Biogas technology perceptions between user and non-user in the province.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2047",leadTitle:null,fullTitle:"Medicinal Chemistry and Drug Design",title:"Medicinal Chemistry and Drug Design",subtitle:null,reviewType:"peer-reviewed",abstract:"Over the recent years, medicinal chemistry has become responsible for explaining interactions of chemical molecules processes such that many scientists in the life sciences from agronomy to medicine are engaged in medicinal research. This book contains an overview focusing on the research area of enzyme inhibitors, molecular aspects of drug metabolism, organic synthesis, prodrug synthesis, in silico studies and chemical compounds used in relevant approaches. The book deals with basic issues and some of the recent developments in medicinal chemistry and drug design. Particular emphasis is devoted to both theoretical and experimental aspect of modern drug design. The primary target audience for the book includes students, researchers, biologists, chemists, chemical engineers and professionals who are interested in associated areas. The textbook is written by international scientists with expertise in chemistry, protein biochemistry, enzymology, molecular biology and genetics many of which are active in biochemical and biomedical research. We hope that the textbook will enhance the knowledge of scientists in the complexities of some medicinal approaches; it will stimulate both professionals and students to dedicate part of their future research in understanding relevant mechanisms and applications of medicinal chemistry and drug design.",isbn:null,printIsbn:"978-953-51-0513-8",pdfIsbn:"978-953-51-6965-9",doi:"10.5772/2457",price:139,priceEur:155,priceUsd:179,slug:"medicinal-chemistry-and-drug-design",numberOfPages:420,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"191e63c53e40a7ac445bb9b51c9dc6d3",bookSignature:"Deniz Ekinci",publishedDate:"May 16th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2047.jpg",numberOfDownloads:71881,numberOfWosCitations:49,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:48,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:107,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2011",dateEndSecondStepPublish:"July 29th 2011",dateEndThirdStepPublish:"October 7th 2011",dateEndFourthStepPublish:"October 28th 2011",dateEndFifthStepPublish:"April 6th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1190",title:"Pharmaceutical Chemistry",slug:"pharmaceutical-chemistry"}],chapters:[{id:"36502",title:"Kojic Acid Derivatives",doi:"10.5772/31006",slug:"kojic-acid-derivatives",totalDownloads:7814,totalCrossrefCites:3,totalDimensionsCites:15,hasAltmetrics:0,abstract:null,signatures:"Mutlu D. Aytemir and G. Karakaya",downloadPdfUrl:"/chapter/pdf-download/36502",previewPdfUrl:"/chapter/pdf-preview/36502",authors:[{id:"85188",title:"Prof.",name:"Mutlu",surname:"Aytemir",slug:"mutlu-aytemir",fullName:"Mutlu Aytemir"}],corrections:null},{id:"36503",title:"Analysis of Protein Interaction Networks to Prioritize Drug Targets of Neglected-Diseases Pathogens",doi:"10.5772/38463",slug:"analysis-of-protein-interaction-networks-to-prioritize-drug-targets-of-neglected-diseases-pathogens",totalDownloads:2996,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Aldo Segura-Cabrera, Carlos A. García-Pérez, Mario A. Rodríguez-Pérez, Xianwu Guo, Gildardo Rivera and Virgilio Bocanegra-García",downloadPdfUrl:"/chapter/pdf-download/36503",previewPdfUrl:"/chapter/pdf-preview/36503",authors:[{id:"87843",title:"Dr.",name:"Mario",surname:"Rodriguez Perez",slug:"mario-rodriguez-perez",fullName:"Mario Rodriguez Perez"},{id:"117402",title:"Dr.",name:"Virgilio",surname:"Bocanegra-Garcia",slug:"virgilio-bocanegra-garcia",fullName:"Virgilio Bocanegra-Garcia"},{id:"117407",title:"Dr.",name:"Aldo",surname:"Segura-Cabrera",slug:"aldo-segura-cabrera",fullName:"Aldo Segura-Cabrera"},{id:"117408",title:"MSc.",name:"Carlos",surname:"García-Pérez",slug:"carlos-garcia-perez",fullName:"Carlos García-Pérez"},{id:"117409",title:"Dr.",name:"Gildardo",surname:"Rivera",slug:"gildardo-rivera",fullName:"Gildardo Rivera"},{id:"117410",title:"Dr.",name:"Xianwu",surname:"Guo",slug:"xianwu-guo",fullName:"Xianwu Guo"}],corrections:null},{id:"36504",title:"Recent Applications of Quantitative Structure-Activity Relationships in Drug Design",doi:"10.5772/38624",slug:"recent-applications-of-quantitative-structure-activity-relationships-in-drug-design",totalDownloads:4792,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Omar Deeb",downloadPdfUrl:"/chapter/pdf-download/36504",previewPdfUrl:"/chapter/pdf-preview/36504",authors:[{id:"118355",title:"Prof.",name:"Omar",surname:"Deeb",slug:"omar-deeb",fullName:"Omar Deeb"}],corrections:null},{id:"36505",title:"Atherosclerosis and Antihyperlipidemic Agents",doi:"10.5772/38881",slug:"atherosclerosis-and-antihyperlipidemic-agents",totalDownloads:5449,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Laila Mahmoud Mohamed Gad",downloadPdfUrl:"/chapter/pdf-download/36505",previewPdfUrl:"/chapter/pdf-preview/36505",authors:[{id:"120377",title:"Dr.",name:"Laila",surname:"Gad",slug:"laila-gad",fullName:"Laila Gad"}],corrections:null},{id:"36506",title:"Inhibitors of Serine Proteinase - Application in Agriculture and Medicine",doi:"10.5772/36720",slug:"inhibitors-of-serine-proteinase-application-in-agriculture-and-medicine",totalDownloads:3606,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Rinat Islamov, Tatyana Kustova and Alexander Ilin",downloadPdfUrl:"/chapter/pdf-download/36506",previewPdfUrl:"/chapter/pdf-preview/36506",authors:[{id:"107927",title:"Dr.",name:"Rinat",surname:"Islamov",slug:"rinat-islamov",fullName:"Rinat Islamov"},{id:"136526",title:"MSc.",name:"Tatyana",surname:"Kustova",slug:"tatyana-kustova",fullName:"Tatyana Kustova"},{id:"136527",title:"Dr.",name:"Alexander",surname:"Ilin",slug:"alexander-ilin",fullName:"Alexander Ilin"}],corrections:null},{id:"36507",title:"Pyrrolobenzodiazepines as Sequence Selective DNA Binding Agents",doi:"10.5772/38869",slug:"pyrrolobenzodiazepines-as-sequence-selective-dna-binding-agents",totalDownloads:5148,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Ahmed Kamal, M. Kashi Reddy, Ajay Kumar Srivastava and Y. V. V. Srikanth",downloadPdfUrl:"/chapter/pdf-download/36507",previewPdfUrl:"/chapter/pdf-preview/36507",authors:[{id:"120274",title:"Dr.",name:"Ahmed",surname:"Kamal",slug:"ahmed-kamal",fullName:"Ahmed Kamal"}],corrections:null},{id:"36508",title:"Regulation of EC-SOD in Hypoxic Adipocytes",doi:"10.5772/19566",slug:"regulation-of-ec-sod-in-hypoxic-adipocytes",totalDownloads:2479,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tetsuro Kamiya, Hirokazu Hara, Naoki Inagaki and Tetsuo Adachi",downloadPdfUrl:"/chapter/pdf-download/36508",previewPdfUrl:"/chapter/pdf-preview/36508",authors:[{id:"35385",title:"Dr.",name:"Tetsuro",surname:"Kamiya",slug:"tetsuro-kamiya",fullName:"Tetsuro Kamiya"},{id:"43601",title:"Dr.",name:"Hirokazu",surname:"Hara",slug:"hirokazu-hara",fullName:"Hirokazu Hara"},{id:"43602",title:"Prof.",name:"Naoki",surname:"Inagaki",slug:"naoki-inagaki",fullName:"Naoki Inagaki"},{id:"43603",title:"Dr.",name:"Tetsuo",surname:"Adachi",slug:"tetsuo-adachi",fullName:"Tetsuo Adachi"}],corrections:null},{id:"36509",title:"Development of an Ultrasensitive CRP Latex Agglutination Reagent by Using Amino Acid Spacers",doi:"10.5772/23518",slug:"development-of-an-ultrasensitive-crp-latex-agglutination-reagent-by-using-amino-acid-spacers",totalDownloads:4092,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Tomoe Komoriya, Kazuaki Yoshimune, Masahiro Ogawa, Mitsuhiko Moriyama and Hideki Kohno",downloadPdfUrl:"/chapter/pdf-download/36509",previewPdfUrl:"/chapter/pdf-preview/36509",authors:[{id:"52333",title:"Prof.",name:"Hideki",surname:"Kohno",slug:"hideki-kohno",fullName:"Hideki Kohno"}],corrections:null},{id:"36510",title:"Pattern Recognition Receptors Based Immune Adjuvants: Their Role and Importance in Vaccine Design",doi:"10.5772/38841",slug:"pattern-recognition-receptors-based-immune-adjuvants-their-role-and-importance-in-vaccine-design",totalDownloads:3938,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Halmuthur M. Sampath Kumar, Irfan Hyder and Parvinder Pal Singh",downloadPdfUrl:"/chapter/pdf-download/36510",previewPdfUrl:"/chapter/pdf-preview/36510",authors:[{id:"119990",title:"Dr.",name:"Halmuthur",surname:"Kumar",slug:"halmuthur-kumar",fullName:"Halmuthur Kumar"},{id:"154264",title:"Dr.",name:"Parvinder Pal",surname:"Singh",slug:"parvinder-pal-singh",fullName:"Parvinder Pal Singh"}],corrections:null},{id:"36511",title:"Microarray Analysis in Drug Discovery and Biomarker Identification",doi:"10.5772/37199",slug:"microarray-analysis-in-drug-discovery-and-biomarker-identification",totalDownloads:3355,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Yushi Liu and Joseph S. Verducci",downloadPdfUrl:"/chapter/pdf-download/36511",previewPdfUrl:"/chapter/pdf-preview/36511",authors:[{id:"111738",title:"Dr.",name:"Yushi",surname:"Liu",slug:"yushi-liu",fullName:"Yushi Liu"},{id:"133021",title:"Prof.",name:"Joe",surname:"Verducci",slug:"joe-verducci",fullName:"Joe Verducci"}],corrections:null},{id:"36512",title:"Supraventricular Tachycardia Due to Dopamine Infused Through Epidural Catheter Accidentally (A Case Report and Review)",doi:"10.5772/27808",slug:"supraventricular-tachycardia-due-to-dopamine-infused-through-epidural-catheter-accidentally-a-case-r",totalDownloads:2907,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Demet Coskun and Ahmet Mahli",downloadPdfUrl:"/chapter/pdf-download/36512",previewPdfUrl:"/chapter/pdf-preview/36512",authors:[{id:"64326",title:"Prof.",name:"Ahmet",surname:"Mahli",slug:"ahmet-mahli",fullName:"Ahmet Mahli"},{id:"71592",title:"Dr.",name:"Demet",surname:"Coskun",slug:"demet-coskun",fullName:"Demet Coskun"}],corrections:null},{id:"36513",title:"Effective Kinetic Methods and Tools in Investigating the Mechanism of Action of Specific Hydrolases",doi:"10.5772/37070",slug:"effective-kinetic-methods-and-tools-in-investigating-the-mechanism-of-action-of-specific-hydrolases",totalDownloads:2972,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Emmanuel M. Papamichael, Panagiota-Yiolanda Stergiou, Athanasios Foukis, Marina Kokkinou and Leonidas G. Theodorou",downloadPdfUrl:"/chapter/pdf-download/36513",previewPdfUrl:"/chapter/pdf-preview/36513",authors:[{id:"111114",title:"Prof.",name:"Emmanuel",surname:"Papamichael",slug:"emmanuel-papamichael",fullName:"Emmanuel Papamichael"}],corrections:null},{id:"36514",title:"Aluminium - Non-Essential Activator of Pepsin: Kinetics and Thermodynamics",doi:"10.5772/35081",slug:"aluminium-non-essential-activator-of-pepsin-kinetics-and-thermodynamics",totalDownloads:2802,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Vesna Pavelkic, Tanja Brdaric and Kristina Gopcevic",downloadPdfUrl:"/chapter/pdf-download/36514",previewPdfUrl:"/chapter/pdf-preview/36514",authors:[{id:"102919",title:"Dr.",name:"Vesna",surname:"Pavelkic",slug:"vesna-pavelkic",fullName:"Vesna Pavelkic"}],corrections:null},{id:"36515",title:"Peptides and Peptidomimetics in Medicinal Chemistry",doi:"10.5772/38240",slug:"peptides-and-peptidomimetics-in-medicinal-chemistry",totalDownloads:5115,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Paolo Ruzza",downloadPdfUrl:"/chapter/pdf-download/36515",previewPdfUrl:"/chapter/pdf-preview/36515",authors:[{id:"116188",title:"Dr.",name:"Paolo",surname:"Ruzza",slug:"paolo-ruzza",fullName:"Paolo Ruzza"}],corrections:null},{id:"36516",title:"Carbonic Anhydrase Inhibitors and Activators: Small Organic Molecules as Drugs and Prodrugs",doi:"10.5772/38926",slug:"carbonic-anhydrase-inhibitors-and-activators-small-organic-molecules-as-drugs-and-prodrugs",totalDownloads:3476,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Murat Şentürk, Hüseyin Çavdar, Oktay Talaz and Claudiu T. Supuran",downloadPdfUrl:"/chapter/pdf-download/36516",previewPdfUrl:"/chapter/pdf-preview/36516",authors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"},{id:"122803",title:"Prof.",name:"Huseyin",surname:"Cavdar",slug:"huseyin-cavdar",fullName:"Huseyin Cavdar"},{id:"122806",title:"Prof.",name:"Oktay",surname:"Talaz",slug:"oktay-talaz",fullName:"Oktay Talaz"}],corrections:null},{id:"36517",title:"Stochastic Simulation for Biochemical Reaction Networks in Infectious Disease",doi:"10.5772/38245",slug:"stochastic-simulation-for-biochemical-reaction-networks-in-infectious-disease",totalDownloads:2790,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Shailza Singh and Sonali Shinde",downloadPdfUrl:"/chapter/pdf-download/36517",previewPdfUrl:"/chapter/pdf-preview/36517",authors:[{id:"68605",title:"Dr.",name:"Shailza",surname:"Singh",slug:"shailza-singh",fullName:"Shailza Singh"}],corrections:null},{id:"36518",title:"Alternative Perspectives of Enzyme Kinetic Modeling",doi:"10.5772/36973",slug:"alternative-perspectives-of-enzyme-kinetic-modeling",totalDownloads:4179,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Ryan Walsh",downloadPdfUrl:"/chapter/pdf-download/36518",previewPdfUrl:"/chapter/pdf-preview/36518",authors:[{id:"110664",title:"Dr.",name:"Ryan",surname:"Walsh",slug:"ryan-walsh",fullName:"Ryan Walsh"}],corrections:null},{id:"36519",title:"Molecular Modeling and Simulation of Membrane Transport Proteins",doi:"10.5772/38529",slug:"molecular-modeling-and-simulation-of-membrane-transport-proteins",totalDownloads:3972,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Andreas Jurik, Freya Klepsch and Barbara Zdrazil",downloadPdfUrl:"/chapter/pdf-download/36519",previewPdfUrl:"/chapter/pdf-preview/36519",authors:[{id:"117806",title:"Dr.",name:"Barbara",surname:"Zdrazil",slug:"barbara-zdrazil",fullName:"Barbara Zdrazil"},{id:"119944",title:"MSc.",name:"Freya",surname:"Klepsch",slug:"freya-klepsch",fullName:"Freya Klepsch"},{id:"119945",title:"MSc.",name:"Andreas",surname:"Jurik",slug:"andreas-jurik",fullName:"Andreas Jurik"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1788",title:"Biochemistry",subtitle:null,isOpenForSubmission:!1,hash:"1caa1928583ed92d67d44bf4a71403ef",slug:"biochemistry",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/1788.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2232",title:"Chemical Biology",subtitle:null,isOpenForSubmission:!1,hash:"fbd0f87aa9a9c80a91153214834cbb17",slug:"chemical-biology",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/2232.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4529",title:"Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"187f1fe91150e1be30e641799522b977",slug:"biotechnology",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/4529.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2993",title:"Chiral Capillary Electrophoresis in Current Pharmaceutical and Biomedical Analysis",subtitle:null,isOpenForSubmission:!1,hash:"a9a627d1ed86912dd2fadd6b815cb113",slug:"chiral-capillary-electrophoresis-in-current-pharmaceutical-and-biomedical-analysis",bookSignature:"Peter Mikus",coverURL:"https://cdn.intechopen.com/books/images_new/2993.jpg",editedByType:"Authored by",editors:[{id:"45273",title:"Dr.",name:"Peter",surname:"Mikuš",slug:"peter-mikus",fullName:"Peter Mikuš"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7518",title:"Medicinal Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"944740b06e48079bae2b7dd7b28940a1",slug:"medicinal-chemistry",bookSignature:"Janka Vašková and Ladislav Vaško",coverURL:"https://cdn.intechopen.com/books/images_new/7518.jpg",editedByType:"Edited by",editors:[{id:"140747",title:"Associate Prof.",name:"Janka",surname:"Vašková",slug:"janka-vaskova",fullName:"Janka Vašková"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66302",slug:"corrigendum-to-the-role-of-cytokines-in-orthodontic-tooth-movement",title:"Corrigendum to: The Role of Cytokines in Orthodontic Tooth Movement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66302.pdf",downloadPdfUrl:"/chapter/pdf-download/66302",previewPdfUrl:"/chapter/pdf-preview/66302",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66302",risUrl:"/chapter/ris/66302",chapter:{id:"63306",slug:"the-role-of-cytokines-in-orthodontic-tooth-movement",signatures:"Amila Vujacic, Jasna Pavlovic and Aleksandra Konic-Ristic",dateSubmitted:"April 22nd 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 9th 2018",datePublished:"April 10th 2019",book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"255738",title:"Associate Prof.",name:"Amila",middleName:null,surname:"Vujacic",fullName:"Amila Vujacic",slug:"amila-vujacic",email:"amilavujacic@gmail.com",position:null,institution:null},{id:"264430",title:"Prof.",name:"Jasna",middleName:null,surname:"Pavlovic",fullName:"Jasna Pavlovic",slug:"jasna-pavlovic",email:"drjasnapavlovic@gmail.com",position:null,institution:null},{id:"264432",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Konic",fullName:"Aleksandra Konic",slug:"aleksandra-konic",email:"sandrakonic@gmail.com",position:null,institution:null}]}},chapter:{id:"63306",slug:"the-role-of-cytokines-in-orthodontic-tooth-movement",signatures:"Amila Vujacic, Jasna Pavlovic and Aleksandra Konic-Ristic",dateSubmitted:"April 22nd 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 9th 2018",datePublished:"April 10th 2019",book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"255738",title:"Associate Prof.",name:"Amila",middleName:null,surname:"Vujacic",fullName:"Amila Vujacic",slug:"amila-vujacic",email:"amilavujacic@gmail.com",position:null,institution:null},{id:"264430",title:"Prof.",name:"Jasna",middleName:null,surname:"Pavlovic",fullName:"Jasna Pavlovic",slug:"jasna-pavlovic",email:"drjasnapavlovic@gmail.com",position:null,institution:null},{id:"264432",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Konic",fullName:"Aleksandra Konic",slug:"aleksandra-konic",email:"sandrakonic@gmail.com",position:null,institution:null}]},book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11729",leadTitle:null,title:"Circumcision - Advances and New Perspectives",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMale circumcision is a procedure that has been practiced since the dawn of human culture more than six thousand years ago. It is performed for both medical and non-medical reasons. Despite being a simple procedure, it may lead to a myriad of minor and even crippling complications, if not done properly, such as iatrogenic injury of the glans or the urethra. Several techniques have been used to perform circumcision including the classic open technique, clamp technique, and laser /electrocautery technique with various safety outcomes. Overtime time, there has been an ongoing debate over the pros and cons of cultural circumcision with a significant dichotomy between the opinions of the experts in the field.
\r\n\r\n\tThe main purpose of this book will aim to present a comprehensive overview of the historic background of circumcision in males and the debate over female circumcision. It is intended to be an addition to a description of the different procedural techniques of circumcision highlighting their potential complications.
",isbn:"978-1-80355-907-0",printIsbn:"978-1-80355-906-3",pdfIsbn:"978-1-80355-908-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"d4761c03b5694edec9f7fc48092549ce",bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",keywords:"History Of Circumcision, Male Circumcision, Female Circumcision, Indications, Contraindications, Peri-Procedural Preparation, Analgesia, Clamp, Meatal Stenosis, Iatrogenic Injury, Adhesions, Buried Penis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 25th 2022",dateEndSecondStepPublish:"April 29th 2022",dateEndThirdStepPublish:"June 28th 2022",dateEndFourthStepPublish:"September 16th 2022",dateEndFifthStepPublish:"November 15th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Pediatric surgeon and clinical educator, member of Royal College of Surgeons of England, European Pediatric Surgeon’s Association, British Association of Pediatric Endoscopic Surgeons, American College of Surgeons, International Society for Pediatric Wound Care.",coeditorOneBiosketch:"Obstetrics and Gynecology trainee and clinical researcher.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",middleName:null,surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal",profilePictureURL:"https://mts.intechopen.com/storage/users/240621/images/system/240621.jpg",biography:"Ahmad Zaghal, MD, MSc (Clin Ed), FACS, FEBPS, FHEA, graduated from the general surgery-residency program at The American University of Beirut-Medical Center (AUBMC), Lebanon, in 2012. He then completed a two-year fellowship in Pediatric Surgery at the University of Iowa-Hospitals and Clinics, USA. Then he joined Chelsea and Westminster Hospital, UK, for another year of fellowship in pediatric surgery. Dr. Zaghal is board certified by the European Board of Pediatric Surgery.\nDr. Zaghal has been a pediatric surgeon and assistant professor of surgery at AUBMC since 2017. He has special interests in minimally invasive and neonatal surgery, and medical education. He is a fellow of the Higher Education Academy. Dr. Zaghal has published several articles in peer-reviewed journals and authored several chapters in general and pediatric surgery.",institutionString:"American University of Beirut",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University of Beirut",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:{id:"450673",title:"Dr.",name:"Ali",middleName:null,surname:"El Safadi",slug:"ali-el-safadi",fullName:"Ali El Safadi",profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000rTNkyQAG/Co1_Profile_Picture__c%202021-12-20%2012%3A56%3A08.218",biography:null,institutionString:"American University of Beirut Medical Center",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"American University of Beirut Medical Center",institutionURL:null,country:{name:"Lebanon"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10352",title:"Abdominal Surgery",subtitle:"A Brief Overview",isOpenForSubmission:!1,hash:"0d1d92b2286b03cf2fd8d88368d9d9cb",slug:"abdominal-surgery-a-brief-overview",bookSignature:"Ahmad Zaghal and Arwa El Rifai",coverURL:"https://cdn.intechopen.com/books/images_new/10352.jpg",editedByType:"Edited by",editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7985",title:"Circumcision and the Community",subtitle:null,isOpenForSubmission:!1,hash:"023cc135aeeae6d2ea8cfc01ab3f4dc7",slug:"circumcision-and-the-community",bookSignature:"Ahmad Zaghal and Nishat Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7985.jpg",editedByType:"Edited by",editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72448",title:"Evaluating Biogas Technology in South Africa: Awareness and Perceptions towards Adoption at Household Level in Limpopo Province",doi:"10.5772/intechopen.92834",slug:"evaluating-biogas-technology-in-south-africa-awareness-and-perceptions-towards-adoption-at-household",body:'One critical issue confronting developing nations such as South Africa is the provision of sustainable energy, to a proportion of its population that do not have access to modern and reliable energy supply. Access to energy is viewed as a vital condition that enhances the development of a country’s economic activities, in order for the people to have an improved quality of life [1]. This explains the notion why providing adequate, affordable, sustainable, clean and efficient energy remains the core interest of many countries. Despite the efforts in place to provide adequate, sustainable and modern energy, about 1.4 billion people worldwide do not have access to modern energy carriers [2]. Sadly, the majority of the people without access to modern energy subsist in Africa, with a representation of 57% of the world population [3]. In South Africa, fossil fuel dominates the energy sector, with coal accounting for 89% and crude oil accounting for 22%, thus providing much of the energy consumed in the country [4]. In Limpopo Province, the energy carriers do not differ as the energy satisfaction in the province comes from coal and oil. Although the use of fossil fuel in generating energy brings an overwhelming burden to the environment in the form of greenhouse gas emissions, water contamination, air pollution and ecosystem degradation [5].
The Limpopo Department of Economic Development, Environment and Tourism (LEDET) identified biomass and solar as the main renewable resources of energy in the province [6]. The Department of Energy has developed a programme for attracting private investment into the energy sector. The Renewable Energy Independent Power Procurement programme (REIPP) has been designed to contribute towards the national target of 3725 MW of renewable energy and towards socio-economic and environmentally sustainable growth [7]. To meet energy demands in low-to-middle income households in many developing countries, the use of biogas technology is currently being deployed. The technology does not only provide energy but also serves as a good waste management measure [8]. Limpopo Province, like many other provinces in South Africa, has seen limited growth in the dissemination of biogas technology due to awareness and perceptions of the technology. Despite the long history of biogas technology in the country, the technology has witnessed poor growth of installed domestic biogas digesters, hence the initiation of this study.
The energy sector is central to South Africa’s economy due to its reliance on energy-intensive, large-scale coal mining activities. Limited oil and natural gas reserves are present in the country; thus, the country relies and uses large deposits of its coal to meet most of the energy required, which is principally in the power sector. In 2013, less than 1% of the energy consumed was from renewable sources; 3% from natural gas; 22% from oil while 74% of the total consumed energy was primarily from coal and more than half was consumed in the electricity sector [9]. In 2017, South Africa was rated among the 10 top producers of coal in the world [10]. Due to its dependence on coal, the country is considered one of the continent’s principal emitter of carbon dioxide, accounting for about 40% and thus placing the country as the thirteenth major emitter of carbon dioxide in the world [11]. Notwithstanding the renewable energy resources endowed in the country, there has been an energy shortage, which led to the energy crisis of 2008, which still persists till date [7].
A survey by the Department of Energy [4], with the aim of gathering information related to energy behaviour in South Africa households, indicated that there are significant differences between non-electrified and electrified households in Limpopo Province. To meet the basic energy needs, households employed an array of energy sources. Electrified households reported that they use electricity for heating, lighting or cooking. Even so, it is clear that other sources of energy, such as paraffin, fuelwood, gas and candle, are relied upon by at least a fifth of all the surveyed households with electricity. On the other hand, non-electrified households, in the absence of domestic connection primarily rely on fuelwood, candles, with additional households reporting using gas and coal. The use of renewable energy, such as solar was reported by a tenth of the electrified and non-electrified households surveyed. A major factor that continues to play a significant role in domestic energy use is socio-economic differences. The use of paraffin, candles, and fuelwood was present in more than 70% of the households in the low-income bracket of less than R3000 monthly, while near-absence was almost recorded in the medium to high-income households [4]. Cooking is one of the utmost energy intensive applications in the households of Limpopo Province. Unsurprisingly, geographic variation indicated that Limpopo Province households have a lower share of electricity used for cooking purposes, which is less below the national average [4]. Although most households in the country rely on fuelwood as the second main source of energy for cooking, somewhat atypical is the case of Limpopo Province, where 44% (representing two-fifths of the households) use fuelwood as their main source of energy for cooking compared to 49% of the households using electricity for cooking [4]. Marginal share were reported for households using coal, solar electricity, gas and paraffin. In non-electrified households, paraffin and fuelwood dominate as the source of energy for cooking purposes, at 38 and 54%, respectively [4]. However, a small fraction of coal, gas, solar electricity and electricity from generators were recorded in small percentages of households as their primary sources of energy for their cooking needs. With the increases in paraffin prices, the findings are not too surprising, as fuelwood is an all-possibility compensation for the higher paraffin prices. However, the decrease in paraffin use is positive, but the increase in the use of fuelwood remains a great concern.
Domestic space heating is another intensive energy application in the households. Examination by electrification as the main source for space heating in electrified households indicated that 45% rely primarily on electricity, with a minority reporting paraffin, fuelwood and other sources of energy, at 4, 7 and 5%, respectively [4]. In non-electrified households in the province’s households, fuelwood is primarily relied upon for space heating, accounting for 59%, while paraffin has a share of 11%, with other sources that consist mainly of coal stands at 5% [4]. In respect to water heating for bathing purposes, the most common electrical appliance used by electrified households in the province for water heating purposes is an electric geyser at 31%. Other appliances are the electric kettle at 23% or a combination of electric stove and kettle at 7% [4]. Conversely, in non-electrified households that rely on a single energy source for water heating, fuelwood exclusively accounts for 46%; about a quarter of the households also exclusively uses paraffin, which stands at 27 and 16% of the non-electrified households use a combination of paraffin and fuelwood [4]. The findings from the survey contend that there is a barrier in the province, which is hindering the switch to electricity as a preferred method for water heating for bathing purpose [6]. In terms of energy preferences and choice for heating water, other than for bathing purposes, the survey indicated that 93% of the households in the province, on average, depend on a single source of energy, while a small share of 5% is characterised by multiple sources. In electrified households, the use of electrical appliances for water heating, other than for bathing purposes, stands at 83%, while in non-electrified households, fuelwood exclusively accounts for 52% for the households, followed by paraffin, which is used by a further 38% of the households [4].
Limpopo Province is the northern-most province of South Africa, lying within the curves of the great Limpopo River. It shares international borders with Botswana to the west, Zimbabwe to the north and to the east, Mozambique. The province falls under the greater-savannah biome which is characterised by grassland and forest and it is sometimes referred to as the bushveld biomes. The bushveld, which comprises most part of the province, is renowned for cattle rearing. The vegetation types are of grave significance and need conservative representation in order to preserve the flora diversity, as over one-third of the forest has been reduced due to over-exploitation and utilisation of the forest resources [12]. Limpopo Province is viewed as one of the poorest provinces in the country, due to high unemployment rate that persist mostly in the rural parts of the province [13]. Most of the households in the rural parts which encompass much of the population depend on pension grants, government grants, and remittances from family members who migrate to other provinces to work. The household wealth is relatively lower, compared to other municipalities in South Africa [14].
This study was centred on household survey conducted purposefully in Limpopo Province from 2018 to 2019. The province was specifically chosen because of the government promotion of pro-poor energy alternatives, transformation of organic waste-to-energy and other low carbon technologies in order to ensure energy provision and security. The primary data were elicited from respondents in the households using interviews and self-administered semi-structured open and closed-ended questionnaires. Secondary data for this study were gathered from unpublished and published research articles. For ease of understanding, the questionnaires and interviews were conducted in English language and where necessary, translated to XiTsonga or TshiVenda languages which are the local dialects of the respondents. Ethical considerations were strictly adhered to. The survey sample was drawn from households with and without biogas digesters. After an in-depth assessment of households with biogas digesters in the province, 72 households were purposively sampled, while 128 households without digesters were randomly sampled. From a household installed with biogas digester, at least one household without a digester was sampled randomly in order to elicit their opinion regarding whether a household with a digester influences their perception about the technology. The sampling technique could not be based completely on one sampling technique because in the study area, the number of households with biogas digesters were smaller, compared to households without digesters and thus the inference from the sample could not be drawn from one sampling type.
The generated data was analysed and simplified using Microsoft Excel spreadsheet and statistical procedures of the Statistical Package for the Social Sciences (SPSS 22.0). The data were coded, defined and labelled and fed in Microsoft Excel then, exported to the SPSS program, to generate descriptive statistics principally to identify patterns and trends. The results of the data were clearly displayed in simple pie chart, bar graph, and contingency tables. A non-parametric test of Pearson chi-square and Spearman rank correlation coefficient was also used to present a detailed analysis of the results.
The challenges faced by biogas technology in several developing countries including South Africa are numerous and has becloud the awareness and perception as well as the potential of the technology. These factors have hindered the general dissemination of the technology. The rate of biogas technology dissemination is low, despite its potential, thus making the share of biogas technology in the energy mix very insignificant in many households, where it is supposed to play an alternative option in fuel substituting. For example, in South Africa, the numbers of installed digesters are around 700 with less than 100 in Limpopo Province [15]. The awareness and perceptions challenges faced by the technology include the following.
Another important factor which acts as a constraint to the adoption and dissemination of biogas technology is the awareness of the technology [16]. In Ghana, for example, lack of awareness about biogas technology was mentioned as one of the barriers in adopting the technology. Some cultural viewpoints such as stigmatising the utilisation of human excreta or even cow dung as substrate to biogas digesters, has the potential of discouraging its dissemination [17]. Thus, stories of successes and failures of previous biogas installations can also aid in promoting or constraining the dissemination of the technology. According to Gitonga [16], where an installed biogas digester performed well, word of mouth from the satisfied user will encourage other potential users to own the technology. In instances where the digester fails, it will create a negative dissemination impact on the technology; thus, discouraging potential adopters in the process. In Africa, success stories of biogas demonstration plants are relatively low. Many reasons are outlined for their failure. These include absence of energy focused policy, poor design, poor construction and material used, lack of maintenance from the owner, lack of project monitoring and follow-ups and poor ownership attitude and responsibility [17].
In addition, households evaluate the awareness attributes of modern energy carrier in their adoption decisions. Identified by Rogers [18] are five attributes that can accelerate or impede the adoption rate of the technology. These attributes are relative advantages, trialability, observability, complexity and compatibility. In the relative advantage of a modern energy carrier, the technology is evaluated in economic terms; according to its social status, satisfaction and convenience. A technology that is easily tried and experimented for its appropriateness with observable results to others is expected to be rapidly adopted than others. Furthermore, a compatible technology to existing cultural norms, values and experiences of a community has a better chance of adoption compared to any technology against such values and norms. In addition, a technology that is easy in understating and utilising is likely to be adopted quicker than those that require new skills, knowledge and understanding. According to Taherdoost [19], in the traditional adoption technology model, primarily, a consumer’s adoption is determined by the ‘perceived ease of use’ and the ‘perceived usefulness/benefits’ of the technology. Therefore, in the process of making and informed decision to either reject or accept the new technology, the consumers weigh the option of the technology if it is easy to utilise (perceived ease of use) and if one’s productivity will improve (perceived usefulness/benefits).
The study findings as presented in Figure 1 indicated that 22% of the respondents acknowledged that they have at least heard about the technology with regards to financial implications. This implies that 22% of the households in the Province are aware about the existence of the technology. This can be attributed to the few biogas projects within their locality. The presence of the technology’s existence in the study area however does not imply awareness of the technology. Awareness of biogas technology involves households getting detailed information about the technology; from the functionality, financial implications and the numerous advantages the technology offers. The result further shows that 78% of the households have no relative idea about biogas technology in terms of the financial implications involved in respect to the technology. Further, the results (Figure 2) in terms of functionality, indicated that 66% of the respondents have no clue how the technology operates, while 34% revealed that they can operate the technology.
Biogas technology awareness (financial implications) survey in the study area (source: field survey).
Biogas technology awareness (functionality) survey in the study area (source: field survey).
Technology awareness and perceptions are also disseminated via information channels. From the study as indicated in Figure 3, the identified channels of information that have helped in sensitising the households about the significances, advantages and efficiencies of biogas technology in the province include that from neighbours’ with installed digesters, at 52%, and NGOs at 38%, which served as the main sources of information pertaining the technology. Others include 7% from government departments/agencies and 3% from media publications. This indicates that the role of government agencies and the media in disseminating the technology is very low. This can be improved through adequate education and dissemination, particularly in the rural areas, so that the social, economic and environmental benefits of the technology can be appreciated as against the continues use of fuelwood, which has detremental effects on their health and wellbeing [20].
Biogas dissemination in the study area (source: field survey).
From the field survey, the data obtained as shown in Table 1 clearly indicated a prevalent perception of biogas technology at household level. The responses raised on the perceptions of the technology indicated that in households with biogas digesters, 91% agreed that biogas can help solve the problem of fuelwood for cooking, as agreed by 87% from the non-users. Regarding using the slurry from biogas to improve soil fertility, 88% of the users agreed, while 86% from the non-users also concurred. Using biogas technology as a method to manage waste in order to improve environmental hygiene was at 89% from the users. The respondents believed that it is a good management method compared to 88% from the non-users category. In the province, as part of their energy mix, most households still rely on fuelwood, which is harvested from the forest, thereby creating room for degradation, which can eventually lead to deforestation. In respect to biogas technology, 90% of the households using the technology have confidence that it can help reduce the rate of degradation and deforestation, while 75% from the non-users concurred to the statement. From the users and non-users, 96% from both clusters indicated that the use of biogas technology can help reduce the drudgery faced by women. On fuel consumption, compared to other cooking devices, 95% from the households using the technology agreed while from the non-users, 91% have the confidence that the technology will consume less fuel. On the general benefits of the technology, 89% from the users agreed that the benefits are worthy, while 82% from the non-users have confidence in the benefits of the technology. Further, the outcomes of the respondents were ranked and tested using Spearman rank correlation coefficient, to determine the significant correlation between the users and non-users of the technology. The Spearman rank results at p < 0.05, with a calculated value of 0.68, indicated that there is a positive and strong correlation in the perception of biogas technology among the users and non-users in the province. In essence, the more and better perception households have over biogas technology, the higher the chance of adopting the technology.
Statement | User (%) | Non-user (%) |
---|---|---|
Biogas can help solve the problem of fuelwood for cooking. | 91 | 87 |
Biogas technology can help to improve soil fertility. | 88 | 86 |
Biogas technology can improve hygiene due to the use of waste. | 89 | 88 |
Biogas technology can reduce the rate of forest degradation and deforestation. | 90 | 75 |
Biogas can relieve women’s workload and save time used for fuelwood collection. | 96 | 96 |
Biogas technology consumes less fuel than other conventional cooking devices. | 95 | 91 |
Generally benefits of biogas technology over-weighs limitation/weakness. | 89 | 82 |
Biogas technology perceptions between user and non-user in the province.
Source: field survey.
In Sub-Saharan Africa, one site-specific resource that has limited the scope of biogas technology is the availability of water that should serve to ensure effective operation of biogas technology. Studies by [21], suggest in their findings in Ethiopia that sources of water should be a walking distance of between 20 and 30 min from the household. Even in the circumstances where households own a satisfactory number of livestock, the system grazing nature, free grazing, semi-nomadic to nomadic have created problems in many parts of Sub-Sahara Africa in gathering feedstock to feed the digesters [22]. Poor supply of water has been reported as hindrance in the operation of biogas plants. For example, where there is adequate water supply, there is widespread adoption of the technology; mostly if the source of water is a short distance from the household or the supply is not altered by seasonal variation. Water shortages limit biogas operations as it is required in the mixture of the substrate before being fed into the digester [21]. Steady access to sufficient water supply is only available to small a percentage of the African region [23]. Sub-Sahara countries such as South Africa is considered as water-scare, water-stressed countries due to its climate aridity. Coupled with uneven distribution of rainfall throughout the country, most parts of the country are characterised by prolonged periods of drought between the rainy seasons with rainfall less than the world average [24]. The South African Government in 2001 approved a free basic water policy to deliver at least 6000 L of safe water to each household per month for a household of about eight persons [24]. Since the commencement of the free basic water policy, the household percentage with access to tap or piped water in their dwellings, on-site and off-site (communal taps), has improved from around 55% in 2002 to 70% in 2012. Nonetheless, general access to water by households is only improving by 4.2%, as most households still have to fetch water from dams, rivers, water pools, streams, springs and stagnant water [25].
Water is one of the critical requirements for the proper functioning of biogas technology. An equal amount of water is mixed with the required substrate before being fed into the digester. Findings from the survey indicated that households have access to water within a walking distance of 20–30 mins from the household but are still faced with acute, irregular supply and shortages that have marred most parts of the province. Water supply can be further improved by the government by ensuring adequate and regular supply of water to the households. Also, where possible, government can consider boreholes, rain water harvesting and water storage tanks to augment water scarcity. The provision of water is considered a critical factor in the perception of biogas technology which can enhance its adoption. Availability of feedstock is another requirement that is necessary in the operation of biogas technology because many digesters are failing due to unavailability of dung. Cow dung is considered the major feedstock in the study area. The findings, as portrayed in Table 2, revealed that 93% of the households using the technology in the province own livestock, as against 7% that do not own livestock but source for it either by buying or obtaining from neighbours who own livestock. Furthermore, 79.7% of households without the technology own livestock, while 20.3% do not own livestock. This result indicates that with proper awareness and campaign programme, biogas technology can have a foothold in the province as dung are abound for successful adoption of the technology.
Users | Non-users | Total | |
---|---|---|---|
Livestock ownership | |||
Do not own livestock | |||
Total |
Livestock ownership by households in the study area.
Bolded faces represent frequency and brackets represent percentage frequency. Source: field survey.
The private sector has key roles to play in the promotion of renewable energy, such as in biogas technology in order to make it market-oriented and commercially sustainable. Many countries have limited policies to attract renewable energy participation by private organisations [26]. For instance, in 2009, Nepal had more than 30 private organisations, which were actively involved in the biogas sector. However, only eight organisations were able to install a little over 500 biogas digesters, due to the unfavourable renewable energy policies [8]. In Limpopo Province, private sector participation in the dissemination of biogas technology is near absence. There is only one established biogas actor (Mpfuneko Biogas Project), a non-governmental organisation (NGO) that supports the development, and dissemination of biogas projects in the province. According to 82% of the sampled households with biogas digesters, the organisation (Mpfuneko Biogas Project) was responsible for the installation of their digester. Although private investment in renewable energy technology is being promoted by organisations such as the Renewable Energy Independent Producers Procurement (REIPPP) and the Department of Energy (DoE), the South African government should strengthen existing policies to support private sector energy investments and institutional mechanisms. The energy crisis being witnesses in the country provide a conducive entry point for private sector participation for an integrated biogas household level programme among other alternative renewable energy. More so, there are favourable conditions for the advancement of biogas technology in the province and the country at large; this includes availability of abundant biodegradable animals and crops waste materials.
In most Africa countries, lack of technical assistance in the form of skilled and unskilled personnel is required in the successful uptake of biogas technology. Technical assistance and availability is often cited as a reason for the impeding adoption of biogas technology. Technical knowledge ranges from the construction, maintenance and operation of the technology [27, 28]. Usually, where biogas digesters have been installed, the problem arises of reactors being of poor quality in the installed units. Poor operations and maintenance ability of users have also led to poor performance of the digester, sometimes leading to the abandonment of the technology. In some cases, due to technical availability, many demonstration plants have failed, which served to deter instead of enhancing the adoption of the technology [27, 28]. Technical availability is an integral determinant in the adoption of biogas technology at household level in the province. Available technical availability and assistance are deemed as a good support for the dissemination, adoption and utilisation of the technology. Due to inability of proper management, resulting from absence of technical expertise, several biogas projects have failed. The study reported that unreliable and unavailable technical services were common problem reported by households with installed digesters. In addition, households with interest about the technology shared the same sentiment about their perception to the technology. The question of technical support was directed to households with installed digesters and the findings show that 96% of the households complained about technical assistance of any sort. Technical issues faced by some households included blocked and leaking pipes, cracked and leaking digesters chambers, which has limit the use of the technology and sometimes leading to total abandonment. To promote the implementation and proper use of biogas technology, it is imperative to initiate long-term, biogas technology capacity-building programmes as well as training and execution of scientific work in the field through applicable research. There is the need for adequate technical expertise in the construction and maintenance of biogas digesters. Biogas technology and its implementation techniques can be introduced in the curriculum of most engineering and technical courses offered in universities, vocational and technical colleges that can train people on how to build and maintain biogas digesters.
One frequently cited factor limiting the development of biogas technology is financial constraints. In Ghana, for example, according to Arthur et al. [17], the findings indicated that, although the technology can solve some of the environmental and energy challenges faced in the urban and rural parts of the country, the technology requires a high initial cost of investment. In Ethiopia, one of the obstacles hindering the use of the technology by the rural cattle farmers is their inability to cover the full cost associated with installing the technology [21]. According to Bensah and Brew-Hammond [29], the principal hindrance to biogas technology expansion in Ghana is the cost of building the digesters, which most farmers have complained about. In South Africa, the average cost of mounting a smallholding biogas digester of 6 m3 ranges from R15,000 to R40,000 [30], whereas a 10 m3 digester costs not less than R80,000 [20]. Therefore, subsidies can enhance the relative advantages and speed up the adoption of biogas technology by those entities who would not have ordinarily adopted the technology [31]. Furthermore, some technologies have socially desired features; thus, adopting such technology is not only beneficial to the owner but to the society. In many of the Organisation for Economic Cooperation and Development (OECD) countries, companies and individual households can seek government subsidies if they adopt technology that is socially desirable. Even if the investment cost surpasses private benefits but is lower than social benefits, government provides subsidies to enhance the adoption of technologies that provides social benefits [32]. Furthermore, the size of the subsidies significantly influences the rates of adoption. In China, for instance, there was a time when interest in adopting biogas technology was fading away just after the government reduced subsidies to one-third of the investment cost from two-thirds [33]. In Nepal, it was revealed that without subsidies, most of the Nepalese farmers would not have been able to adopt the technology, due to their financial constraints [34]. Although providing subsides may also not positively increase the intended adoption rate of the technology. Individuals who adopt the technology for the sake of obtaining subsidies may be less enthusiastic to keep using the technology [35].
Additionally, households consider a variety of issues in their decisions to either to adopt or reject using modern energy technologies. Among other considerations, cost is of critical importance affecting the final decision by the consumer. Most consumers would prefer a modern technology with low initial costs compared to one that minimised cost of operations but ran over an extended period. Thus, creating a balance between initial costs alongside operation cost is important. In countries with low income, where individuals lack access to credit/and or cash, widespread preference is often associated with low initial cost [36]. In supporting the argument, Bajgain [34] stated that in Ethiopia, high initial cost of investment remains a major obstacle in the prevalent dissemination of biogas technology. In the absence of subsidies, loans and credits, the uptake of the technology at household level can only be driven by income earned by the household. Consequently, the higher the income earned, the more likely it is for the household to adopt the technology compared to households earning lesser income. Thus, income is expected to influence the perception and thus adoption of the technology. This is because households consider a range of issues in their choice to either adopt or reject modern energy carriers. In the study area, the monthly income earned is low compared to other provinces in the country, due to the high unemployment rate that has characterised much part of the province. From the field survey results as shown in Table 3, only 15 households from the technology users’ category, representing 20.8%, earn above R3501, with 18 households, representing 14% earning above the same amount from the non-users. Most of the users and non-users of the technology are in the monthly income bracket of R501 to R3500. As noted by [20, 30], the households cannot afford the average cost of installing a smallholding biogas digester.
Income (ZARa) | Users | Non-users | Total |
---|---|---|---|
R0–500 | |||
R501–1000 | |||
R1001–1500 | |||
R1501–3500 | |||
R3501+ | |||
Total |
Monthly income bracket of surveyed households of biogas users and non-users in the study area.
1 USD = ZAR 14.90.
Bolded figures represent frequency and brackets represent percentage frequency. Source: field survey.
As shown in Table 4 using the Pearson’s chi-square test, income earned by households was cross tabulated against the cost of building a digester, to determine the significant relationship between both variables. The result at p < 0.05 indicated that there is a statistical significant relationship between the income earned and the cost of installing a biogas digester. This implies that income earned by households in the province affects the adoption of the technology. As noted, the low income earned by the households sampled is a factor of socio-economic challenge being faced in the province, hence households finding it difficult to save and invest in a technology such as biogas. This can however be overcome by provision of loans, credits or subsidies to interested households willing to adopt the technology in order to relieve them of other households’ burden as practised in other countries [36].
Value | df | Asymp. sig. (two-sided) | |
---|---|---|---|
Pearson’s chi-square | 43.251a | 3 | 0.000 |
Likelihood ratio | 41.598 | 3 | 0.000 |
Linear-by-linear association | 19.917 | 1 | 0.000 |
No. of valid cases | 200 |
Pearson chi-square test results for income and costs of installing biogas digester.
0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.91.
Drawing from the field survey, this chapter provides first-hand empirical evidence on the awareness and perceptions of biogas technology in the province by understanding the challenges in disseminating the technology. Despite the potential of biogas technology in forming part of the energy mix in households and providing environmental benefits, the level of awareness and perception of the technology remain low in the province. In any given technology, the awareness and perceptions of the users have been found to play an important role in the adoption and utilisation of the technology. Households’ awareness and perceptions of biogas technology were investigated in order to get a deeper insight into the barriers to its adoption and utilisation in the province despite the prevailing conditions such as the abundance of dung to support the uptake of the technology. From the sampled households, the awareness was measured based on the financial implication, functionality and dissemination of the technology. Using the Pearson chi-square, the cost of biogas digester and income earned established a statistical significance relationship at p < 0.05. The perceptions of the technology was measured based on households insights regarding the role of biogas in fuel crisis, soil fertility, livestock management, burden of fuelwood collection, livestock ownership, water and feedstock availability as well as technical availability and assistance. In order to understand the in-depth perceptions of the households, the variables were further tested using a Spearman rank correlation coefficient at p < 0.05, with a calculated value of 0.68, indicating that there is a positive and strong correlation in the perception of biogas technology among the users and non-users households in the province. The study thus argued that the aforementioned variables are key in the dissemination and adoption of the biogas technology in Limpopo Province.
The authors acknowledge with thanks the financial supports from the Research and Publication Committee (RPC) of the University of Venda and the National Research Foundation (NRF) of South Africa.
Soil and water are indispensable for the existence and survival of all terrestrial life. These are the basic resources to the requirement for food, feed, fuel, and fiber of human beings. Soil supports plant life by providing a medium for their growth and development [1, 2]. It is a non-renewable natural resource and susceptible to rapid degradation through various forms of erosion processes. Worldwide, around 52% of total productive land has been degraded by various kinds of degradation processes and almost 80% of the terrestrial land is affected by water erosion [3, 4]. Further, annually ~10 million hectares (mha) of cropland becomes an unproductive at the global level due to soil erosion with an average rate of 30 t ha−1 year−1 soil erosion [5]. It has been estimated that water erosion results in a global flux of sediments of 28 Pg year−1 [6]. This, extensive degradation of finite soil resources can severely jeopardize global food security while deteriorating environmental quality. On the other hand, the future of living beings and agricultural production systems is at stake due to continuously depleting aquifers and increasing pressure on underground water under projected climate change scenarios [7]. Moreover, climate change will increase water demand globally by about 40% of the water needed for irrigation [8]. Hence, under the emerging scenario of acute water shortages and land degradation, we must focus our effort on the development and adoption of efficient approaches for soil and water conservation as well as for agricultural sustainability. Even the theme for “World soil day,” 2019 was “stop soil erosion, save our future” to raise awareness on the importance of sustaining healthy ecosystems and human well-being. Judicious use and management soil and water resources are more vital now than ever before to satisfy the needs of the ever-growing world population [9]. Conservation of soil and water has several agronomic, environmental, and economical benefits. Worldwide, around US$ 400 billion annual cost of on- and -off-site erosion has been estimated for replenishing lost nutrients, cleaning of water reservoirs and conveyances, and preventing erosion [10, 11].
\nGlobally, changes in land use and management practices accelerated soil erosion and have led to irrevocable land degradation, which is affecting 23.5% of the earth’s land area [12, 13]. Soil erosion is one of the serious problems which not only impair the quality of land and water resources but also harm agricultural production and the socio-economic condition of farmers. Soil erosion has degraded about 32% of total land area in the USA, 30.7% in China, 16% in Africa, 17% in Europe, and 45% in India through a wide range of degradation processes [14]. Among various land degradation processes, water erosion is a major problem affecting 68.4% of the total land area in India [15, 16]. In India, various organizations have estimated the extent of land degradation (Table 1). NBSS and LUP has been reported about 146.8 mha degraded land area in India [17].
\nAgency | \nEstimation year | \nDegraded area (mha) | \n
---|---|---|
National Commission on Agriculture | \n1976 | \n148 | \n
Ministry of Agriculture-Soil and Water Conservation Division | \n1978 | \n175 | \n
Department of Environment | \n1980 | \n95 | \n
National Wasteland Development Board | \n1985 | \n123 | \n
Society for Promotion of Wastelands Development | \n1984 | \n130 | \n
National Remote Sensing Agency | \n1985 | \n53 | \n
Ministry of Agriculture | \n1985 | \n174 | \n
Ministry of Agriculture | \n1994 | \n107 | \n
National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) | \n1994 | \n188 | \n
NBSS&LUP (Revised) | \n2004 | \n147 | \n
Extent of land degradation estimated by different agencies in India.
A harmonization exercise was done involving various organizations, to work out the water erosion, wind erosion, physical, and chemical degradation in India [18]. The harmonized data on degraded and wastelands with all possible combination classes is given in Table 2.
\nDegradation type | \nArable land (mha) | \nOpen forest\n*\n (mha) | \nData source | \n
---|---|---|---|
Water erosion (>10 t/ha/year) | \n73.27 | \n9.30 | \nICAR-IISWC | \n
Wind erosion (Eolian) | \n12.40 | \n— | \nICAR-CAZRI | \n
Sub-total | \n85.67 | \n9.30 | \n\n |
\n | \n|||
Exclusively salt-affected soils | \n5.44 | \n— | \nICAR-CSSRI, NBSS&LUP and NRSA, 2004 | \n
Salt-affected and water eroded soils | \n1.20 | \n0.10 | \n|
Exclusively acidic soils\n#\n\n | \n5.09 | \n— | \nNBSS&LUP, 2005 | \n
Acidic and water eroded soils\n#\n\n | \n5.72 | \n7.13 | \n|
Sub-total | \n17.45 | \n7.23 | \n|
\n | \n|||
Mining and industrial waste | \n0.19 | \n\n | Visual interpretation of satellite data, NRSA, 2003 | \n
Permanent Water logging\n$\n\n | \n0.88 | \n\n | |
Subtotal | \n1.07 | \n\n | |
Total | \n104.19 | \n16.53 | \n\n |
Grand total (Arable + open land) | \n120.72 | \n\n | \n |
Harmonized data of degraded and wastelands in India.
Area with <40% tree canopy cover.
pH < 5.5 and areas under paddy and plantation crops were also included in the total acid soils.
Sub-surface water logging is not considered.
Soil erosion is the removal of topsoil by the physical forces of erosion causing agents at a greater rate than the rate of its formation. Initially, erosion removes the nutrient-rich fertile top layer of soil which leads to the reduced production potential of soil. Soil erosion is classified into two categories, i.e., accelerated and geological erosion. Geological erosion is the natural phenomenon, occurs through the constant process of weathering and disintegration of rocks in which the rate of erosion remains lower than the soil formation rate. In contrast, in accelerated erosion, the rate of soil erosion exceeds a certain threshold level and becomes rapid. Anthropogenic activities such as slash-and-burn agriculture, overgrazing, deforestation, mining, and intensive and faulty agriculture practices are accountable for accelerated soil erosion [9]. This higher rate of soil erosion leads to the removal of organic matter and plant nutrients from the fertile topsoil and eventually lowering crop productivity. Hence, the conservation and management of natural resources are essential. Although the soil erosion cannot be eliminated, however it must be reduced to the level that can minimize its adverse impact on productivity and agricultural sustainability.
\nWater and wind are two key agents that degrade soils through various kinds of erosion processes. Globally, around 1100 mha is affected by water erosion (56% of the total degraded land) and around 28% of the total degraded land area is affected by wind erosion [19]. Runoff removes the soil particles from sloping and bare lands while the wind blows away loose and detached soil particles from unprotected lands. Other processes of land degradation are soil compaction, waterlogging, acidification, alkalinization, and salinization depends on parent material, climatic conditions, and crop management practices. In this chapter, we will discuss about the soil erosion by water, different types, processes, factors, and management.
\nWorldwide, water erosion is the most severe type of soil erosion. In this form of erosion, detachment, and transportation of soil particles from their parental source take place by water through the action of rainfall, runoff, hailstorm, and irrigation. Water erosion is a prevailing form of erosion in humid and sub-humid agro-ecosystems. It also creates the problem in arid and semiarid regions, characterized by an intensive rainstorm and scanty vegetation cover. Water erosion comprises three basic phases, i.e., detachment, transportation, and deposition. Rainfall is one of the major factors which causes the movement and detachment of soil particles. The detached soil particles seal the open-ended and water-conducting soil pores, reduce water infiltration, and cause runoff. The first two phases determine the quantity of soil to be eroded and the third phase determines the distribution of the eroded material along the landscape. If there is no dispersion and transport of soil particles, there will be no deposition. Hence, detachment and transport of soil particles are the primary processes of soil erosion. Understanding the mechanisms and extent of water erosion is crucial to manage and develop erosion control practices. Splash, sheet, rill and gully erosion are main forms of soil erosion by water (Figure 1). The other forms of water erosion are ravine formation, slip, tunnel, stream bank, and coastal erosion [20, 21]. The different forms of water erosion are described below:
\nFour basic forms of soil erosion by water.
Splash erosion is the first form of soil erosion by water. Falling raindrops on the soil surface break the soil aggregates and disperse and splash soil particles from their source, known as splash erosion. The process of splash erosion involves raindrop impact on soil particles, a splash of soil particles, and the formation of craters [22]. The raindrops falling on soil surface act like a small bomb which disintegrates soil particles and forms cavities of contrasting shapes and sizes. The depth of craters is equal to the depth of raindrop penetration which is a function of raindrop velocity, size, and shape. In this form, soil particles can move only a few centimeters away from their source.
\nThis is the next phase to splash erosion, which promptly initiates sheet erosion. The fertile topsoil surface is removed uniformly as a thin layer from the entire sloping surface area of the field by runoff water. Sheet erosion is a function of particle detachment, rainfall intensity, and land slope. The shallow flow of runoff water causes this type of soil erosion in which small rills are formed. This is the most common and severe form of soil erosion from an agricultural point of view as it removes the nutrient-rich top layer of soil. Out of total soil erosion, nearly 70% is caused by splash and sheet erosion only.
\nIt describes the flow of runoff water loaded with soil particles and organic matter in finger-like small channels, known as rill erosion. This is the advanced form of sheet erosion for soil loss. Water flow in small channels erodes soil at a faster rate than sheet erosion. Rill erosion is the second most common form of water erosion. These rills can be easily managed by tillage operations but can cause higher soil loss during intensive rainfall. The key factors that cause rill erosion are soil erodibility, land slope, runoff transport capacity, and hydraulic shear of water flow.
\nGully erosion is the advanced form of rill erosion. When the volume and velocity of concentrated runoff water increase, the rills become deep and broad and forms gullies. The gullies are linear incision channels with 0.3 m width and 0.3 m depth. Concentrated runoff flow is a primary factor for gully formation. Continuous gully erosion results in the removal of the entire soil profile. The extreme form of gully erosion may results in failure of crops, expose plant roots, reduce the groundwater level, and adversely affects landscape stability. It can cut apart the fields and aggravate the non-point source pollution (e.g., sediment, chemicals) to nearby water bodies. Gullies cannot be corrected by usual tillage operations. The dominant factors affecting gully erosion are shear stress of flowing water and critical shear stress of the soil. The further erosion of gullies results in ravines formation. Based on the size, depth, and drainage area, gullies can be classified as:
It is referred to as a network of deep and narrow gullies that flows parallel to each other while linking with the river system. Mismanagement and non-judicious use of land result in enlargement of rills and gullies and eventually lead to ravine formation. Abrupt changes in elevation of the river bed and the adjoining land surface, deep and permeable soil with high erodibility, sparse vegetation, and backflow of river water during the recession period causes severe bank erosion which consequently results in ravine formation.
\nIt is the sub-soil erosion through runoff flow in channels while surface soil remains intact. Tunnel erosion is also known as pipe erosion and commonly occurs in arid and semiarid regions where the soil permeability for water varied with the soil profile. The further widening and deepening of tunnels form large gullies which degrade the productive agricultural lands. Soil with erodible characteristics, having sodic B horizon and stable A horizon are highly prone to tunnel erosion. Runoff flow through natural cracks and animal burrows initiates tunnel formation by infiltrating thorough dispersible subsoil layers. Seepage, lateral flow, and interflow are key indicators of tunnel erosion. It alters the geomorphic and hydrologic characteristics of the affected areas. Management practices for tunnel erosion are ripping, contour farming, vegetation including trees and deep-rooted grasses with proper fertilization and liming, consolidation of surface soil, and diversion of concentrated runoff.
\nIt is the downward and outward movement of slope forming materials composed of natural rocks and debris from sloppy lands. It is also known as mudslide or mass erosion. This type of erosion mostly occurs in hilly regions having water-saturated soils slips down the hillside or mountain slope. Banks along highways, streams, and ocean fronts are often subject to landslides. The large masses of land slip down which destroy the vegetation and degrade the productivity of lands. The slope can be stabilized through developments of diversion drains, contour trenches, crib structures, geotextiles, kutta—crate structures, and retaining walls.
\nThe scouring of soil material from the stream bed and cutting of stream bank by the action of flowing water is known as stream bank erosion. Streams and rivers change their direction of flow by cutting the bed from one side and depositing the sediment to the other side of the stream. Flash floods enhanced the stream bank erosion which is more destructive. Stream and gully erosion are relatively comparable. Primarily, stream bank erosion predominantly occurs at the lower end water tributaries which have a relatively flat slope and continuous flow of water.
\nSea level is incessantly rising due which can increase the frequency of occurrence of natural disasters like the tsunami in the coastal areas in the future. Such natural hazards produce strong water waves which can severely erode the seaside areas. It is projected that the erosion rate will be higher in coastal regions in the coming years. The anthropogenic activities leading to coastal erosion are port construction, destruction of mangroves, and beach and river bed mining [23].
\nThe universal soil loss equation (USLE) was given by Wischmeier and Smith (1978) based on the soil erosion causing factors [24].
\nwhere A, mean annual soil loss (metric tons hectare−1 year−1);
\n\n
\n
\n
\n
\n
\n
Among the above-listed factors, vegetation and to some extent soil can be managed to reduce the rate of the soil erosion but the climatic and topographic factors, except slope length, are not manageable. Primarily, soil loss through erosion is a function of erosivity of raindrops and erodibility of the soil which can be mathematically expressed as follows:
\nwhere Erosivity is the potential of rainfall to cause erosion under given soil type and climatic condition; Erodibility is the vulnerability or susceptibility of the soil to erosion which depends on soil bio-physico-chemical properties, and land use and crop management practice. Sandy soils can be easily detached while well aggregated clayey soils are more resistant to erosion than sandy soils. When clay particles detached they can be easily removed by runoff due to their smaller size. Silt soils are the most erodible type of soil [9].
\nThe accelerated soil erosion significantly influences the soil quality, agricultural production and nutritional quality [25]. Higher soil erosion results in the removal of fertile topsoil along with nutrients which leads to reduced agronomic yield, land degradation, and terrain deformation [25, 26, 27]. The main causal factors affecting the rate of soil erosion are parent material, soil texture, slope steepness, plant cover, tillage, and climate [13]. According to an estimate of existing soil loss data, the mean annual rate of soil erosion in our country is approximately 16.4 ton ha−1 which results in annual total soil loss of 5334 million tons (m t) and nutrient loss of 8.4 m t throughout the country [17]. However, the mean annual permissible limit of soil loss is 12.0 tons ha−1. Out of total eroded soil around 29% is permanently lost to the sea, while 61% is transported by runoff from one place to another and the remaining 10% is directly deposited in reservoirs [21]. Higher nutrient concentration has been recorded in soil samples collected from runoff loads over the soil of agricultural fields [28]. Further, around 45.9 kg C ha−1 and 4.3 kg N ha−1 were recorded in eroded soil during the month of July [29].
\nThe soil organic matter (SOM) is vital for improving soil bio-physico-chemical properties and contains nearly 95% of N and 25–50% of phosphorus [30]. Higher rate of erosion results in loss of soil and fine organic particles. The soil removed by erosion has 1.5–5 times higher SOM than the soil left behind [31]. The availability of SOM also affects the biological activities and soil biodiversity in a particular agro-ecosystem. Moreover, the intensive and erratic rainfall results in higher soil erosion which leads to reduced infiltration and eventually less water availability to the vegetation. Sharda et al. studied the impact of the harshness of water erosion on agricultural productivity and advocated that water erosion reduced the annual crop production by 13.4 Mt in 2008–2009 at the national level [32]. Thus, the soil loss by water and wind severely affects the productive efficiency of all ecosystems [17, 33, 34]. The comprehensive impacts of erosion on soil and water resources which are liable to reduce agricultural productivity are given in Figure 2 [21].
\nImpact of erosion on soil and water resources.
The vegetation cover is imperative for moderating surface runoff and water erosion from agricultural lands [35]. The rate of runoff, soil, and nutrient loss is predominantly determined by the type of vegetation, canopy cover, slope gradient, and rainfall characteristics [36]. The higher canopy cover and crop residues mulching on soil surface results in the reduced rate of surface runoff and also reduces the impact of rainfall erosivity and soil erodibility [13, 35, 37]. Vegetation cover reduces the detachment of soil particles along with the protection of soil surface from intensive rainfall. Moreover, it also conserves soil moisture and retains sediment and organic materials [38]. To sustain agricultural productivity, it is imperative to reduce runoff, soil loss, and nutrient loss through water erosion [13].
\nThere are two types of measures for soil and water conservation, that is, mechanical/engineering/structural measures and biological measures. Mechanical measures are permanent and semi-permanent structures that involve terracing, bunding, trenching, check dams, gabion structures, loose/stone boulders, crib wall, etc., while biological measures are vegetative measures which involve forestry, agroforestry, horticulture and agricultural/agronomic practices [21].
\nAgronomic measures are applicable in the landscape of ≤2% slope. Agronomic measures reduce the impact of raindrops through the covering of soil surface and increasing infiltration rate and water absorption capacity of the soil which results in reduced runoff and soil loss through erosion [39]. These measures are cheaper, sustainable, and may be more effective than structural measures, sometimes [4]. Important agronomic measures are described below.
\nContour farming is one of the most commonly used agronomic measures for soil and water conservation in hilly agro-ecosystems and sloppy lands. All the agricultural operations viz. plowing, sowing, inter-culture, etc., are practiced along the contour line. The ridges and furrows formed across the slope build a continual series of small barriers to the flowing water which reduces the velocity of runoff and thus reduces soil erosion and nutrient loss [40, 41]. It conserves soil moisture in low rainfall areas due to increased infiltration rate and time of concentration, while in high rainfall areas, it reduces the soil loss. In both situations, it reduces soil erosion, conserves soil fertility and moisture, and thus improves overall crop productivity. However, the effectiveness of this practice depends upon rainfall intensity, soil type, and topography of a particular locality.
\nThe selection of the right crop is crucial for soil and water conservation. The crop should be selected according to the intensity and critical period of rainfall, market demand, climate, and resources of the farmer. The crop with good biomass, canopy cover, and extensive root system protects the soil from the erosive impact of rainfall and create an obstruction to runoff, and thereby reduce soil and nutrient loss. Row or tall-growing crops such as sorghum, maize, pearl millet, etc. are erosion permitting crops which expose the soil and induce the erosion process. Whereas close growing or erosion resisting crops with dense canopy cover and vigorous root system viz. cowpea, green gram, black gram, groundnut, etc. are the most suitable crops for reducing soil erosion [42]. To increase the crop canopy density, the seed rate should be always on the higher side.
\nCrop rotation is the practice of growing different types of crops in succession on the same field to get maximum profit from the least investment without impairing the soil fertility. Monocropping results in exhaustion of soil nutrients and deplete soil fertility. The inclusion of legume crops in crop rotation reduces soil erosion, restores soil fertility, and conserves soil and water [43]. Further, the incorporation of crop residue improves organic matter content, soil health, and reduces water pollution. A suitable rotation with high canopy cover crops helps in sustaining soil fertility; suppresses weed growth, decreases pests and disease infestation, increases input use efficiency, and system productivity while reducing the soil erosion [42].
\nThe close-growing crops having high canopy density are grown for protection of soil against erosion, known as cover crops. Legume crops have good biomass to protect soil than the row crops. The effectiveness of cover crops depends on crop geometry and development of canopy for interception of raindrops which helps in reducing the exposure of soil surface for erosion. It has been reported that legumes provide better cover and better protection to land against runoff and soil loss as compared to cultivated fallow and sorghum. The most effective cover crops are cowpea, green gram, black gram, groundnut, etc.
\nProtection of soil from the erosive impact of raindrops, runoff, and wind.
Act as an obstacle in water flow, reduce flow velocity, and thereby reduce runoff and soil loss.
Increase soil organic matter by residue incorporation and deep root system.
Improve nutrients availability to the component crop and succeeding crops through biological nitrogen fixation.
Improve water quality and water holding capacity of the soil.
Improve soil properties, suppress weed growth, and increase crop productivity.
Cultivation of two or more crops simultaneously in the same field with definite or alternate row pattern is known as intercropping. It may be classified as row, strip, and relay intercropping as per the crops, soil type, topography, and climatic conditions. Intercropping involves both time-based and spatial dimensions. Erosion permitting and resisting crops should be intercropped with each other. The crops should have different rooting patterns. Intercropping provides better coverage on the soil surface, reduces the direct impact of raindrops, and protects soil from erosion [36, 43].
\nHigh total biomass production.
Efficient utilization of soil and water resources.
Reduction of marketing risks due to the production of a variety of products at different periods.
Drought conditions can be mitigated through intercropping.
Reduce the weed population and epidemic attack of insect pests or diseases.
It improves soil fertility.
Growing alternate strips of erosion permitting and erosion resistant crops with a deep root system and high canopy density in the same field is known as strip cropping. This practice reduces the runoff velocity and checks erosion processes and nutrients loss from the field [36, 44]. The erosion resisting crops protects soil from beating action of raindrops, reduces runoff velocity, and thereby increased time of concentration which results in a higher volume of soil moisture and increased crop production [4]. Strip cropping is practiced for controlling the run-off and erosion and thereby maintaining soil fertility.
\nTypes of strip cropping
\n\n
Mulch is any organic or non-organic material that is used to cover the soil surface to protect the soil from being eroded away, reduce evaporation, increase infiltration, regulate soil temperature, improve soil structure, and thereby conserve soil moisture [45, 46, 47]. Mulching prevents the formation of hard crust after each rain. The use of blade harrows between rows or inter-culture operations creates “dust mulch” on the soil surface by breaking the continuity of capillary tubes of soil moisture and reduces evaporation losses. Mulching also reduces the weed infestation along with the benefits of moisture conservation and soil fertility improvement. Hence, it can be used in high rainfall regions for decreasing soil and water loss, and in low rainfall regions for soil moisture conservation. Organic mulches improve organic matter and consecutively improving the water holding capacity, macro and micro fauna biodiversity, their activity, and fertility of the soil [48, 49].
\nInorganic mulches have a longer life span than organic mulches and can reduce soil erosion, water evaporation losses, suppress weeds but cannot improve soil health. This practice is costly and labor intensive therefore, suitable for cash crops such as fruits and vegetables. Polyethylene mulch is commonly used for the conservation of soil and water resources to increase crop productivity [21].
\nIn this practice at least 30% of soil surface should remain covered with crop residue before and after planting the next crop to reduce soil erosion and runoff, as well as other benefits such as C sequestration. This term includes reduced tillage, minimum tillage, no-till, direct drill, mulch tillage, stubble-mulch farming, trash farming, strip tillage, etc. The concept of conservation tillage is widely accepted in large scale mechanized crop production systems to reduce the erosive impact of raindrops and to conserve the soil moisture with the maintenance of soil organic carbon. Conservation tillage improves the infiltration rate and reduces runoff and evaporation losses [4]. It also improves soil health, organic matter, soil structure, productivity, soil fertility, and nutrient cycling and reduces soil compaction [50].
\nOrganic farming is an agricultural production system that devoid the use of synthetic fertilizers or pesticides and includes organic sources for plant nutrient supply viz. FYM, compost, vermicompost, green manure, residue mulching, crop rotation, etc. to maintain a healthy and diverse ecosystem for improving soil properties and ensuring a sustained crop production. It is an environmentally friendly agricultural crop production system.
\nThe maintenance of high organic matter content and continuous soil surface cover with cover crops, green manure, and residue mulch reduce the soil erosion in organic farming. It leads to the addition of a large quantity of organic manures which enhances water infiltration through improved bio-physico-chemical properties of soil, and eventually reduces soil erodibility [51]. Organic materials improve soil structure through the development of soil binding agents (e.g., polysaccharides) and stabilizing and strengthening aggregates which reduce the disintegration of soil particles and thus reduced soil erosion. Soil erosion rates from soils under organic farming can be 30–140% lower than those from conventional farming [9].
\nAdoption of appropriate land configuration and planting techniques according to crops, cropping systems, soil type, topography, rainfall, etc. help in better crop establishment, intercultural operations, reduce runoff, soil and nutrient loss, conserve water, efficient utilization of resources and result in higher productivity and profitability. Ridge and furrow, raised bed and furrow, broad bed and furrow, and ridging the land between the rows are important land configuration techniques.
Increase
Safely dispose of excess runoff without causing erosion
Improved soil aeration for plant growth and development
Easier for weeding and mechanical harvesting
It can accommodate a wide range of crop geometry.
Agroforestry is a sustainable land management system which includes the cultivation of trees or shrubs with agricultural crops and livestock production simultaneously on the same piece of land [52, 53]. It is an emerging technology for effective soil and water conservation and comprises a wide range of practices for controlling soil erosion, developing sustainable agricultural production systems, mitigating environmental pollution, and increasing farm economy. The leaf litter addition act as a protective layer against soil erosion improves soil health and moisture retention capacity of the soil and increases crop productivity [54, 55, 56]. It has been reported that different agroforestry practices can reduce up to 10% of soil erosion [57]. Agroforestry not only controls soil erosion but also produce tree-based several marketable products.
\nTypes of agroforestry systems
\nMechanical measures or engineering structures are designed to modify the land slope, to convey runoff water safely to the waterways, to reduce sedimentation and runoff velocity, and to improve water quality. These measures are either used alone or integrated with biological measures to improve the performance and sustainability of the control measures. In highly eroded and sloppy landscape biological measures should be supplemented by mechanical structures. A number of permanent and temporary mechanical measures are available such as terraces, contour bunding, check dams, gabions, diversion drains, geo-textiles, etc. [43]. The mechanical measures are preferred based on the severity of erosion, soil type, topography, and climate [4].
\n\n
Trenches are constructed at the contour line to reduce the runoff velocity for soil moisture conservation in the areas having <30% slope. Bunds are formed on the downstream side of trenches for the conservation of rainwater. Trenches are of two types:
Terraces are earthen embankments built across the dominant slope partitioning the field in uniform and parallel segments [9]. Generally, these structures are combined with channels to convey runoff into the main outlet at reduced velocities. It reduces the degree and length of slope and thus reduced runoff velocity, soil erosion and improves water infiltration [5]. It is recommended for the lands having a slope of up to 33%, but can be adopted for lands having up to 50–60% slope, based on socio-economic conditions of a particular region. Where plenty of good-quality stones are available, stone bench terracing is recommended. Sometimes, semi-circular type terraces are built at the downstream side of the plants, known as half-moon terraces. Based on the slope of benches, the bench terraces are classified into the following categories:
Wattling is a technique of dividing the length of the slope into shorter sections and in these sections, the wattles are constructed at a vertical interval of 5–7 m up to 33% slope and 3 m up to 66% slope. It is not effective on slopes steeper than 66% and on very loose or powdery rocks [61].
\nCrib structures are used to stabilize the steep slopes of >40% by constructing log wood structures filled with stone/brushwood. Eucalyptus poles with 2–3 m length and 8–12 cm diameter can be used for the construction of crib structures. These poles are joined together with the help of 20–25 cm long nails. The height of the structure is kept 1.5–2 m above the ground depending upon the land slope [62].
\nGeo-textiles are made up of natural fibers of jute or coir, which are used for stabilization of degraded slopes in mine spoil and landslides areas along roadsides. It facilitates the initial establishment of vegetation on highly degraded sloping lands by holding the vegetation in place and conserving moisture. The open mesh size of geo-textiles varies from 3 to 25 mm. The biodegradability of geo-textiles was reported for 2–3 years. It can absorb 12–25% water under 65 and 95% humidity, respectively and when fully soaked in water it can absorb 40% moisture [63].
\nCheck dams are effective for preventing runoff rate and severe erosion in steep and broad gullies, and most suitable for high elevation areas of the catchment [62]. These structures are cheap, having a long life, and fewer maintenance requirements. The depth of gully bed is kept about o.3 m and flat stones of 20–30 cm size are used for the construction of dams. A spillway is provided in the middle of the dam to allow the safe discharge of runoff water [21, 60]. Similarly, gabion check dams are also used for drainage line treatment in sharp slanted gullied areas to check sedimentation, erosion, and to conserve soil moisture [62].
\nBranches of tree and shrub species are staked in two rows parallel to each other filled with brushwood and laid across the gully or way of the flow. These are usually built to regulate the overflow in small and medium gullies which are supplemented with vegetative barriers for long term effectiveness. There is enough soil volume to establish the vegetation. The tree species are planted in 0.3 m × 0.2 m trenches across the way of gullies. It reduces the runoff velocity, soil loss, and improves soil moisture which helps in the successful establishment of vegetative barriers.
\nThe channels are constructed to protect the downstream area and for safe draining and diverting of runoff water. It is applicable in high rainfall areas to control runoff losses during the initial stage. The gradient of diversion drain should preferably be kept within 0.5%. Generally, a narrow and deep drain does not get silted up as rapidly as a broad and shallow drain of the same cross-sectional area. Soil dug from the drain should be dumped on the lower side of the drain. Outlet end should be opened at natural drainage lines.
\nIn the conservation bench terrace (CBT) system, the land is divided into 2:1 ratio along the slope in which the upper 2/3 area (Donor area) contributes runoff to the lower 1/3 runoff collecting area (recipient area). The donor area is left in its natural slope condition. It is also known as the zingg terrace and developed by Zingg and Hauser in 1959. The runoff contributing area is used for cultivation of
The land is finite and diminishing gradually due to the increasing rate of varied kinds of degradation and thus there is no alternative to expend cultivable land area. The only way is either increasing agricultural productivity per unit resource available or restoring the degraded lands. Healthy soil and availability of water are vital for productivity in all kinds of terrestrial ecosystems because plants require fertile soil with improved bio-physico-chemical properties and good quality of water for their growth and development. Use of soil and water conservation measures including biological (agroforestry and agricultural) and mechanical measures (terracing, bunding, trenching, check dams, etc.) is imperative to reduce runoff, soil erosion and to improve soil quality, water quality, moisture conservation, and overall crop productivity in a sustainable way. Biological measures are economically feasible and environmental friendly; also improve soil properties along with the conservation of soil and water resources. Further, the combined use of biological and mechanical measures will help in improving and sustaining agricultural productivity.
\nThe burgeoning world population, food insecurity and natural resource degradation are the major issues in the present era of climate change. It has been projected that the world population will be ~10 billion in 2050 [66]. Further, the rapid industrial growth and intensive farming practices are expected to increase the pressure on land and water resources in near future. Therefore, a paradigm shift in soil and water conservation, and its management is needed for agricultural sustainability. The some of the future concern for soil and water conservation and sustainable agriculture are the following:
Formulation of new policies and development of new technologies based on social, economical and cultural aspect of a particular regional.
Implementation and adoption of effective conservation measures for sustaining agricultural productivity.
Existing soil and water conservation practices should be improved and developed based on the level of natural resources degradation.
Greater emphasis should be given on participatory approach for effective soil and water conservation.
Post impact assessment and monitoring of soil and water conservation measures should be done to evaluate their efficacy in increasing productivity, monetary returns, and livelihood of the stakeholders.
Development of cost effective conservation practices to restore the degraded lands and to sustain agricultural productivity.
The efficient technologies for soil and water conservation should be demonstrated on farmers’ fields with their active participation.
Emphasis on research, education and extension of soil and water conservation effective technologies to the stakeholders.
Adoption of efficient management practices and judicious use of soil and water resources.
C | carbon |
CAZRI | Central Arid Zone Research Institute |
CSSRI | Central Soil Salinity Research Institute |
ICAR | Indian Council of Agricultural Research |
ICRISAT | International Crops Research Institute for the Semi-arid Tropics |
IISWC | Indian Institute of Soil and Water Conservation |
N | nitrogen |
NBSS&LUP | National Bureau of Soil Survey and Land Use Planning |
NRSA | National Remote Sensing Agency |
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11462",title:"Recent Developments in Nanofibers Research",subtitle:null,isOpenForSubmission:!0,hash:"a255898117275990dffe83c75a9f815d",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11462.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11496",title:"Quantum Field Theory",subtitle:null,isOpenForSubmission:!0,hash:"ec9dae0c7f2dcd5581423dfd8dba81f2",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/11496.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11628",title:"Sugarcane - Its Products and Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"83d1d3e1b5f499d51a641c50fb218a7b",slug:null,bookSignature:"Prof. Bimal Kumar Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/11628.jpg",editedByType:null,editors:[{id:"94560",title:"Prof.",name:"Bimal Kumar",surname:"Ghimire",slug:"bimal-kumar-ghimire",fullName:"Bimal Kumar Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11596",title:"Liver Cancer - Genesis, Progression and Metastasis",subtitle:null,isOpenForSubmission:!0,hash:"e3cb7992178195f360d05f905f7f33d4",slug:null,bookSignature:"Prof. Mark Feitelson and Dr. Alla Arzumanyan",coverURL:"https://cdn.intechopen.com/books/images_new/11596.jpg",editedByType:null,editors:[{id:"252092",title:"Prof.",name:"Mark",surname:"Feitelson",slug:"mark-feitelson",fullName:"Mark Feitelson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11576",title:"Malaria - Recent Advances, and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"5a01644fb0b4ce24c2f947913d154abe",slug:null,bookSignature:"Prof. Pier Paolo Piccaluga",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",editedByType:null,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11466",title:"Titanium Alloys - Recent Progress in Design, Processing, Characterization, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1c89c2e1b5d03b90db5b13d44479baa6",slug:null,bookSignature:"Dr. Ram Krishna",coverURL:"https://cdn.intechopen.com/books/images_new/11466.jpg",editedByType:null,editors:[{id:"296477",title:"Dr.",name:"Ram",surname:"Krishna",slug:"ram-krishna",fullName:"Ram Krishna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11594",title:"Melanoma - Standard of Care, Challenges, and Updates in Clinical Research",subtitle:null,isOpenForSubmission:!0,hash:"ed8a0af96af7b311ef7f9bbbde152d0f",slug:null,bookSignature:"Dr. Sonia Maciá",coverURL:"https://cdn.intechopen.com/books/images_new/11594.jpg",editedByType:null,editors:[{id:"281982",title:"Dr.",name:"Sonia",surname:"Maciá",slug:"sonia-macia",fullName:"Sonia Maciá"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:434},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"42",title:"Alimentology",slug:"alimentology",parent:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:13,numberOfSeries:0,numberOfAuthorsAndEditors:283,numberOfWosCitations:135,numberOfCrossrefCitations:145,numberOfDimensionsCitations:271,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"42",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",isOpenForSubmission:!1,hash:"8b43add5389ba85743e0a9491e4b9943",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:"Edited by",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11021",title:"B-Complex Vitamins",subtitle:"Sources, Intakes and Novel Applications",isOpenForSubmission:!1,hash:"ad50bc292cda8d24f11aef2f5ef88f51",slug:"b-complex-vitamins-sources-intakes-and-novel-applications",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/11021.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",isOpenForSubmission:!1,hash:"6c3ddcc13626110de289b57f2516ac8f",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10631",title:"Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"34a58a10957f49842f0b13d78ccacb09",slug:"vitamin-d",bookSignature:"Öner Özdemir",coverURL:"https://cdn.intechopen.com/books/images_new/10631.jpg",editedByType:"Edited by",editors:[{id:"62921",title:"Dr.",name:"Öner",middleName:null,surname:"Özdemir",slug:"oner-ozdemir",fullName:"Öner Özdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7038",title:"Vitamin D Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"ba24f0913341357b0779ff9529c4bbfc",slug:"vitamin-d-deficiency",bookSignature:"Julia Fedotova",coverURL:"https://cdn.intechopen.com/books/images_new/7038.jpg",editedByType:"Edited by",editors:[{id:"269070",title:"Prof.",name:"Julia",middleName:null,surname:"Fedotova",slug:"julia-fedotova",fullName:"Julia Fedotova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8594",title:"Fads and Facts about Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"1731029867f0d79c633e3408fc03ebd2",slug:"fads-and-facts-about-vitamin-d",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/8594.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,isOpenForSubmission:!1,hash:"dad04a658ab9e3d851d23705980a688b",slug:"vitamin-a",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7033",title:"Vitamin C",subtitle:"an Update on Current Uses and Functions",isOpenForSubmission:!1,hash:"719a5742e3271393fe43864e13e996cd",slug:"vitamin-c-an-update-on-current-uses-and-functions",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/7033.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7263",title:"Vitamin E in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"6bd8e547b4f3ad7f1675a36b8dbde8f2",slug:"vitamin-e-in-health-and-disease",bookSignature:"Jose Antonio Morales-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/7263.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",middleName:null,surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6709",title:"B Group Vitamins",subtitle:"Current Uses and Perspectives",isOpenForSubmission:!1,hash:"f34959a0fcc33a2c6fb3d03e9ec544bf",slug:"b-group-vitamins-current-uses-and-perspectives",bookSignature:"Jean Guy LeBlanc and Graciela Savoy de Giori",coverURL:"https://cdn.intechopen.com/books/images_new/6709.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6549",title:"Genotyping",subtitle:null,isOpenForSubmission:!1,hash:"6eb6c927e6cba4965ea3bbf741f82911",slug:"genotyping",bookSignature:"Ibrokhim Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6549.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5940",title:"Vitamin C",subtitle:null,isOpenForSubmission:!1,hash:"e23e79359167bb9d4a53edd78c7b5038",slug:"vitamin-c",bookSignature:"Amal H. Hamza",coverURL:"https://cdn.intechopen.com/books/images_new/5940.jpg",editedByType:"Edited by",editors:[{id:"188326",title:"Associate Prof.",name:"Amal",middleName:null,surname:"Hamza",slug:"amal-hamza",fullName:"Amal Hamza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56013",doi:"10.5772/intechopen.69660",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7772,totalCrossrefCites:25,totalDimensionsCites:55,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"56440",doi:"10.5772/intechopen.70162",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6381,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"50921",doi:"10.5772/63712",title:"Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet",slug:"menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet",totalDownloads:3296,totalCrossrefCites:10,totalDimensionsCites:21,abstract:"Vitamin K2 is a collection of isoprenologues that mostly originate from bacterial synthesis, also called menaquinones (MKs). Multiple bacterial species used as starter cultures for food fermentation are known to synthesize MK. Therefore, fermented food is the best source of vitamin K2. In the Western diet, dairy products are one of the best known and most commonly consumed group of fermented products.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Barbara Walther and Magali Chollet",authors:[{id:"184784",title:"Dr.",name:"Barbara",middleName:null,surname:"Walther",slug:"barbara-walther",fullName:"Barbara Walther"},{id:"188194",title:"Mrs.",name:"Magali",middleName:null,surname:"Chollet",slug:"magali-chollet",fullName:"Magali Chollet"}]},{id:"66098",doi:"10.5772/intechopen.84445",title:"Golden Rice: To Combat Vitamin A Deficiency for Public Health",slug:"golden-rice-to-combat-vitamin-a-deficiency-for-public-health",totalDownloads:3330,totalCrossrefCites:12,totalDimensionsCites:17,abstract:"Vitamin A deficiency (VAD) has been recognised as a significant public health problem continuously for more than 30 years, despite current interventions. The problem is particularly severe in populations where rice is the staple food and diversity of diet is limited, as white rice contains no micronutrients. Golden Rice is a public-sector product designed as an additional intervention for VAD. There will be no charge for the nutritional trait, which has been donated by its inventors for use in public-sector rice varieties to assist the resource poor, and no limitations on what small farmers can do with the crop—saving and replanting seed, selling seed and selling grain are all possible. Because Golden Rice had to be created by introducing two new genes—one from maize and the other from a very commonly ingested soil bacterium—it has taken a long time to get from the laboratory to the field. Now it has been formally registered as safe as food, feed, or in processed form by four industrialised counties, and applications are pending in developing countries. The data are summarised here, and criticisms addressed, for a public health professional audience: is it needed, will it work, is it safe and is it economic? Adoption of Golden Rice, the next step after in-country registration, requires strategic and tactical cooperation across professions, non-governmental organisations (NGOs) and government departments often not used to working together. Public health professionals need to play a prominent role.",book:{id:"7978",slug:"vitamin-a",title:"Vitamin A",fullTitle:"Vitamin A"},signatures:"Adrian Dubock",authors:[{id:"273220",title:"Ph.D.",name:"Adrian",middleName:null,surname:"Dubock",slug:"adrian-dubock",fullName:"Adrian Dubock"}]},{id:"62836",doi:"10.5772/intechopen.79350",title:"The Role of Thiamine in Plants and Current Perspectives in Crop Improvement",slug:"the-role-of-thiamine-in-plants-and-current-perspectives-in-crop-improvement",totalDownloads:1550,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"Current research is focusing on selecting potential genes that can alleviate stress and produce disease-tolerant crop variety. The novel paradigm is to investigate the potential of thiamine as a crop protection molecule in plants. Thiamine or vitamin B1 is important for primary metabolism for all living organisms. The active form, thiamine pyrophosphate (TPP), is a cofactor for the enzymes involved in the synthesis of amino acids, tricarboxylic acid cycle and pentose phosphate pathway. Recently, thiamine is shown to have a role in the processes underlying protection of plants against biotic and abiotic stresses. The aim of this chapter is to review the role of thiamine in plant growth and disease protection and also to highlight that TPP and its intermediates are involved in management of stress. The perspectives on its potential for manipulating the biosynthesis pathway in crop improvement will also be discussed.",book:{id:"6709",slug:"b-group-vitamins-current-uses-and-perspectives",title:"B Group Vitamins",fullTitle:"B Group Vitamins - Current Uses and Perspectives"},signatures:"Atiqah Subki, Aisamuddin Ardi Zainal Abidin and Zetty Norhana\nBalia Yusof",authors:[{id:"240031",title:"Dr.",name:"Zetty-Norhana Balia",middleName:null,surname:"Yusof",slug:"zetty-norhana-balia-yusof",fullName:"Zetty-Norhana Balia Yusof"},{id:"261167",title:"Mr.",name:"Aisamuddin Ardi",middleName:null,surname:"Zainal Abidin",slug:"aisamuddin-ardi-zainal-abidin",fullName:"Aisamuddin Ardi Zainal Abidin"},{id:"261169",title:"Ms.",name:"Atiqah",middleName:null,surname:"Subki",slug:"atiqah-subki",fullName:"Atiqah Subki"}]}],mostDownloadedChaptersLast30Days:[{id:"56440",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6381,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"56013",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7772,totalCrossrefCites:25,totalDimensionsCites:55,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"69402",title:"Vitamin D Deficiency and Diabetes Mellitus",slug:"vitamin-d-deficiency-and-diabetes-mellitus",totalDownloads:1568,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Vitamin D (VD) is a molecule that can be synthesized directly in the humans’ body or enter the organism with food in the form of inactive precursors. To exert its biological action, VD undergoes two-stage hydroxylation (at the 25th and 1st position) catalyzed by cytochromes P450, the presence of which has already been shown in almost all tissues of the human body. The product of hydroxylation is hormone-active form of vitamin D–1,25(OH)2D. 1,25(OH)2D binds to specific vitamin D receptor (VDR) and regulates the expression of genes involved in bone remodeling (classical function) and genes that control immune response, hormone secretion, cell proliferation, and differentiation (nonclassical functions). VD deficiency is prevalent around the globe and may be one of the key factors for diabetes development. The direct association between vitamin D deficiency and type 1 (T1D) and type 2 (T2D) diabetes has been proven. Detection of VDR in pancreas and adipose tissue, skeletal muscles, and immune cells allowed implying the antidiabetic role of vitamin D by enhancing insulin synthesis and exocytosis, increasing the expression of the insulin receptor, and modulating immune cells’ functions. This chapter summarizes data about relationship between VD insufficiency/deficiency and development of T1D and T2D, and their complications.",book:{id:"7038",slug:"vitamin-d-deficiency",title:"Vitamin D Deficiency",fullTitle:"Vitamin D Deficiency"},signatures:"Ihor Shymanskyi, Olha Lisakovska, Anna Mazanova and Mykola Veliky",authors:null},{id:"76108",title:"Vitamin D Metabolism",slug:"vitamin-d-metabolism",totalDownloads:453,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.",book:{id:"10631",slug:"vitamin-d",title:"Vitamin D",fullTitle:"Vitamin D"},signatures:"Sezer Acar and Behzat Özkan",authors:[{id:"29878",title:"Dr.",name:"Behzat",middleName:null,surname:"Özkan",slug:"behzat-ozkan",fullName:"Behzat Özkan"},{id:"348287",title:"Dr.",name:"Sezer",middleName:null,surname:"Acar",slug:"sezer-acar",fullName:"Sezer Acar"}]},{id:"50754",title:"Medicinal Chemistry of Vitamin K Derivatives and Metabolites",slug:"medicinal-chemistry-of-vitamin-k-derivatives-and-metabolites",totalDownloads:1900,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Vitamin K acts as a cofactor for γ‐glutamyl carboxylase. Recently, various biological activities of vitamin K have been reported. Anti‐proliferative activities of vitamin K, especially in vitamin K3, are well known. In addition, various physiological and pharmacological functions of vitamin K2, such as transcription modulators as nuclear steroid and xenobiotic receptor (SXR) ligands and anti‐inflammatory effects, have been revealed in the past decade. Characterization of vitamin K metabolites is also important for clinical application of vitamin K and its derivatives. In this chapter, recent progress on the medicinal chemistry of vitamin K derivatives and metabolites is discussed.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Shinya Fujii and Hiroyuki Kagechika",authors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"},{id:"180529",title:"Dr.",name:"Shinya",middleName:null,surname:"Fujii",slug:"shinya-fujii",fullName:"Shinya Fujii"}]}],onlineFirstChaptersFilter:{topicId:"42",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:40,totalDimensionsCites:0,doi:"10.5772/intechopen.103016",abstract:"Potassium is an essential cation critical in fluid and electrolyte balance, acid–base regulation, and neuromuscular functions. The normal serum potassium is kept within a narrow range of 3.5–5.2 meq/L while the intracellular concentration is approximately 140–150 meq/L. The total body potassium is about 45–55 mmol/kg; thus, a 70 kg male has an estimated ~136 g and 60 kg female has ~117 g of potassium. In total, 98% of the total body potassium is intracellular. Skeletal muscle contains ~80% of body potassium stores. The ratio of intracellular to extracellular potassium concentration (Ki/Ke) maintained by Na+/K+ ATPase determines the resting membrane potential. Disturbances of potassium homeostasis lead to hypo- and hyperkalemia, which if severe, can be life-threatening. Prompt diagnosis and management of these problems are important.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Sairah Sharif and Jie Tang"},{id:"79194",title:"Potassium in Solid Cancers",slug:"potassium-in-solid-cancers",totalDownloads:145,totalDimensionsCites:0,doi:"10.5772/intechopen.101108",abstract:"Electrolyte disorders are a frequent finding in cancer patients. In the majority of cases the etiologies of such disorders are common to all cancer types (i.e. diuretic-induced hyponatremia or hypokalemia). Sometimes, electrolyte disorders are caused by paraneoplastic syndromes or are due to cancer therapy. Potassium is one of the most important electrolytes of the human body since it is involved in the regulation of muscle contraction, maintenance of the integrity of the skeleton, blood pressure and nerve transmission as well as in the normal function of cells. Potassium homeostasis is strictly regulated since the gap between the recommended daily dietary intake (120 mEq/day) and the levels stored in the extracellular fluid (around 70 mEq) is huge. Alterations of potassium homeostasis are frequent in cancer patients as well alterations in potassium channels, the transmembrane proteins that mediate potassium fluxes within the cells. The present chapter is focused on the clinical significance of potassium homeostasis and potassium channels in patients with solid tumors.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli"},{id:"78820",title:"Potassium Homeostasis",slug:"potassium-homeostasis",totalDownloads:119,totalDimensionsCites:0,doi:"10.5772/intechopen.100368",abstract:"The average potassium intake in the United States population ranges from 90 to 120 mEq/day. About 98% of the total body’s potassium is intracellular, and only 2% is present in the extracellular compartment. This distributional proportion is essential for cellular metabolic reactions and maintaining a gradient for resting membrane potential. A loss of this gradient results in hyper- or hypopolarization of the cell membrane, especially in cardiac muscles leading to life-threatening arrhythmias. Multiple mechanisms in human maintain homeostasis. Transient initial changes are due to transcellular shifts activating sodium-potassium ATPase pumps on the cell membrane. The kidneys essentially take part in excess potassium excretion, maintaining total body stores constant within normal range. Gastrointestinal secretion of potassium is insignificant in individuals with normal renal function, however plays an essential role in individuals with compromised renal function. So far, a classic feedback mechanism was thought to maintain potassium homeostasis; however, a recently recognized feedforward mechanism acting independently also helps preserve potassium homeostasis. Hence, potassium homeostasis is vital for humans to function at a normal level.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Shakuntala S. Patil and Sachin M. Patil"},{id:"78193",title:"Potassium and Cardiac Surgery",slug:"potassium-and-cardiac-surgery",totalDownloads:198,totalDimensionsCites:1,doi:"10.5772/intechopen.99735",abstract:"Potassium homeostasis affects cardiac rhythm and contractility, along with vascular reactivity and vascular smooth muscle proliferation. This chapter will focus on potassium dynamics during and after cardiac surgery involving cardioplegic arrest and cardiopulmonary bypass (CPB). Hyperkalemic, hypothermic solutions are frequently used to induce cardioplegic arrest and protect the heart during cardiac surgery involving CPB. Common consequences of hyperkalemic cardioplegic arrest and reperfusion include microvascular dysfunction involving several organ systems and myocardial dysfunction. Immediately after CPB, blood potassium levels often drop precipitously due to a variety of factors, including CPB -induced electrolyte depletion and frequent, long-term administration of insulin during and after surgery. Meanwhile, some patients with pre-existing kidney dysfunction may experience postoperative hyperkalemia following cardioplegia. Any degree of postoperative hyper/hypokalemia significantly elevates the risk of cardiac arrythmias and subsequent myocardial failure. Therefore, proper management of blood potassium levels during and after cardioplegia/CPB is crucial for optimizing patient outcomes following cardiac surgery.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Shawn Kant, Frank W. Sellke and Jun Feng"}],onlineFirstChaptersTotal:4},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:17,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"