Prevalent examples of established disease diagnostics in aquaculture.
Chapter 1: "Permanent Maxillary and Mandibular Incisors"\n
Chapter 2: "The Permanent Maxillary and Mandibular Premolar Teeth"\n
Chapter 3: "Dental Anatomical Features and Caries: A Relationship to be Investigated"\n
Chapter 4: "Anatomy Applied to Block Anaesthesia"\n
Chapter 5: "Treatment Considerations for Missing Teeth"\n
Chapter 6: "Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials"\n
Chapter 7: "Evaluation of the Anatomy of the Lower First Premolar"\n
Chapter 8: "A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with the iTero Intraoral Scanner and the Traditional Method"\n
Chapter 9: "Identification of Lower Central Incisors"\n
The book is aimed toward dentists and can also be well used in education and research.',isbn:"978-1-78923-511-1",printIsbn:"978-1-78923-510-4",pdfIsbn:"978-1-83881-247-8",doi:"10.5772/65542",price:119,priceEur:129,priceUsd:155,slug:"dental-anatomy",numberOfPages:204,isOpenForSubmission:!1,isInWos:null,hash:"445cd419d97f339f2b6514c742e6b050",bookSignature:"Bağdagül Helvacioğlu Kivanç",publishedDate:"August 1st 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5814.jpg",numberOfDownloads:7572,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 4th 2016",dateEndSecondStepPublish:"October 25th 2016",dateEndThirdStepPublish:"July 16th 2017",dateEndFourthStepPublish:"August 16th 2017",dateEndFifthStepPublish:"October 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"178570",title:"Dr.",name:"Bağdagül",middleName:null,surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç",profilePictureURL:"https://mts.intechopen.com/storage/users/178570/images/7646_n.jpg",biography:"Bağdagül Helvacıoğlu Kıvanç is a dentist, a teacher, a researcher and a scientist in the field of Endodontics. She was born in Zonguldak, Turkey, on February 14, 1974; she is married and has two children. She graduated in 1997 from the Ankara University, Faculty of Dentistry, Ankara, Turkey. She aquired her PhD in 2004 from the Gazi University, Faculty of Dentistry, Department of Endodontics, Ankara, Turkey, and she is still an associate professor at the same department. She has published numerous articles and a book chapter in the areas of Operative Dentistry, Esthetic Dentistry and Endodontics. She is a member of Turkish Endodontic Society and European Endodontic Society.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"174",title:"Dentistry",slug:"dentistry"}],chapters:[{id:"56461",title:"Permanent Maxillary and Mandibular Incisors",doi:"10.5772/intechopen.69542",slug:"permanent-maxillary-and-mandibular-incisors",totalDownloads:1534,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mohammed E. Grawish, Lamyaa M. Grawish and Hala M. Grawish",downloadPdfUrl:"/chapter/pdf-download/56461",previewPdfUrl:"/chapter/pdf-preview/56461",authors:[{id:"82989",title:"Prof.",name:"Mohammed",surname:"Grawish",slug:"mohammed-grawish",fullName:"Mohammed Grawish"}],corrections:null},{id:"62386",title:"The Permanent Maxillary and Mandibular Premolar Teeth",doi:"10.5772/intechopen.79464",slug:"the-permanent-maxillary-and-mandibular-premolar-teeth",totalDownloads:1774,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Işıl Çekiç Nagaş, Ferhan Eğilmez and Bağdagül Helvacioğlu Kivanç",downloadPdfUrl:"/chapter/pdf-download/62386",previewPdfUrl:"/chapter/pdf-preview/62386",authors:[{id:"178570",title:"Dr.",name:"Bağdagül",surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç"}],corrections:null},{id:"57546",title:"Dental Anatomical Features and Caries: A Relationship to be Investigated",doi:"10.5772/intechopen.71337",slug:"dental-anatomical-features-and-caries-a-relationship-to-be-investigated",totalDownloads:927,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Marcel Alves Avelino de Paiva, Dayane Franco Barros Mangueira\nLeite, Isabela Albuquerque Passos Farias, Antônio de Pádua\nCavalcante Costa and Fábio Correia Sampaio",downloadPdfUrl:"/chapter/pdf-download/57546",previewPdfUrl:"/chapter/pdf-preview/57546",authors:[{id:"138852",title:"Prof.",name:"Fabio",surname:"Sampaio",slug:"fabio-sampaio",fullName:"Fabio Sampaio"},{id:"213662",title:"Prof.",name:"Isabela Albuquerque",surname:"Passos Farias",slug:"isabela-albuquerque-passos-farias",fullName:"Isabela Albuquerque Passos Farias"},{id:"213663",title:"Prof.",name:"Dayane Franco",surname:"Barros Mangueira Leite",slug:"dayane-franco-barros-mangueira-leite",fullName:"Dayane Franco Barros Mangueira Leite"},{id:"213664",title:"BSc.",name:"Marcel Alves",surname:"Avelino De Paiva",slug:"marcel-alves-avelino-de-paiva",fullName:"Marcel Alves Avelino De Paiva"},{id:"213666",title:"Prof.",name:"Antonio De Pádua",surname:"Cavalcante Da Costa",slug:"antonio-de-padua-cavalcante-da-costa",fullName:"Antonio De Pádua Cavalcante Da Costa"}],corrections:null},{id:"56119",title:"Anatomy Applied to Block Anesthesia for Maxillofacial Surgery",doi:"10.5772/intechopen.69545",slug:"anatomy-applied-to-block-anesthesia-for-maxillofacial-surgery",totalDownloads:875,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alex Vargas, Paula Astorga and Tomas Rioseco",downloadPdfUrl:"/chapter/pdf-download/56119",previewPdfUrl:"/chapter/pdf-preview/56119",authors:[{id:"199400",title:"Dr.",name:"Alex",surname:"Vargas",slug:"alex-vargas",fullName:"Alex Vargas"},{id:"202023",title:"Dr.",name:"Paula",surname:"Astorga",slug:"paula-astorga",fullName:"Paula Astorga"},{id:"205059",title:"Dr.",name:"Tomas",surname:"Rioseco",slug:"tomas-rioseco",fullName:"Tomas Rioseco"}],corrections:null},{id:"55902",title:"Treatment Considerations for Missing Teeth",doi:"10.5772/intechopen.69543",slug:"treatment-considerations-for-missing-teeth",totalDownloads:546,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Abdolreza Jamilian, Alireza Darnahal, Ludovica Nucci, Fabrizia\nD’Apuzzo and Letizia Perillo",downloadPdfUrl:"/chapter/pdf-download/55902",previewPdfUrl:"/chapter/pdf-preview/55902",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"171873",title:"Dr.",name:"Alireza",surname:"Darnahal",slug:"alireza-darnahal",fullName:"Alireza Darnahal"},{id:"173044",title:"Prof.",name:"Letizia",surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"198961",title:"MSc.",name:"Fabrizia",surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"},{id:"206137",title:"Mrs.",name:"Ludovica",surname:"Nucci",slug:"ludovica-nucci",fullName:"Ludovica Nucci"}],corrections:null},{id:"55973",title:"Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials",doi:"10.5772/intechopen.69544",slug:"anatomical-and-functional-restoration-of-the-compromised-occlusion-from-theory-to-materials",totalDownloads:636,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nicola Mobilio and Santo Catapano",downloadPdfUrl:"/chapter/pdf-download/55973",previewPdfUrl:"/chapter/pdf-preview/55973",authors:[{id:"179565",title:"Dr.",name:"Nicola",surname:"Mobilio",slug:"nicola-mobilio",fullName:"Nicola Mobilio"},{id:"199397",title:"Prof.",name:"Santo",surname:"Catapano",slug:"santo-catapano",fullName:"Santo Catapano"}],corrections:null},{id:"57245",title:"Evaluation of the Anatomy of the Lower First Premolar",doi:"10.5772/intechopen.71038",slug:"evaluation-of-the-anatomy-of-the-lower-first-premolar",totalDownloads:411,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ticiana Sidorenko de Oliveira Capote, Suellen Tayenne Pedroso\nPinto, Marcelo Brito Conte, Juliana Álvares Duarte Bonini Campos\nand Marcela de Almeida Gonçalves",downloadPdfUrl:"/chapter/pdf-download/57245",previewPdfUrl:"/chapter/pdf-preview/57245",authors:[{id:"87871",title:"Prof.",name:"Ticiana",surname:"Capote",slug:"ticiana-capote",fullName:"Ticiana Capote"},{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"217420",title:"Mrs.",name:"Suellen",surname:"Tayenne Pedroso Pinto",slug:"suellen-tayenne-pedroso-pinto",fullName:"Suellen Tayenne Pedroso Pinto"}],corrections:null},{id:"57752",title:"A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with iTeroTM Intraoral Scanner and the Traditional Method",doi:"10.5772/intechopen.70963",slug:"a-comparative-study-of-the-validity-and-reproducibility-of-mesiodistal-tooth-size-and-dental-arch-wi",totalDownloads:484,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ignacio Faus-Matoses, Ana Mora, Carlos Bellot-Arcís, Jose Luis\nGandia-Franco and Vanessa Paredes-Gallardo",downloadPdfUrl:"/chapter/pdf-download/57752",previewPdfUrl:"/chapter/pdf-preview/57752",authors:[{id:"150456",title:"Prof.",name:"Vanessa",surname:"Paredes",slug:"vanessa-paredes",fullName:"Vanessa Paredes"},{id:"150458",title:"Prof.",name:"José-Luis",surname:"Gandia",slug:"jose-luis-gandia",fullName:"José-Luis Gandia"},{id:"212242",title:"Prof.",name:"Ignacio",surname:"Faus",slug:"ignacio-faus",fullName:"Ignacio Faus"},{id:"212243",title:"Prof.",name:"Carlos",surname:"Bellot-Arcís",slug:"carlos-bellot-arcis",fullName:"Carlos Bellot-Arcís"},{id:"218390",title:"Prof.",name:"Ana",surname:"Mora",slug:"ana-mora",fullName:"Ana Mora"}],corrections:null},{id:"57378",title:"Identification of Lower Central Incisors",doi:"10.5772/intechopen.71341",slug:"identification-of-lower-central-incisors",totalDownloads:385,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcela de Almeida Gonçalves, Bruno Luís Graciliano Silva, Marcelo\nBrito Conte, Juliana Álvares Duarte Bonini Campos and Ticiana\nSidorenko de Oliveira Capote",downloadPdfUrl:"/chapter/pdf-download/57378",previewPdfUrl:"/chapter/pdf-preview/57378",authors:[{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"221435",title:"Mr.",name:"Bruno Luis Graciliano",surname:"Silva",slug:"bruno-luis-graciliano-silva",fullName:"Bruno Luis Graciliano Silva"},{id:"221438",title:"Prof.",name:"Ticiana Sidorenko De Oliveira",surname:"Capote",slug:"ticiana-sidorenko-de-oliveira-capote",fullName:"Ticiana Sidorenko De Oliveira Capote"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"7cb94732cfb315f8d1e70ebf500eb8a9",slug:"trauma-in-dentistry",bookSignature:"Serdar Gözler",coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",editedByType:"Edited by",editors:[{id:"204606",title:"Dr.",name:"Serdar",surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9387",title:"Oral Diseases",subtitle:null,isOpenForSubmission:!1,hash:"76591a3bd6bedaa1c8d1f72870268e23",slug:"oral-diseases",bookSignature:"Gokul Sridharan, Anil Sukumaran and Alaa Eddin Omar Al Ostwani",coverURL:"https://cdn.intechopen.com/books/images_new/9387.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",isOpenForSubmission:!1,hash:"ac055c5801032970123e0a196c2e1d32",slug:"human-teeth-key-skills-and-clinical-illustrations",bookSignature:"Zühre Akarslan and Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.jpeg",biography:"Farid Bourzgui is a professor of Orthodontics in the School of Dental Medicine at Hassan II University in Casablanca, Morocco. He received his PhD from the School of Dental Medicine at Hassan II University in 1995. He holds various certificates and diplomas: a Certificate of Higher Studies in Group A (major: Technology of Biomaterials used in Dentistry, 1996), a Certificate of Advanced Studies of group B, (major: Dentofacial Orthopaedics, 1997) from the Faculty of Dental Surgery at University Denis Diderot-Paris VII, France, a diploma of Higher Studies in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002), a Certificate of Clinical Occlusal Odontology from the Faculty of Dentistry Casablanca (2004) and a university degree in Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca in 2011.\r\nFarid Bourzgui is a former intern and resident of Casablanca University Hospital, Ibn Rushd in Casablanca. Dr Bourzgui specialises in Orthodontics and received his National Diploma in Dentistry (major: Dentofacial Orthopedics) from the School of Dentistry in Casablanca in 2000.\r\nDr Bourzgui has published a number of articles and book chapters on various aspects of Orthodontics. He has served on the board of the Moroccan Society of Dentistry, and was the President of the Moroccan Society of Dentistry from 2002 to 2004.",institutionString:"University Hassan II of Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"1e9812cebd46ef9e28257f3e96547f6a",slug:"computer-vision-in-dentistry",bookSignature:"Monika Elzbieta Machoy",coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",editedByType:"Edited by",editors:[{id:"248279",title:"Dr.",name:"Monika",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64452",slug:"erratum-processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",title:"Erratum - Processing Parameters for Selective Laser Sintering or Melting of Oxide Ceramics",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64452.pdf",downloadPdfUrl:"/chapter/pdf-download/64452",previewPdfUrl:"/chapter/pdf-preview/64452",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64452",risUrl:"/chapter/ris/64452",chapter:{id:"60707",slug:"processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",signatures:"Haidong Zhang and Saniya LeBlanc",dateSubmitted:"June 5th 2017",dateReviewed:"February 22nd 2018",datePrePublished:null,datePublished:"July 11th 2018",book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"213235",title:"Prof.",name:"Saniya",middleName:null,surname:"LeBlanc",fullName:"Saniya LeBlanc",slug:"saniya-leblanc",email:"sleblanc@gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}},{id:"213239",title:"Dr.",name:"Haidong",middleName:null,surname:"Zhang",fullName:"Haidong Zhang",slug:"haidong-zhang",email:"haidongzhang@email.gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"60707",slug:"processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",signatures:"Haidong Zhang and Saniya LeBlanc",dateSubmitted:"June 5th 2017",dateReviewed:"February 22nd 2018",datePrePublished:null,datePublished:"July 11th 2018",book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"213235",title:"Prof.",name:"Saniya",middleName:null,surname:"LeBlanc",fullName:"Saniya LeBlanc",slug:"saniya-leblanc",email:"sleblanc@gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}},{id:"213239",title:"Dr.",name:"Haidong",middleName:null,surname:"Zhang",fullName:"Haidong Zhang",slug:"haidong-zhang",email:"haidongzhang@email.gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9037",leadTitle:null,title:"Types of Nonverbal Communication",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe use of nonverbal cues in social activities is essential for human daily activities. Successful nonverbal communication depends on the acquisition of rules of using cues such as body movements, eye contacts, facial expressions to the tone of voice, among many others. These nonverbal cues, with highly relevant to evolutionary and socio-adaptive implications, are demonstrated to strengthen, complement and conflict with our verbal messages. Although decades of human nonverbal communication research has witnessed an arising line of research, it is time to ask to what extent we have adapted our communication to a new age of artificial intelligence. This book project aims to promote our understanding of non-verbal behaviour based on the most frontier research efforts with state-of-the-art methodological approaches. The topics include but are not limited to: how nonverbal communication are classified; how nonverbal cues adapt and function as social behaviour; how nonverbal cues are used in different social domains and practices; how individuals in different cultures and groups express and understand nonverbal behaviours of their own and of others; how nonverbal communication is distinct in special populations; and 6 how the use of nonverbal cues can be measured in different applied settings.
\r\n\r\n\tThe submission includes original research reports, reviews, meta-analysis and methodological reports. We invite scientists in both academic settings of all relevant disciplines (including psychology, artificial intelligence and computer science, communication sciences and disorders, neuroscience, psychiatry, arts, linguistics and literature, sociology, philosophy, etc.) and researchers in human-related industries and institutions to submit their works to this project. For example, both the basic research that addresses the processing, learning, categorization, and consequences of the nonverbal communications, and the applied research that aims to develop and adapt methods to the measuring of nonverbal behaviours, that fall in any topic above, are very welcome. We particularly will welcome efforts that address types of nonverbal communication across boundaries of disciplines.
",isbn:"978-1-83962-709-5",printIsbn:"978-1-83962-705-7",pdfIsbn:"978-1-83962-710-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b0dbec02150cdf49e7a1d49326a35273",bookSignature:"Prof. Xiaoming Jiang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9037.jpg",keywords:"Motion Capture, Eye-Tracking, Early Development, Aging, Interpersonal Relation, Synchrony, Cross-cultural Effects, Social Norm, Risk Communication, Political Communication, Voice, Body Movement and Gesture",numberOfDownloads:576,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 16th 2020",dateEndSecondStepPublish:"September 11th 2020",dateEndThirdStepPublish:"November 10th 2020",dateEndFourthStepPublish:"January 29th 2021",dateEndFifthStepPublish:"March 30th 2021",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Xiaoming Jiang has been a research fellow in the School of Communication Sciences and Disorders, McGill University, since 2013. His research utilizes experimental methodologies to uncover the social aspects of human speech and language processes. He has published 30 peer-reviewed articles as a leading author on high-impact journals. Dr. Jiang research on speaker confidence and trustworthiness has been media-covered by the Forbes and the New Scientist.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",middleName:null,surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang",profilePictureURL:"https://mts.intechopen.com/storage/users/189844/images/system/189844.jpg",biography:"Dr. Xiaoming Jiang is a professor in the Institute of Linguistics, Shanghai International Studies University. He obtained his BS degree in Psychology from the East China Normal University and his Ph.D. degree in Cognitive Neuroscience from Peking University. He worked as a research fellow in the School of Communication Sciences and Disorders, McGill University and was then a senior speech scientist in the natural language understanding team in Nuance Communication. His research utilizes experimental methodologies to uncover social aspects of human speech and language processes. While serving as reviewer for nearly 30 international journals, he has published 30 peer-reviewed articles as a leading author on high-impact journals including NeuroImage; Human Brain Mapping; Social, Cognitive and Affective Neuroscience; Cortex; Journal of Experimental Psychology: Human Perception and Performance; Neuropsychologia; Quarterly Journal of Experimental Psychology and Speech Communication. His research on speaker confidence and trustworthiness has been media-covered by the Forbes and the New Scientist.",institutionString:"Shanghai International Studies University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Shanghai International Studies University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:[{id:"74651",title:"Can Turn-Taking Highlight the Nature of Non-Verbal Behavior: A Case Study",slug:"can-turn-taking-highlight-the-nature-of-non-verbal-behavior-a-case-study",totalDownloads:55,totalCrossrefCites:0,authors:[null]},{id:"74049",title:"The Body Speaks Society, School and Culture",slug:"the-body-speaks-society-school-and-culture",totalDownloads:452,totalCrossrefCites:0,authors:[null]},{id:"74109",title:"How to use the Advantages of AR and VR Technique to Integrate Special Visual Training Strategies in Non-Verbal Communication Skills Training for Children with Autism",slug:"how-to-use-the-advantages-of-ar-and-vr-technique-to-integrate-special-visual-training-strategies-in-",totalDownloads:69,totalCrossrefCites:0,authors:[{id:"229636",title:"Dr.",name:"I-Jui",surname:"Lee",slug:"i-jui-lee",fullName:"I-Jui Lee"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5726",title:"Sociolinguistics",subtitle:"Interdisciplinary Perspectives",isOpenForSubmission:!1,hash:"e87ee120f901a00564a230234d9e3ed5",slug:"sociolinguistics-interdisciplinary-perspectives",bookSignature:"Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/5726.jpg",editedByType:"Edited by",editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68217",title:"Applied Molecular Cloning: Present and Future for Aquaculture",doi:"10.5772/intechopen.88197",slug:"applied-molecular-cloning-present-and-future-for-aquaculture",body:'\nAgriculture, livestock (bird, cattle, pig, etc.) farming and fish rearing are traditionally used to cater the nutritional requirement since ages. Evidence of agriculture, including meat farming, can be found as far back as the end of the Pleistocene Era, roughly around 12,000 years ago. In contrast, fish have only been farmed in aquaculture setting for over 2000 years [1]. Our world roughly comprises of 70% water and majority of them are unutilized due to inadequate knowledge and resources. Additionally, the availability of terrestrial space of agriculture and livestock farming are now on a decline. The lower FCR values of various aquaculturable species (e.g., cobia 0.96–1.50:1) than various terrestrial animals (e.g., cattle 5.15–6.95:1; poultry 2.13–2.61:1) [2, 3] are not only important for reducing the production cost but also have less environmental burden to bear. However, aquaculture, the farming of fish and aquatic plants, is the fastest growing food sector in the world, recently (since 1970s) growing exponentially to meet the increasing population and declining wild fish stock availability. The aquaculture industry’s contribution to the total food supply has increased dramatically since 2000–2012 by 6.2% [4], and it is expected that by 2030, 60% of the total fish supply intended for direct human consumption will be produced by the aquaculture industry [5]. With the development of new and environment friendly Silvofisheries (fish integrated with mangroves), Aquaponics and IMTA (integrated multitrophic aquaculture), etc., the probability of sustainable growth of aquaculture has been raised several folds. But, unlike agriculture and livestock farming, aquaculture has lot of geographical restriction, such as in North America and Europe, clams, oysters, and other shellfish are the main species being farmed, while in Japan, edible seaweed, marine shrimp, and yellowtail are the desired species for culture. Likewise, carps in India, freshwater prawns in Hawaii, and eels in Taiwan are the preferred culturable species [1]. Although numerous species (>694) have made their way into aquaculture and have international consumer market, only the Norwegian salmon has gained commercially popularity in recent years. If we analyze deeply, it is clear that it is neither the geographical restriction nor the consumer demand, but rather the huge industrial success of this specific salmon is related to meticulous research, better strain availability through years of selective breeding, authenticated and steady high quality seed availability and one stop consultancy [6].
\nMolecular biology and cloning set sailed its journey with the DNA molecule in 1950s and encountered several breakthrough including RNA and restriction endonucleases, however in reality, the recombinant DNA technology has made a revolution in modern molecular biology. Through this technique, large quantities of proteins present in trace amount, as well as other biologically active substances, could be generated through biotechnology and these genetically engineered macromolecules have very little side effects. Emerging technologies promise even greater possibilities, such as enabling researchers to seamlessly stitch together multiple DNA fragments and transform the resulting plasmids into bacteria in under 2 h, or the use of swappable gene cassettes, which can be easily moved between different constructs, to maximize speed and flexibility. During the past 2–3 decades, fish molecular biology has been intensively investigated in all aspects of fisheries, including diseases, genetics, nutrition, and ecology. Molecular tools are used to investigate changes in the DNA, RNA or proteins to detect certain genetic or biochemical changes that are associated with certain disease-causing pathogens [7, 8, 9]. Another advantage of molecular tools is that the analysis can be done on stored specimens and abundance of genetic information in the database. In recent years, great advances have been made to simplify the techniques and reduce the cost without compromising on the sensitivity. In this chapter we will discuss about the issues of aquaculture, and the potential of molecular cloning/biology in fish.
\nFish live in a complex 3D environment, so whether it is the density of the fish, or extra feed given by farmer, or local environment and water quality, everything impacts the aquaculture output. Although new concepts like precision fish farming are emerging, the following categories still are a cause of major concern.
\nDiseases are the major constricting factor for expansion of aquaculture industry, and they potentially cost the sector nearly $6 billion in yield loss each year [10]. Aquatic environments impose a constant risk of exposure to disease-causing pathogens and poor knowledge of background microbial “diversity” in aquatic farm systems often leads to frequent emergence of previously unknown diseases. Healthy looking fish can carry pathogens without a clinical sign and disease become evident only under stressful conditions. Therefore, disease management and assessment of cultured fish is a major concern to commercial aquaculturists. The ability to identify the presence or absence and concentration of a pathogenic organism in fish would have significant economic benefits. Statistically, relevant disease surveillance and monitoring requires testing large numbers of fish as it increases the probability of detecting pathogen from clinically normal fish. Reliable detection of fish pathogens in a fish population is difficult if fish with disease are not available or only a low percentage of the fish is infected. To detect pathogen carrying fish, a cost effective, sensitive, and specific system is required for surveillance and monitoring of fish population. Traditionally, the diagnosis and management of diseases is carried out by culture dependent methods which are slow, require skill, and only selective organism can be detected [11]. Potentially faster, more sensitive diagnostic techniques for identification and characterization of pathogens, even from asymptomatic carrier fish, are of utmost necessary.
\nSince farmed fish are selected and bred for certain genetic criteria like size, quick growth and hardiness, escaped species can become invasive and pose a massive threat to global biodiversity. The ever-growing aquaculture industries also have to bear the public concern in regard to pollution and other environmental effects and thus maintaining and sustaining the environment is of paramount importance. Attention to genetic variability and biodiversity in aquaculture development, proper stock maintenance and aquatic resource management are therefore crucial elements for sustainable environment. In this sense, traceability tools are essential to assess the impact of aquaculture escapees in natural populations or distinguish the farmed and wild specimens.
\nReproduction is crucial for steady and quality seed supply and hence of utmost importance for aquaculture sustainability. Fish gonadal development is influenced by intrinsic (genetics, growth, behavior, etc.), and extrinsic (temperature, hormone, environmental pollution, etc.) factors. Though, large diversity of aqua animals has its own advantages, each species has distinct reproductive and embryonic development biology that hinders the timely breeding and smooth progression of commercial aquaculture. For instance, some gonochoristic fish harbors sex chromosome while others do not, and several commercially lucrative fish sequentially changes their sex. Moreover, some hybrids tend to grow bigger with the expense of reproductive unfitness (e.g., hybrids of Atlantic and pacific salmon).
\nFish growth largely depends on feeding, environment and genetic background. For example, farmed Atlantic salmon tend to grow faster than wild ones, and genetically modified (GM) farmed salmons are even better. Though FDA recently approved GM salmon, till date it is not ethically preferable to use GM fish for commercial aquaculture. There are few more success stories of using myostatin knockout to improve growth of tilapia, red sea bream and common carp; however, yellow catfish [12] did not display similar results, suggesting functional variation among species.
\nRestriction enzymes (or restriction endonucleases, RE) are enzymes or better known as “molecular scissors” that recognize and cleave the DNA into fragments at or near specific “recognition” sites. The DNA fragments are observed by gel electrophoresis and the pattern of bands are used to generate the “fingerprint” of a particular DNA molecule. The cut DNA can be observed by gel electrophoresis and the pattern of bands compiled to create a restriction enzyme map [13]. This map is useful to identify and characterize a particular DNA region and analyze genetic variation. Restriction enzymes are used to manipulate DNA and are vital tools in molecular cloning. They form the basis for several diagnostic tools like RFLP, AFLP, Southern blotting, etc. For instance, RFLP recognizes size variations, and in combination with PCR can be used to reduce the labor-intensive DNA isolation for RFLP analysis [14]. SNPs (single-nucleotide polymorphism) or INDELs change the restriction endonuclease recognition sites that cause differences in restriction fragment lengths. AFLP technique is based on cutting with two Res (one average (e.g., EcoRI), and another rare (e.g., MseI) cutter), ligation of adapters to these restriction fragments and followed by a PCR-based selective amplification with adapter-specific radioactive or fluorescent-labeled primers.
\nRAPDs are DNA fragments that are amplified using short random primers (~10 bp) and are used to detect polymorphisms. RAPDs are randomly distributed throughout the genome and have high abundance. This technique is quick and easy and requires low quantity of DNA. Fish pathogens have been studied using RAPD, but problems with reproducibility and risks of contamination render the method unsuitable as a stand-alone method of diagnosis. However, RAPD can be a useful technique as a first step in the development of specific primers or probes and has been used in such a way in the study of bacteria.
\nThe polymerase chain reaction is a robust technique used to produce large copies of the target DNA sequence by amplifying the specific region of interest. The reaction includes template DNA, primers, polymerase enzyme to catalyze creation of new copies of DNA, and nucleotides to form the new copies. The template DNA can be collected from sample tissue, blood, serum, fluid, mucus or can be a purified DNA. The principle of PCR is based on the repetitive cycling of denaturation, annealing and extension. Each copy of the DNA then serves as another template for further amplification and copy number of PCR products then doubles in each cycle. After “n” rounds of replication, 2n copies of the target sequence are theoretically produced. After thirty cycles, PCR can produce 230 or more than ten billion copies of a single target DNA sequence. The PCR product can be detected by gel electrophoresis. The whole process just needs 2–5 h depending on the number and types of nucleotide. PCR has distinct advantages over conventional microbiological diagnostic methods as it can detect slow growing and unculturable pathogens. PCR is faster, extremely efficient and sensitive and can be used to amplify sequences from wide variety of samples even if they only have a small amount of DNA. Some of the shortcomings of PCR are the false positive results from DNA contamination, limited detection platform for simultaneous identification of multiple samples, etc. In most cases, the target DNA sequence is the rRNA operon and in bacteria, the most frequently used is the variable region of the evolutionary conserved 16S rRNA gene. Nevertheless, other types of genes or sequences of unknown sequences can also be used.
\nTo overcome the shortcoming and to increase the diagnostic capacity of conventional PCR, multiplex PCR was developed to simultaneously amplify several target sequences by using more than one pair of primers. It can detect multiple pathogens, which save time and cost without compromising test utility, but might require further analysis such as DNA sequencing to confirm the identity of the species.
\nNested PCR, which uses two pairs of primers and two successive PCR run, was developed to increase specificity and sensitivity of conventional PCR. The first set of primers is used to amplify target sequence in first run and the PCR products are used as template for the second run and amplification is conducted with the second set of primers. Though, it is popular for unknown/homologous gene identification, due to the lengthy process and complexity, this type of PCR is limited to cases where single PCR is not sufficient to identify pathogen.
\nThough DNA is reliable, RNA is often a more accurate indicator of viable microorganism. Therefore, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was developed to first synthesize cDNA from RNA by reverse transcription (RT) and later amplify the cDNA by PCR. However, for effective detection, sufficient amount of detectable RNA concentrations is required, and the RNA sample should be free of genomic DNA to avoid false positive results.
\nMost recently, real time PCR is used to detect, confirm and quantify PCR products at “real time” during the amplification process using Fluorescent dyes. Two types of dyes are generally used; one is the use of non-sequence specific dyes like SYBR green I or ethidium bromide and the second is the use of fluorescently labeled internal probe like TaqMan, FRET (fluorescence resonance energy transfer), etc. The real time PCR has three novel features—temperature cycling occurs considerable faster than in standard PCR assays, hybridization of specific DNA probes occurs continuously during the amplification and the dye fluoresces only when hybridization takes place. This technique is quick and convenient, and with the recent introduction of multiplex real time PCR, detection of multiple targets in a single reaction can be achieved at cheaper cost, shorter time and faster diagnosis.
\nIt is a novel nucleic acid amplification method that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers to recognize six distinct regions of the target DNA. Unlike PCR, LAMP is carried out in constant temperature (60–65°C) using an auto-cycling strand displacement DNA synthesis and does not require thermal cycler. The amplified product can be detected as white precipitate or yellow green color solution after addition of SYBR Green. It is cost effective and when combined with reverse transcription, this method can also amplify RNA sequences with high efficiency. It can be used to detect the identification of genus and species-specific parasites. However, this technique is not effective for detection of different pathogens simultaneously.
\nIn situ hybridization refers to detection of DNA or RNA on actual tissues, cells, or any biological sample in their natural positions within a chromosome, by using a complementary probe. ISH correlates DNA localization and mRNA expression with morphological findings [15]. Most current in situ hybridization methods use FISH [16, 17] in which fluorescent labeled pieces of DNA or RNA (probe) hybridize to target nucleic acid in cells under appropriate conditions. These labeled cells can then be visualized by flow cytometry or fluorescence microscopy. FISH can be used on formalin fixed paraffin embedded tissues, frozen tissues, etc. The technique has also been used to detect bacterial and viral DNA in an infected cell. Since the probe has to reach the target inside the cells, only probes that are small (~300 bases) can be used for tissue penetration, hence sensitivity is limited to the accessibility of the target in the cell.
\nPadlock probes (PLPs) are single stranded long oligonucleotides whose 5′ and 3′ ends are complementary to two immediately adjacent target sequences. Upon hybridization to the target, the two ends are brought into contact, effectively circularizing the probe with a nick. DNA ligase is added to convert this linear PLP into a covalently closed circular molecule. Single strand specific DNA exonucleases can be used to “chew up” the linear strands and only make available the intact circular molecules. PLPs provide extremely specific target recognition, which is followed by universal amplification and microarray. However, synthesis of long probes can be little expensive as compared to short primers for PCR. At present, the most common application for PLPs is the detection of single nucleotide polymorphisms (SNPs) and multiplex pathogen detection assays.
\nRCA is an isothermal enzymatic process where short DNA/RNA primer amplified to form a long single stranded DNA/RNA using a circular DNA template and special DNA/RNA polymerases. The product is a concatemer containing tens to hundreds of tandem repeats that are complementary to the circular template. By manipulating the circular template, RCA can be employed to generate complex DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA based metamaterials which can be used for bio-detection, drug delivery, etc. Millard et al. [18] combined RCA, MPP and hyperbranching (Hbr) to develop a multiplex detection assay for IHNV and ISAV.
\nThis technology is used to assess expression rate of thousands of genes and identify wide range of pathogens from complex samples in one single reaction. This technique usually involves hybridization of DNA with large number of probes and can overcome the shortcomings of multiplex PCR, which can detect only a maximum of six pathogens at a time. There are two types of DNA microarrays that are widely used—cDNA microarrays and oligonucleotide/DNA chips. There are a number of ways of using DNA microarrays. One method is the use of fluorescent labeled DNA sequences that are hybridized to the microarray slide. The data is detected by fluorescent array detection and analyzed by computer programs. The second and more practical method is the use of fluorescent labeled competitor oligonucleotide. When target DNA does not hybridize to the tethered oligonucleotide in the microarray, fluorescent labeled competitor oligonucleotide will bind to the tethered oligonucleotide on the chip and displace the test DNA. Then the fluorescent microarray detector and computer program will analyze the fluorescent array for the presence or absence of the species/strain specific DNA sequence. Microarray does not require clear length differences between PCR products and therefore, PCR assays can be designed to generate smaller sized amplicons that can improve efficiency and probability of template recovery from degraded DNA and reduces PCR template biasedness. Compared to traditional nucleic acid hybridization with membranes, microarrays offer the additional advantages of high density, high sensitivity, rapid detection, lower cost, automation, and low background levels. Since most of the pathogens genetic sequences are known, oligonucleotide probes complementary to all pathogens can be used for microarray. Although the set-up cost for the use of DNA microarrays is high, once the equipment is available and microarrays are prepared, cost per unit of sample analyzed becomes low. In the post-genome sequencing era, microarrays have been developed from model and non-model fish and have the possibility of heterologous application. Though majority of them are publicly available, however, they vary in type, size, complexity, methodological development and motivation and degree of annotation, so it is advisable to carefully select the array beforehand [19].
\nDNA sequencing is used to determine the four chemical blocks—adenine, guanine, thymine and cytosine, that make up the DNA molecule. The sequence information can help determine changes in the gene that may cause disease. First generation sequencing techniques include the Sanger method and the Maxam-Gilbert techniques. Maxam-Gilbert are based on chemical modification of DNA and subsequent cleavage at specific bases while Sanger method requires that each read start be cloned for production of single-stranded DNA. Maxam–Gilbert sequencing is less popular due to its technical complexity. The chain-terminator method or Frederick Sanger method, which uses dideoxynucleotide triphosphates (ddNTPs) as DNA chain terminators, became a popular method of DNA sequencing due to its greater efficiency, use of fewer toxic chemicals and lower amounts of radioactivity than Maxam-Gilbert method. Second generation sequencing includes technologies such as Illumina and Ion Torrent that produce massive parallel sequencing of short read length of reads of DNA (150–400 bp), which require extensive assembly. Third generation sequencing method includes PacBio and ONT and involves sequencing through extended repetitive regions in the genome to produce much longer reads (6–20 kb) but far fewer reads per run (typically hundreds of thousands). The second and third generation sequencing methods, collectively known as the next generation sequencing (NGS) or high throughput sequencing allows the sequencing of DNA and RNA more quickly and cheaply. The goal of NGS is to investigate functional genome, epigenome and transcriptome elements in cells and tissues, and their temporal expression, which permits the definition of variation in gene expression among the different types of tissue, organs or life stages of the target organism. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues, understand the cell-cell interactions, and whole organismal physiology. To cope with it, bioinformatics is also rapidly evolving and new algorithms are being published. It is expected that NGS with bioinformatics is the way to revolutionize the field of fisheries and might also help clarify the previous findings and dogmas prevalent in aquaculture and biology.
\nRestriction-site associated DNA sequencing (RAD sequencing or RAD-Seq) combine the use of genome complexity reduction with REs and the high sequencing output of NGS technologies. Original RAD-Seq was first described by Baird et al. [20] and several variants of this methodology have been described since then [21]. But, only the original RAD-Seq [20], 2b-RAD and ddRAD are extensively used in aquaculture research. In aquaculture, RAD-Seq has been used in genetic mapping [22], reference genome assembly sex determination loci mapping [23, 24, 25, 26], etc. Some of the main reasons for its instant success is that RAD-Seq does not require any prior genomic knowledge, it allows generation of population-specific genotype data (i.e., no ascertainment bias) and it offers flexibility in terms of desired marker density across the genome. The use of different REs or innovative modifications to the base technique allows a high level of control over the number of markers obtained for a specific study. RAD-Seq and similar techniques are also amenable tools for aquaculture breeding, where genetic markers have typically been used in family assignment and pedigree reconstruction [27]. Mass spawning species are common in aquaculture, where mixed rearing and unknown parental contribution necessitate the use of genotyping for family-based breeding. RAD-Seq potentially facilitates a single experiment whereby pedigrees are reconstructed, genetic diversity is quantified, QTL are mapped, and genomic breeding values calculated [28].
\nMost of the genetic improvement in fish and shellfish species to date has been made through the use of traditional selective breeding of Atlantic salmon, Rainbow trout, tilapia and many other fish [29]. Notably, spontaneous mutations in the genome create genetic variability (or polymorphism) and this variability can be an effective means to analyze fish trait and geological pedigree. Boom in whole genome sequencing technology, though still costly, encourage fish researchers to investigate genomic marker’s potential in selective breeding and aquaculture production. There are several available markers for fish research: AFLP, RAPD, etc., but most prevalent ones are microsatellite and SNPs. Microsatellite markers, identified using microsatellite sequence enriched genomic library or Expressed tagged sequence library, are simple tandem sequence repeats scattered across the genome and used increasingly in aquaculture species [29]. SNPs are generally identified using in depth genome sequencing and require huge financial and bioinformatical investment. MAS (marker assisted selection) is useful for traits that are difficult to measure on breeding candidates, particularly when they are largely linked to QTL (quantitative trait loci). With the help of MAS and GS (genomic selection), several studies have demonstrated increased accuracy of breeding value predictions in growth and disease resistance in yellowtail and Atlantic salmon [30, 31, 32, 33]. Nevertheless, this approach requires a great amount of detailed information in order to choose which gene explains the greatest effect and to have sufficient power to detect the association.
\nThere are two main methods for studying the microbiome using high-throughput sequencing: marker-gene studies and whole-genome-shotgun (WGS) metagenomics. While marker-gene studies, amplify a particular gene (16S rRNA for bacteria/archaea, 18S for fungi), metagenomics refer to the sequencing of DNA from the entire genome of samples obtained directly from the environment (water, soil) or tissues. Advances in metagenomics have themselves been driven by advances in second- and third-generation sequencing technologies, which are now capable of producing hundreds of gigabases of DNA sequenced data at a very low cost [34]. Unlike bacteria that use the 16S ribosomal RNA as a common gene for their identification, viruses lack a single common gene for their identification which makes it difficult to monitor their population dynamics in different aquatic environments [35]. Metagenomics also holds the promise of revealing the genomes of the majority of microorganisms that cannot be readily obtained in pure culture [36]. Breitbart et al. [37] have shown that it is possible to sequence entire genomes of uncultured marine viruses using metagenomics. For metagenomic sequences linked to novel diseases, there is need to isolate the virus involved followed by verification using conventional diagnostic approaches such as cell culture to exhibit the cytopathic effect (CPE), morphological characterization using electron microscopy, and molecular characterization using PCR ([38], Table 1).
\nPathogens | \nDetection method | \n
---|---|
V. vulnificus, L. anguillarum, P. damselae, V. parahaemolytocus | \nMultiplex PCR, DNA microarray | \n
Y. ruckeri, A. salmonicida, F. psychrophilum | \nMultiplex PCR | \n
Infectious salmon anemia virus (ISAV) | \nRT PCR | \n
Myxobolus cerebralis | \nReal time PCR | \n
Edwardsiella tarda | \nLAMP | \n
Infectious hematopoietic necrosis virus (IHNV) & ISAV | \nMolecular padlock | \n
R. salmoninarum, A. salmonicida, E. ictaluri, F. columnare, F. psychrophilum, Y. ruckeri, P. salmonis, T. maritimum | \nDNA microarray | \n
A. salmonicida, E. ictaluri and F. psychrophilum | \nPCR and DNA microarrays | \n
Aeromonas (A. hydrophila, A. sobria, A. caviae and A. veronii) | \nMultiplex PCR | \n
P. salmonis (Salmonid Rickettsial Septicaemia) | \nPCR-RFLP | \n
Prevalent examples of established disease diagnostics in aquaculture.
DNA vaccines are composed of bacterial plasmids which has two units-antigen expressing unit that comprises of promoter/enhancer sequences, antigen coding and polyadenylation sequences; and the production unit comprising of sequences necessary for plasmid amplification and selection [39]. The vaccine inserts are constructed by molecular cloning and transformed into bacterial cells, and the purified plasmid DNA is injected into fish. Hansen et al. [40] first introduced vaccination in fish by injecting plasmid constructs encoding viral glycoprotein directly into skeletal muscle of common carp that resulted in efficient protection of the fish against rhabdoviruses. More than 20 different virus DNA vaccines have been developed experimentally for prophylactic use in fish targeting viruses such as rhabdoviridae, orthomyxoviridae, togaviridae and nodaviridae [41, 42]. However, despite this huge prospect, DNA vaccines for farmed animals remain at the moment experimental. DNA vaccines seem to be more harmless and more stable than ordinary vaccines [42]. Plasmids are non-viable and do not multiply, and therefore have a low risk of developing secondary disease and infection. The main concern about the potential DNA vaccines is that they might integrate into the host genome and generate immune responses. However, extensive surveys have found little evidence of integration, and the merger risk appears to be less than normal mutation. Significant advantages of these vaccines include cheapness, simplicity of production and consumption, transport and higher resistance. The other important feature of these vaccines is the ability to put several antigens in the plasmid, resulting in immunization against all agents [43]. In 2005, APEX-IHN (Novartis/Elanco) became the first DNA vaccine licensed for commercial use in aquaculture for protection of Atlantic salmon against Infectious Hematopoietic Necrosis Virus (IHNV) in British Colombia. In 2017, the European Commission through the European Medicines Agency (EMA) granted marketing authorization of CLYNAV (Elanco), a polyprotein-encoding DNA vaccine against Salmon Pancreas Disease Virus (SPDV) infection in Atlantic salmon (Salmo salar) for use within the EU. However, administration of vaccines typically requires individual handling and treatment of all production fish, which can be expensive and impractical in a large-scale production environment.
\nTransgenics are those genetically engineered organisms which have heterologous DNA (transgene) integrated stably into their genome through artificial means like microinjection, electroporation, sperm mediated transfer, lipofection, retrovirus, etc. The transgene construct carries a target gene, encoding product of interest and regulatory elements that regulate the expression of the gene in a spatial, temporal and developmental manner [44]. Since the development of the first transgenic fish in 1984, a wide number of transgenic fish species have been produced (Table 2) to improve growth, disease resistance, cold resistance, etc. [45].
\nSpecies | \nForeign gene | \nDesired effect | \n
---|---|---|
Striped bass (Morone saxatilis) | \nInsect genes | \nDisease resistance | \n
Common carp (Cyprinus carpio) | \nSalmon and human GH; rainbow trout GH | \nImproved disease resistance | \n
Grass carp (Ctenopharyngodon idellus) | \nhLF hLF + common carp β-actin promoter | \nIncreased disease resistance to bacterial pathogen Increased disease resistance to grass carp hemorrhage virus | \n
Channel catfish (Ictalurus punctatus) | \nSilk moth (Hyalophora cecropia) cecropin genes | \nEnhance bactericidal activity | \n
Japanese Medaka (Oryzias latipes) | \nInsect cecropin or pig cecropin-like peptide genes + CMV | \nEnhanced bactericidal activity against common fish pathogens | \n
Atlantic Salmon (Salmo salar) | \nMx genes | \nPotential resistance to pathogens following treatment with poly I:C | \n
Nile Tilapia (O. niloticus) and Redbelly Tilapia (Tilapia zillii) | \nShark (Squalus acanthias L.) IgM genes | \nEnhanced immune response | \n
Transgenesis in aquaculture.
In the mid-twentieth century, researcher demonstrated that the rate of mutagenesis could be enhanced with radiation or chemical treatment [46, 47]. Later with the help of transposons, targeted genomic changes were made in various model organism including medaka and zebrafish [48, 49, 50]. But due to prevalence of transposon machinery in these fish, longer time requirement for generating particular line and concerns about transgenics associated wild genepool contamination and biodiversity degradation has led aquaculture researchers to focus on other knockdown and knockout technologies.
\nIn fish, antisense morpholinos, small interfering RNA (siRNA) and PNAs (peptide nucleic acid) are widely used to transiently interfere with gene function. Morpholinos are typically 25 bp long oligos that specifically interfere with gene function based on their complementarity to the target sequence either by blocking translation initiation or by interfering with splicing. The non-ribose-based backbone renders morpholinos insensitive to enzymatic degradation. PNAs have a higher affinity for RNA, yet they are less soluble and therefore the in vivo use is limited. Dorn et al. [51] changed the chemical composition of the PNA backbone to increase solubility and showed efficient knockdown of the six3 gene in medaka. In most cases, the chemical/RNA is micro-injected or electroporated into fertilized eggs at early cleavage stages to ensure a ubiquitous distribution to all cells of the developing embryo. If thus applied, they interfere with gene function during early development. To study gene function during later stages, morpholinos can be activated conditionally by light-induced uncaging. However, recent results in zebrafish indicate that morpholino-based gene knockdown often results in unspecific off-target effects [52].
\nTo overcome abovementioned complications advanced genome editing techniques were developed, in which, no genetic material from another species is introduced and thus the genome remains untainted. Although tilling (target induced local lesion in genome) was first of this kind, it mostly creates single point mutation and requires large screening. Some of the next generation gene editing tools used in fish are zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs) and CRISPR/Cas system. Mutations can be achieved by introducing double strand breaks into the target gene and non-homologous end joining (NHEJ) repair mechanism is used to produce insertions or deletions in a site-specific manner resulting in permanent disruption of the function of the target gene. On the other hand, exogenous gene sequence can be introduced into the genome by co-delivering the targeted nucleases along with a target vector containing the DNA homologous to the break site for gene correction (Figure 1).
\nComparative evaluation of various knockout technologies used in fish manipulation.
Theoretically, ZFN is an ideal tool for inducing mutations at target DNA sites in any organisms [53]. However, its application has been constrained by limitations in zinc finger domain design and construction as well as low efficiency [54]. Compared with ZFN, the recently emerged TALEN provides us a more advanced approach for genome editing; it is much easier to construct plasmids for expressing TALE proteins, making this technology easily available to most molecular biology laboratories. Because of this and its high specificity and efficiency, TALEN has quickly replaced ZFN as a dominant platform for genome editing since its establishment in 2011 [55]. Unlike ZFN and TALEN, the nuclease Cas9 is guided towards the target DNA site by a small guide RNA followed by random cleavage of the DNA. Particularly, the rapid emergence of CRISPR/Cas9 caused a paradigm shift in the research community [56]. There is complementary usage of these two technologies in recent years, as CRISPR/Cas9 works as monomer, it consists of protein and RNA and produces blunt end, while TALEN works as dimer, it consists of protein only and produces cohesive ends [57]. Although each one has its associated pros and cons [58], TALENs and CRISPR technologies have comparatively high specificity and efficiency with low off target effect [59]. Not only the methodology, but selection of delivery methodology (microinjection, electroporation, etc.), target tissue, and host is critical for ensured success in aquaculturable strain production. Numerous genes are being knocked out using various techniques and some of them are already adapted for commercial aquaculture (Table 3).
\nFishes | \nGenes (method) | \nFishes | \nGenes (method) | \n
---|---|---|---|
Atlantic salmon | \ndnd, tyr, slc24a5 (C) [60, 61] | \nSturgeon | \ndnd (C) [62] | \n
Atlantic killifish | \nahr2 (C) [63] | \nTilapia | \nfox12a, cyp19a1a, dmrt1, nanos, gsdf, sf-1/nr5a, mstn (C); rspo1, fox12a, cyp19a1a (T) [64, 65, 66, 67, 68, 69] | \n
Cavefish | \noca2 (T) [70] | \n||
Channel catfish | \nlh (Z) [71] | \n||
Chinese lamprey | \nslc24a5 (C) [72] | \nYellow catfish | \nmstn (Z) [12] | \n
Common carp | \nsp7a/b, runx2, bmp2a, opg & mstn (T & C) [73] | \nZebrafish | \ndnd (M); ntl, slc24a5, kdr1, prl, (Z); gria3a, hey2, cyp19a1a, ryr3, ryr1a, tbx6, slc24a, slc45a2, fsh, lh, fshr, ihcgr, pgr, rb1, bmp15, mesp, gnrh3, zap70, nrld1, leg1a, mstn, rnf213a, mpl, dmrt1, cyp17a1, stat3, kiss1/2 & kissr1/2(T); mitfa, ddx19, slc24a5, slc45a2, seta/b, nrg1-I, stxbp1, nERs, gspt11, fus, akt2, atp6v1h, cyp19a1a (C) [62, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108] | \n
Japanese anchovy | \nmstn (T & C) [109] | \n||
Medaka | \ndnd (M); fox13, dmy, dmc1, fshb, gnrh1 (T); gsdf (Z) [110, 111, 112, 113, 114] | \n||
Red sea bream | \nmstn (C) [115] | \n||
Rice field eel | \ndmrt1, foxl2, cyp19ala (T) [116] | \n||
Rohu | \ntlr22 (C) [117] | \n||
Starlet and sturgeon | \nNtl, dnd (T & C) [118, 119] | \n
Genome editing using ZFN, TALEN and CRISPR system in varies model and non-model fish species.
M, morpholino; Z, zinc finger nuclease (ZFN); T, transcription activator-like effector nucleases (TALEN), C, clustered regularly interspaced short palindromic repeats (CRISPR).
With the continual growth of global aquaculture, fish production continues to grow globally and till date only a small proportion of the aquatic animals come from managed breeding especially through applied molecular cloning and genomics (Table 4). The molecular biology of aquatic organisms offers many opportunities for rapid genetic gains as new genetic techniques make the improvement feasible in a wider range of model and non-model species. The future of molecular biology in aquaculture is bright with the technologies mentioned above being cheaper than ever, widely available and easily applicable in laboratories. However, the results obtained from these methods should not be conclusive without additional information, such as clinical diagnosis, as the mere detection of a certain pathogen does not imply necessarily that it is responsible for or even involved in a disease. Effective use of these techniques will reduce economic losses as well as risk of infection among wild fish species. Taking advantage of the numerous tissue specific sequence information available in the database, predictions of gene function by bioinformatics tools such as in silico and in vitro can be employed to identify candidate genes responsible for diseases or disease resistance that will reduce labor and cost of diagnosis and treatment. In silico approaches use computational tools to analyze raw DNA sequence data to simulate and predict the function and structural features of protein. In addition, the use of in vitro organoid models that refer to growing stem cells in 3D to generate cellular units that mimic an organ in both structure and function, is advancing rapidly. This method can also be applied in fish to study organ development, reproductive enhancement, fast tract selective breeding, disease and drug interactions as well. The new diagnostic techniques like, droplet digital PCR, Hybrid fusion FISH might improve the credibility and cost effectiveness of disease diagnosis.
\nCategory | \nType of approach | \nPopular methods | \n
---|---|---|
Genomics | \nHigh throughput analysis | \nMicroarray, NGS, whole genome bisulfate sequencing | \n
\n | Marker based analysis | \nRad sequencing, microsatellite, SNP, AFLP, RAPD, RFLP | \n
Forward genetics | \nChemical mutagenesis | \nENU mutagenesis | \n
\n | Transposon mutagenesis | \nSleeping beauty, AcDs, Tol2, EnSpm-N6 | \n
Reverse genetics | \nAntisense and small RNA | \nMorpholino, PNA, SiRNA, shRNA | \n
\n | Micro RNA | \nmiRNA sponges, miRNA knockdown, miRNA mimics | \n
\n | Conditional knockdown | \nTet on/off | \n
\n | Tilling | \nENU mutagenesis | \n
\n | Genome editing | \nZFN, CRISPR/Cas9, TALEN | \n
Transgenesis | \nMeganuclease | \nISecI | \n
\n | Transposon | \nSleeping beauty, AcDs, Tol2, EnSpm-N6 | \n
\n | Recombinases (site specific) | \nPhiC3, Cre-loxP, BAC, Fosmid, YAC | \n
Molecular genetics | \nReporter cell line | \nPromoter analysis, | \n
\n | Cell lineage | \nGaudi toolbox | \n
\n | Transactivation | \nLexPR, Gal4, tet on/off, heat shock protein | \n
Transcriptomics | \nRNA detection | \nIn situ hybridization, expressed sequence tagging, CDNA library, RNA-seq, microarray, QPCR, PCR | \n
Proteomics | \nProtein detection | \nAntibody based analysis, chromatography and spectrophotometry | \n
Summary of molecular biology application in fish.
Genome editing though has the advantage over traditional selective breeding and a trait can be introduced in a single generation without disrupting a favorable genetic background. Many traits of great significance in aquaculture could be targets for improvement by genome editing, including growth and reproductive performance, disease resistance, feed conversion efficiency, and tolerance to environmental stressors (temperature, salinity and oxygen). Keeping the animal welfare issues of “genetically modified organisms” in mind, fish that carry more muscle mass have also been produced by the disruption of a single gene (Myostatin, an inhibitor of skeletal muscle growth) in Common carp, Tilapia, Red sea bream and Japanese anchovy [74, 75, 82, 91]. But still the key question is whether the precise natural genome modifications will find greater public acceptance and make a way to commercial aquaculture. The long-term impacts of these non-transgenic GMOs on wild biodiversity and environment are an uncharted area too. So, in the coming era, we must rethink to what extent we can and should use these molecular advancements for aquaculture betterment.
\nThis work was in part supported by Grants from Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japanese Society for the Promotion of Science (JSPS) Kakenhi, Grant Nos. 16H04981, 18 K14520 and 19H03049; Sumitomo Grant No. 180959.
\nNon-communicable diseases are the biggest public health challenge of this century, and childhood obesity is an important part of this. Its rates have tripled in the US over the past 30 years. Today, 17% of US adolescents and 16% of children between 2 and 11 years are obese with prevalence being highest among Black and Hispanic children and adolescents [1]. Childhood obesity was so far thought to be a problem of the developed world, but it is increasingly being reported from middle- and low-income countries, especially from urban areas [2]. Obesity in children is not as easy to quantify as in adults. Body mass index is not an accurate measure of obesity in children. It is important to recognise childhood obesity and manage it, because if untreated, it can result in obesity in adulthood with all its attendant metabolic complications. Childhood obesity also has a deep psychosocial impact and is consistently associated with lower scholastic achievements. Weight once gained is difficult to lose, and hence prevention is important. This assumes greater significance with regards to children as compared to adults, because they are more susceptible to the constant bombardment by advertisements for energy-dense food [3]. Immuring them from an obesogenic environment is a priority and a challenge. A number of innovative programmes to tackle childhood obesity have been tried in different countries, and each one of them has important lessons for public health specialists and health policy makers. The WHO’s Commission for Ending Childhood Obesity opines that this problem requires, ‘a whole-government approach in which policies across all sectors systematically take health into account, avoid harmful health impacts, and thus improve population health and health equity’ [4]. The magnitude of the problem, causative factors, complications of childhood obesity and some solutions will be discussed.
Obesity in school children is today an uncomfortable reality. The global prevalence of obesity has doubled between 1990 and 2015. Worryingly, the rate of increase in obesity in children is higher than that in adults in many countries [5]. Globally, about 10% of school children in the 5–17 age groups are obese or overweight [5]. The prevalence varies from 30% in America to less than 2% in sub-Saharan Africa. In just three decades, the number of school-going children and adolescents with obesity has increased by 10-fold, from 11 million to 124 million (2016 estimates). In addition to this, another 216 million children were estimated to be overweight though not obese in 2016 [6]. The International Association for the Study of Obesity (IASO) and International Obesity Task Force (IOTF) reckon that 200 million school children worldwide are either overweight or obese [7]. The problem probably starts early in childhood. A 2010 report estimated that 42 million children under the age of 5 were overweight and of these, 35 million lived in developing countries. While the prevalence of childhood obesity may be plateauing in some developed countries, it is showing a steep rise in developing countries of Asia and Africa. Within Asia, China has the highest number (15 million) followed by India (14 million) [4]. Even within nations, certain subgroups like children of migrants and indigenous populations are at greatest risk of obesity [8].
The NCDRisC study pooled data for 2416 population-based studies. This included data of 31.5 million children and adolescents aged 5–19 years. The mean BMI in 1975 was 17.2 and 16.8 kg/m2 for girls and boys, respectively. It was lowest in South-East Asia and East Africa, and highest in Polynesia, Micronesia and English-speaking regions. The age-standardised mean BMI for children and adolescents increased all over the world from 1975 to 2016. The increase was 0.32 kg/m2 per decade for girls and 0.40 kg/m2 per decade for boys. The mean BMI for girls and boys in 2016 was 18.6 and 18.5 kg/m2, respectively. The age-standardised mean BMI in 2016 was still lowest in South-East Asia and east Africa and highest in Polynesia and Micronesia. It was 16.9 and 17.9 kg/m2 for girls and boys respectively South -East Asia and Africa and 23.1 and 22.4 kg/m2 for girls and boys respectively in Polynesia and Micronesia. The regions with the largest absolute numbers of obese children and adolescents were East Asia, the Middle-east, North Africa, South Asia and English-speaking regions. It is predicted that if post-2000 trends continue, then by 2022, the number of obese children will outstrip those with moderate and severe underweight [3].
Peltzer reported that the prevalence of overweight/obesity in school children aged 13–15 years in seven ASEAN countries (excluding Brunei) was 9.9% [9]. The highest prevalence of overweight/obesity in all eight ASEAN countries was in Brunei Darussalam (36.1%), followed by Malaysia (23.7%). It was lowest in Myanmar (3.4%) and Cambodia (3.7%) [10]. Pengpid and Peltzer also studied the prevalence and factors affecting obesity in children in six Pacific island countries of Oceania. Among the 10,424 children in the age group of 13–16 years, the prevalence of overweight and obesity was 24.3 and 6.1%, respectively. The researchers used a BMI of >30 kg/m2 to define obesity and defined overweight as a BMI between 25 and 29.9 kg/m2. Therefore, their estimate may not be quite accurate [11].
India is caught in a nutrition paradox where stunting and underweight coexist with overweight and obesity in children. National Family Health Survey-4 (2015–2016) reported the prevalence of stunting, wasting and underweight in children <5 years to be 38%, 21% and 36%, respectively. In this survey, overweight was defined as weight for height being more than 2 SD above the median of the reference population. By this definition, 2% of Indian children under the age of 5 were overweight. Unfortunately, data of older children are not forthcoming from this survey [12]. The prevalence of overweight/obesity among adolescent Indian children rose from 9.8% in 2006 to 11.7% in 2009 [13]. Lobstein and Jackson-Leach computed that there will be 17 million obese children in India by 2025 [14]. This trend is reported from all over India, both in urban and rural areas. Prevalence of overweight/obesity in children in Delhi increased from 16% in 2002 to 24% in 2006 [15]. A study done in the urban areas of Udupi in South India, found prevalence of overweight and obesity in school children to be 10.8 and 6.2%, respectively [16]. Another study from Central India found 3.1% (95% CI 2.5–3.8) of children between 10 and 17 years to be overweight and 1.2% (95% CI 0.8–1.8) to be obese and overall 4.3% were overweight/obese [17]. From Surat, in Western India, Gamit et al. reported the prevalence of overweight and obesity to be 10.2 and 6%, respectively [18]. In Kanpur, the prevalence of overweight and obesity were 4 and 2%, respectively. The authors attributed this low prevalence, when compared to other studies from North India, to local dietary habits [19]. A systematic review conducted by Gupta et al., reported that prevalence of overweight, among 5–19 years children, ranged between 6.1 and 25.2%, while that of obesity ranged between 3.6 and 11.7% [20] Khadilkar et al., in 2010, estimated the combined prevalence of overweight and obesity to be 19.6% as per IOTF classification, while this was 27% according to WHO definitions [21]. Among adolescence, between 10 and 17 years, the percentage was 22.3 (as per IOTF cut off) and 29.8% (as per WHO cut off), and these age groups should be considered most vulnerable for adiposity [22]. The estimates will swing widely till all investigators adopt standard criteria for measurement of overweight and obesity.
Obesity is a result of imbalance between calorie intake and energy output. This may seem a facile explanation, but in reality it is due to a complex interplay of many factors. Biological factors can lead to childhood obesity through ‘mismatch’ and ‘developmental’ pathways [4].
Obesity is probably polygenic in inheritance. BMI may be 25–40% inheritable. But, like for hypertension and diabetes, behavioural and environmental factors play a big role. Genetics may just account for less than 5% of all cases of childhood obesity [23]. Maternal undernutrition or malnutrition and placental insufficiency lead to epigenetic changes that put these children at greater risk for developing overweight and obesity when exposed to energy-dense foods and sedentary lifestyles when compared to children born of mothers with adequate nutrition. Maternal obesity or hyperglycaemia can also cause epigenetic changes, which predispose the children to increased deposition of fat tissue. Recent studies reveal that paternal obesity can also have an adverse effect on the offspring through epigenetic effects [4].
The GDB Collaborators Group did not find any gender difference in prevalence of obesity in children <20 years. In countries with high-medium and high SDIs, the prevalence was higher in boys than in girls with the trend reversing in late adolescence [5]. The NCDRisC study also reported that gender disparity had narrowed considerably all over the world by 2016. They reported a flattening of the curve for both sexes in North-western Europe, high-income English-speaking countries and Asia-Pacific regions. The plateauing was also seen for boys in South-western Europe and girls in Central and Andean Latin America. In contrast, a rise in BMI was noted for both sexes in East and South Asia and for boys in South-east Asia. The prevalence of obesity was highest in Polynesia and Micronesia in both sexes being 25.4% in girls and 22.4% in boys. This was followed by the high-income English-speaking countries. Obesity prevalence was between 1 and 2% in Cambodia, Burkina Faso, Vietnam, Ethiopia, India, Madagascar, Republic of Congo, Japan, Nepal, Niger and Chad. The number of girls with obesity increased from 5 million in 1975 to 50 million in 2016. For boys, the numbers are 6 million and 74 million, respectively [3]. However, other studies do report differences. The prevalence of overweight/obesity in children and adolescents is more in boys than in girls in developed countries (23.8 and 22.6%, respectively). In developing countries, it is lesser in boys than in girls (12.9 and 13.4%, respectively) [24].
Studies from different parts of India also show that it is more common in boys than in girls. Ramachandran et al. reported the prevalence of overweight to be 17% in boys and 15.8% in girls in the age group 13–18 years from Chennai [25]. In the study from Udupi in South India, the prevalence of overweight and obese were 11.0 and 7.1%, respectively, in boys and 10.6 and 5.4%, respectively, in girls [16]. Researchers from Wardha, in Central India, reported the prevalence of overweight/obesity to be 4.4% in boys and 4.3% in girls [17]. In Pune, in Western India, the prevalence of overweight in children in the age group 9–16 years was 27.5% for boys and 20.9% for girls [26]. In Surat, the prevalence of overweight and obesity in boys was 12.4 and 8.2%, respectively, and in girls it was 7.2 and 2.7%, respectively [18]. Kapil et al. reported the prevalence of obesity in children aged 10–16 years in Delhi to be 8.0% for boys and 6.0% for girls [27]. Chhatwal et al. also found higher prevalence of obesity among boys than girls. They attributed it to the cultural advantages that boys enjoy in India. They get larger helpings of food at home, snack more as they have greater freedom to go out and also participate negligibly in doing household chores. The gender disparity was highest in the most affluent socio-economic groups. Among children going to the affluent school, the prevalence of overweight was 25% in boys and 16.6% in girls (p = 0.001). The prevalence of obesity was 19.9 and 13.3%, respectively (p = 0.003). The prevalence was similar among boys and girls in the lower-income schools. They also found that only at the age of 15 years was prevalence of obesity/overweight more in girls than boys. This is explained by the pubertal hormonal surge and growth spurt that occurs earlier in girls than in boys [28]. These findings are reiterated in the systematic review of 28 studies by Ranjani et al. who found that overweight and obesity were slightly more common in adolescent boys than girls in India [2].
There is a distinct age pattern in childhood obesity. In their longitudinal study on 8544 children, Whitaker et al. reported that the prevalence of obesity was 13% at 9 years and dropped to 9% at 14 years and then increased again [29]. The GDB Collaborators Group also reported that the prevalence of obesity decreased with age till 14 years and then increased [5]. In the American NHANES 1999–2000 survey, the prevalence of overweight/obesity did not vary much in the age groups of 6–11 and 12–19 years (15.3 and 15.5%, respectively) [30]. The findings by Chhatwal et al. in Ludhiana mirrored Whitaker’s study. Prevalence of obesity declined from 18.5% at 9 years to 7.6% at 14 year-end then again spiked at 15 years to 12.1% [28]. Ranjani et al. found that prevalence of obesity in under-fives was less than 2% across India. In children >5 years, it varied from 2 to 8%. Overweight rates were about 2× higher and were higher in North and East India than in South India. Among adolescents, the overall prevalence of overweight and obesity ranged between 3 and 24.7% and 1.5–28% respectively [2].
With globalisation, the dietary mores of Indian children has also started changing rapidly. Gulati et al. found that a majority of children surveyed in four urban centres preferred to eat out; they felt that home food was ‘old-fashioned’. Almost half of them also had their evening meals while watching television [31, 32]. Adolescents associate ‘junk food’ with independence and convenience and consider health food options odd [33].
In the Udupi study, there was no statistical correlation between frequent consumption of carbonated drinks and being overweight/obese [16]. But in Oceania, Pengpid and Peltzer found that consumption of >1 carbonated drink per day increased OR for obesity by 1.32 (95% CI 1.09–1.61, p < 0.01) [11].
A drastic behavioural change is seen in Indian children in senior secondary schools. Those interested in taking competitive examinations stop physical activity totally and adopt a sedentary lifestyle. They enjoy eating packaged food items to relieve stress. These are usually energy-dense high fat, sugar and salt (HFSS) foods. Both nocturnal snacking and consumption of HFSS foods in the breaks between study sessions can lead to significant weight gain. Snacks rich in refined sugars and fats are habit forming and children get addicted to their flavours and tastes. This perspective is supported by a growing body of neuroscience researchers who have demonstrated that the chronic consumption of energy-dense foods brings about changes in the brain’s reward pathways that are central to the development and maintenance of habits. While it is difficult to precisely define ‘eating behaviour’, such habits are associated with pleasure centre in the brain (neural reward circuitries)—characterised by symptoms such as loss of control while eating, over consumption and/or binge eating, continued consumption of high calorie foods despite the knowledge of its negative consequences and inability to cut down despite the desire to do so [34, 35]. The vicious cycle of obesity in school children is shown in Figure 1.
Vicious cycle of obesity in school children.
The reinforcing value of food is higher among obese children than among children with normal weight. In general, bland foods are not eaten in excess; whereas, highly palatable foods are often consumed even after an individual’s energy requirements have been covered. Some children fall prey to vicious cycle of impulsive eating. Highly impulsive children often do not think about the reactions or their consequences. Besides overeating, these children seem to be vulnerable to food triggers like the smell and taste of the food. It has been suggested that poor control of neural centres related to impulsivity and/or addiction could foster impaired control of food intake leading to overeating and subsequent obesity. Adaptive decision-making and the ability to delay gratification may positively influence eating behaviour, particularly in an energy-rich food environment, where conscious control of energy intake is essential for the maintenance of healthy body weight [36].
The Wardha study showed a good correlation between physical inactivity and childhood obesity. On univariate analysis, the odds ratio (OR) of obesity in school children was 2.064 if they played outdoors for less than 30 min a day. Step-down multiple logistic regression analysis showed OR for the same children to be 2.133 (95% CI: 1.373–3.301) [17]. In the study from Oceania, sedentary behaviour defined as sitting for ≥3 h/d increased the odds of being overweight/obese OR1.17 (95% CI 1.03–1.34, p < 0.05) [11]. More frequent participations in sports correlated well with greater accretion of fat free mass. This finding was independent of ethnicity, individual, family, community and socio-economic factors. Walking or cycling to school also resulted in a lower fat mass index [37]. Kunwar et al. studied the prevalence of obesity in school children in a military station in North-Eastern India and concluded that the prevalence of obesity in garrison schools was lower due to the greater emphasis laid on games and physical activity [38].
Sedentary lifestyle is associated with higher adiposity. Every additional hour of TV-time per day increases the prevalence of obesity in children by 2% [23]. Govindan et al. found that watching TV for >2 h/d was significantly associated with obesity (boys OR 1.19, p < 0.01, girls OR1.19, p < 0.01) [39]. The National Institutes of Health, US also consider TV-time of >2 h as a definite risk for obesity [40]. TV watching (passive screen time) is unhealthier than active screen time (computer and video games) [41]. Hours of TV watching also directly correlate with increased intake of foods frequently advertised on TV like sweets, sweetened beverages, cookies, chocolates, sweetened cereals and salted snacks [42]. This habit of watching TV or playing games on mobile phones starts at an earlier age. During preschool period, most mothers have a tendency to feed children by distracting them. They let them watch cartoons on television or play games on mobile phones. This makes their job of feeding easier as the children do not resist feeding. In the process, they tend to overeat, being too distracted to signal the feeders that they are full. This tendency to overfeed themselves continues into adolescence also.
Pengpid and Peltzer looked for impact of loneliness, lack of close friends, anxiety and worrying, suicidal ideation and bullying on occurrence of overweight/obesity in school-going children in Oceania. The OR for being overweight with lack of close friends was 0.72 (95% CI 0.56–0.92, p < 0.01) and with suicidal ideation OR was 1.42 (95% CI 1.21–1.66, p < 0.001). The association with other factors was not significant on multivariate regression analysis [11]. The lifetime risk for anxiety disorders is higher for obese adolescents in comparison to non-obese ones [43]. There is a bi-directional relationship between eating disorders and depression making both difficult to treat [44].
The family has a significant role to play in the development of childhood obesity. The influence starts even before the child is born. The first reported causal association of intra-uterine undernutrition resulting in obesity in the offspring later in life was from the observation of children born to women who were pregnant during the Dutch famine [45]. Intra-uterine malnutrition may lead to a higher susceptibility to excess weight gain due to increased fat stores, short stature and a preference for foods high in fats [46]. This is the ‘mismatch’ effect alluded to earlier. A phenomenon known as ‘mirror imaging’ between the mother and her baby is observed in India. The baby’s birth size is predicted by the mother’s size before pregnancy. Despite this, birth weight has been found to be a poor indicator of adiposity in the foetus. In Caucasian populations, birth weight is related to lean mass rather than to fat mass; whereas, in India, babies have more fat mass as compared to Europoid babies at every ponderal index. Babies with both low- and high-birth weights have a high risk of obesity in later life in India [47].
Maternal and paternal heights are independent predictors of childhood obesity. The highest adiposity is seen in children who exceed mid-parental height. Parental height may serve as a composite indicator of genetic factors, nutrition and growth during childhood [47, 48]. Many studies in India have shown that the mother’s BMI correlates with the child’s weight. This may be due to genetic factors and environmental factors such as shared diets and eating habits [31, 49]. Raskind et al. found that every overweight child had an overweight mother. The combination of overweight mother and child formed 11% of their study population which was one of the highest in Asian countries [50]. Rebecca Kuriyan studied the role of familial and sibling factors on abdominal adiposity in children in an urban location in South India. Multiple regression models showed that overweight status of father or mother was associated with the younger sibling having abdominal obesity (OR = 1.45 and 1.81, respectively). If both parents were overweight, the OR for the younger sibling having abdominal obesity was 1.63 (95% CI: 1.33–2.99). If the older sibling had abdominal obesity, then the OR for the younger sibling to have the same was 3.22 (95% CI: 2.30–4.50). When siblings were of the same sex, the odds were higher (OR 3.55, 95% CI 2.24–5.65) than if the siblings were of different sexes (OR 2.73, 95% CI: 1.67–4.46). The association was stronger among male sibling pairs (OR 4.18, 95% CI: 2.21–7.93) than female sibling pairs (OR 2.85, 95% CI 1.42–5.72). All the above findings were statistically significant (p < 0.01). These effects are probably due to behaviour modelling among siblings and this is strongest in same sex siblings. The younger child is likely to follow the elder sibling in a number of behavioural traits like academic engagement, smoking, alcohol use, substance abuse and sexual behaviour [48]. Not only are dietary habits of children modelled on those of their parents and peers, but they also pick up food preferences, intake and willingness to try new foods from them. The key to good dietary preferences is the availability and repeated exposure to a variety of healthy foods. Authoritative feeding refers to parents who determine what foods are offered and then allowing children to choose. This leads to a positive attitude to healthy eating. However, authoritarian restriction of ‘junk foods’ works in the opposite way. It increases the children’s desire for these foods and leads to weight gain. It is also known that families that eat together consume healthier foods. There is a greater tendency to consume fast foods in single parent families or where both parents work. Eating out regularly and ‘TV dinners’ are both associated with higher intake of dietary fats [51, 52].
Peer support at school, supervision of studies by parents, parental connect with children and bonding have all been studied. Pengpid and Peltzer founds that odds for overweight/obesity correlated with peer support at school (OR1.28, 95%CI 1.08–1.53, p < 0.01), parental support (OR 1.33, 95%CI 1.13–1.58, p < 0.001) and parental bonding (OR 1.31, 05%CI 1.12–1.54, p < 0.001) [11].
There are many commonalities in socio-economic factors associated with childhood obesity from studies across India. Urban background has the strongest association. Familial economic status, educational levels of parents and job profile of parents are other important factors. The type of school that children study in also is an important determinant. Strangely, data on religious denominations is conflicting.
Urbanisation is the strongest risk factor for obesity in India. Obesity is three times commoner in cities as compared to rural areas. Development of good roads and satellite television have blurred the divide between cities and villages. Youth migrating from villages to metros to study and work take back urban food habits and norms back to their villages. Thus, Indian villages are getting urbanised in their habits. This phenomenon is referred to as rubanisation or urbanisation in situ [47]. Bharathi et al. reported that the OR for obesity in school children from urban areas as compared to rural areas was 3.046 (95% CI: 1.662–5.582) [17]. Rapid urbanisation has led to ‘McDonaldisation’ of society in terms of an increase in the culture of eating out and eating fast foods. An important contributory factor to this change has been increasing financial independence of women, who are now spending less time in their kitchens. Such households often pack energy-dense convenient food in school tuck boxes and also offer the same as snacks between meals. This results in excess consumption of calories by the children and leads to fat gain.
Higher socio-economic status is another risk factor. The GDB Collaborator Group found prevalence of obesity to be higher in countries with higher socio-demographic index (SDI). A relative increase of 20% was found in the prevalence of obesity in children of both sexes between 1980 and 2015 in low SDI countries. The increase was greatest in countries with middle SDI [5]. An American study compared school children from two neighbouring communities, the first with a median household income of US$ 28610 and the second with US$ 46299. The prevalence of obesity was 22.2 and 12.6%, respectively (p = 0.01) [53]. Chhatwal et al. found a direct correlation between socio-economic status and overweight/obesity in children from three different schools in Ludhiana, Punjab. Prevalence of obesity was 15.5% in children from socio-economic class I (highest income group), 2.7% in children from class IV and 0% in children from class V (lowest income group.) [28]. Eagle et al. observed that as the average American household income decreased, frequency of consumption of fried food and TV or video time/week increased. Consumption of vegetables and moderate/vigorous physical exercise also proportionately decreased [54].
Kaur et al. reported three times higher number of overweight children (15.3%) and obese children (6.8%) in high-income schools as compared to children in lower-income schools [55]. Prevalence of overweight/obesity in children aged 14–17 years from urban Delhi was 29% in private schools and 11.3% in government-funded schools [15]. In Udupi, the percentage of children with BMI in overweight/obese range were 6.9%, 10.9% and 31.2% for government, aided and unaided/private schools, respectively (p < 0.001) [16]. Ramachandran et al. reported an overweight/obesity prevalence of 4.5% in low-income schools and 22% in better-off schools in Chennai [25]. Another interesting factor related to schools is the provision of free lunches or mid-day meals (in India). Govindan et al. reported that regular consumption of school lunches was associated with obesity in both boys and girls (boys OR 1.29, 95% CI 1.01–1.64, p = 0.04, and girls OR 1.27, 95%CI 1.00–1.62, p = 0.05) [39].
The effect of religion on childhood obesity is varied. In Udupi, the odds of overweight/obesity in children from Muslim or Christian homes was significantly higher (for Muslims the AOR was 2.26, and for Christians it was 1.60) in comparison to children from Hindu homes [16]. The authors attributed this to a focus on vegetables in the Hindu diet and a lack of meat [16]. In Wardha, however, the OR for obesity was 1.730 (p = 0.036) for Hindu children when compared to children from other communities [17]. Here, it probably was influenced by greater affluence of Hindus in comparison to Muslims and Christians.
Structural elements like road, transportation, structure of buildings, playgrounds, parks and public spaces influence obesity in children. Research conducted over the past decades provides increasing evidence that there is a direct correlation between easy access to supermarkets laden with cheap and readily available HFSS food and sweetened carbonated drinks and obesity in children. Increased concretisation and loss of public spaces and parks in cities have led to decrease opportunities for sports and a more sedentary lifestyle. Many poorer neighbourhoods are considered unsafe for children because of drug pedlars and predatory adults. Parents prefer to keep their children indoors. Even when they have to go out or attend school, the parents drop them by car. Walking or cycling to school often considered a healthy activity is thus lost [23].
Children are bombarded by commercials of confectionary, chocolates, sweetened cereals and fizzy drinks on TV, billboards and magazines. Celebrity endorsements are a big influence on children. Nothing can be more telling than endorsement of a fizzy drink by a cricketing or football legend. Most cultures also use sweets and food as inducements for good behaviour or rewards. This further reinforces the habit of HFSS food intake.
Some common food myths related to children are shown in Table 1.
Myths related to obesity in school children | Reality |
---|---|
Fat children are healthy, as they are not undernourished | Fat children are not healthy inside. About 28% of fat children have syndrome X. They have a risk for chronic lifestyle diseases |
With age, children will gain height and loose fat | Majority of obese children become obese adults |
So what, if a child is obese! Obesity is a problem of adults and not of children | Fat children are at risk of developing early diabetes. Girls may develop polycystic ovarian syndrome |
Heart disease starts at old age | Hardening and blockage of the arteries starts at 11 years in boys and 15 years in girls |
Children do not develop high blood pressure or high cholesterol | Many children will have high blood pressure and low HDL-cholesterol |
Children should eat, drink and be merry. Childhood will not return | Children should enjoy being active as such energy will not come again later |
Children by nature are physically active | Time on TV, Internet and studies leaves little time for play. Many do not participate in sports activity in mandatory sports periods in schools. |
Observing a child to be fat is considered inauspicious | Obesity in children should be viewed with concern |
Some common myths in India society related to obesity in school children.
At least 30% of obesity begins in childhood and 50–80% obese children become obese adults [17]. Obesity is linked to greater and earlier mortality. The GDB collaborator Group found that the lowest overall risk of death was in the BMI range of 20–25 kg/m2 [5]. As in adult metabolic syndrome, hyperinsulinemia is a key to most of the complication of childhood obesity also. Some of the consequences of childhood obesity are enumerated in Table 2.
Physical | Psychological | Social |
---|---|---|
Respiratory and sleep problems Insulin resistance High blood pressure Dyslipidemia Musculoskeletal problems Gall stones Fatty liver | Low self-esteem, increased depressive symptoms and unhealthy dietary practices | Low participation in social activities Lack of social support due to less interaction with peers |
Hazards of obesity in school children.
There is an early leaning towards adult South-Asian phenotype in children, probably starting in neonatal period. Hyperinsulinemia and its attendant metabolic perturbations are more common in Asian neonates than in Caucasian ones [56]. Kuriyan and colleagues studied the waist circumference of Indian urban middle-class children between the ages of 6–16 years and found that their waist circumference was more than that of age- and sex-matched British children [57]. About one-third of the urban-Asian children have insulin resistance. The odds for hyperinsulinemia in one study were OR 4.7 (95% CI 2.4–9.4) in overweight children, OR 6.4 (95% CI 3.2–12.9) with high percentage body fat, OR 3.7 (95% CI 1.9–7.3) with high waist circumference, OR 6.8 (95% CI 3.3–13.9) with high waist hip ratio and OR 4.5 (95% CI 1.8–11.3) for sum of four skin-fold thicknesses (Sigma 4SF). Multiple logistic regression analysis showed that percentage body fat and Sigma 4SF were independent predictors of hyperinsulinemia with ORs being 3.2 and 4.5, respectively [58]. This being so, the risk of chubby children becoming obese adults is real.
In parallel with increasing prevalence of childhood obesity, the prevalence of paediatric metabolic syndrome, hypertension and type 2 diabetes mellitus are also increasing. Insulin resistance has been clearly been implicated in pathogenesis of hypertension, coronary artery disease and polycystic ovarian syndrome [59]. A study from Shimla in Himachal Pradesh showed prevalence of metabolic syndrome in school children to be 3.3% with odds of having metabolic syndrome being significantly linked to male sex, higher family monthly income, sedentary lifestyle and snacking in the evening [60]. The prevalence of metabolic syndrome in a study by Singh et al. in Chandigarh was 4.2%, and they did not find any difference between the sexes [61].
The rise in prevalence of childhood obesity has mirrored the rise in prevalence of type 2 diabetes among children. For a long time, only type I diabetes was associated with childhood. The myth was shattered in 1979, when type 2 diabetes was described in children of Pima Indians. Type 2 diabetes accounts for 80% of childhood diabetes in Japan. The prevalence of type 2 diabetes in Japanese children rose from 0.2 to 7.3 per 100,000 children between 1976 and 1995 [62]. Ehtisham et al. observed that prevalence of type 2 diabetes in white UK children was significantly less than that in South-Asian children (0.10/100,000 vs. 1.42/100,000, p < 0.001). According to them, the relative risk for type 2 diabetes in an Asian child compared to a white child in UK was 13.7-fold. Family history of diabetes, prevalence of obesity in the family, female preponderance and pubertal onset were some of the other significant associations that they noted apart from the ethnic clustering [63]. Ripamonti et al. found the prevalence of impaired glucose tolerance (IGT) to be 11% among the 398 obese Italian children studied [64]. Wabitsch et al. studied 520 obese children in Germany, and noted the prevalence of IGT and type 2 DM to be 2.1 and 1.5%, respectively [65]. Vijayalakshmi Bhatia observed that type 2 DM accounted for 10% of diabetes detected in children between the ages of 10–18 [66]. A higher BMI, and increased truncal and abdominal fat were important determinants of hyperglycaemia and insulin resistance [67, 68]. The GDB Collaborators Group found diabetes to be the second commonest cause of BMI-related deaths and DALY. It accounted for 9.5% of all deaths at a BMI of ≥30 kg/m2 and 4.5% occurred at a BMI of <30 kg/m2 [5].
Nearly 17% of obese adolescent American youth have abnormal non-HDL-cholesterol. Class III obesity is associated with high total cholesterol (19%), low HDL-cholesterol (≤19%) and high triglycerides (29%) [69]. The commonly observed pattern of dyslipidaemia in obesity is one with increased triglycerides (TG), decreased HDL-cholesterol (HDL-C) and high normal or mildly raised LDL-cholesterol (LDL-C). The NHANES data indicate that in the US 42.9% of children with BMI >95th percentile have this pattern of dyslipidaemia [70]. Obesity is consistently associated with low HDL-cholesterol values [71]. In obese children and adolescents, there is a positive correlation between BMI and levels of VLDL and LDL-cholesterols [72]. The Princeton follow-up study conducted family lipid surveys between 1973 and 1978. Of all the children surveyed, 808 agreed to be a part of a CVD survey when contacted in 1998 and 19 live subjects reported CVD events. These events occurred at a mean age of 37.1+ 4.9 years. BMI and TG levels in childhood correlated significantly with occurrence of CVD events (p = 0.012 and 0.0001, respectively) [73].
Childhood obesity is associated with future development of hypertension. In fact, elevated BMI even in infancy is associated with high BP later [74, 75]. Risk of hypertension is two-fold with obesity and four-fold with severe obesity [76]. The prevalence of hypertension in children in the US varies from 3 to 5%, but it rises to about 25% in children with obesity [77]. Yadav et al. found the prevalence of pre-hypertension and hypertension to be 1.14 and 2.57%, respectively, among school children in the age group of 10–16 years in Kanpur, North India. Among overweight children 6.25% were pre-hypertensive and 12.5% were hypertensive and among obese children, the figures were 14.28% and 42.5%, respectively. The association in both cases was statistically significant [19]. Vedavathy and Sangamesh studied prevalence of hypertension in school children between the ages of 11–19 in Bangalore. Pre-hypertension and stage I hypertension were found in 3.6% of the students. The prevalence was significantly higher in children with BMI >23 kg/m2. Family history of hypertension and obesity were significantly associated with pre-hypertension and stage I hypertension in the children (p < 0.001) [78]. An epidemiological survey of school children in Delhi found the prevalence of hypertension (systolic, diastolic or both) to be 11.9% in boys and 11.4% in girls. There was a positive correlation between hypertension and BMI [79]. In another study from North India, Gupta et al. surveyed 3851 children between the ages of 5 and 15 and found that 292 were obese. The prevalence of hypertension was 0.34% among the obese children and 0.16% among the non-obese children [80]. In another study from Ludhiana, where 5000 children in the age group of 5–17 years were studied, the prevalence of hypertension in obese children was 3.5% and among normal ones 0.23% [81]. Hypertension in obese children results from an interplay of numerous factors which include, increased intravascular volume, increased cardiac output, increased sympathetic tone, increased steroid production, increased sodium intake and increased sodium retention and hyperinsulinemia. Among adolescents, hormonal changes and biological maturation are additional contributory factors [82, 83]. By the time hypertension is diagnosed in childhood, 20–40% have left ventricular hypertrophy. This correlates with high carotid intimal-media thickness (cIMT), which is a known predictor of heart-failure in childhood [77].
In relation to high BMI, cardiovascular disease (CVD) was the leading cause for death and disability-adjusted life-years (DALY). It accounted for 2.7 million deaths and 66.3 million DALY. Among the obese, 41% of deaths and 34% of DALY were due to CVD [5]. Current adolescent overweight prevalence is estimated to increase future adult obesity by 5–15% by 2035, and this will result in an additional 100,000 CVD cases [84]. Cardiovascular disease associated with obesity is usually secondary to hypertension (already discussed above) and atherosclerosis. Atherogenesis is mainly due to sub-intimal deposition of LDL-cholesterol particles. The combined atherogenicity of childhood obesity is an ideal scenario for this to occur. High circulating levels of small LDL-cholesterol particles and decreased clearance of the same by LDL receptors increases risk of their entrapment in the sub endothelial matrix. Further, low levels of HDL-cholesterol limit reversal of cholesterol transport. An objective measure of the damaging potential of atherogenicity of combined dyslipidaemia in childhood is the carotid intimal-media thickness (cIMT). The Young Finns study followed up children from childhood for 21 years. Children with combined dyslipidaemia had significant cIMT compared to normo-lipidaemic controls even after adjusting for other factors [85]. The Childhood Cardiovascular Cohort (i3C) was a 23.4 years follow-up of 2893 children aged 12–18 years across three continents. i3C data showed a strong correlation between childhood obesity, hypertension and dyslipidaemia with high cIMT in adulthood. Obesity increased the risk for high cIMT 3.7 (2.0–7.0)-fold and hypertension by 1.9 (1.3–2.9)-fold [86]. Another study showed that 90% of children with high cIMT also had left ventricular hypertrophy [87]. Obesity has been associated with a 50% increase in heart-failure incidence among young adults (18–34 years) from 1987 to 2006 in the US [88]. The frequency of stroke and renal failure are also higher in young adults with history of childhood obesity [89, 90]. In a recent study published in JAMA, positive associations were observed between consumption of artificially sweetened soft drinks and death due to circulatory diseases (>2 drinks/day vs. <1 glass per month; HR 1.52; 95%CI 1.30–1.78, p = 0.001) [91].
Sub-clinical vascular inflammation may also be a contributory factor to development of CVD. In Indian adolescents, raised C-reactive protein (CRP) levels are seen in 13% of all subjects, 22% of overweight and 25% of obese ones. CRP levels have a strong association with percentage body fat, WHR, waist circumference and triceps skin-fold thickness [92].
Non-alcoholic disease is a component of metabolic syndrome. It is being increasingly recognised since abdominal ultrasonography has become a common diagnostic tool. The overall prevalence of NAFLD in children is about 10%, which includes a prevalence of 17% in teenagers and 40–70% in obese children. Steatosis per se is benign and self-limiting but it can progress to non-alcoholic steatohepatitis (NASH) in 3–5% of patients [93]. In the US, about 12–24% of the children are obese and 10–25% of these have elevated serum transaminases. That means that 1–4% of children, in the US, are obese and have deranged transaminases and are at risk for NAFLD [94]. A more accurate estimation comes from an autopsy study done in San Diego. Steatosis was found in 9.6% of children between 2 and 19 years of age and in 38% of obese children autopsied between 1993 and 2003 [95]. Prevalence of NAFLD in obese children in China is estimated to be between 20 and 77% [96]. The latest theory on pathogenesis of NAFLD is a ‘multi-hit’ one where there is an interplay of numerous factors like hepatic fat accumulation, insulin resistance, oxidative stress due to genetic and epigenetic factors, unfavourable lifestyles, gut microbiota, gut-liver axis dysfunction, and trace element deficiency and fluctuations [97, 98]. The best predictors for NASH in obese individuals with no evidence of other liver disease are elevations of AST or ALT to >200 IU/L, or any elevation of AST (>46 IU/L) and ALT (>35 IU/L) for greater than 6 months. These criteria identified 100% cases of NASH in a small study [99]. If detected early, hepatic steatosis is reversible. Weight loss is the most effective treatment. A 10% reduction in weight can normalise AST, ALT values and decrease ultrasound evidence of fatty liver on 30 months follow-up [100]. Compliance to weight loss and lifestyle changes is poor, especially in children. A number of medical and surgical therapies are emerging. Medical approaches include micronutrient supplementation (Vit E, Vit D, PUFAs, choline), probiotics, anti-obesity medication, metformin, cysteamine, antioxidants, obeticholic acid, growth hormone, lipid-lowering agents and hormones like adiponectin, resistin and TNF alpha. Surgical approach is mainly bariatric surgery [93]. These therapeutic measures could serve as boosters for the weight loss and lifestyle programmes which are difficult to sustain on their own.
Adipocytes secrete hormones which have paracrine and exocrine actions. The common abnormalities noted include increased production of steroid hormones, decreased progesterone secretion in females and decreased testosterone secretion in males. There is also a strong association between obesity and occurrence of polycystic ovarian syndrome. A study from Bombay looked at the prevalence of PCOS among 600 girls in the age group of 15–19 years from under privileged backgrounds. The prevalence of PCOS by Rotterdam criteria was 22.5%. PCOS was more common in obese than non-obese girls (p = 0.002) [101]. In comparison to Caucasians, Asian girls develop PCOS at an earlier age, are more symptomatic and have more fasting hyperinsulinemia and lower insulin sensitivity [102].
The most serious orthopaedic disability associated with childhood obesity is slipped capital epiphysis of the femur. Blount disease is another disorder that has a strong association. About 50–80% of children with Blount disease are obese. Minor problems like flat feet, knock knees and frequent ankle sprains are also more common [83].
Obesity is described as ‘one of the most stigmatising and least socially acceptable conditions of childhood’. [103]. Not surprisingly, low self-esteem and poor body image adversely impacting scholastic performance are common in obese children. They are bullied and excluded from group activities, especially sports and games, because they are slower and less agile. They get marginalised and withdraw from society. This makes them more sedentary and also predisposes them to eating disorders which further worsen their obesity [104].
The plateauing of BMI of children and adolescents in high-income countries may be due specific initiatives by governments, community groups, schools and individuals and increased public awareness about the hazards of childhood obesity. Findings from the i3C study identified obesity, hypertension and dyslipidaemia as the three key modifiable factors in childhood that result in high cIMT in adulthood. All can be addressed effectively by lifestyle modification and medication. Obesity is easily apparent but difficult to treat on a sustained basis due to a variety of reasons. Hypertension and dyslipidaemia are more difficult to identify due to confusing cut-offs and multiple guidelines. Lifestyle modification is easy to suggest but difficult to implement. Care-givers and parents lack sufficient knowledge about dietary modifications and exercise programmes to advise children. Depression, low self-esteem, lack of peer and parental support and rebellious nature of adolescents make implementation of lifestyle changes difficult. Thus, a multi-modal approach to childhood obesity is required. Even modest loss of weight can lead to significant reduction in TG levels and increase in HDL-C levels. Even without weight loss, regular exercise training can have the same effect on serum lipids [105].
The WHO has included tackling childhood obesity as one of its priority areas. It has suggested a three-pronged strategy: reducing the risk of obesity by addressing critical elements in the life course, tackling obesogenic environment and norms and lastly treating obese children to improve their current and future health.
There is enough evidence to support the fact that undernutrition during pregnancy, excessive weight gain during pregnancy, hyperglycaemia during pregnancy and smoking and exposure to other toxins increase the risk of obesity in the child during infancy and childhood. Even obesity in fathers can increase risk of obesity in the child through epigenetic factors. Ensuring good health during pregnancy and a safe delivery are both important for the child’s health. The WHO guidelines include dietary advice to prospective parents before conception and during pregnancy, avoidance of smoking, alcohol and other toxins. Early detection of gestational diabetes and hypertension, monitoring and managing gestational weight gain are other important measures suggested. Ensuring that the baby is exclusively breast-fed during the first 6 months of life and that breast feeding is continued even after complementary feeding is started are important to prevent malnutrition and deposition of excess fat in the baby. The magnitude of the gap between policy and implementation can be gauged from the Indian NFHS 2015–2016 data which show that despite recommendations for exclusive breast feeding up to an age of 6 months, only 55% of Indian infants were actually exclusively breast-fed. Many children in this age group were given other foods like plain water (18%), other milk (11%) and complementary foods (10%). Breast feeding can be encouraged by educational programmes for pregnant women, legislation and regulations to provide feeding rooms and time for breast feeding in work places, and by giving new mothers maternity leave. Nations should implement the International Code of Marketing of Breast-milk Substitutes and other World Health Assembly resolutions to promote breast feeding. During infancy and childhood, parents and care-givers should be given guidance and support to encourage consumption of a variety of healthy foods, avoidance of sugar-sweetened milks and juices and energy-dense nutrient-poor foods. Enforcing regulations on marketing of complementary foods and beverages and subsidising healthy foods are other measures [5, 12].
Further, there should be government regulations on the types of foods and beverages that can be served in school meals. Provision of safe potable drinking water in schools is another basic requirement. Teaching children and parents about healthy eating and having an active lifestyle should be an integral part of school curriculum at all stages. Cookery class in schools is another way of teaching both children and parents about healthy food options. Making time in school schedules for play-time, encouraging sports by providing space and facilities both at schools and in communities will enable children to be physically active. A mandatory physical education programme is another good option. The government’s role also includes enforcing ban of sale of HFSS foods and sweetened drinks in schools and around school premises.
Regular health check-ups and growth monitoring should also be an integral part of school life. Children who are overweight or obese should have easy access to treatment including psychotherapy, medications for hypertension, diabetes and dyslipidaemia and even bariatric surgery in extreme cases. Treatment of children should include parents or care-givers. This will provide the much needed emotional and psychological support these children will require to lose weight and change their lifestyles. Multi-specialty teams are required for a successful child-health programme. Successful programmes to tackle childhood obesity usually involve parents, teachers, community members, non-governmental organisations and private players. Some of the more successful international programmes are listed below:
Focus on school health education and changing lifestyle:
Project Healthy Schools: This is a project set up by University of Michigan in collaboration with middle schools, community organisations and donors. It aims to educate and encourage children to eat healthy and lead healthy lives. The programme comprises of 10 health education activity modules that focus on eating more fruits and vegetables, consuming less sweetened drinks and sugary foods, eating slowly and eating less fatty food, being more active every day and spending less time in front of the screen [106].
Promoting better dietary choices:
Pick a tick initiative: This was started in 1989 by the Australian National Heart Foundation. Healthy food packets could be distinguished from others by presence of a symbol along with the nutrition panel. Apart from helping people select healthy foods, the programme also championed vigorously against excessive salt intake [107].
Ensemble-prévenons-l’obésité-des-enfants (EPODE): This literally translates as: ‘Together Let’s Prevent Childhood Obesity’. This was a community initiative in which intervention were done in 10 French towns in France for children aged 5–12 who were overweight or at risk of weight gain. The approach was ‘positive, concrete and stepwise’ learning process with no stigmatisation of any culture, food habits, overweight and obesity. It targeted sales of healthy foods in schools, advertisements with respect to food and drinks on TV, internet and schools, mandatory nutritional information on nutrition label, subsidy on healthy foods through agricultural reforms and training for health professionals so that they were able to recognise and diagnose obesity risks in infancy, childhood and adolescence [108].
Healthy weight, Healthy lives: An initiative in England to tackle childhood obesity and hence later reduce obesity in adults. It was launched by the government in 2008. The various initiatives in this programme were promoting healthy growth and development of children, promoting healthier food choices, encouraging a more active lifestyle, incentivising good health and offering personalised help and support [109].
Promoting a more active lifestyle:
US White House Task Force on childhood obesity: This task force gave support to parents, adherence to limits on screen time and quality child care settings with nutritious food and ample opportunity for young children to be physically active. It also emphasised labels on food so that parents can make healthy food choices, improved school environment and lowered price of healthy foods. It improved access to safe parks, playgrounds and indoor and outdoor recreational facilities for children.
Tri-Policy initiative: This was done in Canada by creating a supportive environment to increase physical activity in children, early action to detect risk of overweight and obesity and promote availability and accessibility of nutritious foods and decrease the marketing of foods and beverages high in fat, sugar and/or sodium to children.
Government policy initiatives
New South Wales initiative in Australia: It focused on restoring the energy balance for the population, with a specific focus on children, young people, and their families by reducing the factors that give rise to an ‘obesogenic’ environment. It emphasised coordination between governments initiatives to tackle obesity along with industry and non-profit organisations.
Regulations regarding food advertisements: Brazil prohibits advertisements which are intended to influence children or adolescents to consume HFSS foods. Ireland has strictly banned using celebrities, icons and personalities to promote food products which target children. Norway prevents food advertisements on channels for children under 18 and South TV permits advertising for specific food categories only before, during and after programmes shown between 5 and 7 pm.
Food Safety and Standards Authority of India (FSSAI) proposed a ban on sale of HFSS foods in school canteens in 2016. It also suggested categorisation of food items as ‘green’ or healthy foods constituting 80% of the food items, ‘red’ or common HFSS foods that should not be made available in schools; and ‘yellow’ category foods that should be eaten sparingly and could be made available in small portions and less frequently. In response to this, Maharashtra state government issued a notification instructing schools to stop serving HFSS food in their canteens. However, the same has not been implemented in other states. The Central Board of Secondary Education (CBSE) has also issued an advisory to all its affiliated schools to ensure that no HFSS food items are available in school canteens and within 20 m of their premises.
Ministry of Health and Family Welfare launched the School Health Programme in 2008 under the National Rural Health Mission (NRHM). The programme also aims to address physical and mental health needs of the children through nutritional interventions, yoga and counselling.
Food Safety and Standards Act, 2006 has provisions to prohibit advertisements that are misleading. These are monitored by the Advertisement Standards Council of India (ASCI). However, the advisories on misleading advertisements are not being strictly implemented. Kaushal et al. reported that the prevalence of misleading advertisements is about 60% [110]. A majority (90%) of these were for HFSS foods. The common methods of non-compliance included promotion of a food item with free gifts (57%), using celebrity endorsement on the food packaging (19%), making false claims (14%) and appealing with cartoons (10%). Apart from restrictions on food advertisements, we also need to strengthen nutrition labelling laws, and educate both parents and children about interpreting nutrient labelling. In India, food packages already have a labelling for vegetarian and non-vegetarian products. HFSS could also be labelled using colour codes as suggested above.
Family and parental guidance play an important role in preventing children from becoming obese. Family involvement can be pivotal in increasing physical activity, healthy eating patterns and decreasing sedentary time. Educating families and stakeholders about healthy eating pattern will help in cutting down on junk food in home and school, and increase healthy eating, thereby decreasing the risk of developing obesity.
Community level programs like CHETNA (Childrens’ Health Education Through Nutrition and Health Awareness) and MARG (Medical education for children/adolescents for realistic prevention of obesity and diabetes and for healthy living) are a beginning. These programmes focus on building nutritional awareness and promoting increased physical activity, through pamphlets, lectures skits and group activities targeting both parents and children. They now cover 500,000 children in 15 towns/cities in North India [15]. Since children spend a significant amount of their day in schools, activities involving their peers in schools are smart ways of getting them interested. The government has recently introduced fitness test for all school children and compulsory physical activity during school hours. A ‘Fit India’ campaign has been announced by the prime-minister and a number of sports and film celebrities are part of the campaign. But much more needs to be done.
Obesity in Indian school children is a cause of concern. To tackle this menace, a sustained multi-pronged approach is required, where all stake holders join hands. The strategy starts at the pre-conception time, continues during pregnancy, infancy and childhood. Apart from promoting healthy eating and an active lifestyle, it also includes active case finding among overweight and obese children and aggressive management of diabetes, hypertension and dyslipidaemia apart from weight loss. Legislations targeting infant feeds, HFSS, artificially sweetened soft drinks, nutrient labelling and food advertisements are important. Government have to be serious about implementing these legislations and they should also formulate imaginative programmes to target childhood nutrition and lifestyle.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"983",title:"Cardiac Electrophysiology",slug:"cardiac-electrophysiology",parent:{title:"Cardiology and Cardiovascular Medicine",slug:"cardiology-and-cardiovascular-medicine"},numberOfBooks:17,numberOfAuthorsAndEditors:499,numberOfWosCitations:214,numberOfCrossrefCitations:121,numberOfDimensionsCitations:310,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"cardiac-electrophysiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8091",title:"Autonomic Nervous System Monitoring",subtitle:"Heart Rate Variability",isOpenForSubmission:!1,hash:"98067dd53efd76b17cf31d1664f88982",slug:"autonomic-nervous-system-monitoring-heart-rate-variability",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/8091.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7907",title:"Practical Applications of Electrocardiogram",subtitle:null,isOpenForSubmission:!1,hash:"e6ccea0e539a40209a7d3c8507108832",slug:"practical-applications-of-electrocardiogram",bookSignature:"Umashankar Lakshmanadoss",coverURL:"https://cdn.intechopen.com/books/images_new/7907.jpg",editedByType:"Edited by",editors:[{id:"13913",title:"Dr.",name:"Umashankar",middleName:null,surname:"Lakshmanadoss",slug:"umashankar-lakshmanadoss",fullName:"Umashankar Lakshmanadoss"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7049",title:"Cardiac Pacing and Monitoring",subtitle:"New Methods, Modern Devices",isOpenForSubmission:!1,hash:"52722bbabb55cb46dc08d238880f4366",slug:"cardiac-pacing-and-monitoring-new-methods-modern-devices",bookSignature:"Mart Min",coverURL:"https://cdn.intechopen.com/books/images_new/7049.jpg",editedByType:"Edited by",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7445",title:"Cardiotoxicity",subtitle:null,isOpenForSubmission:!1,hash:"90d1dca21a942e95b62075a222238625",slug:"cardiotoxicity",bookSignature:"Wenyong Tan",coverURL:"https://cdn.intechopen.com/books/images_new/7445.jpg",editedByType:"Edited by",editors:[{id:"192949",title:"Dr.",name:"Wenyong",middleName:null,surname:"Tan",slug:"wenyong-tan",fullName:"Wenyong Tan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5764",title:"Interpreting Cardiac Electrograms",subtitle:"From Skin to Endocardium",isOpenForSubmission:!1,hash:"643f7c4a2e6b3307a7bcfed8f752836f",slug:"interpreting-cardiac-electrograms-from-skin-to-endocardium",bookSignature:"Kevin A. Michael",coverURL:"https://cdn.intechopen.com/books/images_new/5764.jpg",editedByType:"Edited by",editors:[{id:"61996",title:"Dr.",name:"Kevin",middleName:null,surname:"Michael",slug:"kevin-michael",fullName:"Kevin Michael"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5239",title:"Cholesterol Lowering Therapies and Drugs",subtitle:null,isOpenForSubmission:!1,hash:"c0db17451da651dc6ff8e6c13e9e177a",slug:"cholesterol-lowering-therapies-and-drugs",bookSignature:"Chunfa Huang and Carl Freter",coverURL:"https://cdn.intechopen.com/books/images_new/5239.jpg",editedByType:"Edited by",editors:[{id:"178352",title:"Dr.",name:"Chunfa",middleName:null,surname:"Huang",slug:"chunfa-huang",fullName:"Chunfa Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2225",title:"Current Issues and Recent Advances in Pacemaker Therapy",subtitle:null,isOpenForSubmission:!1,hash:"5ed7d1556bff8c564197efc99c15c7f7",slug:"current-issues-and-recent-advances-in-pacemaker-therapy",bookSignature:"Attila Roka",coverURL:"https://cdn.intechopen.com/books/images_new/2225.jpg",editedByType:"Edited by",editors:[{id:"63271",title:"Dr.",name:"Attila",middleName:null,surname:"Roka",slug:"attila-roka",fullName:"Attila Roka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1734",title:"Cardiotoxicity of Oncologic Treatments",subtitle:null,isOpenForSubmission:!1,hash:"230472e71b2dd84c0a88f75165b37604",slug:"cardiotoxicity-of-oncologic-treatments",bookSignature:"Manuela Fiuza",coverURL:"https://cdn.intechopen.com/books/images_new/1734.jpg",editedByType:"Edited by",editors:[{id:"98648",title:"Prof.",name:"Manuela",middleName:null,surname:"Fiuza",slug:"manuela-fiuza",fullName:"Manuela Fiuza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"358",title:"Advances in Electrocardiograms",subtitle:"Methods and Analysis",isOpenForSubmission:!1,hash:"a61fed85204779463e6e483483601fdf",slug:"advances-in-electrocardiograms-methods-and-analysis",bookSignature:"Richard M. Millis",coverURL:"https://cdn.intechopen.com/books/images_new/358.jpg",editedByType:"Edited by",editors:[{id:"45295",title:"PhD.",name:"Richard",middleName:"M",surname:"Millis",slug:"richard-millis",fullName:"Richard Millis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1291",title:"Advances in Electrocardiograms",subtitle:"Clinical Applications",isOpenForSubmission:!1,hash:"956bc1bdc0de1de4908abbee641a17aa",slug:"advances-in-electrocardiograms-clinical-applications",bookSignature:"Richard M. Millis",coverURL:"https://cdn.intechopen.com/books/images_new/1291.jpg",editedByType:"Edited by",editors:[{id:"45295",title:"PhD.",name:"Richard",middleName:"M",surname:"Millis",slug:"richard-millis",fullName:"Richard Millis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1302",title:"Cardiac Defibrillation",subtitle:"Prediction, Prevention and Management of Cardiovascular Arrhythmic Events",isOpenForSubmission:!1,hash:"d33e858b527f7b45ebb96885954ba3a8",slug:"cardiac-defibrillation-prediction-prevention-and-management-of-cardiovascular-arrhythmic-events",bookSignature:"Joyelle J. Harris",coverURL:"https://cdn.intechopen.com/books/images_new/1302.jpg",editedByType:"Edited by",editors:[{id:"68764",title:"Dr.",name:"Joyelle",middleName:null,surname:"Harris",slug:"joyelle-harris",fullName:"Joyelle Harris"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"331",title:"Cardiac Defibrillation",subtitle:"Mechanisms, Challenges and Implications",isOpenForSubmission:!1,hash:"90fa2e9b5ad435b6518f47da7ade1efd",slug:"cardiac-defibrillation-mechanisms-challenges-and-implications",bookSignature:"Natalia Trayanova",coverURL:"https://cdn.intechopen.com/books/images_new/331.jpg",editedByType:"Edited by",editors:[{id:"38381",title:"Prof.",name:"Natalia",middleName:null,surname:"Trayanova",slug:"natalia-trayanova",fullName:"Natalia Trayanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:17,mostCitedChapters:[{id:"13779",doi:"10.5772/13329",title:"Remote Monitoring in Patients with Pacemakers and Implantable Cardioverter-Defibrillators: New Perspectives for Complex Therapeutic Management",slug:"remote-monitoring-in-patients-with-pacemakers-and-implantable-cardioverter-defibrillators-new-perspe",totalDownloads:6068,totalCrossrefCites:5,totalDimensionsCites:22,book:{slug:"modern-pacemakers-present-and-future",title:"Modern Pacemakers",fullTitle:"Modern Pacemakers - Present and Future"},signatures:"Axel Müller, Thomas M. Helms, Hans-Jürgen Wildau, Jörg Otto Schwab and Christian Zugck",authors:[{id:"14408",title:"Prof.",name:"Axel",middleName:null,surname:"Müller",slug:"axel-muller",fullName:"Axel Müller"},{id:"15385",title:"Prof.",name:"Thomas M.",middleName:null,surname:"Helms",slug:"thomas-m.-helms",fullName:"Thomas M. Helms"},{id:"15386",title:"Prof.",name:"Hans-Jürgen",middleName:null,surname:"Wildau",slug:"hans-jurgen-wildau",fullName:"Hans-Jürgen Wildau"},{id:"15387",title:"Prof.",name:"Jörg Otto",middleName:null,surname:"Schwab",slug:"jorg-otto-schwab",fullName:"Jörg Otto Schwab"},{id:"15388",title:"Prof.",name:"Christian",middleName:null,surname:"Zugck",slug:"christian-zugck",fullName:"Christian Zugck"}]},{id:"27007",doi:"10.5772/22937",title:"Non Contact Heart Monitoring",slug:"non-contact-heart-monitoring",totalDownloads:15352,totalCrossrefCites:14,totalDimensionsCites:20,book:{slug:"advances-in-electrocardiograms-methods-and-analysis",title:"Advances in Electrocardiograms",fullTitle:"Advances in Electrocardiograms - Methods and Analysis"},signatures:"Lorenzo Scalise",authors:[{id:"49866",title:"Ph.D.",name:"Lorenzo",middleName:null,surname:"Scalise",slug:"lorenzo-scalise",fullName:"Lorenzo Scalise"}]},{id:"13786",doi:"10.5772/12965",title:"Common Pacemaker Problems: Lead and Pocket Complications",slug:"common-pacemaker-problems-lead-and-pocket-complications",totalDownloads:105364,totalCrossrefCites:1,totalDimensionsCites:18,book:{slug:"modern-pacemakers-present-and-future",title:"Modern Pacemakers",fullTitle:"Modern Pacemakers - Present and Future"},signatures:"Enes Elvin Gul and Mehmet Kayrak",authors:[{id:"13568",title:"Dr.",name:"Enes Elvin",middleName:null,surname:"Gul",slug:"enes-elvin-gul",fullName:"Enes Elvin Gul"},{id:"15681",title:"Dr.",name:"Mehmet",middleName:null,surname:"Kayrak",slug:"mehmet-kayrak",fullName:"Mehmet Kayrak"}]}],mostDownloadedChaptersLast30Days:[{id:"13780",title:"Remote Monitoring of Implantable Pacemaker, Cardioverter Defibrillator, and Cardiac Resynchronizer",slug:"remote-monitoring-of-implantable-pacemaker-cardioverter-defibrillator-and-cardiac-resynchronizer",totalDownloads:6424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"modern-pacemakers-present-and-future",title:"Modern Pacemakers",fullTitle:"Modern Pacemakers - Present and Future"},signatures:"Milton E. Guevara-Valdivia and Pedro Iturralde Torres",authors:[{id:"13655",title:"Prof.",name:"Milton E.",middleName:null,surname:"Guevara-Valdivia",slug:"milton-e.-guevara-valdivia",fullName:"Milton E. Guevara-Valdivia"},{id:"23795",title:"Dr.",name:"Pedro",middleName:null,surname:"Iturralde Torres",slug:"pedro-iturralde-torres",fullName:"Pedro Iturralde Torres"}]},{id:"38324",title:"Techniques of Permanent Pacemaker Implantation",slug:"techniques-of-permanent-pacemaker-implantation",totalDownloads:7923,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"current-issues-and-recent-advances-in-pacemaker-therapy",title:"Current Issues and Recent Advances in Pacemaker Therapy",fullTitle:"Current Issues and Recent Advances in Pacemaker Therapy"},signatures:"Majid Haghjoo",authors:[{id:"14665",title:"Dr.",name:"Majid",middleName:null,surname:"Haghjoo",slug:"majid-haghjoo",fullName:"Majid Haghjoo"}]},{id:"62447",title:"Drug Induced Cardiotoxicity: Mechanism, Prevention and Management",slug:"drug-induced-cardiotoxicity-mechanism-prevention-and-management",totalDownloads:1240,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"cardiotoxicity",title:"Cardiotoxicity",fullTitle:"Cardiotoxicity"},signatures:"Mina T. Kelleni and Mahrous Abdelbasset",authors:[{id:"247606",title:"Dr.",name:"Mina",middleName:"T.",surname:"Kelleni",slug:"mina-kelleni",fullName:"Mina Kelleni"},{id:"258449",title:"Dr.",name:"Mahrous",middleName:null,surname:"Abdelbasset",slug:"mahrous-abdelbasset",fullName:"Mahrous Abdelbasset"}]},{id:"63304",title:"Doxorubicin-Induced Cardiotoxicity: From Mechanisms to Development of Efficient Therapy",slug:"doxorubicin-induced-cardiotoxicity-from-mechanisms-to-development-of-efficient-therapy",totalDownloads:1541,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"cardiotoxicity",title:"Cardiotoxicity",fullTitle:"Cardiotoxicity"},signatures:"Danúbia Silva dos Santos and Regina Coeli dos Santos Goldenberg",authors:[{id:"26576",title:"Prof.",name:"Regina C.S.",middleName:null,surname:"Goldenberg",slug:"regina-c.s.-goldenberg",fullName:"Regina C.S. Goldenberg"},{id:"255926",title:"Dr.",name:"Danúbia",middleName:null,surname:"Silva Dos Santos",slug:"danubia-silva-dos-santos",fullName:"Danúbia Silva Dos Santos"}]},{id:"38317",title:"Complications of Pacemaker Implantation",slug:"complications_of_pacemaker_implantation",totalDownloads:16904,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"current-issues-and-recent-advances-in-pacemaker-therapy",title:"Current Issues and Recent Advances in Pacemaker Therapy",fullTitle:"Current Issues and Recent Advances in Pacemaker Therapy"},signatures:"Jeffrey L. Williams and Robert T. Stevenson",authors:[{id:"147723",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Williams",slug:"jeffrey-williams",fullName:"Jeffrey Williams"}]},{id:"38326",title:"Phrenic Nerve Pacing: Current Concepts",slug:"phrenic-nerve-pacing-current-concepts",totalDownloads:5471,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"current-issues-and-recent-advances-in-pacemaker-therapy",title:"Current Issues and Recent Advances in Pacemaker Therapy",fullTitle:"Current Issues and Recent Advances in Pacemaker Therapy"},signatures:"Jorge F. Velazco, Shekhar Ghamande and Salim Surani",authors:[{id:"15654",title:"Dr.",name:"Salim",middleName:null,surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}]},{id:"13778",title:"Telemonitoring of the Pacemakers",slug:"telemonitoring-of-the-pacemakers",totalDownloads:11525,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"modern-pacemakers-present-and-future",title:"Modern Pacemakers",fullTitle:"Modern Pacemakers - Present and Future"},signatures:"Umashankar Lakshmanadoss, Abrar Shah and James P Daubert",authors:[{id:"13913",title:"Dr.",name:"Umashankar",middleName:null,surname:"Lakshmanadoss",slug:"umashankar-lakshmanadoss",fullName:"Umashankar Lakshmanadoss"},{id:"14368",title:"Dr.",name:"James",middleName:null,surname:"Daubert",slug:"james-daubert",fullName:"James Daubert"},{id:"27779",title:"Dr.",name:"Abrar",middleName:null,surname:"Shah",slug:"abrar-shah",fullName:"Abrar Shah"}]},{id:"65740",title:"Leadless Pacemakers",slug:"leadless-pacemakers",totalDownloads:607,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"cardiac-pacing-and-monitoring-new-methods-modern-devices",title:"Cardiac Pacing and Monitoring",fullTitle:"Cardiac Pacing and Monitoring - New Methods, Modern Devices"},signatures:"Peter Magnusson, Joseph V. Pergolizzi Jr and Jo Ann LeQuang",authors:null},{id:"56319",title:"Pacemaker and ICD Troubleshooting",slug:"pacemaker-and-icd-troubleshooting",totalDownloads:1778,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"interpreting-cardiac-electrograms-from-skin-to-endocardium",title:"Interpreting Cardiac Electrograms",fullTitle:"Interpreting Cardiac Electrograms - From Skin to Endocardium"},signatures:"Sorin Lazar, Henry Huang and Erik Wissner",authors:[{id:"198322",title:"M.D.",name:"Erik",middleName:null,surname:"Wissner",slug:"erik-wissner",fullName:"Erik Wissner"},{id:"204910",title:"Dr.",name:"Sorin",middleName:null,surname:"Lazar",slug:"sorin-lazar",fullName:"Sorin Lazar"}]},{id:"13787",title:"Conduction Disturbances after the Superior Septal Approach for Mitral Valve Repair",slug:"conduction-disturbances-after-the-superior-septal-approach-for-mitral-valve-repair",totalDownloads:2209,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"modern-pacemakers-present-and-future",title:"Modern Pacemakers",fullTitle:"Modern Pacemakers - Present and Future"},signatures:"Yoshio Misawa, Shin-ichi Ohki, Yuichiro Kaminishi, Yasuhito Sakano, Kei Aizawa, Tsutomu Saito, Hiroaki Konishi and Arata Muraoka",authors:[{id:"15468",title:"Prof.",name:"Yoshio",middleName:null,surname:"Misawa",slug:"yoshio-misawa",fullName:"Yoshio Misawa"}]}],onlineFirstChaptersFilter:{topicSlug:"cardiac-electrophysiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/132430/jan-seeburger",hash:"",query:{},params:{id:"132430",slug:"jan-seeburger"},fullPath:"/profiles/132430/jan-seeburger",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()