Physical and chemical properties of 2,4-D and MCPA.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5395",leadTitle:null,fullTitle:"Heat Exchangers - Design, Experiment and Simulation",title:"Heat Exchangers",subtitle:"Design, Experiment and Simulation",reviewType:"peer-reviewed",abstract:"Presenting contributions from renowned experts in the field, this book covers research and development in fundamental areas of heat exchangers, which include: design and theoretical development, experiments, numerical modeling and simulations. This book is intended to be a useful reference source and guide to researchers, postgraduate students, and engineers in the fields of heat exchangers, cooling, and thermal management.",isbn:"978-953-51-3094-9",printIsbn:"978-953-51-3093-2",pdfIsbn:"978-953-51-4858-6",doi:"10.5772/62693",price:119,priceEur:129,priceUsd:155,slug:"heat-exchangers-design-experiment-and-simulation",numberOfPages:272,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2df2e51f2bb427d6a50b215ac8d1e68c",bookSignature:"S M Sohel Murshed and Manuel Matos Lopes",publishedDate:"April 27th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5395.jpg",numberOfDownloads:34384,numberOfWosCitations:18,numberOfCrossrefCitations:17,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:33,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:68,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 23rd 2016",dateEndSecondStepPublish:"April 13th 2016",dateEndThirdStepPublish:"July 18th 2016",dateEndFourthStepPublish:"October 16th 2016",dateEndFifthStepPublish:"November 15th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed",profilePictureURL:"https://mts.intechopen.com/storage/users/24904/images/system/24904.jpg",biography:"Prof. S. M. Sohel Murshed was born in Bangladesh and obtained his Ph.D. in Mechanical and Aerospace Engineering from Nanyang Technological University, Singapore. He is currently a professor in the Mechanical Engineering Department, University of Lisbon, Portugal, and a visiting professor at Rochester Institute of Technology, New York. Previously he worked as a postdoctoral fellow and visiting professor and scientist at different universities in Singapore, the United States, the United Kingdom, and India. In 2020, he received the prestigious DUO-India Professorial Fellowship Award. Dr. Murshed has authored/co-authored 10 books, 30 book chapters, and more than 180 papers in leading international journals and conferences. His current Google scholar citation counts: 7560. He was recently named one of the World\\'s Top 2% Scientists by Stanford University.",institutionString:"Rochester Institute of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"185759",title:"Dr.",name:"Manuel",middleName:"Manuel Luis",surname:"Matos Lopes",slug:"manuel-matos-lopes",fullName:"Manuel Matos Lopes",profilePictureURL:"https://mts.intechopen.com/storage/users/185759/images/5549_n.jpg",biography:"Prof. Manuel Matos Lopes was born in Lisbon and is a professor at the University of Lisbon, Portugal. He obtained his degree in Chemical Engineering from the IST-Technical University of Lisbon, in 1981, and his PhD degree in Physical Chemistry from the University of Lisbon, in 1992. He was a research assistant at the IPST, University of Maryland, USA, and a postdoctoral fellow at the Erlangen University and at the Max Planck Institute for Polymer Research, Mainz, Germany. He has authored 30 publications in scientific journals, conference proceedings, and book chapters and presented many communications. He is also involved in several educational projects and science outreach. His main research interests are the experimental study of thermophysical properties of fluids and materials and their implications in the molecular and technological aspects. Presently, he is committed with the study of ionic liquids and ionanofluids and their applications as heat transfer fluids in heat exchangers, advanced energy, and cooling technologies.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"826",title:"Thermal Engineering",slug:"mechanical-engineering-thermal-engineering"}],chapters:[{id:"54723",title:"Introductory Chapter: An Overview of Design, Experiment and Numerical Simulation of Heat Exchangers",doi:"10.5772/intechopen.68472",slug:"introductory-chapter-an-overview-of-design-experiment-and-numerical-simulation-of-heat-exchangers",totalDownloads:1893,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"S M Sohel Murshed and Manuel L Matos Lopes",downloadPdfUrl:"/chapter/pdf-download/54723",previewPdfUrl:"/chapter/pdf-preview/54723",authors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"},{id:"187120",title:"Prof.",name:"Manuel",surname:"Matos Lopes",slug:"manuel-matos-lopes",fullName:"Manuel Matos Lopes"}],corrections:null},{id:"54521",title:"Basic Design Methods of Heat Exchanger",doi:"10.5772/67888",slug:"basic-design-methods-of-heat-exchanger",totalDownloads:7223,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Heat exchangers are devices that transfer energy between fluids at different temperatures by heat transfer. These devices can be used widely both in daily life and industrial applications such as steam generators in thermal power plants, distillers in chemical industry, evaporators and condensers in HVAC applications and refrigeration process, heat sinks, automobile radiators and regenerators in gas turbine engines. This chapter discusses the basic design methods for two fluid heat exchangers.",signatures:"Cüneyt Ezgi",downloadPdfUrl:"/chapter/pdf-download/54521",previewPdfUrl:"/chapter/pdf-preview/54521",authors:[{id:"187086",title:"Prof.",name:"Cüneyt",surname:"Ezgi",slug:"cuneyt-ezgi",fullName:"Cüneyt Ezgi"}],corrections:null},{id:"53559",title:"Design of Heat Transfer Surfaces in Agitated Vessels",doi:"10.5772/66729",slug:"design-of-heat-transfer-surfaces-in-agitated-vessels",totalDownloads:4516,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The project on heat transfer surfaces in agitated vessels is based on the determination of the heat exchange area, which is necessary to abide by the process conditions as mixing quality and efficiency of heat transfer. The heat transfer area is determined from the overall heat transfer coefficient (U). The coefficient (U) represents the operation quality in heat transfers being a function of conduction and convection mechanisms. The determination of U is held from the Nusselt’s number, which is related to the dimensionless Reynolds and Prandtl’s, and from the fluid’s viscosity relation that is being agitated in the bulk temperature and the viscosity in the wall’s temperature of heat exchange. The aim of this chapter is to present a summary for the literature concerning heat transfer in agitated vessels (equipped with jackets, helical coils, spiral coils, and vertical tube baffles) and also the many parameters of Nusselt’s equation for these surfaces. It will present a numerical example for a project in an agitated vessel using vertical tube baffles and a 45° pitched blade turbine. Subsequently, the same procedure is held with a turbine radial impeller, in order to compare the heat transfer efficiencies.",signatures:"Vitor da Silva Rosa and Deovaldo de Moraes Júnior",downloadPdfUrl:"/chapter/pdf-download/53559",previewPdfUrl:"/chapter/pdf-preview/53559",authors:[{id:"187128",title:"Ph.D.",name:"Vitor",surname:"Rosa",slug:"vitor-rosa",fullName:"Vitor Rosa"},{id:"188792",title:"Dr.",name:"Deovaldo",surname:"Moraes Júnior",slug:"deovaldo-moraes-junior",fullName:"Deovaldo Moraes Júnior"}],corrections:null},{id:"53653",title:"Heat Exchanger Design with Topology Optimization",doi:"10.5772/66961",slug:"heat-exchanger-design-with-topology-optimization",totalDownloads:3427,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Topology optimization is proving to be a valuable design tool for physical systems, especially for structural systems. However, its application in the field of heat transfer is less evident but is constantly progressing. In this chapter, we would like to introduce topology optimization in the context of heat exchanger design to the general reader. We also provide a chronological review of available literature to see the current progress of topology optimization in the field of heat transfer and heat exchanger design. We expect that topology optimization will prove to be a valuable tool in heat exchanger design for the coming years.",signatures:"Mark Christian E. Manuel and Po Ting Lin",downloadPdfUrl:"/chapter/pdf-download/53653",previewPdfUrl:"/chapter/pdf-preview/53653",authors:[{id:"188800",title:"Prof.",name:"Mark Christian",surname:"Manuel",slug:"mark-christian-manuel",fullName:"Mark Christian Manuel"},{id:"203597",title:"Associate Prof.",name:"Po Ting",surname:"Lin",slug:"po-ting-lin",fullName:"Po Ting Lin"}],corrections:null},{id:"53454",title:"A Multi-Period Synthesis Approach to Designing Flexible Heat- Exchanger Networks",doi:"10.5772/66694",slug:"a-multi-period-synthesis-approach-to-designing-flexible-heat-exchanger-networks",totalDownloads:1498,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter presents a new synthesis method for designing flexible heat-exchanger networks. The methodology used involves a two-step approach: In the first step, a multi-period network is designed for a large number of critical operating periods using a finite set of operating points which lie within the uncertain parameter range, while considering the impact of potential fluctuations in periodic durations of each of the chosen critical points on the network. In the second step, the flexibility of the resulting multi-period network of the first step is tested using very large, randomly generated set of finite potential operating points together with their periodic durations. The key criteria used in determining the finite set of operating points that would participate in the initial multi-period network synthesis of the first step are the nominal operating points, the extreme operating points in terms of heat-load requirements as well as their length of periods. This implies that the resulting flexible network can feasibly transfer heat irrespective of possible fluctuations in periodic durations for any of the potential process-operating points. The solutions obtained using the new approach compare favourably with those in the literature.",signatures:"Adeniyi Jide Isafiade and Alireza Bahadori",downloadPdfUrl:"/chapter/pdf-download/53454",previewPdfUrl:"/chapter/pdf-preview/53454",authors:[{id:"187910",title:"Dr.",name:"Adeniyi",surname:"Isafiade",slug:"adeniyi-isafiade",fullName:"Adeniyi Isafiade"},{id:"194735",title:"Prof.",name:"Alireza",surname:"Bahadori",slug:"alireza-bahadori",fullName:"Alireza Bahadori"}],corrections:null},{id:"54179",title:"Basic Aspects of Gas Turbine Heat Transfer",doi:"10.5772/67323",slug:"basic-aspects-of-gas-turbine-heat-transfer",totalDownloads:4904,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"The use of gas turbines for power generation and electricity production in both single cycle and combined cycle plant operation is extensive and will continue to globally grow into the future. Due to its high power density and ability to convert gaseous and liquid fuel into mechanical work with very high thermodynamic efficiencies, significant efforts continue today to further increase both the power output and thermodynamic efficiencies of the gas turbine. In particular, the aerothermal design of gas turbine components has progressed at a rapid pace in the last decade with all gas turbine manufacturers, in order to achieve higher thermodynamic efficiencies. This has been achieved by using higher turbine inlet temperatures and pressures, advanced turbine aerodynamics and efficient cooling systems of turbine airofoils, and advanced high temperature alloys, metallic coatings, and ceramic thermal barrier coatings. In this chapter, issues related to the thermal design of gas turbine blades are highlighted and several heat transfer technologies are examined, such as convective cooling, impingement cooling, film cooling, and application of thermal barrier coatings. Typical methods for validating the thermal designs of gas turbine airofoils are also outlined.",signatures:"Shailendra Naik",downloadPdfUrl:"/chapter/pdf-download/54179",previewPdfUrl:"/chapter/pdf-preview/54179",authors:[{id:"188479",title:"Dr.",name:"Shailendra",surname:"Naik",slug:"shailendra-naik",fullName:"Shailendra Naik"}],corrections:null},{id:"53737",title:"Direct-Contact Heat Exchanger",doi:"10.5772/66630",slug:"direct-contact-heat-exchanger",totalDownloads:2693,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Direct-contact heat transfer involves the exchange of heat between two immiscible fluids by bringing them into contact at different temperatures. There are two basic bubbling regimes in direct-contact heat exchanger: homogeneous and heterogeneous. Industrially, however, the homogeneous bubbling regime is less likely to prevail, owing to the high gas flow rates employed. The mixture homogeneity and the non-homogeneity of the mixture can be characterized by the Betti numbers and the mixing time can be estimated relying on image analysis and statistics in a direct-contact heat exchanger. To accurately investigate the space-time features of the mixing process in a direct contact heat exchanger, the uniformity coefficient method based on discrepancy theory for assessing the mixing time of bubbles behind the viewing windows is effective. Hence, the complexity of the bubble swarm patterns can be reduced and their mechanisms clarified, and the heat transfer performance in a direct-contact heat exchanger can be elucidated.",signatures:"Hua Wang, Qingtai Xiao and Jianxin Xu",downloadPdfUrl:"/chapter/pdf-download/53737",previewPdfUrl:"/chapter/pdf-preview/53737",authors:[{id:"188706",title:"Prof.",name:"Hua",surname:"Wang",slug:"hua-wang",fullName:"Hua Wang"},{id:"188742",title:"Mr.",name:"Qingtai",surname:"Xiao",slug:"qingtai-xiao",fullName:"Qingtai Xiao"},{id:"188992",title:"Dr.",name:"Jianxin",surname:"Xu",slug:"jianxin-xu",fullName:"Jianxin Xu"}],corrections:null},{id:"52675",title:"Measurement of Transient Fluid Temperature in the Heat Exchangers",doi:"10.5772/65686",slug:"measurement-of-transient-fluid-temperature-in-the-heat-exchangers",totalDownloads:1978,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In the chapter, a method for measuring the transient temperature of the flowing fluid based on time temperature changes of the thermometer is described. In the presented method, the thermometer is considered as an inertial system of first and second order. To reduce the influence of random errors in the temperature measurement, the local polynomial approximation based on nine points is used. As a result, the first and second derivatives of a temperature, which indicate how the temperature of the thermometer varies over time, are determined very accurately. Next, the time constant is defined as a function of fluid velocity for sheathed thermocouples with different diameters. The applicability of the presented method is demonstrated on real data in the experiment. The air temperature is estimated from measurements carried out by the three thermocouples having different outer diameters when the air velocity varied in time. A comparison of the computed temperatures of air gives confidence to the accuracy of the presented method. The method presented in this chapter for measuring the transient temperature of the fluid can be used for the online monitoring of fluid temperature change with time.",signatures:"Magdalena Jaremkiewicz",downloadPdfUrl:"/chapter/pdf-download/52675",previewPdfUrl:"/chapter/pdf-preview/52675",authors:[{id:"91054",title:"Dr.",name:"Magdalena",surname:"Jaremkiewicz",slug:"magdalena-jaremkiewicz",fullName:"Magdalena Jaremkiewicz"}],corrections:null},{id:"54145",title:"Transient Effectiveness Methods for the Dynamic Characterization of Heat Exchangers",doi:"10.5772/67334",slug:"transient-effectiveness-methods-for-the-dynamic-characterization-of-heat-exchangers",totalDownloads:2032,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"This chapter introduces transient effectiveness methods for dynamic characterization of heat exchangers. The chapter provides a detailed description and review of the transient effectiveness methodology. In this chapter, all the transient effectiveness–related knowledge/works are summarized. The goal of this chapter is to provide a thorough understanding of the transient effectiveness for the reader and to provide guidance for utilizing this methodology in related heat exchanger transient characterization studies. Basically, there are three important applications for transient effectiveness methodology: (1) characterization of heat exchanger dynamic behaviors; (2) characterization of the transient response of closed-coupled cooling/heating systems with multiple heat exchanger units; and (3) development of compact transient heat exchanger models. This innovative modeling method can be used to assist in the development of physics-based predictive, capabilities, performance metrics, and design guidelines, which are important for the design and operation of highly reliable and energy efficient mechanical systems using heat exchangers.",signatures:"Tianyi Gao, Bahgat Sammakia and James Geer",downloadPdfUrl:"/chapter/pdf-download/54145",previewPdfUrl:"/chapter/pdf-preview/54145",authors:[{id:"189256",title:"Dr.",name:"Tianyi",surname:"Gao",slug:"tianyi-gao",fullName:"Tianyi Gao"},{id:"189353",title:"Distinguished Prof.",name:"Bahgat",surname:"Sammakia",slug:"bahgat-sammakia",fullName:"Bahgat Sammakia"},{id:"189354",title:"Emeritus Prof.",name:"James",surname:"Geer",slug:"james-geer",fullName:"James Geer"}],corrections:null},{id:"53874",title:"Unsteady Mixed Convection from Two Isothermal Semicircular Cylinders in Tandem Arrangement",doi:"10.5772/66692",slug:"unsteady-mixed-convection-from-two-isothermal-semicircular-cylinders-in-tandem-arrangement",totalDownloads:1581,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this chapter, two-dimensional mixed convection heat transfer in a laminar cross-flow from two heated isothermal semicircular cylinders in tandem arrangement with their curved surfaces facing the oncoming flow and confined in a channel is studied numerically. The governing equations are solved using the control-volume method on a nonuniform orthogonal Cartesian grid. Using the immersed-boundary method for fixed Reynolds number of ReD=uDD/υ=200, Prandtl number of Pr=7, blockage ratio of BR=D/H = 0.2 and nondimensional pitch ratio of σ=L/D=3, the influence of buoyancy and the confinement effect are studied for Richardson numbers in the range −1≤Ri≤1. Here, uD is the average longitudinal velocity based on the diameter of the semicylinder. The variation of the mean and instantaneous nondimensional velocity, vorticity and temperature distributions with Richardson number is presented along with the nondimensional oscillation frequencies (Strouhal numbers) and phase-space portraits of flow oscillation from each semicylinder. In addition, local and averaged Nusselt numbers over the surface of the semicylinders are also obtained. The results presented herein demonstrate how the buoyancy and wall confinement affect the wake structure, vortex dynamics and heat transfer characteristics.",signatures:"Erick Salcedo, César Treviño, Juan C. Cajas and Lorenzo Martínez-\nSuástegui",downloadPdfUrl:"/chapter/pdf-download/53874",previewPdfUrl:"/chapter/pdf-preview/53874",authors:[{id:"101401",title:"Dr.",name:"Lorenzo",surname:"Martinez",slug:"lorenzo-martinez",fullName:"Lorenzo Martinez"},{id:"188946",title:"Dr.",name:"César",surname:"Treviño",slug:"cesar-trevino",fullName:"César Treviño"},{id:"188947",title:"Dr.",name:"Juan Carlos",surname:"Cajas",slug:"juan-carlos-cajas",fullName:"Juan Carlos Cajas"},{id:"188948",title:"MSc.",name:"Erick",surname:"Salcedo",slug:"erick-salcedo",fullName:"Erick Salcedo"}],corrections:null},{id:"53025",title:"Computational Modeling of Vehicle Radiators Using Porous Medium Approach",doi:"10.5772/66281",slug:"computational-modeling-of-vehicle-radiators-using-porous-medium-approach",totalDownloads:2643,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:"A common tool for the determination of thermal characteristics of vehicle radiators is the experimental testing. However, experimental testing may not be feasible considering the cost and labor-time. Basic understanding of the past experimental data and analytical/computational modeling can significantly enhance the effectiveness of the design and development phase. One such computational modeling technique is the utilization of computational fluid dynamics (CFD) analysis to predict the thermal characteristics of a vehicle radiator. However, CFD models are also not suitable to be used as a design tool since considerable amount of computational power and time is required due to the multiple length scales involved in the problem, especially the small-scale geometric details associated with the fins. Although fins introduce a significant complexity for the problem, the repetitive and/or regular structure of the fins enables the porous medium based modeling. By porous modeling, a memory and time efficient computational model can be developed and implemented as an efficient design tool for radiators. In this work, a computational methodology is described to obtain the hydrodynamic and thermal characteristics of a vehicle radiator. Although the proposed methodology is discussed in the context of a vehicle radiator, the proposed methodology can be implemented to any compact heat exchanger with repetitive fin structures which is an important problem for many industrial applications.",signatures:"Barbaros Çetin, Kadir G. Güler and Mehmet Haluk Aksel",downloadPdfUrl:"/chapter/pdf-download/53025",previewPdfUrl:"/chapter/pdf-preview/53025",authors:[{id:"188023",title:"Prof.",name:"Barbaros",surname:"Çetin",slug:"barbaros-cetin",fullName:"Barbaros Çetin"},{id:"188025",title:"Prof.",name:"Mehmet Haluk",surname:"Aksel",slug:"mehmet-haluk-aksel",fullName:"Mehmet Haluk Aksel"},{id:"188026",title:"M.Sc.",name:"Kadir",surname:"Guler",slug:"kadir-guler",fullName:"Kadir Guler"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6080",title:"Heat Exchangers",subtitle:"Advanced Features and Applications",isOpenForSubmission:!1,hash:"44b8c91750dc46288be70ea7e8c80b59",slug:"heat-exchangers-advanced-features-and-applications",bookSignature:"S M Sohel Murshed and Manuel Matos Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/6080.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7272",title:"Advanced Cooling Technologies and Applications",subtitle:null,isOpenForSubmission:!1,hash:"540cb9c921dadbc8230afd4390eb8248",slug:"advanced-cooling-technologies-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/7272.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10374",title:"Advances in Microfluidics and Nanofluids",subtitle:null,isOpenForSubmission:!1,hash:"b7ba9cab862a9bca2fc9f9ee72ba5eec",slug:"advances-in-microfluidics-and-nanofluids",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10374.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"296",title:"Developments in Heat Transfer",subtitle:null,isOpenForSubmission:!1,hash:"06bca9a8a622c1fa728dc3943bff471e",slug:"developments-in-heat-transfer",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/296.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2230",title:"An Overview of Heat Transfer Phenomena",subtitle:null,isOpenForSubmission:!1,hash:"7bb8831521deb0cadc8f29532d083b50",slug:"an-overview-of-heat-transfer-phenomena",bookSignature:"Salim N. Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/2230.jpg",editedByType:"Edited by",editors:[{id:"93483",title:"Prof.",name:"Md Salim Newaz",surname:"Kazi",slug:"md-salim-newaz-kazi",fullName:"Md Salim Newaz Kazi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"531",title:"Evaporation, Condensation and Heat transfer",subtitle:null,isOpenForSubmission:!1,hash:"df4a2b5264d9893eafab9c49f7dec835",slug:"evaporation-condensation-and-heat-transfer",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/531.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1530",title:"Heat Exchangers",subtitle:"Basics Design Applications",isOpenForSubmission:!1,hash:"ec1e29dbc0241ab669b6985ea402152a",slug:"heat-exchangers-basics-design-applications",bookSignature:"Jovan Mitrovic",coverURL:"https://cdn.intechopen.com/books/images_new/1530.jpg",editedByType:"Edited by",editors:[{id:"105355",title:"Dr.",name:"Jovan",surname:"Mitrović",slug:"jovan-mitrovic",fullName:"Jovan Mitrović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2024",title:"Heat Transfer",subtitle:"Engineering Applications",isOpenForSubmission:!1,hash:"ed5e7988b2accd68f0d32fded936163f",slug:"heat-transfer-engineering-applications",bookSignature:"Vyacheslav S. Vikhrenko",coverURL:"https://cdn.intechopen.com/books/images_new/2024.jpg",editedByType:"Edited by",editors:[{id:"66215",title:"Prof.",name:"Vyacheslav",surname:"Vikhrenko",slug:"vyacheslav-vikhrenko",fullName:"Vyacheslav Vikhrenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11827",leadTitle:null,title:"Chronic Obstructive Pulmonary Disease - A Compendium of Medicine and the Humanities",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tChronic Obstructive Pulmonary Disease (COPD) is an age-old ailment that has plagued humankind since eons ago. The epidemic of COPD is largely caused by cigarette smoking and air pollution. COPD is an illness that does not respect the culture, geography, socio-economic status, or education. Consequently, it is a highly prevalent disease worldwide. Notwithstanding the current viral pandemic which has been ravaging the world, the health burden of COPD remains high, especially in low and middle-income countries. Confronting COPD is straining healthcare resources and involves a plethora of healthcare personnel from diverse backgrounds and disciplines. Thus, an educational resource for COPD necessitates an inter-disciplinary and multi-disciplinary approach to be considered comprehensive.
\r\n\r\n\tThis book aims to provide such a perspective. From bench to bedside and beyond, this compendium of publications on COPD seeks to provide clinicians as well as non-clinicians a multi-faceted view of a truly global disease. The renaissance of humanistic perspectives of medicine is intended to provide interesting aspects of dealing with this ancient and global malady.
",isbn:"978-1-80356-768-6",printIsbn:"978-1-80356-767-9",pdfIsbn:"978-1-80356-769-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"a654d23b4e684207c0c5fb8793b5cb6b",bookSignature:"Dr. Kian Chung Ong",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11827.jpg",keywords:"Risk Factors, Epidemiology, Symptoms, Airway Dysfunction, Inflammation, Asthma, Lung Volume Reduction, Steroids, Non-invasive Ventilation, Health Geography, Sociology, Interdisciplinary",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 25th 2022",dateEndSecondStepPublish:"June 3rd 2022",dateEndThirdStepPublish:"August 2nd 2022",dateEndFourthStepPublish:"October 21st 2022",dateEndFifthStepPublish:"December 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering pulmonologist in pulmonary rehabilitation, exercise testing, non-invasive ventilation, hospital-at-home programs, with a keen interest in developing new modalities in disease management. Member of Academy of Medicine (Singapore), Royal College of Physicians (UK), American College of Chest Physicians.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"103585",title:"Dr.",name:"Kian Chung",middleName:null,surname:"Ong",slug:"kian-chung-ong",fullName:"Kian Chung Ong",profilePictureURL:"https://mts.intechopen.com/storage/users/103585/images/system/103585.jpeg",biography:"Dr. Ong is a respiratory physician and intensivist of twenty-five years' experience. He is currently the medical director of Chestmed Pte Ltd, Mount Elizabeth Medical Centre, Singapore. He is also the founding and current president of the Chronic Obstructive Pulmonary Disease Association (Singapore) and is a member of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) Assembly. He is the principal author of multiple publications in international peer-reviewed medical journals such as CHEST, European Respiratory Journal, American Journal of Respiratory and Critical Care Medicine, and Respiratory Medicine. He is also the editor of several textbooks: Chronic Obstructive Pulmonary Disease – Current Concepts and Practice, Lung Inflammation, Chronic Obstructive Pulmonary Disease - a Current Conspectus.",institutionString:"Mount Elizabeth Medical Centre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Mount Elizabeth Hospital",institutionURL:null,country:{name:"Singapore"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453624",firstName:"Martina",lastName:"Scerbe",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/453624/images/20399_n.jpg",email:"martina.s@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"648",title:"Chronic Obstructive Pulmonary Disease",subtitle:"Current Concepts and Practice",isOpenForSubmission:!1,hash:"d52ddc19c473a70b91e5a64f41760a04",slug:"chronic-obstructive-pulmonary-disease-current-concepts-and-practice",bookSignature:"Kian-Chung Ong",coverURL:"https://cdn.intechopen.com/books/images_new/648.jpg",editedByType:"Edited by",editors:[{id:"103585",title:"Dr.",name:"Kian Chung",surname:"Ong",slug:"kian-chung-ong",fullName:"Kian Chung Ong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3843",title:"Lung Inflammation",subtitle:null,isOpenForSubmission:!1,hash:"92938e8752fa3444849d88b776cd7892",slug:"lung-inflammation",bookSignature:"Kian Chung Ong",coverURL:"https://cdn.intechopen.com/books/images_new/3843.jpg",editedByType:"Edited by",editors:[{id:"103585",title:"Dr.",name:"Kian Chung",surname:"Ong",slug:"kian-chung-ong",fullName:"Kian Chung Ong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10330",title:"Chronic Obstructive Pulmonary Disease",subtitle:"A Current Conspectus",isOpenForSubmission:!1,hash:"ed4471e26a96efbcc23ba3683ad5ea69",slug:"chronic-obstructive-pulmonary-disease-a-current-conspectus",bookSignature:"Kian Chung Ong",coverURL:"https://cdn.intechopen.com/books/images_new/10330.jpg",editedByType:"Edited by",editors:[{id:"103585",title:"Dr.",name:"Kian Chung",surname:"Ong",slug:"kian-chung-ong",fullName:"Kian Chung Ong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68504",title:"Biological Remediation of Phenoxy Herbicide-Contaminated Environments",doi:"10.5772/intechopen.88256",slug:"biological-remediation-of-phenoxy-herbicide-contaminated-environments",body:'2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) are the most commonly used phenoxy acid herbicides in agriculture, and 2,4-D is now the fifth most extensively used active ingredient (a.i.) in the US agricultural and home/garden market sector [1]. In addition, in 2016, 6.5 mln kg of herbicides based on phenoxy-phytohormones (2,4-D and MCPA) were sold in in the EU, including ~2 mln kg sold in Poland [2].
Phenoxy herbicides are typically used to protect wheat, one of the most extensively cultivated crops, because they selectively control the growth of dicotyledonous weeds [3]. They are applied as post emergence agents and taken up by broad-leaved plants. 2,4-D has also been extensively used as an anti-stalling agent for the postharvest fresh fruit industry [4].
These herbicides are based on ring-like structures and have at least one chlorine atom attached to the ring at different positions [5]. Their action is similar to that of phytohormones (auxins) insofar that they can redirect the regulation of plant growth/physiological processes, resulting in nutrition deficiency and subsequent plant death [6].
They are typically released to the environment in the form of commercial products containing phenoxy acids salts or esters; however, they immediately hydrolyze to their corresponding anionic or neutral form [7]. The dosage of phenoxy herbicides lies in the range of 0.8–1.8 kg of a.i. per ha. Their transport through the environment is governed by soil and climate factors (e.g., distribution of soil particles, soil permeability, soil depth, soil pH, soil organic matter content, land slope) [8], and their retention and translocation in the soil profile also depend on their chemical and physical properties, which are described by several parameters (Table 1), particularly pKa (acid dissociation constant), logP (octanol-water partition coefficient), and Koc (organic carbon distribution coefficient). The degree of adsorption and desorption depends on time and the physicochemical properties of soil; however, 2,4-D and MCPA are rather poorly adsorbed on the soil particles in comparison to their derivatives, which have different sorption characteristics [7].
Physical and chemical properties of 2,4-D and MCPA.
Although phenoxy herbicides are described as nonpersistent and weakly adsorbed (Koc < 50) in soil, they can be transported with runoff and in soil profile and reach terrestrial and water ecosystems (surface and groundwater). Figure 1 summarizes the transport and transfer processes of phenoxy herbicides in the environment. After they are applied to land, they are spread through several processes, including sorption/desorption, leaching, runoff, and plant uptake [8]. Phenoxy herbicide molecules are negatively charged and are therefore highly mobile at neutral pH. In groundwater, they are nonvolatile and persistent to hydrolysis, but they can be degraded biologically under both aerobic and anaerobic conditions. These herbicides demonstrate significantly greater persistence in temperate climates characterized by low winter temperatures and, in many regions, by depleted soil organic carbon content and acidic pH [7].
Transport and transfer processes of phenoxy herbicides in the environment.
Extensive use of phenoxy herbicides can threaten surface and groundwater ecosystems by promoting the contamination of soil matrices. The International Agency for Research on Cancer classifies phenoxy acids as “possibly carcinogenic to humans.” Gupta et al. [11] report that 0.5 kg/ha is the optimal concentration of 2,4-D which avoids contamination of environmental matrices, with the effect of higher concentrations of 2,4-D on the environment being dependent on irrigation treatment. Hence, little is known of the distribution of phenoxy herbicides in the environment. Data from several sources have identified increased levels of 2,4-D and MCPA in the soil, ground-, surface, and drinking water (Table 2); for example, Ignatowicz and Struk-Sokołowska [12] note that the concentration of phenoxy herbicides in the Narew River (Poland) fluctuated seasonally from 0 to even 150 μg/L. The concentration of MCPA in the Parramatta River (Sydney Estuary, Australia) was 0.061 μg/L; however, its presence in river water was caused by increased runoff of storm water [13]. MCPA concentration has been found to be as high as 42.40 μg/L in the Rhone River (France) [14] and to be as little as 0.58 μg/L in Brejo of Cagarrão Stream (Portugal) [15]. The 2,4-D concentration has been found to vary from 1.678 μg/L in the water of McGregor Creek (Canada) [16] to 329.42 μg/L in water from a rice field [17]. By contrast, the maximum permissible concentration of pesticide residues in drinking water is 0.50 μg/L (Directive E98/83/EC). The data presented in Table 2 and described above indicate that phenoxy herbicides should be considered as emerging contaminant especially in water resources.
Compound | Concentration | Environmental matrices | Source |
---|---|---|---|
2,4-D | 1.678 μg/L | Water from McGregor Creek (Canada) | [16] |
2,4-D | 103.99–329.42 μg/L | Water from rice field (Malaysia) | [14] |
2,4-D | 0.0052 mg/kg | Soil from cereal plantations (Poland) | [15] |
2,4-D | 0.513 μg/L | Lebo drain | [16] |
MCPA, MCPP, 2,4-D | 0–150 μg/L | Water from Narew River (Poland) | [12] |
MCPA | 0.0046 mg/kg | Soil from cereal plantations (Poland) | [15] |
MCPA | 0.08–42.40 μg/L | Water from Rhône River Delta (France) | [18] |
MCPA | 0.58 μg/L | Water from Brejo of Cagarrão Stream (Portugal) | [17] |
MCPA | 0.061 μg/L | Water from Parramatta River—Sydney Estuary (Australia) | [13] |
MCPA | 82.75–354.28 μg/L | Water from rice field (Malaysia) | [14] |
MCPA | 0.002–0.010 mg/kg | Soil from potato plantation (Poland) | [19] |
Concentration of phenoxy acids observed in various environments.
Despite the diversified levels of phenoxy herbicides noted in worldwide environments (Table 2), it has to be underlined that these compounds can exert serious toxic effects on the sustainability of ecosystems, even at lower concentrations (e.g., 0.275 μg/L) (Table 3). According to recent research, predicted no effect concentration (PNEC) for aquatic organisms is 500 μg/L for 2,4-D and 0.022 μg/L for MCPA [20]; however, PNEC has not yet been determined for terrestrial organisms.
Dose of phenoxy herbicide | Exposure time | Test organism | Effect on organism | Source |
---|---|---|---|---|
220.04 μg/L 2,4-D | 2 days | Inhibition of root and hypocotyl elongation | [22] | |
5.06 mg/L 2,4-D | 72 hours | Severe disturbances in mesophyll cell structure and proliferation of vascular tissue in young leaves | [23] | |
10, 100, 500, 1000 μg/L MCPA | 7 days | Disturbance of growth, anatomy, and physiology | [36] | |
IC50 1353.80 mg/L 2,4-D | 96 hours | External morphological alterations | [24] | |
IC50 71.20 mg/L 2,4-D | 96 hours | Stimulation of the production of cyanotoxins | ||
LC50 66 mg/L 2,4-D | 96 hours | Behavioral changes | [26] | |
LC50 9.06 and 7.76 mg/L 2,4-D | 96 and 168 hours | Reduced body size, delayed development, microcephaly, agenesis of gills, abnormal cellular proliferation processes | [27] | |
10–500 mg/L 2,4-D | 1 hour | Human erythrocytes | Hemolysis | [29] |
0.275, 2.75, and 27.5 μg/L 2,4-D and MCPA | 30 minutes | Hepatic cells of | Damage of cellular metabolism and homeostasis; increased oxidative stress | [21] |
The results of toxicological tests and effects of 2,4-D and MCPA on selected organisms.
Because the mode of action of phenoxy herbicides mimics that of plant growth hormones, their application causes disturbances among a range of physiological processes [21]. 2,4-D inhibits root/hypocotyl elongation in
Among animals, phenoxy herbicide application results in the inhibition of crucial enzymes in cell metabolism, including mitochondrial enzymes and those associated with DNA synthesis (Table 3). 2,4-D has also been found to induce erythrocyte lysis under laboratory conditions [29]. It is interesting to note that the intermediates formed during the degradation processes of 2,4-D, such as 2,4-dichlorophenol (2,4-DCP) and 3,5-dichlorocatechol (3,5-DCC), exhibit a strong ecotoxic effect on various organisms, including
Several studies have revealed that MCPA also can have a negative impact on the environment: MCPA application caused up to a 56% reduction in dehydrogenase, urease, and phosphatase activities and ergosterol content in soil [32]. In addition, this application leads to increased soil phytotoxicity to
These studies emphasize the important role played by ecotoxicological approaches in evaluating the effect of chemical stressors observed in the ecosystem communities. Despite the relatively short half-life (Table 1) of 2,4-D and MCPA, their remnants can be transported and deposited extensively in the environment, and this can present a potential threat to the soil and water ecosystems as well as to human health. Therefore, there is a need to identify nature-based solutions such as bio-, phyto-, and rhizoremediation that can enhance the process of phenoxy herbicide elimination from the environment.
One approach to removing phenoxy herbicides (2,4-D and MCPA) from soil is via degradation by the soil microbiota (biodegradation). This is achieved most effectively by bacteria harboring the appropriate functional genes, which are involved in the phenoxy herbicide degradation pathways (Figure 2). Alternatively, plants can be used to decontaminate sites, a process known as phytoremediation (Figure 2). Another promising approach, rhizoremediation, enhances the removal of such recalcitrant xenobiotics from the environment by exploiting the interactions between selected plants (able to grow under the presence of given xenobiotics such as phenoxy herbicides), root exudates (including plant secondary metabolites, PSMs), and microorganisms (Figure 2). The purpose of this section is to review the literature on established and potential biological methods of phenoxy herbicide removal from environmental matrices.
The biological processes of phenoxy herbicide biodegradation mediated by soil, rhizospheric, and endophytic bacteria.
Bioremediation is a method that uses microbiological processes to degrade or transform contaminants to less toxic or nontoxic forms. Biodegradation of organic contaminants occurs very slowly in bulk soil; therefore biostimulation and bioaugmentation methods are used to enhance the biologically driven removal of toxic compounds from environmental matrices. The effectiveness of biodegradation is dependent on several factors, among them the characteristics of the soil, the bioavailability of the contaminants, and their chemical properties.
An important way of phenoxy herbicide removal from soil is by the use of indigenous soil bacteria harboring desirable catabolic genes. The first step in the phenoxy herbicide biodegradation pathway is initiated by α-ketoglutarate-dependent dioxygenase, an enzyme encoded by
In recent decades, increasingly rapid advances in the application of molecular analysis in environmental studies have helped identify the bacterial communities involved in phenoxy herbicide biodegradation (Table 4). The bacteria able to metabolize phenoxy herbicides have been classified into three groups as follows: according to their physiology, employed degrading enzymes, and evolutionary origin [39, 40, 41] (Table 4).
The first group consists of fast-growing copiotrophic bacteria belonging to β- and γ-proteobacteria harboring the
The second group consists of slow-growing oligotrophic bacteria belonging to α-proteobacteria, phylogenetically closely related to
The third group consists of bacteria belonging to the α-proteobacteria harboring the
Class | Strain | Origin | Studied compounds | Identified functional genes | Source |
---|---|---|---|---|---|
α-Proteobacteria | Soil from Michigan (USA) | 2,4-D | — | [44] | |
Soil from Fukuoka Prefecture (Japan) | 2,4-D, MCPA | [45] | |||
Root nodules; pristine environments (Hawaii, central California, USA; southwestern Australia, southwestern Africa; central Chile; northern Saskatchewan, Canada; northwestern Russia); volcanic soil (National Park (Kipuka Keana Bihopa, Hawaii, USA) | 2,4-D | [38, 39, 41] | |||
Sediment from an aquifer in Fladerne Creek (Denmark) | MCPA | [46, 47] | |||
β-Proteobacteria | Herbicide-contaminated building rubble (Germany) | 2,4-D and MCPA | [48] | ||
Soil from the Dijon INRA experimental station (France) | 2,4-D | [49] | |||
Polluted river in Buenos Aires (Argentina) | 2,4-D | — | [50] | ||
2,4-D-enriched soils from wheat fields in Beijing exposed for 2,4-D for at least 10 years (China) | 2,4-D | Class I | [51] | ||
Soil in a disused pesticide factory in Suzhou (China) | 2,4-D and MCPA | [52] | |||
Alkali Lake site in Oregon (USA) contaminated with 2,4-D production wastes | 2,4-D | [53] | |||
γ-Proteobacteria | Agricultural soil from Michigan (USA) | 2,4-D | — | [54] | |
Wheat rhizosphere (laboratory experiment) | 2,4-D | — | [55] |
Bacteria degrading phenoxy herbicides isolated from pristine and contaminated environments.
Much of the current literature on phenoxy herbicide metabolic pathways pays particular attention to the degradation pathway of 2,4-D. One of the most extensively studied 2,4-D degraders is
Far too little attention has been paid to the metabolism of MCPA. MCPA degradation takes place by the cleavage of an ether linkage, resulting in the formation of the major metabolite, 4-chloro-2-methylphenol (MCP), and acetic acid [47]. This process is preceded by the expression of the
The bacteria carrying
The microbial degradation metabolic pathway of phenoxy herbicides has been elaborated in recent years (Figure 3). The first step of this catabolic pathway is initiated by either the
Pathways of microbial degradation of 2,4-D and MCPA proposed by Pieper et al. [
Until recently, there has been little interest in the stereospecific Fe-(II) α-ketoglutarate-dependent dioxygenases which are encoded by
In addition to the soil bacteria, soil microfauna can also profoundly affect the biodegradation of organic contaminants. An important example of this relationship is the activity of earthworms, which move through the soil, causing better aeration and increasing soil moisture. Hence, insofar as their activity can influence the profile of the microorganism communities in the soil, they can indirectly enhance the process of phenoxy herbicide aerobic bacterial degradation [61].
A steadily developing strategy for the in situ treatment of contaminated soils is phytoremediation. It is a cost-effective and environmentally friendly strategy that uses plants to transform or mineralize xenobiotics to less toxic or environmentally neutral compounds [62]. Plants play a crucial role in the development of soil structure and stabilization of fundamental soil ecosystem functions such as water flow [63]. They produce also an array of catabolic enzymes, which operate to protect the host organisms and detoxify xenobiotic compounds [64]. Therefore, phytoremediation not only contributes to the detoxification of the environmental matrices but also has a positive influence on the functioning of the entire ecosystem.
The process of contaminant absorption by plants depends on several factors, including regional climate, soil type, and the nature of the pollutant [65]. The selection of an appropriate plant species and cultivar is critical for effective removal of a given contaminant from soil [66, 67]. This choice of phytoremediation candidate should particularly take into account plant growth rate, high biomass production, capacity for pollutant accumulation, and tolerance to higher xenobiotic concentrations [67].
In terms of phenoxy herbicide removal, there has been little investigation of the plant-mediated removal of 2,4-D and/or MCPA. For example, Ramborger et al. [68] evaluated the phytoremediation potential of
As mentioned above, plants play a key role in soil ecosystems by stabilizing the soil structure and by serving as primary sources of organic matter and energy which stimulate soil microbial activity [63]. Despite this, they are not the only contributors in the efficient phytoremediation of organic contaminants. Due to existing interactions between plant roots, root exudates, soil, and microorganisms, it has been proposed that the most effective method for the remediation of contaminated soil may be microbe-assisted phytoremediation (rhizoremediation).
Rhizoremediation is a naturally occurring process within the plant root zone (rhizosphere), where the growth of microorganisms and their degradative activity are stimulated by root exudates enriched by plant secondary metabolites (PSMs). Plant-derived compounds can [1] serve as primary substrates in cometabolism and provide energy for microbial growth [2], act as inducers of degradative enzymes due to their structural similarities to xenobiotics, and [3] enhance the degree of contamination removal by increasing pollutant bioavailability in soil [71].
The effectiveness of rhizospheral biodegradation depends also on the potential of the microorganisms inhabiting the rhizosphere to adapt to pollutant concentrations [72]. For effective degradation of contaminants to take place, a wide range of plants and bacterial traits is needed, involving the orchestrated interaction of a multitude of genes and enzymes. Rhizoremediation can therefore be optimized by selecting suitable plant-microbe sets, which can be achieved by combining plant and plant growth-promoting rhizobacteria (PGPR) [73] and/or microbes capable of contaminant degradation [74]. PGPR can improve phytoremediation efficiency by enhancing plant tolerance to various environmental stresses, promoting root growth and improving plant growth and health. In turn, some rhizospheral microorganisms can directly use their own degradative capabilities to metabolize organic pollutants [74, 75]. A study of rhizosphere-enhanced biodegradation of 2,4-D by Boyle et al. [76] found a significant difference in the mineralization of 2,4-D between monocot rhizosphere soils, dicot rhizosphere soils, and non-rhizosphere soils, with greater microbial activity being observed in monocot rhizosphere soil than in dicot rhizosphere soil or bulk soil. Therefore, both the soil and plant species determine the mineralization of tested contaminant. According to Shaw and Burns [77], the amendment of soil with 2,4-D increased the number of rhizospheric bacteria degrading 2,4-D in
Furthermore, it has been hypothesized that PSMs may have a profound impact on the biodegradation of xenobiotics by providing the energy for microorganisms to carry out cometabolism; in this case, the xenobiotic is degraded as a secondary substrate [45, 71, 72, 73]. PSMs can be used as a primary source of carbon for bacterial communities to support their growth and stimulate the expression of desirable genes involved in the catabolic pathway of given xenobiotic. This is evident in the case of biphenyl, naringin, coumarin, myricetin, and l-carvone, which stimulate the activity of polychlorinated biphenyl (PCB)-degrading bacteria such as
In addition, it has been hypothesized that PSMs may also induce the detoxification mechanisms taking place in bacterial cells [85, 86]. The expression of functional genes in bacteria is essential for the successful bioremediation of xenobiotics and can be stimulated by PSMs in different ways. However, very little information is given in the literature regarding the influence of PSMs on the induction of genes involved in catabolic pathways. Siciliano et al. [87] report greater induction of catabolic genes (
In addition, it has been hypothesized that the structural similarity between selected xenobiotics and PSMs may have a profound impact on the biodegradation of given, structurally related xenobiotic [71, 85]. For example, Urbaniak et al. [35] demonstrated the effect of a PSM, syringic acid, on the enhanced removal of structurally similar herbicide, MCPA, by indigenous soil bacteria, with greater MCPA depletion being achieved in samples enriched with PSM. The molecular analysis revealed ubiquitous enrichment of the samples with
Taking into account the abovementioned aspects, rhizoremediation can serve as a potential tool for phenoxy herbicide removal from soil ecosystems. However, to date, most studies have focused solely on the phyto- or biodegradation properties of plants or bacteria [71]. Consequently only limited data is available in terms of the impact of rhizoremediation on phenoxy herbicide removal from soil.
Endophytic bacteria that reside inside plant tissues are also known to play a crucial role in the remediation of organic compounds. Plant-associated bacteria can enhance plant growth and degrade organic contaminants such as trichloroethylene and hydrocarbons [90]. The activity of endophytic bacteria can mitigate and improve plant conditions in stressful environments (such as contaminated soils). Field studies by Eevers et al. [91] showed that zucchini (
It has also been found that application of 2,4-D (1.42, 2.84, and 5.68 mg a.i./g soil) had a negative effect on the physio-morphological parameters of aerobic rice (
Bacterial endophyte-enhanced phytoremediation was also studied by Germaine et al. [78] on the example of
Table 5 compares the presented biological methods of remediation of soils contaminated with phenoxy herbicides. It illustrates the differences of the removal of phenoxy herbicides from soil. It is apparent from this table that the most efficient method of contaminant removal is endophyte-assisted phytoremediation; however, more research on this topic needs to be undertaken before the association between role of symbiotic microorganisms and plants in removal of contaminants from environmental matrices is more clearly understood.
Method | Compound | Initial concentration of compound used in an experiment | Duration of an experiment (days) | Removal of phenoxyacetic acid (%) | Comments | Source |
---|---|---|---|---|---|---|
Bioremediation | 2,4-D and MCPA | 0.09 mmol/kg of soil | 118 | 60 | Activity of bulk soil microbial population from various soil samples | [93] |
2,4-D | 1.8 kg/ha | 10 | 45–48 | Activity of bulk soil microbial population from clay and loamy soil samples | [94] | |
Phytoremediation and rhizoremediation | 2,4-D | 11.42 kg/ha | 20 | 49 | Use of | [76] |
2,4-D 2,4-DCP | 1.22 10−3 μm 1.19 10−3 μmol | 66 | ~60 | Activity of rhizospheric soil bacteria derived from monocots | [68] | |
Endophyte-enhanced phytoremediation | 2,4-D | 47–360 mg/kg of soil | 53 | 93–100 | The inoculation of |
Biological remediation methods and % average removal of phenoxy herbicides from soil matrices.
Uncontrolled use of phenoxy herbicides (2,4-D and MCPA) in the agricultural and gardening sector can result in their dispersal in soil and water ecosystems, which can significantly disturb the sustainability of the environment and increase its ecotoxicity level. Although their persistence in soil is limited due to their chemical characteristics, they can be transported and accumulated in water ecosystems through runoff and leaching. According to recent reports, phenoxy herbicides are especially toxic for plants, freshwater crustaceans, and amphibians; hence there is a growing need to limit the release of phenoxy acids in natural environments.
Taking into account the abovementioned aspects, the integration of bio-, phyto-, and rhizoremediation can serve as a potential tool for phenoxy herbicide removal from soil ecosystems. The ability of bacteria to metabolize phenoxy herbicides has been extensively studied over the last decades. However, to date, only limited data is available in terms of the impact of phyto- and rhizoremediation on phenoxy herbicide removal from soil. What is not yet clear is the impact of PSMs on the degradation of phenoxy herbicides. The similarity of the chemical structure of chosen PSMs and xenobiotics can be reflected in the xenobiotic degradation rates, e.g., the presence and induction of degradative genes and production of degradative enzymes, and the composition of microbial populations. To date, little evidence has been found associating the removal of phenoxy herbicides using both plants and microorganisms. However, the abovementioned research serves as a base for future studies on their application for the improvement of soil quality.
Considering the above, the chapter describes an interdisciplinary approach to tackling the problem of environmental phenoxy acid herbicide contamination through integrating available literature data on the physicochemical properties of 2,4-D and MCPA, as well as their levels in the environment and toxicity to the organisms from different trophic levels. It also outlines possible methods for their removal using nature-based techniques such as bio-, phyto-, and rhizoremediation.
This work was supported by the European Structural and Investment Funds, OP RDE-funded project “CHEMFELLS4UCTP” (No. CZ.02.2.69/0.0/0.0/17_050/0008485).
There is no conflict of interest.
Two-dimensional (2D) materials motivated scientific society owing to inspired decisive passion in electrical, mechanical, and optical disciplines, showing extra-ordinary properties comparatively layered bulky counterpart. 2D pioneer carbon material, graphene, previously presented advanced studies in the fields, particularly, [1] membranes, [2] bio-sensors, [3] energy storage technologies, [4, 5] and topographic spintronics devices, [6] despite last decade advancement in graphene literature approach, still alarming goal from its targets, as is the condensed matter physics, [7, 8] towards the aforesaid trend, a series of ultrathin materials were isolated via exfoliation process, as synthesized incorporating metal chalcogenides, [9, 10] double-layered-hydroxide, [11] boron nitride, [12] preliminary investigation regarding 2D nano-materials was attractively oriented by fundamental research approaches inheriting novelty properties, new channels have certainly opened and encouraged recently towards high application inspired studies [13, 14]. Evidently, 2D materials frequently contributed active counterpart as a promising one in functional devices and versatile electronics. Eventually, they prove themselves as attracting candidates, revolutionizing the current technologies, further as, seawater desalination, quantum computing, and renewable energy resources [15, 16, 17].
Harvesting applications regarding 2D materials are expected to realize high efficiency with low-cost industrial-scale technologies should be appreciated in the development of high-quality 2D materials. Updates now reveal various top-down adopted methods, likewise, scotch-tape. Chemical and liquid-based exfoliation was followed, fabricating layered 2D materials successfully [18]. Recent investigations have shown remarkable information about top-down approach, regarding time-consuming, hazardous chemical nature, and more defects generation. Comparatively, epitaxial growth, and chemical vapor deposition (CVD), bottom-up approaches have considerable capability of fabricating ultrathin 2D materials containing large surface- area [19]. Nevertheless, aforesaid bottom-up methods are so complex that they show costly high temperature and pressure, rather, more need to transfer the 2D materials fabricated products from metal surface to targeted substrate, making difficult for controlling the synthesis process, and may incorporation of defects and impurities into the products. Electrochemical technologies are usually carried out under mild conditions, in comparison with, other synthesis technologies, as they proven convenient and controllable conditions [20, 21]. Electrochemical exfoliation, for the layered bulk-material, likewise, anodic-oxidation cationic-intercalation and cathodic-exfoliation, using liquid-electrolyte, applying potential driven structural expansion, is a potential method, exfoliating 2D materials in a remarkable novelty fashion [22, 23]. The electrochemical technique is also employed as a quick and controllable tool for lithium/non-lithium intercalations [15, 16, 24, 25, 26, 27, 28, 29, 30, 31] and considered as an effective technique for exfoliating and/or intercalates layered carbon materials to single or multi-layered 2D nanosheets [32, 33, 34, 35].
Electrochemical reactions occur on electrode with layered structure will yield as intercalation and/or exfoliation of electrode [36, 37, 38]. There are some desirable features for electrochemical exfoliation such as simplicity, fast cycle time, ease of activity, control, and potential for scaling up. The applied potential and electrolyte quality highly influenced on consistency of exfoliated nanosheets [39]. For this purpose, a set-up similar to the battery test system in a galvanostatic discharge mode with a constant current is used. In this context, a metallic lithium foil is used as anode and bulk Graphite powder is serves as cathode with LiPF6 in a combination of ethylene carbonate and diethyl carbonate acting as electrolyte [16, 40]. Li+ ions are introduced into graphene interlayer van der Waals gap during intercalation cycle and reduced by incoming electrons from the external circuit to Li atoms during insertion (Figure 1) [42]. Strongly in-plane covalently bonded bulk materials with weakly out-of-plane bonds, coupled by weak intermolecular forces, may easily be exfoliated in the form of thin-atomic layered structure of the 2D materials, by breaking weak van der Waals interactions under ultra-high cationic or anionic media [41, 43].
Schematic illustration of electrochemical exfoliation [
The desired oxygen content, defect density, electrical conductivity, and thickness associated with exfoliated 2D materials, to be tuned, may be adjusted through voltage/current electrochemical parameters. Both cationic and anionic exfoliation, also intercalations, have been applied schematically in the exfoliation process of the graphite itself [44, 45], phosphorous black [46, 47] iv A and vA group metals [48, 49], transition-metal-dichalcogenides [32, 50, 51], graphitic-carbon-nitride, transition-metal-oxide [52], metal–organic-framework sheets [53] and MXene [54]. Based upon the type of potential used; electrochemical processes are mainly divided into two forms one is
Illustration of cathodic and anodic exfoliations.
Graphite intercalation chemistry [63, 64] paves historical background path for the graphene, produced by electrochemically roots, the first step involves, typically, intercalation of ions in this respect. Scientists and engineers studied graphite intercalation compounds (GICs) over many decades, but exfoliation study of GIC was intensively increased to produce graphene/graphene-derivatives via characterization of graphene, employed by Geim and Novoselov [65]. A briefly reviewed of pre-graphene era work has been described here, included with the latest electrochemically produced graphene. GICs are identified, as numerous graphitic molecules resided between basic graphene sheets.. The intercalating molecules may play donor role in the graphitic network, otherwise, accept electrons (acting as accepters) to form chemically ionic-bond with graphite. Contrarily, a ternary GIC possibility prevails in the form of co-intercalated, acceptors and donors as well. GICs have interestingly presented considerable research study, owing to improved charming (electrical and electronic) properties relative to pure graphite. The very first reported literature on GIC was presented by Schafhäutl, in 1841 [66]. While, Various GICs methods have been promoted, producing the material under study, likewise, chemical photochemical and electrochemical synthetic approaches.
In addition, a homogeneous series of intercalating molecules were involved in various graphitic nature host materials [67], fabricating various GICs. GICs (amongst many species), including halogens, metal halides, alkali metals, and various acidic nature compounds are successfully incorporated into graphite. Electrochemical-intercalation-approaches have been studied since 1938, as Rüdorff and Hoffman employed electro-intercalation, to prepare acidic nature GICs [68]. However, until 1970s and 1980s, no interest has been taken in intensified electrochemically produced GICs. Moreover, in 1974, the Lithium/(CF) primary battery has been introduced by Fukuda while the 1970s presented the first lithium/graphite/fluoride battery-system on commercial basis, successfully [69, 70]. While electrochemical-intercalation approach was employed, here, a voltage is applied to graphitic working-electrode. In case the potential becomes positive, the graphite is identified as positively-charged anode, attracting anionic intercalating-species. In contrast, if the potential is opposite, then graphite acts as a negatively-charged cathode, which attracts cationic nature species. As a result, accordingly, both anionic-cationic intercalating-agents may be involved in the desired GICs. An anionic intercalating-species, which have been successfully incorporated, contained obviously sulfate- anions, fluoride-anions [71, 72, 73], and metal-halides respectively [74].
Cationic intercalating-species, including metals such as magnesium [34] and lithium have been reported [75, 76]. Lithium-ion GICs successfully exemplify the application of GICs towards the production of batteries, an area, where maximum research has been reproduced. GICs proved to be a successful battery cathode, or anode, or both alternatively. In the 1980s, lithium-ion GICs were progressed as anode-materials in secondary-batteries, associated with metal-oxide cathodes. Research into lithium-ion batteries progressively continues, currently, with due widespread commercial use this economical system. Furthermore, alternative GICs battery systems, such as metal-hydroxide-based systems [77], have also been adopted advanced steps and exhibited commercial based success. Various early electrochemically synthesized GICs products, based on the contemporary electrochemical-products of exfoliated-graphene and functionalized-graphene, i.e. early work on lithium/GICs advanced materials, which would be exfoliated to graphene, later on, were also appreciated [78]. Stage-I, earlier GIC literature on GICs, is considered the most relevant current-work on graphene exfoliation approach. As far as Stage I is concerned, compound is formed during the process of one layer of graphene resided between every layer of intercalating-molecules, whereas Stage-II GIC shows two-layers of graphene intercalated between each layer of guest-molecules. Stage-III GIC contains three-layered groups of graphene residing guest molecules, and continue simultaneously. Since Stage-I GICs, the guest species, enlarge the inter-layer spacing between graphene layers, following basic principle, each layer may easily be separated from its neighbor one, so becoming able to be exfoliated into single-layered graphitic nature. Much electrochemical-graphene work, decisively first creates Stage-I GICs, which are, later on, exfoliated in the form of monolayers. Earlier study reveals that electrochemically produced Stage-I GICs have been announced more informative in many studies, clearly described in the forthcoming sections. It is very likely, and innovatively, that this literature study will continue to be made a foundation for future work, successfully [79].
The electrochemical setup, used for graphene exfoliation, usually incorporates the elements such as graphite working-electrode, counter-electrode, reference-electrode, electrolyte, and voltage-supply. Systematically, highly-orientated pyrolytic-graphite (HOPG), graphite-powders, graphite-rods, graphite-foil, or graphite-flakes has been used as the working-electrode [22, 44, 80]. To provide the conducting surface, graphite flakes were choosed as the best, amongst available electrodes, that may be adhered to conductive carbon-tapes, forming the working-electrode [22, 45], and they may also adhere to tungsten-wire via silver-pad [81] or to be formed into graphite-plates through compression directly [82]. Being counter electrodes mesh, platinum-wire, plates or rods, and graphite were more frequently used. The arranged experimental setup is often illustrated as depicted in Figure 3a. Keeping a certain distance between working and counter electrodes respectively, they are simultaneously immersed into electrolyte. A voltage (positive or negative) is applied to the graphite (a working electrode), depending upon adopted desired exfoliation mechanism.
(a) Schematic illustration of a typical setup for electrochemical exfoliation of graphite [
In addition to the aforesaid common setup, Liu et al. employed two pencil cores, as graphitic anode and cathode sources alternatively [80]. An alternating bias-voltage (between +7 V and − 7 V) was applied across the ends of pencil-electrodes, exfoliating them properly. Though the setup was highly efficient with higher exfoliation rate than graphite electrode, yet the product so obtained may be expected more inhomogeneous, with wide thickness and suitable size distribution. Abdelkader et al. reported, recently, a versatile setup in Figure 3b, showing continuous electrochemical-exfoliation-process, producing 0.5–2 g (few-layer graphene) per hour [83]. Moreover, in the setup, the graphitic electrode was injected steadily from the bottom of the electrolytic cell with graphitic contact with the electrolyte, being so exfoliated. Well- immersed-exfoliated (few-layer graphene sheets) was located on upper surface of the electrolyte, thereby, flowed out of the cell, while the partially-exfoliated-graphite retained at the bottom, so that further exfoliation may be carried out [83]. In another study, Motta and coworkers have presented ultra-sonication, assisting the electrochemical-exfoliation process, and placing the graphite electrode in a sonicated-exfoliated process [84].
Sorokina et al. introduced a patent experimental setup, comparatively, producing GICs in the past of the graphene era indicating a load (20 kPa) was applied across graphite-flakes over a platinum-disk (electrode), so to achieve fine electrical-contacts between the graphite-flakes as well [85]. Recently, the main challenging issue lies between (the effective and uninterrupted) electrical-delivery, to each graphene layer, in the graphite, presenting the immense need for the development of commercially scalable, and further controllable-setup.
Various bulk-layered materials exhibit strong in-plane bonds while electrostatic interactions with weak interlayer bonding i.e., interlayer-cohesive-energies (less than 200 meV/atom) [18]. So, exfoliation or delamination occurred in the form of atomically thin-layered nanosheets, thereby, van der Waals forces amongst 2D binding layers reduce to a minimum level. Mechanical exfoliation/chemical exfoliation as compared with ultrasonic treated exfoliation was extensively carried out fallowed by two-electrode or three-electrode electrolysis of electrochemical exfoliation (using bulk-material as working-electrode). Plasma state as well as cations or anions accumulated between layers owing to a strong electric field, resulting in layered-structure electrodes expansion with the interlayer-bonding cleavage simultaneously. Hence, bulk-layered-structured material may prove to be a good conductor of electricity, thereby, could be made electrode. It has been reported that bulk layered materials are semiconductive as well as non-conductive in nature [86] caused by difficult to be electrochemically exfoliated, as in this case, the most applied potential causes overwhelming large resistance. To overcome issue, a conductive additive is suggested to be more appropriate strategy [61], resulting in exfoliation of 2D layered materials in an extensive range of possibility while ignoring conductivity of the bulked layered materials.
During the exfoliation mechanism, expansion of bulk material electrode occurs under the intercalation of ions, leading to disintegration of bulk material electrodes. Resultantly, some disintegrated sheets were still not exfoliated, reducing the yield strength and preventing electrochemical exfoliation process from the possibility of feasible production route. During the intercalation process, chances of breaking of bulk material electrodes, they are wrapped up in confined space with plastic tube and platinum gauze or carbon cloth, suggesting reasonable method for laboratory preparation method [87, 88]. Currently, Achee et al. framed a new route, yielding highly scalable 2D graphene by employing graphite flakes, without binder as the working electrode [89]. Graphite flakes remained in electrical contact under the compressed expandable electrode system, expanded by gas evolution. Therefore, graphene powders accumulated continuously expanded largely, and exfoliated extensively to produce carbon materials (graphene), 2D in nature.
The electrochemical exfoliation Mechanism depends on the type of applied potentials (anodic or Cathodic, Figure 4). Amongst the going mechanisms, anodic-exfoliation contains an anionic-intercalation with any co-intercalating-species (in the reaction mixture) into graphitic nature material. A positive current extracts electrons from the graphite (a working anode), thereby producing a positive charge. The charge, so produced, proceeds of bulky negative ion’s intercalation like sulfate anions, that have increased the interlayer-spacing between graphene-sheets, and further supported during the exfoliation of the sheets, subsequently. A negative biased graphitic working-electrode in cathodic exfoliation attracts positively-charged-ions (e.g. Li+) in the electrolytic solution, involving any co-intercalating molecules. Furthermore, the intercalating species create a location where they open the graphene sheets, depending upon expansion and exfoliation processes [16, 90, 91].
Proposed mechanism for exfoliation process at both anode and cathode.
After completion of electrochemical intercalation along with expansion of graphite, further need is required to some form of exfoliation. In some cases, where exfoliation-process may occur during which intercalates (more typically), or the co-intercalating species, such as water, that was rapidly transformed to expanded-species (e.g. oxygen gas) [81]. On the other hand, electrochemically expanded graphitic sheets requires, to be mechanically-exfoliated likewise sonication process [78]. The exact mechanism related to electrochemical-graphene-exfoliation depends upon the potential polarity, along with other experimental conditions, caused by the electrolyte as well as co-intercalating agents already incorporated in the mechanism, to be further discussable (vide infra) [15].
An anodic exfoliation mechanism in ammonium sulfate ((NH4)2SO4) aqueous solution, outlined by Parvez et al. [22]. In (Figure 5a), Hydroxyl ions (OH−), firstly produced from the water electrolysis, and this strong nucleophile may interact the sp2 carbons graphitic- edges with grain boundaries, thus producing two vicinal hydroxyls (OH) groups. Subsequently, they interact with each other, exploring epoxide group rings. Alternatively, dissociating them forming of two carbonyl-groups via further additional oxidation, as illustrated in Figure 5b, reaction (3). Resultantly, this leads to depolarization with an expansion of graphitic-layers at the corners, which in turn opened up the lattice, for intercalation, by sulfate ions
(a) Schematic illustration of mechanism of electrochemical exfoliation in (NH4)2SO4 aqueous solution [
Similarly, anodic process was also described by Rao et al. [92]. Hydroxyl ions (i.e. OH− ions) from aqueous NaOH electrolytic solution reacted with more added H2O2 to form
Exfoliation of graphite into few-layer graphene flakes via intercalation of Li+ complexes [
By supplying sufficiently high voltage, the organic solvent will be decomposed, producing propylene gas which added the graphitic expansion [44].
Alkaline situations along with 1 M of sodium hydroxide (NaOH) and father explore the impact of adding hydrogen peroxide (H2O2) on exfoliation efficacy, experimental setup with mechanism as shown in Figure 7a
(a) Schematics of proposed mechanism of anodic exfoliation (bi, ii) experimental setup and exfoliation efficiency against H2O2 molarity with photograph of dispersed nanosheets in C3H7NO. (c, and d) low magnification (0.5 μm) and HR-TEM images of exfoliated nanosheets, respectively, (e) image reveals some defects in nanosheets (f) SAED image (g) HR-TEM image, exposing tri-layer formation, (h) distribution of exfoliated nanosheets before centrifugation [
Amongst many electrochemical exfoliation methods, anodic graphite exfoliation is that one, showing high exfoliation efficiency. Various diversified graphene production approaches were adopted, based on anodic exfoliation, which has already been reported [22, 60, 94, 95, 96]. Su et al. presented the best one approach (as the first reported) of anodic exfoliation, via adopting the most simple and fast method, while preparing electrolyte solution containing H2SO4 + KOH [81]. An optimized procedure that was followed here, for the exfoliated graphene production was the setup, similar to what is shown in Figure 3a, using the electrolyte with value (pH = 1.2). A low-biased +2.5 V has been first applied for 1 min, yet with subsequent alternating-voltage between +10 V and − 10 V. In first step, low-voltage, aided for forming the wetting electrode surface, helping intercalation of anions into the graphite. Subsequently, the +10 V potential was used, for activating and oxidizing the graphitic sheets, which caused the graphite to become quickly in the form of dissociated small pieces. The ensuing (−10 V) potential was used as reductants towards functional groups. Very impressively, the so produced graphene sheets show a lateral size of several to 30 μm. Above 60% of the sheets were observed as bilayer-graphene with A–B stacking as illustrated in (Figure 8). Oxygen functional groups along with some decisive defects have been detected in the graphene sheets attributing to unavoidable oxidation. Moreover, the concentration level of graphitic defects produced in graphene sheets was less than reduced graphene oxide, which was produced by traditional chemical methods.
STM image of bilayer graphene produced by Su et al. hexagons represent atom configuration of two layers [
A similar study was presented by Su and colleagues [81], showing optimized multiple parameters, involving pH as well as applied voltage. While at extremely low pH, with high oxidation levels including H2SO4, produced a maximum level of defects on the graphene sheets. Consequently, KOH was added along with H2SO4, to increasing the pH value of the electrolyte, exhibiting the exfoliation at lower rate. Resultantly, it was observed that higher concentrated pH showed large percentage of bilayer-sheets, but the non-uniform defect level was still maintained between the graphene sheets. Subsequently, at less than 10 V potential (in terms of the working biased potential), the exfoliation process was slowed down and more inefficient, whereas voltages (greater than 10 V) accelerated the exfoliation rate very fast so that density of graphitic-particles, as well as, thickest graphene sheets were clearly observed and largely produced. Obviously, the effects of various electrolytic solutions were greatly explored, involving some acids, such as HBr, HNO3, HCl, and H2SO4, however, amongst the aforesaid solutions, H2SO4 was found only to be more effective in the performed experiments.
In 2013, Parvez et al. contributed and demonstrated their work in the form of exfoliation process of graphite in H2SO4 aqueous solution, further proceeding and elucidating, the exfoliation mechanism as well [45]. In this respected end, they have been explored the influence of H2SO4 concentration more clearly on exfoliation performance, by using (+10 V voltage), for 2 minutes subsequently. It was, more certainly, found that 1 M and 5 M H2SO4 explored slow exfoliation efficiency and yielded 0.1 M H2SO4, presumably, because of (more concentrated H2SO4 solutions), generated larger fragments of graphitic-particles. Likewise, in case of sulfuric acid, was too low, the exfoliation efficiency was more frequently reduced, caused by a reduced number of anions. The worthy authors have deeply studied while examining pure H2SO4 with 1:1 H2SO4/CH3COOH reaction mixture, however, in these cases, slight expansion with almost no exfoliation was prominently observed so far. This scheme has suggested the durability of water in the electrochemical process, as it clearly may produce (oxygen and hydroxyl radicals), which arises as aiding agents in intercalation and exfoliation processes. High-quality graphene was exfoliated via 0.1 M sulfuric acid solution, with a large sheet, containing a size of ~10 μm, with low oxygen concentration 7.5 wt.% along with low sheet-resistance (of 4.8 kΩ/square), for a single sheet as in Figure 9a–f.
(a) AFM image of electrochemically exfoliated graphene on substrate (SiO2), (b) statistical thickness analysis of the graphene sheets by AFM, (c, d, and e) HR-TEM images of single-, bi-, and four-layer graphene; inset in (c) is the low magnification image of exfoliated graphene, and (f) SAED pattern of bilayer graphene [
Liu et al. presented electrochemically exfoliation of two graphitic-electrodes, through applied alternating potentials (+7 V and − 7 V) in aqueous electrolytes, containing H2SO4 or H3PO4, thereby, resulting in anodic-exfoliation using both electrodes alternately [80]. Depending upon Characterization results, graphene flakes with thick multilayered structure (3–9 nm), lateral size (1–5 μm) with comparatively low oxidation level, were produced (see Figure 10).
(a) TEM image and (b) SEM image of exfoliated GO flakes, (c) AFM image of exfoliated GO flakes. The thickness is 5.45 nm with lateral size around 2 μm, (d) thickness distribution histograms for exfoliated GO sheets, as estimated from corresponding AFM analysis. The graphene flakes are mainly distributed in the range of 3–9 nm thickness (69%) with lateral size about 1 to few μm, (e) Raman spectra, and (f) XRD patterns for both pencil core and exfoliated GO flakes, respectively [
Xia et al. keenly observed, the swallowed and expanded graphitic surface, caused by the intercalation along with gas formation at early stage level [74]. Apparently, opening of graphitic edges is caused by a key-step towards the subsequent exfoliation. Furthermore, the radical attack was observed as nonselective, in this case, occurring randomly at the exposed graphitic surfaces, necessarily leading to increased oxidation level of the graphene sheets. Partial removal of the radicals indicates a sound solution, preventing the side reaction, so occurred. Yang et al. [97] have examined an antioxidants group, based on a standard ammonium sulfate (NH4)2SO4 electrolyte, and with radical scavengers containing sodium borohydrides, ascorbic acid, (2,2,6,6,tetramethyl-piperidinyl)oxyl (TEMPO) acting as additives candidates during the exfoliation process. Consequently, the more addition of TEMPO causes greatly suppressed oxidation state, yet not compromised the exfoliation efficiency, with production of 15 g h − 1 showing high quality graphene, exploring large dimensions (5–10 μm), but only few defects were observed in the form of C/O ratio equal to 25.3. Figure 11 showed that TEMPO initially reacted with the (HO• radicals) at anodic end, generating metastable TEMPOOH along with oxo-ammonium cations. At the Cathodic end, the aforesaid intermediates (compounds) were largely reduced to TEMPO radicals in again turn. In the system discussed here, single graphene sheets appeared to be an ultrahigh hole-mobility upto 405 cm2 V−1 s−1, owing to be still an excellent processibility in N,Ndimethylformamide (DMF) (6.0 mg mL−1), preparing graphene ink as well (Table 1).
Anodic exfoliation of graphite in an aqueous electrolyte with sulfate anions and TEMPO. TEMPO is a radical scavenger that partially eliminates the hydroxyl radicals from water oxidation [
Bulk materials | Electrolytes | Working potentials | Yield | Thickness | ID/IG | Ref. |
---|---|---|---|---|---|---|
HOPG/natural graphite | 0.5 M H2SO4 + KOH (pH ≈ 1.2) | 1) +2.5 V, 1 min; 2) Switching +10 V, 2 s; −10 V, 5 s | 5–8 wt% | ≤2 nm | 0.5–1.0 | [81] |
Graphite foil | 0.1 M H2SO4 | +10 V, 10 min | 60 wt%; 4.2 g h−1 | 1–3 layers | 0.4 | [45] |
Graphite foil | 0.1 M (NH4)2SO4 | +10 V, 10 min | 75 wt%; 16.3 g h−1 | 1–3 layers | 0.25 | [22] |
Graphite foil | 0.05 M NaCl | +10 V, 60 min | — | 2–3 nm | 0.8 | [98] |
Expanded graphite foil | 0.1 M NaOH + Na2SO4 | 1) +3 V, 3 min 2) +10 V, 30 min | — | 2–3 nm | 1.3 | [99] |
Expanded graphite foils | 0.1 M (NH4)2SO4 + 1 mg mL−1 TEMPO | +10 V, 10 min | 75 wt%; 15.1 g h−1 | 1–3 layers | 0.1 | [97] |
Expanded graphite foil | 0.5 M Na2SO4 + 0.05 M CoSO4 | +20 V, 120 min | — | Monolayer and few layers | 0.05 | [100] |
Bulk graphite/ graphite powder | 0.1 M H2SO4 + 1 mg mL−1 melamine | ±20 V, 10 min | 1.5 g h−1 | 1–3 layers | <0.45 | [101] |
Graphite foil | 0.2 M SNDS in water | +10 V, 60 min | — | 2.5 nm | 0.2 | [36] |
Graphite foil | 30 mg mL−1 LiClO4 in PC | −15 ± 5 V | >70 wt%; 0.12 g h−1 | <5 layers | <0.1 | [44] |
Graphite foils | 0.1 M TBA HSO4 + NaOH | ±10 V, 0.1 Hz | 75 wt%; 20 g h−1 | 1–3 layers | 0.15 | [102] |
Graphite foils | 0.1 M (NH4)2SO4 + 1% thiourea | ±10 V, 0.1 Hz, 60 min | — | — | 0.06–0.14 | [103] |
HOPG/graphite rod | 0.1 M (NH4)2SO4 | switching +7 V or + 10 V, 1 s; −0.5 V, 3 s | 77 wt% | <5 layers | 0.29 | [34] |
Graphite foil | 0.5 M LiClO4 in water | 1) +2.0 V, 2 min 2) +10 V | – (graphene oxide) | 6–8 layers | 1.0 | [104] |
Graphite flakes | 1.0 M H2SO4 in saturated (NH4)2SO4 | anodic, 0.6 A, 24 h | 40 wt% (graphene oxide) | 1.5 nm | 1.0 | [55] |
Graphite foil | 1) 95% H2SO4 2) 0.1 m (NH4)2SO4 | 1) +2.2 V, 10 min 2) +10 V | 71 wt% (graphene oxide) | monolayers | 1.48 ± 0.01 | [105] |
Graphite foil | 1) 98% H2SO4 2) 50% H2SO4 | 1) +1.6 V, 20 min 2) +5 V | 96 wt%; 12 g h−1 | 1–3 layers | >1.0 | [106] |
A summary of electrochemical exfoliation and anodic oxidation of graphite.
For decades, a graphitic negative electrode has been extensively used in lithium-ion battery-technology, owing to its high electrical conductivity and ability, for hosting lithium between the graphitic layers (Figure 12). In this way, the lithium-graphitic intercalation-compounds decomposed into water at a very fast rate, giving rise to lithium hydroxide along with free-standing graphene sheets. The aforesaid principle has been recently introduced, as a durable route towards scalable production of graphene [107]. However, depending on slow kinetics of the intercalation-process, the lithium was bounded to those areas closed to the edges. Upon exfoliation into water, graphitic expanded edges were clearly produced and further intercalation also occurred positively, thereby, also water decomposition and sonication steps were necessarily taken, achieving complete exfoliation (Figure 13) [44]. Liu et al. and Huang et al. [108, 109] have presented much effort, for accelerating the intercalation kinetics, by using molten (LiOH or LiCl) at 600°C. However, the intercalation was considered there so insufficient to be achieved perfect graphitic exfoliation, but sonication steps thus fallowed were still required to achieve remarkable production of graphene-based materials.
Schematic and images of cathodic electrochemical expansion of graphite.
(a) TEM images and electron diffraction pattern of cathodic exfoliated graphene, (b) electron diffraction patterns of (i) single and (ii) bilayer sheets, (c) AFM image of exfoliated graphene spin-coated onto a Si substrate. The thickness is ∼1.5 nm, corresponding to a bilayer. (d) (left) Raman spectra (532 nm laser) on Si substrates compared with the spectrum of graphite; (right) Lorentzian peak fitting of the 2D bands of the bilayer and trilayer [
Swager and Zhong [78] suggested a synergetic method to be intercalated the graphite primarily with Li+, by following tetra-alkyl-ammonium cations into two steps separately. Moreover, due to expanded nature of the cathode, the distance between electrodes was kept initially very large, exploring the high potential difference required to apply, to dominate the high Ohmic-drop, created by the electrolytic cell configuration. Resultantly, the organic electrolytic solvent was dissociated in that state, occurring later on, at all the stages of the procedure by disappearing slowly during intercalation process. That is why, additional steps were rendered through sonication mechanism again, need to be sufficient for achieving reasonable exfoliation proceedings.
Dimethylsulfoxide (DMSO) has shown a wide electrochemical window that is highly efficient solvent during the graphene solvent dispersion, reflecting typical dispersive qualities, by comparing those of NMP [110]. As a result; DMSO forms various solvated ions, containing both lithium and alkylammonium ions reasonably. The observed solvated ions are expected to be able to intercalate with graphite, via decomposition between the graphene layers making SO2 and/or along with amine-based apparent gases. The stress applied properly on the graphene sheets through the gaseous expulsion so occurred is evaluated enough to overcome the forces (van der Waals) that attracting the neighboring sheets, allowing separation of graphene sheets formed by the graphitic cathode, thereby, allowing dispersal occurring in the electrolytic solution. The authors of the literature [83] have applied the said principle to make many flakes, showing lateral dimension (upto 20 μm) of few-layer graphene towards DMSO-based electrolytic solution, containing triethylammonium and Lithium ions. Authors have adopted fashioned of electrochemical program, by applying a controlled Cathodic-potential towards the graphitic electrode, which presents complete intercalation prior to flakes formation spontaneously, so that exfoliation from the Cathodic end because of partial expansion occur consequently. It was greatly suggested that the triethylammonium ions, dissociated between the layers, give rise to triethylamine along with hydrogen gases, highly encouraging the exfoliation of flakes more prominently.
Zhou et al. [111] have efficiently presented, so far, the only familiar method followed to exfoliate graphitic cathodes into aqueous medium deliberately, using an electrolyte containing NaCl, DMSO, and thionin acetate salt. Sodium ions were chemically combined with (four or five) DMSO molecules, readily forming Na+/DMSO complex-composite. Complexes so obtained were still intercalated in the form of graphene-galleries owing to graphite, clearly forming ternary graphitic-intercalation compounds (Na+(DMSO)yCn−). Further, interlayer spacing was systematically reported to be 1.246 nm, accordingly. However, perfect exfoliation was rather not achieved through only electrochemical-treatment, therefore the sample was necessarily subjected to sonication process in order to achieve more stable graphene dispersions (Figure 14). In addition, however, samples were observed as heavily contaminated (with sulfur, oxygen, and nitrogen impurities).
(a) SEM image, (b) AFM image of graphene flakes deposited on Si substrate, (c) TEM image, and (d) HR-TEM image of a graphene flake. The inset is an electron diffraction pattern and magnified portion of the edge of the graphene flake [
Cooper et al. have deliberately shown tetraalkylammonium salts to be cathodic intercalation into HOPG by using relatively low potentials (ca. −2 V) [112] and maybe systematically employed to produce purely cathodic-exfoliated materials, consisting clearly (2 or 5 layers) of graphenes (see Figure 15) [57]. More significantly, the materials were certainly found containing (no functionality or oxidation), rather inclusion of slightly 1% in atomic form oxygen, probably induced from the atmospheric exposure of the so obtained isolated materials.
(a) Photographs of as prepared HOPG, (b) HOPG expansion after 1000 s tetraethylammonium cation intercalation, (c) HOPG expansion after 1000 s tetrabutylammonium cation (TBA+) intercalation, (a–c scale in mm) (d) HOPG expansion after 10,000 s TBA+ intercalation, (e) SEM image of HOPG expansion after 6000 s TBA+ intercalation, (f) SEM image showing micron-sized pores in HOPG after TBA+ intercalation, (g) SEM image showing selective exfoliation of HOPG electrode: The point on a HOPG electrode that was held by tweezers (left-hand side) whilst the rest of the electrode (right-hand side) was submerged [
Further, Yang et al. [113] employed a pure ionic-liquid, N-butyl, methylpyrrolidinium bis (trifluoromethylsulfonyl)-imide (BMP TF2N) towards cathodic-graphitic intercalation/exfoliation mechanism. In authors’ view, [BMP]+ cations chemically intercalated between the highly negatively charged (graphene layers), causing the expanded interlayer spacing. The aforesaid expansion facilitates the bigger molecules insertion, such as the BMPTF2N ion-pair, subsequently, caused by higher expansion in graphite as well. The authors have certainly claimed that formation of graphene sheets was consisted of between (two and five layers), with 2.5% atomic-oxygen yet free defected materials. However, the authors, not suggested a reasonable explanation for the gel-like-phase, probably formed from the ionic- liquid during which (the cations or anions) are expected to be consumed in all irreversible reactions [114, 115].
The process of electrochemical exfoliation has been confirmed to operate in a wide variety of layered materials; the majority of studies are conducted on large-sized bulk single-crystals, which are costly and inefficient for industrial applications. Small-sized powders or flakes are readily produced from natural materials or industrial synthesis should be considered as an alternative for efficient and successive exfoliation. Both aqueous and non-aqueous electrolytes are employed to exfoliate layered materials, but the procedure is more often used in aqueous solutions and under anodic conditions for the exfoliation of graphite owing to better performance relative to cathodic scheme, in this technique most reliable and effective way is Li-ion insertion. Around the same time, a deeper understanding of process/mechanism of intercalation and exfoliation of powered by application of current is desperately required, which may encourage the use of electrochemical means to exfoliate more effectively a large number of layered materials.
Authors have declared no ‘conflict of interest’.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11514",title:"Vision Sensors - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"6da8427ef3062c142b4e9650a5fed534",slug:null,bookSignature:"Dr. Francisco J. Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/11514.jpg",editedByType:null,editors:[{id:"2868",title:"Dr.",name:"Francisco",surname:"Gallegos-Funes",slug:"francisco-gallegos-funes",fullName:"Francisco Gallegos-Funes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11526",title:"Mass Production in the Industry 4.0 Era",subtitle:null,isOpenForSubmission:!0,hash:"082678c3d4e60a3ac282f3f2309379d4",slug:null,bookSignature:"Dr. Tamás Bányai",coverURL:"https://cdn.intechopen.com/books/images_new/11526.jpg",editedByType:null,editors:[{id:"201248",title:"Dr.",name:"Tamás",surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11538",title:"Updates on Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"defe620d92b00d7a1b12b939941b7528",slug:null,bookSignature:"Dr. Zoran M. Stevic",coverURL:"https://cdn.intechopen.com/books/images_new/11538.jpg",editedByType:null,editors:[{id:"30692",title:"Dr.",name:"Zoran",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11539",title:"Thermal Power Plants - Modeling, Control, and Optimization",subtitle:null,isOpenForSubmission:!0,hash:"1c3acd9b5f01439c18515d73d41b830d",slug:null,bookSignature:"Dr. Paweł Madejski",coverURL:"https://cdn.intechopen.com/books/images_new/11539.jpg",editedByType:null,editors:[{id:"179645",title:"Dr.",name:"Paweł",surname:"Madejski",slug:"pawel-madejski",fullName:"Paweł Madejski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11543",title:"Energy Consumption, Conversion, Storage, and Efficiency",subtitle:null,isOpenForSubmission:!0,hash:"ad63fe95611354246fb73cb3653b6348",slug:null,bookSignature:"Prof. Jiajun Xu and Prof. Bao Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11543.jpg",editedByType:null,editors:[{id:"233386",title:"Prof.",name:"Jiajun",surname:"Xu",slug:"jiajun-xu",fullName:"Jiajun Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"88ccbca0fb32b8f905e4307bfe485862",slug:null,bookSignature:"Dr. Arshad Jamal",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:[{id:"339925",title:"Dr.",name:"Arshad",surname:"Jamal",slug:"arshad-jamal",fullName:"Arshad Jamal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11927",title:"Advances in Slope Engineering",subtitle:null,isOpenForSubmission:!0,hash:"8f99ec47c5d5c034e72f0db4cbede70c",slug:null,bookSignature:"Associate Prof. Resat Oyguc",coverURL:"https://cdn.intechopen.com/books/images_new/11927.jpg",editedByType:null,editors:[{id:"239239",title:"Associate Prof.",name:"Resat",surname:"Oyguc",slug:"resat-oyguc",fullName:"Resat Oyguc"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11928",title:"Pipeline Engineering",subtitle:null,isOpenForSubmission:!0,hash:"a01da9c63fd3825818d1215bd7c283ff",slug:null,bookSignature:"Dr. Sayeed Rushd, Dr. Mohamed Ismail and Dr. Kofi Freeman Adane",coverURL:"https://cdn.intechopen.com/books/images_new/11928.jpg",editedByType:null,editors:[{id:"267670",title:"Dr.",name:"Sayeed",surname:"Rushd",slug:"sayeed-rushd",fullName:"Sayeed Rushd"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:55},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"455",title:"Industrial Economy",slug:"industrial-economy",parent:{id:"66",title:"Economic Development",slug:"economic-development"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:47,numberOfWosCitations:3,numberOfCrossrefCitations:11,numberOfDimensionsCitations:24,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"455",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8150",title:"Elements of Bioeconomy",subtitle:null,isOpenForSubmission:!1,hash:"f5a930b0695ff23259fe96f219ff9a15",slug:"elements-of-bioeconomy",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/8150.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5819",title:"Research and Development Evolving Trends and Practices",subtitle:"Towards Human, Institutional and Economic Sectors Growth",isOpenForSubmission:!1,hash:"7e551ea4bdbca2454d3f7abb2837814d",slug:"research-and-development-evolving-trends-and-practices-towards-human-institutional-and-economic-sectors-growth",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/5819.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",middleName:null,surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"68007",doi:"10.5772/intechopen.85036",title:"Overview of the Process of Enzymatic Transformation of Biomass",slug:"overview-of-the-process-of-enzymatic-transformation-of-biomass",totalDownloads:1413,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Cellulase is an enzyme which depolymerizes the cellulose into glucose. Cellulases are produced by a diverse array of microbes including fungi, bacteria, yeast and actinomycetes. Considerable research for understanding the mechanism of cellulases began in early 1950s because of the significant use of these enzymes in various industries. This review provides a general account structure and availability of lignocellulosic biomass, pretreatment strategies for effective digestion, cellulase producing organisms, cellulase activity assay, and enzymology of cellulose degradation. Cellulase production, optimization, purification and characterization studies in addition to the industrial application of cellulase have also been discussed. At last a brief account of present market scenario of cellulases and future prospects of the study are also taken into account.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Namita Singh, Anita Devi, Manju Bala Bishnoi, Rajneesh Jaryal, Avni Dahiya, Oleksandr Tashyrev and Vira Hovorukha",authors:[{id:"278205",title:"Prof.",name:"Namita",middleName:null,surname:"Singh",slug:"namita-singh",fullName:"Namita Singh"},{id:"282352",title:"Dr.",name:"Anita",middleName:null,surname:"Devi",slug:"anita-devi",fullName:"Anita Devi"},{id:"282353",title:"MSc.",name:"Avni",middleName:null,surname:"Dahiya",slug:"avni-dahiya",fullName:"Avni Dahiya"},{id:"282354",title:"MSc.",name:"Manju Bala",middleName:null,surname:"Bishnoi",slug:"manju-bala-bishnoi",fullName:"Manju Bala Bishnoi"},{id:"282355",title:"Dr.",name:"Oleksandr",middleName:null,surname:"Tashyrev",slug:"oleksandr-tashyrev",fullName:"Oleksandr Tashyrev"},{id:"282356",title:"Dr.",name:"Rajneesh",middleName:null,surname:"Jaryal",slug:"rajneesh-jaryal",fullName:"Rajneesh Jaryal"},{id:"282939",title:"Dr.",name:"Vira",middleName:null,surname:"Hovorukha",slug:"vira-hovorukha",fullName:"Vira Hovorukha"}]},{id:"56708",doi:"10.5772/intechopen.69096",title:"Human Development and Research-Development-Extension Relationships",slug:"human-development-and-research-development-extension-relationships",totalDownloads:1775,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Human capital is the most important strategic factor for development; as new technologies emerge, the market demand for better and healthier products and consumer demand in terms of quality and delivery time are changing. In today’s world, it becomes increasingly important to know how information can be accessed, how it is adopted, and how it can be assimilated. In this respect, each country allocates budget for training, education, and extension according to its own conditions. This budget may be intended for rural community-based social assistance, but the economic and welfare effect is essential. In this way, it is aimed to increase the living standards of the families living in the rural areas. This will naturally contribute to national income and to the prosperity of society. The subject has been discussed generally in the world, especially in the case of Turkey. According to this, all over the world, particularly in developing countries, research and extension (R&E) is very important and should be considered at least as much as research and development (R&D). However, it will be ensured that societies meet with the technology produced. For this, the development of human resources should be emphasized and a suitable atmosphere should be prepared for this widespread prosperity.",book:{id:"5819",slug:"research-and-development-evolving-trends-and-practices-towards-human-institutional-and-economic-sectors-growth",title:"Research and Development Evolving Trends and Practices",fullTitle:"Research and Development Evolving Trends and Practices - Towards Human, Institutional and Economic Sectors Growth"},signatures:"Orhan Özçatalbaş",authors:[{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş"}]},{id:"66110",doi:"10.5772/intechopen.84770",title:"Gold Recovery Process from Primary and Secondary Resources Using Bioadsorbents",slug:"gold-recovery-process-from-primary-and-secondary-resources-using-bioadsorbents",totalDownloads:2038,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Bioadsorbents were prepared in a simple manner only by treating in boiling concentrated sulfuric acid from various biomass materials such as various polysaccharides, persimmon tannin, cotton, paper and biomass wastes such as orange juice residue and microalgae residue after extracting biofuel. These bioadsorbents exhibited high selectivity only to gold over other metals and extraordinary high loading capacity for gold(III), which were elucidated to be attributable to the selective reduction of gold(III) ion to elemental gold due to its highest oxidation-reduction potential of gold(III) of metal ions, catalyzed by the surface of bioadsorbents prepared in boiling sulfuric acid. By using these biosorbents, recovery of gold from actual samples of printed circuit boards of spent mobile phones and Mongolian gold ore was investigated. Recovery of trace concentration of gold(I) from simulated spent alkaline cyanide solution was also investigated using the bioadsorbent. Application of bioadsorbents to some recovery processes of gold from cyanide solutions was proposed.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Katsutoshi Inoue, Durga Parajuli, Manju Gurung, Bimala Pangeni, Kanjana Khunathai, Keisuke Ohto and Hidetaka Kawakita",authors:[{id:"198951",title:"Prof.",name:"Keisuke",middleName:null,surname:"Ohto",slug:"keisuke-ohto",fullName:"Keisuke Ohto"},{id:"259238",title:"Dr.",name:"Hidetaka",middleName:null,surname:"Kawakita",slug:"hidetaka-kawakita",fullName:"Hidetaka Kawakita"},{id:"289372",title:"Dr.",name:"Katsutoshi",middleName:null,surname:"Inoue",slug:"katsutoshi-inoue",fullName:"Katsutoshi Inoue"},{id:"298633",title:"Dr.",name:"Bimala",middleName:null,surname:"Pangeni",slug:"bimala-pangeni",fullName:"Bimala Pangeni"},{id:"298634",title:"Dr.",name:"Manju",middleName:null,surname:"Gurung",slug:"manju-gurung",fullName:"Manju Gurung"},{id:"298635",title:"Dr.",name:"Kanjana",middleName:null,surname:"Khunathai",slug:"kanjana-khunathai",fullName:"Kanjana Khunathai"},{id:"298636",title:"Dr.",name:"Durga",middleName:null,surname:"Parajuli",slug:"durga-parajuli",fullName:"Durga Parajuli"}]},{id:"66428",doi:"10.5772/intechopen.84833",title:"Review of Biofuel Technologies in WtL and WtE",slug:"review-of-biofuel-technologies-in-wtl-and-wte",totalDownloads:1216,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Processing of biomass feedstocks to produce energy, fuels, and chemicals via a combination of different applied technologies is considered a promising pathway to achieve sustainable waste management, with many environmental and economic benefits. In this chapter, we review the current state of the main processes associated with energy recovery and biofuel production under the concept of waste biorefineries. The reviewed technologies are classified into thermochemical, biological, and chemical, including combustion, gasification, steam explosion, pyrolysis, hydrothermal liquefaction, and torrefaction; anaerobic digestion, fermentation, enzymatic treatment, and microbial electrolysis; and hydrolysis, solvent extraction, transesterification, and supercritical conversion. Their brief history, current status, and future developments are discussed within a perspective of valorization and managing of current waste streams with no solution.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Bruno B. Garcia, Gonçalo Lourinho, Paulo Brito and Pedro Romano",authors:[{id:"261653",title:"Prof.",name:"Paulo",middleName:null,surname:"Brito",slug:"paulo-brito",fullName:"Paulo Brito"},{id:"261654",title:"Prof.",name:"Pedro",middleName:null,surname:"Romano",slug:"pedro-romano",fullName:"Pedro Romano"},{id:"291751",title:"B.Sc.",name:"Bruno B.",middleName:"B",surname:"Garcia",slug:"bruno-b.-garcia",fullName:"Bruno B. Garcia"},{id:"291752",title:"MSc.",name:"Gonçalo",middleName:null,surname:"Lourinho",slug:"goncalo-lourinho",fullName:"Gonçalo Lourinho"}]},{id:"65966",doi:"10.5772/intechopen.84664",title:"Life Cycle Assessment as a Tool to Implement Sustainable Development in the Bioeconomy and Circular Economy",slug:"life-cycle-assessment-as-a-tool-to-implement-sustainable-development-in-the-bioeconomy-and-circular-",totalDownloads:1334,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"In this chapter, the life cycle assessment was presented as a tool to implement sustainable development in the bioeconomy and circular economy. Bulky waste includes large items such as furniture, doors, flooring and mattresses. The management of bulky waste is a serious problem for European countries. The URBANREC project proposed a solution to this problem through the use of new technologies for the bulky waste processing. The aim of the URBANREC project is to implement an eco-innovative, integrated system of bulky waste management and demonstrate its effectiveness in various regions of Europe. The project has received funding from the European Union. In this chapter, the LCA environmental analysis was performed for the technology of grinding bulky waste using a water jet by the Ecofrag company. The calculations were carried out using SimaPro 8.5.2.0. The LCA analysis shows that the reuse of foams and mattresses contributes to the avoidance of their targeted production, which is related with the reduction of greenhouse gas emission and consumption of fossil raw materials.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Izabela Samson-Bręk, Marta Gabryszewska, Justyna Wrzosek and Barbara Gworek",authors:[{id:"281239",title:"Dr.",name:"Izabela",middleName:null,surname:"Samson-Brek",slug:"izabela-samson-brek",fullName:"Izabela Samson-Brek"},{id:"290299",title:"Mrs.",name:"Marta",middleName:null,surname:"Gabryszewska",slug:"marta-gabryszewska",fullName:"Marta Gabryszewska"},{id:"290300",title:"Dr.",name:"Justyna",middleName:null,surname:"Wrzosek",slug:"justyna-wrzosek",fullName:"Justyna Wrzosek"},{id:"290301",title:"Prof.",name:"Barbara",middleName:null,surname:"Gworek",slug:"barbara-gworek",fullName:"Barbara Gworek"}]}],mostDownloadedChaptersLast30Days:[{id:"66110",title:"Gold Recovery Process from Primary and Secondary Resources Using Bioadsorbents",slug:"gold-recovery-process-from-primary-and-secondary-resources-using-bioadsorbents",totalDownloads:2038,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Bioadsorbents were prepared in a simple manner only by treating in boiling concentrated sulfuric acid from various biomass materials such as various polysaccharides, persimmon tannin, cotton, paper and biomass wastes such as orange juice residue and microalgae residue after extracting biofuel. These bioadsorbents exhibited high selectivity only to gold over other metals and extraordinary high loading capacity for gold(III), which were elucidated to be attributable to the selective reduction of gold(III) ion to elemental gold due to its highest oxidation-reduction potential of gold(III) of metal ions, catalyzed by the surface of bioadsorbents prepared in boiling sulfuric acid. By using these biosorbents, recovery of gold from actual samples of printed circuit boards of spent mobile phones and Mongolian gold ore was investigated. Recovery of trace concentration of gold(I) from simulated spent alkaline cyanide solution was also investigated using the bioadsorbent. Application of bioadsorbents to some recovery processes of gold from cyanide solutions was proposed.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Katsutoshi Inoue, Durga Parajuli, Manju Gurung, Bimala Pangeni, Kanjana Khunathai, Keisuke Ohto and Hidetaka Kawakita",authors:[{id:"198951",title:"Prof.",name:"Keisuke",middleName:null,surname:"Ohto",slug:"keisuke-ohto",fullName:"Keisuke Ohto"},{id:"259238",title:"Dr.",name:"Hidetaka",middleName:null,surname:"Kawakita",slug:"hidetaka-kawakita",fullName:"Hidetaka Kawakita"},{id:"289372",title:"Dr.",name:"Katsutoshi",middleName:null,surname:"Inoue",slug:"katsutoshi-inoue",fullName:"Katsutoshi Inoue"},{id:"298633",title:"Dr.",name:"Bimala",middleName:null,surname:"Pangeni",slug:"bimala-pangeni",fullName:"Bimala Pangeni"},{id:"298634",title:"Dr.",name:"Manju",middleName:null,surname:"Gurung",slug:"manju-gurung",fullName:"Manju Gurung"},{id:"298635",title:"Dr.",name:"Kanjana",middleName:null,surname:"Khunathai",slug:"kanjana-khunathai",fullName:"Kanjana Khunathai"},{id:"298636",title:"Dr.",name:"Durga",middleName:null,surname:"Parajuli",slug:"durga-parajuli",fullName:"Durga Parajuli"}]},{id:"56708",title:"Human Development and Research-Development-Extension Relationships",slug:"human-development-and-research-development-extension-relationships",totalDownloads:1775,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Human capital is the most important strategic factor for development; as new technologies emerge, the market demand for better and healthier products and consumer demand in terms of quality and delivery time are changing. In today’s world, it becomes increasingly important to know how information can be accessed, how it is adopted, and how it can be assimilated. In this respect, each country allocates budget for training, education, and extension according to its own conditions. This budget may be intended for rural community-based social assistance, but the economic and welfare effect is essential. In this way, it is aimed to increase the living standards of the families living in the rural areas. This will naturally contribute to national income and to the prosperity of society. The subject has been discussed generally in the world, especially in the case of Turkey. According to this, all over the world, particularly in developing countries, research and extension (R&E) is very important and should be considered at least as much as research and development (R&D). However, it will be ensured that societies meet with the technology produced. For this, the development of human resources should be emphasized and a suitable atmosphere should be prepared for this widespread prosperity.",book:{id:"5819",slug:"research-and-development-evolving-trends-and-practices-towards-human-institutional-and-economic-sectors-growth",title:"Research and Development Evolving Trends and Practices",fullTitle:"Research and Development Evolving Trends and Practices - Towards Human, Institutional and Economic Sectors Growth"},signatures:"Orhan Özçatalbaş",authors:[{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş"}]},{id:"68851",title:"Introductory Chapter: Objectives and Scope of Bioeconomy",slug:"introductory-chapter-objectives-and-scope-of-bioeconomy",totalDownloads:996,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Krzysztof Biernat",authors:[{id:"155009",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}]},{id:"68007",title:"Overview of the Process of Enzymatic Transformation of Biomass",slug:"overview-of-the-process-of-enzymatic-transformation-of-biomass",totalDownloads:1412,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Cellulase is an enzyme which depolymerizes the cellulose into glucose. Cellulases are produced by a diverse array of microbes including fungi, bacteria, yeast and actinomycetes. Considerable research for understanding the mechanism of cellulases began in early 1950s because of the significant use of these enzymes in various industries. This review provides a general account structure and availability of lignocellulosic biomass, pretreatment strategies for effective digestion, cellulase producing organisms, cellulase activity assay, and enzymology of cellulose degradation. Cellulase production, optimization, purification and characterization studies in addition to the industrial application of cellulase have also been discussed. At last a brief account of present market scenario of cellulases and future prospects of the study are also taken into account.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Namita Singh, Anita Devi, Manju Bala Bishnoi, Rajneesh Jaryal, Avni Dahiya, Oleksandr Tashyrev and Vira Hovorukha",authors:[{id:"278205",title:"Prof.",name:"Namita",middleName:null,surname:"Singh",slug:"namita-singh",fullName:"Namita Singh"},{id:"282352",title:"Dr.",name:"Anita",middleName:null,surname:"Devi",slug:"anita-devi",fullName:"Anita Devi"},{id:"282353",title:"MSc.",name:"Avni",middleName:null,surname:"Dahiya",slug:"avni-dahiya",fullName:"Avni Dahiya"},{id:"282354",title:"MSc.",name:"Manju Bala",middleName:null,surname:"Bishnoi",slug:"manju-bala-bishnoi",fullName:"Manju Bala Bishnoi"},{id:"282355",title:"Dr.",name:"Oleksandr",middleName:null,surname:"Tashyrev",slug:"oleksandr-tashyrev",fullName:"Oleksandr Tashyrev"},{id:"282356",title:"Dr.",name:"Rajneesh",middleName:null,surname:"Jaryal",slug:"rajneesh-jaryal",fullName:"Rajneesh Jaryal"},{id:"282939",title:"Dr.",name:"Vira",middleName:null,surname:"Hovorukha",slug:"vira-hovorukha",fullName:"Vira Hovorukha"}]},{id:"67691",title:"The Use of Waste Management Techniques to Enhance Household Income and Reduce Urban Water Pollution",slug:"the-use-of-waste-management-techniques-to-enhance-household-income-and-reduce-urban-water-pollution",totalDownloads:1044,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Appropriate waste management options are major concerns in the developing world. Current methods include incineration in the open and accumulation of wastes in designated places where they constitute nuisance to the environment. Apart from air pollution from the incinerators, leachates from decomposed wastes are either washed off where they serve as source of pollutants to the adjourning streams and rivers or contaminate groundwater through deep percolation. We present viable options for managing agricultural wastes in this chapter. The options presented are so simple and sustainable such that it can be managed by individuals. Hence, they are independent of the government bureaucratic bottlenecks that have been the bane of the previous government interventions. If embraced, it will also serve as sources of income for the concerned household, hence enhance their livelihood.",book:{id:"8150",slug:"elements-of-bioeconomy",title:"Elements of Bioeconomy",fullTitle:"Elements of Bioeconomy"},signatures:"Olayiwola A. Akintola, Olufunmilayo O. Idowu, Suraju A. Lateef, Gbenga A. Adebayo, Adekemi O. Shokalu and Omolara I. Akinyoola",authors:[{id:"293178",title:"Dr.",name:"Olayiwola A.",middleName:null,surname:"Akintola",slug:"olayiwola-a.-akintola",fullName:"Olayiwola A. Akintola"},{id:"297217",title:"Dr.",name:"Olufunmilayo O.",middleName:null,surname:"Idowu",slug:"olufunmilayo-o.-idowu",fullName:"Olufunmilayo O. Idowu"},{id:"297218",title:"Dr.",name:"Suraju A.",middleName:null,surname:"Lateef",slug:"suraju-a.-lateef",fullName:"Suraju A. Lateef"},{id:"297219",title:"Dr.",name:"Gbenga A.",middleName:null,surname:"Adebayo",slug:"gbenga-a.-adebayo",fullName:"Gbenga A. Adebayo"},{id:"297221",title:"Dr.",name:"Adekemi O.",middleName:null,surname:"Shokalu",slug:"adekemi-o.-shokalu",fullName:"Adekemi O. Shokalu"},{id:"297222",title:"Mrs.",name:"Omolara I.",middleName:null,surname:"Akinyoola",slug:"omolara-i.-akinyoola",fullName:"Omolara I. Akinyoola"}]}],onlineFirstChaptersFilter:{topicId:"455",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"August 7th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:70,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:198,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:113,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:112,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"