechanism. Under frequency matching condition, if the phase difference between the microwave and the electron motion is in the same phase, then the electrons are accelerated by the microwave electric field. On the other hand, if it is 180° out of phase, the electrons are decelerated. Practically, the temporal phase difference between the microwave and the electron motion is a random phenomenon. So, it becomes necessary to take an average energy gain temporally of the electrons for several microwave periods. It is demonstrated by several groups worldwide that the average temporal energy gain of the electrons has positive value if the averaging calculation is performed irrespective of the phase difference between the microwave and the electron cyclotron motion. It has been proved that the net energy gain is related non-linearly to the microwave electric field (\n
In most of the ECR ion source plasmas, the plasma is collision-less. But in other ion sources operating at microwave discharge, where the temperature of the plasma is comparatively lower and the pressure is also higher, a complete collision-less approximation is not valid. The other heating mechanisms that are involved in the collisional absorption condition must be taken into account. Considering the collisional term in the equation of motion,
\nHere, \n
Here, \n
Although the cold plasma approximation is not valid for the wave dispersion in the region very close to the cut-off, the effect of warm plasma condition cannot be ignored. This is because the wavelength in the latter case is not negligible compared to the scale length of the plasma parameters [14]. At the resonance, where the refractive index is infinity, the wavelength becomes equivalent to the electron larmor radius. So, the finite larmor parameter effect is not negligible and has to be considered. The larmor radius can be written as \n
where \n
Here \n
This dielectric tensor coming from warm plasma approximation has few new features that affect the wave propagation unlike the cold plasma approximation case. It can be seen from Eq. (23) that the dielectric tensor is not only a function of \n
Usually, the electric field of an electrostatic wave does not change with time. This fact is known from the derivation of the electrostatic field from a scalar potential (\n
A commonly occurred electrostatic wave in a warm plasma condition is named as the Langmuir wave [16]. The Langmuir wave is the main constituent of un-magnetized plasma that appears together with the ion-acoustic wave (IAW). In case of magnetized plasma, electrostatic waves are also present. In this case, if the electrons are displaced by some force, an electric field builds up to restore the electrons back to their initial position to maintain the plasma quasi-neutrality condition. Due to the very low inertia, the electrons will show an overshoot and oscillate around an equilibrium position. The frequency of oscillations is equivalent to the electron plasma frequency of the plasma. The dispersion relation of the Langmuir wave is written as [16]:
\nAs the electron plasma oscillates very fast compared to the massive ions present in plasma, the massive ion motion is considered to be fixed in the GHz frequency scale (Langmuir frequency range). Although the frequency of the massive ion motion is very low compared to the Langmuir wave, the massive ions part will take part in the oscillations due to the electric field build-up. This low-frequency oscillations fall usually in the range of ion-acoustic wave frequency. The ion wave dispersion is obtained from the fluid equation as,
\nUsually, the plasma oscillations in the ion-acoustic frequency range lie in between few kHz to tens of MHz.
\nThere exists another kind of electrostatic wave in magnetized plasma, which is known as electron Bernstein waves (EBW). EBW exist in warm plasma conditions when the electron temperature has finite value. It is known that the superposition of the static magnetic field with the oscillating electric field of the plasma waves can make the electron orbit to be elliptical [17, 18]. Now, if the magnetic field is increased further, the electron orbit will become a circular one as the Lorentz force dominates the electrostatic component [17, 18]. The presence of EBW makes the electron gyrophase to organize in such a manner that the space charge distribution in plasma obtains a minima and maxima in the direction perpendicular to the externally applied magnetic field. It was shown [19] that the space charge accumulation is periodic. The charge accumulation propagates with a wavelength that is four times the electron larmor radius [19]. As the wavelength of the EBW is much lower than the length of a typical Langmuir probe tip, used for the plasma characterization, the Langmuir probe is unable to detect the EBW wave directly [20]. The dispersion of electron Bernstein wave (EBW) can be written as:
\nHere \n
In microwave-generated magnetized plasma, the presence of plasma density gradient and the variation of the magnetic field make the wave propagation and its energy absorption unpredictable. It is difficult to estimate the wave trajectory from the simple linear uniform plasma theory [21]. It is natural that the wave would cross the boundaries shown in the CMA diagram by travelling up or down depending on the magnetic field variation and plasma density distribution. Inhomogeneous and anisotropic plasma can exhibit a wide variety of possibilities for the cut-off, resonance, cut-off-resonance and/or the back-to-back cut-off pairs. In inhomogeneous plasma, two or more waves can coexist that propagates in the plasma having density gradient. Although their polarization and propagation vector are different from one another, they can exhibit identical characteristics at some particular plasma regions having particular plasma loading conditions. At those particular scenarios, the waves can remain no longer distinguishable and therefore can convert into another. The mode conversion theory deals with establishing resonance characteristic in inhomogeneous plasma considering two different waves present in the plasma by taking into account the wave reflection, cut-off, resonance and absorption conditions. As the microwaves that are present in the microwave ion source plasma is dominated by the ordinary- and extraordinary-type microwave, the mode conversion theory is mainly focused upon considering the cut-off-resonance pair condition in plasma. The
If the
Another method in generating the EBW and ion wave is the
In microwave ion source plasma under mirror magnetic field configuration, there can coexist two types of components (
Let us suppose the
After reflection at the cut-off, the wave propagates in the inhomogeneous and anisotropic plasma in the location where it will find a resonance (refractive index = \n
By dividing Eq. (28) by Eq. (29), one gets
\nwhere \n
Now, for the wavelength
If a strong electromagnetic field is present in the ion source cavity, the plasma particle follows the relation \n
As the plasma parameters vary with time under the conditions of intense electric field of the microwave, the corresponding velocity becomes close to the electron thermal velocity. It is known that the
From Eq. (11), as the
Here the motion of the first oscillator (amplitude \n
Let us assume, \n
Now if \n
As the oscillators are waves, the ‘𝜔t’ term is replaced by ‘(𝜔t-\n
The frequency and k-vector matching conditions correspond to the energy conservation and momentum conservation following the quantum mechanics theory. It is proved that [15] the
The parametric decay occurs above a certain threshold value, which actually depends on the damping rate of the oscillator. If the damping rates \n
Electrostatic waves generated in the plasma through the parametric decay instability can damp their energy to the plasma particles and thus increase the plasma density. When the phase velocity of the electrostatic wave becomes comparable to the thermal velocity of the plasma particles, the energy is transferred from the wave to the plasma particles and is known as Landau damping mechanism. In microwave ion source plasma, density can be increased 2–3 times more than the ECR heating mechanisms through the off-resonance heating mechanism. For this reason, the off-resonance condition is used to create favorable conditions of the upper hybrid resonance heating. Under certain plasma temperature, the electrostatic wave can transfer energy resonantly to the plasma particles if the wave phase velocity matches the plasma particle velocity. In some cases, the plasma particle velocity can be higher than the wave phase velocity. Under this condition, the plasma particle can transfer energy to the wave. The Landau damping mechanism follows the equation written below:
\nThe exponential term on the right hand side represents that the Landau damping will be small for small value of \n
In case of a compact microwave plasma device where the microwave wavelength becomes comparable to the device dimension, the cavity resonant mode can also play crucial role in damping the electromagnetic energy to the plasma particles. The presence of multiple cavity modes in the plasma can produce modulated wave due to the interaction between each pairs of the cavity resonant modes. The generated modulated wave propagates in the plasma and damps its energy to the plasma particles where the frequency of the modulated wave matches the local plasma frequency of the plasma particles.
\nFor the MW interaction modeling during the plasma evolution, a schematic of the computational domain is shown in Figure 2. The computational domain consists of a microwave coupled reactor, which is a cylindrical plasma cavity. A MW of frequency 2.45 GHz is injected into the microwave coupled reactor through a ridge waveguide port (on the left side of Figure 2) to ionize the gaseous particles, thus forming the plasma that is confined under the mirror magnetic field configuration. The reactor has dimension of 107-mm and 88-mm diameter. The microwave power is fed into a cavity resonator through a tapered waveguide. The waveguide is tapered by embedding four ridge sections having different ridge length, ridge gap and ridge width on the inner sidewalls of the waveguide. The ridge dimensions are optimized from the analytical calculation as well as from the electromagnetic simulation. The mirror magnetic field is created by using two pairs of ring magnets that surround the microwave coupled reactor [22]. On the right side of the microwave coupled reactor (Figure 2), the ion beam extraction system is attached through a 5-mm hole on the wall of the reactor. The similar computational domain is used in the experimental set-up (Section 5) to validate the simulated data. Here, the finite element method (FEM)-based COMSOL model is used [22].
\nSimulation domain of the MW ion source.
The MW propagation and the plasma evolution are assumed to be decoupled to each other during the simulation modeling in the temporal scale [10]. The MW electric fields (\n
In case of MW model, the equations for the electric field are solved in frequency domain while keeping the other parameters in time domain. In the beginning, the FEM model started from the Maxwell’s equations in order to justify the modeling approach. The MW electric fields are changing with time at a frequency of \n
The notations used in the above equations \n
For representing the MW propagation in an infinite space, the perfectly matched layers (PML) are introduced in the computational domain as shown in Figure 1. The present FEM model considers the electron transport properties to follow the Boltzmann distribution function. The distribution is an integro-differential equation in phase space (
The term in Eq. (42) is \n
The above written electron transport properties represent full tensor parameters in which the tensor term electron mobility is influenced by the magnetic field. The electron mobility without the magnetic field \n
The description for the boundary conditions taken during the plasma simulation is as follows. The plasma chamber wall is kept at ground potential. The reflections, secondary emission and also the thermal emission from the electrons are assumed to be negligible at the wall boundaries. In effect of that the electron flux and electron energy flux at wall boundary can be written as \n
In the MW-plasma simulation model, the instant of MW launch is taken as reference (t = 0 s) when the MW is launched into the cavity. The MW is launched in right (R) hand mode (R mode is extraordinary type) using the four step ridge waveguide. This makes the \n
The present FEM model uses different solvers sequentially to compute the magnetic field distribution first throughout the computational domain. Then the solvers related to the frequency-transient analysis are used to calculate the MW-plasma parameters. A complete computational flowchart for the magnetic field as well as the MW-plasma is depicted in Figure 3. The typical number of degrees of freedom that is used for solving the magnetic field is approximately 54,525. The FEM magnetostatic model uses the equation-based mesh adaptation technique to generate the extremely fine mesh size on the ECR surfaces. The mesh element has minimum and maximum size for the magnetic field and microwave-plasma calculations are 0.2 mm and 2.4 mm, respectively. The effect of the different edges that are involved in the computational domain is taken into account by keeping the maximum and minimum mesh element size at 0.5 mm and 0.0055 mm, respectively. The magnetic field estimated is used in the MW-plasma model to estimate the tensor plasma parameters. For the case of MW-plasma simulation, the number of degrees of freedom used for the solution is approximately 47,005.
\nSimulation flowchart of MW plasma interaction in COMSOL Multiphysics.
Due to the dephasing as discussed above, the current FEM model uses the concept of effective collision frequency (νeff) to describe the sudden phase decoherence. In the dephasing situation, the phase relationship between velocity and the electric field oscillation is destroyed in the temporal scale due to which the electrons experience a large field variation in the ECR surface. The accelerating electric field transfers energy to the electrons that are residing on the ECR surface only for a small time duration in the time range of resonant cyclotron motion of the electrons. The electrons also experience spatial density variations while oscillating across the ECR surface. A large density variation across the ECR surface also generates the radial ambipolar electric field on the resonance surface and so there is a possibility of de-phasing that can happen at the resonance zone.
\nAs the phase de-coherence may happen between electron gyro motion and the MW oscillatory \n
The evolution of the radial (\n
Magnetic (B) field contour inside the quadrant section of the plasma chamber, which has cylindrical axis symmetry. The B-field is also simulated using COMSOL software. The narrow contour area near 0.088 T line is the ECR zone (corresponding to 0.0875 T). The span of ECR zone is around z = ±24 mm and r = ±28 mm.
This section of the chapter shows the temporal behavior of the electric fields, power deposition and the corresponding variation of plasma density and hot electron temperature from the start of MW launch to the steady state condition.
\n\nFigure 5(a) and (b) shows the evolution of the radial profiles of the total electric field taken on the different axial locations for two time instances, 3 μs and 20 μs, after the MW launch. The radial profiles show the total electric field intensity to be more near the MW launching port (z = −40 mm). As one moves toward the extraction (z = −60 mm), its values is decreased because of the plasma shielding effect.
\n(a) Total electric field (
A sharp change in the E-field is shown in Figure 5(a) at the time, t = ∼3 μs near the 2.45 GHz ECR surface (r ≈ 23 mm) for the planes, z = ±20 mm. The strong inhomogeneity in the E-field implies the absorption of the MW power at the same locations [27]. The power absorption location is also dependent on the magnetic field profile as well within the cylindrical cavity. Another figure, Figure 5(b) shows the radial E-field pattern across the different planes for time, t = 20 μs. The inhomogeneous part of the E-field profile looks similar to Figure 5(a) for the case of z = −20 mm plane. But the intensity of the E-field is being reduced with time due to the plasma shielding. One can observe that the inhomogeneous part of the E-field is shifted toward the off-ECR regime (r ≈ 28 mm) from the ECR surface with the increase of time. Therefore, the power absorption region is being shifted from the ECR zone to the off-ECR zone. This effect is visible in the power deposition location throughout the cylindrical cavity in Figure 6. Figure 5(a–d) shows the corresponding shifting of the power deposition location from the ECR zone to the off-ECR zone or UHR zone with time. As the plasma reaches steady state during the time, t = 20 μs, the evolution of the plasma density and temperature is shown in Figure 7.
\nPower deposition density at different time steps for 70 W of absorbed power. (a) t = 10 ns, peak power density is 6.6
(a) Temporal evolution of electron density and temperature during plasma formation time at point (r = 0, z = −28 mm) with gas pressure, 2
\nFigure 6a shows that the MW power is being deposited exactly on the ECR (∼0.0875 T) surface corresponding to the launch MW frequency of 2.45 GHz when the plasma density is low. But as time passes (see Figure 6b–d), the power deposition location gets shifted in the off-ECR or upper hybrid resonance (UHR) regime. The UHR zone is a region where the two conditions \n
Correspondingly, the plasma density also reaches above the critical density. The decrease in the plasma bulk temperature and the corresponding increase of the plasma density even above the critical density are attributed to be occurring from the off-ECR or ES surface wave heating mechanisms [29, 30]. In other words, although the plasma density is approaching steady state (Figure 7a), the temperature is not yet stabilized during that time.
\nTo confirm the off-resonance or electrostatic heating methods as discussed above, the evolution of the MW electric field and the electrostatic electric field is shown simultaneously in Figure 7(b). The radial distribution of the two types of the electric field is given in that figure for two discrete time instants and the corresponding plasma densities. One can observe that the MW electric field is significant throughout the cavity and is more than the electrostatic electric field for the time, t = 500 ns. For another instance, t = 2 μs, the electrostatic electric field becomes more than the MW electric field throughout the cavity. The electrostatic field is even more in the upper hybrid resonance locations than the MW field as shown in Figure 7(b). This evidence confirms that the electrostatic heating is being taking place at the UHR region where the magnetic field and plasma density satisfy the above-mentioned conditions [28]. To visualize the plasma density pattern due to these electric field behaviors, the radial distribution of the density is shown in Figure 7(c) for different time instances (i.e., 2, 5 and 85 μs) and axial planes on the cylindrical cavity during the plasma evolution. The plane z = −28 mm on the cavity is situated near the MW launching port. Figure 7(c) shows the plasma density to be more at the central location (z = 0 mm) than the location z = −28 mm that is located toward the MW launch side.
\nFrom the above-mentioned results (Figures 6 and 7), it can be commented that the power is absorbed by the ECR mechanism especially in the plasma condition where the density is below (underdense plasma) the critical density and slightly above the critical density (overdense plasma). If one notices the plasma parameters for the underdense conditions, one can observe that the density remains below the critical density from the time, t = t = 45 ns to t = 110 ns. In this case, the plasma electrons are magnetized and hence are following the magnetic field lines. The field free zones that are located near (r, z) = (0, 0) are being filled by the plasma particles because of the diffusion processes. Due to the ECR heating, the electron temperature is being increased in the field free zones in the underdense plasma situation, t < 110 ns. As the magnetic field lines are stronger (B ∼ 2300–2600 G) near the radial locations of the cavity, i.e., in the gaps of the two pairs of ring magnets, the plasma bulk electron temperature exhibits a sharp gradient in those regions. The maximum plasma bulk electron temperature achievable is ∼85 eV that occurs during the time, t = 280 ns. The high energy part of the plasma bulk electrons is being concentrated completely in the same gap as mentioned before during this time.
\nIt is observed that the plasma bulk electron temperature increases in the radial direction at the regions mainly in between the two pairs of the ring magnets with the increase in time from t = 280 ns to 730 ns [22]. Therefore, it can be summarized that with the increase in plasma density (or time, t = ∼45 ns to t = ∼280 ns) from underdense to overdense state, the plasma bulk temperature is increased by an amount of ∼80 eV mainly in the radial direction near the region, 24 mm < r < 40 mm, −25 mm < z < 25 mm. This is because the ECR surfaces lie in those regions. The continuous heating through ECR in this location causes the high energy part of the plasma electron temperature to be concentrated on the same location even in the overdense plasma state during the time t = 730 ns.
\nThe anisotropic behavior of the plasma bulk electron temperature even in the overdense plasma signifies the ECR heating [31, 32]. With further increase of time after the MW launch, i.e., near t = 2000 ns, the plasma bulk temperature (\n
In order to investigate the different coupling mechanisms involved during the plasma evolution process and their impacts on the plasma parameters, the behavioral pattern of the different components of the electric field (\n
\n
(a) Propagation and mode conversion of MW
Spatio-temporal evolution of
In Figure 8(a–c), the radial electric field (\n
In all the figures, a strong inhomogeneity in the \n
Therefore, the dual conditions (B < \n
It can be observed in Figure 8 that the magnitude of the \n
Since the inhomogeneous part of \n
The generated high-energy electrons can interact with the slow extraordinary-type microwave and produce the cyclotron range instability in the plasma [1]. It was also proved experimentally by Mansfeld et al. [35] that the extracted ion beam current from the microwave ion source can gain oscillation due to the presence of cyclotron-type instability of plasma during the afterglow operation mode. The slow extraordinary mode microwave is produced from the mode conversion of ordinary-type microwave near the UHR region. As the mode conversion layer is present in the present plasma cavity, the ordinary mode microwave crosses the evanescent layer and some part of its energy is converted into the slow X mode. Since the plasma is confined in the cavity under mirror magnetic field configuration, the injected MW will have two components, extraordinary mode and ordinary mode. Figure 9(a) shows the MW ordinary mode is propagating toward the overdense plasma region from the underdense launching point. At some point, it will encounter a cut-off corresponding to the ordinary-type MW. At the cut-off, some part of the ordinary mode MW energy is evanescently transformed into a slow extraordinary mode following the CMA diagram concepts. For that reason, a bend in the MW propagation in the slow extraordinary (X) mode is seen in the electric field simulation (Figure 9b). This slow X mode then propagates toward the UHR region and hence the electric field is being accumulated there, as shown in Figure 9(a). The accumulation of the electric field at this location increases its intensity at some plasma condition and can cross the corresponding parametric decay threshold condition. The parametric decay of the slow X mode near the UHR region can generate ion- and electron-type electrostatic waves as per the literature [36].
\nAs a supportive evidence of the generation of electrostatic ion wave, Figure 8(b) shows that the inhomogeneous part of the \n
The spatio-temporal evolution of the axial component (\n
It can be observed in Figure 10(a) that the polarity in the inhomogeneous part of the electric field is getting opposite for two different time instances, 20 and 85 μs. The reversal in the polarity of electric field occurs near the ECR surface. The polarity reversal is caused by the ambipolar field produced from the plasma density gradient. The plasma density gradient is computed from the electron momentum equation using drift-diffusion approach in the present FEM model [38]. The shifting of the inhomogeneous part of the electric field is in the inward direction. The speed of displacement of the inhomogeneous part of the electric field is estimated in the range of ∼103 m/s that lies in the range of ion sound speed. Similar shifting at the same velocity is also observed before in Figure 8(b) corresponding to the \n
Experiments are performed to cross-check the above-mentioned plasma parameters obtained during the gas ignition moment. The present section of the chapter provides the details of the experimental methods, analysis of the experimental results and also a comparative study of the experimental data with the simulation.
\nExperiments are carried out in a microwave ion source system that has similar system configuration, magnetic field distribution, MW conditions and also the operating conditions. The simulated temporal plasma parameters, such as the plasma density and hot electron temperature, are validated with the experiment [23]. In the present experiment, MW-plasma reactor of the experimental set-up is a cylindrical cavity (Figure 11) of 107-mm length and 88-mm diameter. The plasma in the reactor is generated by coupling microwave through the electron cyclotron resonance (ECR) heating as well as off-ECR heating methods, as discussed before. The complete experimental set-up consists of a cylindrical cavity, microwave system, ion beam extraction system and two pairs of ring magnets (each magnet has pole strength ∼1.38 T) assembly [23]. The plasma cavity/reactor is surrounded by two pairs of ring magnets to generate a mirror-type magnetic field to confine the plasma inside the cavity.
\nSchematic view of the experimental system.
To generate plasma, the MW is produced by a magnetron (power: 0–2 kW, make: Richardson Electronics, Model no. NL10250-7), which is operated either in continuous or in pulsed mode. MW power is fed to the reactor through a combination of a four-step ridged waveguide, a HV break and vacuum window assembly, an impedance tuner unit, directional coupler and an isolator with water dummy load (Figure 11). The plasma impedance is matched by a 3-stub tuner to get maximum \n
All the MW power ranges mentioned throughout the chapter are considered as set power. The difference of forward and reflected power is considered to be plasma-absorbed power. MW reflection varies from 5 to 10% within the above set power range. These ranges of plasma reflection with similar experimental set-ups and operating environments are reported in [10]. The accuracy at low set power levels of magnetron is tested by repeated measurements of its output power (forward) before the experiment is performed. An extra component, named isolator with water-cooled dummy load (make: National Electronics, Model: 2722-162-10311, isolation: 26 dB, reflection rating: 6.5 kW) is placed in the experimental set-up (not shown in Figure 11) before the HV break. The power and carrier frequency signals are measured by microwave spectrum analyzer (model: FSH8, make: ROHDE & SCHWARZ, band: 100 Hz–8 GHz) at the directional coupler port. Signals are attenuated by 60 dB (\n
To generate plasma in the low power range, magnetron’s low power testing is required. In the present experiment, low power testing ensures the variation of full width at half maximum of 2.45 GHz frequency is within 5–12 MHz (within the specified \n
(a) Percentage error of the magnetron set power fluctuations. Data for 280 W have been benchmarked with the Sairem company data and (b) variation of the detected MW power vs. time for the set power of 200 W.
The magnetron’s output (set power) in the low power range is checked in time scale prior to the Langmuir probe diagnostic [23]. The response of the magnetron set power at 2.45 GHz frequency is recorded at the directional coupler port by a microwave spectrum analyzer (SA) circuitry. The circuitry consists of a high frequency cable, a band pass filter, and spectrum analyzer and FSH4 View software. The magnetron’s pulse response at a fixed set power, 200 W, is obtained by taking the inverse Fourier transform of the microwave spectrum analyzer data. The magnetron’s rise time is ∼2.2 μs. This exercise of measuring the pulse response of a particular set power can help to pick up the temporal values at different set power levels following the pulse response of magnetron [23].
\nTo compare the simulated hot electron temperature and density, their parameters are noted down at different instant of time during the plasma evolution. Taking the time instant to be same as that of the simulation, the set power values are noted down in an experimental datasheet. Then, a single Langmuir probe measures the plasma floating potential at the noted set power values as mentioned above [23]. The Langmuir probe measurement is performed in steady state plasma condition. Since the real-time measurement of the plasma parameter requires in the ns-time scale very sophisticated and expensive hardware that has faster time responses (ns range), steady state Langmuir probe measurements are performed to avoid those expensive diagnostics.
\nThe line plots are shown in Figure 13(a) for the simulated hot \n
(a) Simulated temporal hot
The evolution of the spatial and temporal plasma parameters are presented in the current chapter during the gas ignition process made by injecting the 2.45 GHz microwave to an ion source cavity. The simulated results supported by the experiment confirm that the plasma parameters are influenced significantly by the electric fields during the plasma ignition period. Due to the shifting of the microwave coupling mechanisms to the plasma, the plasma density and the hot fraction of the electron temperature are also getting affected during the plasma generation period. The initial rise of the hot fraction of the plasma electron temperature from the start of microwave interaction into the plasma is argued to be caused by the electron cyclotron resonance heating phenomenon. After certain instant of microwave launch, the slight increase in the plasma density and the decrease in the plasma electron temperature are proved to be happening from the electrostatic heating mechanism. The electrostatic heating near the upper hybrid resonance region causes to shift the inhomogeneous part of the electric field at the velocity of the ion acoustic speed when the plasma density reaches above the critical density corresponding to the launch microwave, 2.45 GHz.
\nThe experimental plasma parameters are obtained in an experimental set-up that has similar system configuration and the operating environment as that of the simulation. The comparison shows a reasonable agreement with the simulated results. The plasma density especially in the overdense plasma condition is found to be agreeing more in the overdense plasma than in the underdense plasma condition. During plasma evolution after the microwave launch, the microwave coupling mechanisms are modified following the corresponding electric field (electrostatic and electromagnetic) distribution pattern throughout the ion source cavity. Initially, the electron cyclotron resonance heating comes into play to ionize the gaseous particle and generate plasma that contains the maximum fraction of the high-energy electrons in the ion source plasma. Then, as the density reaches in the overdense condition, the coupling mechanisms are the electrostatic wave heating in the ion acoustic frequency range. As the electrostatic wave does not suffer any density cut-off, the density is increased further above the critical density. Simultaneously, the polarity of the axial electric field is reversed near the electron cyclotron resonance region signifying the creation of the plasma density gradient due to the generation of strong ambipolar electric field near the resonance region. In future, it is intended to study the different power coupling mechanisms in the overdense plasma state that are caused due to the heating at the cyclotron harmonics by the generated electrostatic waves in the present experimental device.
\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"ECM",topicId:"8,9,10,11,14,15,17,20,22,24"},books:[{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11942",title:"Updates on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f4ac095defb765e0e9bfebc06dac719e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11942.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11915",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!0,hash:"b52397215f6b5e05a22368f629695704",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12071",title:"Massive Open Online Courses",subtitle:null,isOpenForSubmission:!0,hash:"f4918898cbe91bb691a397bbde7138b1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12071.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12062",title:"Public Transportation",subtitle:null,isOpenForSubmission:!0,hash:"c045089da37d46be1ee7e5e74f93cc93",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12017",title:"Polynomials",subtitle:null,isOpenForSubmission:!0,hash:"1912acc4811b724cc0a15dba11f5af79",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12017.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12024",title:"UWB Technology",subtitle:null,isOpenForSubmission:!0,hash:"6158349f714de7cee2337adf57b2617d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12024.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12025",title:"Cognitive Radio Systems",subtitle:null,isOpenForSubmission:!0,hash:"75b14778d5efbcfe9c1f51d2e31f6aeb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12025.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12022",title:"Statistical Sampling",subtitle:null,isOpenForSubmission:!0,hash:"d95646776d1cb0b10161dc68c9c07781",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12022.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12026",title:"Induction Motor",subtitle:null,isOpenForSubmission:!0,hash:"0273a4ffd6bc66faed9db00380771240",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12026.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:77},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"268",title:"Gender Studies",slug:"gender-studies",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:18,numberOfWosCitations:34,numberOfCrossrefCitations:25,numberOfDimensionsCitations:46,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"268",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5472",title:"Gender Differences in Different Contexts",subtitle:null,isOpenForSubmission:!1,hash:"2f67b9514d1d24a468b8cdf15f0c1cdb",slug:"gender-differences-in-different-contexts",bookSignature:"Aida Alvinius",coverURL:"https://cdn.intechopen.com/books/images_new/5472.jpg",editedByType:"Edited by",editors:[{id:"145558",title:"Associate Prof.",name:"Aida",middleName:null,surname:"Alvinius",slug:"aida-alvinius",fullName:"Aida Alvinius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"52349",doi:"10.5772/65287",title:"Gender Differences in PTSD: Susceptibility and Resilience",slug:"gender-differences-in-ptsd-susceptibility-and-resilience",totalDownloads:2666,totalCrossrefCites:11,totalDimensionsCites:19,abstract:"Posttraumatic stress disorder (PTSD) is anxiety disorder that has been estimated to affect individuals who are exposed to traumatic events. Women are diagnosed with PTSD approximately twice as often as men. In this review, we outline the evidence of gender differences related to PTSD, and the factors of resilience and susceptibility differ between men and women.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Jingchu Hu, Biao Feng, Yonghui Zhu, Wenqing Wang, Jiawei Xie\nand Xifu Zheng",authors:[{id:"190985",title:"Dr.",name:"Xifu",middleName:null,surname:"Zheng",slug:"xifu-zheng",fullName:"Xifu Zheng"},{id:"194981",title:"BSc.",name:"Yonghui",middleName:null,surname:"Zhu",slug:"yonghui-zhu",fullName:"Yonghui Zhu"},{id:"194982",title:"MSc.",name:"Wenqing",middleName:null,surname:"Wang",slug:"wenqing-wang",fullName:"Wenqing Wang"},{id:"194985",title:"Dr.",name:"Jingchu",middleName:null,surname:"Hu",slug:"jingchu-hu",fullName:"Jingchu Hu"},{id:"194986",title:"MSc.",name:"Biao",middleName:null,surname:"Feng",slug:"biao-feng",fullName:"Biao Feng"},{id:"194987",title:"Ph.D. Student",name:"Jiawei",middleName:null,surname:"Xie",slug:"jiawei-xie",fullName:"Jiawei Xie"}]},{id:"52472",doi:"10.5772/65410",title:"Gender and Health",slug:"gender-and-health",totalDownloads:3400,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Research has found differences between women and men in some health indicators. Women’s life expectancy is higher than men’s, but research on differences in morbidity has proved less consistent than on the differences in mortality. These differences vary in terms of the type of health indicator used, the life cycle period analyzed, and even the country where research is conducted. Generally, men have more life-threatening chronic diseases at younger ages, including coronary heart disease, as well as more externalizing mental health problems and substance use disorders. Women present higher rates of chronic debilitating conditions such as arthritis, frequent or severe headaches, gallbladder conditions, and also more internalizing mental problems such as affective and anxiety disorders. Results of research on the differences between women and men in self-rated health have also highlighted the complexity of gender differences in health. Although several studies have shown that women have poorer self-rated health than men, this is not the case in all countries. Also, differences in self-rated health vary depending on other psychosocial and demographic variables. The present study reviews the main differences in women’s and men’s health as well as the most relevant factors that may account for them.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"María Pilar Matud",authors:[{id:"189729",title:"Prof.",name:"M. Pilar",middleName:null,surname:"Matud",slug:"m.-pilar-matud",fullName:"M. Pilar Matud"}]},{id:"52503",doi:"10.5772/65457",title:"Gender and Leadership",slug:"gender-and-leadership",totalDownloads:4073,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"The topic of leadership has been addressed and applied for millennia. Yet, it is only within the past 80 years that leadership has been a topic of serious discussion. It is important to understand variables relevant to effective leadership. Gender is one such variable that must be examined with regard to optimizing leadership effectiveness. The topic of gender and leadership deserves serious and thoughtful consideration and discussion because of professional, political, cultural, and personal realities of the twenty‐first century. Women and men have been, are, and should be leaders. Gender must be considered to determine how each leader can reach maximum potential and effectiveness. The FourCe‐PITO conceptual framework of leadership is designed to help guide leadership development and education. The present chapter uses this conceptual framework of leadership to discuss how consideration of gender may affect and optimize leadership development and effectiveness. It is the goal of this chapter to lay out the issues that educators of leaders, potential leaders, and “practicing” leaders should be aware of, to achieve success for the good of the groups and individuals they have the responsibility to lead.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Kathryn E. Eklund, Erin S. Barry and Neil E. Grunberg",authors:[{id:"191531",title:"Dr.",name:"Neil E.",middleName:null,surname:"Grunberg",slug:"neil-e.-grunberg",fullName:"Neil E. Grunberg"},{id:"191532",title:"Dr.",name:"Erin S.",middleName:null,surname:"Barry",slug:"erin-s.-barry",fullName:"Erin S. Barry"},{id:"191533",title:"Ph.D. Student",name:"Kathryn",middleName:null,surname:"Eklund",slug:"kathryn-eklund",fullName:"Kathryn Eklund"}]},{id:"53190",doi:"10.5772/66433",title:"Sex Differences as a Statistical Variable",slug:"sex-differences-as-a-statistical-variable",totalDownloads:1789,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"Gender differences are often seen as either biologically determined or culturally acquired or conditioned. However, in an age where gender equality is the main target, neither peer reviewers nor students show much interest in gender differences. Moreover, not only do people try to integrate their ‘ying’ and ‘yang’ in their personalities also transgender identities are publicly acknowledged, appreciated and respected. Thus, in this chapter, I argue that we need to downgrade gender differences to a statistical variable that explains variance, sharpens statistical effects and reveals strategies. I am giving examples from my developmental psychology research where the split-sample analysis by gender showed amazing and often unexpected effects.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Chris Lange-Küttner",authors:[{id:"190245",title:"Prof.",name:"Chris",middleName:null,surname:"Lange-Küttner",slug:"chris-lange-kuttner",fullName:"Chris Lange-Küttner"}]},{id:"53721",doi:"10.5772/66093",title:"Professional Women's Experience of Autonomy and Independence in Sindh-Pakistan",slug:"professional-women-s-experience-of-autonomy-and-independence-in-sindh-pakistan",totalDownloads:1624,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This chapter summarises the part of findings of my doctoral studies at the University of Sussex, Brighton, UK. In this case study, there are elements of both qualitative and quantitative approaches; the former is the principal approach to this research while the latter works as complementary. Participants of the research were divided into two categories: academic and non‐academic. Forty semi‐structured interviews (20 from each category) and 100 survey questionnaire (50 from each category) were collected. This research argues that existing concepts of ‘autonomy’ and ‘independence’ may not be useful indices/indicators for measuring the social status or position of women in Sindhi society, due to variations in understanding or the meanings attributed to these concepts across the globe. Findings argue that these professional women perceived concepts of ‘autonomy’, ‘independence’ and ‘individuality’ categorically different than those of Westernised understandings. This research asserts that Sindhi society, similarly to that of Tamil society, emphasises social groups rather than individuals. Hence, ‘collective identities’ are the essence of Sindhi society; however, individuals find their autonomy, independence and individuality in the context of ‘others’, which means to be more responsible for group's interests.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Mukesh Kumar Khatwani",authors:[{id:"196384",title:"Dr.",name:"Mukesh",middleName:"Kumar",surname:"Khatwani",slug:"mukesh-khatwani",fullName:"Mukesh Khatwani"}]}],mostDownloadedChaptersLast30Days:[{id:"52503",title:"Gender and Leadership",slug:"gender-and-leadership",totalDownloads:4074,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"The topic of leadership has been addressed and applied for millennia. Yet, it is only within the past 80 years that leadership has been a topic of serious discussion. It is important to understand variables relevant to effective leadership. Gender is one such variable that must be examined with regard to optimizing leadership effectiveness. The topic of gender and leadership deserves serious and thoughtful consideration and discussion because of professional, political, cultural, and personal realities of the twenty‐first century. Women and men have been, are, and should be leaders. Gender must be considered to determine how each leader can reach maximum potential and effectiveness. The FourCe‐PITO conceptual framework of leadership is designed to help guide leadership development and education. The present chapter uses this conceptual framework of leadership to discuss how consideration of gender may affect and optimize leadership development and effectiveness. It is the goal of this chapter to lay out the issues that educators of leaders, potential leaders, and “practicing” leaders should be aware of, to achieve success for the good of the groups and individuals they have the responsibility to lead.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Kathryn E. Eklund, Erin S. Barry and Neil E. Grunberg",authors:[{id:"191531",title:"Dr.",name:"Neil E.",middleName:null,surname:"Grunberg",slug:"neil-e.-grunberg",fullName:"Neil E. Grunberg"},{id:"191532",title:"Dr.",name:"Erin S.",middleName:null,surname:"Barry",slug:"erin-s.-barry",fullName:"Erin S. Barry"},{id:"191533",title:"Ph.D. Student",name:"Kathryn",middleName:null,surname:"Eklund",slug:"kathryn-eklund",fullName:"Kathryn Eklund"}]},{id:"52349",title:"Gender Differences in PTSD: Susceptibility and Resilience",slug:"gender-differences-in-ptsd-susceptibility-and-resilience",totalDownloads:2667,totalCrossrefCites:11,totalDimensionsCites:19,abstract:"Posttraumatic stress disorder (PTSD) is anxiety disorder that has been estimated to affect individuals who are exposed to traumatic events. Women are diagnosed with PTSD approximately twice as often as men. In this review, we outline the evidence of gender differences related to PTSD, and the factors of resilience and susceptibility differ between men and women.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Jingchu Hu, Biao Feng, Yonghui Zhu, Wenqing Wang, Jiawei Xie\nand Xifu Zheng",authors:[{id:"190985",title:"Dr.",name:"Xifu",middleName:null,surname:"Zheng",slug:"xifu-zheng",fullName:"Xifu Zheng"},{id:"194981",title:"BSc.",name:"Yonghui",middleName:null,surname:"Zhu",slug:"yonghui-zhu",fullName:"Yonghui Zhu"},{id:"194982",title:"MSc.",name:"Wenqing",middleName:null,surname:"Wang",slug:"wenqing-wang",fullName:"Wenqing Wang"},{id:"194985",title:"Dr.",name:"Jingchu",middleName:null,surname:"Hu",slug:"jingchu-hu",fullName:"Jingchu Hu"},{id:"194986",title:"MSc.",name:"Biao",middleName:null,surname:"Feng",slug:"biao-feng",fullName:"Biao Feng"},{id:"194987",title:"Ph.D. Student",name:"Jiawei",middleName:null,surname:"Xie",slug:"jiawei-xie",fullName:"Jiawei Xie"}]},{id:"52472",title:"Gender and Health",slug:"gender-and-health",totalDownloads:3400,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Research has found differences between women and men in some health indicators. Women’s life expectancy is higher than men’s, but research on differences in morbidity has proved less consistent than on the differences in mortality. These differences vary in terms of the type of health indicator used, the life cycle period analyzed, and even the country where research is conducted. Generally, men have more life-threatening chronic diseases at younger ages, including coronary heart disease, as well as more externalizing mental health problems and substance use disorders. Women present higher rates of chronic debilitating conditions such as arthritis, frequent or severe headaches, gallbladder conditions, and also more internalizing mental problems such as affective and anxiety disorders. Results of research on the differences between women and men in self-rated health have also highlighted the complexity of gender differences in health. Although several studies have shown that women have poorer self-rated health than men, this is not the case in all countries. Also, differences in self-rated health vary depending on other psychosocial and demographic variables. The present study reviews the main differences in women’s and men’s health as well as the most relevant factors that may account for them.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"María Pilar Matud",authors:[{id:"189729",title:"Prof.",name:"M. Pilar",middleName:null,surname:"Matud",slug:"m.-pilar-matud",fullName:"M. Pilar Matud"}]},{id:"53212",title:"Broken Dreams—Balancing Self and Family Well-Being: The Experiences of Women Immigrants to Hamilton, ON",slug:"broken-dreams-balancing-self-and-family-well-being-the-experiences-of-women-immigrants-to-hamilton-o",totalDownloads:1486,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter presents the preliminary analysis of a study conducted in Hamilton, ON. It explores the intersection of women’s immigration, integration and mental health. Their perceptions of what is needed from them in relation to the various challenges/changes that moving to a new country entails is a particular focus of this research. To begin with, the term “women immigrant” (WI) is used, rather than immigrant women as commonly used—as the participants were women long before they became immigrants. Indeed immigration is one of their many experiences and it is a significant marker in their lives, but it does not define their identity.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Mirna Carranza",authors:[{id:"189735",title:"Dr.",name:"Mirna",middleName:null,surname:"Carranza",slug:"mirna-carranza",fullName:"Mirna Carranza"}]},{id:"52314",title:"Gender Difference in the Perception of Guilt in Consumer Boycott in Brazil",slug:"gender-difference-in-the-perception-of-guilt-in-consumer-boycott-in-brazil",totalDownloads:1788,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The aim of this chapter is to analyze consumer boycott from the perception of men's and women's guilt on a specific case involving Nike company through partners in its supply chain in China. The study was conducted with 281 consumers in the city of Rio de Janeiro (Brazil) in 2012. In the process of validating a scale of consumer boycott in Brazil, the 13 items of the original scale were kept, but were grouped in different factors. The emerged factors were perception of guilt, influence from others, boycott efficiency, and purchase frequency. Testing relationship among demographic variables and these factors, only gender was significant on perception of guilt. In this sense, we seek in psychology, psychoanalysis (also briefly in anthropology and history), features that could explain the reasons why women feel guiltier than men, and thus are more likely to boycott.",book:{id:"5472",slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Breno de P.A. Cruz, Ricardo José Marques Pires-Jr. and Steven D. Ross",authors:[{id:"189599",title:"Associate Prof.",name:"Breno",middleName:"De Paula Andrade",surname:"Cruz",slug:"breno-cruz",fullName:"Breno Cruz"},{id:"189600",title:"Mr.",name:"Ricardo",middleName:"José Marques",surname:"Pires-Júnior",slug:"ricardo-pires-junior",fullName:"Ricardo Pires-Júnior"},{id:"189601",title:"Dr.",name:"Steven",middleName:null,surname:"Dutt Ross",slug:"steven-dutt-ross",fullName:"Steven Dutt Ross"}]}],onlineFirstChaptersFilter:{topicId:"268",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tSustainable development focuses on linking economic development with environmental protection and social development to ensure future prosperity for people and the planet. To tackle global challenges of development and environment, the United Nations General Assembly in 2015 adopted the 17 Sustainable Development Goals. SDGs emphasize that environmental sustainability should be strongly linked to socio-economic development, which should be decoupled from escalating resource use and environmental degradation for the purpose of reducing environmental stress, enhancing human welfare, and improving regional equity. Moreover, sustainable development seeks a balance between human development and decrease in ecological/environmental marginal benefits. Under the increasing stress of climate change, many environmental problems have emerged causing severe impacts at both global and local scales, driving ecosystem service reduction and biodiversity loss. Humanity’s relationship with resource exploitation and environment protection is a major global concern, as new threats to human and environmental security emerge in the Anthropocene. Currently, the world is facing significant challenges in environmental sustainability to protect global environments and to restore degraded ecosystems, while maintaining human development with regional equality. Thus, environmental sustainability with healthy natural ecosystems is critical to maintaining human prosperity in our warming planet.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:12,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:345,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:210,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:394,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"