Maple-leaf Shaped Printed Monopole Antenna Dimensions (Units in mm).
\r\n\tThis book shall focus on these antisense guided sequence specific silencing molecules with different mechanisms and potency for gene silencing, providing the reader with a comprehensive overview of the current state-of-the-art in ASO based therapeutics, featuring the more recent developments in terms of clinical translation and the use of nanomedicine for the effective delivery of therapeutic nucleic acids towards precision medicine.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"96f256f5bb2e750c7496b3c0b62cb95a",bookSignature:"Prof. Pedro Baptista and Prof. Alexandra R Fernandes",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9571.jpg",keywords:"gene therapy, gene silencing, genome modulation, post-transcriptional modulation, modified oligonucleotides, PNAs, LNAs, siRNA, antisense nucleotides, vectorization of antisense nucleotides, nanotheranostics, clinical translation, nanoparticles for gene delivery",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 25th 2019",dateEndSecondStepPublish:"November 15th 2019",dateEndThirdStepPublish:"January 14th 2020",dateEndFourthStepPublish:"April 3rd 2020",dateEndFifthStepPublish:"June 2nd 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"82671",title:"Prof.",name:"Pedro",middleName:null,surname:"Baptista",slug:"pedro-baptista",fullName:"Pedro Baptista",profilePictureURL:"https://mts.intechopen.com/storage/users/82671/images/system/82671.jpg",biography:"Pedro Viana Baptista (b.1972) holds a degree in Pharmaceutical Sciences (1996) from the Universidade de Lisboa. He obtained his PhD in Human Molecular Genetics from the School of Pharmacy, University of London in 2000. In 2001 moved to FCT-NOVA where he created the Nanomedicine Group, which he leads. Currently, he is Full Professor of Molecular Genetics & Nanomedicine at the Department of Life Sciences, FCT-NOVA and responsible for the NanoImunoTech Group – Nanomedicine in the Applied Biomolecular Sciences Research Unit. His work focuses on the biomedical applications of nanoparticle-based strategies towards light-induced cancer therapy and as gene silencing platforms (including siRNA, antisense and nanobeacons). Coordinates several research projects focused on the use of nanotechnology for molecular diagnostics and nanotheranostics, including nanoparticles for diagnostics and therapy; biosensors (TFTs and ISFETs); medium-throughput SNP analysis platforms, and nanoparticle-based therapies (nanovectors for siRNA and antisense therapy, targeted combined therapies).",institutionString:"Universidade Nova de Lisboa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universidade Nova de Lisboa",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:{id:"253664",title:"Prof.",name:"Alexandra R",middleName:null,surname:"Fernandes",slug:"alexandra-r-fernandes",fullName:"Alexandra R Fernandes",profilePictureURL:"https://mts.intechopen.com/storage/users/253664/images/system/253664.jpg",biography:"Alexandra R. Fernandes is an Assistant Professor at the Department of Life Sciences, FCT-NOVA where she leads the group of Cancer Therapeutics dedicated to assessing novel compounds against tumor cells and elucidate the underlying molecular mechanisms. She has obtained her PhD in Biotechnology from IST-UL and, before joining FCT-NOVA, was responsible for setting up key molecular genetics diagnostics facilities in Portugal.",institutionString:"Universidade Nova de Lisboa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universidade Nova de Lisboa",institutionURL:null,country:{name:"Portugal"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38576",title:"UWB Antennas for Wireless Applications",doi:"10.5772/51403",slug:"uwb-antennas-for-wireless-applications",body:'\n\t\tCurrently, there is an increased interest in ultra-wideband (UWB) technology for use in several present and future applications. UWB technology received a major boost especially in 2002 since the US Federal Communication Commission (FCC) permitted the authorization of using the unlicensed frequency band starting from 3.1 to 10.6 GHz for commercial communication applications [1]. Although existing third-generation (3G) communication technology can provide us with many wide services such as fast internet access, video telephony, enhanced video/music download as well as digital voice services, UWB –as a new technology– is very promising for many reasons. The FCC allocated an absolute bandwidth up to 7.5 GHz which is about 110% fractional bandwidth of the center frequency. This large bandwidth spectrum is available for high data rate communi-cations as well as radar and safety applications to operate in. The UWB technology has another advantage from the power consumption point of view. Due to spreading the ener-gy of the UWB signals over a large frequency band, the maximum power available to the antenna –as part of UWB system– will be as small as in order of 0.5mW according to the FCC spectral mask. This power is considered to be a small value and it is actually very close to the noise floor compared to what is currently used in different radio communica-tion systems [2].
\n\t\t\tUWB antennas, key components of the UWB system, have received attention and significant research in recent years [3]-[28]. With theincreasing popularity of UWB systems, there have been breakthroughs in the design of UWB antennas. Implementation of a UWB system is facing many challenges and one of these challenges is to develop an appropriate antenna. This is because the antenna is an important part of the UWB system and it affects the overall performance of the system. Currently, there are many antenna designs that can achieve broad bandwidth to be used in UWB systems such as the Vivaldi antenna, bi-conical antenna, log periodic antenna and spiral antenna as shown in Fig. 1. A Vivaldi antenna [3]-[4] is one of the candidate antennas for UWB operation. It has a directional radiation pattern and hence it is not suitable for either indoor wireless communication or mobile/portable devices which need omni-directional radiation patternsto enable easyand efficient communication between transmitters and receivers in all directions. Mono-conical and bi-conical antennas [5] have bulky structures with large physical dimensions which limit their applications. Also, log periodic [6] and spiral antennas [7] are two different UWB antennas that can operate in the 3.1-10.6 GHz frequency band but are not recommended for indoor wireless communicationapplications or mobile/portable devices. This is because they have large physical dimensions as well as dispersive characteristics with frequency and severe ringing effect [6]. This is why we are looking for another candidate for UWB indoor wireless communications and mobile/portable devices that can overcome all these shortcomings. This candidate is the planar or printed monopole antenna [8]-[28]. Planar monopole antennas [8]-[10] with different shapes of polygonal (rectangular, trapezoidal...etc), circular, elliptical…etc have been proposed for UWB applications as shown in Fig. 2.
\n\t\t\tDue to their wide frequency impedance bandwidth, simple structure, easy fabrication on printed circuit boards (PCBs), and omni-directional radiation patterns, printed PCB versions of planar monopole antennas are considered to be promising candidates for applications in UWB communications. Recent UWB antenna designs focus on small printed antennas because of their ease of fabrication and their ability to be integrated with other components on the same PCBs [11]-[19]. Fig. 3 illustrates several realizations of planar PCB or printed antenna deigns.
\n\t\t\tHowever, there are several existing NB communication systems operating below 10.6 GHz in the same UWB frequency band and may cause interference with the UWB systems such as IEEE 802.11a WLAN system or HIPERLAN/2 wireless system. These systems operate at 5.15-5.825 GHz which may cause interference with a UWB system. To avoid the interference with the existing wireless systems, a filter with bandstop characteristics maybe integrated with UWB antennas to achieve a notch function at the interfering frequency band [21]-[28]. Fig. 4 shows several developed bandstop antenna designs.
\n\t\t\t\tThis chapter focuses on the development of different novel UWB microstrip-line-fed printed disc monopole and hybrid antennas with an emphasis of their frequency domain performance. Different antenna configurations are proposed and designed in order to find a good candidate for UWB operation. The reasonable antenna candidate should satisfy UWB performance requirements including small size, constant gain, radiation pattern stability and phase linearity through the frequency band of interest. Also, the designed UWB antenna should have ease of manufacturing and integration with other mi-crowave components. We have simulated, designed, fabricated and then tested experi-mentally different printed disc monopole antenna prototypes for UWB short-range wireless communication applications. The printed disc monopole antennas are chosen because they have small a size and omni-directional radiation patterns with large bandwidth. In order to understand their operation mechanism that leads to the UWB characteristics, those antenna designs are numerically studied. Also, the important physical parameters which affect the antenna performances are investigated numerically using extensive parametric studies in order to obtain some quantitative guidelines for designing these types of antennas.
\n\t\t\t\t(a) Vivaldi antenna [4] (b) Mono-conical and bi-conical antenna [5] (c) Log-periodic antenna [6] and (d) Spiral and conical spiral antenna [7].
Modified shape planar antennas for UWB applications (a) rectangular, (b) circular and elliptical, (c) other shapes.
Planar PCB or printed antenna designs [8]-[20].
Printed antenna designs with single bandstop functions [21]-[28].
Printed disc monopole antennas are considered to be good candidates for UWB applications because they have a simple structure, easy fabrication, wideband characteristics, and omni-directional radiation patterns [11]-[28]. The geometry of the reference printed circular disc monopole antenna is shown in Fig. 5. To determine the initial parameters of the printed circular disc monopole antenna, we should first understand their operation mechanism. It has been shown that disc monopoles with a finite ground plane are capable of supporting multiple resonant modes instead of only one resonant mode (as in a conventional circular patch antenna) over a complete ground plane [29]. Overlapping closely spaced multiple resonance modes (f1, f2, f3, …, fN) as shown in Fig. 6 can achieve a wide bandwidth and this is the idea behind the UWB bandwidth of circular disc monopole antennas. The frequency of the first resonant mode can be determined by the size of the circular disc. At the first resonance f1, the disc antenna tends to behave like a quarter-wavelength monopole antenna, i.e. λ/4. That means the diameter of the circular disc is 2r = λ/4 at the first resonant frequency.
\n\t\t\tThe configuration of the reference printed circular disc monopole antenna showing the necessary antenna parameters.
The concept of overlapping closely-spaced multiple resonance modes for the reference circular disc monopole antenna (reproduced from [30]).
Then the higher order modes f2, f3, …,fN will be the harmonics of the first or fundamental mode of the disc. Unlike the conventional patch antennas with a complete ground plane, the ground plane of disc monopole antennas should be of a finite length LG to support multiple resonances and hence achieve wideband operation. The width of the ground plane W is found to be approximately twice the diameter of the disc or W=λ/2 at the first resonant [17].
\n\t\t\tThe printed disc monopole antenna can be fed using different feeding techniques such as microstrip line, coplanar waveguide (CPW), aperture coupling, or proximity coupling. In the case of a microstrip line feed, the width of the microstrip feed line Wfeed is chosen to achieve a 50Ω characteristic impedance. The other antenna parameters such as the feed gap between the finite ground plane and the radiating circular disc d and the length of the finite ground plane LG can be determined using a full-wave EM numerical modeling techniques. The small feed gap between the finite ground plane and the radiating circular disc d is a very critical parameter which greatly affects the antenna impedance matching between the microstrip feedline and the radiating disc.
\n\t\t\tThe idea of integrating a bandstop filtering element to the reference circular disc monopole antenna.
To avoid interference with some existing wireless systems in the 5.15-5.825 GHz frequency band, a filter with bandstop characteristics maybe integrated with UWB antennas to achieve a notch function at the interfering frequency band. The idea of integrating a bandstop filtering element to the monopole antenna is illustrated in Fig. 7. Recently, several techniques have been introduced to achieve a single band notch within this frequency band. The most popular technique is embedding a narrow slot into the radiating patch. The slot may have different shapes such as C- shaped, slit ring resonator (SRR), L- shaped,U- or V- shaped, π-shaped slot.…etc. Some other techniques are based on using parasitic strips, i.e., inverted C-shaped parasitic strip. Other techniques are based on using a slot defected ground structure in the ground plane, i.e., H-shaped slot DGS.
\n\t\t\t\n\t\tAs mentioned in the introductory section of this chapter, there are several types of printed disc monopoles which exhibit ultra-wide impedance bandwidth. Here, different categories of disc monopoles will be investigated both numerically and experimentally.
\n\t\t\tFor better understanding the antenna characteristics, the antenna reflection coefficient (S11) curves are plotted in decibel or dB scale, i.e. (S11dB = 20 log|S11| = –Return loss RL).The geometry and photograph of the proposed printed circular disc monopole antenna with two steps and a circular slot is shown in Fig. 8. The radiating element is fed by a 50Ω microstrip feed line with width of Wf = 4.4 mm. The substrate used in our design is Rogers RT/duroid 5880 high frequency laminate with thickness of h = 1.575 mm, relative permittivity of εr = 2.2 and loss tangent of tanδ = 0.0009. A finite ground plane of length LG and width W lies on the other side of the substrate. The feed gap of width d between the finite ground plane and the radiating patch is a very critical parameter for antenna matching purposes and to obtain wide bandwidth performance. This proposed antenna has a reduction in the overall antenna surface area compared to those reported in [16] and [19]. A parametric study is carried out to investigate the effect of antenna physical parameters such as the width of the substrate W, the width of the feed gap d, the radius of circular slot RS and the steps dimensions W1, W2, L1 and L2 on the performance of the proposed UWB antenna.
\n\t\t\t\t(a) Geometry and (b) photograph of the proposed microstrip line fed monopole antenna.
During the parametric study, one parameter varies while all other parameters are kept fixed. The optimized antenna parameters are: W = 41 mm, L = 50 mm, LG = 18 mm, R = 10 mm, Δy = 2 mm, RS = 3 mm, W1 = 8 mm, W2 = 4 mm, L1 = 3 mm and L2 = 3 mm. Fig. 9 shows the simulated antenna reflection coefficient (20 log|S11|) curves using CST Microwave Studio TM package for different values of substrate width W, feed gap width d, slot radius RS and the steps dimensions W1, W2, L1 and L2. It can be noticed from results that the smallest substrate width for obtaining the maximum available bandwidth is W = 41 mm. It can be also seen that the reflection coefficient impedance bandwidth is greatly dependent on both the feed gap width d and the circular slot radius RS and by controlling these two parameters, the impedance matching between the radiating patch and the feed line can be easily controlled. By tuning the width of the feed gap d, the maximum achieved impedance bandwidth is determined. The circular slot inside the radiating patch acts as an impedance matching element which controls the antenna impedance matching as well as the antenna bandwidth. Also, the circular slot inside the radiating patch can be used for miniaturizing the monopole antenna. Also, it can be noticed that the rectangular steps have no remarkable effect on the overall antenna impedance bandwidth. The opti-mum values for feed gap width, slot radius and steps dimensions are d = 1 mm, RS = 3 mm and W1 (= 2W2) = 8 mm and L1 (= L2) = 3 mm, respectively.
\n\t\t\t\t\tParametric studies of effect of (a) substrate width W (b) feed gap width d (c) circular slot radius RS and (d) steps dimensions W1 and L1 on antenna reflection coefficient.
Cutting out two rectangular steps and a circular slot from the radiating patch to reduce the overall metallic area and hence reduce the antenna copper losses without affecting the antenna operation or disturbing the current distribution of the antenna is a challenging task. This can be done by investigating the antenna surface current distributions. Fig. 9 presents the antenna surface current and electric field distributions for the proposed disc monopole antenna. From the electric field distributions, it is noticed that the monopole antenna supports multiple resonant modes. It can be seen that the current distribution is mainly located close to the radiating patch edges rather than in the center. For increasing the maximum achieved impedance bandwidth, the lower resonant frequency should be decreased. This can be done by increasing the antenna perimeter which directly affects lower resonant frequency and then the antenna impedance bandwidth. To increase the antenna perimeter, cutting out steps from the radiating patch are used here. This is simply because the surface current will take longer path when the antenna perimeter p is larger and the new antenna with larger perimeter appears to be like a longer length monopole and then the lowest resonance frequency fL will be decreased according to [14]:
\n\t\t\t\t\t\n\t\t\t\t\tSimulated (a) surface current and (b) electric field distributions at the three re-sonant frequencies 3.3, 6.9 and 10.2 GHz.
where εeff is the effective dielectric constant and the perimeter p units are in millimeters.
\n\t\t\t\t\tFor example, in the proposed antenna design, p = 71.4 mm, εr = 2.2, then εeff = 1.6 and the calculated lower resonant frequency using Eq. (2) is found to be fL ≈ 3.3 GHz. From the simulated and measured reflection coefficient results shown in Fig. 10, the lower resonant frequency is fL ≈ 3.3 GHz which agrees well with the calculated value.
\n\t\t\t\tA prototype of the microstrip-line-fed monopole antenna with optimized dimensions was fabricated as shown in Figure8and tested experimentally in the Applied Electromagnetics Laboratory at Concordia University. All scattering parameters measurements were carried out using Agilent E8364B programmable network analyzer (PNA). The measured and simulated reflection coefficient (S11) curves are presented in Fig. 11. It can be noticed that both measured and simulated results are in good agreement with each other and the measured 10 dB return loss bandwidth ranges from 3.0 to 11.4 GHz which covers the entire UWB frequency spectrum. Compared to the simulated results, the second resonant frequency at 7 GHz is shifted up while the third resonant frequency at 10 GHz is shifted down. This may be due to the sub-miniature version A (SMA) connector losses and/or substrate losses especially at high frequencies (7-10 GHz). Even the loss effect of the substrate is modeled correctly and taken into account in the simulations; the simulation results did not change too much and did not agree with the measured results. In general, the proposed antenna exhibits an UWB impedance bandwidth (3.1-10.6 GHz) in both simulated and measured results.
\n\t\t\t\t\tMeasured and simulated reflection coefficient curves of the proposed antenna.
For further understanding the antenna performance, the Ansoft HFSS simulated maximum realized total directive gain in the boresight direction and the phase of reflection coefficient ∠S11 for the proposed antenna are presented in Fig. 12. The boresight of directional antenna is defined as the direction of maximum gain of the antenna. For most of antennas, the boresight is the axis of symmetry of the antenna, i.e. z-axis. It can be seen that the antenna has good gain stability across the frequency band of interest (3.1-10.6 GHz).It ranges from 3.4 dB to 5.2 dB with gain variation of about 2dB. The behavior of the phase of reflection coefficient ∠S11 versus frequency is also studied and shown in the same figure. It can be noticed that the phase seems to be linear across the whole UWB frequency range.
\n\t\t\t\t\t\n\t\t\t\t\tThe simulated gain and phase of reflection coefficient ∠S11 versus frequency of the proposed microstrip-line-fed monopole antenna.
\n\t\t\t\t\t\tFig. 13 shows the radiation characteristics for the proposed antenna. Both yz-cut plane (E-plane) and xz-cut plane (H-plane) radiation patterns have been simulated using Ansoft HFSS and measured in an anechoic chamber at the three resonant frequen-cies 3.3, 6.8, and 10.2 GHz. From the measured results, the proposed antenna has omni-directional radiation pattern in H-plane at lower frequency (3.3 GHz) and near omni-directional at higher frequencies (6.9 and 10.2 GHz) with good agreement with simula-tions. The measured E-plane radiation patterns agree with the simulations especially at lower frequency (3.3 GHz) while the agreement is not as good as the H-plane patterns at higher frequencies (6.9 and 10.2 GHz). There are some ripples and discrepancies in the measured radiation patterns especially at the higher frequencies which may be due to sen-sitivity and accuracy of the measuring devices at higher frequencies in addition to the ef-fects of the SMA feed connector and the coaxial cable. The E-plane is identified by most of UWB antenna patterns which is perpendicular to H-plane (almost symmetric). Re-searchers in UWB antenna typically define E-plane as the plane containing the feedline and the maximum radiation of the antenna. H-plane is the plane perpendicular to E-plane.
\n\t\t\t\t\tWe have investigated both simulated and measured E-plane patterns. From simu-lations, nulls in E-plane at θ = 90° depend on the size of the finite ground plane and the contact point of SMA feed connector in particular at the upper edge frequency. By searching several published UWB antennas of similar disc monopole antennas, similar behavior of measured results are reported in many papers including [31]-[34].
\n\t\t\t\t\tMeasured co-pol (blue solid line), cross-pol (red dashed line), Ansoft HFSS simulated co-pol (green dash-dotted line) and cross-pol (magenta dotted line), (a) E-plane and (b) H-plane radiation patterns of the proposed antenna.
A modification can be made to the above designed antenna for achieving the bandstop function to avoid possible interference to other existing WLAN systems. A very narrow arc-shaped slot is cut away from the radiating patch as shown in Fig. 14 (a) will act as a filter element to make the antenna will not respond at the bandstop frequency. For perfect band-rejection performance of UWB antenna, the return loss of the stop-band notch should be almost 0dB or the reflection coefficient is almost 1.0. However, in our first band-stop antenna design, we could achieve voltage standing wave ratio (VSWR) of about 8 (reflection coefficient is 0.78 or -2.1 dB). The arc-shaped slot filter element di-mensions will control both the bandstop frequency fnotch and the rejection bandwidth of the band-notched filter BWnotch. The arc-shaped slot filter dimensions are: the radius of the slot R1, the thickness of the slot T and the slot angle 2α. Fig. 14 (b) illustrates the simulated reflection coefficient curves using both HFSS and CST MWS for comparison. From the simulation results, it can be seen that the band-notched characteristic in the 5.0-6.0 GHz band is achieved with good agreement between them.
\n\t\t\t\t\tParametric studies were carried out to address the effect of arc-shaped slot dimen-sions on the band-notched performance. Figures 15 shows the effect of varying the slot radius R1, slot thickness T and the slot angle 2α parameters on the simulated antenna ref-lection coefficient, respectively. From results in Fig. 15 (a) & (c), it can be seen that the notch frequency fnotch decreases by increasing both the arc-shaped slot radius R1 and the angle 2α while the notch bandwidth BWnotch is almost the same. On the other side, both the notch frequency and bandwidth increase at the same time by increasing the slot thickness T. For achieving a band-notched performance in the 5-6 GHz frequency band, the arc-shaped slot parameter dimensions are: R1 = 7.5 mm, T = 0.7 mm and 2α = 160°.
\n\t\t\t\t\t(a) Geometry of the band-notched antenna, R1 = 7.5 mm, T = 0.7 mm and 2α = 160° (b) Simulated reflection coefficient curves versus frequency.
Simulated reflection coefficient curves versus frequency for different values of (a) arc-shaped slot radius R1, (b) thickness of the slot T and (c) the slot angle 2α.
In this section, we developed different maple-leaf shaped monopole antennas with two band-rejection techniques for the 5.0-6.0 GHz frequency band. Fig. 16 (a) & (b) show the geometrical configuration and the photograph of the proposed UWB maple-leaf-shaped monopole antenna prototype. The radiating element consists of a maple-leaf-shaped patch as a radiating element which represents the Canada flag symbol. The radiat-ing patch is fed by a microstrip line and both are etched on a Rogers RT Duroid 5880 substrate with dielectric constant εr = 2.2, dielectric loss tangent tanδ = 0.0009, and thickness h = 1.575 mm. The proposed antenna parameters L1 ~ L10 are determined using an extensive parametric study and optimization in both Ansoft HFSS and CST MWS to address the effect of those parameters on the overall performance of the antenna. Details of the optimized parameters are summarized in Table 1. Our target here is to design a compact antenna for UWB operation. So, we tried to reduce the overall antenna size by reducing the substrate dimensions from 50 × 41 mm2 as in the previous antenna design to 35.48 × 30.56 mm2 as in the present antenna design. Here, there is a reduction in the an-tenna size by almost 47% compared to our first proposed antenna prototype, i.e. circular disc monopole antenna with two steps and a circular slot.
\n\t\t\t\t\n\t\t\t\t\t\t\tParameter | \n\t\t\t\t\t\t\tW | \n\t\t\t\t\t\t\tL | \n\t\t\t\t\t\t\tLG | \n\t\t\t\t\t\t\tW1 | \n\t\t\t\t\t\t\tWf | \n\t\t\t\t\t\t\td | \n\t\t\t\t\t\t\tL1 | \n\t\t\t\t\t\t\tL2 | \n\t\t\t\t\t\t
Value (mm) | \n\t\t\t\t\t\t\t30.48 | \n\t\t\t\t\t\t\t35.56 | \n\t\t\t\t\t\t\t12.95 | \n\t\t\t\t\t\t\t5.59 | \n\t\t\t\t\t\t\t4.06 | \n\t\t\t\t\t\t\t0.84 | \n\t\t\t\t\t\t\t2.27 | \n\t\t\t\t\t\t\t7.47 | \n\t\t\t\t\t\t
Parameter | \n\t\t\t\t\t\t\tL3 | \n\t\t\t\t\t\t\tL4 | \n\t\t\t\t\t\t\tL5 | \n\t\t\t\t\t\t\tL6 | \n\t\t\t\t\t\t\tL7 | \n\t\t\t\t\t\t\tL8 | \n\t\t\t\t\t\t\tL9 | \n\t\t\t\t\t\t\tL10 | \n\t\t\t\t\t\t
Value (mm) | \n\t\t\t\t\t\t\t2.65 | \n\t\t\t\t\t\t\t4.10 | \n\t\t\t\t\t\t\t4.34 | \n\t\t\t\t\t\t\t3.05 | \n\t\t\t\t\t\t\t5.39 | \n\t\t\t\t\t\t\t7.73 | \n\t\t\t\t\t\t\t4.02 | \n\t\t\t\t\t\t\t5.24 | \n\t\t\t\t\t\t
Maple-leaf Shaped Printed Monopole Antenna Dimensions (Units in mm).
The maple-leaf shaped monopole antenna is used to achieve wider impedance matching bandwidth by introducing many leaf arms into the main radiating patch. This will lead to increasing the overall perimeter of the antenna and hence the monopole an-tenna looks bigger in size than its real physical size. This is simply because the current takes paths close to the edges rather than inside the radiating patch. The proposed maple-leaf shaped monopole antenna has a wider bandwidth with smaller size compared to the first UWB antenna design (stepped monopole antenna).
\n\t\t\t\t\n\t\t\t\t\tFig. 17 (a) illustrates the simulated and measured reflection coefficient curves against the frequency for the designed maple-leaf antenna. It can be noticed from the re-sults that the proposed antenna exhibits a simulated impedance bandwidth from 3 to 13 GHz with good agreement between Ansoft HFSS and CST simulation programs while the measured impedance bandwidth becomes dual-band, one in 4.1-7.0 GHz and the other one in 8.7-13.3 GHz. The explanation for the difference between the measured and simulated results can be easily understood if we mention that both simulated reflection coefficient curves are already very close or even touch the -10 dB level in the region 7.0-9.0 GHz frequency band. So, if there is any manufacturing error in the antenna parameters L1 ~ L10 during the fabrication proposes of the antenna prototype will be a big issue. This is in addition to calibration errors during S-parameters measurement and the effect of SMA connector which was not taken into account during simulations. Also, the manufacturing tolerance as well as the effect of SMA connector has been simulated in CST MWS program and simulation results are shown in Fig. 17 (b) and it is found from the obtained result that it confirms the above explanation.
\n\t\t\t\t\n\t\t\t\t(a) Geometry and (b) photograph of the proposed maple-leaf shaped printed monopole antenna prototype.
The antenna radiation characteristics across the whole UWB frequency band were also investigated. Fig. 18 shows both the measured and simulated E- and H-plane radiation patterns at frequencies 3, 5, 7, and 9 GHz, respectively. The measured H-plane radiation patterns are very close to those obtained in the simulation. It can be noticed that the H-plane patterns are omni-directional at all frequencies of interest. The measured E-plane patterns follow the shapes of the simulated ones, though the agreement is not as good as the H-plane patterns. There are some fluctuations, ripples and distortions on the measured curves, which may be caused by the SMA feed connector and the coaxial cable.
\n\t\t\t\t(a) Measured and simulated reflection coefficient curves of the maple-leaf an-tenna (b) effect of fabrication tolerance on the performance of maple-leaf antenna.
Measured (red solid line) and simulated (blue dashed line) (a) E-plane and (b) H-plane radiation patterns of the maple-leaf antenna.
We developed two different band-notched antennas using two different tech-niques for band rejection. Fig. 19 (a) introduces the first proposed band-notched anten-na which is designed by modifying the above maple-leaf antenna by cutting a narrow H-shaped slot away from the radiating patch. The H-slot acts as a filtering element where slot dimensions control the rejection band of the band-notched filter. Fig. 19 (b) presents the second proposed band-notched antenna which is designed by cutting two narrow rectangular slits in the ground plane making a DGS. In the maple-leaf band-stop antennas, we achieved VSWR of 10 (reflection coefficient is 0.82 or -1.7 dB) with H-shaped slot and VSWR of 24 (reflection coefficient is 0.92 or -0.7 dB) with two slits in the ground. It can be concluded that using two slits in the ground plane achieves better rejection characteristics compared to using narrow slots (either arc-shaped or H-shaped) in the radiating patch.
\n\t\t\t\t\tPhotograph and geometry of the proposed bandstop antennas using (a) H-slot (b) two slits.
In both techniques, we can control both the notch center frequency fnotch and the bandwidth BWnotch by adjusting the H-slot and the two slits dimensions, respectively. In the first band-notched antenna, we adjust the slot length LS, thickness WS, and location from the substrate edge DS to control the bandstop characteristic. In the second band-notched antenna, we control the bandstop characteristic by adjusting the two rectangular slits length LS, thickness WS, and distance between them S. The remarkable thing here is that the notch center frequency fnotch is controlled by adjusting the mean length of the slot or the two slits to be about one half-wavelength, i.e. λ/2 at the desired notched frequency. For example, the calculated mean length of the H-shaped slot is about 26 mm and the calculated λ/2 at the notch frequency fnotch = 5.5 GHz is 27.7 mm. It is found that the notch bandwidth BWnotch can be controlled by adjusting the thickness of the slot or the two slits.
\n\t\t\t\t\t\n\t\t\t\t\t\tFig. 20 (a) & (b) present the simulated and measured reflection coefficient curves of both band-notched antennas with H-slot (WS = 0.65 mm, LS = 8.6 mm and DS = 18.6 mm) and two slits (WS = 0.5 mm, LS = 10.2 mm, and S = 3 mm), respectively. It is ob-vious from the results that the bandstop function in the 5.0-6.0 GHz is successfully achieved for both antenna designs. The discrepancies in the 7-9 GHz frequency band come from the maple-leaf antenna itself not from the filter elements for band rejection. It can also be noticed that these discrepancies in the 7-9 GHz frequency band are more re-markable in the first prototype than the second one. This is may be due to the effect of using DGS in the finite ground plane enhanced the antenna performance in the 7-9 GHz frequency band.
\n\t\t\t\t\tMeasured and simulated reflection coefficient curves for bandstop antennas (a) using an H-slot and (b) using two slits.
\n\t\t\t\t\t\tFig. 21 and Fig. 22 show the CST simulated surface current distributions over different frequencies, i.e. 3, 5.5 and 7 GHz for both band-notched antenna designs with H-slot and two slits, respectively. It can be noticed that at the bandstop frequency 5.5 GHz, nearly all the currents are trapped at the H-shaped slot or two slits which are preventing the current from radiation while at the radiation frequencies 3 and 7 GHz, the current is uniformly distributed through the whole radiating patch.
\n\t\t\t\t\tThe CST simulated antenna maximum realized gains in the bore-sight direction versus frequency for the maple-leaf antenna, band-notched antennas with H-slot and two slits are presented in Fig. 23. It can be seen that the maple-leaf antenna gain is almost stable over the whole frequency band and it ranges from 2 dB to 4.3 dB with gain variation about 2.3 dB through the whole frequency band of interest. For band-notched antenna designs with H-slot and two slits, a sharp gain decrease is remarkably happened in the 5.0-6.0 GHz frequency band. Gain results ensure that the band-notched antennas are not responding in the bandstop frequency range between 5.0 and 6.0 GHz.
\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\tCurrent distributions for the first bandstop antenna at the (a) radiating frequency f1 = 4 GHz, (b) bandstop frequency f2 = 5.5 GHz and (c) the radiating frequency f3 = 7 GHz.
Current distributions for the second bandstop antenna at the (a) radiating frequency f1 = 4 GHz, (b) bandstop frequency f2 = 5.5 GHz and (c) the radiating frequency f3 = 7 GHz.
Simulated gain curves versus frequency for all three maple-leaf antennas.
In this section we continue to enhance the UWB antenna performance to obtain a compact in size antenna with maximum possible impedance bandwidth for UWB opera-tion. We are considering the design of two compact omni-directional UWB antennas with different shape of radiating patches. The first design is the butterfly-shaped monopole antenna while the second one is trapezoidal-shaped monopole antenna with a bell-shaped cut as shown in Fig. 24 (a) and (b), respectively. The butterfly-shaped monopole an-tenna size is 35 × 35 mm2 which is bigger than the previous maple-leaf-shaped antenna (35.5 × 30.5 mm2) by about 13%. The other proposed design is the trapezoidal-shaped monopole antenna of size 34 × 30 mm2 which is smaller than the maple-leaf-shaped an-tenna by about 6%. The best candidate among all printed disc monopole antennas from the antenna size point of view is the trapezoidal antenna with bell-shaped cut. Moreover, the candidate antenna still has UWB impedance bandwidth with reasonable stable radia-tion characteristics and constant gain through the desired frequency range.
\n\t\t\t\t\n\t\t\t\tBoth proposed antennas are etched on 1.575mm-thick Rogers RT 5880 substrate and fed by 50Ω characteristic impedance microstrip line. The finite ground plane length is LG = 10 mm and the feed gap width is d = 0.5 mm. The butterfly-shaped antenna consists of a radiating element of two overlapped elliptical discs of major radius a = 16.6 mm and a minor radius b = 10.4 mm (elliptically ratio a/b ≈ 1.6 forming the two wings of the butterfly). Two annular slot rings of an outer radius r1 = 2 mm and an inner radius r2 = 1 mm have been cut out from the radiating patch. They are located at distance c (= e) = 5.2 mm from the two ellipses’ edges. These slot rings can increase the bandwidth of the proposed antenna and they are useful to reduce the overall metallic area.
\n\t\t\t\tGeometry and photograph of the (a) butterfly-shaped (b) trapezoidal-shaped monopole antenna.
The trapezoidal-shaped antenna consists of a trapezoidal patch of dimensions L1 = 12 mm, L2 = 11 mm, W1 = 10 mm and bevel angle α = 55.7°. Two elliptical cuts have been cut out from the radiating patch forming a bell shaped cut. The first elliptical cut is of a major radius Rx1 = 10 mm and a minor radius Ry1 = 6 mm (elliptically ratio Rx1/Ry1 = 1.67). The second elliptical cut is of a minor radius Rx2 = 6 mm and a major radius Ry2 = 14 mm (elliptically ratio Ry2/Rx2 = 2.33). An antenna prototype of both structures with optimized parameters has been fabricated for experimental investigation.
\n\t\t\t\tMeasured and simulated reflection coefficient curves of the (a) butterfly antenna and (b) trapezoidal antenna.
The measured and simulated reflection coefficient curves against frequency for butterfly and trapezoidal antennas are plotted in Fig. 25, respectively. It is observed from the results that the simulated reflection coefficient with Ansoft HFSS and CST are almost in good agreement and both antennas exhibit wide impedance bandwidth from 3 GHz to beyond 12 GHz (FBW is > 110%) for both antennas. The measured results shows that the both antenna designs still have wide impedance bandwidth covering the UWB frequency range. It is shown that there are different resonances occur at different frequencies across the UWB frequency range and the overlap among these resonances achieve the wide bandwidth characteristic of those types of printed monopole antenna. The measured and simulated E- and H-plane radiation patterns at frequencies 3, 5, 7 and 9 GHz are illustrated in Fig. 26 and Fig. 27, respectively. As expected, both antennas exhibit a dipole-like radiation patterns in E-plane and good omni-directional radiation patterns in H-plane.
\n\t\t\t\t\n\t\t\t\t\n\t\t\t\tMeasured (red solid) and simulated (blue dashed) (a) E-plane and (b) H-plane radiation patterns for butterfly antenna.
E- and H-plane radiation patterns of the trapezoidal antenna. Blue dashed lines for simulated and red solid lines for measured.
Both physical and electrical properties of different UWB disc monopole antennas for short-range wireless communications are summarized in Table 2. The comparison includes the overall antennas dimensions, 10 dB return loss bandwidth, realized gain and groub delay features. It can be seen that the Trapezoidal monopole antenna with bell-shaped cut is the good candidate among all proposed antenna designs in terms of both physical and electrical propoerties.
\n\t\t\t\n\t\t\t\t\t\t\tParameter | \n\t\t\t\t\t\t\tCircular disc monopole with two steps and a circular slot | \n\t\t\t\t\t\t\tMaple-leaf antenna | \n\t\t\t\t\t\t\tButterfly antenna | \n\t\t\t\t\t\t\tTrapezoidal antenna with bell-shaped cut | \n\t\t\t\t\t\t
Dimensions (mm) | \n\t\t\t\t\t\t\t41 × 50 × 1.575 | \n\t\t\t\t\t\t\t30.5 × 35.5 × 1.575 | \n\t\t\t\t\t\t\t35 × 35 × 1.575 | \n\t\t\t\t\t\t\t30 × 34 × 1.575 | \n\t\t\t\t\t\t
10 dB RL bandwidth (GHz) | \n\t\t\t\t\t\t\t3.0~11.5 | \n\t\t\t\t\t\t\t4.1~7.0, 8.7~13.3 (Dual-band) | \n\t\t\t\t\t\t\t3.0~10.8 | \n\t\t\t\t\t\t\t3.2~11.4 | \n\t\t\t\t\t\t
10 dB RL bandwidth (%) | \n\t\t\t\t\t\t\t117% | \n\t\t\t\t\t\t\t52%, 42% | \n\t\t\t\t\t\t\t113% | \n\t\t\t\t\t\t\t112% | \n\t\t\t\t\t\t
Realized gain (dB) | \n\t\t\t\t\t\t\t3.4~5.2 ±1.8 | \n\t\t\t\t\t\t\t2.0~4.3 ±2.3 | \n\t\t\t\t\t\t\t2.0~4.7 ±2.7 | \n\t\t\t\t\t\t\t2.7~5.3 ±2.6 | \n\t\t\t\t\t\t
Group delay (ns) | \n\t\t\t\t\t\t\t4.2 | \n\t\t\t\t\t\t\t2.7 | \n\t\t\t\t\t\t\t1.5 | \n\t\t\t\t\t\t\t4.2 | \n\t\t\t\t\t\t
Comparison among Different UWB Antenna Design Prototypes.
In this section, we investigate the transmission/reception (Tx/Rx) characteristics of different UWB antennas discussed above in both time and frequency domains. We set up various scenarios and study the communication link between two identical prototype an-tennas. The distance between the transmitting and receiving antennas is assumed to be 30 cm which is approximately 3 wavelengths at the lower frequency of the considered band of operation (antennas are in the far field of each other). Two different scenarios are established for our study. The first one is the face-to-face scenario where the two identic-al antennas are placed in vertical position facing each other at a separation distance be-tween the two antennas of d as shown in Fig. 28(a). The second case is the end-to-end scenario where the two antennas are placed in horizontal position facing each other at a separation distance d as shown in Fig. 28(b). This study is carried out calculated in the E-plane (ϕ = 90°) at different observation angles θ.
\n\t\t\t\tConfiguration of UWB transmission system in case of (a) face-to-face scenario and (b) end-to-end scenario.
For a complete description of the antenna characteristics, the time domain behavior is calculated in the E-plane (ϕ = 90°) at different observation angles: θ = 0°, 30°, 60°, 90°. Referring to Fig. 29(a), the incident wave arriving at the receiving antenna is assumed to be the fourth derivative of a Gaussian function
\n\t\t\t\t\twhere A = 0.1 and τ = 0.175 ns. The normalized spectrum of this pulse is illustrated in Fig. 29(b), and proves to comply with the required FCC indoor emission mask. Further refining the pulse spectrum can be achieved by utilizing some optimization algorithms. The pulse spectrum is then multiplied by the normalized antenna transfer functions and an inverse Fourier transform (IFT) is performed to achieve the required time domain response. The output waveform at the receiving antenna terminal can therefore be expressed by where represents an ideal bandpass filter from 1 to 18 GHz.
\n\t\t\t\t\t\n\t\t\t\t\t\tFig. 30 presents the CST Simulated radiation waveforms in the E-plane at different angles θ = 0°, 30°, 60°, 90° in face-to-face scenario for different UWB antenna prototypes.
\n\t\t\t\t\t(a) Received UWB pulse shape and (b) spectrum of a single received UWB pulse [35].
CST Simulated radiation waveforms in the E-plane at different angles θ = 0°, 30°, 60°, 90° in face-to-face scenario for (a) circular disc with two steps and a circular slot antenna (b) maple-leaf monopole antenna (c) butterfly monopole antenna (d) trapezoidal monopole antenna.
Since virtual probes are situated in the E-plane (ϕ = 90°), we expect the Tx/Rx system frequency-domain transfer function in face-to-face scenario to become more flat than end-to-end scenario. The separation distance between two transmit and receive antennas is set to d = 30 cm. The simulated impulse responses for both scenarios are given in Fig. 31(a) and (b), respectively. It is shown the ringing effect is slightly less in the face-to-face case compared to the end-to-end case. Fig. 32 shows the simulated transmission coefficients |S21| against frequency at different angles θ = 0°, 30°, 60°, 90° in face-to-face scenario for different UWB antenna prototypes.
\n\t\t\t\t\tCST Simulated transmission coefficients |S21| as a function of frequency for different UWB antennas in case of (a) face-to-face scenario (b) end-to-end scenario.
CST Simulated transmission coefficients |S21| as function of frequency at different angles θ = 0°, 30°, 60°, 90° in face-to-face scenario for (a) circular disc with two steps and a circular slot antenna (b) maple-leaf monopole antenna (c) butterfly monopole antenna (d) trapezoidal monopole antenna.
In this chapter, different UWB disc monopole antennas have been developed in microstrip PCB technology to achieve low profile and ease of integration. Parametric studies to see the effect of some antenna parameters on its performance have been numer-ically investigated. For further understanding the behavior of the proposed antennas, sur-face current distributions have been simulated and presented. Different techniques for obtaining bandstop function in the 5.0-6.0 GHz frequency band to avoid interference with other existing WLAN systems have been numerically and experimentally presented. The effects of band-notched parameters on the band-notch frequency and bandwidth have been studied. The chapter has investigated the frequency domain performances of different printed disc monopole antennas and hybrid antenna. Experimental as well as the simulated results have confirmed UWB characteristics of the proposed antennas with nearly stable omni-directional radiation properties over the entire frequency band of interest. These features and their small sizes make them attractive for future UWB applications.
\n\t\tThis research is partially supported by the King Saud University - National Plan for Sciences and Technology (NPST) through Research Grant 09ELE858-02 and by KACST Technology Innovation Center in RFTONICS hosted by King Saud University.
\n\t\tVulnerability is a broad concept that not only incorporates being individually exposed to physical, psychological, or emotional harms but also incorporates a social dimension that refers to the inability of people, communities, or societies to overcome the effect of stressors to which they are exposed and are at risk of not realizing their potential to achieve positive life outcomes [1]. As such, it can have its roots in poverty, in social exclusion, in ethnicity, in disability, or simply in disease or specific developmental phases in life. There has recently been a surge of interest in vulnerability within the scientific community, and different measures have been gradually developed both at macro- and at microtheoretic levels. The first level encompasses composite measures at a macrocountry level, to capture a country proneness to shocks and its ability to recover from shocks [2, 3], while the second one refers to individual or community levels of assessment that can be further aggregated to form a society or even a country vulnerability measure [4, 5]. It is, however, rather difficult to identify and assess vulnerability both at individual and community level, not only because of the different composite measures available but also because it involves a longitudinal perspective and tracking the well-being of a particular person, household, or community, over years or before and after that, a known hazard requires cost/effective tools that are seldom available.
\nThe issue turns to be even more complex when vulnerability is to be assessed in adolescents, where several of the available indicators progressively lose their explanative power [6]. Research, and empirical experience evidence, showed that adolescents do not always act by serving their own best interests. The perception they have of their own risks, in short- and long-term results, is far larger than the reality, as they frequently underestimate the risk associated with particular actions or more broadly particular choices. Within it, vulnerable youth embodies those characteristics and experiences that put them at risk of developing problem behaviors and outcomes that increase the potential to hurt themselves, their community, or more frequently both. In this context, in order to allow effective preventive or prompt interventions, it become extremely important to identify both the known indicators of vulnerability and the short-term consequences of that inability to successfully coping and overcoming the effect of stressors they are exposed to and not realizing their potential to achieve positive life outcomes.
\nInterdisciplinary research conceptualizing, measuring, and evaluating the burden of adolescent vulnerability and, with particular urgencies, that research aimed at identifying any factors that potentially protect or can buffer youths from its effects is sorely needed [7]. It is highly recommended, indeed, to mix approaches designed to explore as comprehensively as possible the complexity that coexists on risk and protective adolescents’ choices as well as the perception they have on their own vulnerability [6].
\nBased on premise, several sources of indicator have been proposed creating commonalities, in some cases, while posing on different divergent paradigms, in other cases. For example, a consistent set of commonalities is that of the so-called risk approach, in which risky behaviors are seen as the impact of youth vulnerability, as they constitute an empirical threat for their life. On the other side, there can be found the protective or the buffering approach aimed at identifying those individual or environmental characteristics or conditions that could reduce the effects of stressful life events [8]. An important contribution to both approaches is coming from the international WHO collaborative Health Behaviour in School-aged Children (HBSC) researchers’ group. HBSC is a four-year cross-national study that asks 11-, 13-, and 15-year-old youths about their health and well-being, about their social environments, and about their choices within a broad health and well-being framework [9].
\nThe HBSC is a more than 30 years long experience encompassing more than 350 researchers from 48 countries and regions, throughout the European region and in north America. HBSC must not be considered a standard epidemiological study, at least not that in which behaviors are simply collected as health threats. Instead, health-related behaviors, such as drinking, smoking, or even bullying or intersexual intercourses, are interpreted as the result of interconnected individual and social patterns within adolescent lifestyles. Hence, demographics and the macrosocial influences together with individual perceptions and choices are acknowledged, and for these reasons, it represents the best available source of vulnerability indicators, in the individual, familial, school, psychosocial environments, and macrolevel environments [71].
\nThe contribution coming from researchers across different disciplinary fields allowed the study to progressively expand and overcome the known scientific barriers [9]. The study represents the first and more extensive surveillance in the ages of adolescence. It allows researchers to shift from an individual point of view to a broader sight at a micro- and mesocommunity level and back again to the individual age, gender, and SES-specific level.
\nTo understand the evolutionary mechanisms that develop during adolescence, it is also important to consider, in addition to the aspect of neurophysiological development, the presence of risk factors, i.e., the concept of “vulnerability.” At the base of this concept, there is a basic assumption according to which, besides the physiological variability of the development, there is also the individual variability that can explain why some adolescents are particularly at risk of implementing dangerous, deviant behaviors. Adolescents have a tendency to implement coping strategies that lead to greater risks due to a natural neurophysiological and individual development. In this regard, according to the evolutionary point of view, the human brain ontogenetically continues its development from birth, during adolescence and then ages during the old age. In many areas of the brain, a number of connections between the various neurons increase exponentially in the first months and years of life, maturing in adolescents and then gradually decrease, decaying in elderly people. In particular, there is a brain area, the prefrontal cerebral cortex that follows more than others this trend, variation in the life span of each. It is involved in mental abilities and complex cognitive processes, such as language, decision-making, and social understanding even of complex social situations. In fact, neuroscience researches have helped to better understand this concept from an ontogenetic point of view, from birth to death. It emerged that there are two critical periods in the life of a human being, the adolescence and the old age, because this very important brain structure, the prefrontal cortex, is maturing during adolescence and decaying during old age, and this reflects the neural correlates of vulnerability.
\nIt is the area of the brain that is sensitive to the brain circuit of reward [10, 11], also sensitive to risk behaviors such as addiction and gambling. In fact, this brain area is responsible for the cognitive processes. These involve control and monitoring of cognitive processes [12] and behaviors also implemented in social relationships.
\nAll these aspects reflect very important vulnerability factors among biological, psychological, social, and behavioral variables.
\nTo date, no one has highlighted together two critical moments in life in which this brain area undergoes important variations: (i) adolescence, in which its development occurs, and (ii) old age, in which this area goes into cognitive decline with the relative loss of many higher cognitive functions. In detail what happens? Vulnerability in adolescence is examined through the example of anger.
\nAnger is a universal emotion, which we all feel, so it should not be too alarming. In reality, however, exactly the opposite happens: anger scares us. This happens because anger can be an expression of a loss of control, of a refusal to us, or it can still be an expression of real violence [13]. Despite being very common, rabies is also very difficult to define and describe: it involves physiological activations, muscular tensions, cognitive processes, subjective experiences, and evident behaviors. The latter, in particular, can be very different: angry people can be very aggressive or develop destructive [14].
\nRage and oppositional behavior, although not directly related to the onset of pathological disorders, are important risk factors, which, if encountered at a young age, can predict the onset of clinical problems [14]. For this reason, it is very important to ask how children react to the emotion of anger and what coping strategies they put in place to defend themselves from its possible negative consequences: this is what Fabes and Eisenberg [15] did with their study, coming to the conclusion that the strategies implemented can be completely different, depending on their social skills and gender. Specifically, the two researchers found that male children tend to let off steam and to further express their anger, even aggressively, while the females favor more assertive coping strategies. In addition, children with more social and more popular skills tend to use strategies that minimize the likelihood of having other conflicts later, as well as the risk of damaging the social relationships involved in the conflict situation. Furthermore, children with more social and more popular skills tend to use strategies that minimize the likelihood of having conflicts and harming social relationships. The work that can be done in schools. We will resume this theme at the end of the chapter, but let us start by saying that the goal may be, as Rosenberg [16] suggests, to teach children how to use anger as an alarm bell that warns us that we are going toward a probable dissatisfaction of our needs and that could lead us to interact with others in the most wrong way possible, that is to say with aggression and violence.
\nNovara and Di Chio [17], as part of a research aimed at identifying the most effective pedagogical interventions to encourage the management of children’s quarrels, also give the floor to the children themselves through interviews. They have listed the reasons behind these arguments, also reporting that the arguments can “happen to everyone”. The children interviewed refer to situations characterized by the presence of feelings of anger and anger: anger over contended friendships, for the mockery suffered, for violation of rules, for possession of games, or for the assumption of roles within them.
\nThis leads us to think that between the emotion of anger and the onset of interpersonal conflicts, there is a close relationship. Van Kleef [18] confirms it and goes even further, distinguishing between intrapersonal anger effects and interpersonal effects. Results of his study make us understand that at an intrapersonal level, anger is associated with hostile feelings, distorted perceptions and attributions, and competitive behavior. On the interpersonal level, on the other hand, anger sometimes causes mutual hostility, and therefore competition, while in other situations, it activates alternative strategies that motivate cooperation. In this regard, some scientific evidence can be found with respect to the fact that cooperative strategies are the most effective for an adequate management of conflict situations. Novara and Passerini [19], for example, suggest that conflict is a place where each conflict has the opportunity to make their own contribution, and it is a space that is created precisely because of an initial divergence: speech in the school context—they also tell us that the school’s task must be to guarantee the experience of conflict in order to give everyone the opportunity to contribute to the resolution of the relationship problems that are created. Already a few decades before, Sherif et al. [20] had marked a turning point in the psychology of groups and in the study of intergroup conflicts, thanks to the experiment of Robbers Cave: in a nutshell, about 20 Oklahoma City boys who had never met or known before, but completely homogeneous by religion and social background, they were invited to a summer camp and randomly divided into two groups. The experimenters soon noticed that the mere fact of having them divided into two groups had given rise to a series of stereotypes and prejudices against “the other group” that soon led to real conflicts, from theft of flags and clothing to mutual jokes, from the creation of nonconventional weapons to the request to always eat in separate tables. In the second phase of the experiment, however, the goal was to restore peace among the groups. The mere recourse to activities to be done together did not give the desired results, but the situation changed when the experimenters resorted to higher-level objectives, which required cooperation between all to be achieved: in the field, the news spread that the water pipes they had been sabotaged, and boys from both groups were selected to solve the problem; when, thanks to the mutual collaboration, they managed to free the obstructed pipe, they found themselves celebrating together. Within a few days, the weather began to change and when the experiment ended and all the boys had to return to their homes, they were all very happy to make the return trip in the same bus sitting next to each other.
\nBullying can be considered a subcategory of interpersonal conflicts, characterized by intentionality, repetition, and asymmetry of power [21, 22]. These three peculiar characteristics, identified by the pioneering studies of Olweus, that led to the publication of the omnibus “Olweus Bullying Prevention Program” [23] make bullying different from any other form of violence [24].
\nAnger is a strong emotional component of bullying, which in some situations can have a double value. In an attempt to investigate the emotional aspect of relational dynamics related to bullying situations, Rieffe et al. [25] conducted a study comparing a group of children with autism spectrum disorders with a group of typically developing children. The emotions that are most related to bullying are the anger and lack of guilt in both groups, while victimization behaviors are related to the feeling of fear in the case of children with typical development, while for children with autism feelings of anger are also detected in cases of victimization.
\nGarner and Hinton [26] found a negative correlation between emotional self-regulation and experiences of bullying, both for the bully and for the victim, and the most present emotions within these dynamics proved to be rabies and sadness. In parallel, several studies, including that of Menesini et al. [27], have highlighted the role that the moral disengagement mechanisms postulated by Bandura [28] could have. In fact, despite the acts of bullying are generally considered by the class group as something unjust and wrong [29], the bully is an individual who manages to protect himself from feelings of devaluation, feelings of guilt and shame, thanks to these mechanisms that allow him to self-justify himself and to partially disable moral control over his actions [30]. In practice, people involved in acts of bullying demonstrate, on the one hand, not being able to manage and adjust their emotions, and on the other (in particular with regard to bullies) to be able to ignore the negative consequences of their actions thanks to protective mechanisms of moral disengagement [21].
\nWhen episodes of cyberbullying occur, we are in the presence of the same peculiar characteristics of the more “classic” forms of bullying (intentionality, repetition and asymmetry of power), even if a different medium is used [31]. In fact, cyberbullying is manifested through the internet, mobile phones, and all electronic devices that allow, in a clear or hidden way, to send messages, emails, images, or videos with the aim of harming someone [32]. Moreover, it is decidedly more complicated to maintain cyberbullying within precise boundaries: it can be perpetrated 24 hours a day, a much wider audience can be reached, and the attacker has the possibility to remain anonymous [33]. The fact that it is not always possible to identify who the culprit is, on the one hand it favors its de-individuation and de-empowerment, and on the other, it increases the feelings of anxiety, anger, and fear in the victim [34].
\nExactly like when we talk about bullying, even when dealing with the issue of cyberbullying, it seems impossible not to mention the role played by emotions and emotional regulation. A recent transnational research by Ortega et al. [35] has shown that victims of different types of bullying, including the “classic” and cyberbullying, experience very similar emotional reactions, which in many cases include feelings of anger. Spielberger et al. [36], in studying the emotion of anger, had pushed to distinguish between anger as a “trait” and anger as “state”: we speak of trait when it corresponds to a predisposition of the individual, and of state when it is instead a temporary and temporary characteristic. Lonigro et al. [37], starting from this distinction, carried out a study to understand if cyberbullying was related to anger understood as a trait or a state, discovering that in most cases of cyberbullying, victims and aggressors experience anger as a state, therefore temporarily, contrary to what happens with physical bullying, face to face, when anger is identified as a real trait of the personality of the people involved.
\nThe concept of emotional intelligence has been defined, in a pioneering way by Salovey to Mayer [38] as the ability to monitor one’s own and others’ emotions, to differentiate them and to use such information to guide one’s thoughts and actions, and completely overthrow them. Galimberti [39] and Pacchin [40] have come to identify in “emotional illiteracy,” one of the main causes of today’s tendency to aggression and violence (verbal and otherwise) that finds fulfillment on the web and in particular in social networks. Galimberti, in particular, defines it as that emotional indifference due to which there is no emotional resonance in the face of facts that are witnessed or gestures that are performed. To remedy this worrying tendency, Goleman [41], who has resumed and popularized the concept of emotional intelligence, offers real programs of emotional literacy to be implemented in schools.
\nTo conclude, this overview on the negative consequences of anger can lead to the social exclusion of children and young people in their reference context, before moving to the preventive tools that can be put in place. It is useful to address the issue of antisocial behavior, since several authors identify an important predictor in this field.
\nRutter [42] categorizes a series of risk factors of delinquency and violence, among which it is interesting to highlight the aggressiveness, the impulsivity and the low self-control (among the individual factors), the low social competence, and lack of empathy (among social factors). These categories are then joined by those of family, school, and ecological factors. These are elements that become relevant in some cases in antisocial initiation, in other cases in the maintenance of a criminal career, and in others, in the process of escalation and aggravation [43].
\nSeveral criminal theories in the past associated the onset of delinquent behavior with factors of social disorganization and subcultural values present in the social context of reference [44], but recently scientific research has focused on theories that focus on the factors of tension (Strain Theories). This, if they arise at an early age, can lead to antisocial behavior and to the commission of crimes with the purpose of “loosening” this tension: people would then engage in criminal activity to respond to stress and emotions negatively generated by specific factors of tension. They steal to reduce the tension generated by the lack of money. They flee to reduce the stress generated by violent parents, sometimes they take revenge against the source of stress or looking for goals related to it [45].
\nIn addition, to having studied and conducted a review of the main Strain Theories, Agnew [46, 47] came to the conclusion that the “tension” referred to all theories can be explained in terms of accumulation of anger and frustration, such as to cannot be more tolerated and therefore to force the individual to alternative ways of escape: the crime turns out to be one of these ways of escape.
\nOther authors, starting from Agnew’s studies, have investigated this aspect: Brezina et al. [48] applied it to the scholastic context, seeking and finding a positive correlation between students’ anger levels and peer conflicts. In their research, the students with higher levels of anger (and therefore with a higher level of “tension”) have proved to be the ones most involved in the quarrels and conflicts that have arisen within the school. Mazerolle et al. [49], on the other hand, have investigated more deeply, wondering if the “anger” referred to in these theories is a situational anger (a state related to the specific situation) or a dispositional anger (a specific trait part of the individual’s personality). Results showed that both anger and situational anger can become stressful elements and cause tension, but always following two distinct processes and therefore different cognitive mechanisms.
\nLastly, it is interesting to note that the most used social response to people who commit crimes is namely the punitive response. Therefore, imprisonment is ineffective from the point of view of education to the management of anger, which as we have seen is an emotion that plays a central role in the genesis of conflicts, prevarications, and antisocial behavior. Heseltine et al. [50] conducted a study that showed the ineffectiveness of an intervention program on rabies management aimed at detained persons: comparing the group that used the program with the group on the waiting list. Important differences were found from the point of view of theoretical knowledge on the subject of rabies, but the differences in terms of levels of anger experienced and manifestation of anger through aggressive behaviors were found to be almost nonexistent.
\nIn previous paragraphs, we have shown how central the theme of anger in the genesis of behaviors that facilitate social exclusion such as actions of bullying (bullying and cyberbullying) to arrive at real antisocial and criminal behavior. Twenge et al. [51] have also shown that social exclusion itself plays an important role in generating more anger, giving rise to a very dangerous vicious circle that starts from anger, generates social exclusion, and consequently, generates further anger, increasingly difficult to manage.
\nTo break this chain, it is necessary to intervene with programs of emotional education, and in particular of education in the management of anger, before it causes social exclusion, therefore starting from its first manifestations. Botvin et al. [52] through a study have shown that intervention programs aimed at the first averages and based on rabies management and conflict resolution techniques prevent both the risk of abuse of tobacco, alcohol and drugs, and the onset of violent and delinquent behavior. Also, our experience with the association of EssereUmani started from middle school, with a program of intervention on conflict management through the tool of mediation [21], aimed at students from the first to the third year. Recently, however, we realized that prevention can start earlier, even from primary school, where it is useful to start talking about managing emotions, with particular reference to negative emotions such as anger.
\nThe path “Pleasure, I am the Rage!” involved about 1000 primary school children in Turin and the Province in the school year 2017/18. It has the aim of stimulating a reflection on emotions and their recognition, starting from emotion that has more disruptive effects in our daily life, especially when we are not able to manage it. It is a workshop path that, alternating moments more frontal to interactive activities and games, manages to involve children making them active actors of the path itself. The schools have shown to appreciate this program of intervention and to consider its continuation from year to year useful. “Pleasure, I am the rage!” Is a path whose validity has been recognized through its inclusion in the training catalog of the City of Turin “Crescere in Città” and in the catalog of the Shared Project “For a Human Man,” of the Diocese of Turin; the course was also adopted by the network of schools called “Rete S.C.A.R.—Schools that Care About Relationships,“ of which the Associazione EssereUmani is a founding body.
\nOld age is usually associated with that of fragility, but in this chapter a new aspect associated with this concept is that of vulnerability.
\nThe European Union is a conglomerate of more than 500 million people, approximately 100 million of whom are older adults [53]. The Europeans are aging soon but living longer does not mean living a more active, healthier, and independent life. As reported by the European Commission: “The number of Europeans aged over 65 will double in the next 50 years, and the number of over 80 year olds will almost triple. Life expectancy will continue to increase, yet unhealthy life years make up around 20% of a person’s life” (
Active and healthy aging is a necessity and societal challenge shared by all European countries. However, it is also an opportunity for Europe to “establish itself as a global leader that is capable of providing innovative solutions.” Considering the above, the European Commission has set up the European Innovation Partnership in Active and Healthy Aging (EIP-AHA) in order to foster innovation and digital transformation in the field of active and healthy aging. As reported in the EIP-AHA website (
“The EIP on AHA aims to promote healthy and active aging. The six EIP-AHA action groups (A1 adherence to prescription, A2 fall prevention, A3 lifespan health promotion & prevention of age-related frailty and disease, B3 integrated care, C2 independent living solutions, and D4 age friendly environments) involve stakeholders ranging from academia to public authorities, large industry and SMEs, health and care organizations, investors and innovators, end users, and patients’ associations.”
\nThe common aim of these action groups is to increase the average healthy lifespan of EU citizens by 2 years by the year 2020. Considering Action Group A3, it brings together around 100 organizations, studying the association between frailty in the elderly and adverse health outcomes and better preventing/managing the frailty syndrome and its consequences [54].
\nFrailty is a clinical syndrome whose key characteristic increases vulnerability to stressors due to decline in the ability to maintain homoeostasis, impairments in multiple systems, and decreases physiological reserves [55]. A frail elderly is an older person who is at increased risk of psychophysic health regression. Indeed, frailty in the elderly is a multidimensional concept taking appropriate account of the complex interplay among environmental physical, psychological, and social factors [54].
\nUntil now, there is no unambiguous and recognized operational definition of frailty [56]. Experts from the EIP-AHA have identified two profitable approaches: the first one addresses physical determinants (medical definition), while the second one takes into account biological, cognitive, psychological, and socioeconomic factors (bio-psychosocial definition).
\nThe operative definition of frailty relates to the risk of adverse healthcare outcomes (such as vulnerability, hospitalization, disability, institutionalization, and death) to which the elderly shall be the subject, given the association between the level of frailty and the risk at the present time: the more severe the frailty level, the more serious the risk [57, 58]. The incidence of these adverse healthcare outcomes relates not only to the patient’s functional, physical, or mental status, but also to their social and socioeconomic status. Lacking even one of the last conditions leads to an increased use of healthcare and welfare services [59, 60].
\nImportantly, social vulnerability is related to the health of elderly people and have to be considered as potential frailty predisposition and worsening factor.
\nTherefore, loneliness and social isolation have been associated with physical decline [61, 62, 63, 64]. Conversely, a strong social network has a protective effect [54].
\nLoneliness and social isolation are distinct concepts. Valtorta and Hanratty (2012) reported: “One of the most widely used definitions that has loneliness as a subjective negative feeling associated with a perceived lack of a wider social network (social loneliness) or the absence of a specific desired companion (emotional loneliness)” while “social isolation is defined objectively using criteria such as having few contacts, little involvement in social activities, and living alone.” Indeed, individuals may feel lonely without actually be socially isolated, experience loneliness and isolation equally, or be socially isolated without feeling lonely (Valtorta and Hanratty, 2012). For these reasons, the role played by social and socioeconomic factors in determining frailty and any possible form of intervention need consideration (\nFigure 1\n).
\nThe scheme represents how the elements interact with each other with respect to the two dimensions: social inclusion and social vulnerability.
Frailty quantification methods might provide a useful guide to quantify social vulnerability [65, 66]. Actually, the health status can be summarized by a deficit accumulation approach [67, 68, 69]: the more deficits an elderly accumulates, the more vulnerable he/she will be. If several distinct deficits could be combined to estimate not just relative frailty, but also social vulnerability, this social vulnerability index would offer insights into the health and social care needs of the elderly [66]. Such an idea was brought forward by Andrew and colleagues [66] who have found that social vulnerability is higher among people who are frailer and that it is associated with higher mortality. Moreover, Gale et al. [70] found that high levels of loneliness increased the risk of becoming physically frail, even if loneliness and social isolation were not associated with a frailty index rate of change.
\nUnless we do not have unanimous agreement on how to characterize social vulnerability, we have to recognize that attention to social factors is integral to the provision of care for elderly people.
\nTen years ago, the Slovenian Council Presidency proposed to declare the 29 April European Day of Solidarity between Generations. During the 2018 EU Day of Solidarity between Generations, Anna Widegren, Secretary General of the European Youth Forum claimed that “a more social and sustainable Europe is one where welfare systems are based on intergenerational solidarity; more resources are invested in better care systems to ensure work-life balance and prepare for demographic changes. In other words, a more social Europe must ensure that the elderly as much as the young can have confidence in their present and in their future.”
\nElderly citizens have much to contribute to our society. Active involvement of the elderly in their communities can bring economic and social value through the contributions they make and the opportunities they create as volunteers, workers, informal carers, and consumers. It can also maintain their motivation and sense of feeling valued, thus avoiding social isolation and many of its associated problems and risks.
\nTo date, the elderly face many obstacles to their involvement in their communities. These can include restrictions on their mobility, access to political civic processes and infrastructure. Moreover, there is a lack of opportunities to keep up to date with technological changes, lack of information, reduced social networks, and loss of confidence and self-esteem. Politics, academia, and authorities have to provide support and create the conditions in which the elderly are able to participate fully in their communities. EU and EIP-AH can support them thanks to a variety of funding programs, researches, or development-focused actions.
\nAs already mentioned at the beginning of this chapter, vulnerability can be defined as the quality or state of being exposed to the possibility of being attacked or harmed, either physically or emotionally. In this chapter, it is defined as a possible ability of an individual or a group to face, manage, and anticipate a possible problem. This concept of vulnerability is associated with that of anger as risk factor for social isolation. As already reported, to date, no one has highlighted together two critical moments in life in which vulnerability can became critical phase of life for social isolation: adolescence, in which its development occurs, and old age, in which this area goes into cognitive decline with the relative loss of many higher cognitive functions. In the first section of this chapter, anger has been described as an example of emotion that can lead to social isolation during adolescence. Moreover, an example of social intervention of prevention and social inclusion has been suggested. In the second section of this chapter, vulnerability in old age with respect to the various factors that can support dialog in a European context has been described. All these aspects reflect very important vulnerability factors among biological, psychological, social, and behavioral variables. This knowledge can help to better understand the forms of exclusion due to vulnerability in order to develop new forms of social inclusion. Being able to better understand the risk factors of vulnerability can help to put in place useful strategies and new ways of social inclusion at very critical ages where risky behavior can endanger social exclusion.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"10758",title:"Sustainable Development of Lakes and Reservoirs",subtitle:null,isOpenForSubmission:!0,hash:"478fd03f02a98452a4a56ed2a6c85dbd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10758.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10766",title:"Landscape Architecture",subtitle:null,isOpenForSubmission:!0,hash:"a0a54a9ab661e4765fee76ce580cd121",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10766.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10760",title:"Steppe Biome",subtitle:null,isOpenForSubmission:!0,hash:"982f06cee6ee2f27339f3c263b3e6560",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10760.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10846",title:"Stormwater",subtitle:null,isOpenForSubmission:!0,hash:"9bfae8caba192ce3ab6744c9cbefa210",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10844",title:"Protected Areas Management",subtitle:null,isOpenForSubmission:!0,hash:"5b85cf581ee89c6c1457aefdb0bc495a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10844.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"b369ac809068d2ebf1f8c26418cc6bec",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"247",title:"Automation",slug:"automation",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:10,numberOfAuthorsAndEditors:205,numberOfWosCitations:232,numberOfCrossrefCitations:210,numberOfDimensionsCitations:409,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"automation",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5809",title:"Service Robots",subtitle:null,isOpenForSubmission:!1,hash:"24727d51a5f26cb52694ad979bbbc1f8",slug:"service-robots",bookSignature:"Antonio J. R. Neves",coverURL:"https://cdn.intechopen.com/books/images_new/5809.jpg",editedByType:"Edited by",editors:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5798",title:"Surgical Robotics",subtitle:null,isOpenForSubmission:!1,hash:"0b5965ad361c21e8be05cdd6cce1293a",slug:"surgical-robotics",bookSignature:"Serdar Küçük",coverURL:"https://cdn.intechopen.com/books/images_new/5798.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"889",title:"Robotic Systems",subtitle:"Applications, Control and Programming",isOpenForSubmission:!1,hash:"e560d53a4116a307638d95c63c1a78a3",slug:"robotic-systems-applications-control-and-programming",bookSignature:"Ashish Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/889.jpg",editedByType:"Edited by",editors:[{id:"80372",title:"Dr.",name:"Ashish",middleName:null,surname:"Dutta",slug:"ashish-dutta",fullName:"Ashish Dutta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"152",title:"Robot Arms",subtitle:null,isOpenForSubmission:!1,hash:"ad134b214c187871a4740c54c479eccb",slug:"robot-arms",bookSignature:"Satoru Goto",coverURL:"https://cdn.intechopen.com/books/images_new/152.jpg",editedByType:"Edited by",editors:[{id:"6232",title:"Prof.",name:"Satoru",middleName:null,surname:"Goto",slug:"satoru-goto",fullName:"Satoru Goto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3593",title:"Remote and Telerobotics",subtitle:null,isOpenForSubmission:!1,hash:"06ddc7871a0815453ac7c5a7463c9f87",slug:"remote-and-telerobotics",bookSignature:"Nicolas Mollet",coverURL:"https://cdn.intechopen.com/books/images_new/3593.jpg",editedByType:"Edited by",editors:[{id:"6147",title:"Dr.",name:"Nicolas",middleName:null,surname:"Mollet",slug:"nicolas-mollet",fullName:"Nicolas Mollet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3690",title:"Robotics and Automation in Construction",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robotics_and_automation_in_construction",bookSignature:"Carlos Balaguer and Mohamed Abderrahim",coverURL:"https://cdn.intechopen.com/books/images_new/3690.jpg",editedByType:"Edited by",editors:[{id:"81514",title:"Dr.",name:"Carlos",middleName:null,surname:"Balaguer",slug:"carlos-balaguer",fullName:"Carlos Balaguer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3694",title:"New Developments in Robotics Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new_developments_in_robotics_automation_and_control",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3694.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3692",title:"Frontiers in Robotics, Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"frontiers_in_robotics_automation_and_control",bookSignature:"Alexander Zemliak",coverURL:"https://cdn.intechopen.com/books/images_new/3692.jpg",editedByType:"Edited by",editors:[{id:"3914",title:"Prof.",name:"Alexander",middleName:null,surname:"Zemliak",slug:"alexander-zemliak",fullName:"Alexander Zemliak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3607",title:"Automation and Robotics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"automation_and_robotics",bookSignature:"Juan Manuel Ramos Arreguin",coverURL:"https://cdn.intechopen.com/books/images_new/3607.jpg",editedByType:"Edited by",editors:[{id:"6112",title:"Dr.",name:"Juan-Manuel",middleName:null,surname:"Ramos-Arreguin",slug:"juan-manuel-ramos-arreguin",fullName:"Juan-Manuel Ramos-Arreguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"5555",doi:"10.5772/5865",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"56199",doi:"10.5772/intechopen.69874",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"27402",doi:"10.5772/25756",title:"Novel Assistive Robot for Self-Feeding",slug:"novel-assistive-robot-for-self-feeding",totalDownloads:5774,totalCrossrefCites:15,totalDimensionsCites:21,book:{slug:"robotic-systems-applications-control-and-programming",title:"Robotic Systems",fullTitle:"Robotic Systems - Applications, Control and Programming"},signatures:"Won-Kyung Song and Jongbae Kim",authors:[{id:"64432",title:"Dr.",name:"Won-Kyung",middleName:null,surname:"Song",slug:"won-kyung-song",fullName:"Won-Kyung Song"},{id:"72153",title:"Dr.",name:"Jongbae",middleName:null,surname:"Kim",slug:"jongbae-kim",fullName:"Jongbae Kim"}]}],mostDownloadedChaptersLast30Days:[{id:"56199",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"73486",title:"Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation",slug:"application-of-artificial-intelligence-ai-in-prosthetic-and-orthotic-rehabilitation",totalDownloads:307,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"service-robotics",title:"Service Robotics",fullTitle:"Service Robotics"},signatures:"Smita Nayak and Rajesh Kumar Das",authors:[{id:"204704",title:"Mrs.",name:"Smita",middleName:null,surname:"Nayak",slug:"smita-nayak",fullName:"Smita Nayak"},{id:"321308",title:"Dr.",name:"Rajesh",middleName:null,surname:"Das",slug:"rajesh-das",fullName:"Rajesh Das"}]},{id:"55313",title:"The Surgical Robot: Applications and Advantages in General Surgery",slug:"the-surgical-robot-applications-and-advantages-in-general-surgery",totalDownloads:1358,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Rodolfo José Oviedo Barrera",authors:[{id:"204248",title:"Dr.",name:"Rodolfo",middleName:"José",surname:"Oviedo",slug:"rodolfo-oviedo",fullName:"Rodolfo Oviedo"}]},{id:"55664",title:"Bilateral Axillo-Breast Approach Robotic Thyroidectomy: Introduction and Update",slug:"bilateral-axillo-breast-approach-robotic-thyroidectomy-introduction-and-update",totalDownloads:1278,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Do Hoon Koo, Dong Sik Bae and June Young Choi",authors:[{id:"198460",title:"Dr.",name:"Do Hoon",middleName:null,surname:"Koo",slug:"do-hoon-koo",fullName:"Do Hoon Koo"},{id:"200696",title:"Prof.",name:"Dong Sik",middleName:null,surname:"Bae",slug:"dong-sik-bae",fullName:"Dong Sik Bae"},{id:"200697",title:"Prof.",name:"June Young",middleName:null,surname:"Choi",slug:"june-young-choi",fullName:"June Young Choi"}]},{id:"57523",title:"A Personal Robot as an Improvement to the Customers’ In- Store Experience",slug:"a-personal-robot-as-an-improvement-to-the-customers-in-store-experience",totalDownloads:964,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Joana Santos, Daniel Campos, Fábio Duarte, Filipe Pereira, Inês\nDomingues, Joana Santos, João Leão, José Xavier, Luís de Matos,\nManuel Camarneiro, Marcelo Penas, Maria Miranda, Ricardo\nMorais, Ricardo Silva and Tiago Esteves",authors:[{id:"199794",title:"Ph.D.",name:"Inês",middleName:null,surname:"Domingues",slug:"ines-domingues",fullName:"Inês Domingues"},{id:"199930",title:"MSc.",name:"Ricardo",middleName:null,surname:"Silva",slug:"ricardo-silva",fullName:"Ricardo Silva"},{id:"199974",title:"MSc.",name:"Luís",middleName:null,surname:"Matos",slug:"luis-matos",fullName:"Luís Matos"},{id:"205325",title:"MSc.",name:"Daniel",middleName:null,surname:"Campos",slug:"daniel-campos",fullName:"Daniel Campos"},{id:"205326",title:"MSc.",name:"Joana",middleName:null,surname:"Santos",slug:"joana-santos",fullName:"Joana Santos"},{id:"205327",title:"MSc.",name:"João",middleName:null,surname:"Leão",slug:"joao-leao",fullName:"João Leão"},{id:"205328",title:"MSc.",name:"José",middleName:null,surname:"Xavier",slug:"jose-xavier",fullName:"José Xavier"},{id:"205329",title:"MSc.",name:"Manuel",middleName:null,surname:"Camarneiro",slug:"manuel-camarneiro",fullName:"Manuel Camarneiro"},{id:"205330",title:"MSc.",name:"Marcelo",middleName:null,surname:"Penas",slug:"marcelo-penas",fullName:"Marcelo Penas"},{id:"205331",title:"MSc.",name:"Maria",middleName:null,surname:"Miranda",slug:"maria-miranda",fullName:"Maria Miranda"},{id:"205332",title:"Mrs.",name:"Ricardo",middleName:null,surname:"Morais",slug:"ricardo-morais",fullName:"Ricardo Morais"},{id:"205333",title:"Dr.",name:"Tiago",middleName:null,surname:"Esteves",slug:"tiago-esteves",fullName:"Tiago Esteves"}]},{id:"54250",title:"The Next-Generation Surgical Robots",slug:"the-next-generation-surgical-robots",totalDownloads:2624,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Zheng Wang, Sicong Liu, Jing Peng and Michael Zhiqiang Chen",authors:[{id:"197125",title:"Dr.",name:"Zheng",middleName:null,surname:"Wang",slug:"zheng-wang",fullName:"Zheng Wang"},{id:"197412",title:"Dr.",name:"Sicong",middleName:null,surname:"Liu",slug:"sicong-liu",fullName:"Sicong Liu"},{id:"204520",title:"Dr.",name:"Jing",middleName:null,surname:"Peng",slug:"jing-peng",fullName:"Jing Peng"},{id:"204521",title:"Dr.",name:"Michael",middleName:null,surname:"Chen",slug:"michael-chen",fullName:"Michael Chen"}]},{id:"5577",title:"Advanced Control Schemes for Cement Fabrication Processes",slug:"advanced_control_schemes_for_cement_fabrication_processes",totalDownloads:9422,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Susana Arad, Victor Arad and Bogdan Bobora",authors:null},{id:"56421",title:"Robotic Splenic Flexure and Transverse Colon Resections",slug:"robotic-splenic-flexure-and-transverse-colon-resections",totalDownloads:897,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Igor Monsellato, Maria Caterina Canepa, Vittorio d’Adamo,\nGiuseppe Spinoglio, Fabio Priora and Luca Matteo Lenti",authors:[{id:"80720",title:"Ph.D.",name:"Igor",middleName:null,surname:"Monsellato",slug:"igor-monsellato",fullName:"Igor Monsellato"},{id:"211489",title:"Dr.",name:"Fabio",middleName:null,surname:"Priora",slug:"fabio-priora",fullName:"Fabio Priora"},{id:"211494",title:"Dr.",name:"Maria Caterina",middleName:null,surname:"Canepa",slug:"maria-caterina-canepa",fullName:"Maria Caterina Canepa"},{id:"211495",title:"Dr.",name:"Vittorio",middleName:null,surname:"D'Adamo",slug:"vittorio-d'adamo",fullName:"Vittorio D'Adamo"},{id:"211500",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Spinoglio",slug:"giuseppe-spinoglio",fullName:"Giuseppe Spinoglio"},{id:"212109",title:"Dr.",name:"Luca Matteo",middleName:null,surname:"Lenti",slug:"luca-matteo-lenti",fullName:"Luca Matteo Lenti"}]},{id:"5555",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"55190",title:"Concept of Virtual Incision for Minimally Invasive Surgery",slug:"concept-of-virtual-incision-for-minimally-invasive-surgery",totalDownloads:832,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Yuki Horise, Atsushi Nishikawa, Toshikazu Kawai, Ken Masamune\nand Yoshihiro Muragaki",authors:[{id:"13925",title:"Prof.",name:"Atsushi",middleName:null,surname:"Nishikawa",slug:"atsushi-nishikawa",fullName:"Atsushi Nishikawa"}]}],onlineFirstChaptersFilter:{topicSlug:"automation",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/137796/khalid-omar",hash:"",query:{},params:{id:"137796",slug:"khalid-omar"},fullPath:"/profiles/137796/khalid-omar",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()