\r\n\tIn the book the theory and practice of microwave heating are discussed. The intended scope covers the results of recent research related to the generation, transmission and reception of microwave energy, its application in the field of organic and inorganic chemistry, physics of plasma processes, industrial microwave drying and sintering, as well as in medicine for therapeutic effects on internal organs and tissues of the human body and microbiology. Both theoretical and experimental studies are anticipated.
\r\n\r\n\tThe book aims to be of interest not only for specialists in the field of theory and practice of microwave heating but also for readers of non-specialists in the field of microwave technology and those who want to study in general terms the problem of interaction of the electromagnetic field with objects of living and nonliving nature.
",isbn:"978-1-83968-227-8",printIsbn:"978-1-83968-226-1",pdfIsbn:"978-1-83968-228-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8f6a41e4f5ce0e9c48628516d7c92050",bookSignature:"Prof. Gennadiy Churyumov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",keywords:"Electromagnetic Wave, Microwave Energy Application, Electromagnetic Energy Generation, Intelligent Microwave Heating, Microwave Organic Chemistry, Microwave Reactor, Microwave Discharge, Microwave Plasma, Microwave Drying System, Tissue Microwave Heating, Measurement Automation, Industrial Microwave Process",numberOfDownloads:224,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Gennadiy I. Churyumov is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology and a senior IEEE member.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"216155",title:"Prof.",name:"Gennadiy",middleName:null,surname:"Churyumov",slug:"gennadiy-churyumov",fullName:"Gennadiy Churyumov",profilePictureURL:"https://mts.intechopen.com/storage/users/216155/images/system/216155.jfif",biography:"Gennadiy I. Churyumov (M’96–SM’00) received the Dipl.-Ing. degree in Electronics Engineering and his Ph.D. degree from the Kharkiv Institute of Radio Electronics, Kharkiv, Ukraine, in 1974 and 1981, respectively, as well as the D.Sc. degree from the Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, in 1997. \n\nHe is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology. \n\nHe is currently the Head of a Microwave & Optoelectronics Lab at the Department of Electronics Engineering at the Kharkiv National University of Radio Electronics. \n\nHis general research interests lie in the area of 2-D and 3-D computer modeling of electron-wave processes in vacuum tubes (magnetrons and TWTs), simulation techniques of electromagnetic problems and nonlinear phenomena, as well as high-power microwaves, including electromagnetic compatibility and survivability. \n\nHis current activity concentrates on the practical aspects of the application of microwave technologies.",institutionString:"Kharkiv National University of Radio Electronics (NURE)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:[{id:"74623",title:"Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures",slug:"influence-of-the-microwaves-on-the-sol-gel-syntheses-and-on-the-properties-of-the-resulting-oxide-na",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"75284",title:"Microwave-Assisted Extraction of Bioactive Compounds (Review)",slug:"microwave-assisted-extraction-of-bioactive-compounds-review",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75087",title:"Experimental Investigation on the Effect of Microwave Heating on Rock Cracking and Their Mechanical Properties",slug:"experimental-investigation-on-the-effect-of-microwave-heating-on-rock-cracking-and-their-mechanical-",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"74338",title:"Microwave Synthesized Functional Dyes",slug:"microwave-synthesized-functional-dyes",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"74744",title:"Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)",slug:"doping-of-semiconductors-at-nanoscale-with-microwave-heating-overview",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"74664",title:"Microwave-Assisted Solid Extraction from Natural Matrices",slug:"microwave-assisted-solid-extraction-from-natural-matrices",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"57955",title:"Making as Pedagogy: Engaging Technology in Design Teaching",doi:"10.5772/intechopen.72202",slug:"making-as-pedagogy-engaging-technology-in-design-teaching",body:'Learning through making is a critical pedagogy in the discipline of design. This mode of teaching places emphasis on learning experiences, rather than on the “banking” concept of education [1]. As designers are form givers and bringing ideas into the material world is part of their business [2, 3], the process of learning and working through design as an open-ended “wicked” problem [4] requires the integration of both mind and hand, where students construct individual learning experiences through embodied interactions with reality. As Kolb [5] pointed out, in an experiential and integrated model, learning is based on the conflict between concrete experiences and abstract concepts and the conflict between observation and action. This mode of teaching has recently being advocated in other curriculum areas such as science, technology, engineering and mathematics (STEM), as a means of integrating trans-disciplinary knowledge [6].
Like most disciplines, architecture and design have been significantly affected by recent disruptive technologies, from computer-aided design (CAD) to computer-aided manufacturing (CAM). In this chapter, the discussion will be situated in the context of the wide spread adoption of digital fabrication technology in the design discipline through the use of computer numerically controlled (CNC) machinery such as 3D printers, laser cutters, and CNC routers and robotics in manufacturing. In addition, recent advancements in open- source electronic prototyping platforms, which enable a more amateur engagement with electric prototyping, have led to a burst of Do-It-Yourself (DIY) experimentation; this is evidenced by the global rise of FabLab, Maker Faire, and Hackathon. The challenge in understanding the impact of disruptive technology on design studio teaching is not so much about the range of emerging skill sets acquired by students but rather about whether we as educators should be focused on understanding how these technologies change the way in which we teach design thinking. I use the word “we” because in this open-ended learning environment, the knowledge development process is a collaborative effort between the tutor and the students; the tutor becomes a co-designer of the project instead of being a source of knowledge [3]. This teaching model is underlined by the notion of the design studio as a teaching environment; in most contemporary higher education settings, it typically consists of 1 tutor with a group of 12–16 students at both undergraduate and graduate levels.
Typically, the tacit or embodied knowledge [2, 7] acquired through making and the knowledge of design strategy and analysis, are separated in the way they are taught in a design studio [8, 9]. Thus, it is often difficult to integrate these within the same coursework assignment. This often results in students using digital software and fabrication tools as problem-solving devices. In this chapter, we will examine how the integration of technologies in design teaching and learning can encourage the exploration of design thinking in which students grapple with the different aspects of knowledge, and we will consider how these could be restructured to formulate new knowledge and personalised learning experiences.
We will examine the learning experiences of two sets of projects from different architectural design studios led by the author at the University of Melbourne. The first set of projects involved a group of second-year undergraduate students working on a selection of 1:1 wearable artefacts generated using digital fabrication techniques to explore the idea of personal space boundary. The second project examined the use of electronic prototyping platforms in design where students at the Master’s level created operable machines and sensory devices to advance their design knowledge. In these projects, we will explore the role of technology as a probe for design thinking, as means to develop and test ideas through prototyping, and as a toolkit with agentive capacity to explore creative solutions to the design problem.
In the last part of the chapter, we will look at the results of an on-going questionnaires administered to the students of these design studios to understand the role of technology from their perspective. We will discuss how technology affected their design process and evaluate the impact of integrating technology in design teaching; the steep learning curve associated with technology teaching in design is often seen as a primary drawback [6, 7, 9]. We will review experiential learning through making and examine how tacit knowledge allows students to develop a multi-dimensional appreciation of the design problem.
Making in this context is not just an act of reproduction but a creative act of gaining knowledge in design, which involves the construction and transformation of meaning [3]. In the process of making, technologies play a vital role in the formulation of tacit knowledge precisely because as toolkits and probes, they act as what Ratto called transitional objects [10]. They have an agency to deliver knowledge and facilitate critical thinking processes, Ratto termed this critical making. Through this strategy of engaging technology in design teaching, we can develop a better understanding of the role of technology in teaching. It can also be applied to our understanding of how future emerging technologies can be integrated in design teaching and learning.
In his book on experiential learning, Kolb outlined three historical models of experiential learning proposed by Lewin, Dewey and Piaget [5]. He noted that all models share a baseline relationship between “concrete experience”, “reflections and observations”, “abstract conceptualization”, and “active experimentation” or “testing”. These four categories are set up as feedback to enable a continuous learning experience. Kolb identified the process of learning as “the resolution of conflict between didactically opposed modes of adaptation to the world” – those of “observation” and “testing of active experiments”, “concrete experience”, and “abstract conceptualization”; both constructionism and critical making have experiential learning as part of the thinking and are thus relevant to our discussion [10].
Constructionism in education advocates the construction of knowledge through real life or real life-like experiments that foster learning [11]. It emphasises the importance of actively making things and, pairing abstract concepts with concrete experiences to make sense of knowledge.
Schank pointed out that the key to enhance learning is “doing”. While his writing does not cover architecture design studio teaching, many of the scenarios he has discussed are applicable and comparable to studio teaching, e.g. how to teach students practical or tacit knowledge [12]. Schank discussed the mechanism behind learning through doing; there are two key concepts relevant to our discussion.
The first concept is “experience”. Schank described learning by doing as an opportunity for students to acquire experiences. Through doing, the experience extends beyond the abstract scholarly reading of the subject. The students start formulating judgements by naming the experience, something he called “indexing”. According to Schank, learning is the accumulation and indexing of experiences. The more the experience the larger the index vocabulary and, hence, the better the ability to make judgements, thereby triggering associated memory, building related skills, and connecting tasks with learning outcomes. We will further discuss how technology enabled indexing of experience in the case study projects.
Secondly, learning by doing requires “doing devices”, which facilitate the learning process. Traditionally, in architectural and design education, the use of representational drawings and models, be it digital or hand-made one, act as the key deliverable media. These media in most creative practices are already an active ground for interrogating ideas and hypotheses; what is typically missing is the requirement to test, interrogate, and implement these ideas in reality. In architecture design, the making process is perhaps the most direct means of testing a hypothesis as a prototype. This is where technology plays a critical role given that we can now streamline the workflow from digital drawing and modelling (as an abstract hypothesis) to physical testing and prototyping using CNC technology.
Apart from prototypes, there are two other types of “doing devices”: toolkits and probes. Sanders & Stappers define probes as “materials that have been designed to provoke or elicit response” and toolkits as components to “make artefacts about or for the future” that are “specifically confirmed for each project/domain” [3]. The author suggests that prototypes, probes, and toolkits as “doing devices” are critical in scaffolding the experience feedback cycle mentioned in Kolb’s analysis. Here, the role of the prototype sits between the conflict of observation and testing, while probes and toolkits negotiate the ground between concrete experience and abstract conceptualisation (see Figure 1).
Prototypes, toolkits, and probes as “doing devices” overlaying the experiential learning model of Kolb [image by Paul Loh].
Papert discussed the need of “messing about” with materials to construct active learning through incremental building of knowledge [13]. The use of “computer as material” removed the black box mentality towards technology. Instead, its programming language and software are seen as materials integral to the construction of artefacts and capable of solving real-life problems, like wood or metal. Recent software and hardware advancements have further allowed designers to engage design directly with technology. Open-source electronic prototyping has allowed designers to tinker with electronics and build reasonably stable and complex mechatronic systems without prior training as engineers. Through open-source codes, designers can implement and modify the logic of a device using software coding instead of messing around with the hardware, which traditionally was designed for specific applications [14]. This inversion of workflow flattens the knowledge structure of electronics and essentially democratises physical prototyping of technology [15], thus allowing designers to invent bespoke machinery or tools to expand their design repertoire [16].
In order to understand technology as an operative design agent, there is a need to position technology, not simply as a tool that is a means to an end but also as a component to carry certain conceptual thought processes that enable designs to emerge. Ratto [10] refers to this notion as critical making; where he situated the hacker culture within scholarly activities that examined making as a social technological engagement. He suggested that through making, the maker not only “writes” with material to construct the logic of a system but also makes sense of the relationships between the user and technology; the process of making sense of these relationships is the critical process of enquiry. Ratto makes a distinction between critical making and constructionism [17], suggesting that while constructionism focuses on how reflexive practice can improve the quality of the material world, critical making extends beyond this to explore how engagement with material production can improve the conceptualisation of our world. The ability to intervene and have an impact on social life is a key aspect of critical making. In architectural design, this aspect of learning is often excluded from the teaching of technology for a number of reasons. The predominant reason is the need to see technology as a separate silo to social engagement. Ratto pointed out, “there remained a strong disconnect between these more material forms of engagement and the conceptual work being done on technology, the built environment, and society” [17].
As Papert pointed out, technology can be used as “material” that has a role as a transitional object. The “transition” refers to the exploration of ideas through making, where the design knowledge generated is carried through to the making process. Here, technology as a toolkit is seen as having an agentive capacity to be able to enhance social communication [10]; it has the capacity to carry and deliver knowledge.
The word “agent” and “agentive” should be differentiated to make the argument more precise. An agent is defined as “any element which … makes other elements dependent upon itself and translates their will into a language of its own” [18]. According to Malafouris, an agent is not exclusively a human activity but could be satisfied by a material, in so far as the material (tools and technology included) can become an extension of the person [19]. He highlighted the role of the material agent through the making of an axe head, using the knapping technique on flint. The act of knapping, he argued, is an exercise of multiple agents at work; for example, the hand of the maker, the knapping stone, and the stone being knapped. Each subsequent strike of the flint determines the angle of the next strike. He suggested that the making of the axe head is not a preconceived image of the axe head within the flint but rather an iterative negotiation of materials.
Agency or agentive capacity is the capacity of an agent to deliver or carry knowledge, meaning it, therefore, has the capacity to be useful in design. As Nafus & Beckwith point out, “knowledge comes not just in the planning, but in the doing” [20]. Referencing back to Malafouris’s example, the agency of the flint carries the know-how of making, so each agent has the capacity to deliver specific pieces of knowledge that facilitate the making process. The word agent, therefore, refers to the “what”, while agency refers to the “how” of the activities.
In this section, we will look at the role of technology in two sets of projects. All the projects were led by a design studio or coordinated by the author at the University of Melbourne. The projects were conducted as group work and completed in a 12-week teaching period. In the first project, titled “The Second Skin”, we will discuss the role of probes and prototypes in the design process. In the second project, titled “Machining Aesthetics v4.0”, we will examine the role of toolkits and how they have an agentive capacity to deliver knowledge.
The Second Skin project is the result of a second-year architectural design subject “Digital Design and Fabrication”. As the name of the subject implies, the subject aims to teach students a set of digital design skills ranging from 3D modelling through to using CNC tools such as laser cutter and 3D printer. Instead of delivering the content as a series of theoretical lectures with a practical class in software application, the subject explores the content through a design studio format guided by a series of lectures. It is worth noting that most students encounter digital design and modelling software for the first time in this subject and the learning curve is typically very steep; we will examine this in detail under 3.3.
The objective of the subject is to utilise an open-ended design task to encourage students to explore the premise of digital design and develop software application skills through physical making of their project as a prototype. The brief given to the students is to design a “Second Skin” using the body as a social and cultural site for intervention. The outcome is a 1:1 wearable physical prototype made from various materials that are digitally fabricated, meaning the 3D modelling has to be output as physical and makeable objects, using a range of CNC tools namely, 3D-printer, CNC paper cutter, and laser cutter. This last phase is perhaps the most challenging one for the students as digital models tend to confront the reality of the physical property of materials.
Two key probes were used to jump-start the design process: a given object as material strategy and a reading by Robert Sommer on personal space [21].
The aim of the given object was to provide a material strategy to the students. We identified three material strategies: skin and bone, panel and fold, and section and profile; each team had to choose and develop one of these strategies using a given digital toolset. These material strategies are common strategies utilised in architectural design and can be feasibly implemented using CNC tools. To introduce the task of making to the students, we devised a 1-h workshop where students implemented a pre-set exercise on the body. The exercise shown in Figure 2-left is a panel-and-fold exercise that took a known geometric logic of a Buckminsterfullerene, which resembles the geometry of a soccer ball, to encourage students to produce a 3D surface using flat pieces of paper. The purpose of this exercise was to help the students understand a complex set of rules or algorithms in the panelling and folding process without making them feel overwhelmed by complex descriptive mathematics. Through making and exploring the material and geometry, the students developed their first index with their material system. This included how and where to fold the paper, how to glue the panels together, what is the scale of the Second Skin, and how to work around a complex shape like the human body. The algorithmic mode of thinking needs to be imbedded at an early stage as it allows students to take the rule-based thinking into their digital design process.
Left – Developing index of making experience through making. Right - Personal space as probes for design [images by Galimova].
The early phase of the subject focused on the tooling of the students with a digital skillset. In parallel with 3D modelling skills, the students applied the material strategy as probes to explore their design. Coupled with the reading on personal space boundary, the design took on cultural and social dimensions (see Figure 2-right).
We encouraged the students to document and physically measure their own personal space to gain an understanding of scale, dimension, and area of focus; an ambitious interpretation of the brief of the Second Skin project is illustrated in Figure 3. This Second Skin project by Brydie Singleton, Matthew Tibballs, and Stephen Yoannidis explored the ambiguity of gender-specific personal spaces resulting in a literal blurring of the body. The initial digital manipulation of the body (Figure 3-bottom) acted as a probe for the ideation process. By exploring the pixilation of the images, the design team explored the permeable effects of the skin, leading to the creation of openings or apertures within the panelised surface.
Top left – The ideation process probed by digitised images of the bodies (bottom). Top right – 1:1 wearable prototype [images by Singleton, Tibballs and Yoannidis].
Another Second Skin project by Diana Galimova and Daniel Parker used section and profile as the material strategy. They integrated the physical prototype in the interrogation of the design. Figure 4 shows the prototype fragments made from cardboard constructed using the template from the digital model. Here, the function of the prototype was to test the hypothesis of their design – to create a Second Skin which allows the user to view his/her environment from different angles. The observation documented in the prototype informed the conceptual thinking and allowed the design to be refined. The iteration of prototypes can be considered physical evidence of the index of experience.
Testing of prototypes against hypothesis [images by Galimova and Parker].
These two projects demonstrated how material strategy in the design process allows making to become part of the design strategy; the material strategy is intricately linked to the making process. Here, making is not only about putting things together but also about facilitating design thinking to be formulated and tested against the initial design brief. The design brief of the Second Skin was an open-ended design problem probed by the material strategies and textual reading. The author found this balance useful in the articulation of the design studio brief as it defined a clear boundary of the problem and, at the same time, allowed for multitude interpretations with varied outcomes.
Owing to the specific technical skills required in software application, technology only acts as a probe in the later phase of the design process. We find its real value in delivering the prototype for the testing of ideas. As Sanders & Stappers pointed out, probes are useful at the pre-design and early phases of the generative design process [3]. Here, constrains and opportunities of the CNC tool form part of the design outcome and aesthetics as evidenced by the physical outcomes of the projects. Figure 5 shows a series of panelised and cut cardboards with pre-cut “tabs” used for gluing a series of panels together. Through the use of panelling software, the students learned to craft their digital model to suit the material property of the cardboard. This in turn speeded up the making process with the aid of a laser cutter, which delivers a more precise physical model. Without the aid of technology, this model would have taken a lot longer to work out geometrically and would have been too laborious if cut by hand.
Laser-cut panels made with dexterity and craftsmanship using digital technology [images by Singleton, Tibballs and Yoannidis].
Given the prevalence of digital fabrication technology in the design discipline, Özkar suggested that the means for teaching design should be altered in parallel to the tools [22]. This demands a different approach to teaching which integrates design thinking with techniques of digital fabrication technology [23]. However, in practice, this may not always be possible. Often, the tacit knowledge applied and acquired through the making process and the knowledge of design strategy and analysis are separated in the way they are taught [8, 9]. From an educator’s point of view, it can be difficult to integrate these within the same coursework owing to time constraints. It tends to overwhelm students with a large amount of information. The learning of digital fabrication techniques in a studio setting consumes more time than other subjects because without the technical knowledge, it is difficult to explore the potential of a design [6, 11]. Unfortunately, in some instances, students tend to use digital software and fabrication tools as problem-solving devices instead of active probes in designing [7].
Machining Aesthetics v4.0 was led by the author and teaching partner, David Leggett. The objective was to investigate the role of tools in the design process. The brief was to design a “machine” that can make architecture at a pavilion scale. Each project team consisted of three students working collaboratively throughout the 12-week period, the same time frame as the previously discussed project.
The aim of the studio was to introduce tool making as the starting point of an architectural design project. The objective was twofold. Firstly, while there was a clear programmatic and simple design brief, the approach to the brief was purely from a making perspective – a “wicked” problem where the solution can only be discovered through making. The boundary of making was defined by the authors on the basis of precedent studies and specific making techniques as probes. Secondly, we wanted to encourage the students to escape the pre-set conditions of existing tools in order to discover novel making techniques and design potentials.
Introducing tool making in the design studio had its own limitations, primarily owing to time constraints and the depth and breadth of knowledge that the students needed to acquire to complete the design and fabrication of their system. Unlike the previous projects, the students had to utilise and work across a greater range of software and physical toolkits such as Arduino Microprocessor, Arduino Integrated Development Environment (IDE), electronic prototyping platform (including jumper leads, breadboards, resistors, relays and servos), and other CNC equipment. At the start of the studio, all participating students had some prior parametric design skills in terms of visual scripting but had little or no electronic knowledge and making skills. To make the hardware more accessible, we introduced the students at an early stage, to a plug-in for parametric software and programming language of Arduino IDE, based on C/C++. Arduino IDE is an open-source platform and its programming language has been widely used. More importantly, the code library is shared and therefore, accessible to students. The studio saw this as an opportunity to allow students to tap into the shared online code and build up technical know-how in a reasonable time frame. In this case, the students only needed to understand the basic structure and language to access and understand most codes.
We will now discuss the two projects that were developed out of the studio. The first project is called Re-configure Edge Mould (REM) and the second, Pneuma.
REM (Figure 9) is an adjustable mould that works with an industrial thermal-forming machine to allow for continuous production of different shaped panels made from high-impact polystyrene sheets (HIPS). The aim of the project was to produce variation in panel shape using one mould design; the design team came up with a mould that can be computer numerically controlled and adjusted to produce variation in the panel. The objective of the machine was to create a set of geometrically different panels that could be accumulated together to form a visual screen to provide privacy in an urban setting.
The making process acts as a probe for the design. Through a series of initial making experiments and precedent studies, the team highlighted a few issues with the traditional vacuum thermoforming technique. Firstly, to produce panels with variable geometries, a unique mould has to be made for each shape. In this case, the mould was made using laser cut plywood. This technique generates a large amount of material waste. Secondly, through making, the team discovered the minimal surface formed by the vacuum former when they introduced a so-called “shaping object”; the shaping object pushed onto the HIPS and allowed it to be pushed into the desired form. Thirdly, the team identified the clamping edges of the vacuum-forming machine as a key parameter in the operation of the technique. These issues and parameters outlined through the making process posed a design problem to the team: How to make a single mould that is adjustable so it can eliminate waste and utilised the parameter observed through the thermoforming process?
The design of the final mould was tested and prototyped numerous times before reasonably successful panels were fabricated (Figure 6). The struggle of the prototyping process was accompanied by physical problems and made visible the potential of the system for design to the design team [3].
REM for thermoforming plastic panel [images by Frances White, Alex Morse & Maryam Bennani].
Pneuma (Figure 10) is a pneumatic device that regulates airflow in order to inflate or deflate a double-skin polyvinyl chloride (PVC) inflatable structure. The aim of the project was to use air to control sunlight and view penetration through the inflatable structure. Our discussion will focus mainly on the making of the air control unit. Like REM, this project was developed through a series of experiments in the making of an inflatable structure. The team of students reflected on the system and questioned how such a structure can be used to regulate daylight and view as a soft façade or building cladding system. To make the project more ambitious, we prompted the students to look into adding light sensors to their system to regulate the inflation in order to limit the amount of sunlight. Up to this moment, all the information that the students received was researched from various sources of literatures, precedent studies, and making instructions from Instructable™; no new knowledge was generated but a great deal is learnt in a short period of time.
Innovation happened when the team started to imbed a secondary opaque layer through the construction of the inflatable structure, which could be deployed to block out daylight. From this moment onwards, they were in bespoke territory. They had to design the control device from scratch, whilst prototyping it and struggling with air leakage and moving parts. Imbedding electronic required another layer of learning, which thanks to the open-source nature of the code, meant that once the basic principle was understood, the code could be modified to suit their purpose. The hardware design was reasonably simple, with the use of servos to adjust the rotation angle to open and close multiple air paths as “gates”. The tinkling process with the electronics provided a useful learning experience, mostly trial and error, including burning out the servos and the usual mess of ensuring the circuits are connected in a logical manner. It took the team six iterations of hardware and software configuration and reconfiguration to incrementally modify and improve the system. Figure 7 shows the final prototype, which maintained a 10 minutes inflation and deflation cycle.
Top left – Servo-controlled air gate. Top right – Final prototype of Pneuma. Bottom – Prototype showing secondary opaque layer in inflatable structure [images by Ryan Huang, Daniel Parker and Suyi Zha].
In REM, when the design problem was clarified, the electronic prototyping component was used as the primary toolkit to prototype the adjustable mould in order to test the hypothesis. In this project, the “definition” of the design problem came from a series of observations and practice of existing making techniques with the aim of developing a more efficient and less wasteful fabrication procedure. The solution came from the isolation of key parameters in the making process and how these parameters were used to generate different aggregation logics of the panels.
Figure 8 show a diagram illustrating the logic of the tool-making process. In order to design and create REM, the design team had to first learn the technique of thermoforming. We called this the computational history of the making technique [A], referring to the knowledge of how to use various tools to perform certain techniques. Computational history is a term borrowed from computing that refers to the storage of memory for machine learning. This is similar to Schank’s index of experience. Probably, these sets of indexes were more complex and in this case study were “stored” or transcribed in the design of the technology. The second aspect was to understand the mathematical description of the output panel called geometric studies [B]. Finally, through visual scripting [C], the digital information aligned the computational history with geometric studies, allowing the electronic prototyping platform [E] to act as serial handshake between the panel geometry and physical mould [F & G]. Here, electronic prototyping facilitates this collapse by drawing on the data simulated in the script and the know-how of the making process. This was translated into linear motion through the servo which, in turn, drove the gearing system in the mould design.
Knowledge structure of tool design process [images by Loh].
This diagram reveals the agentive capacity of the toolkit in so far as having the capacity to collapse the various layers of knowledge together into a coherent piece of novel technology. Through designing and making of this piece of technology, the traditional top-down approach to design is inverted. While working on the mould design, the students started to question the design potential of this new tool. They speculated that it could be used as an urban play device to allow the public to make and accumulate the panel to form public enclosures (see Figure 9).
Urban aggregation of panels to form public enclosure. Right – 1:1 prototypes [images by White, Morse & Bennani].
While in REM, the electronic prototyping toolkits enabled a collapse of the index of experiences into the made object (the mould design), in Pneuma, they facilitated a design workflow, bridging digital code and physical object. In this project, the electronic prototyping toolkit was used to work through the logic of “gates” for the air path in order to control the sequence of inflation (see Figure 10). The flexibility of the toolkit allowed the students to modify the configuration before settling on a suitable prototype. The visual scripting was modified in parallel as the electronic toolkit was reconfigured, allowing a dialogue between the script and the physical toolkit (see Figure 10). Here, physical and digital toolkits worked in tangent to stimulate the goal of the task and, at the same time, to allow the students to test out different scenarios. The toolkit has an agentive capacity to deliver and construct new design knowledge during the process of testing.
Left – Iteration of physical configuration of electronic prototype. Right – Visual scripting of code to operate the electronic configuration [images by Huang, Parker and Zha].
Both projects utilised electronics as toolkits to prototype a reasonably feasible working system that attempted to solve real-world issues either as environmental controls or as means for reducing manufacturing waste. The making in these instances involved a critical engagement of social and environmental issues through technological means, thus allowing the students to embody the act of making with meaning and narrative.
The case study projects demonstrated the use of probes, prototype, and toolkits to scaffold learning experiences. Technology, in these case studies, moved beyond the application of software and hardware, but rather played an active role in stimulating, enhancing, and more importantly, becoming part of the creative agency in the design process. The ability to see technology as part of the design solution means that it is integrated into the knowledge structure of experiences. As Schwartz pointed out, “too rarely in an architectural curriculum are acts of making used, instead, to generate ideas and sometimes they are left out of the primary iterative loop of idea conception altogether” [6].
To conclude our discussion in this chapter, I would like to present the initial results from a questionnaire as part of my on-going research on the use of technology in teaching and learning. The questionnaires were answered by students from both design studios. The questionnaire aimed to capture the students’ perspective of learning using technology and understand their views on tacit knowledge as part of their learning experience. The invitation to participate was sent between 2015 and 2017 to about 100 students, of which 34 responded (approximately 33% response rate). The questionnaire was anonymous and voluntary, conducted as an online exercise using SurveyMonkey™.
We asked the students how technology affected their design process, refer to Figure 11. As the participants could choose more than 1 answer, 97% of them stated that it opened up design opportunities and increased the sophistication of their project; 59% said that it expedited their process, 6% said that it slowed down their design process and restricted their creativity; and 15% provided alternative responses, one of which is given below:
“It takes time to grasp the way how technology works. Sometimes, it\'s hard to come up with a coherent way of designing through hands and through software. The balancing between the two can be time consuming. However, this balancing can be both beneficial and hindering. Beneficial: make a more precise design. Hindering: the translation between two worlds can be difficult”.
Survey results from questionnaire [images by Loh].
This is an interesting response as it highlights what the author believes is the typical struggle in learning and integrating technology in design teaching. This comment also highlighted that in technology teaching, there ought to be a more seamless workflow between the hand and technologically aided design process.
With regard to the question on learning new technology during the design studio, bearing in mind that all respondents attended it for 12 weeks, 62% said that while it was time consuming, it was also manageable, and 29% said that it made the workflow easy. What is surprising is that none of them said that it was too difficult and unmanageable. Three participants provided alternative responses; they suggested that the design period of 12 weeks should be extended. This suggests that the pick-up period for new technology is longer at the start of the design process, leaving the students with less time towards the end to complete the project to their satisfaction.
Through physical making in the case studies, the students applied and enacted tacit or embodied knowledge. According to Schwartz, this embodied practice is where “the maker uses his or her body to generate a set of movements (known or unknown) in order to achieve the desired form or result of the made object” [6].
In the questionnaire, the students were asked to evaluate their understanding of tacit knowledge gained through their design project. The 33 responses collected (1 skipped) are outlined below:
According to 18% (6 out of 33) of the responses, tacit knowledge can be applied to both digital skill and physical making skill.
According to 57% (19 out of 33) of the responses, tacit knowledge includes an understanding of the practical application and limits of tools, materials, and techniques.
According to 30% (10 out of 33) of the responses, tacit knowledge facilitates design opportunities and experimentation.
It is interesting to note that 18% of the responses highlighted digital skill set as part of tacit knowledge and almost half of the response saw evidence of their tacit knowledge in their prototype; included in this category are participants who understood tacit knowledge as a means to perfect their control over the CNC tools, materials, and techniques using phrases such as “limitation of the CNC machine”, “tolerance for 3D printing or laser cutting”, “more accurate making”, and “manage the curvature and behaviour of the material”.
The final category of response discussed both the practical application of tacit knowledge as well as how it enables and facilitates the design process through opportunities and experimentation. Two examples are listed below:
“I have without a doubt gained tacit knowledge throughout our design project. Such high- level skills in regards to computer technology and digital translation can only be learned through experience and implementation.”
“Tacit knowledge has been a definite part of the learning experience. Given that this was my first real project involving something of this scale to be constructed; many errors were made along the way that could only be done so empirically. The process of craft-making enabled me as a designer to consider a multitude of factors that often times goes unnoticed when bound to the digital dimension, such as gravity, scale, and environment. For example, the final second skin, owing to the sheer number of panels that made up the final form, proved to be very fragile and prone to ripping. This was a side-effect of the material choice as well as the dependency of the design on the surface as a structure with no extra support. This was something that could only really be learned through the making process itself. “
What intrigues me about these responses is how students started to consider “multitude of factors” relating to their design and making. It highlighted that critical thinking around the design problem evolves out of the making experience which informed the students’ judgement and evaluation. This model of teaching technology allows students to gain a more holistic picture of the design problem and juggle abstract concept with physical materials and technologies.
If education is to be transformative, then each piece of knowledge should contribute to the development of an individual. Through making, the experiential learning process allows for an integrated model of learning where tacit knowledge, whether digital or physical, plays a role in formulating judgement and critical thinking. When technology becomes part of the “material” strategy for students to construct and scaffold design thinking, it becomes an operative learning device in the form of probes, prototypes, or toolkits. The projects discussed in this chapter give us an understanding of the role of technology as “doing devices” that not only facilitate the process of making via sensory motor activities but also function as operative media to question the nature of the design problem. This writing highlights the integration of digital technology in learning where students grappled with different aspects of the bodies of knowledge and restructured them to formulate new knowledge and a personalised learning experience.
I see this teaching strategy as a useful means to tackle future emerging technologies. With the rise of virtual reality and other advanced modelling and visualisation software, educators need to develop more integrated and holistic means of teaching technology within a broader trans-disciplinary design context. Imbedding technology in the experiential learning process can help construct a better and more critical approach to design learning.
Sincere thanks go to all participating students involved in these subjects and for kindly providing consent to use images of their work; consent collected under RMIT ethic approval: CHEAN B 0000018963-10/14. I would like to thank my senior tutor Rosie Gunzburg and Annie Walsh, teaching partner at master level David Leggett and the technical contribution of Joshua Russo-Batterham to Machining Aesthetics v4.0 studio. Finally, I like to acknowledge the generous support of Professor Jane Burry, Dr. Malte Wagenfeld, Professor Donald Bates and the FabLab at the Melbourne School of Design.
Despite the renewed interest in safeguarding research output, the changing storage carriers due to the fragility of storage carriers, lifespan, and handling practices are a cause of concern for the university libraries [1]. University libraries cannot avoid working in the cloud as they have become adaptive to inevitable and unpredictable changes occurring within the digital environment [1]. The university community places much emphasis on research and publication not only because it is presumed that research enriches teaching and the learning process, contributing to the body of knowledge, but also because it is a major determinant of institutional prestige and that of the nation at large [2].
\nIrrespective of the technological changes, stored research output in universities must be secured for future availability and accessibility [3]. Cloud storage has become an alternative for the storage of research output. According to Yuvaraj [4], university libraries have continued not only as only new technology adopters but rather cutting-edge IT users. Clearly, cloud computing as a cutting-edge IT platform proves to be a lasting technological innovation that continues to rise in usage [5].
\nHowever, owing to the technological age, university libraries are faced with new opportunities for innovative educational practices, hence providing electronic library services. Almost all university libraries are primarily concerned with enhancing teaching, learning, and research through the provision of timely information resources. On that basis, researches by Gabridge [6], Gold [7] and Jones [8] revealed the need for libraries to provide research data services. In providing timely information resources, modern libraries’ digital collections must be stored for future use and as backups to ensure continuous accessibility by library users.
\nWitten and Bainbridge [9] explained that a digital library is a focused “collection of various forms of digital objects” such as text, audio, and video, as well as their methods for access, retrieval, selection, organization, and maintenance. Rosenberg [10] also reiterated that a digital library can refer to information resources which are accessed by and delivered to users electronically or via a network [11]. Primarily, in developing countries, microfilms, databases, CD-ROMS, hard disks, external drives have been the existing platforms for storing library digital information, though these come with major drawbacks. For instance, these storage devices are exposed to threats such as theft, inadequate storage space, virus attacks and unauthorized accessibility among others. These drawbacks have been a major concern for academic libraries’ thus an ongoing debate and discussion on the new technology “cloud storage” as an alternative storage media.
\nTo a large extent, studies confirm that modern university libraries have greatly shifted from traditional roles (paper-based services) to digital library services. This paradigm shift has paved the way for library services to be accessed and delivered via the web [12]. For university libraries, the issue of using cloud services to store digital collections is particularly important as technological changes have paved the way for library services to be accessed and delivered via the web [12]. As more data and information is generated and stored in the cloud, either by design or default, university libraries need to be confident of the security of the digital collections. There is a growing interest in the implementation of cloud storage services which exposes university libraries to a new set of threats and vulnerabilities. McLeod and Gormly [13] concluded that if cloud service providers are to be used, their security, viability, sustainability, and trustworthiness must be paramount.
\nStudies have demonstrated that that cloud computing in libraries has widely examined the rise of data-intensive services in academic libraries with less emphasis on cloud storage security [14, 15]. Most of these studies were based on individual or small-scale survey data concentrated in one country. Owing to the extant gap in wide-scale exploratory studies, the present paper explored the risks associated with cloud storage services and how university libraries can ensure safe research output. In this light, the paper contributes significantly to the body of literature by unraveling new evidence from universities located in Ghana and Uganda on how academic libraries can secure research output with cloud services.
\nThe following sections include research questions, related literature, theoretical framework, research methodology, results, a summary of key findings, conclusion and recommendation.
\n\n
What are the existing storage carriers/media for storing research output in university libraries?
What are the reasons for university libraries moving research output into a cloud infrastructure?
What risks are associated with cloud storage services for university libraries?
In university libraries, how can research output store on the cloud service be secured?
Libraries use several types of media in storing digitized content or information (audio, video, text, images etc.). Each of the media suffers disadvantages with regard to reliability, high lifespan, ease of access and validation plus various costs. Enakrire and Baro [16] argued that these media include;
Magnetic disk drives are disk drives which are mostly mounted on computers. They are inexpensive, of very high-density, fast to use, and multiple user connectivities to the server are possible.
Magnetic tape, which comes in various formats and can only be effective for duplicate or backup copies. However, they are not recommended for primary storage.
Optical disks, for example, CD-R and DVD-R cost less, use low energy but exert high labor costs, poor accessibility, a periodic verification is not cost-effective and low density by today’s standards. Others are CD-RW and DVD-RW these are recommended for individual and day-to-day use but are not recommended for data preservation [17].
Until recently, evidence from the pool of literature shows that the concept of cloud is of the growing research area. Indeed, a lot more storage capabilities exist in the cloud. According to Mavodza [18], cloud computing is the delivering of hosted electronic services over the internet. Scale [19], opines that it is: “the sharing and use of applications and resources of a network environment to get work done without concerns about ownership and management of the network’s resources and applications, data are no longer stored on one’s personal computer, but are hosted elsewhere to be made accessible in any location and at any time”. Gosavi et al. [20] iterated that cloud computing harnesses the capabilities of resources like storage, scalability, and availability, which are accessible to university libraries as clients. Hence, depending on the needs of the clients, the infrastructure can be scaled up or down.
\nIn developed or developing countries, cloud storage provides promising advantages to university libraries. According to Li [21], cloud storage reduces the cost of hardware and software, and it makes the storage and management of data on the internet possible. It also reduces the work of Information Technology (IT) professionals as most of the system’s work is performed by the hosting company. Payment for the cloud storage service is by pay-as-you-go, which is convenient for organizations such as academic libraries which have budget restraints. Han [22] enumerates cost-effectiveness, flexibility, and data safety as a rationale for cloud storage in academic libraries. Han [23] alludes the advantages that cloud storage has over traditional storage to “availability, scalability, off-site storage, on-demand, and multi-tenancy” which allows different applications or different users to access the same resources to fit their needs. Han further states that data stored in the cloud can be easily transferred and duplicated globally to minimize data loss due to natural disasters.
\nHaris [24] also gives an analysis of the benefits of cloud storage especially for libraries and these include high performance, an avenue for collaboration, less “need for in-house technical expertise, cost savings, and more timely access” to the latest IT functionality. Haris further states that the cloud also provides a better workflow, “automated software updates, redundancy”, and backups. Cloud storage provides collaboration, particularly for academic and research libraries. Through the use of cloud technology, a collaboration between libraries, researchers, and students is promoted. The cloud also enables remote access to a wide range of research materials.
\nIn this section, the role of cloud computing in university libraries, specific cloud storage platforms and the risks associated with cloud storage are reviewed.
\nKaushik and Kumar [25] contend that cloud computing can offer many interesting possibilities for institutions such as libraries. Cloud computing is quite significant as it reduces technology cost, increases capacity reliability, and storage performance for some type of automation activities like library services. In recent times, cloud computing has made strong inroads into other commercial sectors and is now beginning to find more of its applications in the library and information environment.
\nAfter the personal computer and the internet, cloud computing also known as the third revolution is completely new in terms of technology. Potentially, cloud computing is an unraveled technology in university libraries as digital content can be stored in the cloud. Mobile devices are enabled using cloud computing by taking out an item or scanning a barcode [26]. Gosavi et al. [20] argued that when using cloud computing, users can be able to browse a physical shelf of books located in the library, choose an item or scan a barcode into his mobile device. More so, heritage materials or documents can be digitized, searched and accessed by library patrons. The new concept of cloud libraries includes OCLC, Library of Congress (LC), Exlibris, Polaris, Scribd, Discovery Service, Google Docs/Google Scholar, WorldCat and Encore [27].
\nNowadays, studies appear to be emerging in cloud computing. For instance, a paper presented by Saleem et al. [27] indicated that university libraries have adopted cloud computing technology to enhance library services by adding more values, attracting users and cost-effectiveness. In the cloud computing environment, clouds have vast resource pools with on-demand resource allocation and a collection of networked features. The new concept of cloud and libraries has generated a new model called cloud libraries.
\nIn the work of Zainab et al. [28], it was reported that the first reason of shifting research report into cloud computing is to reduce the total cost of ownership and maintenance of the cloud infrastructure. Secondly, scalability of the cloud service system is another objective, so that it is able to handle increased traffic. Due to the rapid expansion of the user group, we need to redesign the back-end web server with scalability in mind, such that it is able to accommodate an increasing number of concurrent users.
\nBased on the web traffic statistic, the average visit per month for the year 2012 is approximately 87,000 users and we expect the numbers will grow in the coming years as resources in the repository also grew. The high volume of transaction is causing The server to behave extremely sluggish and crashes frequently [28]. On the hand, migration is necessary in order to meet the increasing demand for storage space for full-text digital resources. File sizes of some digital resources are extremely large especially audio, video and images. Besides, as more users’ access and upload articles to the magnetic hard drives, university libraries face problems in fulfilling the storage space demand. The cloud storage service which promises and contributes to about 13 terabytes of storage space, can store over 12 million digital files of research output. Thus, it is very obvious that without a long-term plan, university libraries would not able to sustain the present storage demand from users in the future until alternative storage is assessed.
\nIt is expected that migration of digital files would reduce downtime when scheduled backup and indexing, as well as site traffic, occur simultaneously. The previous system backup was very laborious and time-consuming. Often scheduled jobs would cause unnecessary downtime of the magnetic and optical systems. System downtime is unavoidable because the system was hosted without a redundant server.
\n\n
Amazon S3: Amazon Simple Storage Services (Amazon S3) provides a secure, durable, highly-scalable object storage (Amazon, 2015). It uses a web service interface to store and retrieve any amount of data. It is a pay as you use service. There are different storage classes designed for different uses; Amazon S3 standard, Glacier for long-term archive. The services include backup and archiving, disaster recovery, and big data analytics [29].
Google cloud storage: Allows storage and retrieval of any amount of data at any time. It facilitates the storage of data on Google’s infrastructure with high-reliability performance and availability (Google, 2015) [29]. The services include data storage, large unstructured data objects, uploading data, and managing data. The lowest storage class is $0.01 GB/month.
Microsoft Azure: Azure supports the selection of wide services including operating systems, frameworks, tools, and databases. It’s typically a platform-as-a-service and software-as-a-service. It provides secure private connections, storage solutions, and data residency and encryption features (Microsoft, 2015). It provides scale-as-you-need, pay-as-you-go service plan, and strong data protection security.
Other cloud storage platforms include Dropbox, SkyDrive, Box, Google Drive, Flickr, Google music, Apple iCloud, and Amazon cloud player.
Lili and Buer [30], highlighted that advancement in technology may not necessarily transform the cloud services into mainstream technology in academic libraries. A scan of literature [31, 32, 33], revealed that cloud security, interoperability, and regulatory perspectives are worrying. In addition, academic libraries may or may not completely lose control over IT and data. Sometimes, trust in the service provider, data portability, migration, copyright issues, and privacy is a big risk when it comes to adopting cloud computing technology.
\nPolicies guide institutions and operations on what to do and not to do. Cloud storage and applications are valuable resources that allow academic libraries to store large amounts of information and perform collaborative tasks more effectively. However, there are risks associated and that must be mitigated in order to properly secure the research assets placed into the cloud [32]. In this light, it is purposeful for the policy to provide the framework within which the libraries will be expected to operate for storage and process information in cloud environments. Basically, the policy should encompass the scope of work, software, research information, human resource, users, copyright and many more.
\nOnce a digital collection (scholarly works, publications/collections, and historical documents) is put on the cloud, it becomes available for all groups of users and this can be exposed to unauthorized access to data centers. “Cloud operators can dictate the manner in which users can access, use and reuse content or information via specific online services or applications. That is, the user interface ultimately dictates what can or cannot be done by end-users, regardless of what they are theoretically entitled to under the law” [34]. So, the question is whether academic libraries can allow such law to be overridden on as it has already fallen in the public domain. This indeed is likely to impact on copyright law in the context of online applications.
\nCloud storage service providers are not guided by standard regulations. As a result, some service providers are tempted to offer low-quality services to developing countries in Africa thus creating loopholes for cybercriminals to take advantage. As an emerging trend, this issue of no interoperability is of concern, if research assets can be secured on the cloud. Interoperability refers to the ability of a collection of communicating entities to share specific information and operate on it according to agreed-on operational semantics [35]. Even though the clients (academic libraries) desire standards for cloud interoperability, the reality currently is that standard efforts only focus on portability, which is the ability to migrate workloads and data from one provider to another.
\nLibrarians cannot sit unconcerned in this matter since the open access (OA) repositories are also part of collections of the library [36]. Though the OA repositories facilitate sharing of resources in educational research through portals that are modeled as gates to several repositories, it is a challenge because data synchronization is an issue when components in different clouds or internal resources work together, whether or not they are identical. Communication between clouds typically has a high latency, which makes synchronization difficult. Also, the two clouds may have different access control regimes, complicating the task of moving data between them [37].
\nThus, interoperability is required, not just between different components, but between identical components running in different clouds [38]. Such components often keep copies of the same data, and these copies must be maintained in a consistent state. The design approach must address management of “system of record” sources, management of data at rest and data in transit across domains that may be under control of a cloud service consumer or provider and data visibility and transparency.
\nNurnberg et al. [39] argued that full interoperability includes dynamic discovery and composition: the ability to discover instances of application components and combine them with other application component instances, at runtime. Application interoperability requires more than communications protocols. It requires that interoperating applications share common processes and data models. These are not appropriate subjects for generic standards, although there are specific standards for some particular applications and business areas.
\nObviously, the cost is a challenge for academic libraries. More especially, enterprise cloud storage platforms such as Amazon S3 and Microsoft Azure are paid for as you use the cloud services. Unfortunately, libraries that find it difficult to fund basic services will see that as an extra cost inhibiting them to withdraw from the cloud service. The cost comes with human resource and sometimes maintenance of servers.
\nThe paper adopts the development of a Cloud Storage Security Framework (CSSF) to support an integrative approach to understanding and evaluating security in cloud storage in university libraries. The framework enables understanding of the makeup of cloud storage security and its associated measures. Drawing upon CSSF, it indicates that security in cloud storage can be determined by seven factors: (1) security policies implementation in cloud storage, security measure that relates to (2) protecting the data accessed in cloud storage; (3) modifications of data stored; (4) accessibility of data stored in cloud storage; (5) non-repudiation to the data stored; (6) authenticity of the original data; (7) reliability of the cloud storage services.
\nThe framework is summarized in Figure 1.
\nCSSF. Source: Yahya [40].
In applying the framework to the current research, security of research output in the cloud infrastructure can be determined by ensuring that all the seven factors are met by the university library.
\nThis study aimed to explore security issues considered in migrating research output to the cloud service as input into the development of preservation or storage systems within the library environment. This section described an approach followed in the study. This included the research approach, purpose, instrumentation, and sources of data. Our paper adopted the qualitative approach to explore cloud computing in university libraries in the sub-Saharan Africa. Using a wide range of evidence and discovering new issues, the purpose of the paper was to explore the risks associated with cloud storage and security implications. The exploratory design was significant as the authors became more familiar with basic facts, settings, concerns, and generating new ideas. In this study, interviews were conducted with respective librarians in charge of research output within the (4) universities. Hence, the research sites were purposefully selected to ensure that they provided sufficient opportunities to test available infrastructure for storing research output. Again, since the paper was interested in only libraries with repositories, the institutions without OA repositories were excluded.
\nAn interview schedule on the research questions was presented to 4 librarians from the universities. Thus, participants for the investigation were made up of librarians in charge of institutional repositories. These four university libraries selected were; Balme Library, (University of Ghana—Legon), Kwame Nkrumah University of Science and Technology—KNUST library (Ghana), HamuMukasa Library, (Uganda Christian University), and The Iddi Basajjabalaba Memorial Library, (Kampala International University—Uganda). The thematic content analysis was used to analyze the qualitative data. The authors further reviewed scholarly research articles, explored in the context of research data storage in and outside Africa.
\nThis section draws reference from respective university libraries in the context of cloud storage security for research data.
\nThe University of Ghana (UG), the premier university and the largest university in Ghana was founded as the University College of the Gold Coast by Ordinance on August 11, 1948, for the purpose of providing and promoting university education, learning and research. The vision of the university is “to become a world-class research-intensive University over the next decade”. To achieve the vision, it “will create an enabling environment that makes the University of Ghana increasingly relevant to national and global development through cutting-edge research as well as high quality teaching and learning” (
Established in 1948, the Balme Library is the main library of the University of Ghana. In addition to the Balme Library, there are other libraries in the various Schools, Institutes, Departments, Halls of Residence and the Accra City Campus which form the University of Ghana Library System (
In UG, research assets (theses, journals, newspapers) in the form of PDFs, word files, conference papers, videos, and audio have been generated. In the context of this study, the existing storage media for storing research data include CDs, DVDs, external drives, servers, hard drives, microfiche, and microfilms. Others include networked drives, Google drive and Dropbox used by researchers and the library in storing research assets.
\nThe interviewee indicated that digital storage and backup is important because;
\n“Data may need to be accessed in the future to explain or augment subsequent research. Other researchers might wish to evaluate or use the results of previous research outputs as precedence to conduct other similar or extended studies”.
\nAgrawal and Nyamful [41] corroborated the findings in the present study. Accordingly, they reported that storage devices which stores and maintains large sets of data over time play an important role in mitigating big data challenges. Factors such as capacity, reliability, performance, throughput, cost, and scalability are involved in any ideal storage solution system. They argued that reliability is basically the retrieval of data in its original form without any loss. The issue of reliability takes into account both internal and external system failures and vulnerabilities. With the scale of data, the probability of losing some data during retrieval can be very high. In order to ensure continuous accessibility of data, storage is very necessary.
\nIt was revealed by the interviewee that
\n“there is no robust or enough backup plan when the primary server goes down. With an average of 3000 visits per day on the Institutional Repository (IR), we wish to keep The website availability as high as possible. To solve the problem, the IR team decided to move digital files to a cloud environment using virtualization technology”.
\nA study by Ji et al. [42], revealed a compelling need for storage and management of research output. Given the current development of data (text, audio, video, images, etc.), university libraries are employing techniques such as data compression, deduplication, object storage, and cloud storage.
\nThe Librarian in charge of research data opined that
\n“Unauthorized accessibility, physical damage, theft, and hacking are particular concerns with electronic data. Many research projects involve the collection and maintenance of human subject’s data and other confidential records that could become the target of hackers and thus integrity must be maintained. The costs of reproducing, restoring, or replacing stolen data and the length of recovery time in the event of a theft highlight the need for protecting the computer system and the integrity of the data”.
\nThe Librarian iterated that several issues are associated with storing research data on the cloud.
\nOne interviewee pointed out that;
\n“Risks associated with cloud storage are crucial for the Balme Library. Storing research assets online via the Dropbox, mozy.com, Box.net, Adrive.com, Carbonite.com have proven the best alternative. However, a few associated risks include issues regarding property rights, copyright, data protection licenses or privacy. Other issues to consider is the fact that in the event of restoring data, it may be a bit slow and the service provider (Google Reader) could go out of service”.
\nKNUST Library has realized the need to digitize and store documents and research data generated by staff and students of the University, hence the decision to create the online Institutional Repository. The online repository showcases the intellectual output from the KNUST. In the earlier 2010, a server and scanners were acquired to support digitization processes. Since then, postgraduate thesis, reports, and few research articles have been uploaded unto the repository. Increasingly, the project has continued to receive acclamation internationally due to robust IT infrastructure in the library.
\nThe librarian for KNUST responded in this manner,
\n“Currently, the KNUST uses non-web based storage media to store data. There are two servers; one for the Library’s catalogue and another for the Institutional Repository. The library also uses an external hard drive as a backup, but both media are located in-house”.
\nReed et al. [43] asserted that “data backup plays an indispensable role in the computing system. Backup is one way to ensure data protection. By keeping copies of production data, backup protects data from a potential loss such as hardware and software loss, human errors, and natural disasters. The huge amount of data needing backup and archiving has reached several petabytes and may soon reach tens, or even hundreds of petabytes. The massive amount of data in today’s library environment may consume much storage.”
\nFurthermore, it was reported by the interviewee that
\n“The challenge faced with this kind of storage media is frequent memory crash, lack of expertise to manage the storage media, lack of space – the servers have low memory space, an interrupted power supply which uninterruptible power supply (UPS) is not even able to solve. Then finally, remote access to the information is denied because data is not online”. Thus, the need to seek cloud storage.
\nIt was evident from the interviewees that cloud computing environments are easily scalable and backup recovery is very easy in Infrastructure as a Service (IaaS) Providers, hence there is efficient incident response whenever data needs to be recovered.
\nThe authors sought to find what risks were associated with cloud storage. Cost and data security were concerns raised by the managers of the repositories. Agrawal and Nyamful [41] argued that the state of preventing a system from vulnerable attacks is considered as the system’s security. Security risks involved with the use of cloud computing have various risk factors for the library environment. Seven important identity factors for risk in a cloud computing model are access, availability, network load, integrity, data security, data location, and data segregation.
\nUganda Christian University has been in existence for 11 years having only one library which uses traditional devices. In the year 2015, the library launched its institutional repository. The storage media for storing research data in Uganda Christian University library is examined as follows:
\nUganda Christian University has both traditional and modern storage devices. Traditional storage includes CDs, flash disks, card catalog and later introduced modern storage like creating an institutional repository where dissertations and research papers are kept safely for future use.
\nThe Librarian in charge of the research data output of the Uganda Christian University observed that;
\n“For modern storage devices, Google drive is currently used to store documents such as student Theses works, proposals, and the day to day statistics. This started early last year when the learning commons was opened. This is used because it is cheap and can be accessed easily by staff and students while doing their work”.
\nIn this twenty-first century, information is not just in print but digitally created and reused by researchers and patrons within academic institutions. There is a need for digital information storage at Uganda Christian University because of the advantages. Prior to cloud storage, institutions invested heavily in data centers and servers even though they may not have used its storage space. The cloud storage allows institutions’ (academic libraries) only pay for computing resources they use. By using cloud storage one can achieve a lower variable cost than can be gotten on the traditional storage devices.
\nHowever, using cloud storage by Uganda Christian University academic library has some risks. Lack of internet access or less bandwidth is a major issue. Specifically, when the internet is down its difficult for data to be retrieved thus inconveniencing the patrons. Secondly, sensitive information for the institution can be disclosed accidentally or deliberately in cloud services if not handled well especially when demand grows. Thus, the inappropriate accessibility of the institution data can be compromised.
\nFor an institution like Uganda Christian University Library to ensure the safety of its research information in the cloud, the following must be considered.
avoid unauthorized accessibility of research data using strong passwords.
Privacy policy services settings must always be checked by appropriate management.
The Iddi Basajjabalaba Memorial Library (The IBML) is an integral part of Kampala International University (KIU). It is the intellectual hub of the university that supports the study, teaching, research and social information needs of the university. The IBML has grown over the years from one small room in 2001 manned by one member of staff and serving 700 users to an eight ultra-modern building serving over 20,000 users. The IBML system has evolved over time from the manual system providing print information resources to automated circulation services and digital information resources. In 2014, The IBML set up a digital repository to capture, store, and disseminate the intellectual content of the university. The digital content includes research articles, papers written by university staff, PhD theses, and other university publications. DSpace software was used for this project and it is hosted locally on a networked server. The repository data is backed up on an external hard drive with several terabytes of storage capacity.
\nThe IBML has not ventured much into cloud storage because data is still stored locally. Researchers, academic staff, and students typically use external hard drives, flash disks, CDs, DVDs, emails and Google Drive to store their data. Not many use Dropbox, OneDrive, and other Cloud storage media. However, this trend is risky because the library faces several challenges especially power outages that lead to a computer crash, theft of computer hard drives, and other storage media. There is also a danger of data breaches by unauthorized persons since the repository server is not within the confines of the library. Therefore, cloud storage is an important choice for the library to use in order to mitigate the danger of data loss.
\nFigure 2 depicts how university libraries provide library services via cloud services. Due to the unreliability of non-web based storage media, university libraries have refocused attention to an alternative; cloud service which is web-based. In providing library services to university faculty, students and researchers; research assets in the form of electronic theses/dissertation, articles, research datasets, research reports are stored in the cloud. It is important to note that cloud services provide advantages like large storage space, data back-up among others which non-web based media does not have. However, alternative storage media (cloud computing) appears to accommodate the concerns of university libraries. Putting in place, security of content, defining accessibility levels, adherence to copyright and legal issues, cloud storage policy, among others, safety of research assets on the cloud service is safer.
\nCloud computing in university libraries.
The paper discovered pertinent and important findings which were very vital for drawing a conclusion and informing policy makers.
\nFrom the study, it can be concluded that all the sampled academic libraries used magnetic disk drives (hard disk drives) for storing research outputs and assets and optical disks (CD-R and DVD-R).
\nFrom the empirical evidence, it is concluded that information enhances knowledge, which affects behavior, and leads to development warranting its preservation. University libraries have the digital format as text, audio, video, and image which facilitates easy sharing of information. Storage is needed for current and future generation of researchers and academia as a whole. In addition, digital storage makes information easily accessible to users as compared to “analog items”. This is due to the ability to easily copy the information on storage devices and carry around. Furthermore, digital storage facilitates the easy sharing of information.
\nSpecifically, copyright law infringement, unauthorized data accessibility, policy issues, the security of content, no interoperable cloud standards were identified as the risks associated with cloud storage in academic libraries.
\nCloud computing offers university libraries improved storage solutions. In the era of IT, the library and information environment face numerous challenges including constant change of storage platforms. Notably, the storage of research output is primary to the functions of university libraries. Thus, there is a need for storage security; as it is a reality in the current technological environment.
\nIn the developed world, some university libraries have already built and managed their own research data centers comparable to the developing world. Indeed, to avoid loss of data integrity, large digital storage in the cloud must be backed up, maintained and re-produced to avoid stress on the local server infrastructure. In conclusion, the opportunities offered by cloud computing via its storage services could ensure that university libraries gain more control over research output.
\nUniversity libraries must consider investing in cloud infrastructure as it assures large savings or cost effectiveness in operational cost and tech-start-ups [44], paying for what you use and risk transfer and availability [45], scalability, accessibility [4], on-demand service, access to a large network, rapid elasticity and resource sharing [46]. Above all, Gosavi et al. [20] pointed out that libraries are likely to benefit from cloud storage in the area of self-healing, multi-tenancy, linearly scalable, service-oriented, SLA driven, virtualized and flexibility of services.
\nThe paper contributes to knowledge by protecting research data in cloud storage systems. Furthermore, the implication of the findings gives significant input to policymakers, information professionals and future researchers. Finally, with qualitative data, the adopted framework indicates how the security of cloud storage can be implemented successfully.
\nThe authors recommends the following; security/confidentiality of content, the resilience of librarians, determining access levels and enterprise cloud storage platforms if research output can be secured on the cloud;
\nContent concerns raised by Cave et al. [47] and Genoni [48] require consultation with legislation or the legal office of the academic institution. This is to say that the type of records and length of time for keeping research output must be determined, and policy put in place. In a fast-changing library environment, the technology for storage of research output suffers from obsolescence hence the need for regular back-ups to avoid data loss. Whichever way one considers the issue, storage and access concerns are central, leading to the consideration to make the cloud a viable option.
\nThere is a need for university librarians to maintain the character of resilience and also be adaptive to inevitable and unpredictable changes that occur at an accelerated pace. It is therefore required of librarians to provide a wide variety of information from an equally varied selection of sources and formats through teams (working together) and particularly with the prevalence of cloud use. Since cloud computing enables almost a new streamlined workflow, cooperation through team building or network can be very laudable.
\nTo overcome the enumerated challenge of unauthorized access to data centers, academic libraries must be concerned with the levels of accessibility; ranging from completely open access to highly private. In securing the content of the research assets on the cloud, different levels of accessibility or privileges must be assigned to the different users within the network. For instance, students, researchers, librarians, users outside the university community must be assigned roles as such.
\nThe authors highly recommends the enterprise cloud storage platforms such as Amazon Simple Storage Services (Amazon S3), Google cloud storage and Microsoft Azure. This is because they provide secure, durable, highly-scalable object storage, allows retrieval of any amount of data at any time and high-reliability performance and wide services including operating systems, frameworks, tools, and databases.
\nLicense
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:6},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:1},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:3},{group:"topic",caption:"Engineering",value:11,count:4},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"119",title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:48,numberOfAuthorsAndEditors:1096,numberOfWosCitations:1145,numberOfCrossrefCitations:783,numberOfDimensionsCitations:1680,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editedByType:"Edited by",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9174",title:"Product Design",subtitle:null,isOpenForSubmission:!1,hash:"3510bacbbf4d365e97510bf962652de1",slug:"product-design",bookSignature:"Cătălin Alexandru, Codruta Jaliu and Mihai Comşit",coverURL:"https://cdn.intechopen.com/books/images_new/9174.jpg",editedByType:"Edited by",editors:[{id:"2767",title:"Prof.",name:"Catalin",middleName:null,surname:"Alexandru",slug:"catalin-alexandru",fullName:"Catalin Alexandru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8623",title:"Maintenance Management",subtitle:null,isOpenForSubmission:!1,hash:"91cc93ad76fdd6709b8c50c6ba7e4e0c",slug:"maintenance-management",bookSignature:"Fausto Pedro García Márquez and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/8623.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7441",title:"Micromachining",subtitle:null,isOpenForSubmission:!1,hash:"2084b93f70df82e634ec776962e871fd",slug:"micromachining",bookSignature:"Zdravko Stanimirović and Ivanka Stanimirović",coverURL:"https://cdn.intechopen.com/books/images_new/7441.jpg",editedByType:"Edited by",editors:[{id:"3421",title:"Dr.",name:"Zdravko",middleName:null,surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7454",title:"Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7008bbdc804192f8969a34deda417b05",slug:"industrial-engineering",bookSignature:"Ainul Akmar Mokhtar and Masdi Muhammad",coverURL:"https://cdn.intechopen.com/books/images_new/7454.jpg",editedByType:"Edited by",editors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",middleName:null,surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7436",title:"New Trends in Industrial Automation",subtitle:null,isOpenForSubmission:!1,hash:"a6abb5722b5e27eb4b886a74f5aa4333",slug:"new-trends-in-industrial-automation",bookSignature:"Pengzhong Li",coverURL:"https://cdn.intechopen.com/books/images_new/7436.jpg",editedByType:"Edited by",editors:[{id:"19636",title:"Prof.",name:"Pengzhong",middleName:null,surname:"Li",slug:"pengzhong-li",fullName:"Pengzhong Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6838",title:"Power Plants in the Industry",subtitle:null,isOpenForSubmission:!1,hash:"5e647d27dab23e014dd8881ac3d5931c",slug:"power-plants-in-the-industry",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/6838.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6332",title:"Thermal Power Plants",subtitle:"New Trends and Recent Developments",isOpenForSubmission:!1,hash:"616ffd286d75ca988abf59b408880a98",slug:"thermal-power-plants-new-trends-and-recent-developments",bookSignature:"Pawe? Madejski",coverURL:"https://cdn.intechopen.com/books/images_new/6332.jpg",editedByType:"Edited by",editors:[{id:"179645",title:"Dr.",name:"Paweł",middleName:null,surname:"Madejski",slug:"pawel-madejski",fullName:"Paweł Madejski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5830",title:"Extrusion of Metals, Polymers, and Food Products",subtitle:null,isOpenForSubmission:!1,hash:"a69184f72a3f46dd5e4db6313f248509",slug:"extrusion-of-metals-polymers-and-food-products",bookSignature:"Sayyad Zahid Qamar",coverURL:"https://cdn.intechopen.com/books/images_new/5830.jpg",editedByType:"Edited by",editors:[{id:"21687",title:"Dr.",name:"Sayyad Zahid",middleName:null,surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5967",title:"Brewing Technology",subtitle:null,isOpenForSubmission:!1,hash:"033658c083403dadc895cf64dee8017a",slug:"brewing-technology",bookSignature:"Makoto Kanauchi",coverURL:"https://cdn.intechopen.com/books/images_new/5967.jpg",editedByType:"Edited by",editors:[{id:"85984",title:"Ph.D.",name:"Makoto",middleName:null,surname:"Kanauchi",slug:"makoto-kanauchi",fullName:"Makoto Kanauchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:48,mostCitedChapters:[{id:"15530",doi:"10.5772/14592",title:"Integrating Lean, Agile, Resilience and Green Paradigms in Supply Chain Management (LARG_SCM)",slug:"integrating-lean-agile-resilience-and-green-paradigms-in-supply-chain-management-larg-scm-",totalDownloads:5062,totalCrossrefCites:20,totalDimensionsCites:40,book:{slug:"supply-chain-management",title:"Supply Chain Management",fullTitle:"Supply Chain Management"},signatures:"Helena Carvalho and V. Cruz-Machado",authors:[{id:"18263",title:"Prof.",name:"Helena",middleName:null,surname:"Carvalho",slug:"helena-carvalho",fullName:"Helena Carvalho"},{id:"22440",title:"Prof.",name:"Virgílio",middleName:null,surname:"Cruz Machado",slug:"virgilio-cruz-machado",fullName:"Virgílio Cruz Machado"}]},{id:"17872",doi:"10.5772/19997",title:"Building Blocks of the Internet of Things: State of the Art and Beyond",slug:"building-blocks-of-the-internet-of-things-state-of-the-art-and-beyond",totalDownloads:4854,totalCrossrefCites:26,totalDimensionsCites:37,book:{slug:"deploying-rfid-challenges-solutions-and-open-issues",title:"Deploying RFID",fullTitle:"Deploying RFID - Challenges, Solutions, and Open Issues"},signatures:"Alexandru Serbanati, Carlo Maria Medaglia and Ugo Biader Ceipidor",authors:[{id:"37101",title:"Prof.",name:"Carlo Maria",middleName:null,surname:"Medaglia",slug:"carlo-maria-medaglia",fullName:"Carlo Maria Medaglia"},{id:"38529",title:"Prof.",name:"Ugo",middleName:null,surname:"Biader Ceipidor",slug:"ugo-biader-ceipidor",fullName:"Ugo Biader Ceipidor"},{id:"38530",title:"Mr.",name:"Alexandru",middleName:null,surname:"Serbanati",slug:"alexandru-serbanati",fullName:"Alexandru Serbanati"}]},{id:"34441",doi:"10.5772/35205",title:"Condition Monitoring of Railway Track Using In-Service Vehicle",slug:"condition-monitoring-of-railway-track-using-in-service-vehicle",totalDownloads:4634,totalCrossrefCites:17,totalDimensionsCites:33,book:{slug:"reliability-and-safety-in-railway",title:"Reliability and Safety in Railway",fullTitle:"Reliability and Safety in Railway"},signatures:"Hitoshi Tsunashima, Yasukuni Naganuma, Akira Matsumoto, Takeshi Mizuma and Hirotaka Mori",authors:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima"},{id:"113419",title:"Prof.",name:"Akira",middleName:null,surname:"Matsumoto",slug:"akira-matsumoto",fullName:"Akira Matsumoto"},{id:"113420",title:"Dr.",name:"Takeshi",middleName:null,surname:"Mizuma",slug:"takeshi-mizuma",fullName:"Takeshi Mizuma"},{id:"113422",title:"Mr.",name:"Hirotaka",middleName:null,surname:"Mori",slug:"hirotaka-mori",fullName:"Hirotaka Mori"},{id:"113423",title:"MSc.",name:"Yasukuni",middleName:null,surname:"Naganuma",slug:"yasukuni-naganuma",fullName:"Yasukuni Naganuma"}]}],mostDownloadedChaptersLast30Days:[{id:"51805",title:"Current Issues and Problems in the Joining of Ceramic to Metal",slug:"current-issues-and-problems-in-the-joining-of-ceramic-to-metal",totalDownloads:4086,totalCrossrefCites:6,totalDimensionsCites:14,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Uday M.B., Ahmad-Fauzi M.N., Alias Mohd Noor and Srithar Rajoo",authors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"},{id:"182065",title:"Prof.",name:"Alias",middleName:null,surname:"Mohd Noor",slug:"alias-mohd-noor",fullName:"Alias Mohd Noor"},{id:"182066",title:"Dr.",name:"Srithar",middleName:null,surname:"Rajoo",slug:"srithar-rajoo",fullName:"Srithar Rajoo"},{id:"190437",title:"Prof.",name:"Ahmad-Fauzi",middleName:null,surname:"M. N.",slug:"ahmad-fauzi-m.-n.",fullName:"Ahmad-Fauzi M. N."}]},{id:"43383",title:"Improving Operations Performance with World Class Manufacturing Technique: A Case in Automotive Industry",slug:"improving-operations-performance-with-world-class-manufacturing-technique-a-case-in-automotive-indus",totalDownloads:25259,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Fabio De Felice, Antonella Petrillo and Stanislao Monfreda",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"167280",title:"Dr.",name:"Stanislao",middleName:null,surname:"Monfreda",slug:"stanislao-monfreda",fullName:"Stanislao Monfreda"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}]},{id:"55749",title:"Exploitation of Brewing Industry Wastes to Produce Functional Ingredients",slug:"exploitation-of-brewing-industry-wastes-to-produce-functional-ingredients",totalDownloads:3099,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Anca Corina Fărcaş, Sonia Ancuța Socaci, Elena Mudura, Francisc\nVasile Dulf, Dan C. Vodnar, Maria Tofană and Liana Claudia Salanță",authors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",middleName:null,surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",middleName:null,surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",middleName:null,surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"192177",title:"Dr.",name:"Dan Cristian",middleName:null,surname:"Vodnar",slug:"dan-cristian-vodnar",fullName:"Dan Cristian Vodnar"},{id:"194168",title:"Dr.",name:"Francisc Vasile",middleName:null,surname:"Dulf",slug:"francisc-vasile-dulf",fullName:"Francisc Vasile Dulf"},{id:"203096",title:"Dr.",name:"Elena",middleName:null,surname:"Mudura",slug:"elena-mudura",fullName:"Elena Mudura"},{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}]},{id:"53519",title:"Understanding the Stakeholders as a Success Factor for Effective Occupational Health Care",slug:"understanding-the-stakeholders-as-a-success-factor-for-effective-occupational-health-care",totalDownloads:1781,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"occupational-health",title:"Occupational Health",fullTitle:"Occupational Health"},signatures:"Ari-Matti Auvinen",authors:[{id:"193252",title:"M.A.",name:"Ari-Matti",middleName:null,surname:"Auvinen",slug:"ari-matti-auvinen",fullName:"Ari-Matti Auvinen"}]},{id:"43001",title:"Production Scheduling Approaches for Operations Management",slug:"production-scheduling-approaches-for-operations-management",totalDownloads:5934,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Marcello Fera, Fabio Fruggiero, Alfredo Lambiase, Giada Martino and Maria Elena Nenni",authors:[{id:"163046",title:"Dr.",name:"Fabio",middleName:null,surname:"Fruggiero",slug:"fabio-fruggiero",fullName:"Fabio Fruggiero"}]},{id:"43436",title:"The Important Role of Packaging in Operations Management",slug:"the-important-role-of-packaging-in-operations-management",totalDownloads:6781,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Alberto Regattieri and Giulia Santarelli",authors:[{id:"72034",title:"Prof.",name:"Alberto",middleName:null,surname:"Regattieri",slug:"alberto-regattieri",fullName:"Alberto Regattieri"}]},{id:"65164",title:"Maintenance Management of Aging Oil and Gas Facilities",slug:"maintenance-management-of-aging-oil-and-gas-facilities",totalDownloads:1343,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"maintenance-management",title:"Maintenance Management",fullTitle:"Maintenance Management"},signatures:"Riaz Khan, Ammeran B. Mad, Khairil Osman and Mohd Asyraf Abd Aziz",authors:[{id:"215673",title:"Dr.",name:"Riaz",middleName:null,surname:"Khan",slug:"riaz-khan",fullName:"Riaz Khan"},{id:"277895",title:"Dr.",name:"Ammeran B.",middleName:null,surname:"Mad",slug:"ammeran-b.-mad",fullName:"Ammeran B. Mad"},{id:"277897",title:"Dr.",name:"Khairil",middleName:null,surname:"Osman",slug:"khairil-osman",fullName:"Khairil Osman"},{id:"277898",title:"Dr.",name:"Mohd Asyraf",middleName:null,surname:"Abdul Aziz",slug:"mohd-asyraf-abdul-aziz",fullName:"Mohd Asyraf Abdul Aziz"}]},{id:"43375",title:"Product Sound Design: Intentional and Consequential Sounds",slug:"product-sound-design-intentional-and-consequential-sounds",totalDownloads:2866,totalCrossrefCites:15,totalDimensionsCites:25,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Lau Langeveld, René van Egmond, Reinier Jansen and Elif Özcan",authors:[{id:"39586",title:"MSc.",name:"Lau",middleName:null,surname:"Langeveld",slug:"lau-langeveld",fullName:"Lau Langeveld"},{id:"156849",title:"MSc.",name:"Reinier",middleName:null,surname:"Jansen",slug:"reinier-jansen",fullName:"Reinier Jansen"},{id:"156854",title:"Dr.",name:"Rene",middleName:null,surname:"Van Egmond",slug:"rene-van-egmond",fullName:"Rene Van Egmond"},{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}]},{id:"54655",title:"Key Technical Performance Indicators for Power Plants",slug:"key-technical-performance-indicators-for-power-plants",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"recent-improvements-of-power-plants-management-and-technology",title:"Recent Improvements of Power Plants Management and Technology",fullTitle:"Recent Improvements of Power Plants Management and Technology"},signatures:"Simona Vasilica Oprea and Adela Bâra",authors:[{id:"139804",title:"Prof.",name:"Adela",middleName:null,surname:"Bara",slug:"adela-bara",fullName:"Adela Bara"},{id:"188586",title:"Dr.",name:"Simona Vasilica",middleName:null,surname:"Oprea",slug:"simona-vasilica-oprea",fullName:"Simona Vasilica Oprea"}]},{id:"55197",title:"Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking",slug:"changes-in-nutritional-properties-and-bioactive-compounds-in-cereals-during-extrusion-cooking",totalDownloads:1052,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"extrusion-of-metals-polymers-and-food-products",title:"Extrusion of Metals, Polymers, and Food Products",fullTitle:"Extrusion of Metals, Polymers and Food Products"},signatures:"Cuauhtémoc Reyes Moreno, Perla C. Reyes Fernández, Edith O.\nCuevas Rodríguez, Jorge Milán Carrillo and Saraid Mora Rochín",authors:[{id:"198302",title:"Dr.",name:"Saraid",middleName:null,surname:"Mora-Rochín",slug:"saraid-mora-rochin",fullName:"Saraid Mora-Rochín"},{id:"199537",title:"Dr.",name:"Perla C.",middleName:null,surname:"Reyes Fernández",slug:"perla-c.-reyes-fernandez",fullName:"Perla C. Reyes Fernández"},{id:"199538",title:"Dr.",name:"Edith O.",middleName:null,surname:"Cuevas Rodríguez",slug:"edith-o.-cuevas-rodriguez",fullName:"Edith O. Cuevas Rodríguez"},{id:"199539",title:"Dr.",name:"Cuauhtémoc",middleName:null,surname:"Reyes Moreno",slug:"cuauhtemoc-reyes-moreno",fullName:"Cuauhtémoc Reyes Moreno"},{id:"199540",title:"Dr.",name:"Jorge",middleName:null,surname:"Milán Carrillo",slug:"jorge-milan-carrillo",fullName:"Jorge Milán Carrillo"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/126813/yan-yu",hash:"",query:{},params:{id:"126813",slug:"yan-yu"},fullPath:"/profiles/126813/yan-yu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()