An overview of synthesis reports using platinum, sulfur, or selenium.
\r\n\tA number of advanced combustion technologies have been introduced to improve performance, fuel economy and emissions levels. Research in combustion technology has highlighted the importance of new fuels in reducing the petroleum dependence and achieving high efficiency with low pollutant formation.
\r\n\tThe purpose of this book is to collect interesting and original studies on combustion methods, advanced combustion strategies and new fuels able to achieve efficiency improvements and environment compliance.
\r\n\tContributions in which experimental, theoretical and computation approaches are applied to explore how fuel properties and composition affect advanced combustion systems and how advanced combustion technology can maximize engine efficiency and be environment-friendly are invited and appreciated.
The echinococcosis in human occurs as a result of infection by the larval stages of taeniid cestodes of the genus Echinococcus. Originally, four species have been recognized as the public health concern: Echinococcus granulosus [agent of cystic echinocococcosis (CE)], Echinococcus multilocularis [agent of alveolar echinococcosis (AE)], and Echinococcus vogeli and Echinococcus oligarthrus [both are the agents of polycystic echinococcosis (PE)] [1]. Recently, two new species have been identified: Echinococcus shiquicus [2] in small mammals from the Tibetan plateau and Echinococcus felidis [3] in African lions though these two new species infective to human are still unknown [4]. A couple of studies have provided augments that these diseases are an increasing public health concern and showing emerging or re-emerging diseases [4, 5].
Among recognized four public health concerned species, E. multilocularis and E. granulosus are important for human health and economic welfare [4]. The disease occurs in most areas of the world, and currently about 4 million people are infected and another 40 million people are at risk [4, 6, 7]. The economic cost of the disease is estimated to be around 3 billion USD a year. It is classified as a neglected tropical disease [4].
The knowledge on the geographical distribution of the environmental factors for the persistence of the lifecycle is scarce [8, 9]. Studies to improve the knowledge on epidemiological risk factors should be encouraged to enable risk-based sampling. Echinococcus notification should always be done at species level in order to discriminate between the more severe alveolar and the cystic echinococcosis [10, 11]. Updated knowledge on the Echinococcus parasitism was also discussed for the potential application in immunotherapeutic against parasites and other immune disorders.
The life cycle of Echinococcus species requires a predator-prey relationship between the definitive and intermediate hosts.
E. granulosus is adapted to an environment in which livestock farming plays a central role, completing its cycle through dogs or wild carnivorous animals (as definitive host) and a variety of livestock species, mainly sheep, cattle, pigs, horses, goats, and camels as well as the several wild ungulate species serve as intermediate hosts for the different lineages of the E. granulosus species complex [12]. In contrast, several wild rodent species (typically rodents of the families Arvicolidae and Cricetidae) are the natural intermediate host for E. multilocularis [12, 13].
The intermediate hosts become infected through ingestion of eggs in contaminated food or water [12]. The host digestive enzymes dissolve the egg’s shell, releasing the oncosphere, which burrows through the host’s gut wall and is transported via blood or lymph to the target organ of liver for AE, but mainly liver and lungs, as well other organs for CE [14]. While the life cycle of E. multilocularis is completed after a fox or canine consumes a rodent infected with alveolar echincoccosis [8]. Once again adults begin to release a new gravid proglottid, which usually carries some 1500 eggs [15], to be passed to the outside environment with their feces. The adult worms are hermaphroditic. E. granulosus becomes prepatent in 32–80 days in the definitive hosts [16], this period varies with the species or strain. While E. multilocularis usually becomes prepatent in foxes or dogs in 28–35 days [17], the life cycle of E. multiloculcaris is predominantly sylvatic [18].
Humans can serve as an aberrant intermediate host, acquiring the infection by accidental ingestion of eggs, due to handling of infected animals or ingesting contaminated food, vegetable, and water. Except in rare cases, where infected humans are eaten by canines [19], humans are a deadend for Echinococcus species, which means that this kind of intermediate host does not allow transmission to the definitive host [20].
Briefly, the disease is spreading when food or water contains the eggs of the parasite, which may be eaten by intermediate animals (such as sheep for E. granulosus and rodents for E. multilocularis), or due to close contact with an infected definitive animal (carnivorous animals, e.g., dogs, foxes), while the definitive animals, to become infectious, they must eat the organs of an intermediate animal that contains the valid cysts.
Generally, selective pressure between host and parasite (parasitism relationship) provides chance for coevolution [21, 22]. A constant adaptation occurs in both populations due to an accumulation of the genetic changes that results in the development of new parasitic strategies and new host defenses [21].
Parasites with complex life cycles often behave differently in their intermediate and definitive hosts [1, 23]. Echinococcus species presents strongly affected its intermediate hosts (moose or and small mammals, and rodents) due to high virulence but low virulence in the definitive hosts (such as wolf, fox, or dog). The strong effect makes the intermediate hosts to be more severe sick and easily be captured/hunted by the carnivorous animals [9, 18], thus, benefit parasitic life-cycle and increase transmission dynamics.
The relationship between Echinococcus species and their intermediate hosts leads to the necessity for the pathogen to have the virulent alleles to infect the organism and for the host to have the resistant alleles to survive parasitism. Variation in the pathogenicity of strains/species of Echinococcus is well known to influence the prognosis in patients with echinococcosis [23]. Increasing epidemiological evidence suggests that certain strains of E. granulosus (such as those adapted to horses and pigs) may not be commonly infective to humans [1], and the transmission of parasite strain differs (genetically) geographically and host-adaptively [24]. Therefore, estimates of gene flow between populations in different intermediate hosts or geographic areas can have valuable epidemiological applications [1, 11]. In the genomes of cestodes, considerable gene gain and gene loss associated with the adaptation to parasitism has been found in recent genome parasitic programs [21, 22]. Although, the different morphologies of their metacestode stages caused by E. multilocularis and E. granulosus are clinically often regarded as “distinctly different entities” [25], they are highly similar concerning gene structure and gene content [22]. Salient differences were so far only observed in the Echinococcus-specific apomucin gene family [21]. This is presumably associated with one of the few clear morphological differences between two species of E. multilocularis and E. granulosus, the thickness of the laminated layer, since the apomucin gene family encodes important components of this structure [26].
During echinococcosis infections (including AE and CE), the distinguishing feature of the host-parasite interaction is that chronic infection coexists with detectable humoral and cellular responses against the parasite [27]. It is well known that the Echinococcus species can actively interact with host’s both innate and acquired immune systems to maintain their survival with successful evasion from host’s immune attacks [28]. The disease spectrum is clearly dependent on the genetic background of the host, as well as on the acquired disturbances of Th1-related immunity [29], such as pregnancy [30], malnutrition [4], severe stress due to work or life [4], coinfection (e.g., HIV) [31, 32], or using immune-suppressing drugs [4, 28]; thus, this kind of circumstances can provide an opportunity to allow the pathogen invading. Human AE appears to be an example of “opportunistic infection”, when you make your immunity capability weakness [28, 30]. The genetic constitution of both hosts and pathogens is involved, host genes controlling resistance or susceptibility to infection, genes of the pathogen determining characters such as virulence [23].
In order to establish a successful infection, parasite releases molecules that directly modulate the host immune responses favoring and perpetuating parasite survival in the host [33]. Recent experimental evidence suggests that parasites can not only evade immune responses actively but also exploit the hormonal microenvironment within the host to favor their establishment and growth [34]. Hormonal host parasite cross communication facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of AE [35]. E. multilocularis metacestode metabolic pathway cascades can be activated by host’s cell signaling [13, 36], resulting in the larvae development [37]. Conversely, the larval Echinococcus can also influence their host immunity response and metabolic signaling mechanisms through the secretion of various molecules [24]. Therefore, immunomodulatory activities of Echinococcus and pathological consequences on the host’s tissues were attracted by many research concerns for decades [38].
The laminated layer could also play a role similar to that of the placenta at the materno-fetal interface [39]: ensuring parasite growth and infected tissue cell homeostasis while ensuring proper immune tolerance. Tolerance is essential to ensure growth and development of the larval stages of Echinococcus species in their hosts [27]. It has been recognized that a series of host-adapted species in the genus Echinococcus fits in nicely with observations on host range [1], life cycle, and transmission patterns in areas where echinococcosis is endemic [23]. The ability of hosts to regulate parasites through innate and adaptive immune responses is one of the most important determinants affecting levels of infection, both in the individual and the population [1]. Immunomodulation and, to some extents, immune tolerogenic role have been a great interest of researchers during echinococcosis infection both in human and in animal studies. Many reports have described the worms achieve to switch in the host\'s response by releasing molecules that share epitopes (and possibly functional activity) with host cytokines [40]. The high relevance for host parasite interaction mechanisms is also found that the presence of evolutionarily conserved signaling systems in Echinococcus, such as components of the epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor ß (TGF-ß), and insulin signal transduction cascades [40, 41], though the signaling systems in animals are also known to be primarily influenced by both factors of the genetic heritage and living environments [42].
The host-derived EGF is known to induce the Echinococcus mitogen-activated protein kinase (MAPK) cascade, probably through direct interaction with parasite EGF-receptors [13]. Parasitic components, and not only factors from host origin, were actually acting on hepatocyte metabolic pathways. Recent report indicated that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signaling pathway [13, 35].
Although both parasites and hosts benefit from the dynamic balance that grantees parasite-induced damage to hosts at a reasonable level and in turn [42], to some extent, provide parasites nutrients, in some cases of human echinococcosis, spontaneous healing of the disease was observed [20, 27]. Such abortive cases are characterized by calcified parasite lesions suggesting the generation of immune responses which are able to limit parasite growth in humans [27].
A carnivore animal is the definitive host—where the adult worms live in the intestines; and almost any mammal, including humans, can be the intermediate host—where the worms form cysts in various organs for CE but mainly in liver for AE.
It is much more difficult to tell when a dog is infected with Echinococcus compared to other tapeworms such as Taenia or Dipylidium [16, 17]. An adult Echinococcus species is tiny—only a few millimeters long. Dog infection generally does not show any signs of illness at all even though the hundreds or thousands of tapeworms live in its intestine. Despite the difficult differentiation of the eggs between Echinococcus and Taenia species under microscopy through fecal examinations [16, 17], the diagnosis of dog infection is an important and useful through dog-copro-DNA assays [16, 17, 43]. So, dog fecal examinations should be performed regularly.
For AE: the primary metacestodes are found in rodent’s liver. The germinal membrane of E. multilocularis proliferates externally, rather than internally, to form a multilocular structure with many small cysts. These vesicles are usually 1–10 mm in diameter. Hundreds to thousands of protoscolices develop from the germinal membrane in some animal intermediate hosts (small mammals). These multilocular cysts have semisolid matrix and resemble malignant tumors. The center of lesion may be necrotic. The lesion can completely infiltrate an organ, and spread to other organs and tissues nearby. The cysts can also metastasize to distant sites. Although, the tumor-like cysts can kill rodents within a few weeks of infection, this parasite has recently evolved into an experimental model system by use of rodent species to study larval cestode development and associated host-parasite interaction mechanisms.
For CE: the intermediate hosts include a large number of domesticated and wild animals, particularly herbivores. The rate of development varies with the intermediate host and species of parasite, but the cysts usually grow slowly. Their diameter generally increases from less than 1 to 5 cm every year. The parasitic cyst comprises of two walls of an outer laminated membrane and an inner membrane called the germinal layer. All the brood capsules can be produced from the germinal membrane. If the cyst contains protoscolices, it will be named as fertility cyst. Some cysts are sterile, since protoscolices are not produced or killed by bacterial infection. The percentage of sterile cysts varies with the different intermediate host and its susceptibility to a particular strain/species of parasite. The cysts in livestock also seem to be asymptomatic, probably due to the relatively short lifespan of these animals. Because the cyst grows slowly and the symptoms can only appear until its size can effect on adjacent tissues and organs. Occasionally, symptoms have been reported in sheep [5]. But mostly the infected livestock shows poor growth, weakness, and lameness. Therefore, the economic loss assessment modeling due to livestock infections (mainly in sheep) has attracted some extensive attentions in endemic regions and countries worldwide.
Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite specific antigens or the presence of “dying out” or “aborted metacestodes” [4]. Seroconversion proving infection, but lack of any lesion indicating the failure of the parasite to establish and further develop within human tissues (mainly in liver) or resistance as shown by the presence of fully calcified lesion [44]; while the developing parasite can be partially controlled by host immunity in those susceptibility individuals where infection leads to disease, as found in the AE and CE patients who experience clinical signs and symptoms approximately 5–15 years after infection [20, 30].
If untreated or uncontrolled, the hyper proliferation of the metacestode due to an impaired immune response could be resulted by immune modulation of host immunity toward energy that can be triggered by parasite metabolites [38], and/or be resulted by additional clinical conditions, such as AIDS or any other reason to induce the immune deficiencies [20, 27, 30]. The disease often starts without symptoms, and this may last for years. The symptoms and signs can occur depend on the lesion location and size for CE. While, AE usually begins in the liver but can spread to other parts of the body.
Cystic echinococcosis (CE) can cause very severe symptoms, if the cyst bursts (e.g., from sudden trauma) or even fatal. The released protoscolices can spread the parasite to other parts of the body to form many new cysts [20].
Alveolar echinocococcis (AE) ranges in size from a sesame seed to a large melon [45]. Although, the mass lesions grow slowly, the tumor-like growth manner tends to invade neighbor organs or tissues, making treatment very difficult [30].
Fibrosis is an important component of the pathophysiology of each disease caused by Echinococcus species. However, this role differs markedly in CE and AE. In CE, the rapidly established periparasitic fibrosis surrounding the laminated layer contributes to the unicystic feature of the disease and to limit cyst growth [46]. In AE, the slow fibrogenesis in an extensive and partially unsuccessful periparasitic granuloma does not prevent germinal layer budding. In the long term, it eventually leads to a dense and irreversible fibrosis, responsible for the main complications of the diseases, such as bile duct, vessel obstruction, and secondary biliary cirrhosis [47–49].
Echinococcal lesions may grow for years, depending on their location, without causing any signs of illness in people [4]. The signs of illness do occur in late stages of diseases, such as abdominal pain and jaundice due to obstruction of bile ducts (in liver), chest pain and difficulty in breathing (in lungs) [4], neurological signs, and seizures (in brain) [30]. Cysts/lesions are sometimes found occasionally when tests are performed for other reasons [4]. Generally, the clinical symptoms and image presentations, e.g., radiographs, ultrasound, CT, or MRI, need to combine the evidences from a blood test for antibodies to the parasite or biopsy for histopathological examination or PCR assay to confirm the diagnosis [4]. Screening individuals living in high-risk areas by ultrasound and serological investigation [44] can catch the infection early and can make treatment much easier and more effective [44].
Therefore, diagnosis requires a combination of tools that involve imaging, histopathology, or nucleic acid detection, and serology. The ultrasound though computer tomography (CT) or magnetic resonance imaging (MRI) may be used commonly. Serology methods for antibodies against the parasite detection can be some certain supplemental tool for imaging/clinical diagnosis. The histopathology or nucleic acid using biopsy after invading methods could provide the final confirmation [4, 20].
The growth of larva of Echinococcus spp. and the proliferation of the larva are similar to a slow-growing tumor. If the lesion occurs in liver, it can damage liver function. Sometimes, it is difficult to differentiate it from liver cancer because of invasion to biliary and vascular tissue of the liver [50]. Early diagnosis and radical surgery provide the best chance for treatment and cure. Although, treatment of AE is less effective than treatment of CE, the general approach for both types of echinococcosis treatment remains to be surgery with the purpose of complete resection of infected parts of involved organs [4]. Antiparasitic drugs cannot kill cysts if the lesions have already established. However, if untreated, patient survival time is very limited. Therefore, early detection and treatment are important ways to improve patients\' survival [4, 20].
Although treatment of cystic echinococcosis by surgery to remove the hydatid cyst was always a risk that the cyst would burst during the procedure, resulting in a very severe, even fatal reaction in the patient to the spilled fluid, drug therapy alone is usually not enough to eliminate cysts, but it can help reduce lesion size and operation risks. More recently, treatment with antiparasitic drugs and drainage of the fluid from the cyst using a needle has been used to treat the disease in certain cases without surgery. Briefly, with proper care, 96–98% of CE patients survive [20].
The risk of infection with E. granulosus or E. multilocularis to humans from most pets is very low, but it is higher risks for those residents living in endemic areas. Their work or recreational activities involve direct contact with contaminated water, soil, and their dogs for a long time or life time [10]. Those dogs may allow to roam, hunt, and eat raw tissues from potentially infected animals (e.g., rodents, rabbits, sheep, moose) [8].
The risks for the susceptible of infection with Echinococcus spp. can occur in those peoples with immune-compromised conditions (e.g., HIV/AIDS patients, transplant recipients, cancer patients) or with other complications because their immune systems cannot fight infections efficiently [20]. Mostly, ingestion of Echinococcal eggs occurred in early ages, if they have chance to contact with contaminated environments, but the disease may appear until they are adults [44].
Dogs if allowed to enter Echinococcus-free areas from potential endemic areas need to be treated with anthelmintic agents (e.g., Praziquantel). Routine inspection of the potential parasitic intermediate host animals before permitting for importing could also prevent the parasite into a country [15].
In endemic areas, dogs should not be allowed to eat the carcasses, particularly the viscera of potential intermediate hosts. Dogs should also be kept from hunting wild rodents and small mammals [6]. Regular examination and treatment of dogs [8] can decrease echinococcosis in domesticated livestock [14].
Prevention of Echinococcus species spreading is by treating dogs that may carry the disease and vaccination of sheep. Health education programs focused on echinococcosis and its agents, and improvement of the water sanitation attempt to target poor economic living condition and poor drinking water sources. Educational material should include information about proper disposal of sheep viscera in abattoirs and proximity to dogs and sources of transmission [15].
In the absence of fully effective antiparasitic chemotherapy for AE and CE, modulation of the host\'s immune response could be envisaged to fight against the parasite and to prevent the disease and/or its complications such as using IFN-a2a immunological treatment [28] and some parasitic antigens as potential vaccination to prevent disease occurrence such as using Em14-3-3, Em 95, EMY162, and EmTetraspanin [24]. Additionally, current picture on Echinococcus signaling systems will be given and the potential to exploit these pathways as targets for antiparasitic chemotherapy [51].
The presence of Tn antigen in larval and adult tissues of E. granulosus was reported [52], this finding is interested in cancer-associated mucin-type because this parasite produced peptides can act on the nonspecific natural killer cell to express cytokines that are effective agents against tumor growth; therefore, the family of Tn antigens might be useful targets for antitumor immunotherapy [41, 53, 54]. These evidences may contribute to the design of tumor vaccines and open new horizons in the use of parasite-derived molecules that can fight against cancer [55, 56].
Cancer vaccination is an important and promising approach in cancer immunotherapy. Obstacles for clinical success may include immune tolerance to TAAs [57], the weak antigenic nature of TAAs, and active immune evasion mechanisms employed by progressing tumors [58]. Vaccination with TAAs coming from evolutionary distant organisms (such as E. granulosus) should be useful to override tolerance problems encountered with human TAA-based cancer therapeutic approaches [58].
Additionally, the high level of the O-glycosylated Tn antigens generated from larvae of E. granulosus are found in the sera of the patients with cystic echinococcosis (CE), providing a pathway that a series of Tn antigens might be sort as a biomarker for this parasitic disease diagnosis, but the hypothesis needs more work to verify the clinical values regarding those antigens [59].
Overall, genus Echinococcus can be thought an example of successful adaptation to their hosts extensively. Taken advance of recent research outcomes, the parasite immunotherapy for human echinococcosis has been discussed widely by scientific literatures, but importantly, the advanced outcomes may also be interested in terms of using parasites\' productions for treatment of other diseases, including cancer.
We acknowledge financial support by the National Health and Medical Research Council (NHMRC) of Australia of a NHMRC Project Grant (APP1009539). National Science Foundation of China (NSFC) of the NSFC Project Grants (30960339 and 81460311).
Several advantages on the design of proton exchange membrane (PEM) fuel cells are the cost-effective and innovative synthesis methods, which are necessary for new catalyst discovery and catalyst performance optimization. In addition, the carbon support functionality should be emphasized in terms of the active surface increase, the coordination effect of catalyst and support, and the distribution of active catalytic sites.
The main focus is the oxygen reduction reaction (ORR); this electrochemical reaction plays an important role in the operation of fuel cells. Nevertheless, due to its complexity, we are far to reach a full comprehension about the mechanisms involved in these systems. The development and study of novel materials that have useful electrocatalytic properties to carry out the reactions involved in these electrochemical devices is needed.
Platinum is considered in such a traditional catalyst for reactions involved in PEM fuel cells. However, their high costs keep us researching on new approaches to reduce the platinum load on the electrocatalytic material, and, therefore, Pt loading catalyst is still the main issue. Some methodologies for the preparation of disperse transition of metal nanoparticles and carbon nanostructures (CNS) have been developed and are described here.
Catalysis with transition metal sulfides (TMS) also play a crucial role in petroleum industry, owing to their exceptional resistance to poisons. TMS are unique catalysts for the removal of heteroatoms (S, N, O) in the presence of a large amount of hydrogen [1]. In particular, they are the optimal materials to carry out the numerous reactions [2, 3, 4, 5]. Through effective synthesis procedures, new non-noble catalysts have been discovered. TMS synthesized by carbonyl route using sulfides and selenides are promising. Besides platinum and noble metal nanoparticles and its alloys, other kinds of materials have shown important electrocatalytic activity in PEM fuel cells. Alonso-Vante and coworkers have proposed semiconducting TMS (sulfides and selenides) as efficient catalysts for cathode fuel cell reactions with significant oxygen reduction activity and high stability in acidic environment. A strategy to synthetize these materials in nanodivided way, is using carbonyl-based molecular clusters as precursors [6]; this route of synthesis offers the possibility to produce well-shaped nanoparticles with right stoichiometries. Ruthenium carbonyl (Ru3(CO)12) is extensively employed as feedstock to obtain diverse types of compounds and metallic clusters for new electrocatalysts; the main objective in the catalyst design is to replace and overcome the platinum properties [6, 7, 8, 9, 10].
However, platinum metal and its alloys with other transition metals are important catalysts for low-temperature fuel cells. The catalysts are typically developed in a form of nanoparticles for a better dispersion and/or minimum loading of platinum. Since they have the best activities and chemical stability, the problem is the high costs of Pt loadings in operating cathodes. ORR has been examined in the presence of Pt and Pt alloy nanoparticles on carbon-supported, CoN4 catalysts, Chevrel-type chalcogenide materials, and RuxSey clusters [7, 11]. The ability to fabricate new model systems in which one can control the number of particles, size, and shape would be of tremendous fundamental importance in catalysis and electrocatalysis, as well as in other technologically important areas that use nanoparticles.
On the other hand, chalcogenides are synthesized under mild conditions in the nano-length scale by simple and fast methods. In the final form of the catalyst, chalcogenide atoms interact with surface metal atoms in a chemical way to avoid poisoning. Evident effects were observed in the presence of organic molecules as CH3OH or HCOOH. Synthesized catalysts have been compared with commercial Pt/C [7, 11]. Further, the ORR kinetics was not perturbed, assessing this phenomenon wherein the sulfur atoms and organic molecules showed a little effect against the molecular oxygen adsorption. Some results demonstrated that the fuel crossover is no longer a major concern; however, the nature of the active sites on the chalcogenides and more investigations on dispersion and synthesis methods will follow for the development of very small and low-cost fuel cells, such as microsystems [12]. Therefore, results suggest the development of novel systems that is not size restricted, and its operation is mainly based on the selectivity and nature of its electrodes.
The challenges of scale-up and commercialization of fuel cells depend on the optimal choice of fuel as well as on the development of cost-effective catalysts. One approach for the ORR is the use of transition metal chalcogenides (TMCs) or dichalcogenides (TMDs), which also have the great advantage of being selective in the presence of methanol. However, the target is to develop materials based essentially on non-noble metals and reduction of the Pt loading [5, 13]. These results promise new opportunities to design cathodic catalysts.
On the other hand, W6S8(PEt3)6 was reported as the first soluble model clusters of the molybdenum Chevrel phases and their (unknown) tungsten analogs [14]. However, according to the literature reviewed, until 2003 tungsten, Chevrel phases had not been reported, despite many years of effort. As reported in many studies, chalcogenides are markedly less sensitive than platinum catalysts to methanol. In accordance with this idea, we endeavored to explore the nature of chalcogenides based on sulfur and thiosalts. These results described a significant tolerance toward some carbonaceous species like monoxide and methanol. Likewise, we called “the decorative nanoexfoliation of platinum model” to explain the effect of sulfur species on the surface of platinum, and further studies demonstrated how the WS2 planes are highly exfoliated around platinum nanoparticle to avoid the poisoning (see Figure 1).
(a) HRTEM image of the unsupported catalyst PtxWySz, (b) HRTEM image at high magnification of one platinum nanoparticle decorated by WS2 nanostructures, and (c) current-potential curves for oxygen reduction for PtxMoySz/C, PtxWySz/C, Pt/C commercial, and PtxSy/C. All samples were immobilized on a glassy carbon RDE, and the measurements were carried out in O2-saturated 0.5 M H2SO4 solution at 5 mV s−1 at 1600 rpm rotation speed and 25°C. The current densities were normalized to the geometric surface area.
This idea is to design selective catalysts with high activity for PEM fuel cells based on sulfur. We reported novel platinum chalcogenides as cathodic catalysts from platinum with tungsten and molybdenum thiosalts, as well as platinum and sulfide in acid media, and in other studies, we also analyzed the promising results for anodic electrode [15, 16]. In addition, we have studied the interaction with the supported TMS on Vulcan carbon. Figure 1(a) and (b) shows HRTEM images of the unsupported PtxWySz. In concordance, Figure 1(c) shows a significant effect of the chalcogenide on the platinum surface and the catalytic activity is better in comparison with the commercial platinum at 20 wt.% metal loading [16].
Carbon-supported PtW nanoparticles are usually prepared by impregnation or chemical co-reduction of chloroplatinic acid and ammonium tungstate. However, these methods are not suitable for preparing carbon-supported PtW nanoparticles with well-controlled particle size and homogeneous composition [17]. In Figure 1(c), we report the ORR polarization curves for three synthesized catalysts and compared it to commercial Pt/C Vulcan at 20 wt.% of metal load. As shown, in all samples, the current density values are higher than the Pt/C. Furthermore, it was noticeable that cathodic current due to the reduction of O2 commences at much more positive potential for PtWS/C catalyst than the synthesized samples and similar than commercial sample but increases upon further cathodic scan, and overall it shows a significant enhancement versus the Pt/C.
TMCs are a group of materials that show activity toward ORR. It is worthwhile to mention that TMS are the optimal catalysts to carry out the numerous reactions of hydrogenation and hydrogenolysis on different processes for the refining industry. We have reported catalytic materials sulfided by DMDS, and their activities are similar than H2S. It is an advantage, in order to determine the effect of sulfur on trimetallic catalysts and explore other sulfiding agents. This experimental procedure is also on research by our group [18].
Ruthenium (Ru)-based chalcogenide catalysts synthesized by Alonso-Vante et al. [8, 10, 11] have been among the most promising, due to their high activity and stability toward the ORR in acidic media [19]. Particularly, RuS2 also has been extensively employed as catalyst for hydrodesulfurization (HDS) reactions. It has been shown that semiconducting transition metal sulfides, such as PdS, PtS, Rh2S3, Ir2S3, and RuS2, have higher catalytic activity than the metallic sulfides [20]. However, the electronic environments of the surface of Ru atoms are also compared to the electronic environments and reactivities of metal centers found in d6 transition metal complexes that incorporate thiophenic ligands [20, 21].
Cluster compounds of the Chevrel type (MosXs) contain molybdenum octahedral and form metals with the Fermi level clearly below the energy gap. It clearly shows the molybdenum cluster octahedron (accommodating 20 electrons) surrounded by a cube of chalcogen atoms. It is also possible to distinguish the crystal channels between the clusters into which guest atoms can be inserted.
Alonso-Vante and Tributsch were the first that communicated that semiconducting ruthenium-molybdenum chalcogenides having the general formula MoxRuyXO2 (with X = chalcogen: essentially, one of the elements O, S, Se, and Te) and forming Chevrel phases exhibit good catalytic activity for ORR in acidic solutions and catalyze the four-electron reduction to H2O over the H2O2 route [22]. It was soon found that the catalytic activity is not restricted to Chevrel phases, but other varieties of such chalcogenides are active as well. Many other studies go on; using similar compounds are synthesized in different ways, and this is the purpose of this contribution, in order to enhance the catalytic activity, selectivity, and stability; thus, new modifications on active phases and carbon supports have been explored.
The morphology, structure, and composition of the support material significantly affect the catalytic activity of the fuel cell catalyst [23]. Carbon is most often used as catalyst support in cathodes because it is inexpensive; it can be prepared in a pure form as high-surface area powders, and it is electrically conductive. However, the atomic arrangement of carbon atoms on the network is the key to determine well-defined properties and therefore specific applications. In order to improve the electrocatalytic efficiency, various carbon support materials such as carbon nanotubes and graphene have been applied recently by our group. Some requirements for these supports are electrical conductivity, good metal-carbon interaction, high surface area, and high inertness in harsh chemical and electrochemical conditions.
Since Iijima’s landmark paper in 1991 [24], carbon nanotubes (CNTs) have been studied by many researchers all over the world. Their large length (up to several microns) and small diameter (a few nanometers) give them a large aspect ratio. CNTs are mainly produced by three techniques: arc discharge, laser ablation, and chemical vapor deposition. Research has been targeted toward finding more cost-efficient ways to produce these structures.
According to theoretical models, all of these structures may appear due to non-hexagonal carbon rings that are incorporated in the hexagonal network of the graphene sheet. In particular, coiled carbon nanotubes were first predicted to exist in the early 1990s by Ihara [25] and Dunlap [26], but they were experimentally observed until 1994 by Zhang [27]. On a microscale, periodic incorporation of pentagon and heptagon pairs into the predominantly hexagonal carbon framework in order to create positively and negatively curved surfaces, respectively, can generate a carbon nanotube with regular coiled structure [28].
A large variety of tubule morphologies as straight, coiled, waved, branched, beaded, and regularly bent have been synthesized and observed; however, there are no studies about the growth time which affects CNT morphology. Herein, the growth time promotes the arrangement by hexagonal lattices to produce different shapes [26]. Hence, to prepare high-quality metal catalyst supports, it is necessary to deposit dispersed metal particles onto nanotubes, ideally particles that have diameters within the nanometric range. It is worthwhile to mention that a combination of catalytic metals, chiefly transition metals such as iron, cobalt, or nickel, leads to the growth of extremely forms of CNTs such as helically wound graphite spirals. Under catalytic conditions, a wide variety of carbon nanotubes, which may not be linear but resemble spaghetti piles, are possible and may not be recognized as carbon.
Recently, aligned and coiled multiwalled carbon nanotubes were successfully obtained inside of quartz tubing by our group using the modified spray pyrolysis method. In Figure 2, two types of morphology of multiwalled carbon nanotubes (MWCNTs) are shown. In concordance to these results, variable control is essential to produce CNTs [25, 29].
(a) TEM image of straight MWCNT and (b) TEM image of coiled MWCNT synthesized by modified spray pyrolysis method.
On the other hand, preparative methods of synthesis of CNS such as graphene are also currently a heavily researched and important issue. The search for a methodology that can reproducibly generate high-quality monolayer graphene sheets with large surface areas and large production volumes is greatly sought after. A popular aqueous-based synthetic route for the production of graphene utilizes GO. It is produced via graphite oxide by various different routes. Hummer’s method, for example, involves soaking graphite in a solution of sulfuric acid and potassium permanganate to produce graphite oxide. In this method, we have done some modifications on the variables of synthesis. Our focus to take advantage of the TMD catalytic activity is on the development of different pathways of synthesis to accelerate the electron transport. Therefore, carbon support is another factor that affects the catalysis. Some studies have Wilkinson reported the effect of carbon support on catalytic activity and found the relation between the kinetic and the specific surface areas, pore size distribution, and the N or O content of the carbon support [7].
Here, it is worth to mention that various syntheses and preparations of catalyst routes have been reviewed, with emphasis on the problems and prospects associated with the different methods. However, we reported a simpler synthesis method to prepare Pt-WS2 nanoparticles supported on Vulcan carbon [30] and later on MWCNT synthesized by modified spray pyrolysis. These results were used to compare the catalytic electroactivity toward the ORR in acid media, in order to carry out studies about the influence of the exfoliated sulfides on Pt nanoparticles to modify its catalytic properties and to enhance the activity of pure Pt. In Figure 3, the result of chalcogenides versus Pt on carbon supports is shown. It is clear to observe the effect of the arrangement of carbon atoms on the kinetic response to increase the current density. The overview of several studies has also suggested that a strong coupling (synergistic effect) interaction between catalysts and substrates is a promising approach for promoting electrocatalytic performance [7, 11, 15, 30].
ORR polarization curves in oxygen-saturated 0.5 M H2SO4 as a function of potential for different platinum electrocatalysts. Pt/C commercial and electrocatalysts synthesized from sulfur (PtxSy/C), tungsten thiosalt, and Pt/MWCNT. All samples have 20 wt.% of active phase. Measurements were carried out in O2-saturated 0.5 M H2SO4 solution at 5 mV s−1 at 1600 rpm rotation speed and 25°C.
It should be noted that the constituent atoms of graphite, fullerenes, and graphene share the same basic structural arrangement in what structure begins with six carbon atoms which are tightly bound together (chemically, with a separation of approx. 0.142 nm) in the shape of a regular hexagonal lattice. Moreover, at the next level of organization, graphene is widely considered as the “mother of all graphitic forms.” In this sense, compared to black carbon, CNTs show much higher catalyst loading efficiency, electrical conductivity, better durability, and lower impurities. However, due to their high aspect ratio and strong π-π interactions, the dispersion and difficulty to achieve uniform deposition of metal nanoparticles are some challenges in this field. In contrast, the graphene displays better electrical, mechanical, and physical properties and much larger surface area than MWCNTs, which are highly desirable for the catalyst support [31].
In PEM fuel cells, platinum-based electrocatalysts are still widely utilized as anode and cathode electrocatalysis. However, carbon nanostructures (nanotubes and graphene), supported on Fe or Co nanoparticles, show promise for fuel cells, and these nanostructured metal chalcogenides (NMCs), CNS, or even NMC-CNS could also be applied for other energy devices. Some recent reports about utilized GNSs and nitrogen-doped GNS as catalyst supports for Pt nanoparticles toward the ORR, where the constructed fuel cells exhibited the power densities of 440 and 390 Mw cm−2 for nitrogen-doped GNS-Pt and GNS-Pt, respectively. It is clear that the nitrogen-doped device exhibited an enhanced performance, with improvements attributed to the process of nitrogen doping which created pyrrolic nitrogen defects that acted as anchoring sites for the deposition of Pt nanoparticles and is also likely due to increased electrical conductivity and/or improved carbon-catalyst binding. On the other hand, Pt nanoparticles deposited on graphene submicroparticles (GSP) in addition to carbon black and CNT via reduction method. Results demonstrated that the Pt/GSP was two to three times more durable than the CNT and carbon black alternatives [30].
The main issues about graphene-based materials are focused on structural characteristics, interaction between nanoparticles or functional groups, and their electrochemical performance as catalysts, and a wide variety of graphene-based hybrid nanocomposites are grouped into the next categories: doped/modified graphene, noble metal/graphene hybrids, and graphene/nonmetal composites.
Figure 4 shows catalyst prepared from nitrogen-doped graphene-carbon nanotube hybrids (NGSHs) and their electrochemical behavior toward ORR for graphene-SWCNT hybrids (GSHs), NGSHs, and Pt/C supported on GC electrodes [32]. Those edge planes of GNS also provide defects for the uniform dispersion of Pt nanoparticles, subsequently increasing catalytic activity by increasing the surface area of an electrode as well. However, nitrogen dopants increase the number of defects on the CNT surface, subsequently improving the distribution of a catalyst. Since nitrogen is introduced into the growth process of GNS-CNT hybrid nanostructure, these substituted nitrogen sites prevent the Pt nanoparticles from aggregation [33].
(a) Schematic illustration of the preparation of the nitrogen-doped graphene-carbon nanotube hybrids (NGSHs). (b) TEM image of the NGSHs. (c) ORR polarization for graphene-SWCNT hybrids (GSHs), NGSHs, and Pt/C supported on GC electrodes at a rotating rate of 1225 rpm.
The fast development of nanocarbon materials like graphene enables them to play an increasingly important role in the improvement of non-precious metal-based catalyst (NPMC) performance. ORR activity of Co9S8-N-C catalysts, for instance, was much higher than that of the state-of-the-art Pt/C 0.1 M NaOH solution. Dai et al. synthesized a CoxS-reduced graphene oxide (RGO) hybrid material by a mild solution-phase reaction followed by a solid-state annealing step. Strong electrochemical coupling of the RGO support with the CoxS nanoparticles and the desirable morphology, size, and phase of the CoxS nanoparticles mediated by the RGO template rendered the hybrid with a high ORR catalytic performance in acid media [5, 33]. Figure 5 shows an illustration of carbon nanostructures and nanoparticles, synthesis, and functionalization methods commonly used by our group.
Schematic illustration of carbon nanostructures and nanoparticles, synthesis, and functionalization methods reported by our group. Potential applications could be reached with these preparation routes in terms of catalytic activity, time, and cost-effectiveness.
Nowadays, the nanoscience has reached the status of a leading science with basics and applied implications in all physics, life, earth sciences, as well as in engineering and materials sciences. Figure 6 shows the schematic illustration of the focus on research from the synthesis methods of carbon support materials, such as carbon nanotubes and graphene, and metallic nanoparticles that also can be obtained by different methodologies, until the surface modification of these nanomaterials. It could be on TMS or non-noble metals as the active phase of the catalysts for PEM fuel cells.
ORR polarization curves in oxygen-saturated 0.5 M H2SO4 as a function of potential for different Pt catalysts at the rotation speed of 1600 rpm. (Reprinted with permission from Royal Society of Chemistry. Lic. No. 4171470897994).
In this regard, our strategy is to generate nanomaterials that could be fabricated by simple methods with the purpose of controlling and understanding at nanoscale the properties of the catalysts based on NMCS and CNS through the atomic behavior at specific conditions, in order to enhance the catalytic activity. This concept focuses on the design and the creation of novel morphology and structure to probe, tune, and optimize the properties to develop functional materials for multiple applications. Nevertheless, significant electrochemical effects have been observed in different samples of platinum. Morphology and structure dependence can be shown in Figure 6. It displays the ORR polarization curves in oxygen-saturated 0.5 M H2SO4 as a function of potential for different geometries of Pt at the rotation speed of 1600 rpm. The response of the kinetic behavior on the atomic structure is clear to observe [5].
On the other hand, it is worth to mention some synthesis methods that are well known and developed by our group. Table 1 shows some catalysts based on TMC and their method to obtain materials with high catalytic activity on specific reactions [34]. However, a recent development in the field of organometallic chemistry has been the use of organometallic complexes for the high-yield catalytic synthesis of CNT [35, 36, 37].
Catalyst | Synthesis method conditions | Reference |
---|---|---|
NEBH2S NEB DMDS NEBDMS | Two aqueous solutions were prepared (A and B). Solution A consisted of ammonium heptamolybdate and ammonium metatungstate dissolved in water at 363 K under stirring. The pH of this solution was maintained at about 9.8 by adding NH4OH. Solution B consisted of nickel nitrate dissolved in water at 363 K while stirring; solution B was slowly added to solution A at 363 K; a precipitate was formed; and then the solid was filtered, washed with hot water, and dried at 393 K. The molar ratio Mo:W:Ni of precipitate was 1:1:2 and was represented as NH4-Ni-Mo0.5 W0.5-O. Sulfidation was carried out in a tubular furnace at 673 K for 2 h using H2S, DMDS, or DMS (10 vol. % in hydrogen). | Gochi Y et al., 2005 [2] |
PtxSy/C | First, the synthesis of catalytic precursor is from molecular sulfur, and ammonium hexachloroplatinate ((NH4)2PtCl6, Alfa Aesar) was reacted under a constant agitation for 12 h at room temperature. The solution was mixed with carbon Vulcan (E-TEK) and stirred continuously for 24 h at room temperature. The precipitates were filtered, washed with distilled water, and dried for 12 h at room temperature on a drier. Finally, the precursor was treated thermally at 350°C under (75% v/v) N2/H2 atmosphere for 2 h. | Gochi-Ponce Y et al., 2006 [15] |
PtxMoySz/C, PtxWySz/C, or MWCNT | Tungsten or molybdenum thiosalts, as appropriate, and ammonium hexachloroplatinate were reacted under constant agitation for 12 h at room temperature. The solution was mixed with the carbon support and is stirred for 24 h at room temperature. The precipitates were filtered, washed with distilled water, and dried for 12 h at room temperature. The supported precursor was treated at 400°C under N2/H2 atmosphere for 2 h. | Gochi-Ponce Y et al. 2006 [16] |
Pt/MWCNT-Fe PtFe/MWCNT Pt/MWCNT | The coordination complex salt of Pt was synthesized by Burst-Schiffrin method. Ammonium hexachloroplatinate was dissolved into 10 ml triply distillated water. This solution was added to 15 ml of a TOAB in 2-propanol solution at room temperature (25°C). The Pt precursor was filtered under vacuum, washed with deionized water, and dried at 70°C for 8 h. MWCNTs (raw, treated, or cleaned and synthesized by spray pyrolysis) are added to 2-propanol and dispersed in an ultrasonic bath for 1 h. The Pt precursor dissolved in 5 ml 2-propanol solution was added to the MWCNT-Fe suspension and stirred for 1 hr. Finally, 10 mL aqueous solution of NaBH4 in excess, 1:10 was added by drip during 5 min to the suspension, which was stirred at room temperature for 12 h to reduce Pt4+ to Pt0. The obtained mixture was then filtered and washed with acetone and water, to be finally dried at 70°C for 4 h. | Rodriguez JR et al. 2014 [35] |
Pt-Ni/MWCNT | MWCNTs were synthesized in a spray pyrolysis. For the MWCNT-Ni, it was necessary to use a thin film (manganese oxide) as substrate previously deposited in the inner walls of the Vycor tubing. The temperatures of MWCNT synthesis were 900 and 800°C for ferrocene and nickelocene, respectively. After the process, once the substrate was completely cold, the MWCNTs were removed (scratched) from the Vycor tubing. | Valenzuela-Muñiz AM et al. 2013 [36] |
RuxSey | Carbon-supported RuxSey (20 wt.%) nanoclusters were prepared in aqueous media using RuCl3_xH2O and SeO2. Typically, 0.124 g carbon (Vulcan XC-72) was dispersed in 100 mL of water under nitrogen under vigorous stirring. The resulting suspension was heated to 80°C, mixed at this temperature for 30 min to remove oxygen in water, and then cooled down to room temperature. Subsequently, 4 mmol RuCl3_xH2O and 1 mmol SeO2 were added to the above suspension and then mixed for another 1 h. Thereafter, 100 mL of a mixture solution containing 0.1 M NaBH4 and 0.2 M NaOH was added dropwise (1.25 mL min−1) to the suspension to reduce the metal ions. The suspension was kept for further reaction for another 10 min and then heated to 80°C for 10 min. The final black powder was collected on the Millipore filter membrane washed with water and dried under vacuum at room temperature. | Saul Gago A et al., 2012 [12] |
An overview of synthesis reports using platinum, sulfur, or selenium.
Table 1 An overview of synthesis reports using platinum, sulfur, or selenium.
Some results reported about the ORR activity of the thiospinel compounds were directly related to the type of metal utilized, with an order of Co > Ni > Fe. Moreover, decreased performance was also observed when sulfur was partially replaced with O, Se, or Te. Table 1 shows an overview of catalyst synthesized for PEM fuel cells. The main methods that we have used to obtain catalysts are spray pyrolysis and Hummer’s method, electrochemical methods, ultrasonic techniques, and green synthesis.
First, the experimental procedure of modified spray pyrolysis is simple and is one of the most commonly used; this methodology represents advantages among others due to its characteristics of using non-sophisticated equipments as well as easiness of scalability. To start, an aqueous solution containing the metal precursor is nebulized into a carrier inert gas that is passed through a furnace. Second, the nebulized precursor solution deposits onto Vycor tube as a substrate, where it reacts and forms the final product. To form nanoparticles, the aerosol is pyrolyzed under inert atmosphere and a set temperature [17, 29].
Recently, we are also producing graphene for PEM fuel cells and other specific applications. In accordance with Hummer’s method, we modify some steps in the original method. However, it is worth to mention about a specific application, for instance, about the storage energy, the combination of carbon nanostructures as support, and the functionalization with a pseudocapacitive material which generates a synergistic effect in capacitance, thus, in the energy density with an excellent electrochemical performance throughout the system. The main determining factor on this material is the surface area of each electrode that makes up the supercapacitor. Through the synthesis methods of carbon nanostructured materials such as graphene and nanotubes, the size and morphology of the compounds are tunable. This approach favors some specific properties for applications on fuel cell systems such as high surface area, stability, electroconductivity and catalytic activity.
Some progress has been made in catalytic materials and supports preparation techniques, although none of these catalysts has reached the level of a Pt- or Ru-based catalyst in terms of catalytic activity, durability, and chemical/electrochemical stability. In order to make non-noble catalysts commercially feasible, cost-effective, and innovative, synthesis methods are needed for new catalyst discovery and catalyst performance optimization. The use of electrochemical methods, such as galvanic displacement and ultrasonic techniques, for instance, was chosen to describe here.
Figure 7 shows the preparation of core-shell nanoparticle catalysts. We also report here the electrochemical response obtained by PtPd/MWCNT. The parameters investigated were Pt concentration and sonication by a simple and fast galvanic displacement (GD) method, finding that both play a key role in the physicochemical features and, thereby, modifying the performance of the catalysts toward the oxygen reduction reaction (ORR) activity and according to results highly dispersed Pt10Pd90/MWCNT was produced [13, 36, 38].
Illustration of basic synthesis approaches for the preparation of core-shell nanoparticle catalysts. Electrochemical (acid) dealloying/leaching results in (a) dealloyed Pt bimetallic core-shell nanoparticles, and (b) Pt-skeleton core– shell nanoparticles, respectively. Reaction process routes generate segregated Pt skin core-shell nanoparticles induced by either (c) strong binding to adsorbates or (d) thermal annealing. The preparation of (e) heterogeneous colloidal core-shell nanoparticles and (f) Pt monolayer core-shell nanoparticles is via heterogeneous nucleation and UPD followed by galvanic displacement, respectively. (Reprinted with permission from Royal Society of Chemistry. Lic. No. 4171470897994).
In addition, it is of great significance to explore different methods to obtain efficient catalysts for the PEM fuel cells. Ultrasonic-assisted strategy is known as a unique synthesis method in materials chemistry. Sonochemical reaction techniques have been introduced in the 1980s by Suslick’s group. However, most of the literature works on electrocatalysis published until 2010 are cited by Eunjik Lee (2016) [39]. A number of alloy and core-shell NPs are well discussed. During the past years, a number of new alloy and core-shell NPs based on Pt and Pd have been synthesized by sonochemistry and studied for their electrocatalytic properties [40]. Therefore, in light of the importance of finding more dependable catalysts in the present status of FC researches. Some works cited here are the syntheses of Pt-Pd/MWCNT for enhanced ORR of Pt/MWCNT and PtNi/MWCNT catalysts with high electroactivity, and further ultrasound treatment is used because carbon nanotubes are uniform in size and well dispersed by this via [32]. We also reported about Pt/CNT/TiO2 catalyst, and here we note the effect of the amount of MWCNT with the current density. In addition, the CO tolerance performance increases in the next sequence of Pt/CNT < Pt/TiO2 < Pt/CNT/TiO2 [41].
According to the principle of green chemistry, the feed stock of any industrial process must be renewable rather than depleting a natural resource. Moreover, the process must be designed to achieve maximum incorporation of the constituent atoms (of the feed stock) in to the final product [39].
A great advantage is the use of aqueous solutions instead of any surfactants, additive reagent, or posttreatment in the nanoparticles and CNS synthesis. The preparation of sulfide chalcogenides as reference PtxSy, PtxWySz, and PtxMoySz catalysts were carried out only with water and at room temperature [19, 20] as well as other synthesis methods to produce CNS such as graphene or MWCNTs and nanoparticles, recently cupper nanoparticles, for instance [42].
Illustration of the chemistry of carbon nanotubes in biomedical applications. Reprinted with permission from (Royal Society of Chemistry. Lic. No. 4171820715591).
The functionalization of carbon materials is essential processes for the utilization of these materials. Functional groups or molecules can be directly attached on the periphery of the surfaces of the carbons through various treatments with acids, etc. A large number of oxygen functional groups are created during the activation process by saturation of dangling bonds with oxygen. This creates a rich surface chemistry which is used for selective adsorption. In addition, it determines the ion exchange properties that are relevant for catalyst loading with active components. In Figure 8, an illustration of multiple routes of the chemistry of carbon nanotubes in biomedical applications is shown [43, 44]. Although the applications of functionalized carbon nanotubes are numerous, the modification surface of the individual carbon nanotubes by decorating the surface with OH, COOH, NH2, F, or other groups promotes dispersion in a wide variety of solvents and polymers enabling the use of nanotubes in many more applications and different fields of studio. The image above details only one specific application enabled the functionalized carbon nanotubes.
Maximum power density achieved with (A) Pt-based and (B) CoSe2 cathodes of a H2/O2 PEM fuel cell, an LFFC, a Y-type MRFC, and a multichannel mMRFC (this work). The dashed bar in (B) corresponds to the use of 10 mgcm−2 Pd at the anode, 10 m HCOOH, and pure O2. Preparation of MEAs for the H2/O2 systems was done under the same conditions as those used for Pt and CoSe2 systems. (Reprinted with permission from John Wiley and Sons. Lic. No. 4166570806290).
Another example of the modification of carbon nanostructures for different applications is on the design of ultrasensitive biosensors with advantages in the detection of organic molecule. The preparation of the CNT-graphene hybrid, with regard to the complex molecules and nanoparticles that can be anchored to the surface of these nanostructured materials after the oxidation. These results are a significant contribution to the properties that have the nanomaterials mentioned here. Recently, carbon-supported highly dispersed RuxSey chalcogenide nanoparticles (1.7 nm) were synthesized; here, Ru and Se precursors in a simple microwave-assisted polyol process. In other studies, Ir85Se15/C was synthesized with an average particle size less than 2 nm by the same method [13].
Different routes of modification of CNS have been used by our group. Some synthesis and modification methods by microwave-assisted are used, the oxidizing agents are acids or even, hydrogen peroxide. On the other hand, the heat treatment is also a key factor of the nanostructures obtained [2, 15, 16, 44, 45, 46]. Traditionally, acids have been widely used for attaching to CNT. However, the microwave-assisted polyol is a versatile method for synthesis, dispersion, and surface modification of chalcogenides and CNS. Other important aspects of CNT and graphene are on chemistry, the level of purity and functionalization degree of the starting materials. Actually, our interests are on this direction, and the focus is the search of new catalysts for PEM fuel cell based on chalcogenides and CNS synthesized by rapid and efficient methods.
To date, microscale system research has focused mostly on miniaturization of functional components, for instance, specialized devices such as clinical and diagnostic test, microanalytical systems for field tests, and various portable devices. Thus, here we mention about chalcogenide such as RuxSey, CoSe2, PtxSey, and PtxSy that have showed a remarkable selectivity toward the oxygen reduction reaction (ORR) for membraneless microlaminar-flow fuel cell. Figure 9 shows a significant comparison between Pt, PtxSy, and CoSe2. The maximum power density for fuel cells are achieved with (A) Pt-based and (B) CoSe2 cathodes of a H2/O2 for the PEM fuel cell, an LFFC, a Y-type MRFC, and a multichannel mMRFC [12].
This work is inspired by the excellent electrocatalytic activity of chalcogenides and carbon nanostructures which open the door for the development of a novel type of micro- or even nano-fuel cell. Figure 10 displays a schematic illustration of an application for a PEM fuel cell. Some basic concepts about advantages and disadvantages of these devices were reported by Taner [47, 48]. It is a challenge to develop an active cathode catalyst for the ORR that is tolerant at the same time. One strategy proposed is the use of chalcogenides as anodic catalyst and CNS as cathodic catalyst. On the one hand, this type of chalcogenides can be used as anode, because are tolerant to CO molecules and by other sides of carbon nanostructures can be placed as cathode because of the atomic arrangement of the carbons can behaviors as metal and also can be modified on the surface, it means, doped or well-functionalized to support non-platinum metals, N2, B, P, S, etc. Either as cathode or anode, chalcogenides based on sulfur are promising. The target is to generate a maximum power density, and the key is on the methods of synthesis such as here we described. Moreover, many other studies about these materials are furthered from here. Nevertheless, in addition we report on micro-fabricated membraneless fuel cells with PtxSy- and CoSe2-tolerant cathodes and show how such materials can be used for developing smaller, simpler, and cheaper for PEM fuel cells.
Schematic illustration of a PEM fuel cell and the use of chalcogenides and carbon nanostructures as anodic and cathodic electrodes.
The authors are grateful to Dr. F. Paraguay Delgado for TEM analysis and to Marco Ovalle, student of Nanotechnology Engineering, for their technical support and design of figures and to the National Institute of Technology of México/Technological Institute of Tijuana and Technological Institute of Oaxaca, Mexico, for the collaboration.
In our mission to support the dissemination of knowledge, we travel throughout the world to present our publications, support our Authors and Academic Editors at international symposia, conferences, and workshops, as well as to attend business meetings with science, academic and publishing professionals. We are always happy to meet our contributors in our offices to discuss further collaborations. Take a look at where we’ve been, who we’ve met and where we’re going.
",metaTitle:"IntechOpen events",metaDescription:"In our mission to support the dissemination of knowledge, we travel worldwide to present our publications, authors and editors at international symposia, conferences, and workshops, as well as attend business meetings with science, academia and publishing professionals. We are always happy to host our scientists in our office to discuss further collaborations. Take a look at where we’ve been, who we’ve met and where we’re going.",metaKeywords:null,canonicalURL:"/page/events",contentRaw:'[{"type":"htmlEditorComponent","content":"16-18 June 2020 Smart University Forum #SUF20, Ankara, Turkey
\\n\\n19 December 2019 IntechOpen and Enago webinar: A Guide to Academic Book Writing and Publishing
\\n\\n27-28 November 2019 14th Munin Conference on Scholarly Publishing, UiT The Arctic University of Norway, Tromsø campus
\\n\\n23 October 2019 Break on Through to the Open Side - Global Online Panel Discussion
\\n\\n21 October 2019 SUFTalks - Istanbul, Sheraton Istanbul Ataköy Hotel, Istanbul, Turkey
\\n\\n21-27 October 2019 OPEN ACCESS WEEK
\\n\\n16-20 October 2019 Frankfurt Book Fair
\\n\\n10 October 2019 IntechOpen - Knowledge Unlatched Lecture & Drinks, The Shard, London, United Kingdom
\\n\\n16-18 September, 2019 Open Science Fair Porto, Portugal
\\n\\n12 September, 2019 ALPSP Annual Conference and Awards, De Vere Beaumont Estate, Old Windsor, United Kingdom. Panel: New Horizons in Open Research: Innovation in open books
\\n\\n27-28 August, 2019 Smart University Foundation, Ankara, Turkey
\\n\\n18-19 July, 2019 Spanish Research Council Meeting, Madrid, Spain
\\n\\n12 July, 2019 Lectures, Kings College London Waterloo Campus, United Kingdom Lecture. 1: Intro to Robotics (focus on robotics in the area of health) Lecture. 2: My career in publishing, my background, scientific open access publication and IntechOpen
\\n\\n24 June, 2019 Atypon Conference, Munich. The Future of Books
\\n\\n20-22 May, 2019 IntechOpen attends series of talks “Pint of Science Festival”, Bilbao. Glass and Txakoli, Nanoscience and Nanotechnology, Autonomous Cars
\\n\\n7 March, 2019 Humans in Space Lecture Series, Shard London
\\n\\n13 September, 2018 Peer Review Week, King’s College London
\\n\\n1-5 October, 2018 IROS Conference, Madrid. Legal issues, Cybersecurity and Policy in AI robotics, Interview with Prof. George Dekoulis
\\n\\n24-26 April, 2018 STM US 2018
\\n\\n19-23 March, 2018 Immuno Oncology Summit
\\n\\n19 March, 2018 Earth dynamics and the development of plate tectonics scientific meeting
\\n\\n15 March, 2018 5th symposium on molecular pathology in oncology – Hot Topics
\\n\\n13-14 March, 2018 WIRED Health
\\n"}]'},components:[{type:"htmlEditorComponent",content:'16-18 June 2020 Smart University Forum #SUF20, Ankara, Turkey
\n\n19 December 2019 IntechOpen and Enago webinar: A Guide to Academic Book Writing and Publishing
\n\n27-28 November 2019 14th Munin Conference on Scholarly Publishing, UiT The Arctic University of Norway, Tromsø campus
\n\n23 October 2019 Break on Through to the Open Side - Global Online Panel Discussion
\n\n21 October 2019 SUFTalks - Istanbul, Sheraton Istanbul Ataköy Hotel, Istanbul, Turkey
\n\n21-27 October 2019 OPEN ACCESS WEEK
\n\n16-20 October 2019 Frankfurt Book Fair
\n\n10 October 2019 IntechOpen - Knowledge Unlatched Lecture & Drinks, The Shard, London, United Kingdom
\n\n16-18 September, 2019 Open Science Fair Porto, Portugal
\n\n12 September, 2019 ALPSP Annual Conference and Awards, De Vere Beaumont Estate, Old Windsor, United Kingdom. Panel: New Horizons in Open Research: Innovation in open books
\n\n27-28 August, 2019 Smart University Foundation, Ankara, Turkey
\n\n18-19 July, 2019 Spanish Research Council Meeting, Madrid, Spain
\n\n12 July, 2019 Lectures, Kings College London Waterloo Campus, United Kingdom Lecture. 1: Intro to Robotics (focus on robotics in the area of health) Lecture. 2: My career in publishing, my background, scientific open access publication and IntechOpen
\n\n24 June, 2019 Atypon Conference, Munich. The Future of Books
\n\n20-22 May, 2019 IntechOpen attends series of talks “Pint of Science Festival”, Bilbao. Glass and Txakoli, Nanoscience and Nanotechnology, Autonomous Cars
\n\n7 March, 2019 Humans in Space Lecture Series, Shard London
\n\n13 September, 2018 Peer Review Week, King’s College London
\n\n1-5 October, 2018 IROS Conference, Madrid. Legal issues, Cybersecurity and Policy in AI robotics, Interview with Prof. George Dekoulis
\n\n24-26 April, 2018 STM US 2018
\n\n19-23 March, 2018 Immuno Oncology Summit
\n\n19 March, 2018 Earth dynamics and the development of plate tectonics scientific meeting
\n\n15 March, 2018 5th symposium on molecular pathology in oncology – Hot Topics
\n\n13-14 March, 2018 WIRED Health
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"10736",title:"Neurotoxicity",subtitle:null,isOpenForSubmission:!0,hash:"f3ae592c3bd56dca45f9ce7d02e06714",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:null,isOpenForSubmission:!0,hash:"8ef09a9da770b582c0c64114a19b29c0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!0,hash:"70c3ce4256324b3c58db970d446ddac4",slug:null,bookSignature:"Dr. Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:null,editors:[{id:"255360",title:"Dr.",name:"Usama",surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10883",title:"Pain Management",subtitle:null,isOpenForSubmission:!0,hash:"82abad01d1cffb27e341ffd507117824",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10883.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!0,hash:"d73ec720cb7577731662ac9d02879729",slug:null,bookSignature:"Prof. Pınar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"981",title:"Molecular Biology",slug:"biomedicine-molecular-biology",parent:{title:"Biomedicine",slug:"biomedicine"},numberOfBooks:4,numberOfAuthorsAndEditors:86,numberOfWosCitations:37,numberOfCrossrefCitations:26,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biomedicine-molecular-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8400",title:"Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"222a58353415f02de25a212213bddc00",slug:"molecular-medicine",bookSignature:"Sinem Nalbantoglu and Hakima Amri",coverURL:"https://cdn.intechopen.com/books/images_new/8400.jpg",editedByType:"Edited by",editors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6205",title:"Polypeptide",subtitle:"New Insight into Drug Discovery and Development",isOpenForSubmission:!1,hash:"35f89bf9a197198efc0d44d0ff56d800",slug:"polypeptide-new-insight-into-drug-discovery-and-development",bookSignature:"Usman Sumo Friend Tambunan",coverURL:"https://cdn.intechopen.com/books/images_new/6205.jpg",editedByType:"Edited by",editors:[{id:"70235",title:"Prof.",name:"Usman Sumo Friend",middleName:null,surname:"Tambunan",slug:"usman-sumo-friend-tambunan",fullName:"Usman Sumo Friend Tambunan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1899",title:"Biomedicine",subtitle:null,isOpenForSubmission:!1,hash:"4b1bc3c9f0a151f8c9ffda110c2053d6",slug:"biomedicine",bookSignature:"Chao Lin",coverURL:"https://cdn.intechopen.com/books/images_new/1899.jpg",editedByType:"Edited by",editors:[{id:"109875",title:"Dr.",name:"Chao",middleName:null,surname:"Lin",slug:"chao-lin",fullName:"Chao Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"33119",doi:"10.5772/38349",title:"Additive Manufacturing Solutions for Improved Medical Implants",slug:"additive-manufacturing-solutions-for-improved-implants",totalDownloads:7517,totalCrossrefCites:7,totalDimensionsCites:21,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Vojislav Petrovic, Juan Vicente Haro, Jose Ramón Blasco and Luis Portolés",authors:[{id:"116774",title:"Dr.",name:"Vojislav",middleName:null,surname:"Petrovic",slug:"vojislav-petrovic",fullName:"Vojislav Petrovic"},{id:"116777",title:"MSc.",name:"Juan",middleName:"Vicente",surname:"Haro González",slug:"juan-haro-gonzalez",fullName:"Juan Haro González"},{id:"116778",title:"BSc.",name:"José Ramón",middleName:null,surname:"Blasco Puchades",slug:"jose-ramon-blasco-puchades",fullName:"José Ramón Blasco Puchades"},{id:"116779",title:"BSc.",name:"Luís",middleName:null,surname:"Portolés Griñán",slug:"luis-portoles-grinan",fullName:"Luís Portolés Griñán"}]},{id:"33113",doi:"10.5772/33951",title:"Encapsulation and Surface Engineering of Pancreatic Islets: Advances and Challenges",slug:"encapsulation-and-surface-engineering-of-pancreatic-islets-advances-and-challenges-",totalDownloads:3020,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Veronika Kozlovskaya, Oleksandra Zavgorodnya and Eugenia Kharlampieva",authors:[{id:"97932",title:"Prof.",name:"Eugenia",middleName:null,surname:"Kharlampieva",slug:"eugenia-kharlampieva",fullName:"Eugenia Kharlampieva"},{id:"101333",title:"Dr.",name:"Veronika",middleName:null,surname:"Kozlovskaya",slug:"veronika-kozlovskaya",fullName:"Veronika Kozlovskaya"},{id:"135852",title:"MSc.",name:"Oleksandra",middleName:null,surname:"Zavgorodnya",slug:"oleksandra-zavgorodnya",fullName:"Oleksandra Zavgorodnya"}]},{id:"68486",doi:"10.5772/intechopen.88563",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1557,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]}],mostDownloadedChaptersLast30Days:[{id:"68486",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1567,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"74620",title:"Molecular Mechanisms of Distinct Diseases",slug:"molecular-mechanisms-of-distinct-diseases",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Adnan Batman, İrem Yalim Camci, Elif Kadioglu, Kezban Uçar Çifçi, Berçem Yeman Kıyak, Servet Tunoglu, Ezgi Nurdan Yenilmez Tunoglu and Yusuf Tutar",authors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"},{id:"342753",title:"Dr.",name:"Servet",middleName:null,surname:"Tunoglu",slug:"servet-tunoglu",fullName:"Servet Tunoglu"},{id:"342756",title:"Dr.",name:"Adnan",middleName:null,surname:"Batman",slug:"adnan-batman",fullName:"Adnan Batman"},{id:"343421",title:null,name:"Berçem",middleName:null,surname:"Yeman Kıyak",slug:"bercem-yeman-kiyak",fullName:"Berçem Yeman Kıyak"},{id:"344587",title:null,name:"İrem Yalım",middleName:null,surname:"Camcı",slug:"irem-yalim-camci",fullName:"İrem Yalım Camcı"},{id:"344588",title:"Ph.D. Student",name:"Elif",middleName:null,surname:"Kadıoglu",slug:"elif-kadioglu",fullName:"Elif Kadıoglu"},{id:"344589",title:null,name:"Kezban",middleName:null,surname:"Uçar Çiftçi",slug:"kezban-ucar-ciftci",fullName:"Kezban Uçar Çiftçi"}]},{id:"67272",title:"Introductory Chapter: Insight into the OMICS Technologies and Molecular Medicine",slug:"introductory-chapter-insight-into-the-omics-technologies-and-molecular-medicine",totalDownloads:481,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu and Abdullah Karadag",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"72595",title:"Integrating Evolutionary Genetics to Medical Genomics: Evolutionary Approaches to Investigate Disease-Causing Variants",slug:"integrating-evolutionary-genetics-to-medical-genomics-evolutionary-approaches-to-investigate-disease",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Ugur Sezerman, Tugce Bozkurt and Fatma Sadife Isleyen",authors:[{id:"283538",title:"Prof.",name:"Osman Ugur",middleName:null,surname:"Sezerman",slug:"osman-ugur-sezerman",fullName:"Osman Ugur Sezerman"},{id:"318900",title:"Ph.D. Student",name:"Fatma Sadife",middleName:null,surname:"Isleyen",slug:"fatma-sadife-isleyen",fullName:"Fatma Sadife Isleyen"},{id:"319214",title:"M.Sc.",name:"Tugce",middleName:null,surname:"Bozkurt",slug:"tugce-bozkurt",fullName:"Tugce Bozkurt"}]},{id:"33120",title:"Crossings on Public Perception of Biomedicine: Spain and the European Indicators",slug:"crossings-on-public-perception-of-biomedicine-spain-and-the-european-indicators-",totalDownloads:1359,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Eulalia Pérez Sedeño and María José Miranda Suárez",authors:[{id:"112999",title:"Dr.",name:"Eulalia",middleName:null,surname:"Perez Sedeno",slug:"eulalia-perez-sedeno",fullName:"Eulalia Perez Sedeno"},{id:"117289",title:"MSc.",name:"María José",middleName:null,surname:"Miranda Suárez",slug:"maria-jose-miranda-suarez",fullName:"María José Miranda Suárez"}]},{id:"64435",title:"Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease",slug:"precision-medicine-role-of-biomarkers-in-early-prediction-and-diagnosis-of-alzheimer-s-disease",totalDownloads:1246,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Liming Shen, Sijian Xia, Huajie Zhang, Fang Yao, Xukun Liu, Yuxi Zhao, Ming Ying, Javed Iqbal and Qiong Liu",authors:[{id:"263601",title:"Associate Prof.",name:"Liming",middleName:null,surname:"Shen",slug:"liming-shen",fullName:"Liming Shen"},{id:"273558",title:"Ms.",name:"Sijian",middleName:null,surname:"Xia",slug:"sijian-xia",fullName:"Sijian Xia"},{id:"273562",title:"Ms.",name:"Huajie",middleName:null,surname:"Zhang",slug:"huajie-zhang",fullName:"Huajie Zhang"},{id:"273563",title:"Ms.",name:"Fang",middleName:null,surname:"Yao",slug:"fang-yao",fullName:"Fang Yao"},{id:"273564",title:"Ms.",name:"Xukun",middleName:null,surname:"Liu",slug:"xukun-liu",fullName:"Xukun Liu"},{id:"273565",title:"Ms.",name:"Yuxi",middleName:null,surname:"Zhao",slug:"yuxi-zhao",fullName:"Yuxi Zhao"},{id:"273566",title:"Dr.",name:"Ming",middleName:null,surname:"Ying",slug:"ming-ying",fullName:"Ming Ying"},{id:"273567",title:"Dr.",name:"Javed",middleName:null,surname:"Iqbal",slug:"javed-iqbal",fullName:"Javed Iqbal"},{id:"273569",title:"Prof.",name:"Qiong",middleName:null,surname:"Liu",slug:"qiong-liu",fullName:"Qiong Liu"}]},{id:"71705",title:"Landscape Genetics: From Classic Molecular Markers to Genomics",slug:"landscape-genetics-from-classic-molecular-markers-to-genomics",totalDownloads:226,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Enéas Ricardo Konzen and Maria Imaculada Zucchi",authors:[{id:"196963",title:"Dr.",name:"Enéas Ricardo",middleName:null,surname:"Konzen",slug:"eneas-ricardo-konzen",fullName:"Enéas Ricardo Konzen"},{id:"305359",title:"Prof.",name:"Maria Imaculada",middleName:null,surname:"Zucchi",slug:"maria-imaculada-zucchi",fullName:"Maria Imaculada Zucchi"}]},{id:"33113",title:"Encapsulation and Surface Engineering of Pancreatic Islets: Advances and Challenges",slug:"encapsulation-and-surface-engineering-of-pancreatic-islets-advances-and-challenges-",totalDownloads:3024,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Veronika Kozlovskaya, Oleksandra Zavgorodnya and Eugenia Kharlampieva",authors:[{id:"97932",title:"Prof.",name:"Eugenia",middleName:null,surname:"Kharlampieva",slug:"eugenia-kharlampieva",fullName:"Eugenia Kharlampieva"},{id:"101333",title:"Dr.",name:"Veronika",middleName:null,surname:"Kozlovskaya",slug:"veronika-kozlovskaya",fullName:"Veronika Kozlovskaya"},{id:"135852",title:"MSc.",name:"Oleksandra",middleName:null,surname:"Zavgorodnya",slug:"oleksandra-zavgorodnya",fullName:"Oleksandra Zavgorodnya"}]},{id:"61938",title:"Calcitonin-Related Polypeptide Alpha Gene Polymorphisms and Related Diseases",slug:"calcitonin-related-polypeptide-alpha-gene-polymorphisms-and-related-diseases",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"polypeptide-new-insight-into-drug-discovery-and-development",title:"Polypeptide",fullTitle:"Polypeptide - New Insight into Drug Discovery and Development"},signatures:"Nevra Alkanli, Arzu Ay and Suleyman Serdar Alkanli",authors:[{id:"234410",title:"Dr.",name:"Nevra",middleName:null,surname:"Alkanli",slug:"nevra-alkanli",fullName:"Nevra Alkanli"},{id:"235954",title:"Dr.",name:"Arzu",middleName:null,surname:"Ay",slug:"arzu-ay",fullName:"Arzu Ay"},{id:"235955",title:"Mr.",name:"Suleyman Serdar",middleName:null,surname:"Alkanli",slug:"suleyman-serdar-alkanli",fullName:"Suleyman Serdar Alkanli"}]},{id:"72817",title:"Clinical Validation of a Whole Exome Sequencing Pipeline",slug:"clinical-validation-of-a-whole-exome-sequencing-pipeline",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Debra O. Prosser, Indu Raja, Kelly Kolkiewicz, Antonio Milano and Donald Roy Love",authors:[{id:"319362",title:"Dr.",name:"Donald Roy",middleName:null,surname:"Love",slug:"donald-roy-love",fullName:"Donald Roy Love"},{id:"319363",title:"Mrs.",name:"Debra O.",middleName:null,surname:"Prosser",slug:"debra-o.-prosser",fullName:"Debra O. Prosser"}]}],onlineFirstChaptersFilter:{topicSlug:"biomedicine-molecular-biology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/125097/sushim-kumar-gupta",hash:"",query:{},params:{id:"125097",slug:"sushim-kumar-gupta"},fullPath:"/profiles/125097/sushim-kumar-gupta",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()