Nomenclature of graphene based on the structure.
\r\n\tIn this book, the different factors of liquefaction, the field methods and laboratory tests to identify a potentially liquefiable soil aim to be reviewed; in addition with history cases (ground behavior during the occurrence of an earthquake, state of stress, deformation, shear strength, flow, etc.).
\r\n\tA very important aspect of this topic is the presentation of the different constructive techniques used to ground improvement (vibrocompaction, dynamic compaction, jet grouting, chemical injection, replacement, etc.), placing special emphasis on those constructive methods used to solve problems on structures already located in areas of low relative density with liquefaction potential, where the installation of monitoring and control equipment is also required (tiltmeters, piezometers, topographic points, seismographs, pressure cells, etc.).
Many weeds grow in association with the rice crop and their distribution and occurrence intensity are determined by a complex of climate, soils and relief and management practices. Weeds interfere with rice growth and yield by means of competition for nutrients, water, light and space. Moreover, many weed species possess allelopathy mechanisms that hinder or even prevent the growth of other species associated with them, including rice, resulting in decreased yield by up to 96% [1].
Weeds are a major biological constraint for rice farmers. Many weed species that occur in rice fields can produce a huge number of small seeds and vegetative propagules as a strategy to survive stresses imposed by control methods [2–4]. After dispersal, seeds may remain on the soil surface or be buried by means of biotic and abiotic agents thus forming a seedbank which becomes the main source of weeds in rice cropping fields.
As a survival strategy, colonization and persistence in the communities, the weeds have developed a number of features, for example, seed dormancy, which enables the occurrence of discontinuous germination during the rice crop growing season in addition to ensuring the viability of the seeds in the soil for long periods.
The weed seedbank in the soil is a dynamic system with inputs and outputs. The inputs occur via seed rain as a result of efficient dispersion mechanisms and the outputs by means of germination, predation [5–7] and decay or seed death [8].
Various factors affect weed seed germination including variations in soil temperature and moisture [9–13] and physiological aspects of the seeds particularly seed dormancy [14]. When favorable environmental conditions occur and physiological constraints are overcome, seeds germinate; weeds grow and produce new propagules enriching the soil seedbank.
Research on identification and quantification of weed species germinated in the soil seedbank from rice fields were carried out by numerous authors [9, 15–20]. However, due to its ecological and economic importance, the status of the weed seedbank in rice cropping fields needs to be further investigated. Studies on weed seedbank ecology are crucial for improving weed control practices in rice fields.
Field and greenhouse studies are needed in order to understand the soil weed seedbank germination dynamics and its relationship with the weed flora on rice fields. These studies can contribute to predict infestations and could lead to improved management practices to decrease the negative effects of weed interference with rice crop growth and yield.
The goal of this chapter is to discuss general aspects of weed seedbank ecology including weeds associated with rice agroecosystems, types, sizes and major characteristics of the weed seedbank in rice fields, including seed dormancy, research methodology, factors affecting germination dynamics and some aspects of weed seedbank management in rice fields.
Many weeds are associated with rice agroecosystems in different parts of the world. In South and Southeast Asia, 64 weeds were reported as the most important in upland rice [21]. These occur in 18 families; 37 are broadleaves, 20 are grasses and 7 are sedges. Twenty-seven of the cited weeds are primarily annuals, 20 are perennials and 17 are classified as annual or perennial [21]. Ninety weed species were reported competing with rice under aerobic systems [22]. In contrast [23] reported 47 weed species in the rice crop and [24] cited more than 1800 weed species reported in 15 South and Southeast Asian countries. Cyperus iria L., Cyperus difformis L., Echinochloa colona (L.) Link, Ischaemum rugosum Salisb. Leptochloa chinensis Nees, Ludwigia hyssopifolia (G. Don) Excel, Oryza sativa L., Schoenoplectus juncoides (Roxb.) Palla, Sphenochlea zeylanica Gaertn. are the 12 most troublesome weeds of rice in Asia [25].
One hundred and thirty weed species are reported to occur in rice-based cropping systems in Africa [26]. Major weed species of upland rice areas are Rottboellia cochinchinensis (Lour.) W. Clayton, Digitaria horizontalis Willd., Ageratum conyzoides L. and Tridax procumbens L., while A. conyzoides and Panicum laxum Sw. which were more cited in the hydromorphic areas and Cyperus difformis L., Sphenoclea zeylanica Gaertn., Fimbristylis littoralis Gaudich, Oryza longistaminata A. Chev. & Roehr., Echinochloa colona (L.) Link and Echinochloa crus-pavonis (Kunth) Schult. dominates the lowland rice fields. Poaceae (43%) and Cyperaceae (37%) are the most prevalent families in lowland rice while, in the uplands, weed species composition tends to be more diverse with Poaceae (36%) and Asteraceae (16%) most prevalent [26].
In Latin America [27] reported 13,892 individuals belonging to 20 families, 40 genera and 60 species in the soil weed seedbank germination studies in situ and ex situ in which there were 11,530 individuals and 50 species ex situ and 2362 individuals and 34 species in situ. Total density was 3859 plants m−2 [27].
The families with the highest species richness were Cyperaceae with sixteen, Poaceae with ten and Fabaceae-Faboideae with six species each. These families contributed with 53.3% of total species. In contrast, ten families: Amaranthaceae, Euphorbiaceae, Lamiaceae, Loganiaceae, Marantaceae, Nyctaginaceae, Plantaginaceae, Portulacaceae, Solanaceae, Thelypteridaceae and Turneraceae had only one species each. These correspond to 50% of the total of all recorded families [27]. Similar results were observed by [15] who reported that that 86% of species present in seedbank from 22 rice fields in Camboja were Cyperaceae family. In Nepal, Ref. [28] also reported that 37% of the species present in the weed seedbank belonged to this family.
In the tropics, about 80% of seeds germinate until the 60th day of the study in the greenhouse. Germination peak is generally observed at 25 days after the beginning of the study which coincides with the period of the start of the rainy season in the region leading to an increase in weed germination and emergence in weed soil seedbank. Germination stabilization generally occurs at 115 days after start of study [16] (Figure 1).
Germination curve of weed of the weed seedbank from a rice field, in Maranhão State, Northeast Brazil, Latin America.
Floristic diversity, based on Shannon Diversity Index, generally is greater ex situ study with H’ = 2.66 nats ind−1, against H’ = 2.53 nats ind−1 in situ. The highest number of individuals and species found ex situ contribute for the greatest floristic diversity ex situ [16].
The most important species in the weed seedbank in Latin America based on the importance value were Ludwigia octovalvis (Jacq.) P. H. Raven, Schoenoplectus juncoides (Roxb.) Palla, Lindernia crustacea (L.) F. Muell, Cyperus sphacelatus Roth, Cyperus iria L., Fimbristylis dichotoma (L.) Vahl, Boerhavia erecta L., Rhynchospora nervosa (Vahl) Boeck, Scleria lithosperma (L.) Sw. and Sida rhombifolia L. [16]. In Latin America, species of the family Cyperaceae largely dominates the weed seedbank in the soil of rice fields [16]. Forrmation of a seedbank represents an important regeneration component for many species of this family [2].
The species dominance in weed seedbank in rice fields might be related not only to cultural practices and crop history but also to the reproductive capacity of the weed species. All species cited here are propagated exclusively by seeds, except for F. dichotoma and S. lithosperma (Cyperaceae), which also propagate asexually, by rhizomes [29].
The ability to produce a very high number of seeds is one of the main features developed by weeds that occur in rice fields. This is a strategy to escape the stress imposed by the control methods and ensure the species survival.
In the Philippines, for example, see [25], among the weed species occurring in paddy fields, one of the species Ludwigia octovalvis (L.) F. Muell (Onagraceae) is capable of producing 250,000 seeds, while Echinochloa colona (L.) Link and Echinochloa crus-galli (L.) P. Beauv both from the Poacae family can produce 3100 and 2900 seeds per plant, respectively [5].
Schoenoplectus spp. (Cyperaceae) are able to produce on average 82,098 seeds.m−2 [2]. Other species of the same family, among which, Fimbristylis miliaceae (L.) Vahl, Fimbristylis dichotoma (L.) Vahl, can produce 10,000 and 6500 seeds per plant, respectively [29], while Cyperus iria (L.) can produce 5000 seeds per plant [30].
After dispersal, weed seeds are deposited on the soil forming the seedbank that becomes the main source of weeds in rice fields.
Soil seedbanks vary according to the duration their seeds remain viable in the soil [30]. Weed scientists distinguished between transient seedbanks for species that have viable seeds present for less than 1 year, such as seeds from grasses, for example, and short-term persistent seedbanks for species with viable seeds that remain for at least 1 but less than 5 years and long-term persistent, when seeds persist in the soil for at least 5 years [30]. Seeds of many weed species of the Malvaceae and Fabaceae families have long persistence in the soil because of their tegument impermeability to water and gases [14].
Seed persistence in the soil has been attributed to variation in fungal activity, soil fertility, particularly the presence of nitrates, oxygen supply, vegetation cover, burial depth via biotic and abiotic agents, seed density and predator pressure [31].
Dormancy is the failure of the weed seeds to germinate under favorable environmental conditions. There are two types of seed dormancy. The first is known as primary or innate dormancy which occurs when seeds are dormant at the time of maturity and the second, as secondary dormancy which is when weed seeds can cycle in and out of a dormancy state due to variation on environmental conditions [14]. Seed dormancy in the soil is important because it maintains the weed seedbank over time and thus helps to ensure that for most weed species only a small proportion of buried weed seeds is recruited as seedlings from the soil seedbank in any given year [14].
The main dormancy mechanisms are physiological, by means of hormones, phytochromes and inhibitors; physical, due to impermeable seed coat to water and gases; and morphological, due to immature embryo [14].
In temperate climate regions, the weed seedbank declines 32% a year [32]. In contrast, in tropical regions, the weed seedbank is generally smaller and the decline tends to be faster because (a) there is a high seedling recruitment rate due to favorable climate conditions for seed germination, which persist for longer periods than in temperate regions; (b) high seed mortality due to attack of predators; (c) high relative humidity and higher temperatures, which favor biotic agents; (d) seedling mortality due to seed germination in short, hot dry periods that can occur during the rainy season; (e) a shorter duration or even the absence of seed dormancy in many weed species; and (f) low seed viability [33].
In post-dispersal weed seedbank studies carried out in rice fields in the Philippines, it was noted that in a period of only 14 days, the fire ants (Solenopsis geminata) were the main predators and responsible for the removal of 98%, 88% and 75% of Digitaria ciliaris (Retz.) Koeler, Eleusine indica (L.) and Echinochloa colona (L.) Link seeds, respectively, previously placed on soil surface [5].
Generally higher germination rates observed in the soil weed seedbank in rice fields in the first 60 days [27] is probably due to dormancy breaking because of greater sunlight exposition and temperature variation as observed by many authors [34–35]. This is corroborated by studies carried out in the Philippines where 50% of weed soil seedbank in rice fields germinated in first six weeks [36] and in rice field in Malaysia where it was noted that the highest germination peak occurred at 30 days [9].
The magnitude of weed seedbanks in rice fields is highly variable. Using the direct seed extraction method Ref. [17] found 260,000 seeds m−2 in Vietnã, Ref. [19] reported that the number of weed seeds in the soil ranged from 17,300 to 646,000 m−2 in New South Wales, Australia, Ref. [15] reported that in the top 5 cm of soil ranged from 52.1 to 167,000 seeds m−2 with overall mean of 8,500 seeds m−2 in Cambodian rice fields, Ref. [37] found from 116,812 to 294,761 seeds m−2 in China. In contrast, using the germination method Ref. [38] found from 1700 to 4000 seedlings m−2 in Northern Laos, Ref. [39] counted 878 seedlings m−2 and Ref. [18] found 4953 seedlings m−2 in weed seedbank in rice fields in Latin America.
Differences in the number of seeds or weed seedling density in the seedbank can be explained by several factors, including climate, relief position, soil moisture content, depth of sampling, history of the areas and management practices used by rice farmer [40].
In cropping systems where there is no soil disturbance and no tillage, as is the case for subsistence farming, weed seeds tend to remain on the soil surface, where they are easier to control [42].
The seed location is an important feature because only those situated on or near the soil surface are able to germinate, which can lead to greater short-term germination flows accelerating the reduction of the seedbank. Moreover, the permanence of seeds at the soil surface favors predation [43].
Studies on the movement of weed seeds in a no-till soil have shown that after 1 year, the seeds reached deeper in sandy soils (10% > 6 mm) than in clayey soils (2% > 6 mm). It was also noted that the vertical movement is very small and is conditioned by soil texture, the cumulative rainfall and the seed size, weight and shape [43].
The smaller and lighter seed concentrate at the soil surface. With respect to the seed shape, those flattened are more difficult to penetrate the soil than spherical, discoidal or pyramidal [43].
Weed scientists advocate the use of 5 cm diameter cores to sample weed seedbanks in the soil. They state that this size core is large enough to detect seeds, but small enough not to burden the researcher with too much soil [44]. The number of cores to be sampled and the depth to which soil cores should be taken depends upon the research objectives. If the research is to determine the seedbank size and composition or to relate seedbanks to aboveground weed flora, then seedbanks should be sampled at times that follow seed shed but precede seed germination [44].
There are two methods to enumerate the number of seeds in the soil: Direct seed extraction and germination method
In the direct seed extraction technique, seeds are separated from soil by washing or flotation. Initially the soil sample is placed on a screen with a mesh size smaller than the smallest expected seed. A mesh size of about 0.2 mm is enough to catch most small seeds [44].
The flotation method is often used after the soil sample has been washed. The objective is to separate seed from soil particles so that they will float in a solution made with water and potassium carbonate. After the seeds are separated using the direct seed extraction method, they must be identified. Identification is made under magnification using proper literature [44].
The second technique for enumerating seeds in the soil seedbank is the germination method [44]. This technique is used to enumerate the density of nondormant seeds in the seedbank. Twenty cores are recommended from an experimental treatment [44]. The cores are mixed, composed, inserted in trays and placed in greenhouse. The most suitable soil depth in the trays should be within 2–3 cm with a maximum of 5 cm so that all seeds can germinate. Trays should be perforated in order to facilitate drainage. In case of sandy soils, water retention can be improved by lining the trays with vermiculite (Figure 2).
Germination method.
In recent years, research on seedbanks has focused more on the germination method instead of the direct seed extraction. The main reason for this is that the germination method is more accurate because it enables to estimate the actual weed seedbank size considering that all viable seeds will germinate even if it takes several months of work. Furthermore, the seedlings are easier to identify than the seeds.
The weed seedbank in rice fields is an indicator of weed community resulting from the present and past weed control practices and can provide valuable information for the development of ecologically friendly practices such as, for example, the reduction of herbicide application.
In the past few years, several authors have recommended that the weed management should integrate the different control methods in order to decrease weed population in the soil seedbank [45–48].
A reduction in the weed seedbank germination means minor problem with weeds and hence savings for rice farmers. Moreover, it can provide a healthier environment with less use of chemicals, creating the necessary conditions for the development of more efficient and environmentally acceptable weed management.
Therefore, it is important to limit the current contribution to the weed seedbank to reduce the population size and facilitate the use of future weed control practices.
Soil disturbance with tillage can promote weed seed germination by several mechanisms including exposition of weed seeds to light which releases seeds of some species from dormancy but can also bury some seeds that are on the soil surface [41]. Tillage prior to rice crop establishment may result in nitrogen mineralization which can promote some seed germination. On the other hand, off-season dry soil tillage at sufficient depth may help breaking and drying vegetative propagules including stolons, bulbs and subsoil rhizomes of perennial weeds. However, tillage may cause soil erosion and increase costs for the rice farmer [36]. Patterns of weed emergence as affected by tillage in upland and lowland rice soils have shown that 40–50% occurred within 6 weeks after tillage in both sites. A significant weed emergence was observed within 3 weeks in both soils but very little emergence occurred in lowland soil [36].
Soil mulching reduces weed seed germination by 90% [49]. The reduction in seed germination in the weed seedbank occur because the mulch prevents the penetration of light or blocks certain spectrum of light wavelengths which are necessary for most of the weed seeds to germinate [50–52]. This is the case for the weed species that produce seeds that are photoblastic positive, that is, need light to germinate, such as Amaranthus retroflexus [53], Eclipta alba [54], Hyptis suaveolens [55], Digitaria spp. [56], Urtica dioica [57], Ageratum conyzoides [23, 58], Fimbristylis autumnalis [23] and Cyperus aggregatus [59].
Moreover, the physical barrier formed by straw must contributes to the death of germinated seedlings from seeds located on the soil surface, whose reserves were not enough to overcome the mulch [60, 61] and provides cover for predators that feed on weed seeds. In addition, residues have a moderating effect on temperature fluctuations in the soil, which in turn can impact seed dormancy of many weed species.
In India, for example, see Ref. [62], the use wheat straw as mulch resulted in 54% reduction in weed density at 30 days after rice seeding. In Vietnam, the herbaceous legume Tephrosia candida (Roxb.) D.C. used as mulch caused a reduction in the weed growth and a significant increase in rice yield [63].
Herbicides are widely used in rice cropping systems all over the world and may be economically attractive in some cases as it requires less overall weeding times. In Africa, 26 herbicides as single application or mixtures are being used in upland and lowland rice [26]. They are effective in reducing weed populations and hence the number of seeds added to the soil seedbank. However, their use is sharply decreasing due to social and environmental concerns and major negative impacts on soil biology aside from promoting the appearance of herbicide resistance in 51 weeds in rice fields [64].
In China, a form of organic rice farming called rice-duck farming (RDF) has proven to be very successful in controlling weeds and decreasing the weed bank size in rice fields [65]. Interaction between weeds and ducks after 9 years under RDF, resulted in a decline from 38 to 21 in the number of weed species and the density of both the weed seedbank and aboveground weed flora decreased by more than 90%. After 9 years of interaction between weeds and ducks, RDF resulted in a more uniform vertical distribution of the weed seedbank both quantitatively and qualitatively. The ecological indices point to a gradual change towards fewer species, lower density and lower diversity following continued RDF. The dominant species in the weed seedbank shifted [65].
In recent years, there is growing interest in the adoption of conservation practices in rice agricultural production. This involves reducing soil disturbance along with maintaining crop residues on the surface, reducing weed seed inputs and promoting seed depletion in the weed seedbank in the soil. The technology of no-till or minimum tillage and also the growing interest in the practice of organic agriculture and agroecology to develop more balanced rice production systems are current trends that converge to a healthy environmentally and economically sustainable agricultural model.
The author is funded by FAPEMA (Foundation for Research and Scientific and Technological Development of Maranhão) State, Brazil. We thank our main donor, for their past and present financial support.
Pertaining to the day-to-day energy usage increases, various technologies were addressed to satisfy the current energy demand. Based on this circumstance, the electronic devices for energy conversion (solar cells and fuel cells) and energy storage (batteries and supercapacitors) were extensively studied throughout the world [1]. Basically, the performance of these devices depends on the materials’ design with different nanostructures and material interfaces. In particular, advanced materials including carbon nanomaterials, viz., carbon black, carbon nanotubes, carbon nanofibers, graphene, and so on, play a vital role in an attempt to lead the breakthrough and challenges from laboratory scale to technology ideas [2].
Among them, graphene, since its discovery, has been stirring enthusiasm among the scientific community owing to its attractive properties. Properties such as high electrocatalytic activity, good conductivity with immense surface area, and low costs make it an ideal candidate to implement in electrochemical application. Subsequently, graphene has been utilized as a promising candidate in energy storage applications such as battery and supercapacitors (SCs) [3, 4]. Due to its high electrical conductivity, charge carrier mobility, and transparency, it has been potentially used as an electrode for electrochemical energy device application [5, 6]. Processing of graphene electrodes differs according to their application by fabrication techniques and synthetic strategies. As graphene is an electrode focusing on rechargeable battery application, the device performance is based on the presence of electroactive sites in graphene sheets [7, 8]. Therefore, graphene sheets composited with suitable electroactive materials like metal chalcogenides, metal oxides/hydroxides, metal nanostructures, and even the heteroatom-doped graphene provide better activity for rechargeable batteries [9, 10, 11]. Conventionally, the electrode materials were deposited on metal foils by doctor-blade technique, drop-casting, spray-coating, or spin coating to construct the batteries. This electrode material was mixed with foreign materials (binders and conducting agent) to make into ink, paste, colloidal dispersion, etc., for deposition purposes. In the case of self-supported graphene foams or FSGs, the foreign materials are avoided, and on the whole, they act as electrodes directly [12]. This chapter outlines few reported literature on FSG performance for rechargeable battery applications. Moreover, we summarized the synthetic strategies and fabrication of free-standing graphene/hybrid functional materials for particular device application.
Graphene is a 2D one atom thin sheet that consists of hexagonal sp2 carbon, which is densely packed into honey-comb lattice and large benzene-like aromatic hydrocarbon. It is considered as fundamental basis for all carbon allotropes, and their conceptual depiction are shown in Figure 1. It represents that 2D graphene sheet can be enclosed into 0D like fullerene structure and rolled up into 1D-like carbon nanotube structure, and 10 layers of graphene can be stacked up into 3D graphitic-like structure. Hence, it is considered as “mother of carbon allotropes” [13]. The fabrication of graphene film by different synthetic routes was adapted accordingly to its required properties for many applications. Current technologies addressed to synthesize graphene via several routes are as follows: mechanical exfoliation (liquid exfoliation and scotch tape method), epitaxial growth (chemical vapor deposition (CVD) and from organic molecules method), unzipping CNT (chemical and electrochemical methods), and wet chemical process (oxidation of graphite) [14].
Carbon allotropes in different forms: 0D Bucky ball, 1D nanotubes, 2D sheets, and 3D graphite form (without permission from Ref. [13]).
Graphene possesses exclusive chemical, physical, mechanical, and thermal properties, which focuses on the field of electrochemical applications as an electrode material to enhance the stability and durability of the devices. Graphene application in any devices is adopted according to its properties as shown in Figure 2. Prominently, the conductivity of anode and cathode electrodes plays a vital role in batteries, which collect or disperse the electrons that tune up the performance to device. The conjugated sp2 carbon networks of 2D graphene sheet exhibit high conductivity around 104–106 S/cm than any other carbon materials depending on the number of layers [15, 16]. Additionally, the electrode surface area is an essential part for batteries, which has high theoretical surface area of graphene, and is reported to be ∼2600 m2/g [17]. For suspended graphene sheets below 10 nm thickness, the spring constants were observed between 1 and 5 N/m, and pristine graphene exhibits Young’s modulus of 1.05 TPa and intrinsic strength of 110 GPa, which has high mechanical property [18, 19]. The electrochemical property is a perspective for energy storage and generation technologies. The rate of heterogeneous electron transfer occurs on graphene materials; in the meantime, the rate of reaction varies selectively at edges and basal plane according to their electroactive sites by adding impurities or doping. Graphene-based materials were potentially applied in electrochemical devices due to their inherent electrochemical activity nature [20]. These amazing properties of graphene such as electrical, mechanical, and electrochemical were attracted for rechargeable batteries.
Properties of graphene and its appropriate application.
It is well known that graphene can be synthesized by several routes and named according to the recovered final product. Graphene research has elevated gradually in the past 5 years for its tremendous properties, but the scientific community ends up with the confusion in naming the material. Even though researchers have synthesized up to 100 layers of carbon sheets, they were naming them as graphene. This provides different changes in properties compared with the single-layer graphene sheet for their practical applications [21]. Hence, carbon journal community raised a nomenclature for graphene family, which is shown in (Table 1).
Materials | Description |
---|---|
Graphene | Two-dimensional sheet with one atom thickness |
Turbostratic graphene | Arrangement of graphene sheets in rotational fault structure |
Bi-,tri-, or multilayer graphene | Stacking of graphene sheets (2 - bi, 3 - tri, & 4 - 10 – multi) in AB, ABA, or rotational order |
Few layer graphene | Subset of multilayer graphene |
Graphite nanosheets, nanoflakes, and nanoplates | Lateral/thickness of graphene sheets <100 nm. |
Exfoliated graphite | Exfoliation of bulk graphite |
Graphene nanoribbon | Length dimension in micron and width in the range of nanometer |
Graphene quantum dots | Lateral dimension less than 10 nm with photoluminescence property |
Graphene oxide | Graphene sheets that contain functional groups (epoxy, hydroxyl, and carboxyl) |
Graphite oxide | Exfoliation of bulk graphite by strong oxidation process |
Reduced graphene oxide | Reduction or restoration of sp2 carbon of graphene oxide |
Graphenization | Growth of graphene by small molecules (bottom-up approach) |
Free-standing graphene, graphene foam, hydrogel, and aerogel | Graphene sheets arranged in 3D forms |
Nomenclature of graphene based on the structure.
The descriptive term is an essential thing for researchers in the area of graphene material because the properties will change accordingly with recovered product with different synthetic strategies. For example, the graphene-based transparent conducting film adopted by the CVD method obtained 600 ohms/sq. at 96.5% transmittance at 550 nm, whereas solution processed graphene increases above 10 K ohms at the same transmittance [22, 23, 24]. Even the electrochemical behavior fluctuates according to the synthetic strategies; for instance, the presence of oxygen functional groups in graphene oxide (GO) shows an excellent electrochemical behavior rather than the pristine graphene [25]. Hence, the electrochemical device applications based on graphene electrodes depend on the architecture and hybrid composites to improve the active sites. Recently, 3D architecture like graphene materials such as foams, hydrogel, aerogel, and free-standing was utilized in electrochemistry-oriented topics.
For designing and fabricating large scale macroscopic or microscopic architecture like materials, the choice of precursor signifies the synthetic strategies. Graphene sheets synthesized by wet chemical process commenced for several applications due to the presence of functional groups. As discussed in the previous section, the methods utilized for the preparation of graphene sheets conclude their suitable application based on their properties. Noteworthy, there is a challenge for high dispersion of graphene either in aqueous or in organic solvents. It has been achieved by dispersing agent introduced into hydrophobic graphene sheets for good dispersion, whereas it submerges the graphene properties [26]. In the view of fact, large scale solution processable GO has several advantages such as cost effective, eco-friendly solvent and facile to introduce any foreign material due to the presence of functional groups [27, 28]. The copious amount of functional groups attached to the graphene surface contains hydroxyl and epoxy groups at basal planes and carboxyl groups at edges. This leads to affinity with water molecules, which provides a higher dispersion and further it assists with other inorganic or organic molecules for facile composite preparation. In the choice of precursor for free-standing material preparation, GO dominates as a building block due to its features of large scale solution processable with high colloidal dispersion. The resultant macroscopic FSG holds as an excellent mechanical, electrical, and light-weight material. Further, the 3D architecture of FSG enhances the surface area, porous nature, and structural active sites by merging with other functional host materials such as semiconducting material, metal nanoparticles, and polymers. The synergy of graphene sheets and functional host materials in the 3D macroscopic architecture attracted wide variety of applications due to the tuning of their properties.
In 1998, Smalley prepared CNT buckypaper by vacuum filtration, in prior it is well dispersed in Triton X-100 surfactant to break up the pi-pi interaction between the bundled ropes of CNT [29]. Further, CNT buckypapers were prepared by domino pushing technique, and they are strong, robust, and flexible. The obtained paper exhibits 26 micron thickness; the electrical conductivity was found to be 2.0 × 104 S/m and thermal conductivity shows 153 W/mK [30]. These papers were directly applied for supercapacitor application. Thus, the carbon paper–like materials were potentially applied in a variety of applications due to their light-weight, highly flexible, robust, and eco-friendly nature. On the basis of cost, the CNT papers lag behind for the practical applications, and they have been replaced by graphene sheets. Similar to CNT buckypaper, GO paper was fabricated by flow-assisted vacuum filtration or evaporation techniques. Figure 3a and b shows the photograph of flexible GO paper and mechanical properties comparison chart of GO paper, buckypapers, vermiculite paper-like material, and graphite foil, respectively. Young’s modulus is as high as in GO papers with 42 GPa for vacuum-assisted technique, and similar tensile strength but lowest Young’s modulus (12.7 GPa) was obtained for evaporation-induced self-assembly technique [31, 34]. Thus, the high mechanical properties of GO paper can be used in several applications such as supercapacitors and other flexible substrates [35]. Moreover, the mechanical properties of GO papers depend on the alignment of GO sheets by any chemical modification between the layers and at the edges. The modifications are made either by crosslinking or grafting between the two sheets as GO has several functional groups that covalently attached to other molecules [36, 37]. The intercalation, functionalization, and interaction between the GO sheets provide high mechanical stiffness for paper-like material. Moreover, the atmospheric humidity affects the mechanical property of the GO paper, increase in the relative humidity to 100%, the GO colloidal solution absorbs water from moisture and it bulges to 70% which decreases the tensile strength [34]. The functionalization on graphene surface also affects the mechanical properties depending on the functional moieties as well as the bonding nature [38, 39, 40]. The electrical properties of GO papers depend on the synthetic methods as several changes were observed in structures and reduction ratios of C/O. Upon exposing to the hydrazine vapor, the conductivity of GO papers increased by four order of magnitude from 8.5 × 10−4 to 170 S/cm. Further enhancement in conductivities of GO paper was developed by treating the paper with mixture of argon/hydrogen/hydrazine vapors [41]. The removal of the oxygen group is the main factor to restore the sp2 carbon network by chemical or thermal treatment. The chemical reductive treatment efficiently removes the oxygen moieties from the GO paper, whereas the thermal treatment shows high restoration of sp2 carbon network but less removal of oxygen functional groups. Recently, a rapid reduction treatment was proposed by immersing the GO papers in hydrohalic acids, viz., HI and HBr, which shows a remarkable electrical conductivity around 298 and 3220 S/cm, respectively [32, 42]. Based on the facile chemical treatment, the electrical conductivity of FSG improvement was shown by treating the GO papers in metal halides like MgI2, AlI3, ZnI2, and FeI2 that exhibit 550 S/cm [33].
(a) Photograph of flexible graphene oxide paper, (b) comparison chart of mechanical properties of GO paper with other flexible paper materials, (c) effect of FSG electrical conductivity changes w.r.t its properties upon HI treatment in different scale of time, and (d) electrical conductivity versus the Raman and XPS data of GO paper reduced by different metal halides (without permission from Refs. [31, 32, 33]).
Owing to these attractive mechanical and electrical properties of FSG material, it played vital role in flexible device technologies based on electrochemical energy storage and generation, actuators, sensors, and catalysts. Based on the attractive graphene properties and its nomenclature, the graphene oxide has fascinating properties which has layered structure similar to graphene that containing oxygen functional groups such as carboxyl, hydroxyl and epoxy. These functional groups were highly dispersed in DI water; hence, it is well aligned over vacuum filtration process. The GO paper is peeled off after vacuum drying and subjected to reducing treatment, as synthesized FSG material is directly utilized as current collector in place of Al, Cu, Ni foam, etc., for energy storage applications.
Battery is an electrochemical energy storage device that is cost-effective and eco-friendly and with cyclic durability, excellent overall performance, and long-term stability. In this decade, lithium ion battery (LIB) is successfully commercialized worldwide for portable electronic devices, and it has approximately 200 kWh scale for transportation and stationary storage [43]. On comparison with other secondary-based batteries such as sodium sulfur, redox flow, Ni-Cd, etc., Li ion cells have gathered the most commercial interest because they provide high energy and power densities, respectively. In contrast, other secondary batteries are under development stage for consideration in commercial package over LIB due to its major drawback as follows: large scale storage, cost of materials, toxicity, cyclic performance, or stability issues. However, the better system in secondary batteries credited for LIB because the redox potential of −3.04 V vs. SHE (standard hydrogen electrode) for Li/Li+ which has high electropositive in periodic table and light weight material with small ionic radius. Henceforth, the charge-discharge rates enhance and power densities vary in the ranges of 500–2000 W/kg [44]. In commercialized LIBs, the existing negative electrode is a graphite-layered structure material coupled with the host material and LiCoO2 has positive electrodes. Similar to LIBs, the other systems were also focused since it lags behind to reach the theoretical specific capacity (400 Wh/kg) that requires for electric vehicles for long term usage. Hence, other kinds of secondary batteries have been discovered such as Li-sulfur, sodium-ion battery (SIB), sodium-sulfur, Li-air, Zn-air, and flow batteries.
Conventionally, LIBs are made up of graphite anode and LiCoO2 layered material as cathode sandwiched between LiPF6 (1.0 mol/L) as an organic electrolyte dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) in 1:1 volume ratio [45]. While LIB is charging, deintercalation happens at cathode, where the Li ions are removed from the layered LiCoO2 by releasing electrons to cathode. The released Li ions are transported to anode with the help of the electrolyte system and finally intercalated into graphite by gaining electrons. The same process is reversed during the discharging process.
Designing of anode materials for LIBs has focused much attention on retaining large reversible specific capacity. Beyond the graphite anode, few metal oxides and metal alloys were developed as anode material, and the lithiation and delithiation processes were investigated. Specifically, FSG paper outpaces the other candidates such as carbon nanotube (CNT) paper or graphite foil due to their tremendous properties as discussed earlier. Importantly, the electrical and mechanical properties of FSG are potentially applied for flexible device application. However, the FSG electrode itself does not provide higher capacity (approximately 100 mAh/g), which is not applicable as anode in LIB; instead, it has good cycling stability. Therefore, the host material that has high electrochemical active sites is incorporated into FSG for improvement of capacity in the device. This extends the large volume expansion in FSG electrodes for an efficient Li ions intercalation. One of the advantages of this FSG hybrid electrode is that it excludes the nonconducting polymer binders as additives. Conventional electrode-based materials were obtained as powders and coated on the metal foils in the form of ink using additives like polymer binders and conducting additive, whereas the FSG hybrid electrode plays dual role as a current collector and conductive additive.
In 2005, LIBs were fabricated with free-standing electrode based on CNTs prepared by vacuum filtration method [46]. Significantly, the free-standing electrode fabrication is a facile route in comparison with the conventional electrode since the mixture of active material, polymer binder, and conductive additive in solvent coated on metal foils. The CNT free-standing electrode provides reversible discharge capacity of 200 mAh/g at 0.08 mA/cm2. Further, the specific capacity was enhanced by the CVD grown free-standing CNT that delivers 572 mAh/g at 0.2 mA/cm2 [47]. This is a quite interesting result obtained for free-standing electrodes rather than the conventional electrodes. Meanwhile, the usage of high-cost material CNTs as free-standing electrodes lags behind manufacturing process. From this point of view, inexpensive material graphene prepared by chemical methods provides large scale production as dispersion in many solvents. This dispersion is readily subjected to vacuum filtration to prepare FSG paper with desired thickness. Usually, the discharge capacity of 298 mAh/g decreased to 240 mAh/g after 50 cycles for graphite electrodes with 81% retention capacity. But the FSG paper itself as anode provides huge irreversible discharge capacity, i.e., 680 mAh/g at initial cycle dropped to 84 mAh/g second cycle. The retention capacity is very poor compared to graphite electrode and therefore it is concluded to be not a suitable candidate for anode material [48]. This helps infer that solid electrolyte interface (SEI) formation is a significant parameter to reduce the storage capacity in FSG electrodes.
To potentially apply FSG as anode material in LIBs, the second phase material with highly electrochemical active sites should be composited to enhance the capacity. In this regard, Lee et al. composited Si NPs on GO sheets, vacuum filtered, and followed by thermal treatment to produce FSG/Si nanoparticle (NP) paper. This work delivers high Li ion storage when compared to pristine FSG electrodes. Si NPs intercalated between the graphene sheets of FSG paper that facilitates good 3D graphite-like framework and provides high Li ion storage even at high current density [49]. Another work has been reported with similar hybrid FSG/Si NPs, whereas a facile route has been introduced to fabricate. The specific capacity of 708 mAh/g was observed without any loss even after 100 cycles and this is mainly due to the larger volume change in graphene-Si composite. It also denotes the performance of device with an efficient electron and charge transfer contributed by graphene sheets that minimize the internal resistance of the electrodes [50]. Zhang et al. prepared Si hollow nanosheets using Mg as template and connected with graphene sheets to obtain free-standing electrodes by layer-by-layer method followed by HI reduction treatment. The specific capacity was examined during flat and bent state, which delivers similar results without any loss. Remarkably, Si/FSG paper anodes retain high reversible capacities even at long cycles, which reveals their retention capacity. They exhibit specific capacity of 660 mAh/g at 0.2 A/g current density after 150 cycles with 99% coulombic efficiency [51]. As mentioned earlier, all the Si NPs are highly expensive in terms of manufacturing process and hence a low cost method plays a significant factor. To tackle this issue, Cai et al. prepared Si NPs on CNT surface using low-cost Al-Si alloy as starting material and further inserted with graphene sheets to form a self-standing hybrid anodes for LIBs. Comparing with bare Si/CNT or Si/Graphene anodes, Si-CNT/FSG hybrid electrode, it delivers 1100 mAh/g at 0.2 A/g current density after 100 cycles. Addition of CNT was involved to disperse the Si NPs on the surface and provide network between the graphene sheets for conductivity enhancement as well as improved Li ion intercalation for efficient charge transfer [52].
Metal oxides (MOs) play an important role in LIBs as anode material and their poor conductivity restricts their application. Hence, introducing the conductive phase into MOs provides high retention capacity with long-life cycling stability. The theoretical reversible capacity of SnO2 is 782 mAh/g and its poor performance is due to low cycling with serious volume expansion. With this regard, SnO2 NPs dispersed on GO surface, followed by vacuum filtration to obtain free-standing electrodes and used as two different LIB anodes by thermally reduced and chemically reduced respectively [53, 54]. The specific capacity of 438.5 mAh/g at 0.1 A/g and 700 mAh/g at 0.2 A/g has been delivered for the two different reduction methods for SnO2 NPs/FSG electrodes. In both the cases, capacity fading is not observed even after the 50 cycles owing to the good anchoring of SnO2 and graphene sheets. Further, other metal oxides TiO2, Mn3O4, Fe3O4, and CuO nanostructured materials are incorporated into the FSG and are investigated for their performance in anode application for LIBs that delivers 269 mAh/g at 0.2 A/g, 692 mAh/g at 0.05 A/g, 544 mAh/g at 10 A/g, and 698.7 mAh/g at 0.67 A/g capacities, respectively [55, 56, 57, 58, 59]. Commonly, all these metal oxides’ specific capacity shows a reasonable capacity with the long-life cycling after incorporating the MOs into FSG electrodes due to the following aspects: (1) Interaction of GO and MO precursors increases, which enhances the well dispersive growth of MO NPs on graphene sheets. (2) Anchoring of MOs and graphene enhances the volume expansion/contraction for lithiation/delithiation process. (3) The cycling stability increases compared to pristine MO anodes even after several cycles owing to its structural phase remain stable after alloying/de-alloying process of lithium ions. (4) MOs avoid the aggregation of graphene stacking that leads to larger void space to penetrate the electrolyte and make a strong interface with the electrochemical active MOs for an efficient Li ion storage.
Further, with the controlled synthesis of oxygen, functionalized CNT/FSG electrodes were fabricated for anode application in LIBs. The battery performance is based on the oxygen functional groups in the electrodes that have been investigated. An optimization in weight ratios of CNT/FSG and heat treatment improves the volumetric and gravimetric capacitances. The CNT/GO hybrid at a ratio of 1:1 shows higher volumetric capacity of 260 mAh/cm3 that reduced at 200°C, while lower capacity of 43 mAh/cm3 for 900°C treated CNT/GO. Whereas, at high current densities, the role of oxygen in capacity role suppress for 200°C larger than the 900°C [60]. This implies the importance of CNT intercalation between the graphene sheets of FSG electrodes. Zhang et al. demonstrated the defect-rich MoS2 NSs/graphene/CNT hybrid paper as anode material for LIBs. In this design, MoS2 facilitates the lithium ion storage due to the high active sites at the edges and the electrical conductivity improved by the network of CNTs attached to the graphene sheets. In addition to the conductivity enhancement, the porosity of the FSG electrodes increased by the network of CNT sandwiched graphene sheets. On the whole, the binder-free and substrate-free hybrid anode papers deliver high reversible capacity of 1137.2 mAh/g at 0.1 A/g current density with good cycling stability [61]. This framework induces a novel pathway to incorporate other host materials to understand the CNT/FSG electrodes. Recently, several transition metal oxides provide high reversible theoretical capacities compared with the commercialized graphite anode. To the CNT/FSG electrode network, transition metal oxides such as Fe2O3 [62], CuO [63], MnO [64], and CoSnO3 [65] were incorporated as electrochemical active phase into the framework and investigated as anode material performance for LIBs. All these hybrid papers exhibit high reversible capacity of 716 and 600 mAh/g at 0.5 A/g current density more than 50 cycles for Fe2O3 and CuO nanobox, respectively. Apart from this, an enhanced capacity was observed for CoSnO3 and MnO NPs at high current density of 2 A/g, which delivers 676 and 530 mAh/g, respectively. Individually, the CNT/FSG and transition metal oxide anodes were found to have a drastic decrease of specific capacity upon increasing the current density, whereas a slight decrease of specific capacity was observed after hosting the metal oxides into CNT/FSG framework. Reasons for high reversible capacity and good cyclic stability of metal oxide-CNT/FSG electrodes are very similar due to the following merits: (1) incorporation of metal oxides improves the Li ion kinetics and enhances the charge transfer due to highly conductive CNT network between the graphene sheets; (2) 3D framework of CNT/FSG has highly porous nature, large specific surface area, and large volume change, which has well dispersion of metal oxide NPs onto the carbon surfaces; and (3) long cycling due to good attachment of metal oxide with CNT/FSG, whereas greater the volume expansion, higher the Li ion intercalation.
Interestingly, Cao et al. designed a unique layered nanostructure of porous ternary ZnCo2O4 on graphene sheets and fabricated as flexible anode and investigated its electrochemical performance. And also they constructed full cell with LiFePO4 as cathode material that deposited on FSG paper as slurry by homogenous mixing of conductive additive and polymer binder [66]. Figure 4a shows the photograph of flexible Li-ion battery fabricated by FSG hybrid electrodes. The half-cell of ZnCo2O4/FSG anode delivers higher specific capacity of 791 mAh/g at 1 A/g after 1000 cycles with 97.3% of capacity retention and concludes that it has an excellent cycling stability. Figure 4b shows the rate capability of the flexible battery with different current densities ranging from 0.5 to 10 C. This full cell delivers 40 mAh/g even at 10 C rate and the specific capacitance remains the same after the current density decreased to 2 C, which shows a good reversibility. The full cell has FSG paper as current collector for both the anode and cathode that are composited with ZnCo2O4 and LiFePO4 as host materials, respectively. It operates at 2 V with initial charge of 143 mAh/g and coulombic efficiency of 97.2%, which is comparable to existing LIB. The specific capacity is maintained at 90 mAh/g with high capacity retention under flat and bent states over 100 cycling process, which implies the flexibility of the device as shown in Figure 4d. It represents that graphene conductivity is unchanged while bending the device.
(a) Photograph of flexible full cell Li-ion battery with FSG/ZnCo2O4 as anode and FSG/LiFePO4 as cathode, (b) charge-discharge curve of full cell at 0.5 C rate, (c) charge-discharge rate capability at different rates, and (d) capacity variation on flat and bent state during cycling at 2 C rate (without permission from Ref. [66]).
Ahead of LIBs, SIBs have attracted the research community as the resources of Na are inexhaustible across the globe. In comparison with LIBs, the redox potential is −2.71 V vs. SHE and only the radius is 55% larger than the Li ions. Larger radius influences to focus on suitable material for insertion/extraction of Na ions effectively. The researchers focused on developing an efficient anode material for SIBs that involves carbon-based families and Na intermetallic compounds. The first cycle-specific capacity of sodium-antimony and sodium-phosphorous shows 600 and 2596 mAh/g, respectively [67, 68, 69]. Specific capacities drop after first cycles due to the internal cracking in the electrodes upon Na ion insertion. It leads to hinder the electrical properties and dissolution of electrode materials to electrolyte. The hard carbon with large interlayer distance that functions as anode material for SIBs and delivers more than 200 mAh/g of capacity even after 100 cycles was reported elsewhere.
The porous nature and structure of the FSG could facilitate the accommodation of host materials such as transition metal chalcogenides (TMCs), which are electrochemically active for the Na ions for alloying process. David et al. reported that the MoS2/FSG composite papers exhibit an excellent cyclic stability with high reversible capacity of 338 mAh/g at 0.025 A/g. It is the first report and opens the pathway to apply free-standing electrodes for SIB anode [70]. The cyclic stability was enhanced in flower-like MoS2 incorporated on graphene foam prepared by one-step microwave-assisted synthesis. It offers stable capacity of 290 mAh/g at 0.1 A/g after 50 cycles compared to previous MoS2/FSG electrode. The cycling performance is enhanced due to highly conductive 3D graphene foam and well-dispersed MoS2, which shields as well as avoids the strain during the sodiation/desodiation process at anode [71]. With the significance of MoS2 TMC for SIB anodes, further investigation was followed by incorporating other TMCs such as WS2 and Co0.85Se into FSG [72, 73]. As mentioned in LIBs, the electrochemical behavior can be increased by introducing the heteroatoms into the graphene sheets. Heteroatom-doped FSG electrode performance was investigated for SIB anode, where the nitrogen improves the electronic conductivity and fluorine expands the interlayer for an efficient accommodation of Na ions. This delivers a reversible capacity of 56.3 mAh/g at 1 A/g for 5000 cycles. It indicates that the doping of heteroatoms enhances the cycling stability of SIB anodes. Figure 5a shows the discharge/charge profile before and after the bent state, which remains with the same capacity at current density of 0.05 A/g. It reveals the mechanical strength of the FSG electrodes that is suitable to fabricate flexible pouch cell [74]. Even though the above said materials show an excellent cyclic stability, still it is necessary to improve the specific capacity of SIBs. It is well known that Na3P has theoretical capacity of 2600 mAh/g, where its demerits are very similar to those of Si electrode in LIBs. Because of high pulverization, fast capacity fading and also it hinders the electrical contact which lags behind in the electrochemical stability. Lots of effort have been made by assembling red P into carbon matrix to overcome these problems. Red P was composited on carbon nanofibers (CNFs) and dipped in GO solution followed by HI treatment providing P-CNF/FSG electrodes. In this architecture, CNF network enhances the pathway of electron transport rapidly and the role of graphene sheets to improve the conductivity as well as to avoid the breakup of bonds P–P from electrodes. This work demonstrates a significant capacity of 406.6 mAh/g at 1 A/g after 180 cycles [77]. Moreover, the graphene sheets have been utilized as a multifunctional conductive binder, and hard carbon/FSG as anodes for SIBs was constructed. It delivers high reversible capacity of 372.4 mAh/g and shows capacity retention of 90% over 200 cycling. A superior performance is observed in the absence of PVDF binder with higher rate capabilities and converting the rigid nature of hard carbon into flexible graphene sheets [78].
(a) Discharge/charge profile of heteroatoms (N and F)-doped FSG electrode at bent and normal state for SIBs. (inset: The photograph of FSG pouch cell illuminated with LED), (b) comparison of specific capacity and coulombic efficiency of bare FSG and N-doped FSG for Li-S battery. Cross-sectional SEM images of (c) discharged and (d) re-charged macroporous FSG electrodes (without permission from Refs. [74, 75, 76]).
Akin to SIBs, FSG electrodes play a major role in other rechargeable secondary batteries such as Li-S, Li-air, and Zn-air. The higher specific energy is a significant parameter for transportation and stationary applications, and in that case, Li-S batteries offer advantages but it is limited with few challenges discussed later. The highest theoretical capacity of Li-S system is 2600 Wh/kg, which is highest than the LIB due to highest capacity of Li-S cathode sulfur has 1675 mAh/g. The most challenging part is to improve the electronic conductivity of cathodes of Li-S as the sulfur exhibits poor conductivity of 10–17 S/cm as well as the formation of polysulfides at cathodes. These polysulfides oxidize the Li anode and get back to cathodes and re-oxidize, thus lowering the performance of Li-S system. An extensive effort has been made to improve the cathodes by incorporating the carbon additives to sulfur to minimize the unnecessary reactions. Initially, mesoporous FSG was prepared and the sulfur was deposited by vapor treatment and was utilized as cathodes for Li-S system. It delivers charging capacity of 1288 mAh/g with high coulombic efficiency that reveals the restriction of sulfur to dissolute polysulfides in mesoporous FSG framework [79]. Similar to LIB and SIBs, the electrochemical behavior of cathode in Li-S system enhanced for heteroatom-doped FSG electrodes. Figure 5b shows the comparison of FSG and N-doped FSG capacity and coulombic efficiency with different cycle number. The heteroatom-doped FSG shows superior performance than the bare FSG due to the high interaction of polysulfides with heteroatoms that increase specific capacity. The nitrogen doping effect in FSG minimizes the concentration of polysulfides and forms a uniform layer of Li2S at cathode. This system delivers 1000 mAh/g at 0.335 A/g after 100 cycles [75]. In another work, Zhu et al. developed free-standing cathodes by CNTs that were interconnected with the sulfur-graphene walls and investigated the electrochemical behavior that delivers 1346 mAh/g at 0.17 A/g current density. It is due to sulfur at graphene walls that deals to provide dual response as follows: (i) hinder the dissolution of polysulfides minimizing the shuttle phenomenon and (ii) offer volume expansion even at high quantity of sulfur. Moreover, its capacity retention shows 40% when current density is increased to 16.7 A/g owing to the good electron pathway by CNTs connected with graphene nanosheets [80]. Further, nanosized Li2S (25–50 nm) particles incorporated into FSG papers by vacuum filtration process demonstrated an excellent cycling and rate capability with reversible capacity of 816.1 mAh/g at 0.1675 A/g (150 cycles) and 597 mAh/g at 11.7 A/g (200 cycles). This shows excellent performance in electrochemical behavior due to the uniform distribution of Li2S particles on graphene sheets that minimize the barrier for Li ion transport and particularly it has superior wetting nature to interconnect the polysulfides with graphene network into the paper electrodes [81]. Similarly, Chen et al. designed an efficient hierarchical nanostructure like nanobundled forest with Li2S/few-walled CNTs at FSG obtained solution processing followed by self-assembly method as cathodes. In this design, CNTs assembled in shaft-like structure and Li2S as active material, whereas the graphene sheets act as barrier for Li2S. It achieves high capacity of 868 and 433 mAh/g at current density of 335 and 16.7 A/g, respectively. This originates from the good framework between CNTs and graphene sheets as well as the uniform distribution of Li2S, and moreover, the barrier of graphene sheets for Li2S reduces the dissolution of polysulfides. Overall, the influence of void space enhances the volume change and thus improves the cycling stability of Li-S battery [82].
Recently, metal-air batteries have inspired much attention apart from the above said battery systems due to their high theoretical capacity than the metal-ion and Li-S batteries. The metal-air batteries can be operated in aqueous or nonaqueous medium based on the selection of metals. The nonaqueous medium is well suited for the Li-air batteries that deliver high capacity than in aqueous medium but still there are some issues when it comes to the practical application. The development of cathode in Li-air is significant as it is the main compartment to breathe oxygen for delivering high capacity of the system. There are a lot of reports for cathode development based on metal oxides grown on Ni foam as binder-free electrodes. The role of FSG electrodes was also investigated as cathodes for Li-air batteries. First, Kim et al. developed graphene nanoplates (GNP)/GO composite paper-like electrodes as cathodes for Li-air battery system. The wrinkled nature of the paper electrodes induces the high surface area and also delivers higher discharge capacity of 9760 mAh/g at 0.1 A/g current density. This superior performance is due to the reduced overpotential, and the difference in consumption/evolution of O2 is minimized. On the whole, the system exhibits higher efficiency in OER (oxygen evolution reaction)/ORR (oxygen reduction reaction) of 87% [83]. The same group developed macroporous FSG paper with surface area of 373 m2/g and pore volume of 10.9 cm3/g with 91.6% of porosity that exhibits a high specific capacity of 12,200 mAh/g at 0.2 A/g. The rate capability is enhanced where it shows high cycling performance even at higher current density of 0.5 and 2 A/g that delivers approximately 1000 mAh/g. This is attributed to the minimized volume expansion that limits the decomposition and formation of Li2O2 at the macroporous nature of FSG. While discharging/charging the macroporous FSG, the nature of FSG electrode decomposes the discharge products completely that reveals its highly porous structure as shown in the Figure 5c and d [76]. Researchers investigated the effect of FSG cathodes in Li-air upon introduction of metal oxides, namely, α-MnO2 and NiCo2O4. Upon insertion of α-MnO2 into FSG electrodes, the overpotential decrease was caused during charge/discharge process. It delivers 2900 mAh/g for the higher content of α-MnO2 that was reported and shows the catalytic improvement in this study [84]. And Jiang et al. reported an excellent reversible capacity of 5000 mAh/g at 0.4 A/g by incorporating mesoporous NiCo2O4 into macropores of FSG. It also lowers about 0.18 and 0.54 V of overpotential for discharge and charge, respectively [85].
In this chapter, FSG electrodes in battery applications signify their potential advantages to the fabrication technology. The fabrication of FSG electrode is facile as well as it excludes some additives applied in conventional electrodes. At present, the electrode of spent batteries contains active materials, binder, and metal foil, which set hurdles for recycling process. Herein, the FSG hybrid electrodes provide good capacity and cycling for battery application without binder and metal current collector. This exclusion provides light weight and flexible batteries and also there is a pathway to discover a facile route to recover the materials from FSG hybrid–based spent batteries in future.
This work was supported by South China Normal University. F.C. thanks the support from Outstanding Young Scholar Project (8S0256), the Project of Blue Fire Plan (CXZJHZ201709), and the Scientific and Technological Plan of Guangdong Province (2018A050506078).
The authors declare that there is no conflict of interest.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1152",title:"Reconstructive Surgery",slug:"reconstructive-surgery",parent:{title:"Surgery",slug:"surgery"},numberOfBooks:7,numberOfAuthorsAndEditors:219,numberOfWosCitations:79,numberOfCrossrefCitations:47,numberOfDimensionsCitations:113,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"reconstructive-surgery",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8853",title:"Breast Cancer and Breast Reconstruction",subtitle:null,isOpenForSubmission:!1,hash:"5947d4ba7ac1e9c39c9083e89201275c",slug:"breast-cancer-and-breast-reconstruction",bookSignature:"Luis Tejedor, Susana Gómez Modet, Lachezar Manchev and Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/8853.jpg",editedByType:"Edited by",editors:[{id:"81170",title:"Dr.",name:"Luis",middleName:null,surname:"Tejedor",slug:"luis-tejedor",fullName:"Luis Tejedor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5428",title:"Designing Strategies for Cleft Lip and Palate Care",subtitle:null,isOpenForSubmission:!1,hash:"20bcf2aa877c04447d31d6e0db2e437e",slug:"designing-strategies-for-cleft-lip-and-palate-care",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5428.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3283",title:"Skin Grafts",subtitle:null,isOpenForSubmission:!1,hash:"51201608d5c5d7ff6f47e5afd2abdb9f",slug:"skin-grafts",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/3283.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"984",title:"Current Concepts in Plastic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"46fb663adfdfb9ceeb2df2013b08038f",slug:"current-concepts-in-plastic-surgery",bookSignature:"Francisco J. Agullo",coverURL:"https://cdn.intechopen.com/books/images_new/984.jpg",editedByType:"Edited by",editors:[{id:"49319",title:"Dr.",name:"Frank",middleName:null,surname:"Agullo",slug:"frank-agullo",fullName:"Frank Agullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"943",title:"Bone Grafting",subtitle:null,isOpenForSubmission:!1,hash:"9afab8beeb4879b2751907783a3de842",slug:"bone-grafting",bookSignature:"Alessandro Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/943.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1007",title:"Xenotransplantation",subtitle:null,isOpenForSubmission:!1,hash:"45fde91777f91583197a5b5dfecb207a",slug:"xenotransplantation",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/1007.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1305",title:"Advances in Endoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"84236c28c671a83f6cd1cd8bb84d873f",slug:"advances-in-endoscopic-surgery",bookSignature:"Cornel Iancu",coverURL:"https://cdn.intechopen.com/books/images_new/1305.jpg",editedByType:"Edited by",editors:[{id:"33183",title:"Prof.",name:"Cornel",middleName:null,surname:"Iancu",slug:"cornel-iancu",fullName:"Cornel Iancu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"33456",doi:"10.5772/30442",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27429,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33460",doi:"10.5772/31149",title:"Congenital Pseudarthrosis of the Tibia: Combined Pharmacologic and Surgical Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-Fibular Cross Union, Intramedullary",slug:"treatment-of-congenital-pseudarthrosis-with-periosteal-and-cancellous-bone-grafting-",totalDownloads:3003,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Dror Paley",authors:[{id:"85789",title:"Dr.",name:"Dror",middleName:null,surname:"Paley",slug:"dror-paley",fullName:"Dror Paley"}]},{id:"39014",doi:"10.5772/51852",title:"Treatment of Leg Chronic Wounds with Dermal Substitutes and Thin Skin Grafts",slug:"treatment-of-leg-chronic-wounds-with-dermal-substitutes-and-thin-skin-grafts",totalDownloads:3144,totalCrossrefCites:0,totalDimensionsCites:6,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Silvestro Canonico, Ferdinando Campitiello, Angela Della Corte, Vincenzo Padovano and Gianluca Pellino",authors:[{id:"68551",title:"Dr.",name:"Gianluca",middleName:null,surname:"Pellino",slug:"gianluca-pellino",fullName:"Gianluca Pellino"},{id:"157129",title:"Prof.",name:"Silvestro",middleName:null,surname:"Canonico",slug:"silvestro-canonico",fullName:"Silvestro Canonico"},{id:"157133",title:"Dr.",name:"Ferdinando",middleName:null,surname:"Campitiello",slug:"ferdinando-campitiello",fullName:"Ferdinando Campitiello"},{id:"165428",title:"Dr.",name:"Angela",middleName:null,surname:"Della Corte",slug:"angela-della-corte",fullName:"Angela Della Corte"},{id:"165429",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Padovano",slug:"vincenzo-padovano",fullName:"Vincenzo Padovano"}]}],mostDownloadedChaptersLast30Days:[{id:"53788",title:"Surgical Techniques for Treatment of Unilateral Cleft Lip",slug:"surgical-techniques-for-treatment-of-unilateral-cleft-lip",totalDownloads:3042,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mustafa Chopan, Lohrasb Sayadi and Donald R. Laub",authors:[{id:"67264",title:"Dr.",name:"Donald",middleName:"R",surname:"Laub Jr.",slug:"donald-laub-jr.",fullName:"Donald Laub Jr."},{id:"189368",title:"Mr.",name:"Mustafa",middleName:null,surname:"Chopan",slug:"mustafa-chopan",fullName:"Mustafa Chopan"},{id:"189370",title:"Mr.",name:"Lorasb",middleName:null,surname:"Sayadi",slug:"lorasb-sayadi",fullName:"Lorasb Sayadi"}]},{id:"53858",title:"Surgical Strategy of Cleft Palate Repair and Nasometric Results",slug:"surgical-strategy-of-cleft-palate-repair-and-nasometric-results",totalDownloads:1249,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Norifumi Nakamura and Masahiro Tezuka",authors:[{id:"72560",title:"Prof.",name:"Norifumi",middleName:null,surname:"Nakamura",slug:"norifumi-nakamura",fullName:"Norifumi Nakamura"},{id:"189479",title:"Dr.",name:"Masahiro",middleName:null,surname:"Tezuka",slug:"masahiro-tezuka",fullName:"Masahiro Tezuka"}]},{id:"67059",title:"Oncoplastic Surgery in Breast Cancer",slug:"oncoplastic-surgery-in-breast-cancer",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"breast-cancer-and-breast-reconstruction",title:"Breast Cancer and Breast Reconstruction",fullTitle:"Breast Cancer and Breast Reconstruction"},signatures:"Atallah David, Moubarak Malak and Abdallah Abdallah",authors:[{id:"219535",title:"Associate Prof.",name:"David",middleName:null,surname:"Atallah",slug:"david-atallah",fullName:"David Atallah"},{id:"221488",title:"Dr.",name:"Malak",middleName:null,surname:"Moubarak",slug:"malak-moubarak",fullName:"Malak Moubarak"},{id:"299454",title:"Dr.",name:"Abdallah",middleName:null,surname:"Abdallah",slug:"abdallah-abdallah",fullName:"Abdallah Abdallah"}]},{id:"54055",title:"Cleft Lip and Palate Patients: Diagnosis and Treatment",slug:"cleft-lip-and-palate-patients-diagnosis-and-treatment",totalDownloads:1864,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Letizia Perillo, Fabrizia d’Apuzzo, Sara Eslami and Abdolreza\nJamilian",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",middleName:null,surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"173044",title:"Prof.",name:"Letizia",middleName:null,surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"197679",title:"Dr.",name:"Sara",middleName:null,surname:"Eslami",slug:"sara-eslami",fullName:"Sara Eslami"},{id:"198961",title:"MSc.",name:"Fabrizia",middleName:null,surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"}]},{id:"33481",title:"Tuberous Breast: Clinical Evaluation and Surgical Treatment",slug:"tuberous-breast-clinical-evaluation-and-surgical-treatment",totalDownloads:13769,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"current-concepts-in-plastic-surgery",title:"Current Concepts in Plastic Surgery",fullTitle:"Current Concepts in Plastic Surgery"},signatures:"Giovanni Zoccali and Maurizio Giuliani",authors:[{id:"75465",title:"Prof.",name:"Maurizio",middleName:null,surname:"Giuliani",slug:"maurizio-giuliani",fullName:"Maurizio Giuliani"},{id:"76973",title:"Dr.",name:"Giovanni",middleName:null,surname:"Zoccali",slug:"giovanni-zoccali",fullName:"Giovanni Zoccali"}]},{id:"33456",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27425,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33455",title:"Introduction",slug:"introduction1",totalDownloads:1630,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Alessandro Rozim Zorzi and João Batista de Miranda",authors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"},{id:"84386",title:"Prof.",name:"João",middleName:null,surname:"Batista de Miranda",slug:"joao-batista-de-miranda",fullName:"João Batista de Miranda"}]},{id:"53715",title:"Cleft Lip and Palate in the Dog: Medical and Genetic Aspects",slug:"cleft-lip-and-palate-in-the-dog-medical-and-genetic-aspects",totalDownloads:6438,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Enio Moura and Cláudia Turra Pimpão",authors:[{id:"91097",title:"Prof.",name:"Enio",middleName:null,surname:"Moura",slug:"enio-moura",fullName:"Enio Moura"},{id:"194711",title:"Dr.",name:"Cláudia",middleName:null,surname:"Pimpão",slug:"claudia-pimpao",fullName:"Cláudia Pimpão"}]},{id:"42570",title:"Polyethylene Surgical Drape Dressing for Split Thickness Skin Graft Donor Areas",slug:"polyethylene-surgical-drape-dressing-for-split-thickness-skin-graft-donor-areas",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Madhuri A. Gore, Kabeer Umakumar and Sandhya P. Iyer",authors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}]},{id:"53918",title:"Epidemiology of Cleft Lip and Palate",slug:"epidemiology-of-cleft-lip-and-palate",totalDownloads:2032,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mairaj K. Ahmed, Anthony H. Bui and Emanuela Taioli",authors:[{id:"188212",title:"Dr.",name:"Mairaj K.",middleName:null,surname:"Ahmed",slug:"mairaj-k.-ahmed",fullName:"Mairaj K. Ahmed"},{id:"194367",title:"Dr.",name:"Emanuela",middleName:null,surname:"Taioli",slug:"emanuela-taioli",fullName:"Emanuela Taioli"},{id:"203416",title:"Dr.",name:"Anthony",middleName:null,surname:"Bui",slug:"anthony-bui",fullName:"Anthony Bui"}]}],onlineFirstChaptersFilter:{topicSlug:"reconstructive-surgery",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/123125/tien-pham",hash:"",query:{},params:{id:"123125",slug:"tien-pham"},fullPath:"/profiles/123125/tien-pham",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()