\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8778",leadTitle:null,fullTitle:"Self-Assembly of Nanostructures and Patchy Nanoparticles",title:"Self-Assembly of Nanostructures and Patchy Nanoparticles",subtitle:null,reviewType:"peer-reviewed",abstract:"Top-down approaches are currently the main contributor of fabricating microelectronic devices. However, the prohibitive cost of numerous technological steps in these approaches is the main obstacle to further progress. Furthermore, a large number of applications necessitate fabrication of complex and ultra-small devices that cannot be made using these approaches. New approaches based on natural self-assembly of matter need to be developed to allow for fabrication of micro and nanoelectronic devices. Self-assembly of nanostructures is a dynamic field, which explores physics of these structures and new ways to fabricate them. However, the major problem is how to control the properties of the nanostructures resulting from low dimensionality. This book presents recent advances made to address this problem, and fabricate nanostructures using self-assembly.",isbn:"978-1-78984-742-0",printIsbn:"978-1-78923-960-7",pdfIsbn:"978-1-78984-743-7",doi:"10.5772/intechopen.80196",price:100,priceEur:109,priceUsd:129,slug:"self-assembly-of-nanostructures-and-patchy-nanoparticles",numberOfPages:100,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"8a6a5ad75592f8e3921048e4f300caa5",bookSignature:"Shafigh Mehraeen",publishedDate:"November 4th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8778.jpg",numberOfDownloads:2887,numberOfWosCitations:2,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:4,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 28th 2019",dateEndSecondStepPublish:"December 30th 2019",dateEndThirdStepPublish:"February 28th 2020",dateEndFourthStepPublish:"May 18th 2020",dateEndFifthStepPublish:"July 17th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"280108",title:"Associate Prof.",name:"Shafigh",middleName:null,surname:"Mehraeen",slug:"shafigh-mehraeen",fullName:"Shafigh Mehraeen",profilePictureURL:"https://mts.intechopen.com/storage/users/280108/images/system/280108.jfif",biography:"Shafigh Mehraeen is an Assistant Professor at the University of Illinois at Chicago. He received his M.Sc. and Ph.D. in Mechanical Engineering, both from Stanford University under the supervision of Andrew Spakowitz. For his Ph.D., he studied the impact of molecular elasticity on the behavior of semi-flexible polymers and protein self-assembly. As a postdoctoral scholar, he studied the impact of active layer morphology on bimolecular recombination losses in organic photovoltaics, and transition state theory under the supervision of Jean-Luc Bredas at Georgia Institute of Technology, and Jianshu Cao at MIT, respectively. He has published three books, more than 30 scientific papers, and served as a reviewer for major scientific journals. His current research focuses on applying molecular simulations, atomistic modeling, and density functional theory to address directed self-assembly of nanoparticles on templated surfaces, photochemistry of organic solar cells, and polymer and electrocatalyst design using machine learning and artificial intelligence.",institutionString:"University of Illinois at Chicago",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Illinois at Chicago",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"}],chapters:[{id:"73502",title:"Introductory Chapter: Self-Assembly of Nanostructures",doi:"10.5772/intechopen.94014",slug:"introductory-chapter-self-assembly-of-nanostructures",totalDownloads:402,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shafigh Mehraeen",downloadPdfUrl:"/chapter/pdf-download/73502",previewPdfUrl:"/chapter/pdf-preview/73502",authors:[{id:"280108",title:"Associate Prof.",name:"Shafigh",surname:"Mehraeen",slug:"shafigh-mehraeen",fullName:"Shafigh Mehraeen"}],corrections:null},{id:"69617",title:"Self-Assembly of Nanoparticles Decorated by Liquid Crystalline Groups: Computer Simulations",doi:"10.5772/intechopen.89682",slug:"self-assembly-of-nanoparticles-decorated-by-liquid-crystalline-groups-computer-simulations",totalDownloads:583,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We present the results of the computer simulations for the self-assembly of decorated nanoparticles. The models are rather generic and comprise a central core and a shell of ligands containing terminal liquid crystalline group, including the case of the azobenzene chromophores. The simulations are performed using the coarse-grained molecular dynamics with the effective soft-core interparticle interaction potentials obtained from the atomistic simulations. The discussion is centred around the set of the self-assembled morphologies in a melt of 100–200 of such decorated nanoparticles obtained upon the change of the temperature, surface density of ligands, the type of the terminal group attachment, as well as the prediction of the possibility of photo-assisted self-assembly of the nanoparticles decorated by the azobenzene chromophores.",signatures:"Jaroslav Ilnytskyi",downloadPdfUrl:"/chapter/pdf-download/69617",previewPdfUrl:"/chapter/pdf-preview/69617",authors:[{id:"310418",title:"Dr.",name:"Jaroslav",surname:"Ilnytskyi",slug:"jaroslav-ilnytskyi",fullName:"Jaroslav Ilnytskyi"}],corrections:null},{id:"72421",title:"Self-Assembly of GeMn Nanocolumns in GeMn Thin Films",doi:"10.5772/intechopen.92709",slug:"self-assembly-of-gemn-nanocolumns-in-gemn-thin-films",totalDownloads:652,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter presents the results of growing GeMn nanocolumns on Ge(001) substrates by means of molecular beam epitaxy (MBE). The samples have been prepared by co-depositing Ge and Mn at growth temperature of 130°C and Mn at concentration of ~6% to ensure the reproduction of GeMn nanocolumns. Based on the observation of changes in reflection high-energy electron diffraction (RHEED) patterns during nanocolumn growth, surface signals of GeMn nanocolumn formation have been identified. Structural analysis using transmission electron microscopy (TEM) show the self-assembled nanocolumns with core-shell structure extend through the whole thickness of the GeMn layer. Most of nanocolumns are oriented perpendicular to the interface along the growth direction. The nanocolumn size has been determined to be about 5–8 nm in diameter and a maximum height of 80 nm. A phenomenological model has been proposed to explain the driving force for self-assembly and growth mechanisms of GeMn nanocolumns. The in-plane or lateral Mn diffusion/segregation is driven by a low solubility of Mn in Ge while the driving force of Mn vertical segregation is induced by the surfactant effect along the [001] direction.",signatures:"Thi Giang Le",downloadPdfUrl:"/chapter/pdf-download/72421",previewPdfUrl:"/chapter/pdf-preview/72421",authors:[{id:"317675",title:"Ph.D.",name:"Thi Giang",surname:"Le",slug:"thi-giang-le",fullName:"Thi Giang Le"}],corrections:null},{id:"73046",title:"Patchy Nanoparticle Synthesis and Self-Assembly",doi:"10.5772/intechopen.93374",slug:"patchy-nanoparticle-synthesis-and-self-assembly",totalDownloads:642,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Biological building blocks (i.e., proteins) are encoded with the information of target structure into the chemical and morphological patches, guiding their assembly into the levels of functional structures that are crucial for living organisms. Learning from nature, researchers have been attracted to the artificial analogues, “patchy particles,” which have controlled geometries of patches that serve as directional bonding sites. However, unlike the abundant studies of micron-scale patchy particles, which demonstrated complex assembly structures and unique behaviors attributed to the patches, research on patchy nanoparticles (NPs) has remained challenging. In the present chapter, we discuss the recent understandings on patchy NP design and synthesis strategies, and physical principles of their assembly behaviors, which are the main factors to program patchy NP self-assembly into target structures that cannot be achieved by conventional non-patched NPs. We further summarize the self-assembly of patchy NPs under external fields, in simulation, and in kinetically controlled assembly pathways, to show the structural richness patchy NPs bring. The patchy NP assembly is novel by their structures as well as the multicomponent features, and thus exhibits unique optical, chemical, and mechanical properties, potentially aiding applications in catalysts, photonic crystals, and metamaterials as well as fundamental nanoscience.",signatures:"Ahyoung Kim, Lehan Yao, Falon Kalutantirige, Shan Zhou and Qian Chen",downloadPdfUrl:"/chapter/pdf-download/73046",previewPdfUrl:"/chapter/pdf-preview/73046",authors:[{id:"321288",title:"Dr.",name:"Qian",surname:"Chen",slug:"qian-chen",fullName:"Qian Chen"},{id:"324422",title:"Ms.",name:"Ahyoung",surname:"Kim",slug:"ahyoung-kim",fullName:"Ahyoung Kim"},{id:"324423",title:"Mr.",name:"Lehan",surname:"Yao",slug:"lehan-yao",fullName:"Lehan Yao"},{id:"324425",title:"Ms.",name:"Falon",surname:"Kalutantirige",slug:"falon-kalutantirige",fullName:"Falon Kalutantirige"},{id:"324426",title:"Dr.",name:"Shan",surname:"Zhou",slug:"shan-zhou",fullName:"Shan Zhou"}],corrections:null},{id:"72551",title:"Self-Assembled Copper Polypyridyl Supramolecular Metallopolymer Achieving Enhanced Anticancer Efficacy",doi:"10.5772/intechopen.92708",slug:"self-assembled-copper-polypyridyl-supramolecular-metallopolymer-achieving-enhanced-anticancer-effica",totalDownloads:608,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Metallopolymers, a combination of organic polymers and metal center, contain metal atoms in repeating monomers can change its dynamic and thermodynamic properties through the directionality of coordination bonds and chemical tailoring of ligands. In the past decade, self-assembled functional supramolecular metallopolymers have aroused a surge of research interest, and have demonstrated application potential in cancer therapy. In this chapter, we have summarized the progress in the rational design of biological application of different metallopolymers. Especially, a copper polypyridyl complex was found be able to self-assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, thus effectively inhibit tumor growth in vivo without damage to the major organs. This study may provide a good example to use self-assembled metallopolymer to achieve enhanced anticancer efficacy.",signatures:"Zushuang Xiong, Lanhai Lai and Tianfeng Chen",downloadPdfUrl:"/chapter/pdf-download/72551",previewPdfUrl:"/chapter/pdf-preview/72551",authors:[{id:"317382",title:"Dr.",name:"Tianfeng",surname:"Chen",slug:"tianfeng-chen",fullName:"Tianfeng Chen"},{id:"317383",title:"MSc.",name:"Zusuang",surname:"Xiong",slug:"zusuang-xiong",fullName:"Zusuang Xiong"},{id:"321953",title:"Dr.",name:"Lanhai",surname:"Lai",slug:"lanhai-lai",fullName:"Lanhai Lai"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6408",title:"Novel Nanomaterials",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f3585d338d78e4d31c200d9991b03692",slug:"novel-nanomaterials-synthesis-and-applications",bookSignature:"George Z. Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/6408.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Prof.",name:"George",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6833",title:"Chemical Vapor Deposition for Nanotechnology",subtitle:null,isOpenForSubmission:!1,hash:"31d2b0b2a437691b6a657030687b0096",slug:"chemical-vapor-deposition-for-nanotechnology",bookSignature:"Pietro Mandracci",coverURL:"https://cdn.intechopen.com/books/images_new/6833.jpg",editedByType:"Edited by",editors:[{id:"80989",title:"Prof.",name:"Pietro",surname:"Mandracci",slug:"pietro-mandracci",fullName:"Pietro Mandracci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8385",title:"Nanocrystalline Materials",subtitle:null,isOpenForSubmission:!1,hash:"cf72d957868565da82cc4ad919e6c4d7",slug:"nanocrystalline-materials",bookSignature:"Behrooz Movahedi",coverURL:"https://cdn.intechopen.com/books/images_new/8385.jpg",editedByType:"Edited by",editors:[{id:"150371",title:"Prof.",name:"Behrooz",surname:"Movahedi",slug:"behrooz-movahedi",fullName:"Behrooz Movahedi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6218",title:"Carbon Nanotubes",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"9f38af20209e9d816b7d57ecbba386b9",slug:"carbon-nanotubes-recent-progress",bookSignature:"Mohammed Muzibur Rahman and Abdullah Mohamed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/6218.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6501",title:"Electrospinning Method Used to Create Functional Nanocomposites Films",subtitle:null,isOpenForSubmission:!1,hash:"c28620c5ccc64e4b32eb9758302a1679",slug:"electrospinning-method-used-to-create-functional-nanocomposites-films",bookSignature:"Tomasz Tański, Pawel Jarka and Wiktor Matysiak",coverURL:"https://cdn.intechopen.com/books/images_new/6501.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7684",title:"Multilayer Thin Films",subtitle:"Versatile Applications for Materials Engineering",isOpenForSubmission:!1,hash:"fd04577df0c895320c3f06d98308ea67",slug:"multilayer-thin-films-versatile-applications-for-materials-engineering",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/7684.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8446",title:"Zinc Oxide Based Nano Materials and Devices",subtitle:null,isOpenForSubmission:!1,hash:"7c1d14eb8eac769093f8d7a219a3884f",slug:"zinc-oxide-based-nano-materials-and-devices",bookSignature:"Ahmed M. Nahhas",coverURL:"https://cdn.intechopen.com/books/images_new/8446.jpg",editedByType:"Edited by",editors:[{id:"140058",title:"Prof.",name:"Ahmed",surname:"Nahhas",slug:"ahmed-nahhas",fullName:"Ahmed Nahhas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6960",title:"Flame Retardants",subtitle:null,isOpenForSubmission:!1,hash:"506ea55aeb09b1a47f9113cc66594291",slug:"flame-retardants",bookSignature:"Fahmina Zafar and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/6960.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7652",title:"Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"ad1e5c5f214960269e89371d1110cbc0",slug:"nanostructures",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/7652.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64730",slug:"erratum-spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",title:"Erratum - Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64730.pdf",downloadPdfUrl:"/chapter/pdf-download/64730",previewPdfUrl:"/chapter/pdf-preview/64730",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64730",risUrl:"/chapter/ris/64730",chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]}},chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]},book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11509",leadTitle:null,title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tWireless power transfer is the process of transmitting electrical energy using electromagnetic waves. With the advent of wireless power transfer, energy can therefore be collected without the physical need of connecting a device to a power source. This technology certainly provides great convenience to mankind, since the hassle of using wires to connect a load to the power grid can be saved. The advantage of wireless power transfer is particularly evident in desolated rural areas where electricity is a scarce luxury to the residents. In general, electrical energy can be transmitted wireless via near-field and far-field mechanisms. The near-field or non-radiative method employs inductive coupling between coils of wires or capacitive coupling between metallic electrodes to realize the purpose of energy charging. The far-field or radiative method, on the other hand, transfers electrical energy via wave radiation. The concept is somewhat similar to that of a wireless telecommunication device. Instead of transmitting and receiving information, however, the far-field approach makes use of antennas to harvest energy. Despite the prevailing advancement of wireless power transfer technology, there are still open issues yet to be solved.
\r\n\r\n\tThis book will give a detailed elucidation of some of the latest technologies used for wireless power transfer. The challenges faced by researchers working in this field and ways to overcome them are also discussed.
\r\n\t
The immune system is characterized by both innate and adaptive immune responses. The innate response is characterized by the recognition of molecular patterns associated with damage and pathogens, whose molecules and receptors are fixed in the DNA of the germ line. Adaptive immunity is an antigen-specific response which is relatively slow, since it requires a genetic rearrangement [1]. The main objective of the immune system is the defense against pathogens through these innate and adaptive mechanisms [2, 3]. However, dysfunction or deficiency of the immune system can lead to tissue injuries and diseases. On the one hand, there are hypersensitivity diseases, which are characterized by excessive and undesirable reactions, produced by the immune system [4]. On the other hand, autoimmune diseases refer to the failure of the immunological tolerance mechanisms, causing reactions against own cells and tissues [5].
\nThe innate immune system is the first line of defense against invading pathogens. It has a double role to provide initial control of the infection and initiate an adaptive immune response. The innate immune system consists of physical barriers such as epithelial layers and mucus, soluble factors such as the complement system, soluble mediators, cytokines and cells such as neutrophils, macrophages and dendritic cells [6]. These immune cells detected pathogens based on their molecules or pathogen-associated molecular patterns (PAMPs) that are recognized by multiple classes of pattern-recognition receptors (PRRs) that initiate inflammatory responses [7]. PRRs can also recognize host molecules containing damage-associated molecular patterns (DAMPs), molecules that are released from cells damaged [8]. Then, these PRRs respond by producing several soluble mediators such as the complement system and proinflammatory cytokines to kill microbes or infected cells [1].
\nThe cells of the innate immune system have several functions that are essential for the defense of the organism. These cells respond by producing inflammatory cytokines and some of them are responsible for removing foreign substances, pathogens or infected cells. Some of the innate immune cells include macrophages, dendritic cells, neutrophils, mast cells, basophils and eosinophils.
\nMacrophages function as cells that capture and degrade agents that are not recognized as belonging to the organism, in addition to being antigen-presenting cells; therefore, they are essential in both types of immunity (innate and adaptive) [9]. Macrophages are formed in the bone marrow from myeloid progenitor cells, which when stimulated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) are converted into monocytes, immature cells that are released into the bloodstream. Monocytes mature when stimulated by chemotactic substances, making them migrate to tissues as mature cells, establishing themselves for a lifetime of weeks to months. This cell type is directly related to the inflammatory response, since phagocytosis uses harmful substances that can cause acute cell injury and promote apoptosis, including reactive oxygen species (ROS), high amounts of nitric oxide and halogenating radicals. Other mechanisms that promote inflammation are through the production of cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. However, it has also been seen that macrophages modulate inflammation through the release of anti-inflammatory cytokines and growth factors such as IL-10, vascular endothelial growth factor (VEGF)-α, transforming growth factor (TGF)-β and Wnt proteins [10, 11]. Then, the macrophages can be divided into two general classes, depending on their phenotype, M1 that promote inflammation and M2 that release anti-inflammatory and pro-regenerative cytokines [12, 13].
\nThe process of formation of dendritic cells (DCs) is like macrophages, being monocytes in their more immature stage. However, these cells are directed to epithelia even as immature cells and remain there for long periods (weeks or months). When they capture microorganisms or antigenic agents, they eliminate them by phagocytosis, going through the lymph to the lymph nodes, where they will perform their specialized function as antigen-presenting cells [14]. The DCs present antigens to the T lymphocytes; however, it has been proven that they are also capable of activating B lymphocytes, natural killer (NK) cells, macrophages and eosinophils. DCs participate in innate immunity; however, they regulate the adaptive immune response and are fundamental for the development of immunological memory and tolerance [15]. There are mainly two DCs subpopulations: classical and plasmacytoid DCs. On the one hand, classical DCs are specialized cells in the antigen processing and presentation, which have both high phagocytic activity and capacity for cytokine production [16]. On the other hand, plasmacytoid DCs are long-lived cells [17], which are present in the bone marrow and in all peripheral organs and are specialized to respond to viral infection with mass production of type I interferons (IFN). However, these DCs can also act as antigen-presenting cells and control the responses of T cells [18].
\nNeutrophils are phagocytes that are derived from myeloid cells as well as monocytes and dendritic cells. Its morphology is very characteristic, since they present nuclear lobes of different morphologies and they are known as polymorphonuclear (PMN). It is the most abundant leukocyte in the blood (up to 70% of the total of leukocytes) and unlike the other phagocytes, neutrophils are released into the blood as mature cells; however, they have a short life time (from hours to maximum 2 days). They are the first cells of the immune system to reach the focus of infection and their function is practically phagocytosis. Although its short life has been identified that neutrophils are also involved in adaptive immunity, previously, it was known that neutrophils participated in the elimination of foreign agents by phagocytosis, dying in their function; however, it has been found that neutrophils have the ability to return to the bloodstream as antigen-presenting cells, interacting with dendritic cells, NK cells, T and B lymphocytes [19, 20].
\nMast cells are derived from mesenchymal precursor cells (MCPs) in bone marrow but mature in peripheral tissues. They are distributed mainly in tissues close to the external environment such as the skin, mucous membranes, digestive tract and respiratory tract. Activation of mast cells is practically due to the binding of immunoglobulin (Ig)-E antibodies to the high-affinity receptors for the Fc region of IgE (FcεRI) found in their plasma membrane, triggering the release of their granules containing high concentrations of histamine, tryptase, chymase, carboxypeptidase and heparin [21]. Activation of mast cells causes the activation of phospholipase A2 and breaks down membrane lipids to produce arachidonic acid, which can be metabolized in two ways: (1) the cyclooxygenase (COX) pathway, producing prostaglandins and (2) the lipoxygenase pathway (LOX), producing leukotrienes. Both prostaglandins and leukotrienes have pro-inflammatory effects, increasing vascular permeability. The mast cells boost the immune response, increasing the recruitment of specific cells against pathogens, activating different types of immune cells such as macrophages, eosinophils and lymphocytes that eliminate bacteria, fungi, some parasites and cells infected by viruses. Mast cells activate other cells of the immune system by releasing TNF-α, TGF-β, IL-4, IL-5, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF and fibroblast growth factor (FGF)-2 [22].
\nBasophils are granulocytes derived from myeloid cells. They are the least abundant (0.5% of leukocytes) and have a nucleus in the form of S, lobed (1–3 lobes). They have many granules containing histamine, heparin, serotonin and high amounts of leukotrienes. Like mast cells, they contain histamine in their granules, being responsible for most of the early symptoms of IgE-dependent and non-dependent allergy (sneezing, pruritus, bronchospasm and edema). Basophils migrate to the site of inflammation and secrete proteases and various inflammatory mediators such as IL-4 to activate cells such as macrophages, innate lymphoid cells, fibroblasts and endothelial cells, aggravating the allergic inflammatory response [23, 24].
\nEosinophils are bilobed granulocytes originating from the bone marrow from myeloid cells, being released into the bloodstream in a mature manner and at low concentrations (3% of the total of granulocytes). An important characteristic of eosinophils is their high quantity of granules, which have different components, among which are high concentrations of leukotrienes, ROS, IL-4, IL-5, neurotoxins (EDN), main basic protein (MBP), eosinophilic cationic protein (ECP) and eosinophilic peroxidase (EPO) [25, 26]. Eosinophils play an important role in hypersensitivity since they are stimulated by IL-5 produced by mast cells and Th2 cells. Also, fibroblasts when stimulated by IL-4, release eotaxins, molecules that stimulate the function of eosinophils [27].
\nInnate immune cells are capable of recognizing pathogens and endogenous molecules of proteins known as PRRs. These receptors recognize highly conserved motifs known as PAMPs or DAMPs. PRRs dictate the initiation of an adequate and effective innate immune response, as well as the activation of the adaptive immune response to infection or inflammation [28]. These PRRs include Toll-like receptors (TLRs), nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) and RIG-I-like receptors (RLRs) [29].
\nThe TLRs family, was originally identified in Drosophila, as important genes for its ontogeny and the innate immune response in Drosophila adults [30]. The TLRs family consists of 10 highly conserved transmembrane glycoproteins in humans, which recognize a wide range of pathogens [31]. TLR-1, TLR-2, TLR-4, TLR-5, and TLR-6 are expressed on the cell surface, while TL-3, TLR-7, TLR-8, and TLR-9 are found intracellularly in endosomes [32]. The extracellular leucine-rich repeat (LRR) regions in the TLRs mediate protein-protein or PAMP-protein interactions, while their intracellular tails mediate proinflammatory signaling through the myeloid differentiation primary response protein (MYD88) and TIR domain-containing adapter molecule 1 (TRIF; also known as TICAM1) pathways [33]. They are expressed in a wide variety of cells such as innate immune cells, T and B cells, epithelial cells, fibroblasts, and endothelial cells; however, not all cell types express every TLR [34]. Different TLRs specifically recognize distinct PAMPs and DAMPs [35]. For example, TLR2 recognizes lipoarabinomannan from mycobacteria [36]. Some TLRs detect different nucleic acids; TLR3 detects viral double-stranded RNA (dsRNA) formed during the replication of positive stranded viral RNA in the cytosol [37]; TLR7 and TLR8 both recognize viral single-stranded RNA (ssRNA) [38, 39] and TLR9 recognizes bacterial DNA [40]. TLR4 together with myeloid differentiation factor (MD)-2 recognizes lipopolysaccharide (LPS), which comes from Gram-negative bacteria [41]. Further, TLR4 is also involved in antiviral innate immunity [42, 43]. TLR5 is highly expressed DCs and detects bacterial flagellin [44, 45]. Plasmacytoid DCs express TLR7 and TLR9, and both are implicated in recognition of viral and bacterial nucleic acids [46]. TLR10 has been implicated in the recognition of
The NLR family comprises 22 members in humans. Most NLRs share common structural characteristics including a C-terminal leucine-rich repeat (LRR) domain, often involved in ligand recognition, a central NOD, and a variable N-terminal effector domain [49]. Based on the type of effector domains that is either a caspase recruitment domain (CARD), a pyrin domain (PYD), or a baculoviral inhibitor of apoptosis protein repeat (BIR) domain [50], the NLR family can be categorized structurally into five subsets based on their N-terminal effector domain: NLRA, NLRB, NLRC, NLRP and NLRX [29]. The most well-defined sensors of peptidoglycan are the cytosolic NOD-like receptors (NLRs), NOD1 and NOD2, which are expressed by diverse cell types, including myeloid phagocytes and epithelial cells [51], which recognize specific ligands from various pathogens. This family is involved in increasing the proinflammatory events caused by cell death and several more proinflammatory processes [52].
\nThe RIG-I-like receptor family consists of RNA-binding proteins that are expressed in almost all cells. Family members include RIG-1, melanoma differentiation-associated gene (MDA)-5, and laboratory of genetics and physiology (LGP)-2 [34]. They act as sensors for viral replication within human host cells necessary to mediate antiviral responses [53].
\nCytokines are secreted proteins that can be delineated as a distinct class of signaling molecules from hormones based on two key factors. First, the kinetics of cytokine secretion (rapid and dramatic induction following specific extracellular stimuli), which is often prolonged at less dramatic concentrations to affect physiological changes. Second, cytokines can be signaling autocrine, paracrine and endocrine fashions [54, 55]. Cytokines are involved in regulating the homeostasis of the organism, but when its production or its signaling pathway in the cell is not regulated, this homeostasis is altered, which can trigger in a pathology [56, 57].
\nCytokines can be classified into five groups [57]: (1) IL-1 superfamily, there are 10 members of the IL-1 family of receptors (IL-1R1–ILR10) [58] and 11 members of the IL-1 family of cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) [59]. The interleukin-1 superfamily members are closely linked to damaging inflammation; however, the same members also function to increase nonspecific resistance to infection and the development of an immune response to foreign antigens [60]. (2) TNF superfamily is composed of 19 ligands and 29 receptors [61]. This family plays a pivotal role in immunity, inflammation and controlling cell cycle (proliferation, differentiation and apoptosis) [62]. (3) The interleukin (IL)-17 cytokine family is composed of IL-17A and five other members (IL-17B, IL-17C, IL-17D, IL-17E, also referred to as IL-25, and IL17F). IL-17-related cytokines play key roles in defense against extracellular pathogen, autoimmunity. In addition, there is evidence that indicates that some of these molecules are involved in the amplification and perpetuation of pathological processes in many inflammatory diseases, such as psoriasis, rheumatoid arthritis, multiple sclerosis and allergy. However, the same cytokines can exert anti-inflammatory effects in specific settings and play key role in the control of immune homeostasis [63, 64]. (4) IL-6 superfamily is comprised by IL-6, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin (CT)-1, IL-11, cardiotrophin-like cytokine factor (CLCF)-1, viral IL-6 (vIL-6), IL-27 and IL-35 [65]. This cytokine family shows some redundant but not uniformly identical biological activity. IL-6 exerts pleiotropic effects on inflammation, immune response and hematopoiesis [66, 67]. IL-6 is produced at the inflammation site by infection or tissue damage, which induces production of acute phase proteins such as C-reactive protein (CRP), serum amyloid A, fibrinogen and hepcidin in liver. IL-6 also plays an important role in acquired immune response to induce differentiation of activated B cells in to antibody (Ab)-producing cells and to prolong survival of plasmablasts [65], while it promotes the development of Th17 cells and follicular helper T cells by naïve T cells and inhibits the differentiation into regulatory T cells (Treg) [68]. But, dysregulated excessive or persistent production of IL-6 plays a pathological role in various kinds of diseases [65]. (5) Type I superfamily, includes the common γ-chain cytokines (IL-2, IL-4, IL-7, IL-9, IL-13, IL-15 and IL-21) [69], common β-chain cytokines (IL-3, IL-5, GM-CSF) [70] and IL-12 subfamilies (IL-12, IL-23, IL-27 and IL-35), as well as similar cytokine products with unique receptor characteristics such as IL-13, IL-14, IL-32, IL-34, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF). (6) Type II superfamily contains the interferons (type I, II and III) and the IL-10 subfamily (IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26) [54].
\nInflammation is a protective response to infection, tissue stress and injury [71]. This inflammatory response is characterized by its clinical signs such as redness, heat, swelling, pain and dysfunction [72]. The inflammatory response is triggered by inducers such as PAMPs derived from bacteria, viruses, fungi and parasites; and DAMPs derived from cell damage, as well as toxic cellular components or any other harmful conditions [73]. Then, these inflammatory inducers are detected by “sensors,” which are present in several immune cells. These sensors are PRRs such as TLRs, NLR and RIG-like receptors [52, 74]. Subsequently, the PRRs induced the synthesis and release of soluble mediators such as cytokines [75]. Cytokines, as optimal protection against pathogens, provide the necessary signals to initiate an inflammatory response, through the differentiation and proliferation of the immune system cells, adapting their effector functions as necessary to promote protective immunity, and once the inducers are eliminated, they suppress the inflammatory response, promoting tissue repair and return to homeostasis [54]. The inflammatory response is characterized by successive phases [76]: (1) silent phase, where cells reside in the damaged tissue releases in the first inflammatory mediators; (2) vascular phase, where vasodilation and increased vascular permeability occur; (3) cellular phase, which is characterized by the infiltration of leukocytes to the site of injury; and (4) resolution of inflammation, which is the process to return tissues to homeostasis [77, 78, 79].
\nPhagocytosis is the physiological process carried out by phagocytic cells to identify, digest and eliminate foreign substances or pathogens (Figure 1). Infection with pathogens is the most common cause to trigger this immune mechanism. The pathogens proliferate releasing small peptides with chemotactic activity, dispersing in the areas of underlying tissue and blood vessels. These chemotactic peptides come into contact with the endothelial cells that form the blood vessels and phagocytes that are found in the invaded tissue (macrophages and/or dendritic cells), as well as those found in the blood (neutrophils and monocytes). Endothelial cells initiate the synthesis of cell adhesion proteins, as do phagocytes found in the blood. The adhesion proteins allow the phagocytes of the blood to bind to the endothelial cells, causing them to roll on the surface until finding an exit between the cell junctions, migrating to the extravascular space by a process known as diapedesis. The phagocytes that were close to the area of infection and those that migrated from the blood move toward the focus of infection attracted by the chemotactic peptides. The microorganisms have structural components (the receptor for IgG (FcR) and PAMPs, among others) that are recognized by PRRs found in phagocytes [80, 81].
\nThe interaction of these surface molecules causes the invagination of the cell membrane and the formation of cellular prolongations that end up involving the foreign pathogens in a phagocytic vacuole or phagosome. The chemical interaction of the molecules on the membrane surface of microorganisms and phagocytes activates diverse receptors, including those of Gq proteins that activate phospholipase C, an enzyme that degrades membrane phospholipids to produce inositol triphosphate (IP3) and diacylglycerol (DAG). The IP3, among many of its functions, is responsible for regulating cell movement by the cytoskeleton through the release of calcium ions by the endoplasmic reticulum. On the other hand, the DAG activates a protein kinase C (PKC), which activates the cytosolic proteins p40, p47 and p67, which, supported by ras-related protein Rap-1A (RAP1A), interact with cytochrome B558, one of the components of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activated NADPH oxidase promotes the release of ROS, molecules highly toxic to cellular components. NADPH oxidase captures high amounts of oxygen, transforming them into superoxide anions (O2−), which in turn promote the formation of dangerous ROS such as hydrogen peroxide (H2O2), hydroxyl (OH−) and oxygen singlet (1O2). The ROS react with the biomolecules that make up the structures of the microorganisms (lipids, polysaccharides, proteins and nucleic acids), causing their death. Simultaneously, the phagocytes fuse lysosomes to the vacuole in which the microorganism is internalized, forming the phagosome, also releasing many hydrolytic enzymes that favor the digestion of the microorganism components [82].
\nPhagocytosis. (1) Recognition of structural components of pathogens by the PRRs of phagocytes. (2) Invagination of the cellular plasma membrane that causes the internalization of the pathogens, forming the phagosome. (3) Fusion of the lysosomes with the phagosome, promoting the digestion of the pathogens by hydrolytic enzymes. In addition, ROS are released that contribute to the degradation of biomolecules. (4) Destruction of the pathogens. (5) The activation of phospholipase C causes the activation of PKC. (6) PKC activates NADPH oxidase. (6) ROS are produced by NADPH oxidase. (7) ROS are directed to the phagosome, contribute to the degradation of pathogens. (8) Release by exocytosis of the pathogens residual.
Lysosomes contain myeloperoxidase, an enzyme that hydrolyzes hydrogen peroxide for the formation of halogenating radicals such as hypochlorous acid, hypochlorite and hypoiodite, which increase the damage to microorganisms. Finally, cell debris has two purposes: (1) to be eliminated by exocytosis, (debris are evacuated into the bloodstream to be eliminated by renal route); and (2) to transport certain antigenic components to the cell membrane to be presented to T and B cells and be able to give the process of acquired immunity (mainly in the case of dendritic cells and macrophages) [82].
\nThe adaptive immune system has the capacity to generate a wide range of specific antigen receptors, through somatic mechanisms of gene rearrangement. These mechanisms create a random repertoire of receptors that are clonally distributed in T and B lymphocytes. This gives it the advantage of having a wide repertoire of specific antigen receptors, which can be recognized, without these having to be encoded in the host genome, allowing the recognition of almost any antigenic structure. The activation of lymphocytes requires two types of signals: (1) a signal induced by the antigen receptor itself when recognizing its related antigen, and a costimulatory signal by professional antigen-presenting cells (APCs). Therefore, the innate immune system, as already explained earlier, determines the origin of the antigens by means of a non-clonal system of receptors, PRRs, encoded in the germ line, which controls the expression of costimulatory molecules and effector cytokines, while the adaptive immune system does it through antigenic receptors [83, 84].
\nDuring the hematopoiesis that is generated in the bone marrow, it gives rise to the precursors of all the lineages and states of differentiation of the T cells. These precursors, called thymocytes, travel through the peripheral blood and reach the thymus, where they mature in T lymphocytes. Later, they will differentiate into CD4+ T lymphocytes (cooperators) or CD8+ T lymphocytes (cytotoxic). Once they are differentiated, they travel through the blood circulation until they are activated by means of the surface receptor they present, when they encounter a specific antigen. This receptor, known as T cell receptor (TCR), binds to the major histocompatibility complex (MHC), a complex expressed by antigen-presenting cells, in which the antigen is presented in the form of peptides. Depending on the T cell to which the antigen is presented, MHC class I or MHC class II will be used. To present an antigen to the CD4+ T lymphocyte, a presentation through the MHC-II will be required; while for the activation of a CD8+ T lymphocyte, it will be necessary through the MHC-I [84, 85]. T lymphocytes are responsible for cellular adaptive immunity. The activation of CD8+ T lymphocytes allows the destruction of infected cells through the release of perforins, which are proteins responsible for forming pores in the membrane of the target cell that causes the passage of water and ions, inducing an osmotic lysis of the infected cell. Similarly, CD8+ T lymphocytes release toxic enzymes such as the granzyme that passes through the pores formed in the cell membrane, which causes the induction to cell death by fragmenting the DNA of the infected cell. Activation of CD4+ T lymphocytes allows cooperation with other immune cells for their activation. As the case of macrophages, B lymphocytes and other T lymphocytes, through costimulatory molecules and the release of cytokines, this causes a powerful cellular activation and therefore an effective immune response. In addition to this, CD4+ T lymphocytes can differentiate into cellular subpopulations with specific action. Mediated by the secretion of cytokines, they can be differentiated into Th1, Th2, Th9, Th17 and Th22 types [86].
\nIn addition, memory T lymphocytes have a long life, functionally inactive but respond to new exposures of the same antigen quickly and efficiently. There is another population of T lymphocytes, the regulatory T lymphocytes [86]. This cellular population is responsible for eliminating autoreactive T cells that escaped the process of negative selection or central tolerance; with the purpose, to avoid the development of an autoimmune response [87]. Other lymphocytes, such as LTγ/δ, are another very rare cell type that represent about 10% of intraepithelial lymphocytes of the small intestine but increase drastically under certain allergic or inflammatory conditions. In addition, they recognize complete proteins without needing to be processed to be presented through the MHC molecules [88].
\nThe B lymphocytes are originated from the same precursor that gives origin to the T lymphocytes and the NK cells. However, the absence of certain cell membrane receptors in B lymphocytes leads to their differentiation in this cell line, a process that takes place in bone marrow. Up to this point, the B lymphocytes are immature, and it will be until they migrate from the bone marrow into the spleen to undergo positive and negative selection and thus produce a mature B lymphocyte [89]. B lymphocytes can be activated: (1) by a foreign agent through the TCD4+ lymphocytes collaboration; (2) or in specific circumstances independent of CD4+ T lymphocytes. In the case of CD4+ T lymphocytes collaboration, it occurs through the MHC expressed in its cell membrane, which binds to the B cell receptor (BCR), to initiate the antigenic presentation that will end in the synthesis of antibodies [90]. B lymphocytes are cells that participate in humoral adaptive immunity, since once activated they proliferate in response to the antigen and differentiate into plasma cells to produce antibodies against the specific antigen [91]. Likewise, activated B lymphocytes can differentiate into memory cells, acquiring a capacity for survival for long periods of time, up to more than 10 years, approximately [92, 93]. However, various co-stimulatory receptors that are expressed in B cells can induce their proliferation and survival, as well as the regulation of the production of specific antibodies that contribute to a breakdown of immunological tolerance, triggering autoimmune diseases [94].
\nAntibodies, also known as immunoglobulins (Ig) are structurally composed of two heavy polypeptide chains identical to each other and two light chains also identical, joined by one or more disulfide bridges. They have a variable region with two domains (VH, VL) and a constant region with four domains (CL, CH1, CH2 and CH3) [95]. The segments of the variable region originate through a somatic recombination, which allows having the diversity in the repertoire of antibodies, since at least 1026 of different specific antibodies are generated. They have a Fab fragment (fragment antigen binding) and an Fc fragment (crystallizable fraction). The Fab portion is an antigen-binding zone, while the Fc is a constant zone where the interaction with cellular receptors and the effector part of the biological functions presented by the antibodies occurs. Among these biological functions are crossing the placental barrier, activating complement, neutralizing antigens, joining phagocytic cells and acting as opsonin; all to generate protection and eliminate pathogens or elements harmful to the host [96].
\nThere are 5 classes recognized up to the moment of antibodies: IgA, IgG, IgM, IgE and IgD. Most are monomeric, but they can be presented pentameric as IgM and only IgA can be present in both dimeric and monomeric forms. There are 4 subclasses for IgG (IgG1-IgG4) and 2 for IgA (IgA1 and IgA2). This is due to variations in the constant regions, which causes functional differences between the antibodies of the same class [97]. Among the functions of IgG is complement activation, with subclass IgG3 having the greatest effect, whereas IgG4 cannot activate it. It is the antibody in greater amount circulating in the blood and more increases during a secondary immune response. It can cross the placenta and, in the newborn, favors its immunological protection. It helps in phagocytosis through opsonization, as well as in the neutralization of pathogens with great effectiveness [98]. IgA is found in greater concentration due to its location in epithelia, in body secretions such as saliva, tears, colostrum, respiratory, gastrointestinal and genitourinary secretions; which allows it to generate a broad protection against pathogens and allergens. In blood circulation, it is found in a monomeric way; but in mucous, it is found in a dimeric form behaving as secretory IgA [99]. The IgE antibody is found in very small concentrations in the bloodstream. The majority is bound to a surface receptor of mast cells, eosinophils and basophils, which causes it to be involved in allergic reactions in humans, since it induces the release of pro inflammatory cytokines when IgE recognizes specific antigens [100]. It also causes degranulation of the aforementioned cells, causing the release of vasoactive substances such as histamine, causing an inflammatory response. Also, it can increase the production of this antibody by the effect of allergens such as those that can be found in food, some drugs and seasonal allergens, which causes allergic reactions. This immunoglobulin is very effective in the defense against parasitic infections [101]. In the case of IgM, it is the first antibody that appears with immune response reactions. It is the first antibody that is expressed on the surface of B lymphocytes and the one that predominates in primary immune reactions. It is the largest, due to its pentameric formation, which allows it to bind several antigens (approximately, 6 antigens per IgM) and is the main activator of the complement system [102]. Finally, IgD is the immunoglobulin that is also found on the surface of B lymphocytes, being a marker of their maturity. However, at the time of contact with the antigen, IgD is lost during antigenic stimulation. It participates as an antigen receptor and signaling transmitter inside the cell and, in blood circulation, it is found in very small amounts and is not produced by plasma cells [103].
\nThe molecules of the major histocompatibility complex (MHC), also called human leukocyte antigens (HLA) [104, 105], are the product of a set of genes responsible for the lymphocytes rejecting transplanted tissues and detecting foreign elements. These molecules also participate in the induction of the specific immune response, through the presentation of the antigen to the T lymphocytes [104]. In the mammalian genome and, more specifically, in the human genome, the most variable region known forms the MHC that carries a great number of different loci coding for functional genes [106]. The classical MHC encompasses approximately 3.6 megabasepairs (Mb) and is divided into three subregions: the telomeric class I, class III, and the centromeric class II regions [107]. In humans, the MHC region is approximately 4000 kb long, located on the short arm of chromosome 6 [105, 106].
\nMolecular markers, located on the cell surface, help to externalize the intracellular environment and give the individual a specific tissue identity, recognized by their immune system. Under normal conditions, the MHC molecules reach the cell membrane bound to their own elements, so when they are presented to the T lymphocytes, they do not activate them; when by infection or pathological changes of the cell, they emerge, carrying a foreign molecule instead of their own, the T cell is activated and responds immediately [108]. The function of MHC molecules is to bind peptide fragments derived from pathogens and display them on the cell surface for recognition by the appropriate T lymphocyte. The consequences are almost always deleterious to the pathogen—virus-infected cells are killed, macrophages are activated to kill bacteria living in their intracellular vesicles, and B lymphocyte are activated to produce antibodies that eliminate or neutralize extracellular pathogens [105].
\nThe genes, whether expressed, are arranged in three genomic regions or classes. The more distal region corresponds to MHC class I, which carries the genes that code for the classic (1a) class I HLA-A, -B, and -C heavy chains, all nucleated cells express class I molecules on their cell surface [109]. They present cytoplasmic or endogenous antigens (synthesized intracellularly, those of viral or tumoral origin and processed by the proteasome) to the CD8+ T lymphocyte [110]. MHC-I is a molecule made up of an α polypeptide chain, with three domains (α1, α2 and α3) and the β2 microglobulin subunit. In the cleft that is formed between α1 and α2, it is added the antigenic peptide that is going to present [108]. The classical molecules MHC-I (A, B and C) are expressed on the surface of all cells, except those of the trophoblast, erythrocytes and neurons. Its main function is the presentation of antigens to the CD8+ T lymphocyte [111]. The MHC-I is formed in the endoplasmic reticulum and interacts with the chaperone molecules: calnexin and calreticulin, which help it to bind with the β2 microglobulin and confer stability on it. A third molecule, the capsid, helps transporting antigen processing peptides (TAP)-1 and TAP2 to form the channel that allows the passage of the antigenic peptide from the cytoplasm to the endoplasmic reticulum, where it binds to the MHC-I. This complex (MHC-I-antigenic peptide) leaves the endoplasmic reticulum in a vesicle, travels through the cytoplasm and is finally exocytosed. On the cell surface, the MHC molecule and the antigenic peptide that it carries bind to the CD8+ T lymphocyte receptor and it is through this union that the so-called “presentation” is made. If the presented peptide corresponds to a molecule of its own, the lymphocyte does not respond. If the presented peptide is foreign, accessory signals are transmitted through costimulatory molecules such as B7-CD28, CD40-CD40L, etc., which activate CD8+ T lymphocyte. The activated cytotoxic lymphocyte, through the firing of cytolytic enzymes and the induction of apoptosis, destroys the host cell, carrier of endogenous antigens such as viruses or tumor cell elements (Figure 2, right) [108].
\nProcessing and presentation of antigen. In the MHC class I pathway (right), the proteosomes process the protein antigens in the cytoplasm, which are transported to the endoplasmic reticulum (ER), where they bind to the MHC class I molecules. Subsequently, these are presented to the T lymphocytes, to induce a CD8+ phenotype. In the MHC class II pathway (left), the extracellular protein antigens are introduced into the antigen-presenting cell by endocytosis, in vesicles, where the antigens are processed, and the peptides bound to the MHC class II molecules, which are present to the T lymphocytes to induce a CD4+ phenotype.
The MHC class II genes, coding for both chains that will form the functional heterodimer, HLA-DR, HLA-DQ, HLA-DP, HLA-DM, and HLA-DO are in the more centromeric portion of the MHC region [109]. They exhibit restricted expression, being predominantly expressed on antigen-presenting cells (APC), such as macrophages, DCs, Langerhans and Kupffer cells, as well as B lymphocytes [112], also intravesicular or exogenous antigens (synthesized extracellularly and processed by lysosomes) to CD4+ T lymphocyte [110]. CMH-II is composed of two polypeptide chains: α and β, both with two domains. The antigenic peptide binding site it presents is located between α1 and β1 [105, 108]. The antigen, for its presentation, must be processed by the cell that captured it and be reduced to small peptides, since the sites to which it binds both in the MHC and in the T lymphocyte, can only host molecules with a smaller size to 25 amino acids [108]. The classical molecules MHC-II (DP, DQ and DR) are expressed, constitutively, on the surface of the cells participating in the “immune response” (phagocytes and lymphocytes), but by activation with INF-γ, they can be expressed in other cells that, like fibroblasts, keratinocytes, barley and endothelial, also participate in this response [111]. The MHC-II is synthesized in the endoplasmic reticulum and portal a molecule: the invariant chain (Li or CD74) that protects the site that the antigen will occupy, favors its exit of the reticulum and takes it to endosomes where it meets the antigenic peptides. In this place, various cathepsins break the Li chain, which leaves the site corresponding to the antigen free and allows its binding to MHC, the Li residues (CLIP) are removed by the DM molecule. Finally, the antigenic peptide emerges to the surface linked to MHC-II, a molecule through which it makes contact and is presented to the CD4+ T lymphocyte. If the presented molecule is strange, the T-helper cell cytokines are activated and secreted. These cytokines can activate the host cell and lymphocytes and cells surrounding (Th1 predominant response), as well as stimulate the production of antibodies (Th2 predominant response). The class of secreted cytokines and therefore, the function that they do, depends on the type of Th cell that responds. In all cases, there is a regulation that, at the end of the Antigenic stimulus: slows the response, induces apoptosis activated cells, inhibits inflammation and initiates repair (Figure 2, left) [113].
\nThe “immunological tolerance” was established in 1954, as an acquired state learned during the development of the immune system by exposure to antigens in its immediate environment [114]. A single antigen can induce an immune response or tolerance depending on the context in which it occurs. Tolerance is acquired, triggered from the ontogeny of lymphocytes and there are different mechanisms to maintain it. One is carried in the primary lymphoid organs, known as central tolerance. The other is carried in the secondary lymphoid organs and is known as peripheral tolerance [115]. The central tolerance, also known as negative selection, is carried out during the development of the T and B cells, when the newly generated cells test their receptors for the recognition of antigens in their immediate environment. It consists of a clonal elimination in the bone marrow of autoreactive B lymphocytes and self-reactive T lymphocytes in the thymus. It prevents maturation of those lymphocytes capable of recognizing autoantigens through the expression of high affinity receptors and occurs through the recognition of these by the antigen-presenting cells through MHC molecules. On the other hand, peripheral tolerance allows maintenance in the control of effective immune responses against “self” [116].
\nAfter the T and B lymphocytes have passed through the control of negative selection or central tolerance and mature, they are directed by blood circulation to secondary lymphoid organs such as the spleen and lymph nodes. Lymphocytes require secondary signals to activate and generate a positive response against foreign antigens. If the lymphocytes do not generate a positive response against these antigens, the lymphocytes become anergic or die by apoptosis. Similarly, when lymphocytes are activated by antigens inappropriately (autoreactive), regulatory mechanisms are activated that correct such failures through the participation of regulatory T lymphocytes (Tregs) [117].
\nThe tolerance for exogenous antigens is due to the lack of immune response against antigens from food and normal flora, as well as inhaled antigens, to avoid triggering an immune response that affects the integrity of the individual. This type of tolerance occurs mainly on mucous membranes. The participation of IgA immunoglobulin as essential component of mucosal immunity, whose function is the neutralization of antigens or immune complexes, prevents their absorption and progression of active immune response. Dendritic cells are also highly responsible for immunological tolerance toward exogenous antigens. In part, they are responsible for their ability to induce the expression of Tregs FOXP3+ lymphocytes [118].
\nThe immune system is an integral part of human protection against disease, but the normally protective immune mechanisms can sometimes cause detrimental reactions in the host. Hypersensitivity diseases include autoimmune diseases, in which immune responses are directed against self-antigens, and diseases that result from uncontrolled or excessive responses to foreign antigens. Because these reactions tend to occur against antigens that cannot be escaped (i.e., self-antigens) and because of positive feedback systems intrinsic to various aspects of the immune response, hypersensitivity diseases tend to manifest as chronic problems. The traditional classification for hypersensitivity reactions is that of Gell and Coombs and is currently the most commonly known classification system (Figure 3) [119].
\nHypersensitivity reactions. (A) Type I hypersensitivity. The binding of the antigen to preformed IgE antibodies bound to the surface of mast cells or basophils, causes the release of inflammatory mediators such as histamine, cytokines and metabolites of arachidonic acid, which produces clinical manifestations, such as septic shock, rhinitis allergic, allergic asthma and acute allergic reactions to drugs. (B) Type II hypersensitivity. Cytotoxic reactions involve the binding of both IgM and IgG antibodies to antigens bound to cells. The antigen–antibody binding results in the activation of the complement cascade and in the destruction of the cell to which the antigen is bound. (C) Type III hypersensitivity. Immunocomplexes are formed when the antigens bind to the antibodies. They are usually removed from the process by phagocytosis. However, the deposition of these immunocomplexes in the tissues or in the vascular endothelium can produce a tissue aggression mediated by immunocomplexes. (D) Type IV hypersensitivity. These types of reactions are not mediated by antibodies. Delayed hypersensitivity reactions are mediated primarily by T lymphocytes (cell-mediated immunity).
Immediate hypersensitivity reactions are mediated by IgE, but T and B cells play important roles in the development of these antibodies. The allergic reaction first requires sensitization to a specific allergen and occurs in genetically predisposed individuals. The allergen is either inhaled or ingested and is then processed by APC, such as a DCs, macrophage, or B-cell [120]. The APC then migrates to lymph nodes, where they prime
Type II or cytotoxic hypersensitivity [119] depends on the abnormal production of IgG or IgM directed against tissue antigens or a normal reaction to foreign antigens expressed on host cells. There are three main mechanisms of injury in type II reactions: (1) activation of complement followed by complement-mediated lysis or phagocytosis and removal by leukocytes; the IgG or IgM antibody can complex with antigens on the surface of cells or extracellular matrix and this complex then may activate complement. Complement activation will result in formation of the membrane attack complex (MAC) and cause osmotic lysis of the target cell; (2) antibody-dependent cellular cytotoxicity; the second type II reaction is called antibody-dependent cell-mediated cytotoxicity IgG antibodies that can bind FcγRIII on NK cells and macrophages, thus mediating the release of granzymes and perforin and resulting in cell death by apoptosis (ADCC); (3) inactivation of a biologically active molecule; disruption of biologically functional molecules can occur when autoantibodies bind to these molecules (Figure 3B). An example is antibody produced against acetylcholine receptors in myasthenia gravis resulting in increased turnover of the receptor at motor end-plates and subsequent muscular weakness or drug-induced hemolytic anemia [122, 123].
\nDrug-induced immune hemolytic anemia (DIIHA) is rare, and required to provide the optimal serological tests to confirm the diagnosis. The drugs most frequently associated with DIIHA at this time are cefotetan, ceftriaxone and piperacillin. DIIHA is attributed most commonly to drug-dependent antibodies that can only be detected in the presence of drug. The drug affects the immune system, causing production of red blood cell (RBC) autoantibodies; the clinical and laboratory findings are identical to autoimmune hemolytic anemia (AIHA), other than the remission associated with discontinuing the drug. Some of the mechanisms involved in DIIHA are controversial. The most acceptable one involves drugs like penicillin that covalently binds to proteins (e.g., RBC membrane proteins); RBCs become coated with drug in vivo and, a drug antibody (usually IgG) attaches to the drug-coated RBCs that are subsequently cleared by macrophages. The most controversial is the so-called immune complex mechanism, which has been revised to suggest that most drugs are capable of binding to RBC membrane proteins, but not covalently like penicillins. The combined membrane plus drug can create an immunogen; the antibodies formed can be IgM or IgG and often activate complement, leading to acute intravascular lysis and sometimes renal failure; fatalities are more common in this group. It is still unknown why and how some drugs induce RBC autoantibodies, sometimes causing AIHA [124].
\nType III reactions (immune-complex reactions) involve circulating antigen-antibody immune complexes that deposit in postcapillary venules, with subsequent complement fixation. An example is serum sickness. Type III hypersensitivity is caused by circulating immunocomplexes and is typified by serum sickness (a drug reaction in which multimeric drug-antibody aggregates form in solution). Preformed immunocomplexes deposit in various vascular beds and cause injury at these sites. Multimeric antigen-antibody complexes are efficient activators of the complement cascade through its classical pathway. The vascular beds in which immunocomplexes are deposited are determined in part by the physical nature of the complexes (their aggregate size, charge, hydrophobicity, etc.), and the specificity of deposition at locations can be surprisingly precise in some diseases (Figure 3C). Typical sites of injury are kidney, skin, and mucous membranes. Type III hypersensitivity is common in systemic lupus erythematosus (SLE) and underlies most of the pathophysiology of this chronic autoimmune disease. Some inflammatory reactions may blend features of type II and III hypersensitivity with the formation of immunocomplexes in situ [125].
\nType IV reactions (delayed hypersensitivity reactions and cell-mediated immunity) are mediated by T cells rather than by antibodies (Figure 3D). An example is contact dermatitis from poison ivy or nickel allergy, tuberculosis, leprosy and sarcoidosis. In tuberculosis, cellular hypersensitivity, the delayed type of allergy, may be defined as an immunological state in which lymphocytes and macrophages are directly or indirectly sensitive to tuberculin, activate macrophages [126], and can passively transfer delayed hypersensitivity to the normal host [127]. Lymphocytes, when exposed to tuberculin merely produce a toxic or irritating product affecting macrophages, whether they sensitize macrophages to tuberculin [128]. In tuberculosis, delayed hypersensitivity is both beneficial and detrimental. In low concentrations, tuberculin stimulates the development of immunity in macrophages. Therefore, the presence of hypersensitivity is an asset in preventing pulmonary tuberculosis for only small units of one to three bacilli that reach the alveolar spaces where the infections begins. In high concentrations, tuberculin kills macrophages and thus is responsible for the liquefaction of caseous foci. This process results in tremendous extracellular multiplication of tubercle bacilli followed by their spread throughout the bronchial tree and to the other people [129].
\nDespite the various immunological mechanisms to maintain tolerance to itself, there are certain individuals who develop autoimmunity. In 1986, the idea was postulated that the T and B cells specific for antigens coming from infecting pathogens, also generate a cross reaction against autoantigens even though the pathogens are eliminated. This type of response is initiated by low affinity T cells that have escaped the central tolerance. In addition, there is a genetic component capable of initiating and causing a persistence of autoimmunity and, therefore, trigger an autoimmune disease. However, epigenetic factors also play an important role in their development. They have been classified as a specific organism or systemic, with the genetic susceptibility in the alleles of class I and class II molecules, a large part of the cause of the occurrence of autoimmune diseases such as systemic lupus erythematosus and type I diabetes mellitus [90]. Thus, the appearance of polymorphisms in more than 50 genes, among which a small number has been identified that affect the expression of molecules involved in the general activation of T cells, causes a high susceptibility to type I diabetes. In the case of the presentation of systemic autoimmune diseases, genetic susceptibility occurs in the general activation of B lymphocytes, affecting the signaling and survival receptors, which allows the autoreactive B cells of higher affinity to escape from the negative selection. Also, the genetic deletion of certain TLRs, such as TLR-9, increases the susceptibility to manifest autoimmune diseases. Depositions of antigen-antibody complexes in tissues, such as kidney, have been an important factor in the manifestation of autoimmune diseases. This is due to the variation in certain genes such as those responsible for synthesizing the components of the complement and its receptors, which can initiate autoimmune pathologies. Another important factor that triggers autoimmunity is the loss of certain immunoregulatory mechanisms. Such is the case of a chronic stimulation of the TCR, by a persistent antigenic exposure that can deregulate the immune response through adaptive tolerance mechanisms. A loss of the anergy of autoreactive T lymphocytes, a failure in cell death by apoptosis of autoreactive T cells, the loss of suppression of these cells due to Tregs lymphocytes, polyclonal activation of autoreactive T lymphocytes, may also occur among other mechanisms that can trigger autoimmunity [130]. Finally, autoimmune diseases can affect a specific cell type, several cells or the entire organism. Its initiation will depend on the pathways by which the immunological tolerance is altered, being of great importance the genetic predisposition that certain individuals present.
\nAutoimmune diseases are a consequence of an immune reaction against an autoantigen. They can affect a single organ or cell type; however, they are usually also systemic, as is the case of the onset of rheumatoid arthritis or systemic lupus erythematosus.
\nSystemic lupus erythematosus (SLE) is a rare disease with a prevalence of 3.3 to 8.8 per 100,000 children. There is a high frequency reported in Asians, African Americans, Hispanics and Native Americans; the age at which it usually manifests is between 11 and 12 years of age and about 80% of adults who have SLE are women [131]. It is a multisystemic autoimmune disorder characterized by extended immunological dysregulation, formation of autoantibodies and immune complexes, resulting in inflammation and potential damage to a wide variety of organs. The clinical manifestation presented is nonspecific, such as the appearance of fever, fatigue, anorexia, alopecia and arthralgias. Symptoms such as generalized inflammation, including lymphadenopathy and hepatosplenomegaly, may manifest during the onset of SLE. However, the hallmark of this disease is the appearance of a butterfly-shaped malar rash. This condition can affect any organ of the system and its diagnosis is given through clinical manifestations and laboratory tests. Such is the case of the search for antibodies such as antinuclear antibodies (ANA), which are present in the serum of almost 98% of patients with SLE; Anti-dsDNA antibodies are present between 61 and 93% of patients with active disease; Anti-Smith antibodies are highly specific, but they can be found only in almost 50% of patients; Antibodies such as anti-Ro, anti-La, anti-U1RNP, anti-histones and rheumatoid factor, can also be used as a diagnosis of SLE. The indicated treatment is according to the activity of the disease and its severity, as well as the organs affected by the SLE. The immunopathogenesis of this disease is mediated by the recruitment of autoreactive T cells and excessive plasma levels of proinflammatory cytokines. In addition, dendritic cells and subpopulations of T cells such as Th1, Th17 and regulatory T cells are significantly altered in function and number. However, the fundamental immunological dysfunction in the appearance of SLE is the loss of tolerance to nuclear antigens. There are defects that promote the presentation of autoantigens and the response to apoptotic residues in an immunogenic form; also, those faults that affect the signaling of the T or B cells, which causes the autoreactive abnormal stimulation of the lymphocytes; as well as those defects that promote the survival of autoreactive lymphocytes. Therefore, the loss of immunological tolerance is a factor that causes the presentation of systemic lupus erythematosus [132].
\nRheumatoid arthritis (RA) is a chronic inflammatory multisystem disease characterized by destructive synovitis, in which all joints can be affected, mainly the small joints of the hands and feet. RA is a chronic progressive disease that results in decreased functional capacity and quality of life. It can manifest in individuals with genetic predisposition; however, it is of unknown etiology. It affects 0.2 to 2% of the worldwide, in a population of 40 years old, although it could happen at any age [133]. The diagnosis of RA occurs through the presentation of clinical manifestations, such as the onset of arthritis of at least 3 joints and morning stiffness of more than 30 minutes, as well as an exacerbated joint inflammation with the presence of pain. Likewise, blood concentrations of C-reactive protein and rheumatoid factor are evaluated, which will be elevated depending on the inflammatory activity of the RA. Another determinant with a high probability for the diagnosis of the disease is the evaluation of anti-CCP antibodies. The immunopathogenesis of RA results from the loss of immunological tolerance, with the consequence of an elevated secretion of proinflammatory cytokines such as IL-6, which is found in some patients, in high quantities in synovial fluid. In addition, the formations of autoantibodies that attack the joints of the entire organism are among the main causes of the presentation of RA [134].
\nThe immune system is characterized by a network of complex mechanisms whose main objective is to protect the body. However, if there is a failure in its regulation, it can generate hypersensitivity and/or autoimmunity. For this reason, it is very important to know how our immune system works and how these pathologies originate. Currently, anaphylactic shock and skin reactions are the most frequent hypersensitivity reactions affecting organs and tissues. There are several mechanisms and factors involved which triggers hypersensitivity reactions. On the other hand, although autoimmune diseases are relatively common and our current knowledge about the mechanisms involved in their pathogenesis is very limited.
\nThanks to the authors who collaborated in the writing of this chapter: Dr. José Luis Muñoz, Dra. Flor Pamela Castro, Dra. Francisca Chávez, Dra. Isabel Chávez, Dr. José Luis Martínez and Dra. Marcela Hernández; as well as the Universities involved: Cuauhtémoc University Aguascalientes, Autonomous University of Durango Campus Zacatecas and Autonomous University of Zacatecas. Thanks for the financial support for chapter publication.
\nWe have no conflict of interest related to this work.
While factors such as trade growth, ease of global travel, and technological progress affect health positively, on the other hand, changes in lifestyle, such as especially stress, unhealthy nutrition, and a decrease in physical activity, have caused health to be negatively affected. Besides, factors such as the increase in natural disasters, financial crises, and security threats are other conditions that negatively affect health. Today, the disease burden has increased significantly with the prolongation of a lifetime with the increase of infectious diseases and noncommunicable chronic diseases that have become active again with the effect of mass population movements, such as migration [1, 2].
Parallel to the social developments in this age, the changing necessities of individuals and communities have also changed the perspective on health, so a health-centered care approach that protects, maintains, and improves the health of the individual, family, and society has gained importance today. This understanding is based on enabling the individual to acquire behaviors that will protect and improve their well-being and make the right decisions about their own health [2]. The World Health Organization (WHO) defines health as “not only the absence of disease or disability but also a complete well-being in terms of physical, mental, and social” [3]. Health is a fundamental human right. In the Ottawa Convention, it is emphasized that to be healthy, there must be food, shelter, peace, as well as sufficient economic resources, a coherent ecosystem, and sustainable resources to maintain health. The acceptance of these prerequisites suggests the relationships between factors such as physical environment, economy, lifestyle, and health. These correlates provide a basis for a health holistic approach at the heart of the definition of health promotion [3, 4].
Health promotion is effective in improving the well-being of individuals physically, psychologically, educationally, and professionally, thanks to preventing health problems, encouraging healthy lifestyles, and facilitating access to health services. Besides, health promotion plays an important role in controlling overall health costs and making families, communities, workplaces, and organizations healthier [5]. Today, the health system and all professions serving in this field need to transform their laws and regulations, vocational training, and practices in a way that will help people to reach optimal health, which is defined as complete well-being in terms of physical, mental, social, emotional, and intellectual [6]. This situation maybe mediated through activities, such as lifestyle changes, raising awareness, changing behavior, and creating environments that support healthy behaviors. It is also the process of enabling individuals to increase control over and improve their own health [7]. Many health behaviors and health promotion theories have been adapted from social learning and behavioral theories and applied to epidemiology, biology, and health sciences. Art and creativity were often excluded from them. Nonetheless, today’s understanding of health requires the integration of concepts, such as creative thinking, intuitive and aesthetic knowledge, spiritual awareness, integration, and maturation, which are extremely important in the development of health [8]. The examination of the processes of making and creating art and the development of aesthetic sensations that occur at the end of this process play an important role in both the development of health, the growth and maturation of the individual, and the recovery and repair of illness [9, 10]. Art activities not only support holistic health but also act as a source of motivation for well-being. The inclusion of art in health care services has positive effects on society from the more broad perspective of health professionals, patients, and their families [11]. WHO [9] states that art therapy has an important effect on preventing diseases and finding solutions in the management of diseases.
The best-known definition of health promotion is the definition in WHO’s Ottawa Convention. Health promotion in the Ottawa Convention is stated as “a process that aims to increase people’s control on their health and creates opportunities for them to promote their health” [9, 12]. Health promotion is a process that uses biological, environmental, psychological, and physical components to create impacts on health and prevent illness, disability, and premature death through educational-oriented voluntary behavior change activities [12]. The promotion of health occurs by means of being realized comprehensively without considering each other separately of the social, cultural, political, and economic processes in the society. This process aims to change or improve the characteristics, feelings and thoughts, actions of people, as well as to positively change the health behaviors, possessed environmental and economic conditions in the society [1, 6]. Health has entered into the process of radical change and promotion through the awareness-raising of health promotion and the worldwide adoption of the importance of the concept. The common purpose of health policies particular to each country is to increase the number of healthy individuals in society and to promote public health [1, 2]. The main source of promoting health and reaching the targeted community criteria in health is to increase the "protective and preventive" activities, which are qualified as the first step in the health sector [5, 6]. In this context, ways to promote health may be specified as strengthening the health system, empowering the individual, empowering the society, forming healthy society policies and cooperating between sectors in health for implementing, and increasing the capacity to improve health [7]. One of the methods of improving health and empowering the individual can be through art. Art therapy began to be widely used, especially in the rehabilitation works carried out in the second world war. The term “Art Therapy” was first used by Adrian Hill in 1942 when he was teaching painting at the King Edward VII Sanatorium. Expressive art therapy is used for therapy that uses all art disciplines. Therapists practicing the discipline of expressive art therapy mostly determine their own therapy methods by integrating one or more of the limited areas of psychotherapy methods, such as painting therapy, reading therapy, dance therapy, drama therapy, music therapy, poetry therapy, and psychodrama. Since expressionist art therapy is a practice that took shape in the last half of the 20th century, it still continues to develop and continues to expand its scope and definition [8, 13]. People have benefited from art for centuries to eliminate mental and physical ailments and they still continue to use it as a treatment method. Many different cultures have embraced the idea that creative expression can make a powerful contribution to the healing process. Throughout recorded history, painting, stories, dance, and music have been part of people’s lives as healing rituals. Considering the physiological and psychological effects of art, many applications have been made as a method specific to the disorder [14]. Art, which is the way people express themselves, is a way of expressing their feelings, thoughts, and ideas with the help of artistic expressions. On this path, there is psychological relaxation, spiritual rest, and emotional calmness. With the materials used while doing this, it enables people to reflect their weakness, stress, and anxiety, in short, their negative feelings or positive feelings in the opposite direction, or what individuals want to tell, with shapes and symbols that they reveal through art [15]. Art therapy is to reveal the creative process by using art materials therapeutically together with an instructor who has received art therapy training to make individuals feel good. With this method, people rediscover their feelings and themselves, express their thoughts, make them question themselves, provide psychological relief, acquire the ability to manage their own behavior, gain skills, develop self-confidence, reduce stress and anxiety levels, and provide satisfaction, relaxation and comfort.
In all known societies in the world since prehistoric and primitive societies, artistic activities, such as temples, houses, painting, sculpture, and weaving, were carried out. Looking at ancient Greece, medicine and art have been accepted as an inseparable whole. It was believed that healing is spiritual as well as physical and this is possible with art. In the kingdom of Apollo, science and art were referred to as an indispensable part of human health as a whole. In other words, art has taken place in social life starting from an early age. Birth, death, marriage, harvest or crop ceremonies, and religious, spiritual and physical healing rituals were intertwined with art. Ancient people made art a part of their lives by singing, dancing, drumming, drawing, or telling stories [13, 15]. In general, art has an important contribution to human health. Since antiquity, music, painting, theater, and similar human creations have had a healing effect not only on sick individuals but also on normal people. Aside from the healing power of art in people with mental disorders, the positive effects it has on the morale of people, in general, have continued throughout human history [8]. Margaret Naumberg made the first definition of art therapy as a profession in America. She defined it in 1915 at the school where she was the principal and started to implement it. The discovery of the therapeutic power of art dates back to the 1940s. Its professional use began in the 1960s. Adrian Hill claimed that the drawings and paintings they made with tuberculosis patients not only allowed them to evaluate time but also allowed people to express their emotions and traumatic experiences. In 1958, the first art therapy course was opened at New York University, which also taught his methods and principles [8, 13, 15].
Art has taken place in social life starting from ancient times. Birth, death, marriage, harvest or crop ceremonies and religious, spiritual and physical healing rituals were performed with artistic activities. Ancient people made art a part of their lives by singing, dancing, drumming, drawing, or telling stories [10, 11]. In a general manner, art has an important contribution to human health. Since ancient times, music, drawing, theater, and similar human creations have had a healing effect not only on sick individuals but also on normal people. In other respects, the healing power of art in people with mental disorders, and the positive effects it has on the morale of people, in general, have continued throughout human history [8, 16].
Art therapy has been used as a therapeutic method, which is characterized as a power to increase health and well-being since the beginning of the 21st century [8]. Art therapy, which is defined as the use of art to improve and strengthen the physical, mental, and emotional health of individuals, benefits from the creative, productive, and dynamic effect of art through artistic activities. Accordingly, art therapy is based on the belief that this creative process, which includes artistic self-expression, helps people resolve conflicts and troubles, improve interpersonal skills, reduce stress, manage behavior, increase self-esteem and self-awareness, and gain insight [17]. In other words, it is the use of performing art by professionals, as a developer and therapeutic, for people who experience disease, trauma, or life difficulties, or who only demand personal development. Performing and using art has been validated to overcome art and other traumatic experiences, improve cognitive skills, and increase getting pleasure in life [8, 13, 18].
The American Art Therapy Association defines art therapy as a mental health profession that uses the creative process of making art to heal and enhance the mental, physical, and emotional well-being of individuals of all ages [17]. The American Art Therapy Association considers this process as the process of making art in a professional relationship with individuals who have mental disorders, experience traumatic processes, and are exposed to difficult living conditions. Individuals’ awareness can be improved with the process of making art and what is reflected in the art product, and individuals with mental disorders can better cope with the symptoms caused by their illness. The art creation process provides support to clients in terms of increasing cognitive functions and life satisfaction. According to the Canadian Art Therapy Association, art psychotherapy is the use of what the client reflects on the art product to increase mental, physical, and emotional well-being in the creative process.
Art therapy is a means of creating psychological maturation in individuals by benefiting the power of imagination to create insight, integrity, and healing using art materials. Art therapy is a quite successful and effective means of expressing repressed emotions and underlying conflicts through verbal language. Art therapy is a treatment method used in many spiritual, developmental, neurological, mental, and behavioral disorders. Art therapy is a treatment method used in many spiritual, developmental, neurological, mental, and behavioral disorders. Many art therapists agree that the creative process has a healing power itself [8, 9, 10, 11]. For example, a Cochrane review looked at the impact of dance/movement therapy on psychological and physical outcomes in people with cancer. It was determined that dance/movement therapy may have beneficial effects on quality of life and somatization [19]. In another study, which included 421 people and examined nine studies, it was determined that music therapy reduced depressive symptoms and anxiety and supported individuals to continue their daily activities [20]. In a study on Alzheimer’s disease testing the feasibility and effectiveness of a multidimensional visual arts intervention called Art, Colors, and Emotions therapy (ACE-t), they reported an improvement in the management of behavioral and psychological symptoms in dementia and a significantly higher measured quality of life [21]. In a study conducted on 55 cancer patients, it was found that there was a significant decrease in pain, fatigue, and anxiety levels after art therapy sessions [22]. Ataseven (2018) applied a 10-week art therapy program to schizophrenic patients receiving inpatient treatment, and it was found that it was beneficial in improving symptom profile, subjective well-being, and insight levels in schizophrenic patients who attended the sessions [23]. According to the findings of another study conducted to improve the psycho-emotional and motor skills of the elderly, using dance and theater elements in art therapy is effective in the treatment and rehabilitation of nervous system and musculoskeletal system diseases and injuries of the elderly, getting away from different problems and gaining new skills [24]. Art therapy enables individuals to express themselves creatively using art and to communicate differently with themselves, others, and their reality. The National Institute for Health and Clinical Excellence (NICE) guidelines for psychosis and schizophrenia emphasize that art therapies, including art therapy, improve negative symptoms of psychosis. As a result of the review of 18 articles on the subject, it was determined that art therapy is a useful, meaningful, and acceptable intervention for patients with schizophrenia. For this reason, NICE guidelines recommend art therapy for all patients with schizophrenia, especially for symptom relief [25, 26].
The art therapy process is based on the discovery that our most basic thoughts and emotions are engraved in the subconscious, and that reaching their full expression will be through shapes rather than words. The aim of art therapy is not to eliminate one’s fears, anxieties, restlessness, and unhappiness, but to transform these negative emotions into honest expressions using some creative ways and forms [8, 27]. The aims of art therapy are as follows [27]:
To resolve after reaching the "I" phenomenon and the trouble by the individual’s self-expression, creativity, and ability method, to put the emotions and troubles that are difficult to express verbally on paper through art, and to overcome the formidable interferences between the specialist and the patient in a safe environment. The patient individual actually draws his troubles.
To solve the potential of the individual with natural expressions, the purpose here is to make easy access of the specialist to the troubles and to establish a bridge between the drawn picture, the person who draws, and the specialist. It helps to resolve emotions and thoughts that are formidable to overcome, thanks to therapy.
Through this practice, the person has the opportunity to think and compare by experiencing the trouble and emotions the person has experienced over and over again. Thus, a person beholds by relating between the past and the future, and he learns to take the right steps by choosing how he will react in the same situations he will encounter in the future, with the experience he has gotten as a result of his experiences.
The most important feature of art therapy is to compare by confronting the emotions and the unconscious subconscious through the active imagination.
The therapeutic functions of art therapy are listed below [8, 23, 28]:
Art therapy can be used for people with different needs and challenges. By sharing thoughts and feelings through a visual, a person can experience risk-taking in a supportive relationship. Art therapy provides the emotional maturation of the person, increases self-esteem, and provides psychological and social integration.
Externalizing the experience by creating images and objects makes it possible to talk through the embodied artwork.
Some clients can control emotions that they cannot cope with through the images and objects they create.
The symbols created in art therapy and the interpretation of this symbolic content lay the groundwork for self-understanding and emotional development.
The work of art that emerges in the art therapy process with its color, shape, and stylistic aspects is permanent. The permanence of the artwork – as opposed to the temporary nature of oral expression – enables art therapists and clients, in particular, to follow and reflect on the changes that occur during therapy. It helps build a sense of focus and continuity that can be difficult to maintain in therapy.
Art therapists offer a creative “helping” environment to their beneficiaries by integrating the types of artistic expression with helping techniques for humans. The inclusion of art therapy in health promotion practices has been known to be beneficial for so long [8, 27, 29]. Findings show that art-based practices are effective in the formation of general well-being and the improvement of mental health [30, 31]. Art practices contribute to the improvement of individuals’ health and increase their awareness of themselves and their well-being. According to WHO [9], art contributes significantly to the development of children, the prevention of health-related problems, the provision of quality care, and the formation of health-promoting behaviors. Besides, it may be possible to prevent dementia and aging-specific problems, treat stress, depression, and anxiety, and also prevent situations such as discrimination, social isolation, and loneliness, which are risk factors for mental health with the use of art therapy in health promotion programs. While it is necessary to be at least a literacy level in health education, which is important in the promotion of health, it has contributed to the improvement of individuals’ health by overcoming this interference with many practices of art therapy [32].
Art therapy has been used in clinics for more than a century and is professionally maintained. In recent years, the healing effects, benefits, and significant contributions of art to the healing process have been revealed through systematic and controlled studies, and these studies are becoming increasingly common. The art therapy method, which has been proven in Europe and America and later all over the world with scientific studies and data, has been accepted within the framework of Alternative Medicine practices in the CAMBRELLA study carried out within the European Union, in the American National Health Institute and the World Health Organization (WHO) 2014–2023 strategy document [33]. With the development of technology, it is seen that the ways of applying art therapy are diversified today. In recent years, potential possibilities for art therapy have been tried to be developed using digital technology. Interest in digital technology-based studies and applications is increasing day by day. A review was published on this topic, which included 12 studies with more than 400 records scanned. In this review, it was determined that the possibility of sharing images online and applying art therapy digitally increased by art therapists. It also concluded that technology can increase the relevance and reach of art therapy without compromising the core principles of the profession [14]. In another study examining a total of 563 works on art therapy in the visual arts, it was determined that painting, painting, and photography were the most used modalities in the field of visual arts for art therapy purposes. In these studies, it was concluded that art therapy had effects that improve rehabilitation and reduce psychological distress in patients [34]. Different clinical guidelines from the National Institute for Health and Care Excellence (NICE) include art therapy as an indication with recommended evidence. Evidence-based practices related to art therapy are included in different guidelines. The National Institute for Health and Care Excellence (NICE) presents art therapy as an indication with evidence. Nursing Interventions Classification (NIC) has accepted art therapy as a nursing intervention since the beginning of the 21st century [34, 35].
Art therapy can serve as a link through which individuals can explore past and present experiences, review one’s life, cope with, adapt to and adapt to age-related changes, and receive support or physical care during an emotional crisis, such as the loss of an organ, memory, or mobility. Art therapy is especially applied in oncology, dementia, and mental care. Oncological patients are one of the patient groups in which art therapies are most frequently used. Kaimal et al. (2019) applied art therapy to cancer patients and their caregivers. In this study, they reported that art therapy demonstrated positive behaviors, such as pleasure, relaxation, and creative problem solving, in cancer patients and caregivers after treatment. Thus, they showed that short-term art interventions can be beneficial for cancer patients and their stressed caregivers [36].
It is stated that symptoms that affect physical integrity, such as pain, are reduced in cancer patients who are treated with art therapy, the psychosocial process is positively affected, and fatigue and anxiety are reduced [36, 37]. Nainis et al. (2016) evaluated the symptoms of patients after art therapy in their study with cancer patients and observed a reduction in eight of the nine symptoms present in the patients [22].
One of the diseases in which art therapy is widely used is dementia. The NICE guideline for dementia (2016) highlights the value of art therapy for different stages and symptoms of dementia, including non-pharmacological treatments. It also discusses the value of interventions that acknowledge the complexity of the situation and address the person as a whole, including their physical, emotional, social, and cognitive processes [37]. Dementia patients often experience neuropsychiatric symptoms that reduce their quality of life. The pharmacological treatment efficacy of these symptoms is limited. People with this diagnosis need treatment that improve neuropsychiatric symptoms and quality of life. Art therapy has been found to be beneficial in dementia as a result of examining the current 45 literature. With the appropriate structure, dementia patients can produce and evaluate visual art. When a few sample art therapy studies were examined, it was observed that patients enjoyed and improved their neuropsychiatric symptoms, social behavior, and self-esteem. The use of art therapy is recommended for Alzheimer’s and other dementia disorders. In a study [38], it was found that art therapy had significant effects on improving attention and some other cognitive functions in dementia patients. In addition, it has been revealed that art therapy methods have many benefits, such as reducing behavioral and psychological symptoms in patients with dementia and their caregivers, improving the social skills of patients, and relieving the burden of dementia caregivers. In a study on another neurological problem, it was determined that art therapy improved perceptual symptoms by acting as a restorative behavior training in Parkinson’s patients [39].
Art therapy also has different effects on other health problems. For example, it enables people with disabilities to understand and express their emotions through artistic creation and creative thinking, thereby promoting self-awareness, relaxation, confidence, and self-efficacy. Blomdahl et al., (2018) reveal in their study that the patient contributes to more knowledge by deepening the understanding of the importance of talking to himself in an internal dialogue that occurs when the patient participates in the image, art materials, and art-making process [40]. According to Holmqvist et al., (2017), art therapy has proven that there are situations in which an internal change can be observed in patients by affecting consciousness, self-awareness, and ego-strength, which concerns the work in the therapeutic process [41]. On the other hand, Wahlbeck et al., (2018) proved in their study that the therapy acts as a catalyst for the healing process in women using art therapy. Art therapy has been accepted by women, and by creating visible images, they have shared the burdens of fear, gaining hope and self-confidence in the face of their upcoming birth [42].
In a Health Evidence Network synthesis report from the World Health Organization [43], they determined that there is evidence that the arts play an important role in promoting health, preventing a variety of mental and physical health conditions, and treating or managing conditions that occur throughout life.
Different modalities of art therapies, such as visual arts, music therapy, dance therapy, and drama therapy, are also used as complementary treatments for cognitive and psychological disorders of depression, stress, anxiety, or some neurological symptoms that occur with stroke [44]. In addition, art therapy methods are used to reduce the negative effects of chronic diseases, such as diabetes on the individual [45].
Art therapy as a therapeutic process is an interdisciplinary practice that uses art as an expressive process for self-knowledge and expression of conflicts and inner feelings. It is a therapeutic resource that absorbs different knowledge from many disciplines and therefore aims to heal the individual as a whole through processes of self-knowledge and transformation. Studies show that art therapy has significant effects on health promotion. A mixed-method study was conducted to examine the effects of art therapy on smoking cessation in Taiwanese young smokers. The need for smoking, nicotine addiction, self-esteem, self-efficacy, and smoking cessation were examined. Art therapy reduced adolescents’ attachment relationships and the need for an ego identity found by smoking together [46]. The intervention also improved participants’ self-efficacy, motivated their willingness to draw, and gave them the opportunity to share challenges and befriend others. Art therapy intervention in youth improved self-efficacy and self-esteem [47]. Roy and Manley (2017) conducted a dance and movement session with people in the UK who were recovering from substance abuse. They found that these activities helped establish therapeutic relationships, friendships, and bonds [48]. The value of incorporating arts-based approaches into health promotion programs has long been recognized as beneficial in influencing change. Such approaches have been used in many Australian schools and have been found to improve general well-being and mental health [29]. According to Silva (2019), the cathartic function of painting, the fluidity of the paint, and the energetic movement of the painting liberates and expands consciousness, allowing the elderly to know more about motor coordination, alertness, awakening sensitivity, intuition, creative and creative spirit, themselves and the world, and provides the expansion of perception [49]. In another study, the effect of art therapy on healthy aging was investigated and it was determined that artistic programs increased the quality of life, decreased negative emotions, anxiety, and increased self-esteem [50].
Art and health can meet in effective coping with crisis situations in a region or the world. As a matter of fact, during the COVID-19 pandemic, art therapy methods were used a lot. The World Health Organization and a coalition of cultural partners called for action to mobilize the arts in the fight against isolation, anxiety, and mourning against the mental health crisis caused by the COVID-19 pandemic. Organizations such as University College London, the Tate galleries, Italy’s Castello di Rivoli Contemporary Art Museum, England’s newly established National Center for Culture and Arts, Hospital Rooms charity and Saudi philanthropic Art Museum have united under the umbrella of the UK’s Healing Arts 2021. From 2 to 26 March, these organizations and the UK’s National Center for Culture and Arts arranged weekly virtual meetings and events [51]. In addition, the event “Visions And Voices Of A Healthy Planet: The Healing Arts for World Health Day 2022” drew attention to human-induced climate change. It was emphasized that this climate change poses a threat to the survival of people. It was also stated that climate change significantly changed people’s understanding of their own health, well-being, and place in the world. For this purpose, events, where health professionals and artists came together in times of crisis, were organized. To this end, Christopher Bailey, the Art and Health leader of the World Health Organization, headquartered in Geneva, Switzerland, focuses on mobilizing the global media to support the health benefits of art in everyday life. On the other hand, they are mapping the evidence for the physical, mental, and social health benefits of arts and art therapies for the World Health Organization, with a commission from the New York University (NYU) Creative Arts Therapies Consortium and the International Research Alliance [52].
People have benefited from art for centuries to eliminate mental and physical ailments and they still continue to use it as a treatment method. Many different cultures have embraced the idea that creative expression can make a powerful contribution to the healing process. Throughout recorded history, painting, stories, dance, and music have been part of people’s lives as healing rituals. Considering the physiological and psychological effects of art, many applications have been made as a method specific to the disorder. As explained below, many ideas have been put forward and studies have been made about the contribution of art to the healing process [53]. In the art therapy process, in addition to applying the expression of only one of the different art branches, it is possible to switch from one art branch to another with an intermodel expressive approach. Major art therapy techniques are music therapy, dance therapy, poetry therapy, visual arts therapy, and drama therapy.
This method is also a method that has been used since ancient times, shamanism. It is a widely used therapy method in the world and especially in our country. “Music has influenced people by creating a trance and time has directed the masses. Because especially music has a feature that intensifies emotions, it has been used as a quite common method in many civilizations to strengthen religious feelings and to treat diseases [8, 54]. The music therapist helps basically treat the patient’s health by reaching the treatment methods and goals through using their musical experiences (improvisation, singing, lyricising, listening and discussing music, and moving with music) in various fields, such as cognitive functions, motor skills, emotional and effective development, behavior and social abilities, and quality of life [55]. Music therapy involves using music in a therapeutic relationship to address clients’ physical, emotional, cognitive, and social needs. Music therapy, according to the World Federation of Music Therapy [54], is defined as “the use of music and/or musical elements (sound, rhythm, melody, and harmony) to develop and increase the communication, relationship, learning, expression, mobilization, organization, and the other related therapeutic effectiveness, which they need, after designed by a trained music therapist for the purpose of physical, emotional, social, and cognitive requirements of one person or a group.” Music therapy provides different ways of communication for people who have difficulty expressing themselves with words. Research on music therapy has demonstrated the effectiveness of treatment by focusing on many areas,s such as general physical rehabilitation, increasing motivation for treatment compliance, providing emotional support to clients and their families, and providing an outlet for the expression of emotions [15, 27, 53].
In the early 1800s, music was used as a therapeutic practice to maintain and improve comfort, and music therapy was defined as a part of the healing process. In the literature, it has been emphasized that music therapy affects individuals positively by establishing a connection between their physical and cognitive characteristics. In many studies, it was found that music therapy has positive effects on health. In the meta-analysis study of Amaral et al. [55], it was found that music lowers blood pressure. In the study by Ekinci and Gökalp [56], it has been found that music therapy reduces the effect of the neuroendocrine response to stress. In the study of Zander et al. [57], it was found that the psychological and physiological health of university students who took music education for 2 years improved and the students showed healthy behaviors. In another study, it was concluded that music strengthens the body’s immune system and reduces stress level [58]. In addition, it has been reported in the literature that music therapy supports neuroplasticity in functional brain network organization [59].
Bradt et al (2021) published the results of a review called music interventions for improving psychological and physical outcomes in people with cancer. This study included 81 studies with 5576 participants. Of the 81 studies, 74 included adults and seven included children. This systematic review showed that, compared to standard care, music interventions can have beneficial effects on anxiety, depression, hope, pain, and fatigue in adults with cancer. It was concluded that music therapy, but not music medicine interventions, can improve adult patients’ quality of life and fatigue levels [60]. A meta-analysis of nine studies with a total of 421 people from any age group (adolescents to the elderly) found that music therapy was more effective than standard therapy alone. In this study, it was determined that music therapy reduced depressive symptoms and anxiety and helped to improve functioning as well as maintaining participation in work, activities, and relationships [61].
In movie group therapy, the film or documentary selected by the specialist is watched and discussed and commented on it with the specialist. The people who watch the movie talk about the characters of the movie among themselves, identify with them, and reveal their similar emotions. Thus, individuals experience a non-verbal relief, seriously dwell on the troubles and the causes they watch and think about the measures they can take to solve their troubles by establishing a connection between these and their own troubles, starting from the solutions in the movie. While the synthesis and the discussion of the movie are made, the troubles that are engraved in the subconscious of the individual unwittingly arise [31, 62].
It has been reported in the literature that important learning environments for health promotion can be created by using film therapy [63]. In a study conducted with 24 elderly people, it was found that film therapy had positive effects on happiness and quality of life in elderly individuals. Similarly, another study states that film therapy is an important approach to improve the health of the elderly [36]. It was contributed significantly to the promote the health of individuals with a movie therapy practice organized with 15 young women doing the sex trade. Together with this practice, it was observed that women’s sense of branding decreased and there were positive changes in the personal and professional lives of individuals [62]. In a study conducted in the United States, movie therapy was applied to enable schooled youth to have healthy sexual intercourse and to promote health in this direction. As a result of the study, it was reported that young people developed positive knowledge, attitude, and behavior toward sexuality [64].
Visual art is a field that allows people to reveal their journeys to their inner worlds with lines and colors. This expressive feature of visual arts helps individuals to discover themselves and develop their inner perceptions. These non-verbal and expressive supports enable people to be treated psychologically. This functional dimension of visual arts serves as a bridge established in the field of health [8, 17]. The American Art Therapy Association, which carries out studies on art therapy and health, has defined visual art therapy as helping individuals develop interpersonal skills in solving conflicts or individual troubles, directing behavior, reducing stress, increasing self-worth and individual awareness, and self-realization of the individual [17]. Visual art therapy is performed with dry paint, such as pastel and colored pencils; wet paint, such as gouache, marbling, oil paint, and acrylic; sculpture materials, such as play dough, clay, wire, and colored papers, that can be used for assemblage and collage; and art materials that can be prepared with recyclable wastes collected from the environment [65, 66].
Visual art therapy works with a therapist to gain awareness with the expressions that the individual creates, to cope with anxiety, depression, trauma or chronic diseases, and build self-confidence. With the use of lines and colors in visual art therapy, the person transfers his inner world to paper and works with the emotions conveyed by the therapist. The product embodied gains meaning in the therapeutic intermediate area, accompanied by the therapist. The supportive relationship of the therapist plays an important role in the meaning-making process. The unconscious material symbolized by the picture strengthens the ego [66]. In the literature, a study was conducted on women to improve breast health by using the visual art therapy method. As a result of the study, it was found that visual art is an innovative and quite suitable approach to improving breast health [65]. It was found that the stress and anxiety levels of the caregivers decreased, their positive emotions increased, and their satisfaction with handmade arts improved during the 6-month visual art therapy intervention, which was conducted with the caregivers of cancer patients. Besides, it has been reported that positive communication between caregivers, individuals with cancer, and health professionals has increased by means of visual art therapy [67]. The visual art therapy method was used in the prevention of sexually transmitted diseases through health education among high school youth. At the end of the study, it was concluded that visual art therapy is an innovative method to engage young people and that individuals’ knowledge and attitudes toward preventing hepatitis and HIV have increased [68]. In another study, it was reported that visual art therapy practiced with old persons helps individuals to age healthy and increases their well-being and quality of life [69]. Visual art therapy was included in health promotion practices, and as a result, it was observed that students’ awareness of health behaviors and their level of well-being increased in his study that Mckay and McKenzie conducted for school-age students [29].
The feature of dance as an integrative and healing art dates back to ancient cultures. Dance therapy is a psychotherapy method that helps the individual’s social life and physical and emotional development [70]. Dance therapy, according to the definition of Dance and Movement Psychotherapy Institution [71], is the experience of the individual’s personal, emotional, physical, and social development and awareness of art within the framework of a creative process with the psychotherapeutic practice of movements and dance. The basis of dance therapy is based on the principle that a person’s movements reflect his thought system and emotions. As a result of perceiving and recognizing the movements of the person and expanding the movement repertoire, the dance therapist who witnesses this process helps to increase the awareness of the person, create new movement perceptions, and thus develop new communication mechanisms in their emotions and verbal communication [70].
In one study, healthy women aged 50 years and older were given a 15-week jazz dance program once a week, and significant improvements were observed in the static balance of women as a result of the study [72]. In another study using the Profile of Mood States (POMS) in people with dementia, POMS was administered to 36 people with dementia. POMS was applied to individuals with dementia before and after four therapeutic creative dance sessions, and the scores were analyzed. After the therapeutic creative dance sessions, the patients’ stress, depression and confusion decreased, the vitality factor increased significantly. Thus, it was concluded that therapeutic creative dance can provide emotional benefits to dementia patients [73]. In another study, it was found that individuals reached a higher range of motion and knee torque values, and therefore, the risk of falling of individuals decreased with the low-impact dance program performed with 26 middle-aged and old individuals [74]. In the study of Kim et al. [75], a 3-month health promotion program was conducted with old individuals to examine changes in health behaviors, cardiovascular risk factors, and life satisfaction. It has been reported that Korean traditional dance figures practiced by elderly individuals for 3 months are effective in improving health behaviors, increasing life satisfaction, and reducing cardiovascular risk factors in the study. A Greek traditional dance program was practiced for 24 weeks in the study conducted with women with 27 breast cancer survivors. In the study, it was found that dance could be an alternative physical activity option for breast cancer survivors and could provide significant improvements in strength, physical function, and mood [76]. In the study of Argiriadou et al. [77], a Greek traditional dance program was practiced by middle-aged women. It has been concluded that dance significantly improved the subjective health of middle-aged women in the study.
Combining science and art, psychoballet makes use of artistic activities, such as dance, ballet, and theatre. It is aimed to improve the quality of life of people with psychiatric problems or people with disabilities, through artistic activities, such as dance and ballet, and they are rehabilitated, thus helping them to integrate with society and not be socially disconnected. With psychoballet, its effectiveness has been confirmed in people with body image and eating disorders, chronic diseases (human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and breast cancer), fibromyalgia, and people with disabilities [78].
In another study, Cernuda and Andrés (2019) studied the benefits of Cuban psychoballet in Alzheimer’s patients. In this study, psychobalding by Alzheimer’s patients had effects such as delaying neurodegeneration and recovering cognitive memories in them [79]. The results of this study revealed that psychobalene is an important and useful non-pharmacological method in patients with Alzheimer’s and other dementias.
The aim of drama therapy is to show the emotions, thoughts, and characters undertaken in the closest possible way to reality. Individuals are offered the opportunity to judge their own emotions and thoughts and the events they experience from a different perspective [8, 80]. It has been proven that theater is a quite effective and enjoyable practice in promoting health, developing healthy lifestyle behaviors, and strengthening positive health perceptions in the literature [18, 80]. The content of theatrical production in any drama therapy aimed at improving health should be prepared by taking into account the knowledge, attitudes, and behaviors of individuals. In the content, the situations that prevent individuals from changing their behavior should be analyzed and this area should be especially focused on. Individuals to ask questions, discuss, and being allowed for role play about the current trouble enables them to experience behavioral change toward these troubles with this therapy method [32]. In drama therapy, especially socially isolated and shy individuals open up, and the importance they attach to group values and interpersonal relationships begins to increase. Since the client knows that he is pretending, he gets rid of the anxiety caused by revealing himself. Even if individuals pretend, they will start to be themselves after a while, so the problems and conflicts they experience outside begin to be seen during the game. Drama therapy is a very useful method in both diagnosis and treatment. It also has significant effects on older individuals.
In one study, an intergenerational theater group was formed of older adults and university students. As a result of the study, it was reported that the theater improved intergenerational relations and age discrimination decreased. Besides, it has been reported that this practice contributes to the development of health by helping to build self-esteem and confidence, and the development of empathy, social justice, and support feeling between university students and older adults [81]. In Wimpenney’s study [82], a theater group was formed from individuals over 50 years of age. It has been stated that this practice provides healing to the health and well-being of individuals. Drama therapy was performed with individuals 6 and 7-year-old in the literature. As a result of the therapy, it was observed that the children began to speak fluently, their mental lexicon improved, and their creativity and concentration increased. Moreover, children’s self-confidence and motivation have increased and their communication skills have improved, thanks to this practice [80].
Poetry therapy, based on the healing power of words, offers unique opportunities for individuals to improvise and exhibit creative behaviors. Poetry has a healing power in itself; therefore, it is used efficiently and effectively for the purpose of establishing therapeutic relationships with individuals. Reading and writing poetry positively affect both the personal and interpersonal aspects of the individual. Poetry therapy contributes to becoming clear in the individual’s perception of himself and others; increased creativity, self-confidence, and self-expression skills; relieving stress by putting intense emotions on paper; creating new meanings by synthesizing new ideas, insights, and information; to the development of mature coping skills that will enable change in behavior and attitudes [8, 11, 83]. Poetry is used as a tool for the expression of emotions that are difficult to express. This method allows individuals to express themselves, increase self-awareness, help individuals understand their own world, redefine their situations by opening new ways of perceiving reality, and enable therapists to gain deeper knowledge about their clients.
It has been proven that poetry therapy is important for end-stage individuals receiving palliative care treatment, their caregivers, and health professionals in a study in the literature. In this study, it was determined that the feeling of loneliness was reduced and the quality of personal care increased with poetry treatment [11]. It is stated the importance of using poetry therapy by health professionals in a health promotion program for health education in another study [83]. In another study, it was reported that poetry therapy is an effective method to eliminate the loneliness in society and to establish social interaction between individuals during pandemic periods [84].
Mandala is a circle consisting of geometric or organic forms, starting with a point and continuing indefinitely. In nature, sunflowers, tree trunks, and animal patterns, many examples can be seen. Man-made mandalas reflect symbols of eastern and western cultures that have different meanings together. In art therapy, the mandala has a different place because it helps to heal and develops consciousness. Starting with a point in the center and continuing, this technique grows as you draw, creating a meditative effect on individuals. It relaxes them, relaxes them, increases creativity and individual awareness. Mandala is a method of concentration. While drawing, all attention should be given to the drawn lines. Thus, it is ensured that the person stays in the moment. This helps the person to keep himself away from stress, worry, and anxiety [53]. Mandala making in art therapy is used to help patients feel at the center of their lives, to express themselves, and to help people discover who they are in the group [85].
As a result, the increase in communicable diseases and noncommunicable chronic diseases has provided preventive and preventive studies gain importance. This situation reveals the necessity of integrating art therapy into health promotion practices. By means of integrated art-based approaches, individuals gain and maintain health-promoting knowledge, attitudes, and behaviors. In this study, it has been proven that healthy life and well-being for individuals of all ages, which is the main purpose of health promotion programs, is possible with art therapy practices. Despite the critical importance of art therapy in the health promotion program, studies on this field in the literature are insufficient. Therefore, health professionals and disciplines in the field of art should direct their work together, and increase the health and well-being of society by increasing the evidence on this subject.
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
The authors declare no conflict of interest.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11932",title:"New Materials and Enhanced Performance of Sodium-Ion Batteries",subtitle:null,isOpenForSubmission:!0,hash:"75c27a6f2739e8af817bace95b0e50d6",slug:null,bookSignature:"Ph.D. Fatma SARF",coverURL:"https://cdn.intechopen.com/books/images_new/11932.jpg",editedByType:null,editors:[{id:"245850",title:"Ph.D.",name:"Fatma",surname:"SARF",slug:"fatma-sarf",fullName:"Fatma SARF"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11528",title:"Maintenance Management - Current Challenges, New Developments, and Future Directions",subtitle:null,isOpenForSubmission:!0,hash:"a3e4ad5806a77b0e930fbd4cb191bee2",slug:null,bookSignature:"Prof. Germano Lambert-Torres, Dr. Erik Leandro Bonaldi and Dr. Levy Ely Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/11528.jpg",editedByType:null,editors:[{id:"112971",title:"Prof.",name:"Germano",surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11529",title:"Product Design - A Manufacturing Perspective",subtitle:null,isOpenForSubmission:!0,hash:"b6f9e61bc85962bbae25e2aa2e1bb22e",slug:null,bookSignature:"Ph.D. Evren Yasa and Dr. Ozgur Poyraz",coverURL:"https://cdn.intechopen.com/books/images_new/11529.jpg",editedByType:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,isOpenForSubmission:!0,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",slug:null,bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",editedByType:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11759",title:"Copper - From the Mineral to the Final Application",subtitle:null,isOpenForSubmission:!0,hash:"afea7aef1cb09fc3a1a5d619152d02a6",slug:null,bookSignature:"Dr. Daniel Fernández González and Dr. Luis Felipe Verdeja González",coverURL:"https://cdn.intechopen.com/books/images_new/11759.jpg",editedByType:null,editors:[{id:"211395",title:"Dr.",name:"Daniel",surname:"Fernández González",slug:"daniel-fernandez-gonzalez",fullName:"Daniel Fernández González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:171},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science",parent:{id:"3",title:"Health Sciences",slug:"health-sciences"},numberOfBooks:95,numberOfSeries:0,numberOfAuthorsAndEditors:2355,numberOfWosCitations:3048,numberOfCrossrefCitations:1967,numberOfDimensionsCitations:4774,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"19",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!1,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:"biosimilars",bookSignature:"Valderilio Feijó Azevedo and Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:"Edited by",editors:[{id:"69875",title:"Dr.",name:"Valderilio",middleName:"Feijó",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!1,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:"high-throughput-screening-for-drug-discovery",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11038",title:"Vaccine Development",subtitle:null,isOpenForSubmission:!1,hash:"2604d260662a3a3cc91971ea07beca61",slug:"vaccine-development",bookSignature:"Yulia Desheva",coverURL:"https://cdn.intechopen.com/books/images_new/11038.jpg",editedByType:"Edited by",editors:[{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10736",title:"Neurotoxicity",subtitle:"New Advances",isOpenForSubmission:!1,hash:"50dfa1a8daaa4a6171a0f6fde2e8d651",slug:"neurotoxicity-new-advances",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:"Edited by",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:"Occurrence, Detoxification, Determination and Health Risks",isOpenForSubmission:!1,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:"aflatoxins-occurrence-detoxification-determination-and-health-risks",bookSignature:"Lukman Bola Abdulra’uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:"Edited by",editors:[{id:"149347",title:"Dr.",name:"Lukman",middleName:"Bola",surname:"Bola Abdulra'Uf",slug:"lukman-bola-abdulra'uf",fullName:"Lukman Bola Abdulra'Uf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:"drug-metabolism",bookSignature:"Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:"Edited by",editors:[{id:"232694",title:"Dr.",name:"Katherine",middleName:null,surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:"Pharmacology and Drug Interactions",isOpenForSubmission:!1,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:"metformin-pharmacology-and-drug-interactions",bookSignature:"Juber Akhtar, Usama Ahmad, Badruddeen and Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:"Edited by",editors:[{id:"345595",title:"Prof.",name:"Juber",middleName:null,surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",isOpenForSubmission:!1,hash:"6d200cc031706a565b554fdb1c478901",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",bookSignature:"Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:"Edited by",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10716",title:"Corticosteroids",subtitle:"A Paradigmatic Drug Class",isOpenForSubmission:!1,hash:"d600ff66a3b0544bcbb713ea46287590",slug:"corticosteroids-a-paradigmatic-drug-class",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10716.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!1,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:"pharmacogenetics",bookSignature:"Islam A. Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:"Edited by",editors:[{id:"226598",title:"Dr.",name:"Islam",middleName:null,surname:"A. Khalil",slug:"islam-a.-khalil",fullName:"Islam A. Khalil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:95,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"64762",doi:"10.5772/intechopen.82511",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10257,totalCrossrefCites:102,totalDimensionsCites:232,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"57717",doi:"10.5772/intechopen.71923",title:"In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages",slug:"in-vitro-cytotoxicity-and-cell-viability-assays-principles-advantages-and-disadvantages",totalDownloads:14778,totalCrossrefCites:75,totalDimensionsCites:146,abstract:"Cytotoxicity is one of the most important indicators for biological evaluation in vitro studies. In vitro, chemicals such as drugs and pesticides have different cytotoxicity mechanisms such as destruction of cell membranes, prevention of protein synthesis, irreversible binding to receptors etc. In order to determine the cell death caused by these damages, there is a need for cheap, reliable and reproducible short-term cytotoxicity and cell viability assays. Cytotoxicity and cell viability assays are based on various cell functions. A broad spectrum of cytotoxicity assays is currently used in the fields of toxicology and pharmacology. There are different classifications for these assays: (i) dye exclusion assays; (ii) colorimetric assays; (iii) fluorometric assays; and (iv) luminometric assays. Choosing the appropriate method among these assays is important for obtaining accurate and reliable results. When selecting the cytotoxicity and cell viability assays to be used in the study, different parameters have to be considered such as the availability in the laboratory where the study is to be performed, test compounds, detection mechanism, specificity, and sensitivity. In this chapter, information will be given about in vitro cytotoxicity and viability assays, these assays will be classified and their advantages and disadvantages will be emphasized. The aim of this chapter is to guide the researcher interested in this subject to select the appropriate assay for their study.",book:{id:"6310",slug:"genotoxicity-a-predictable-risk-to-our-actual-world",title:"Genotoxicity",fullTitle:"Genotoxicity - A Predictable Risk to Our Actual World"},signatures:"Özlem Sultan Aslantürk",authors:[{id:"211212",title:"Dr.",name:"Özlem Sultan",middleName:null,surname:"Aslantürk",slug:"ozlem-sultan-aslanturk",fullName:"Özlem Sultan Aslantürk"}]},{id:"66259",doi:"10.5772/intechopen.85270",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7502,totalCrossrefCites:54,totalDimensionsCites:138,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"40253",doi:"10.5772/50486",title:"Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development",slug:"lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development",totalDownloads:11251,totalCrossrefCites:21,totalDimensionsCites:103,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Anthony A. Attama, Mumuni A. Momoh and Philip F. Builders",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"42016",doi:"10.5772/55187",title:"Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults?",slug:"why-are-early-life-stages-of-aquatic-organisms-more-sensitive-to-toxicants-than-adults-",totalDownloads:3482,totalCrossrefCites:37,totalDimensionsCites:100,abstract:null,book:{id:"3408",slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Azad Mohammed",authors:[{id:"147061",title:"Dr.",name:"Azad",middleName:null,surname:"Mohammed",slug:"azad-mohammed",fullName:"Azad Mohammed"}]}],mostDownloadedChaptersLast30Days:[{id:"64762",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10236,totalCrossrefCites:100,totalDimensionsCites:229,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"49459",title:"Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration",slug:"pharmacokinetics-of-drugs-following-iv-bolus-iv-infusion-and-oral-administration",totalDownloads:15401,totalCrossrefCites:15,totalDimensionsCites:22,abstract:null,book:{id:"4491",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Tarek A. Ahmed",authors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}]},{id:"29240",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:27075,totalCrossrefCites:27,totalDimensionsCites:57,abstract:null,book:{id:"672",slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"66259",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7490,totalCrossrefCites:53,totalDimensionsCites:135,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"66742",title:"Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life",slug:"introductory-chapter-alkaloids-their-importance-in-nature-and-for-human-life",totalDownloads:4035,totalCrossrefCites:14,totalDimensionsCites:29,abstract:null,book:{id:"6828",slug:"alkaloids-their-importance-in-nature-and-human-life",title:"Alkaloids",fullTitle:"Alkaloids - Their Importance in Nature and Human Life"},signatures:"Joanna Kurek",authors:[{id:"214632",title:"Dr.",name:"Joanna",middleName:null,surname:"Kurek",slug:"joanna-kurek",fullName:"Joanna Kurek"}]}],onlineFirstChaptersFilter:{topicId:"19",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82439",title:"Cellular Cytotoxicity and Multiple Sclerosis",slug:"cellular-cytotoxicity-and-multiple-sclerosis",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105681",abstract:"Multiple sclerosis (MS) is an autoimmune disease in which discrete central nervous system lesions result from perivascular immune cell infiltration associated with damage to myelin (demyelination), oligodendrocytes and neurons. This culminates in debilitating neurological symptoms, primarily affecting women in their child-bearing years. Both the innate and adaptive branches of the immune system have been implicated in disease initiation and progression, and although the underlying cause remains elusive, there is compelling evidence for a complex interaction between genetic and environmental factors, leading to inflammation and neurodegeneration. Both direct cellular toxicity and antibody-dependent cellular cytotoxicity (ADCC) involving several cell types have been identified in playing major roles. These cells and their interactions in the pathogenesis of MS will be discussed.",book:{id:"11678",title:"Cytotoxicity",coverURL:"https://cdn.intechopen.com/books/images_new/11678.jpg"},signatures:"Annie M.L. Willson and Margaret A. Jordan"},{id:"82226",title:"Early Signal Detection: Data Mining of Mental Disorders with Statins",slug:"early-signal-detection-data-mining-of-mental-disorders-with-statins",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105504",abstract:"Statins are widely prescribed to treat dyslipidemias. It is well-known adverse reaction of these active ingredients related to rhabdomyolysis and myalgia, but there are other signals to be aware of, such as mental disorders. Pharmacovigilance tools help to trace known risks and detect early other unknown effects that appear over time. Data of all the reported suspected adverse drug reactions for statins from the international World Health Organization (WHO) repository Vigibase were analyzed with an adaptation of data mining Bayesian methodology to search for positive signals, threshold of false discovery rate (FDR) < 0.05, and listed candidates for priority clinical investigation. Among positive mental signals observed, some were currently stated as adverse reactions in technical factsheets as insomnia, depression, dementia, and nightmares, but others have not reached this condition as bipolar, psychotic, and emotional disorders or symptoms and suicide. Other diverse central positive signals that can be confounded with mental conditions obtained and not stated were senses impairment, such as blindness, deafness, balance disorder, and events related to suicide. Worrying positive signals proposed as candidates to further investigation are insomnia for pitavastatin, pravastatin, and simvastatin; dementia for atorvastatin and rosuvastatin; and suicide and psychotic disorders for atorvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin.",book:{id:"11679",title:"Pharmacovigilance and Regulations",coverURL:"https://cdn.intechopen.com/books/images_new/11679.jpg"},signatures:"Maria-Isabel Jimenez-Serrania"},{id:"82398",title:"Computer-Aided Drug Design and Development: An Integrated Approach",slug:"computer-aided-drug-design-and-development-an-integrated-approach",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105003",abstract:"Drug discovery and development is a very time- and resource-consuming process. Comprehensive knowledge of chemistry has been integrated with information technology to streamline drug discovery, design, development, and optimization. Computer-aided drug design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, and optimize the absorption, distribution, metabolism, excretion, and toxicity profile. Regulatory organizations and the pharmaceutical industry are continuously involved in the development of computational techniques that will improve the effectiveness and efficiency of the drug discovery process while decreasing the use of animals, cost, and time and increasing predictability. The present chapter will provide an overview of computational tools, such as structure-based and receptor-based drug designing, and how the coupling of these tools with a rational drug design process has led to the discovery of small molecules as therapeutic agents for numerous human disease conditions duly approved by the Food and Drug Administration. It is expected that the power of CADD will grow as the technology continues to evolve.",book:{id:"11091",title:"Drug Development Life Cycle",coverURL:"https://cdn.intechopen.com/books/images_new/11091.jpg"},signatures:"Neelima Dhingra"},{id:"81186",title:"Germicidal and Antineoplastic Activities of Curcumin and Curcumin-Derived Nanoparticles",slug:"germicidal-and-antineoplastic-activities-of-curcumin-and-curcumin-derived-nanoparticles",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.103076",abstract:"Curcumin is a major constituent of turmeric and has been shown to have a plethora of health benefits, which include, among many, antimicrobial, anticancer, and reduction of cholesterol. However, it has also been reported that curcumin has less bioaccumulation and is quickly metabolized and cleared from the body. Nanoparticle formulations are known to increase curcumin biocompatibility and targeting. Additionally, the antimicrobial activity of curcumin has been extensively studied and the mechanism of action provides clues for the development of new drugs for drug-resistant microbes. Thus, this chapter will review the biomedical application of curcumin and its nanoformulations against different microbes and other diseases, including cancer.",book:{id:"11323",title:"Antimicrobial and Pharmacological Aspects of Curcumin",coverURL:"https://cdn.intechopen.com/books/images_new/11323.jpg"},signatures:"Lilian Makgoo and Zukile Mbita"},{id:"82304",title:"Nonbiodegradable Hospital Waste Burden and Implications",slug:"nonbiodegradable-hospital-waste-burden-and-implications",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105009",abstract:"Hospitals and other healthcare facilities are very essential for the cure and care of persons suffering from health issues and also to promote health in society. As the health care services are improving and increasing their reach even in underdeveloped countries, so is the problem of health care waste (HCW) as hospitals generate a relatively huge amount of HCW, which consists of general as well as hazardous waste. The persons handling HCW are at immediate risk, followed by persons residing near HCW dumping/processing areas and the general public. Infectious HCW is a major threat to the health of humans and animals as it has the potential to spread various infectious diseases to the human and animal population. Due to the uncontrolled use of disposable nonbiodegradable materials by healthcare systems and their processing or lack of it, the HCW has emerged as one of the major sources of environmental pollution including the emission of the significant amount of greenhouse gases, which stands from 3 to 10% of total emissions of nations. HCW also leads to leaching chemicals, heavy metals like Pb, Cd, Cr, radioactive substances, and even generating carcinogens like dioxin in the environment contaminating air, soil, and water in general and especially in areas surrounding HCW dumping or processing affecting health and quality of life of not only of humans but cohabiting flora and fauna in those areas. Thus, the HCW is becoming one of the major sources of environmental pollution and collectively contributing to the problem of global warming. The HCW needs to be given the desired attention and priority in actions and policy. The chapter focuses on sources, types, and various environmental and health hazards related to HCW, its global environmental impact and management strategies for minimum effects with an eco-friendly and sustainable approach.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Deepak S. Khobragade"},{id:"82246",title:"Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms",slug:"heavy-metal-contamination-of-water-and-their-toxic-effect-on-living-organisms",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.105075",abstract:"Water has become a major threat in today’s world. Collection of heavy metals, a few of them, is potentially toxic and these get distributed to different areas through different pathways. With an increase in the earth’s population, development and industrialization are taking place rapidly and these get the major source of water contamination. With heavy metals in lakes, rivers, groundwater, and various water sources, water gets polluted by the increased concentration of heavy metals and metalloids through release from the suddenly mine tailings, disposal of high metal wastes, growing industrial areas, leaded gasoline and paints, usage of fertilizers inland, animal manures, E-waste, sewage sludge, pesticides, wastewater irrigation, coal, etc. Exposure to heavy metals has been linked to chronic and acute toxicity, which develops retardation; neurotoxicity can damage the kidneys, lead to the development of different cancers, damage the liver and lungs; bones can become fragile; and there are even chances of death in case of huge amount of exposure. This chapter mainly focuses on heavy metal pollution in water and its toxic effect on living organisms.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Anubhav Singh, Anuj Sharma, Rohit K. Verma, Rushikesh L. Chopade, Pritam P. Pandit, Varad Nagar, Vinay Aseri, Sumit K. Choudhary, Garima Awasthi, Kumud K. Awasthi and Mahipal S. Sankhla"}],onlineFirstChaptersTotal:59},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:398,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/127299",hash:"",query:{},params:{id:"127299"},fullPath:"/profiles/127299",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()