Electromotive force series (Emf or standard potentials redox in volts vs. SHE at 25°C).
\r\n\tIt is a relatively simple process and a standard tool in any industry. Because of the versatility of the titration techniques, nearly all aspects of society depend on various forms of titration to analyze key chemical compounds.
\r\n\tThe aims of this book is to provide the reader with an up-to-date coverage of experimental and theoretical aspects related to titration techniques used in environmental, pharmaceutical, biomedical and food sciences.
Effluents of industrial wastes are the important source of water pollution that are toxic in the environment and are becoming the biggest problem that influence the survival of human beings and other creatures in the environment. The demand of clean water is increasing with the rapid growth of global population; in the present, several treatment techniques that include biodegradation, membrane process, coagulation, adsorption, precipitation, sonochemical degradation, micellar-enhanced ultrafiltration, and advanced oxidation process (AOP) have been utilized to remove pollutants from wastewater [1]. Among them, AOP is an efficient method to remove the contaminants that are not degradable by means of biological processes. Since these processes involve the production of very reactive oxygen species (ROS), it can be able to destroy a wide range of organic compounds. A wide range of semiconductor photocatalysts have been utilized in AOPs. The first photocatalyst, TiO2, discovered by Fujima and Honda in 1972 was found as gold standard due to its significant characteristics that include high chemical stability, nontoxicity, and relatively low price [2]. However, it only absorbs ultraviolet irradiation from sunlight due to its wide bandgap. To overcome this problem, several studies are focusing on finding ways to extend the absorption wavelength range of TiO2. In this regard, metal or nonmetal elements doped onto TiO2 and visible light response photocatalysts are being developed as the future generation. Among which transition metal chalcogenide (TMC) materials gained worldwide attention in recent decades because of their significant characteristics, such as excellent optical absorption due to its tunable indirect bandgap energies (1–2 eV) [3]. Moreover TMCs with graphene oxides [4], carbon nitride [5], metal oxides [6], and metals [7] were found to increase the conductivity of electrons, provide active sites, and effectively separate the electron and hole pairs generated by the semiconductor photocatalysts [4]. This chapter explores the synthesis, characterization, and the applications of TMCs.
\nTransition metal chalcogenides are considered as emerging candidates due to their unique physical and chemical properties and are being researched for use in lithium-ion batteries, solar cells, hydrogen evolution, and photocatalytic degradation due to their indirect bandgaps, optoelectronic behavior, and stability. In addition, nanodots (quantum dots)/nanostructures of these metal chalcogenides show stronger edge effects, and the quantum confinement effect makes it possible to utilize under solar-simulated irradiation [8, 9].
\nThere are several methods to synthesize transitional metal chalcogenides, including ultrasonic chemical method, hydrothermal method, simple template-free one-pot method, an ion-exchange and precipitation methods, simple microwave-assisted solvothermal process, and surface modification method [5, 6, 7, 8, 9, 10, 11, 12]. The following sections explore the most common preparation methods of TMCs.
\nHydrothermal reaction usually occurs in the reaction vessel of stainless steel autoclave. The presence of aqueous solution or mineralizers under high pressure and low temperature encourages interaction of precursor materials during the process. This method has the feature to make high crystalline nanostructures or products at relatively low temperature [13, 14]. A range of TMCs that include NiS [15], CuS, FeS2, NiS2 [10], etc. have been synthesized using hydrothermal treatment method due to low temperature requirement (150°C), short time duration (~4 h), and high yield (>90%). In addition, there is no need to use any complexing agents or no need to control the pH [10] (Figure 1).
\nSchematic illustration of the hydrothermal synthesis of FeS2, CuS, and NiS2 powders. Reproduced with permission from [10].
Synthesis of CdS nanosheet-RGO hybrid. Reproduced with permission from [18].
Further, hydrothermal method has been utilized to synthesize TMC-doped metal [16], metal oxides [17], or carbonaceous [18] materials. The following schematic illustration represents the preparation of CdS nanosheet-RGO hybrid material using hydrothermal treatment method (Figure 2).
\nApart from these, microwave-assisted synthesis method has also been used to prepare TMCs with controllable size and shape compared with conventional heating method due to the homogeneous heating process. Further, this method can promote nucleation and, thus, reduce the time required for synthesis [18].
\nSimple template-free one-pot method is a simple synthetic approach that was used to develop certain metal oxide hollow spheres based on direct solid evacuation arising from Ostwald ripening, the Kirkendall effect, or chemically induced self-transformation [19].
\nFigure 3 illustrates the mechanism for the simple template-free one-pot method to prepare hollow sphere, Ni-doped CdS material. Herein, biomolecular glutathione was used as sulfur and bubble source [7].
\nMechanism for the formation of Ni-doped CdS. Reproduced with permission from [7].
The essential techniques used to characterize the transition metal chalcogenide materials are discussed in this section.
\nX-ray diffraction (XRD) spectroscopy is a nondestructive method used to analyze the crystallinity, crystal structure, crystallite size, and phase composition of the photocatalytic materials which presents in powder form or thin film.
\nXRD pattern for MoS2 on g-C3N4 in different amounts. Reproduced with permission from [5].
In the study by Li and co-workers, MoS2 nanosheets coupled into the carbon nitride to form MoS2/C3N4 heterostructures synthesized by a facile ultrasonic chemical method were characterized by using XRD. All the samples prepared showed similar patterns, and the peaks at 32.6 and 58.3° were assigned to the (100) and (110) crystal plane formation of MoS2. Peak at 27.4° indicated to the (002) stacking layered structure, while the 13.0° peak corresponds to the (100) in-plane repeated units. The observation from XRD confirms the formation of MoS2/C3N4 heterostrucuture [5] (Figure 4).
\nIn another study, NiS nanoparticles prepared hydrothermally were characterized by powder XRD method.
\nFigure 5 illustrates the XRD patterns of as-prepared nanostructured NiS samples. The patterns were indexed to rhombohedral structured NiS with the space group of R3m. The cell parameters were found to be a = 9.61 Å and c = 3.16 Å [15].
\nXRD for synthesized NiS. Reproduced with permission from [15].
XRD pattern (Figure 6) confirmed the formation of CdS, and Ni-doped CdS materials prepared by one-pot synthesis method show similar pattern and are assigned to hexagonal phase. It was also found that the peak intensity increases with the increase in Ni2+ doping concentration. Average crystallite size was estimated based on the broadening of the (002) peak, and it was found that the crystallite size also increased with the %Ni doped on CdS [7].
\nXRD for Ni doped on CdS. Reproduced with permission from [7].
X-ray powder diffraction patterns of different metal sulfides were reported by Ali and co-workers as illustrated in Figure 7. The diffraction patterns of the samples are indexed to pyrite FeS2, covellite CuS, and vaesite NiS2. The purity of the phases was confirmed by the absence of additional peaks in their XRD. XRD patterns of cubic FeS2 and NiS2 were found to be isostructural, whereas CuS was found in a hexagonal symmetry. The crystallite sizes of the materials were estimated as 50, 45, and 22 nm for FeS2, CuS, and NiS2, respectively [10].
\nXRD diffraction patterns and schematic representations of the crystalline structure of (a) FeS2, (b) CuS, and (c) NiS2. Reproduced with permission from [10].
Scanning electron microscopy (SEM) is one of the electron microscopic techniques that images the sample surface using high beam electrons. In this technique, beam electrons strike the surface of the specimen and interact with atoms and form the secondary electrons, which characterized the information about the morphology of sample surface in high-resolution images colored in black and white. SEM is used to view dispersion of nanoparticles in different nanostructures, such as nanotubes, nanoclays, nanofillers, and nanofibers. In addition, the method used X-ray to identify elemental composition known as energy-dispersive ray method (EDX). The transmission electron microscopy (TEM) images form when beam of electron is transmitted through the sample and magnified by objective lens. This technique is the most preferred to measure the particle size and thickness of sample. In particular, for the morphology of materials, monitoring morphology and dispersion is very crucial compared to scanning electron microscopy [20].
\nFigure 8(a) shows SEM images of carnation flowerlike morphology with a diameter of about 500–700 nm. Figure 8(b)and(c) is the magnified view of an individual SnS2 flower containing ultrathin nanopetals as building blocks, which is in 10 nm thick. These building blocks linked together and form 3D flowerlike structure. Figure 8(d) and (e) shows the TEM images of dense core of SnS2 flower structure that clearly indicates that the nanopetals are well arranged across the flower center; however, the nanopetals of SnS2 were not connected together. Finally, Figure 8(f) shows nanoparticles in randomly arranged manner with uneven sizes [21].
\n(a–c) SEM images of SnS2 flowerlike structure, (d–e) TEM images of SnS2 flowerlike structure, and (f) SEM images of SnS2 nanoparticles. Reproduced with permission from [21].
SEM and EDS analysis of (a, b) FeS2, (c, d) CuS, and (e, f) NiS2. Reproduced with permission from [10].
In the green synthesis of earth-abundant metal sulfides by Ali and co-workers, the samples prepared exhibited uniform morphology and particle size distribution, which is due to a controlled growth during the hydrothermal synthesis. The presence of iron, copper, nickel, sulfur, and carbon and its purity obtained using SEM analysis was found to be in good agreement with the phases observed by XRD. In addition, the atomic content of Fe, Cu, Ni, and S in the samples had a good correlation with theoretical atomic% of all the phases. The morphological analysis confirmed that as-prepared sulfides are in the form of agglomerated particles. In addition, polyhedral particles with the size of ~676 ± 44 nm were obtained for FeS2 sample, whereas CuS and NiS2 exhibited irregular- and spherical-shaped particles with the size of ~783 ± 53 and 933 ± 68 nm, respectively [10] (Figure 9).
\nLi et al. studied the morphology and microstructure of the as-prepared samples of WS2 by using SEM and TEM. The detailed structural information of the WS2/Bi2MoO6 composite was obtained by TEM analysis, and an irregular platelet-shaped nanostructure was observed with the length ranging from 500 nm to 2 μm. The results obtained from TEM were in good agreement with SEM analysis. The HRTEM of the prepared materials further confirm the nanojunction structure. Figure 10 illustrates two sets of different lattice images with the lattice fringe of 0.27 and 0.46 nm obtained from TEM corresponded to the (100) plane of WS2 and (120) plane of Bi2MoO6 resulted from the XRD [17].
\nTEM and HRTEM images of the hierarchical WS2/Bi2MoO6 composite (5 wt% of WS2). Reproduced with permission from [17].
XPS or X-ray photoelectron spectroscopy is used as surface analytic technique based on the photoelectric effect. XPS is mainly used to find the composition of elements in the surface of the materials and to determine the valence band structure and chemical state of components.
\nFigure 11(a) illustrates the XPS molybdenum 3d spectra for MoSe2, which exhibit peaks on 228.84 and 232.01 eV indicating binding energy of Mo 3d5/2 and Mo 3d3/2 for Mo4+ ions, respectively. In addition, Figure 11(c) depicts the XPS of MoSeX (at 120°C) indicating additional peaks at 232.07 and 229.45 eV which can be attributed to the binding energy of Mo5+ ions. The results confirmed the synthesis at 120°C, which resulted in two chemical states (IV and V) of molybdenum. Further, it was found that the amorphous MoSe2 showed a very broad Se 3d peak than the crystalline MoSe2. The Se 3d5/2 and Se 3d3/2 peaks for amorphous and crystal samples of MoSe2 were found to lie between the range of 52 and 57 eV; however, the intensity of the peaks varied in amorphous sample. Peak-fitting analysis showed that the ratio of Mo to Se in the amorphous MoSex sample was 1:3:1 [3].
\n(a, b) XPS for MoSe2, (c, d) XPS for MoSeX. Reproduced with permission from [3].
Figure 12(a) shows the schematic of PtSe2 in monolayer format, in that one sublayer of Pt atoms is sandwiched between two Se sublayers. Figure 12(b) shows the XPS measurements for Se during the growth of PtSe2 at 270°C. The peaks at 55.68 and 54.80 eV indicate the binding energy of Se(0) chemical state at 25°C, and at 270°C, the peaks were found at 55.19 and 54.39 eV corresponding to the binding energy of Se2− chemical state; in between that, at 200°C, the curve indicates the coexistence of Se(0) and Se2− states. The binding energies of Se confirmed the formation of PtSe2 at 270°C [22].
\n(a) PtSe2 monolayer and (b) XPS for PtSe2. Reproduced with permission from [22].
The XPS survey spectrum of SnS2-AP (Figure 13) confirmed the presence of Sn and S components, whereas Cr, C, and O were found to be the contaminants. High-resolution XPS spectra of Sn 3d and S 2p core levels proved that the binding energies of Sn 3d and S 2p of SnS2-AP were very close to those of SnS2-(c). The binding energies of Sn 3d5/2 and S 2p3/2 of SnS2-AP and SnS2-(c) were 486.61 and 486.65, 161.68, and 161.74 eV, respectively. It was also found that the binding energies of Sn 3d5/2 and S 2p3/2 of SnS2-AP and SnS2-(c) were of close proximity with the reference data of Sn4+ and S2− in SnS2.
\nXPS spectra of SnS2-AP and SnS2-(c). Reproduced with permission from [23].
Apart from these, a peak attained at 577.36 eV is due to the binding energy of Cr 2p3/2 corresponding to Cr (III) in Cr(OH)3. The hydrolysis-precipitation of Cr(III) ion leads to the formation of Cr(OH)3 on the surface of SnS2-AP. Cr(III) were generated from the photocatalytic reduction of adsorbed Cr(VI) [23].
\nPersistent organic pollutants (POPs) are of global concern because of their potential for long-range transport, persistence in the environment, ability to biomagnify and bioaccumulate in ecosystems, as well as possess negative effects on human health and the environment. In particular, the agrochemicals and textile effluents involve processes that produce compounds that are very toxic to the environment. Thus, it is necessary to remove these colored pollutants from the environment. Several catalysts have been utilized to remove the pollutants from the polluted environment, and the transition metal chalcogenide has recently gained much attention in this regard due to their significant characteristic properties.
\nRepeated tests using recycled CdS 0.03(MoS2/0.01rGO) composite catalyst for photocatalytic 4-nitrophenol reduction. Reproduced with permission from [4].
Wen-chao Peng et al. synthesized MoS2/reduced graphene oxide hybrid with CdS nanoparticle for photocatalytic reduction of nitroaromatic compounds to aromatic amines under visible light irradiation in the presence of sacrificial agent. It was also noted that composite of CdS-0.03 (MoS2/0.01rGO) exhibited remarkable enhancement on the 4-nitrophenol reduction due to the separation of electron-hole pairs generated by CdS nanoparticles [4] (Figure 14). In addition, it was found that the photocatalyst appeared to be stable confirmed by recycling study as illustrated in the following figure.
\nIn another study, Peitao Liu and co-workers worked on prepared N-doped MoS2 nanoflowers (specific surface area of 114.2 m2 g−1) and α-Fe2O3@N-doped MoS2 heterostructures for decoloring or the removal of the Rhodamine B (RhB) under visible light irradiation. When comparing the activity of these two materials, N-doped MoS2 nanoflowers showed optimum rate constant as 0.0928 min−1, which was 26.4 times greater than that of MoS2 nanosheets. Further, 20 mg of these catalysts completely degraded the 50 mL of 30 mgL−1 RhB within 70 min [24] (Figure 15).
\nPhotocatalytic degradation of RhB by different photocatalysts (N-doped MoS2 nanoflower, without light, bulk N-doped MoS2, and MoS2 nanosheets) under visible light irradiation, where C and C0 are the RhB concentrations at time t min. And 0 min, respectively. Reproduced with permission from [24].
MoS2 nanosheets were coated into carbon nitride synthesized by facile ultrasonic chemical method to form heterostructures. These materials were used to explore the photocatalytic degradation of the dyes, RhB and MO, and the optimum reaction rate constant was found to be 301 min−1 with the 0.05 wt% MoS2 [5].
\nYangyang Liu and co-workers synthesized ZnO nanosheet doped with P by using conventional chemical vapor transport and condensation (CVTC) method and then coated with an atomic layer of MoS2 on it (Figure 16).
\nMechanism of photolysis on ZnO decorated with MoS2. Reproduced with permission from [6].
The photocatalytic activity of the catalyst was tested by degradation of organic dyes, such as methylene blue (MB) and Rhodamine B (RhB), under natural sunlight. It was found that 95% of organic dyes were degraded within 6 min and photocatalytic rate constant was found to be 1.413 min−1, which was 3.4 times better than that of P25 due to the enhanced light adsorption efficiency obtained by synergetic effect of MoS2 [6].
\nSchematic illustration of photo-charge separation through 1 T@2H-MoS2/Ag under visible light irradiation. Reproduced with permission from [16].
In another study, Haiyang Liu et al. worked on 1 T@2H-MoS2/Ag composite synthesized by microwave-hydrothermal and photoreduction methods for photocatalytic degradation of conventional dyes and photocatalytic reduction of Cr(VI) under visible light irradiation. It was observed that 1 T@2H-MoS2/Ag effectively enhanced photocatalytic activity compared with 2H-MoS2 due to the enhancement in the light response range and charge separation by using Ag quantum dots and 1 T phase. In addition, 1 T@2H-MoS2 showed 81 and 41% of increment in photocatalytic reduction of Cr(VI) and photocatalytic degradation of methylene blue, respectively [16] (Figure 17).
\nIn a different study, Xi Yang et al. worked on amorphous and crystalline molybdenum selenide synthesized by facile low-temperature hydrothermal method for adsorption and degradation of Rhodamine and methylene blue under dark and visible light irradiation. Due to the excellent optical absorption and narrow bandgap (1–2 eV), molybdenum selenide (MoSe2) is preferred for the photocatalytic degradation of pollutants. Hole and free radical studies concluded that the photocatalytic effect of the amorphous samples was higher than that of the crystalline samples due to the different active substances. The active substances, superoxide radicals, in particular, predominated the process of degrading the dye. When comparing the amorphous and crystalline materials, amorphous molybdenum selenide showed better performance in adsorption and degradation process due to the formation of superoxide radical (˙O2−) and more unsaturated atoms and greater specific surface area than crystalline structure; further, the holes and hydroxyl radicals were found to be the main active substances [3].
\nHongxu Guo et al. synthesized NiS nanoparticles for photocatalytic degradation and adsorption of Congo red under visible light irradiation. NiS nanoparticles were synthesized by hydrothermal method, and it exhibited efficient photocatalytic activity. 30 mg/L of Congo red was completely degraded after illumination of 210 min. In addition, OH radicals were identified by using fluorescence technique, and those highly reactive radicals were found to be the major factor for the photocatalytic process [15].
\nIn a different study, Aniruddha Molla et al. synthesized Ag-In-Ni-S nanocomposites with different shapes for the degradation of methylene blue under dark and visible light irradiation. It is noteworthy to mention here that 20 mg of the catalyst showed a complete degradation of methylene blue within 12 min, when there was no light exposure. Notably, the degradation took only 2 min, when visible light was exposed with a 100 W lamp source. Further, the reactive oxygen species generated during the process was confirmed in their study [2].
\nCdS and Ni-doped CdS hollow spheres were used by Man Luo and his group for the degradation or removal of RhB and phenol. These materials were synthesized by simple template-free one-pot method. 1.2 mol% of Ni-doped CdS hollow spheres exhibited better performance in the removal of organic pollutants due to the reduce recombination rate of the electrons and hole pairs [7]. Figure 18 illustrates the UV-absorbance profile for the degradation of RhB dye with the 1.2 mol% of Ni-doped CdS.
\nUV-visible absorption spectra of RhB in the presence of 1.2 Mol% of Ni-doped CdS. Reproduced with permission from [7].
Earth-abundant transition metal sulfides, such as FeS2, CuS, and NiS2, were synthesized by fast and low-cost hydrothermal synthesis method and utilized for photocatalytic hydrogen evolution and photocatalytic degradation of indigo carmine dye under visible light irradiation. Different sacrificial agents, such as Na2S/Na2SO3, EDTA, and ethanol, were used when the H2 evolution was tested. FeS2 showed higher activity for the hydrogen evolution (32 μmolg−1 h−1), and an 88% of dye (indigo carmine) degradation was attained due to their suitable electronic and optical properties. The better activity was credited to a larger crystallite size, smaller particle size, and lower recombination rate of FeS2 than other materials that include CuS and NiS2. In addition, the presence of Na2S/Na2SO3 exhibited higher enhancement in the activity for the production of hydrogen among the other scavenging reagents used in this study [10].
\nIn another study, Yongje Zhao and co-workers utilized the bimetallic chalcogenides material, FeCoS2, synthesized by using a modulated hydrothermal method for photodegradation of methylene blue and anode materials for Na-ion batteries under UV radiation. The photocatalytic activity of FeCoS2 which was hydrothermally treated at 190°C was found to be a better candidate with the degradation efficiency of 90% (in 150 min) under UV irradiation. The better photocatalytic activity was related with the microstructure, specific surface area, and charge separation of catalytic materials [25].
\nAlireza et al. prepared NiS-clinoptilolite zeolite as a catalyst via an ion-exchange and precipitation methods. The catalyst was utilized for photodegradation of furfural in aqueous solution over UV irradiation. An optimum photocatalytic efficiency was observed when 330 mg L−1 of the catalyst was used at pH 5 in 6 mM of furfural solution. In addition, it was found that the degradation rate increased with increasing amount of hydrogen peroxide and potassium bromate in the solution [12].
\nXi Li et al. used SnS2 and CdS for photocatalytic degradation of different types of organic dyes, such as methyl orange (MO), Rhodamine B (RhB), Congo red (CR), orange II (OII), malachite green (MG), and methylene blue (MB), under visible light irradiation, and the activity of these two materials were compared. SnS2 showed higher activity in the degradation of MO and lower activity in the degradation of RhB-like organic dyes, when compared to CdS material. In the degradation of azo dyes (dyes containing N〓N double bond), SnS2 followed a reduction mechanism with photoelectrons via the SnIV/SnII transition, whereas an oxidation mechanism was observed with both SnS2 and CdS for photodegradation of organic dyes which do not consist of N〓N double bond. ˙O2− and ˙OH radicals were found to be the major contributors for the oxidation mechanism. Since the reduction of dye molecules was faster than migration of the radicals, SnS2 exhibited much higher activity than the CdS for the dyes containing N〓N double bond. However, SnS2 showed lower efficiency than CdS in the photocatalytic degradation of other organic dyes without N〓N double bond, due to the slow production of reactive oxidative species mentioned above. Additional experiments were carried out in the presence of the scavengers NO, N2, O2, and IPA [26]. Figure 19 depicts the rate of degradation of both catalysts against the azo and non-azo dyes.
\nPlots of normalized concentration (C0/C) of MB vs. different time intervals (a) MO and (b) RhB photocatalytic degradation. Reaction conditions: 20 mg (a) or 50 mg (b) photocatalyst, 50 mL 6.0 × 10−5 Mol/L organic dyes, a 300 W xenon lamp(>420 nm), reaction temperature = 30°C. Reproduced with permission from [26].
In a different study, 3D carnation flowerlike hexagonal SnS2 nanostructures were synthesized by a simple microwave-assisted solvothermal process for photocatalytic degradation of Rhodamine (RhB) and phenol under visible light irradiation. The 3D carnation flowerlike hexagonal SnS2 nanostructures exhibited enhanced photocatalytic activity compared to SnS2 nanoparticles due to its high BET surface area, high surface-to-volume ratios, and increased light absorbance of hierarchical mesoporous structures [21].
\nYong Cai Zhang et al. synthesized SnS2 nanoflakes from SnCl2.H2O for photocatalytic degradation of methyl orange (MO) under both the visible light and real sunlight irradiation. The SnS2 material synthesized at 200°C exhibited high photocatalytic efficiency than others (i.e., 100% of degradation of MO after 60 min in the first cycle and 86% in the fifth cycle). The reason for the better degradation efficiency correlated with the combined action of several factors that include bandgap (2.21–2.25 eV), size, dispersibility, suspensibility, surface area, crystallinity, crystal defects, and photochemical stability. Almost all the materials showed better efficiency than the P25 material used for the comparison purpose [27].
\nPhotodegradation of Cr(VI) in the presence of SnS2. Reproduced with permission from [23].
SnS2 nanocrystals with adjustable sizes were synthesized by Yong Cai Zhang and co-workers by utilizing hydrothermal method with the precursor of SnCl4.5H2O. The materials were tested for the reduction of aqueous Cr(VI) under visible light irradiation (Figure 20).
\nIt was found that the reduction of aqueous Cr(VI) depends on their hydrothermal conditions. Particularly, SnS2, synthesized at 150°C for 12 hours, showed highest photocatalytic activity in reducing aqueous Cr(VI) [10]. In a separate study, the same group worked on size-controlled synthesis of SnS2 by using hydrothermal method, and their photocatalytic activity tested against the degradation of methyl orange under visible light irradiation [23].
\nZhenyi Zhang et al. synthesized nanosheets of SnS2 on g-C3N4 as 2D/2D heterojunction photocatalyst for the photocatalytic degradation of organics including dye (RhB) and phenols over visible light irradiation. It was found that the heterosamples exhibited an enhancement in the photocatalytic degradation of organics than pure g-C3N4 and SnS2 nanosheets. In this study, a better efficiency was attained for the catalyst loaded with 5.0 wt% SnS2 (rate constant of ∼0.2 min−1) for the RhB photodegradation [28].
\nAtkin and co-workers utilized two-dimensional tungsten disulfide (WS2) nanoflakes, hybridized with carbon dots prepared using two-step method for photocatalytic degradation of organic dyes. This material shows photocatalytic efficacy for the degradation of dyes. Twelve percent of degradation was obtained against the Congo red dye when 0.24 mg/L photocatalyst was utilized [29].
\nMechanism for the photocatalytic activity of WS2/Bi2MoO6 in the presence of organic pollutants. Reproduced with permission from [17].
In another study, few layered WS2/Bi2MoO6 heterojunction composites were prepared by Xiang Li et al. using hydrothermal method for photodegradation of organics under visible light irradiation. A higher degradation efficiency was attained by the materials further proved by the percentage removal of 99.5 and 91.7% for Rhodamine B (RhB), 98.9 and 89.8% for ciprofloxacin (CIP), 76.0 and 67.8% for methylene blue (MB), and 69.3 and 58.6% for methimazole (MMI), respectively. The reason for the removal efficiency was correlated with the structure of the materials, which may provide larger contact area for interfacial charge transfer and can shorten the migration distance of charge transfer [17] (Figure 21).
\nHua-Bin Fang and co-workers used WS2 nanosheets on manganese oxide (MnOX) prepared by photo-deposition in MnSO4 solution. Here, manganese oxide (MnOX) was used as a hole-trapping material. MnOX/WS2 showed better performance in the degradation of RhB under visible light than pure WS2, because of the efficient charge separation in the composite promoted by MnOx [30].
\nPrabhakar Vattikuti et al. synthesized 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction by hydrothermal method for the degradation of methyl orange (MO) dye in aqueous solution and evolution of hydrogen under visible light irradiation. The material showed enhanced photocatalytic activity due to the presence of strong surface active sites and fast transfer of electron–hole pairs in the heterostructure of the composite. In addition, 84.4% of methyl orange was degraded after 90 min of exposure of visible light irradiation when 3% of Bi2S3/e-WS2 composite was used [31].
\nRajesh Bera et al. synthesized CdS nanosheet (0D, 1D, and 2D) on graphene oxide composite by surface modification method. The catalysts prepared were utilized for the photocatalytic degradation of 4-aminothiophenol under visible light. The photocatalytic activity of CdS nanosheet/RGO composite was found to nearly 4 times, 3.4 times, and 2.5 times higher than CdS nanoparticle/RGO, CdS nanorod/RGO, and pure CdS nanosheet samples, respectively. In addition, 2D-2D nanoarchitecture was found to more effective than 0D-2D and 1D-2D hybrid systems due to its better ability for harvesting of photon from sunlight and transport of excitons to their reaction sites than others [18].
\nSohrabnezhad et al. worked on CoS nanoparticles supported on Al-MCM-41 material, which was synthesized by ion-exchange method. The materials were utilized for photocatalytic degradation of basic blue 9 or methylene blue (MB). Seven percent loading of CoS on the mesoporous support exhibited maximum efficiency for the photocatalytic degradation of methylene blue, and the optimum pH was found to be 9. The degradation followed pseudo-first-order reaction with the rate constant (k) of 0.0361. The effect of pH, amount of photocatalyst, and initial concentration of dye were also examined in their studies [11].
\nMetal sulfides/selenites (metal chalcogenides) have attracted considerable interest due to their electronic and optical applications. In addition, most of the common metal sulfides are nontoxic with narrow bandgap. Due to these characteristic features, metal chalcogenides have been utilized as potential candidates for photocatalysis. This chapter reviewed the most common synthetic protocol of several transition metal chalcogenides that include metal sulfides and metal selenites. Further, a brief section covered the basic characterization techniques, which have been commonly used to characterize the chalcogenide materials. Most importantly, the application of different metal chalcogenides toward environmental remediation applications, i.e., degradation of organic pollutants, is also explored herein.
\nThe authors would like to thank the Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka.
\nThe authors declare no conflict of interests.
The corrosion science is a complex subject that is not well defined, and still continues to progress as the subject evolves from the simple traditional definition of “destruction of metals through oxidation and its prevention” to “degradation of a material that involves one or more chemical and/or electrochemical reactions and its foresight”. This latter material definition encompasses a wide range of environments, and all classes of materials (ceramics, organics, composites), not just metals. The intentional conjunction with degradation due to non-chemical processes, such as tribology (i.e., science of friction, wear and lubrication), has open up a new global perspective topic of a rare universality that leads us to prospect many aspects of science and technology, namely tribocorrosion. To better understand the specificity of tribocorrosion, it is necessary to briefly recall what distinguishes corrosion from tribocorrosion.
\nCorrosion deals primarily with the electrochemical aspects related to physical-chemical oxidation and reduction processes taking place at the surface of materials and the effect of the reactivity of surfaces of materials with respect to their environment, time, pH, temperature, pressure, and electrolyte composition. It is almost without exception an irreversible heterogeneous reaction of a material with the environment, which usually (but not always) results in a degradation of the material or its properties (e.g., decadence of the functional properties of materials). Examples of corrosion phenomena include the transformation of steel into rust, oxidation of an electrical copper contact, cracking of brass in the presence of ammonia, pipeline degradation by H2S, swelling of PVC in contact with a solvent, alkaline attack on refractory bricks, and mineral glasses. Occasionally, in certain cases, corrosion is valuable. For instance, the disposal of neglected metallic objects in the nature is not an uncommon corrosion phenomenon. It is still common to find beneficial corrosion reactions in the field practice. A typical example of corrosion protection processes is the anodizing of aluminum. Anodizing strengthens the passive oxide film on the surface of aluminum, and therefore its resistance to corrosion, but also serves as a decorative effect. Likewise, corrosion reactions are used to produce a smooth surface finish in chemical and electrochemical polishing processes.
\nTribocorrosion occurs when surfaces of materials subjected to mechanical contacts and in relative motion and/or behaviors are affected by chemical, electrochemical and/or biological environmental factors. Accordingly, tribocorrosion damage (i.e., material loss) can be designated in a broad sense as a failure mechanism due to the mutual interaction of corrosion, friction, and wear processes and their synergy effects. It generates changes in surface and/or volume compositions (e.g., alteration of materials properties, surface and sub-surface transformations, cracking, tribo-chemical reactions, etc.), and often modifies the environment (e.g., surface contamination by tribo-reaction products or corrosion-produced compounds, pH changes, and so on), and ultimately can lead to system failure. Such a physical-chemical deterioration is well described in the literature by the following terms: corrosive wear, fretting-corrosion or corrosion-erosion [1, 2, 3, 4, 5, 6]. Corrosion and wear often combine to cause aggressive damage and at last a shutdown in a number of industries, such as mining, mineral processing, chemical processing, metal components of machines, marine structures, pulp and paper production, ships, bridges, biomechanics (e.g., orthopedics), civil engineering structures and energy production, and so on. Although, corrosion can often occur in the absence of mechanical wear, the opposite is rarely true. Corrosion accompanies to some extent in all environments, except in vacuum and inert atmospheres. The combined effects of friction (wear) and corrosion can result in total material losses well above than that of the additive effects of each process taken apart, which is attributed to their synergy [1, 2, 3, 7]. These effects are still difficult to control. Knowledge of the tribological behavior of a material couple in the absence of any chemical attack and the knowledge of the electrochemical behavior in the absence of any mechanical impact are not sufficient to deduce the tribocorrosion behavior of that couple system of materials. In many articulation systems, it has been noticed that friction may alter the sensitivity, and modifies the composition of the surfaces of materials in moving contacts to corrosion. In turn, corrosion can affect the friction (and wear) process of moving contacting parts. This usually accelerates the tribochemical degradation of the material, which may affect the contact moving conditions, and thus the friction process and the coefficient of friction too [1, 2, 3, 4, 5, 6]. The contact motion can be a continuous or discontinuous one; it can be a unidirectional or a reciprocating one. The complexity of a tribocorrosion system is illustrated in Figure 1.
\nSchematic of main factors which define the complexity of a tribocorrosion system.
Tribocorrosion of moving solids immersed in an aggressive environment is, just as friction, a system parameter. The tribo-electrochemical system consists of implementing in-situ electrochemical techniques to a tribological designed system under well-controlled conditions (i.e., tribometer type, and complete material system) [3]. A properly designed laboratory mechanical system allows for the best simulation as much as possible the entire material system used in the field, and the constraints that have associated with it (e.g., vibration mode, similarity of the wear mechanisms active in the laboratory test and in the field, such as abrasion, adhesion, fatigue, existence or not of a third body, erosion, corrosion, their combinations, and so on) [3]. Both mechanical and electrochemical methods allows for monitoring and recording in-situ and in real-time the following macroscopic quantities as normal or tangential force, relative or rotational displacement, sliding velocity, angular frequency, contact temperature, vibrations of the contacting parts and in relative motion, noise eventually emitted during the test, and the measurements of the electrochemical potential, the corrosion current and/or the impedance of the working materials. In most cases, both wear and corrosion rates can be determined ex-situ from a loss of material on one or both contacting materials by surface characterization methods and Faraday’s law concepts respectively. Since the chapter does not cover comprehensive information regarding tribocorrosion nor it is the scope of the present work, a state-of-the art and critical reviews on tribocorrosion with specific discussions related to mechanisms, general procedures, and technological aspects may be found elsewhere [1, 2, 3, 4, 5, 6], and it is left to the reader to locate further reading sources for that type of information.
\nThe author assumes the reader is familiar with the background of corrosion phenomena and of conventional electrochemical methods in corrosion research. Many textbooks and review articles in the field are available but, for the sake of readability, a reminder of some aspects is given here.
\nOne of the primary reasons for the importance of corrosion or tribocorrosion lies on global economic losses. The destruction of nearly a quarter of the world’s annual steel production is caused by corrosion. An estimate of about 150 million tons of losses per year, i.e. 300 tons per minute! [8]. Corrosion is definitely not limited to steel alloys but affects all sort of materials, namely metals, polymers, and ceramics. Corrosion and wear damage to materials, both directly and indirectly, cost industrialized countries hundreds of billions of dollars annually. For example, wear failures of metals costed the U.S. economy almost $20 billion per year (in 1978) compared to about $80 billion annually for corrosion during the same period [6]. The economic losses, due to friction and wear, related to these costs are estimated to be 6–10% of the Gross National Product (GNP). Wear represent 30% of the causes of dysfunction of the global mechanical engineering systems [2]. A recent study commissioned by the American Federal Highway Administration reveals that the annual direct cost of corrosion was $ 276 billion in 1998, which represents 3.1% of the GNP [9]. Similarly, in the United Kingdom, Japan, Australia and Kuwait, the total annual cost of corrosion was estimated to range between 1 and 5% of each country’s GNP [10].
\nOwing to many different types of expenses involved, in general, estimates of the total cost of corrosion and wear evolve over time and are sometimes difficult and uncertain. There is no doubt, however, that the cost is quite elevated. The direct losses concern replacement of corroded materials and equipment. The indirect losses are related to cost of repair and loss of production, cost of corrosion protection, and prevention. The direct losses are very often lower than indirect costs. For example, it is estimated that the price of repairing or replacing a corroded heat exchanger in a nuclear power plant is insignificant compared to the cost of lost production time. Another important aspect among major influential factors that contribute to corrosion or tribocorrosion relevance is related to reliability, or safety and preservation. Corrosion and wear can compromise the reliability and security of the operating equipment, leading to failure in-service, and at worst disasters, e.g., pressure vessels, metal reactors for toxic chemicals, turbine rotors, nuclear power plants, steering mechanisms for vehicles automobiles, and so on. Further, it requires the rebuilding or replacing the corroded structures and machinery or their components and an additional investment of the following supplies and facilities: metals, energy, water and human efforts to design these metal structures, without mentioning any other resources.
\nThe importance of corrosion and/or tribocorrosion monitoring is that it allows people of interest to study the extent of damage due chemical and/or mechano-chemical attacks and to become aware of the rate at which such damage is progressing so that the necessary measures can be taken to avoid trouble. Generally, the application of continuous and adequate on-line corrosion or tribocorrosion monitoring includes the following advantages: enhanced security, ensuring operational reliability on-time, minimizing process contamination and maximizing product quality, providing a sentinel for equipment integrity, and preventing any further risk related to material or production. The most convenient way to successfully combat corrosion or tribocorrosion impact on materials and structures is (i) to understand the main causes of corrosion and/or wear, (ii) to use all available means to prevent it, (iii) and to implement a continuous improvement approach to corrosion and wear protection.
\nThere are several factors that can come into play in the process of corrosion or tribocorrosion [1, 2, 3, 8]. Among the common influential criteria on corrosion, the following main parameters can generally be selected, namely the pH of the medium, the presence of chlorides (and other alkyl halides), the oxidizing power, the pressure, and the temperature. Fundamentally, corrosion depends on the dominating deterioration mechanism of surfaces exposed to chemical environment. The corrosion resistance properties can be characterized directly by the limits of use of the materials, which can be expressed, for example, in terms of maximum temperature in-service or maximum concentration of use. Under normal service conditions, the understanding and control of corrosion are based on the electrochemical interpretation of corrosion phenomena and the consideration of the relative ranking scales of materials in order to select, by successive approaches, the materials best suited to each application of interest [3].
\nConversely, a more obvious mechanism of tribocorrosion is the periodic exposure of fresh bare surfaces when sliding friction between surfaces occurs in corrosive liquids or gases [3]. This results in reaction products mainly driven by chemical and electrochemical interactions. The surfaces of the materials are quickly covered by a scale of the reaction product, the oxide in the case of metals and metallic alloys, acting as a protective barrier layer. Often, the thinner the scale, the faster the reaction, and the weaker the protectiveness [3]. Though, tribocorrosion processes are complex, combining both wear and corrosion. Modern research has established a consensus on four main forms of wear, namely, chemical wear (i.e., corrosion and corrosive wear), adhesive wear, abrasive wear or surface fatigue wear [3, 11]. Each process obeys its own laws and, to confuse things, one of the modes of wear acts to affect the others, hence the complexity of corrosive wear [1, 2, 3]. As a general rule, there is a combination of competitive wear mechanisms in a dynamic mechanical-chemical contact.
\nThere are many electrochemical and non-electrochemical techniques for the study of corrosion or tribocorrosion and many factors must be taken into account when choosing a technical method. The corrosion rate can be determined by extrapolation of Tafel from a potentiodynamic polarization curve [12, 13]. It can also be determined using the Stern-Geary equation from the polarization resistance derived from a linear polarization experiment or from electrochemical impedance spectroscopy [12, 13]. Furthermore, among the recently developed techniques, those using electrochemical noise analysis as a method of determining the rate of corrosion and estimating the tribocorrosion rate of some passive materials has been shown to be beneficial, although scientists are struggling through the interpretation of some conflicting results [2, 12, 13, 14, 15]. Sensitivity to localized corrosion is often evaluated by determining a breakdown potential and a repassivation potential for passivating materials.
\nObviously, the most typically known mode of corrosion is the rusting of iron, or iron oxide, and ordinary steel. Contemporary corrosion research has established several forms of corrosion, all which are important to understanding, as the best methods of preventing corrosion depend upon the form of corrosion, as shown in Figure 2.
Uniform corrosion: the damage by general or uniform corrosion is fairly predictable; however, the damage caused by localized corrosion is rather unpredictable if no proper monitoring techniques are applied. When left uncontrolled, corrosion will not only cause costly equipment maintenance and replacement but may be responsible for the loss of revenue from unexpected system shutdown and the possibility for hazardous leaks causing major safety issues and possible environmental contamination [16].
Pitting is a form of localized corrosion that occurs when the thin passive protective film on most corrosion-resistant engineering alloys is compromised. The rate of attack at pits can be extremely high so pitting can lead to perforation of a structure or initiation of a crack [17].
Localized corrosion often initiates at an occluded region where the environment has limited access. This form of corrosion, so-called crevice corrosion, is extremely important in fastened structures which often contain many crevices [17].
Localized corrosion is sometimes observed at grain boundaries when the composition of the grain boundary or region near the grain boundary is different than that in the metal grain. This type of corrosion, so-called intergranular corrosion is a severe problem, in particular for stainless steels and aluminum alloys [17].
Corrosive attack can be localized at one component of a structure made from different metals that are electrically connected as a result of galvanic corrosion [17].
The corrosion of metal alloys often results in preferential reaction of one or more of the alloying elements, so-called dealloying [17].
A common by-product of the corrosion process is hydrogen. Hydrogen can interact with metals in various ways to result in a degradation of properties, primarily mechanical properties (e.g., pipeline gas transportation by H2S). A generic name for such degradation is hydrogen damage [17].
The mechanical properties of metals can be severely degraded by the combined effects of the environment and an applied stress. Stress corrosion cracking is the premature failure of metal structures as a result of these effects [17].
Corrosion fatigue occurs when the applied stress is fluctuating rather than being constant [17].
Forms of corrosion.
Although, air in atmosphere is the most omnipresent environment, the aqueous solutions (e.g., atmospheric moisture, acid rain, natural waters, artificial solutions, and so on) are the most common environments associated with corrosion issues. Due to the conditions under which a material, e.g., a metal or a metallic structure is exposed to the environment, corrosion processes usually take place at the metal/environment interface through ionic conduction processes. Corrosion is due to electrochemical reactions involved in that interface and strongly affected by a number of factors, among others, such as the power oxidizing (electrode equilibrium potential), hydrogen ion activity (pH, acidity level of the solution), driving force for metal stability (Gibbs free energy change), rate-determining step reaction or reaction rate (corrosion current), and temperature (Arrhenius oxidation rate or the Pilling-Bedworth ratio).
\nThe prediction of corrosion of a metal or an alloy in environments such as aqueous solutions requires information on the expected state of the metallic alloy (e.g., oxide or non-oxidized metal, etc.) and the rate at which the metallic alloy moves to that state. So first, thermodynamic principles can be applied to determine what processes can occur, and under which conditions the reactions are at an electrochemical equilibrium and, in case of deviation from that equilibrium, in which directions the reactions can proceed and what is the driving force involved. The kinetic laws then describe the reaction rates. These are strongly related to the activation energies of the electrode processes, to the mass transport and to the fundamental properties of the metal/environment interface, such as the resistance of surface films. A general method, namely the mixed potential theory, is implemented for interpreting or predicting the corrosion potential and reaction rates.
\nIn what follows, a very brief reminder of corrosion principles is given.
\nThe corrosion process is electrochemical in nature. In a more general sense, a corrosion process involving a metal/aqueous solution or any other metal/ionically conducting medium exchange or interaction interface is defined as any process causing the metal, M, to loose one or more of its loosely bound electrons in the metallic state (i.e., oxidation reaction) to generate a solvated cation in the solution, and it is simultaneously balanced, in order to ensure an exact count of the electrons involved, by a reduction reaction by which one or more atoms of a molecule or an ion (anion) of species in solution gain one or more of these electrons (conservation criteria).
\nThe aqueous corrosion sometimes requires that the oxidation product is either an oxide of the metal itself according to (1):
\nor is a metal hydroxide and the reduction product of hydrogen ions in solution is gaseous hydrogen as claimed in the equation (2):
\nHowever, it is of course not necessary for an oxide or hydroxide to be formed as an oxidation product of the metal. For example, in the overall reaction of corrosion of iron in a dilute chloridric acid, the ferrous chloride compound is generated as an oxidation product according to the reaction (3),
\nThe superscript associated at each reactant or reaction product refers to the valence charge or the oxidation state. The subscript corresponds to the matter phase state for each element of the reaction or compound.
\nThe foregoing overall reaction involves vigorous oxidation and reduction (viz. redox) processes. This requires that hydrogen gas is released, more likely by a desorption process, and the solid Fe is oxidized by the acid, forming an ionic bond with the chloride ions. The ferrous ions are removed from the metal lattice and get solvated as they diffuse into the solution. The ferrous chloride compound can be dissociated at normal concentrations.
\nIt is worthy of note that the chloride ions are not actually involved in the redox reaction, this equation (4) can be written in the simplified form as follows:
\nIt is worthy of note that this also applies to aqueous corrosion involving other acidic media (e.g., orthophosphoric acid, H2SO4, HF), and water-based organic acids (e.g., methanoic or ethanoic acids). In each case, no more than hydrogen ion is active, whereas the other ions such as phosphate, sulfate or acetate take no part in the corrosion reaction. Hence, iron reacts with the hydrogen ions of the acid solution to form iron ions (oxidation process) and hydrogen gas (reduction of process). Thus, Eq. (4) can be conveniently divided into two reactions (partial half-cell reactions), namely the oxidation of iron and the reduction of hydrogen ions. This provides the basis for the thermodynamic consideration of the overall corrosion process as stated by equations (5), (6), and (7):
\nOxidation or commonly referred to as the anodic reaction is indicated by an increase in the valence charge or electron production. A decrease in the valence charge or an electron consumption represents a reduction or commonly a cathodic reaction.
\nEquations (5) and (6) outline the two half-cell electrode reactions-both need to occur simultaneously and at the same speed on the metal surface otherwise it would charge spontaneously electrically, which is impossible. This explains one of the fundamental principles of corrosion, namely: the oxidation rate is equal to the reduction rate (in terms of electron production and consumption).
\nThe sites for the oxidation reactions are called anodes, and the sites for the reduction reactions are called cathodes. Anodes and cathodes can be spatially separated at fixed locations associated with heterogeneities on the electrode surface. Otherwise, the locations of the anodic and cathodic reactions can randomly fluctuate across the electrode surface. The former case results in a localized form of corrosion, such as pitting, crevice corrosion, intergranular corrosion, or galvanic corrosion, and the latter case results in nominally uniform corrosion [17].
\nThe above concept is illustrated in Figure 3. An iron atom undergoes a transformation into a ferrous ion and two electrons. These electrons, which remain in the metal, are immediately consumed during the reduction of hydrogen ions. Figure 3 illustrates the separation of these two processes in space, merely for the sake of transparency. In fact, whether or not they separate or take place at the same surface location, this does not impact the principle of charge conservation. In some cases, the oxidation reaction takes place in a uniform manner on the surface. In other situations, the corrosion reaction occurs at specific locations of the surface (i.e., localize corrosion).
\nReversible iron electrode.
It should be noted that there are several different cathodic reactions encountered repeatedly during metallic corrosion. The most common are:
\nn is the number of electrons involved in the reaction. The evolution of hydrogen is a common cathodic reaction because acidic media are frequently encountered. Oxygen reduction is very common because any aqueous solution in contact with air is able to produce this reaction. In nearly neutral electrolytes, the reduction of oxygen is normally one of the most universal cathodic reactions. Concentrations of ≈6 ppm dissolved oxygen are usually present in dilute aqueous electrolytes at ambient temperature (25°C). The reduction of metal ions and the deposition of metals are less frequent reactions and are most often encountered in chemical processes.
\nThermodynamic data estimations are meaningful in corrosion field because they can be used to predict the tendency of a metal to corrode in a given environment. Details on thermodynamic principles can be found in a number of manuals [18, 19]. The Atlas of Electrochemical Equilibria in Aqueous Solutions by Marcel Pourbaix provides a complete summary of the application of thermodynamic corrosion for all elements in water [20]. Dr. Pourbaix originally developed “corrosion maps or corrosion road charts” in the form of potential-pH diagrams [20], which enables for displaying the stability of metals (the lowest free energy state) as a function of the activity of hydrogen ions (pH) and equilibrium potential (oxidizing power). So, the diagrams can, in principle, indicate under which conditions of pH and equilibrium potential, an expected corrosion does not occur (immunity region, e.g., pure Fe) or might cause the metal to transform to an ion (metal loss, state of corrosion, e.g., ions of Fe and its compounds) or even indicate whether an oxidized solid should be formed or not (possible passivity, e.g., oxides of Fe). A typical example showing all of these common aspects of metal corrosion is depicted in Figure 4 for Fe-H2O system [20].
\nPourbaix potential-pH diagram for Fe/H2O system at 25°C. Reprinted from [20] with permission from NACE international.
A myriad of chemical oxidation-reduction reactions can be performed in an electrochemical cell in which electrons released by the oxidation of species at an electrode (anode) flow through an external conductor (e.g., electrolyte) to a second electrode (cathode) where they are consumed by a reduction reaction [19]. An equivalent ion current flows in the electrolyte which separates the electrodes from the electrochemical cell. In such a device system, the change of chemical energy results from the change of free energy. This change in free energy or commonly termed Gibbs free energy, ΔG, can be defined as a direct measurement of the maximum available electrical energy of a system or in other words it is an indicative measure of the driving force for the reaction to proceed. If the free energy change accompanying the transition of a system from one state to another is negative (ΔG < 0), it indicates a loss of free energy as well as the direction of spontaneous reaction of the system. In particular, if no external force acts on the system, it will tend to transform into its lowest energy state and for a given reaction, it will tend to proceed spontaneously. If the free energy change is positive (ΔG > 0), it indicates that the transition represents an increase in energy, which requires the addition of an extra energy to the system for the reaction to proceed.
\nThe free energy change accompanying an electrochemical reaction can be calculated by the following equation:
\nwhere ΔG is the standard free energy in the overall reaction, n the number of electrons involved in the reaction, F the Faraday constant, and E equals the cell potential or the difference between the two standard half-cell potentials. Noting that the term “standard” potential is the potential of a metal or any reactant in contact with its own ions at a concentration equal to the unit activity (i.e., approximately 1 g atom weight per 1 l solution) and at 25°C.
\nAlthough Eq. (13) forms the basis for thermodynamic calculations, it is rarely used in studying corrosion phenomena. This is because it is not possible to accurately predict the velocity of a reaction from the change in free energy. It is worth remembering that in most cases, the true magnitude of free energy change is trivial in corrosion applications. The most important factor is the sign of the free energy change for a given reaction, because it indicates whether the reaction is spontaneous or not. Hence, this parameter only reflects the direction of reaction by its sign. Reactions occur exceptionally in the direction that reduces the Gibbs free energy. The more negative the value of ΔG, the greater the tendency for the reaction to proceed. For example, for any overall corrosion reaction of Fe in dilute chloridric acid solution to be thermodynamically possible, it is necessary that the anodic dissolution potential of Fe (i.e., oxidation of Fe) be more active (less noble) than that of the cathodic reaction (i.e., hydrogen evolution). If the change in free energy is positive, the reaction does not occur spontaneously.
\nThe cell potential of the overall electrochemical or corrosion reaction, as specified above for the example of Fe in a dilute HCl solution, is directly associated with the change in free energy accompanying that reaction via Eq. (13) according to,
\nA simple rule can be derived from Eq. (14) to predict the spontaneous direction of any electrochemical reaction. This rule can be clearly stated as: “In any electrochemical reaction, the most negative or active half-cell tends to be oxidized, and the most positive or noble half-cell tends to be reduced”. Therefore, the potential is a measure of the reaction (corrosion) tendency. Positive potential corresponds to negative ∆G and hence to spontaneous reaction.
\nA potential can be assigned to each of the half-cell reactions (anodic oxidation and cathodic reduction). In that respect, the choice of an appropriate reference (half-cell reaction) will therefore allow the measurement of the potential between two electrodes (i.e., working and reference electrodes). An arbitrary half-cell reaction is used as a reference by setting its potential to zero and all other half-cell potentials are calculated with respect to this zero reference. It is common to use the normal or standard hydrogen electrode (SHE) as a universal reference when enumerating the potential of a half-cell [19]. The SHE corresponds to the half-cell reaction (15) given hereafter:
\nunder standard conditions, viz. the activity of the protons is unity (aH+ = 1), and the partial pressure of H2(g) is 1 bar (p(H2) = 0.987 atm). The potential of the SHE is arbitrarily set at zero (E°SHE = 0 V), and therefore ∆G° (aH+ = 1) is arbitrarily set to 0 as a reference free energy change. The superscript “0” in the SHE potential refers to a standard or reversible potential.
\nSince it is not possible to manufacture an electrode from hydrogen, an inert electrode is used. Generally, a platinum electrode acts as an inert metal substrate for the electrochemical reaction. Consider an electrochemical cell containing iron and platinum electrodes immersed in a sulfuric acid, both in equilibrium with their reaction product ions and separated by a porous membrane to retard mixing, as illustrated in Figure 5. In the reversible divided cell, equilibrium is established between iron and its ions on the iron electrode and hydrogen gas and hydrogen ions on the platinum electrode respectively.
\nElectrochemical cell containing reversible iron and hydrogen electrodes (Pt.).
At different locations on the platinum electrode, the hydrogen ions are reduced to gaseous hydrogen and the gaseous hydrogen is oxidized to hydrogen ions, with electron transfer occurring between these spots. It is worthy of note that the platinum electrode does not participate in this reaction but merely serves as a solid interface at which this reaction can occur. Many metals function as reversible hydrogen electrodes (e.g., Hg/Hg2Cl2 (Calomel), Ag/AgCl, Hg/HgO, Hg/Hg2SO4, Ag/Ag2SO4, Cu/CuSO4, etc.); platinum is generally preferred because of its inertia and the ease with which electron transfer occurs on its surface (e.g., properties of catalytic surface exchange or easy current flow rate). As with the other half-cell electrodes, at certain infinitesimal areas on the metal iron surface, iron atoms are oxidized to ferrous ions, and at other spots ferrous ions are reduced to metallic iron. Equilibrium conditions dictate that the rates of the reactions in each half-cell compartment be equal; there is no net change in the system. Noting that the interactions taking place at the metal electrode/electrolyte are quite complex and closely related to electrochemical kinetics and physical phenomena (e.g., electrical double layer, diffusion, etc.).
\nConsider now the case, under standard conditions, where two dissimilar metals each immersed separately in their own ions in an aqueous medium and electrically connected. Under these conditions, the corrosion control is governed by the determination of the mechanisms involved in the redox reactions. Standard redox potentials can be used to understand the corrosion tendency of metals. A disposition of metals based on their standard potentials has been established and known as standard equilibrium oxidation-reduction potential or standard reversible potential or electromotive force series. The standard potential series of metals is given in Table 1. In this series, electrode potential values are invariant, given vs. SHE, and attributed to reduction reactions. The same series can be developed on the basis of the oxidation reactions, in which case the potential values will be the same but the “signs” will be reversed.
\nElectrode red-ox reaction | \nE° (volts) | \n
---|---|
Au = Au3+ + 3e | \n+1.498 | \n
O2 + 4H+ + 4e = 2H2O | \n+1.229 | \n
Pt = Pt2+ + 2e | \n+1.2 | \n
Pd = Pd2+ + 2e | \n+0.987 | \n
Ag = Ag+ + e | \n+0.799 | \n
2Hg = Hg2+ + 2e | \n+0.788 | \n
Fe3+ +e = Fe2+ | \n+0.771 | \n
O2 + 2H2O + 4e = 4 OH− | \n+0.401 | \n
Cu = Cu2+ + 2e | \n+0.337 | \n
Sn4+ + 2e = Sn2+ | \n+0.15 | \n
2H+ +2e = H2 | \n0.000 | \n
Pb = Pb2+ + 2e | \n−0.126 | \n
Sn = Sn2+ + 2e | \n−0.136 | \n
Ni = Ni2+ + 2e | \n−0.250 | \n
Co = Co2+ + 2e | \n−0.277 | \n
Cd = Cd2+ + 2e | \n−0.403 | \n
Fe = Fe2+ + 2e | \n−0.440 | \n
Cr = Cr3+ + 3e | \n−0.744 | \n
Zn = Zn2+ + 2e | \n−0.763 | \n
Al = Al3+ + 3e | \n−1.662 | \n
Mg = Mg2+ + 2e | \n−2.363 | \n
Na = Na+ + e | \n−2.714 | \n
K = K+ + e | \n−2.925 | \n
Electromotive force series (Emf or standard potentials redox in volts vs. SHE at 25°C).
Reproduced from [21] and used with permission.
Redox potentials are very useful for predicting corrosion behavior of metals and upon certain conditions, the tendency of chemical degradation of passivating materials under sliding contacts [22]. Any electrochemical reaction can, therefore, be studied on the basis of the half-cell reaction concept and the foregoing potential standards involving the combination of metals in aqueous solutions with or without any mechanical contact. For example, consider two dissimilar metal pieces, namely silver and zinc, each immersed separately in a dilute acid solution (e.g., H2SO4) with their own ions (Figure 6) and electrically connected via a potentiostat (i.e., a high-resistance voltmeter). It is necessary that the two electrodes are in equilibrium in their own compartment. The positive terminal of the potentiostat must be connected to the silver electrode, and the negative terminal must be connected to the zinc electrode to have the potentiostat read on scale. According to data in Table 1, the standard redox potential of silver is +0.799 volts (vs. SHE) and that of zinc is −0.763 volts. In this manner, zinc oxidation and silver reduction reactions are spontaneous at +0.763 and +0.799 volts respectively. Their equivalent non-spontaneous reactions occur at −0.763 volts for zinc reduction and at −0.799 volts for the oxidation of silver.
\nElectrochemical reversible cell containing silver and zinc in equilibrium with their ions and electrically interconnected via a high-resistance voltmeter.
The potentiostat shows a potential difference of approximately 1.562 volts when the silver and zinc electrodes are connected. In this reversible electrochemical cell, zinc is negative with respect to silver. Thus, zinc undergoes anodic oxidation (corrosion) while silver ions undergo cathodic reduction at the silver cathode. The use of redox potentials greatly simplifies the calculation of potential cells and simultaneously allows to determine the trend in metal corrosion.
\nIt follows from the above principle that all metals having a more active (negative) reversible potential than hydrogen will tend to be corroded by acid solutions. Silver, with its higher positive and noble potential, is not corroded in acid media. Though, the presence of dissolved oxygen may alter this latter rule, leading to oxygen reduction (cathodic reaction) and silver oxidation (anodic reaction). Table 1 indicates that in the presence of oxygen, silver tends to corrode spontaneously. In that respect, the following conclusions may be drawn from the outcome of the standard redox potential series:
\nAs the reversible potential of a metal becomes more noble, its tendency to corrode in the presence of oxidizing agents decreases.
\nIt is important to note that all the above discussions refer to conditions for corrosion systems at unit activity. Since half-cell potentials change with concentration, Nernst calculations must be made before predicting spontaneous direction at concentrations other than unit activity. To determine the potential of a metal in which the reactants are not at a unit activity, the familiar Nernst equation has been formulated as follows,
\nwhere E represents the potential of the half-cell reaction, E° the standard potential of the redox reaction. R, T, n, and F are the gas constant, the absolute temperature in kelvin, the number of electrons, and the Faraday’s constant respectively. aoxid and ared represent the activities (concentrations) of both oxidized and reduced species respectively.
\nAs indicated in Eq. (18), the half-cell potential becomes more positive as the amount of oxidized species increases. For each tenfold increase in oxidized reactant, the half-cell potential increases by 59 mV for a single electron reaction (n = 1).
\nIn practice, for corrosion to occur, it is not necessary for a metal to be in contact with its own ions. Local anode and cathode zones may exist on the same surface of the metal or alloy, thus acting as an electrical conductor of the electrochemical flow. When such a metal is immersed in an electrolyte, it can no longer equilibrate to experimental thermodynamic scales. Therefore, corrosion is a direct consequence of a new equilibrium potential change, which depends on a myriad of physical and chemical properties of these electrochemical systems (e.g., pH, temperature, oxidizing agents and their power, IR drop of solution, etc.). This potential is called corrosion potential or mixed potential, which is far different from the standard potential. In this respect, corrosion will depend on the rate-limited electrode kinetics (e.g., charge transfer rate, mass transport, diffusion, etc.).
\nThe concept of polarization or overvoltage is very briefly addressed here because of its importance for understanding corrosion reactions and its behavior. It represents a prerequisite for electrochemical methods. The rate of an electrochemical reaction is limited by various physical and chemical factors. Therefore, an electrochemical reaction is said to be polarized or delayed by these environmental factors.
\nConsider an electrochemical half-reaction for an electrode M at equilibrium:
\nWhen a reaction is at equilibrium, it does not necessarily mean that the system is at rest and/or inactive. On the contrary, for a system in equilibrium, the reaction rate in the forward direction is equal to that in the backward or reverse direction. This equal rate at equilibrium is defined as the exchange current density, i0.
\nIt is worth of note that i0 is dependent on surface concentrations of the reactants, cR, and those of the products, cP, according to: i0 ∝ cRm cPnm and n are exponents.
\nAs reported in the previous section (Section 4.1), the reaction of hydrogen evolution is very often when a metal corrodes in an acidic environment. Interestingly, the current exchange rate for this cathodic hydrogen evolution reaction strongly depends on the catalytic properties of the metal surface on which the reaction occurs. For example, it ranges from 10−12 A cm−2 for lead (Pb) to 10−3 A cm−2 for palladium (Pd) at 25°C in 1 M H2SO4 [23]. This variability can have broad implications for the rate of corrosion. In fact, the rate of the reaction can be limited by the rate of the cathodic reaction, which is highly dependent on the current exchange rate of the reaction.
\nFigure 7 shows the point for an equilibrium of a given reaction at the electrode. It suggests a finite exchange current density at a given potential (e.g., reversible potential Erev or E°M/Mn+). Notwithstanding, in electrochemistry, potential and current are interdependent. It is possible to control one and measure the other. Since the former current density involves a “two-way” rate process (forward-backward), the net current density is null. However, at a different potential of Erev (i.e., overvoltage), the half-cell reaction will preferentially proceed in one direction and a net current will be measured.
\nIllustration of the relation between the current density and the potential for a simple electrochemical reaction under activation control.
The overvoltage, η = E-Erev, is defined as a potential variation with respect to the reversible potential in the equilibrium of a given electrode reaction. This change in potential is associated with a change in the net reaction rate, and it is therefore related to a change in the direction of the reaction taking place, so that the reaction will mainly proceed in one direction according to the reaction rate. The current is anodic (oxidizing or positive) for a potential change to a value greater than the reversible potential (i.e., anodic polarization) and it is cathodic (reducing or negative) for a potential change to a value below the reversible potential (i.e., cathodic polarization), cfrFigure 7.
\nPolarization can be conveniently divided into three different types, activation polarization, concentration polarization, and ohmic potential drop (iR).
Activation polarization refers to an electrochemical process controlled by the reaction sequence at the metal/electrolyte interface (e.g., by possible steps of adsorption, desorption, and charge transfer processes). It is caused by a slow electrode reaction. In particular, an activation overvoltage or charge transfer overvoltage alludes to an overvoltage resulting from a potential change when the concentrations of the reactants and products at the electrode surface are the same as in the bulk solution. This is because the charge transfer rate at the electrode/electrolyte interface is not infinitely fast. Note that the concentration at the surface of the electrode is equal to the bulk concentration when the mass transport rate is fast compared to the rate of charge transfer.
Concentration polarization (Diffusion Overpotential) refers to electrochemical reactions controlled by the rate of diffusion in the electrolyte of ions on the surface of the metal.
iR drop occurs in a portion of the electrolyte surrounding the electrode, or through a reaction product film on the surface of the metal, or in both cases [24]. An ohmic potential drop takes place between the working electrode and the capillary tip of the reference electrode. This contribution to polarization is equal to iR, where i is the current density, and R, equal to l/κ, represents the value in ohms of the resistance path of the solution of length l (cm) and specific conductivity κ (Ω−1 cm−1). Therefore, the resistance of an electrolyte of length measuring l (cm) with a cross-section S (cm2) is equivalent to l/κS (ohms). Hence, the iR drop in volts equals il/κ. The product, iR, decays in parallel with the shutting-off of the current, while the concentration polarization and the activation polarization generally decay at measurable speeds. For instance, for a cathodic protection of steel in seawater (κ = 0.05 Ω−1 cm−1), it is necessary to apply a current density of 0.1 A/m2, which may result in a iR drop correction equal to (10−5 V)/(0.05) = 0.2 mV with respect to 1 cm separation of the probe from the cathode. This value is negligible with regards to the critical minimum current density required for convenient cathodic protection. However, in certain soft/fresh waters, where κ can reach the value of 10−5 Ω−1 cm−1, the corresponding iR drop is equal 1 V/cm.
Noting that the concentration polarization decreases with stirring, whereas the activation polarization and iR drop are not affected significantly.
\nThe foregoing discussion on the thermodynamics of corrosion under equilibrium conditions yields information on the driving force of the corrosion process. Since corroding systems are not always at equilibrium, therefore thermodynamic calculations cannot be applied. Notwithstanding that the information on the corrosion tendency accessible from thermodynamic calculations is important and useful. However, most scientific and technical aspects in the field of corrosion focus on the knowledge and the reduction of corrosion rate. Thermodynamics does not address the rate of corrosion.
\nMetals and non-metals are compared on the basis of their corrosion resistance. For these comparisons to be meaningful, the attack rate of each material must be expressed quantitatively. Corrosion rates can be given in a number of different units using different measures of material loss. A convenient way to determine the rate of corrosion is by the immersion of a sample in a corrosive environment for a period of time and measure the weight loss during that time [25]. The weight loss should be normalized to the exposed surface area of the sample in order to determine its rate of corrosion. Therefore, among the set of units adapted to the corrosion rate is the weight loss per unit area per unit of time; for example, mg cm−2 s−1. It is also common to use the percentage of weight loss, milligrams per square centimeter per day and grams per square inch per hour. Though, these do not express the corrosion resistance in terms of penetration. From a technical point of view, the penetration rate, or the thinning of a structural part, can be used to predict the lifetime of a given component. An easy way is to divide this measurement by weight loss by the density of the corroding material to obtain a corrosion rate in units of thickness lost per unit of time. The term mils per year is the most desirable way to express corrosion rates (mpy) or mm yr.−1. This expression can be easily calculated from the weight loss of the metal sample during the corrosion test by the formula (20), given below:
\nwhere r is the rate of material loss (mm yr.−1), M the molecular weight of the corroding metal (g mol−1), ρ the density of metal (g cm−3), icorr the corrosion current density (A cm−2), and C a constant to change the units of thickness and time.
\nWear is an unavoidable and a potentially serious problem in all areas of engineering [3]. Designers and engineers who have to make optimal decisions in situations where tribocorrosion considerations are significant, need to know “how long will a component last?”. To solve this question, numerous models have been developed so far to distinguish this material loss due to tribocorrosion [3]. These models usually correlate a wear volume or a wear rate with physical and geometrical quantities. Various expressions have since been attributed to this material loss, of which the material loss can be defined in terms of weight, volume, surface, depth, width or even charge density or current density, per unit hardness, per unit frictional dissipated energy (work due to the tangential force), per unit input energy (work due to the normal force), or even per unit sliding distance, or sliding time, sliding frequency, contact frequency, etc. [3]. It becomes readily understandable of the complexity of comparing results between the various wear data published so far. It is expected then that the terminology in this field is rather uncertain, and it will remain so for a certain time, hence the need for a specific standardization, despite some recent progress made in this area [3, 26].
\nOne of the earlier attempts to predict the wear rate or wear volume loss of a material in sliding contact is the commonly Archard wear criterion [27] used during the second half of the 20th century. That criterion is usually expressed as follows [3],
\nwhere Wv and Wr represent the volumetric loss (assigned as total volume of wear debris produced), and the wear rate (usually expressed per unit sliding distance), respectively. k is the dimensionless Archard wear coefficient, Ar the real area of contact, FN the applied normal load, and H the hardness of the worn material.
\nThis equation was originally used for the case of adhesive wear [28, 29], then it was extended to more cases including that of tribocorrosion [3]. This is because the k parameter in Eq. (21) exclusively remained the only flexible parameter consistent with the case to which the wear may originate [3]. For example, unidirectional sliding of mild steel against mild steel without any lubricant has a k of 10−2, whereas, for stellite sliding against tool steel, k is 10−5 [3, 30]. Even more confusing is that, according to literature, the Archard wear coefficient can vary by two orders of magnitude for the same couple of materials just due to a slight change in load or speed [31]. These findings should be taken with precautions in view of the number of empirical error cases reported with respect to the wear reproducibility and validation of test methods [3]. Friction and wear properties are often considered as subjects of poor accuracy in comparison with materials intrinsic properties. Indeed, comparative round robin studies on the topic have shown that the reproducibility of wear derived from different inter-laboratories with the same material pairing was often very poor [32]. Using the wear track width, the scattering was roughly 50% whereas the scatter in the wear coefficient was over three orders of magnitude. No clear correlation was found between a single and constant parameter (type of tribometer, normal force, and sliding velocity) and the wear rates measured in inter-laboratories [3]. Interestingly, a good convergence was found between the wear volume loss and the energy dissipated in the tribo-contact zone [33, 34, 35, 36, 37]. This can readily be explained by the fact that the dissipation of frictional energy is one, among others, of the main causes of tribo-electrochemistry, playing an essential contributing role in wear mechanism, in this case entailing an acceleration (e.g., chemical wear rates) or modification of tribo-chemical reactions [3]. The yielded frictional heat between interacting surfaces leads to a stationary rise in temperature at surface contact asperities and flashes. Furthermore, such frictional energy can take the form of high quantum excitations with short lifetime of surface and bulk sites due to the mechano-chemical forces involved during the sliding process. Those excitations are also responsible for the occurrence of triboluminescence and triboelectricity [3].
\nTribologists nowadays are seeking for an agreement due to the fact that there is an unavoidably need to address more fundamental research towards the establishment of an original formulation or a universal methodology to define a “wear criterion” in order to better understand the complexity of the wear process in a tribocorrosion test [3]. Although, this aim has not yet been achieved, a fair amount of progress has been made on this matter-oriented approach. This remains so far valid only as part of the case-by-case study. To conclude, research must focus on establishing a functional-mechanistic based approach that emphasizes the nature of the dependence of the mechano-chemical wear rate (output) on the energetic aspect of sliding friction, the electrochemical aspect of the exposure of bare metal surface, and the transformation of the subsurface material (input). This usually should incorporate materials properties, and behavior. If it does, this could be very useful to help solving the issues and struggling difficulties encountered in the specific field. This will lead to a better improvement of the reliability life of selected material and design technologies when adopted in specific mechanical articulations and under aggressive environments. Further, this could predict materials performance in an environment where tribocorrosion plays a significant role [3].
\nIn tribocorrosion phenomena, where tribological contacts are exposed to corrosive environments, such as aqueous lubricants, the contact materials are subject to both mechanical, and chemical/electrochemical solicitations, which contribute to material removal from sliding surfaces [3]. The rate of material degradation/removal cannot be predicted simply by adding the wear rate in absence of corrosion to the corrosion rate in absence of wear. The reason is that corrosion and wear do not proceed independently and synergistic effects usually (but not always) result in accelerated material degradation (tribocorrosion) [3]. In that respect, theoretical models have been developed so far with respect to mechanical, chemical, and electrochemical factors and their mutual interactions, and which can be tested under well-controlled experimental conditions. In general, modeling has followed either an empirical or a mechanistic approach [3]. The empirical approach is based on the independent measurement of material loss due to wear and corrosion. These parameters are summed up and compared to the material loss due to tribocorrosion. The difference between the two is termed synergy (ΔWsyn). A general equation for this approach is of the form [7, 38, 39],
\nwhere Wmec represents the material loss due to wear measured in the absence of corrosion, and Wcorr is the material loss due to corrosion only without any influence of mechanical wear.
\nAlthough, the empirical approach is technically feasible which allows for the ranking and the performance of materials based on their resistance to tribocorrosion in engineering systems, it is still time-consuming, quite economically not justifiable in the long-term, and furthermore, it integrates a synergy term, which has no physical meaning [3].
\nThe advantage of a mechanistic approach is that it leads for a better understanding of the physical processes involved in tribocorrosion by incorporating the notion of synergism into the mechanical and electrochemical terms [3]. Many factors can be responsible for the mutual dependence of mechanical and chemical material removal in a tribocorrosion system [3]. For example, local abrasion of the passive film can lead to wear accelerated corrosion due to rapid dissolution of the locally depassivated metal surface, followed by repassivation [40]. The abrasive action of hard oxide particles formed by corrosion can accelerate the mechanical metal removal by wear [41]. The plastic deformation of the surface layer of a rubbing metal can lead to a transfer of material to the opposite body resulting in a reduction of the corrosive wear rate [42].
\nTherefore, it is important to distinguish material loss due to chemical or electrochemical oxidation (i.e., wear accelerated corrosion) from material removed due to mechanical wear (i.e., mechanical material removal from the sliding contact) [3]. The former arises from the fact that an asperity sliding on a material surface produces a fresh wear track zone of clean bare material (i.e., metal), which is usually more susceptible to corrosion than the same surface subjected to free corrosion under no mechanical plastic contact or sliding conditions [3]. The effect of repeated sliding may cause the removal of metal particles by asperities burrowing beneath the surface [42, 43].
\nTherefore, the overall wear volume due to tribocorrosion, Wtot, can be defined as follow:
\nwhere Wchem(wac) is the electrochemical contribution to wear; it is termed wear accelerated corrosion and it reflects the material loss due to corrosion in the presence of wear. Wmec is the mechanical wear, and it reveals the material loss due to wear in the presence of corrosion, and which can be related to processes as that for the formation-ejection of oxide debris, oxide layers or any corrosion products, and plastically detached metal [3].
\nWtot can be determined by measuring the volume of the wear scar post-experiment using, for instance, a laser non-contact profilometry or by on-line measurement of the rate of moving down of the counter-body (e.g., a pin) on the surface wear track during sliding. The latter method has the advantage of recording an instantaneous wear rate, but it would only be applicable if no significant amount of solid reaction products (such as third body particles) accumulate in the contact zone during the tribocorrosion experiment [3]. Under potentiostatic control, the electrochemical term (Wchem(wac)) can barely be related to the anodic corrosion current (Ia,tribocorr) measured under mechanical sliding wear (occasionally by subtracting the background current) using Faraday’s law. The amount of anodically oxidized metal under such conditions is calculated as follows [14]:
\nwhere Wchem(wac) is the volume of the metal transformed by anodic oxidation in a tribo-electrochemical test. q represents the electric charge produced, which results mainly from the integration of the measured current Ia,tribocorr under sliding wear conditions over the duration of the tribo-electrochemical test. M, n, and F are the molar mass of the metal, the valence for the anodic oxidation reaction, and the Faraday’s constant respectively. ρ is the density of the metal.
\nThe foregoing equation is credible and independent of whether the anodic oxidation leads to the formation of dissolved metal ions or solid reaction products, such as oxide films [3].
\nIt is worthwhile to note that few assumptions must be met in order for Eq. (24) to be used [3, 40], namely:
The measured current must be equal to the anodic partial current for metal oxidation, which means that cathodic partial currents due to the reaction of oxidizing agents must be negligible. This can be performed by anodic polarization into the passive potential region.
The charge number “z” for the oxidation reaction must be known [40, 42].
The mechanical wear (Wmec) is taken as the difference between the total wear volume Wtot and the chemical wear volume Wchem(wac) determined from the electric charge.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"174",title:"Dentistry",slug:"dentistry",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:29,numberOfAuthorsAndEditors:919,numberOfWosCitations:427,numberOfCrossrefCitations:285,numberOfDimensionsCitations:774,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"dentistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9387",title:"Oral Diseases",subtitle:null,isOpenForSubmission:!1,hash:"76591a3bd6bedaa1c8d1f72870268e23",slug:"oral-diseases",bookSignature:"Gokul Sridharan, Anil Sukumaran and Alaa Eddin Omar Al Ostwani",coverURL:"https://cdn.intechopen.com/books/images_new/9387.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",isOpenForSubmission:!1,hash:"0aee9799da7db2c732be44dd8fed16d8",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",bookSignature:"Nermin Mohammed Ahmed Yussif",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",editedByType:"Edited by",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",isOpenForSubmission:!1,hash:"ac055c5801032970123e0a196c2e1d32",slug:"human-teeth-key-skills-and-clinical-illustrations",bookSignature:"Zühre Akarslan and Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.jpeg",biography:"Farid Bourzgui is a professor of Orthodontics in the School of Dental Medicine at Hassan II University in Casablanca, Morocco. He received his PhD from the School of Dental Medicine at Hassan II University in 1995. He holds various certificates and diplomas: a Certificate of Higher Studies in Group A (major: Technology of Biomaterials used in Dentistry, 1996), a Certificate of Advanced Studies of group B, (major: Dentofacial Orthopaedics, 1997) from the Faculty of Dental Surgery at University Denis Diderot-Paris VII, France, a diploma of Higher Studies in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002), a Certificate of Clinical Occlusal Odontology from the Faculty of Dentistry Casablanca (2004) and a university degree in Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca in 2011.\r\nFarid Bourzgui is a former intern and resident of Casablanca University Hospital, Ibn Rushd in Casablanca. Dr Bourzgui specialises in Orthodontics and received his National Diploma in Dentistry (major: Dentofacial Orthopedics) from the School of Dentistry in Casablanca in 2000.\r\nDr Bourzgui has published a number of articles and book chapters on various aspects of Orthodontics. He has served on the board of the Moroccan Society of Dentistry, and was the President of the Moroccan Society of Dentistry from 2002 to 2004.",institutionString:"University Hassan II of Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",isOpenForSubmission:!1,hash:"b81d39988cba3a3cf746c1616912cf41",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",bookSignature:"Alaa Eddin Omar Al Ostwani",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",editedByType:"Edited by",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"1e9812cebd46ef9e28257f3e96547f6a",slug:"computer-vision-in-dentistry",bookSignature:"Monika Elzbieta Machoy",coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",editedByType:"Edited by",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"7cb94732cfb315f8d1e70ebf500eb8a9",slug:"trauma-in-dentistry",bookSignature:"Serdar Gözler",coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",editedByType:"Edited by",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"2c77384eeb748cf05a898d65b9dcb48a",slug:"current-approaches-in-orthodontics",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işık Aslan",slug:"belma-isik-aslan",fullName:"Belma Işık Aslan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7056",title:"An Update of Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"fab27916553ca6427ec1be823a6d81f2",slug:"an-update-of-dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/7056.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7244",title:"Periodontology and Dental Implantology",subtitle:null,isOpenForSubmission:!1,hash:"b83fa9a75b23711bfaaa169dfb1b94ec",slug:"periodontology-and-dental-implantology",bookSignature:"Jane Manakil",coverURL:"https://cdn.intechopen.com/books/images_new/7244.jpg",editedByType:"Edited by",editors:[{id:"68285",title:"Dr.",name:"Jane",middleName:null,surname:"Manakil",slug:"jane-manakil",fullName:"Jane Manakil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",isOpenForSubmission:!1,hash:"b0f7667770a391f772726c3013c1b9ba",slug:"dental-caries-diagnosis-prevention-and-management",bookSignature:"Zühre Akarslan",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5814",title:"Dental Anatomy",subtitle:null,isOpenForSubmission:!1,hash:"445cd419d97f339f2b6514c742e6b050",slug:"dental-anatomy",bookSignature:"Bağdagül Helvacioğlu Kivanç",coverURL:"https://cdn.intechopen.com/books/images_new/5814.jpg",editedByType:"Edited by",editors:[{id:"178570",title:"Dr.",name:"Bağdagül",middleName:null,surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6717",title:"Oral Microbiology in Periodontitis",subtitle:null,isOpenForSubmission:!1,hash:"746619365268c3b5cf92bafea23a6bfa",slug:"oral-microbiology-in-periodontitis",bookSignature:"Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/6717.jpg",editedByType:"Edited by",editors:[{id:"178566",title:"Dr.",name:"Sonia Bhonchal",middleName:null,surname:"Bhardwaj",slug:"sonia-bhonchal-bhardwaj",fullName:"Sonia Bhonchal Bhardwaj"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:29,mostCitedChapters:[{id:"18416",doi:"10.5772/16475",title:"Dental Implant Surface Enhancement and Osseointegration",slug:"dental-implant-surface-enhancement-and-osseointegration",totalDownloads:18205,totalCrossrefCites:30,totalDimensionsCites:78,book:{slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"S.Anil, P.S. Anand, H. Alghamdi and J.A. Jansen",authors:[{id:"25232",title:"Prof.",name:"Sukumaran",middleName:null,surname:"Anil",slug:"sukumaran-anil",fullName:"Sukumaran Anil"},{id:"28373",title:"Prof.",name:"John",middleName:null,surname:"Jansen",slug:"john-jansen",fullName:"John Jansen"},{id:"77058",title:"Dr.",name:"Seham",middleName:null,surname:"Alyafei",slug:"seham-alyafei",fullName:"Seham Alyafei"},{id:"82073",title:"Dr.",name:"Subhash",middleName:null,surname:"Narayanan",slug:"subhash-narayanan",fullName:"Subhash Narayanan"}]},{id:"18415",doi:"10.5772/16936",title:"Osseointegration and Bioscience of Implant Surfaces - Current Concepts at Bone-Implant Interface",slug:"osseointegration-and-bioscience-of-implant-surfaces-current-concepts-at-bone-implant-interface",totalDownloads:11810,totalCrossrefCites:13,totalDimensionsCites:34,book:{slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Mustafa Ramazanoglu and Yoshiki Oshida",authors:[{id:"26726",title:"Prof.",name:"Yoshiki",middleName:null,surname:"Oshida",slug:"yoshiki-oshida",fullName:"Yoshiki Oshida"},{id:"29841",title:"Prof.",name:"Mustafa",middleName:null,surname:"Ramazanoglu",slug:"mustafa-ramazanoglu",fullName:"Mustafa Ramazanoglu"}]},{id:"48165",doi:"10.5772/60010",title:"3D Scanning, Imaging, and Printing in Orthodontics",slug:"3d-scanning-imaging-and-printing-in-orthodontics",totalDownloads:5467,totalCrossrefCites:15,totalDimensionsCites:26,book:{slug:"issues-in-contemporary-orthodontics",title:"Issues in Contemporary Orthodontics",fullTitle:"Issues in Contemporary Orthodontics"},signatures:"Emilia Taneva, Budi Kusnoto and Carla A. Evans",authors:[{id:"96409",title:"Prof.",name:"Carla",middleName:null,surname:"Evans",slug:"carla-evans",fullName:"Carla Evans"},{id:"96472",title:"Prof.",name:"Budi",middleName:null,surname:"Kusnoto",slug:"budi-kusnoto",fullName:"Budi Kusnoto"},{id:"172854",title:"Dr.",name:"Emilia Taneva",middleName:null,surname:"Taneva",slug:"emilia-taneva-taneva",fullName:"Emilia Taneva Taneva"}]}],mostDownloadedChaptersLast30Days:[{id:"61046",title:"Optical Diagnostics to Improve Periodontal Diagnosis and Treatment",slug:"optical-diagnostics-to-improve-periodontal-diagnosis-and-treatment",totalDownloads:3678,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"periodontology-and-dental-implantology",title:"Periodontology and Dental Implantology",fullTitle:"Periodontology and Dental Implantology"},signatures:"Fardad Shakibaie and Laurence Walsh",authors:[{id:"179467",title:"Prof.",name:"Laurence",middleName:null,surname:"Walsh",slug:"laurence-walsh",fullName:"Laurence Walsh"},{id:"235443",title:"Dr.",name:"Fardad",middleName:null,surname:"Shakibaie",slug:"fardad-shakibaie",fullName:"Fardad Shakibaie"}]},{id:"65714",title:"Oral Mucosal Trauma and Injuries",slug:"oral-mucosal-trauma-and-injuries",totalDownloads:3917,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"trauma-in-dentistry",title:"Trauma in Dentistry",fullTitle:"Trauma in Dentistry"},signatures:"Meltem Koray and Tosun Tosun",authors:[{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun"},{id:"258195",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Koray",slug:"meltem-koray",fullName:"Meltem Koray"}]},{id:"54942",title:"Cleft Lip and Palate Management from Birth to Adulthood: An Overview",slug:"cleft-lip-and-palate-management-from-birth-to-adulthood-an-overview",totalDownloads:1871,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"insights-into-various-aspects-of-oral-health",title:"Insights into Various Aspects of Oral Health",fullTitle:"Insights into Various Aspects of Oral Health"},signatures:"Maen Hussni Zreaqat, Rozita Hassan and Abdulfattah Hanoun",authors:[{id:"38245",title:"Dr.",name:"Maen",middleName:"Hussni",surname:"Zreaqat",slug:"maen-zreaqat",fullName:"Maen Zreaqat"},{id:"52438",title:"Dr.",name:"Rozita",middleName:null,surname:"Hassan",slug:"rozita-hassan",fullName:"Rozita Hassan"},{id:"205482",title:"Dr.",name:"Abdulfattah",middleName:null,surname:"Hanoun",slug:"abdulfattah-hanoun",fullName:"Abdulfattah Hanoun"}]},{id:"67314",title:"Pathogenesis of Periodontal Disease",slug:"pathogenesis-of-periodontal-disease",totalDownloads:1588,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",title:"Periodontal Disease",fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations"},signatures:"José Luis Muñoz-Carrillo, Viridiana Elizabeth Hernández-Reyes, Oscar Eduardo García-Huerta, Francisca Chávez-Ruvalcaba, María Isabel Chávez-Ruvalcaba, Karla Mariana Chávez-Ruvalcaba and Lizbeth Díaz-Alfaro",authors:null},{id:"71271",title:"Flap Techniques in Dentoalveolar Surgery",slug:"flap-techniques-in-dentoalveolar-surgery",totalDownloads:638,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"oral-diseases",title:"Oral Diseases",fullTitle:"Oral Diseases"},signatures:"Randa Abdulmoein AlFotawi",authors:[{id:"308701",title:"Dr.",name:"Randa",middleName:"Abdulmoein",surname:"Alfotawi",slug:"randa-alfotawi",fullName:"Randa Alfotawi"}]},{id:"60376",title:"Management of White Spot Lesions",slug:"management-of-white-spot-lesions",totalDownloads:1876,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"dental-caries-diagnosis-prevention-and-management",title:"Dental Caries",fullTitle:"Dental Caries - Diagnosis, Prevention and Management"},signatures:"Ceren Deveci, Çağdaş Çınar and Resmiye Ebru Tirali",authors:[{id:"233963",title:"Associate Prof.",name:"R. Ebru",middleName:null,surname:"Tirali",slug:"r.-ebru-tirali",fullName:"R. Ebru Tirali"},{id:"233986",title:"Associate Prof.",name:"Çağdaş",middleName:null,surname:"Çınar",slug:"cagdas-cinar",fullName:"Çağdaş Çınar"},{id:"233988",title:"Dr.",name:"Ceren",middleName:null,surname:"Deveci",slug:"ceren-deveci",fullName:"Ceren Deveci"}]},{id:"18420",title:"Stress Distribution on Edentulous Mandible and Maxilla Rehabilitated by Full-Arch Techniques: A Comparative 3D Finite-Element Approach",slug:"stress-distribution-on-edentulous-mandible-and-maxilla-rehabilitated-by-full-arch-techniques-a-compa",totalDownloads:4173,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Giuseppe Vairo, Simone Pastore, Michele Di Girolamo and Luigi Baggi",authors:[{id:"33843",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Vairo",slug:"giuseppe-vairo",fullName:"Giuseppe Vairo"},{id:"39843",title:"Prof.",name:"Luigi",middleName:null,surname:"Baggi",slug:"luigi-baggi",fullName:"Luigi Baggi"},{id:"39844",title:"Dr.",name:"Simone",middleName:null,surname:"Pastore",slug:"simone-pastore",fullName:"Simone Pastore"},{id:"40011",title:"Prof.",name:"Michele",middleName:null,surname:"Di Girolamo",slug:"michele-di-girolamo",fullName:"Michele Di Girolamo"}]},{id:"65088",title:"Evaluation and Management of Mandibular Fracture",slug:"evaluation-and-management-of-mandibular-fracture",totalDownloads:1430,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-in-dentistry",title:"Trauma in Dentistry",fullTitle:"Trauma in Dentistry"},signatures:"Guhan Dergin, Yusuf Emes and Buket Aybar",authors:[{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin"},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes"},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar"}]},{id:"48165",title:"3D Scanning, Imaging, and Printing in Orthodontics",slug:"3d-scanning-imaging-and-printing-in-orthodontics",totalDownloads:5467,totalCrossrefCites:15,totalDimensionsCites:26,book:{slug:"issues-in-contemporary-orthodontics",title:"Issues in Contemporary Orthodontics",fullTitle:"Issues in Contemporary Orthodontics"},signatures:"Emilia Taneva, Budi Kusnoto and Carla A. Evans",authors:[{id:"96409",title:"Prof.",name:"Carla",middleName:null,surname:"Evans",slug:"carla-evans",fullName:"Carla Evans"},{id:"96472",title:"Prof.",name:"Budi",middleName:null,surname:"Kusnoto",slug:"budi-kusnoto",fullName:"Budi Kusnoto"},{id:"172854",title:"Dr.",name:"Emilia Taneva",middleName:null,surname:"Taneva",slug:"emilia-taneva-taneva",fullName:"Emilia Taneva Taneva"}]},{id:"18432",title:"Clinical Complications of Dental Implants",slug:"clinical-complications-of-dental-implants",totalDownloads:55211,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Su-Gwan Kim",authors:[{id:"27797",title:"Prof.",name:"Su-Gwan",middleName:null,surname:"Kim",slug:"su-gwan-kim",fullName:"Su-Gwan Kim"}]}],onlineFirstChaptersFilter:{topicSlug:"dentistry",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"65334",title:"Introductory Chapter: Some Important Aspects of Root Canal Treatment",slug:"introductory-chapter-some-important-aspects-of-root-canal-treatment",totalDownloads:308,totalDimensionsCites:0,doi:"10.5772/intechopen.83653",book:{title:"Root Canal"},signatures:"Ana Luiza de Carvalho Felippini"}],onlineFirstChaptersTotal:1},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/126366/gen-inoue",hash:"",query:{},params:{id:"126366",slug:"gen-inoue"},fullPath:"/profiles/126366/gen-inoue",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()