\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:"Dr. John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45526",title:"FMR Measurements of Magnetic Nanostructures",doi:"10.5772/56615",slug:"fmr-measurements-of-magnetic-nanostructures",body:'Ferromagnetic nanowires showed solitary and tunable magnetization properties due to their inherent shape anisotropy. The fabrication of such nanowires in polycarbonate track-etched and anodic alumina membranes have been widely studied during the last 15 years [1-2]. Their potential applications might be explored in spintronic devices and more specifically in magnetic random access memory (MRAM) and magnetic logic devices [3-5]. Furthermore, microwave devices, such as circulators or filters for wireless communication and automotive systems can be fabricated on ferromagnetic nanowires embedded in AAO substrates [6-9].
This chapter begins with a brief overview of the historical development of the theory of ferromagnetic resonance in magnetic nanostructures. State-of-the-art calculations for resonance frequency in ferromagnetic nanowires (solid and hollow) and multilayer nanowires are presented. In addition, experimental approach to synthesis such structures and detecting material properties using various techniques will be discussed in brief. Recently, due to the development of spintronics, there have been increasing interests in the microwave dynamics of one-dimensional structures such as nanowires and two dimensional structures like multilayer magnetic films. The most important parameters that control dynamic behaviors are the internal fields and damping constant. The ferromagnetic nanowires in anodic alumina (AAO) templates seem to be attractive substrates for microwave applications. Since they have high aspect ratio, electromagnetic waves can easily penetrate through them. They exhibit ferromagnetic resonance (FMR) even at zero bias fields and, due to their high saturation magnetization, operating frequency can be tuned with DC fields.
FMR is a useful technique in the measurement of magnetic properties of ferromagnetic materials. It has been applied to a range of materials from bulk ferromagnetic materials to nano-scale magnetic thin films and now a day’s people have started research to characterise nanoparticles and nanowires systems. The dynamic properties of magnetic materials can be easily perturbed by ferromagnetic resonance (FMR), as they can excite standing spin waves due to magnetic pinning [10-11,31,32]. It also yields direct information about the uniform precession mode of the nanowires which can be related to the average anisotropy magnitude [12-15]. Several measurement techniques which have been used to characterise magnetization dynamics such as femtosecond spectroscopy [16-18], pulse inductive microwave magnetometer [19], FMR force microscopy [20], network analyzer FMR [21,31,32] and high-frequency electrical measurements of magnetodynamics [22]. All these techniques can be used for modern application for example in telecommunications and data storage systems.
In the present chapter, we deal with magnetic nanostructures such as nanowires and multilayered nanodiscs and rings which exhibit unique FMR responses since their various anisotropy energies are strongly influenced by size and shape [33]. In addition, interactions between multilayered segments can be tailored such that the FMR response is not only angle-dependent but also influenced strongly at certain frequencies [32]. In this chapter, we shall be describing three different aspects of this topic:
We first develop the theory of FMR response of densely packed nanowire arrays that can be treated as two-dimensional periodic nanostructures. We then extend the theory to three-dimensional structures, which can be made using multilayered nanowires.
We then describe how to synthesize such nanowire arrays and also direct measurements of such structures. Several different experimental techniques are discussed.
We then continue the treatment to describe the use of such periodic nanowire arrays in microwave devices to exhibit nonlinear responses and also for circulators and isolators. Although the effects seen till now are weak, these are still quite promising.
Ferromagnetic resonance (FMR) is a very powerful experimental technique in the study of ferromagnetic nanomaterials. The precessional motion of a magnetization M of ferromagnetic material about the applied external magnetic field H is known as the Ferromagnetic resonance (FMR). In the physical process of resonance, the energy is absorbed from rf transverse magnetic field hrf, which occurred when frequency matched with precessional frequency (ω). The precession frequency depends on the orientation of the material and the strength of the magnetic field. It allows us to measure all the most important parameters of the material: Curie temperature, total magnetic moment, relaxation mechanism, elementary excitations and others.
A single domain magnetic particle with ellipsoid shape was considered as in [Kittel] to drive the resonance condition for the phenomenon of ferromagnetic resonance. A uniform, static magnetic field H is applied along the z-axis and set the sample in a microwave cavity. A resonance is observed at a frequency given by
Nx, Ny, Nz are the demagnetization factors in the x, y, z directions, and so on, and where g is the spectroscopic splitting factor (Lande factor) and µB = eħ/2me is the Bohr magneton. The demagnetizing factors affect the shape anisotropy of the magnetic material depending upon its geometry to be ellipsoid, sphere, thin film etc.
Part of the classical approach to ferromagnetism is to replace the spins by a classical micro-spin vector M magnetization. The time-dependence of the magnetization can be obtained directly by calculating the torque acting on M by an effective field Heff,
where γ = gµb/ħ is a gyromagnetic ratio. This equation represents an undamped precession of the magnetization. From experiments actual changes of the magnetization are known to decay in a finite time. The occurrence of a damping mechanism leads to reversal of the magnetization towards the direction of H within several nanoseconds. The damping is just added as a phenomenological term to Eq. 2.
where α is the dimensionless Gilbert damping constant, of order 10-2 in ferromagnetic thin films. Eq. 3 is known as Landau-Lifshitz-Gilbert equation after Gilbert introduces the damping term. Heff is the total effective magnetic field which is a sum of static applied magnetic field (H), dynamic magnetic field (hrf) and internal magnetic field (Hin). Internal field constitutes various magnetic anisotropies such as magnetocrystalline anisotropy, shape anisotropy, and magnetoelastic anisotropy etc. This equation therefore describes torque acting on M. This torque leads to a rotation of the magnetization towards the direction of the external magnetic field. The damping causes decay in precessional motion which by applying a dynamic magnetic field becomes continuous as shown in Fig. 1.
a) Torque components exerted on the magnetization M by rotational field H (b) Motion of M for constant H.
Due to miniaturization from bulk to the nanoscale, material properties shows a drastic change like surface-to-volume ratio, electron transport, thermodynamic fluctuations, defects etc. The nanomagnetic material demonstrates distinct magnetic response due to various anisotropies. The one-dimensional nanostructures such as nanowires, nanotubes, nanorods and nanorings are the area of recent research for data storage applications, sensors, biomedical drugs, microwave devices. To perturb the dynamic magnetization in these structures, ferromagnetic resonance is an effective tool.
In case of a system which incorporates an array of nanowires dipole-dipole interaction, shape anisotropy, crystalline anisotropy and Zeeman energy interaction plays a complex role. Therefore the total energy will be the sum of all internal energies.
Coordinate system for an array of nanowires
Fig. 2 shows the schematic of an array of nanowires with relative orientation of the magnetization M and the applied magnetic field H w.r.t nanowire axis in spherical coordinate systems. The free energy density equation for an array of magnetic nanowires in the presence of external magnetic field at angles (
where Keff is the effective uniaxial anisotropy which can be written as
The first term includes the dipole-dipole interaction between the nanowires and second term represents second-order uniaxial anisotropy along the wire axis. P is the porosity which can be obtained from
where d is the diameter of the pore and r is the centre-to-centre inter-wire distance between the pores. The equilibrium values for polar angles are obtained by minimizing the energy term
From eq (8) we retrieve the dispersion relation which can be written as
Here,
For the case of multilayer nanowires, the effective anisotropy field Heff is given by
where,
Case 1: H|| to the wire and Heff>0
Case 2: H|| to the wire and Heff<0
Case 3: H
Case 4: H
The frequency-field characteristics can be studied from these relations for various cases of the direction of the applied field and corresponding angular variation with resonance field of the nanowires as shown in Fig. 3. The horizontal line shows the intersection of the dispersion relation and indicates where in an FMR spectrum the resonance lines would be found for a fixed frequency in Fig. 3(a).
Simulated plots (a) dispersion relation for Ni nanowires for various angles in which the external magnetic field is applied (b) resonance field as a function of the externally applied field angle θH.
During last decade magnetic nanowires have attracted enormous research attention in many areas of advanced nanotechnology, including patterned magnetic recording media, materials for optical and microwave applications. Template assisted growth of nanostructures under constant potential in several electrolytes has been carried out by researchers for over 30 years. In comparison to other deposition techniques (sputtering and MBE) electrodeposition is a low cost and simple technique to fabricate magnetic nanowires and multilayers. Arrays of Co nanowires were fabricated by template assisted electrochemical deposition into the nanometer-sized pores.
Templates
Nanowires were grown by using two different types of templates (commercially available) polycarbonate track etched (PCTE) and aluminum oxide (AAO) from Whatman. These templates are completely different from each other due to their qualities as well as the preparation methods. The methods used for fabrication and properties of templates are given below;
Polycarbonate track etched (PCTE)\n\t\t\t
In PCTE template, the pore size varies from 20nm to 200nm and the thickness of ~6µm. To fabricate the PCTE template, initially high energy particle are used to bombard it to produce the path. Later these paths are etched in different chemical bath. The size of the pores is determined by the etching process. Fig.4(a) shows a SEM picture of a commercial PCTE membrane, with a reported pore size of 100 nm. Although the pores seem to have similar diameters, the pore placement is random. The pores density is quite low (in the range of 1010 to 1012 per cm2) in case of PCTE.
Anodic aluminum oxide (AAO)
In 1995, Masuda and Fukuda reported the method to fabricate highly ordered nanohole arrays on aluminum foil. Double anodization of aluminium in acidic solution is adopted to fabricate porous alumina template. The beauty of these templates is their cylindrical pores of uniform diameter, arranged in hexagonal arrays with a thin oxide layer exist at the bottom. Anodic Aluminum Oxide (AAO) templates have been successfully used as templates for the growth of nanowires by electrodeposition. In order to fabricate the AAO template the aluminum is cleaned in the acidic medium to remove the surface impurities. Further the cleaned aluminium processed by two step anodization described by Masuda. The pore size and spacing between pore in the alumina templates are controlled by the anodization voltage.
Temperature of electrolyte also plays a important role in pore parameters. The pores in AAO template cylindrical and highly dense which makes it a good candidate to study the interaction effect between the nanowires on magnetic properties. Fig. 4(b)-(c) shows the SEM micrograph of AAO templates.
SEM micrograph of membranes (a) Polycarbonate (b) Anodic alumina (Top view) and (c) anodic alumina (cross-section view).
Template assisted electrodeposition technique
Electrodeposition process involves the electric current to reduce cations from electrolyte and deposited that material as a thin film onto a conducting substrate. At the cathode the metal reduction takes place and metal deposits according to:
In order to form the nanowires, the cations from electrolyte move through the non-conducting template (AAO/ PCTE) having nanosized pores and deposited on the conducting substrate.
The desired material properties depends upon the various process parameters like electrolyte composition, bath pH, mode of deposition (DC, pulse and AC) and deposition temperature.
Schematic representation of three-electrode electrochemical cell setup employed. AAO template mounted electrodes act as a working electrodes (WE), platinum foil counter electrode (CE) and Saturated calomel electrode (SCE), reference electrode (RE).
Fig.5 illustrates the three-electrode cell set-up used in this study. A platinum foil and a saturated calomel electrode (SCE) were used as the anode (or counter electrode) and as a reference electrode respectively. The steps of preparation of nanostructure are as followed;
Steps involved in the template assisted synthesis of nanowires
Step 1: The porous anodic alumina (AAO) /polycarbonate templates were taken and one side of the AAO were sputtered with Au by RF sputtering, which acted as the working electrode in a three-electrode electrochemical cell.
Step 2: The electrodeposition solution was restrained to the other side of the membrane so that deposition was initiated onto the Au layer within the pores. The array of Co nanowires was deposited from a solution of 25 gm/L CoSO4.7H2O, 5 gm/L H3BO3 and sodium Lauryl Sulphate (SLS), which is used to reduce the surface tension of water for proper wetting of pores.
Step 3: The cyclic voltammetry is used to figure out the constant deposition potential of the working electrode with respect to a standard reference electrode RE to get the favourable condition for deposition.
Step 4: The growth of nanowires is carried at the optimized potential.
Step 5: For further investigation of freely standing nanowires, the templates is used to dissolve in an appropriate solution. Etching solution for AAO and PCTE are sodium hydro- oxide and dichloromethane respectively.
Schematic illustration of the growth of magnetic nanowire in alumina template by electrodeposition process.
Typical choronoamperometery plot during potentiostatic electrodeposition taken during the fabrication of Co nanowires. The various stage of pore filling during deposition is shown as insets at the respective current-time positions.
Scanning electron micrograph (SEM) of empty and filled surface morphology of the template.
Scanning electron microscopy
For scanning electron microscopy (SEM), the template containing nanowires is partially released from their template by appropriate solution. To remove the residual part of template the etched sample is cleaned by deionised water. To carry out the surface analysis secondary electron imaging in scanning electron microscope has been utilized. Surface morphology of Co nanowire was investigated by scanning electron microscope (SEM: ZEISS EVO 50) operating at 20 kV accelerating voltage by secondary electron imaging. Fig. 8 shows the SEM micrograph of empty AAO and filled with nanowires. The morphology of grown nanowires in PCTE template can be clearly seen in Fig. 9(a). Side and top view of AAO assisted nanowires are presented in Fig. 9(b & c). The growth density of nanowires in AAO template is more as compared to PCTE template.
Scanning electron micrograph (SEM) of electrodeposited nanostructure in (a) Polycarbonate and (b) & (c) Anodic alumina.
Transmission electron microscopy
Transmission Electron Microscope (TEM) is a widely used instrument for characterizing the interior structure of materials. For TEM, the template was completely etched and rinsed several times with deionised water to clean the residual template part. Template etching is an important step of sample preparation of nanowires for TEM characterization. Cobalt nanowires were scratched from the substrate and ultrasonicated in acetone for 15 min so that the nanowires could disperse properly. Few drops of the suspension were then transferred on to a carbon coated copper grid and the microstructures were analyzed by high resolution TEM (HRTEM: Technai G20 S-Twin model) operating at 200 kV. To get the actual diameter of the nanowire, the complete dissolving of residual template from surrounding the nanowires is very important. Typical TEM results obtained are shown in Figure 10. While nanowires grown in PCTE templates typically have a tapered cross-section due to the non-uniform diameters of the pores, the AAO template-based nanowires grow in a more uniform manner.
Transmission electron micrograph (TEM) of electrodeposited nanostructure in (a) Polycarbonate and (b) Anodic alumina.
EPR/FMR measurements obtained from ferromagnetic nanowire arrays give detailed information on the size of the nanowires. The spectra can be used to calculate the interwire magnetic interactions quite accurately [31]. In Fig. 11 are shown typical spectra obtained from Co nanowire arrays. Here, both single-Co nanowire arrays and multilayered Co/Pd nanowire arrays are compared. There is clearly an angular dependence of the applied microwave field with respect to the easy axis of the nanowires, as has been studied previously [32].
Electron paramagnetic resonance (EPR/FMR) spectra of single element Co nanowire arrays in parallel and perpendicular orientation at room temperature.
Fig.12 shows the FMR spectra of Co/Pd MLNW arrays for the temperature range from 90K to 290K. It is clear from the data that two different peaks in the FMR spectrum have been observed. The peak present at the ~ 3310 G is corresponding to the main peak of FMR and it is due to the quantum confinement in the nanostructures which is more in case of Co/Pd multilayered nanowires. The spin waves are confined in the magnetic nanostructure and it is found to be dominant when we reduce the third dimension (in z-direction) of the nanostructure. This main FMR peak present at all the temperature and the variation of resonance field at different temperature is very slow. As we go down to the 90K with decrease of 20K from room temperature the resonance field increases slowly. This slow variation can be explain as temperature decreases the Ms (T) increase and resultant head-to-tail alignment between FM segments increases, which further reduces the effective field as a result slow increase in the resonance field. Inset in Fig.12 shows the variation of resonance field with temperature.
Electron Spin resonance (ESR/FMR) spectra of multilayered Co/Pd nanowire arrays in parallel orientation with temperature range (90K-290K). (Inset) Peak height change with temperature.
The increasing demand for higher frequency magnetic microwave structures triggered a tremendous development in the field of magnetization dynamics over the past decade. In order to develop smaller and faster devices, a better understanding of the complex magnetization precessional dynamics, the magnetization anisotropy, and the sources of spin scattering at the nanoscale is necessary [23-25]. Magnetic data storage with its promise of non-volatility, robustness, high speed and low energy dissipation attracted long back. It has been encountered in a number of applications such as smart cards, hard drives, thin film read heads or video tapes [26-28]. Industry activities are also directed to replace semiconductor random access memories by magnet based memory devices. Logical 0 and 1 are encoded by the direction of the magnetization of a small magnetic element, such as a giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR) element. For data manipulation i.e. reading and writing, the magnetization has to be switched between the two equilibrium positions. In order to push forward data transfer rates which are already in the GHz range, spin waves transportation mechanism has to be employed in place of current semiconductor based devices [29-32]. To this end an understanding of the dynamic motion and the mode spectrum is necessary.
On the road towards the size reduction of microwave devices, ferromagnetic nanowires embedded into porous templates have proven to be an interesting route to ferrite based materials. The main advantages of what we call ferromagnetic nanowired (FMNW) substrates are that they present a zero-field microwave absorption frequency that can be easily tuned over a large range of frequencies, as well as being low cost and fast to produce over a large area as compared to standard ferrite devices. Conventional ferrite circulators need to be biased by a magnetic field to operate. This biasing field is generally provided by permanent magnet and in view of the volume reduction, we need to think of FMNW substrates which work at zero fields. A rigorous theory of microwave devices is very cumbersome due to ferromagnetic resonance (FMR) and spin-wave phenomena.
VNA-FMR is an important technique for the investigation of magnetization dynamics of low-dimensional magnetic structures and patterned microwave devices. Also, broadband flip-chip technique can be used to measure the material intrinsic and extrinsic properties by applying external magnetic field. In this chapter, we will demonstrate both techniques to have better understanding of ferromagnetic resonance. We propose fabrication and measurements of various non reciprocal microwave devices like band-stop filter, isolator and electromagnetic band-gap (EBG) structures using FMNW substrates using Ni and Co nanowires.
In the frequency domain measurements, the magnetic excitation is sinusoidal magnetic field hrf and the response of the sample is detected by vector network analyzer. The magnetic field can be applied along parallel and perpendicular direction of the nanowires satisfying the FMR condition. The main components of the experimental setup are shown in Fig. 13. The VNA is connected to a coplanar waveguide (CPW) having a characteristic impedance of 50 Ω using coaxial cables and microwave connectors. For such radio frequency connections often coaxial cables with Teflon insulation and SMA connectors are employed. They are comparably low priced and offer a bandwidth of typically 18 GHz. The used cables should not have a metallic reinforcement.
Flip-chip based measurements are done to extract the material parameters, which are technologically important for data storage applications [31]. Fig. 13 shows the schematic of the set-up used for flip-chip measurements. Magnetic field is applied parallel to the nanowires and perpendicular to RF magnetic field, so that resonance condition must be satisfied.
Schematic representation of VNA-FMR system
The transmission response of Ni NWs placed on a co-planar waveguide transmission line (Fig. 14(a)) for different static magnetic field is shown in Fig. 14(b). A small but perceptible and repeatable change was observed when the applied magnetic field was turned on/off. The change is however too small to show up in the plot of Fig. 14(b). This is partly due to masking of the shifts due to reflections from soldering and other undesirable metal deposits near the patterned transmission line and partly due to the relatively small interaction between the RF fields (largely confined to the substrate holding the CPW line) and the nanowires. It is thus expected that clearer shifts can be seen with more careful preparation and patterning of the substrate and ultimately by printing the CPW line on the nanowire template itself.
a) CPW geometery for magnetic field applied along perpendicular direction (b) transmission response as a function of frequency of Ni nanowires for various applied magnetic field
Newly developed techniques enable to characterize and re-arrange matter at nanometer scale. Now a day, automotive and wireless communication requires reduction in dimensions of nanodevices for yielding higher cut-off frequencies. Here, we propose integrated magnetic band-stop filter fabricated on FMNWS and studying their microwave properties like permittivity and permeability using CPW. Fig. 15(a) shows the schematic of the device under test which is a coplanar waveguide on NW substrate. The transmission coefficient of the device for three samples having bare AAO, Ni and Co NWs are shown in Fig. 15(b) at zero biasing. It is observed that by applying the magnetic field the resonance frequency shift towards higher range, so that we can tune our operating frequency of the device. We also observe that material properties also influence the Device-Under-Test (DUT).
schematic of band stop filter (b) S-parameter of the DUT for three different samples
It is important to note that it is possible to obtain non-reciprocal structures also using nanowire-based devices. Essentially, the microwave properties like permittivity and permeability can be made to be asymmetric. This is useful to obtain non reciprocal devices such as isolators and circulators. Prototypes of such devices are presently under fabrication. Some of the proposed devices are shown in Fig. 16 below. The detailed studies of these devices are out of scope of this chapter.
Different fermented foods could be categorized according to fermentation products just like organic acids which consisting of acetic acid and lactic acid (dairy and vegetables); and peptides and amino acids resulted from protein (fish and other fermentations); CO2 (bread); and alcohol (wine and beer) [1, 2]. Food fermentation is one of an early the most precise innovations created and developed by people.
\nIn Asia, coastal foragers during the age of primitive pottery (8000 to 3000 b.c.) were thought to have fermented vegetables before developing of crop-based agriculture [3]. It is possible that dairy fermentations in Middle East came after cattle domestication, alcohol was the first discovered fermented product from fruit fermentation. Many advanced fermentation procedures to produce alcohol by using the cereals were created nearly 4000 b.c., just like producing wine from rice in Asia and beer in Egypt [1]. In Asia, many composed references regarding fermentation innovation were found in historic poems Shijing Chinese book (1100 to 600 b.c.), that celebrates “the thousand wines of Yao,” in referring to a kingdom in China from 2300 b.c. Cucumber thought were first fermented nearly 2000b.c. in Middle East. Old composed records came from the remains of papers of a play (The Taxiarchs) by Eupolis a writer from Greece (429–412 b.c.), also in Christian Bible, pickles were repeated many times. The fermented cabbage and kimchi on the Korean style, is expected to have established in the primitive pottery age from the wizened vegetables ordinary fermentation stored in seawater [1].
\nSauerkraut on European style is thought was established in China, while the technique might be transferred to Europe at the invasion time of Mongol to central Europe in the 13th century. Nowadays, the vegetable fermentation industry is conducting on an enormous scale. Companies in United States that working on cucumber pickles fermentations may have 1000 fermentation tanks of forty-thousand-liter capacity at one site.
\nThroughout the ages, it was believed that cucumber pickle as the fairly fermented cucumber to which spices, vinegar, salt, and sometimes sugar has been added. While the preservation was not required by using the heat. Recently, fresh packed pickles, manufactured by adding of spices, salt, and vinegar to the fresh cucumbers under pasteurized preservation, are representing a huge portion of pickle industry.
\nIndustrial treatments tentatively preserve around 40% of crop through the fermentation in NaCI brines that contain fermentable carbohydrates which converting into acetic acids, ethanol, lactic acid, CO2, and other compounds by naturally existence lactic acid bacteria and yeast. This procedure uses to expand the using equipment packing line and workers to throughout the year operation in manufacturing of the final product.
\nTraditionally, fiberglass, wood, and polyethylene tanks are used for the fermentation that might require 10–21 days (period of storage in the same tanks is generally less than 1 year) and sometimes longer. Tanks are put outdoors to give the opportunity for sunlight ultraviolet irradiation to hit the surface of the brine and subsequently inhibiting yeasts and molds growing, and other microorganisms on the surface of the brine.
\nDuring the fermentation of cucumber pickles, brine storage and processing operations are liable to the reactions of oxidation which affect adversely on the quality properties. In spite of pickles are flooded in brine during fermentation and bulk-storage, while the containers are opening, which encourage the exposure to air and sunlight.
\nAdditionally, pickle tanks’ brines are usually spread with air in order to mix the components and to release CO2, and at the time of transferring to processing operations, pickles are removed from brine and subsequently exposes to light and oxygen. Also, the brines and pickles content of traces prooxidant metals just like copper, zinc and iron which act together with oxygen and light to be in charge of pigments oxidation and developing undesirable flavors sometimes, and this may lead to considerable economic loss of the market value.
\nCucumber (Cucumis sativus) fermentation in United States is conducted in 30,000–40,000 liter, fiberglass tanks with open top and placed outdoors to allowing the surface to exposure to sunlight. Sunlight UV radiation is dependent to suppression the surface aerobic yeasts that have the ability to utilize lactic acid that resulted from fermentation. Cucumbers are submerged totally with salt brine and kept under the brine surface with wooden headboards. Fermentation is usually conducted in 6% NaCl. Calcium chloride typically added the cover brine in order to keep the fragile texture, and firm of the fermented cucumber throughout fermentation and storage [4]. The fermentations of cucumber usually subject a homolactic acid fermentation, that is not resulting CO2 from sugars. Although CO2 could be produced via cucumbers respiration and via malate decarboxylation over the beginning of fermentation [4]. Some of lactic acid bacteria have an analytical malolactic enzyme that converting malate to lactate and CO2. The reaction of malolactic enzyme takes place intracellularly resulting in proton absorption, subsequently increasing the internal pH of the cell. Although it is a recommendable reaction in winemaking (applied to removing the acidity of wines), the fermentation of malolactic in cucumbers may lead to formation of “bloaters,” or undesirable pockets of internal gas, resulting in decreasing the yield of the production [5]. In order to prevent the formation of bloater, the fermentation of cucumber is clean with air to get rid the surplus CO2 from the tank [6]. In order to restrict the growing of aerobic microorganisms in air-purged cucumber fermentations, especially molds and yeasts, acetic acid (0.16%) or potassium sorbate (~0.04%) could be used as aids in processing [7].
\nAir purging may be stopped each day several hours to control aerobic microorganisms’ excessive growth. Usually, cucumber is fermented with Lactobacillus. plantarum and other LAB and may store for year in fermentation tanks in degrees under than 0 °C while NaCl concentration commonly increase to 10–15% during the storage to reduce freezing damage and keeping the required fermented cucumber texture. Cucumber should be washed before selling in order to remove the excess salt and then using different packages (jars, pouches, plastic pails) with suitable covers in packaging. The covers usually contain spices, acetic acid, and lactic acid residues. Pasteurization sometimes is used for fermented pickles while heat treatment is not used for big containers. Excessive growth of microorganisms is eliminated by low pH, organic acids, and absence of fermentable sugars. Cucumber fermentations depend on the growing of LAB that existence naturally on cucumbers surface. Although, some starter cultures are added to cucumber fermentation to get a consistent product, adding Lactobacillus plantarum does not decarboxylate malic acid (subsequently does not form bloaters) [9], and this approach has been created, developed, and tasted to identify culture growing capability in cucumber fermentations [10]. A procedure for starter culture preparation that suitable for the requirements of kosher is applicable to producers [11]. The brined cucumbers’ primary pH is nearly 6.5. Recycled brine could be used in commercial fermentations, or adding acetic acid to brine solutions. This acid addition may help in removing the excess CO2 and encouraging LAB growth, so the commercial fermentations’ primary pH could vary basically. Some of the metabolites could have an inhibitory effect on the other bacteria just like peroxides, bacteriocins, and peptides [12]. There might be 1.5% lactic acid, pH (3.1–3.5), few or no sugar at the end of fermentation. In such an environment that is acidic, anaerobic, high salty, and lacks sugar, there are a low number of microorganisms that have the ability to grow and survive to preserve cucumbers. Sometimes during storage, fermented cucumbers expose secondary undesired fermentation which is identified by pH increasing, lactic acid vanishing, propionic and butyric acid formation. Deterioration of fermented cucumber happening at the spring season beginning when increasing the surrounding temperature. Increasing propionic and butyric acid concentrations lead to smelly spoilage [13]. The microbial environment of this spoilage presently is not closely defined but may attribute to the growth of bacteria that form spores such as clostridia when increasing the pH above 4.6. The salt concentration of the fermented cucumbers is about (6% or more) and this is very high for consumption directly by humans. Therefore, the salt concentration is reduced to around 2% by water washing directly before packing and distribution. This treatment lead to high salt concentrations of the waste stream in addition to a high BOD resulting from the organic ingredients that are existed in the brine and that spread out of cucumbers over the process of desalting. Hence, cucumber brine of the desalting process is commonly recycled and might be utilized another fermentation [14]. The brines fermentation could be treated in order to expel the softening enzymes (mostly polygalacturonases) before the recycling [15], which acts on degrading cucumber cell’s pectic substances and softening the fruits.
\nFermentation is influenced by variables due to cucumbers, environmental conditions under which they are kept during fermentation, and microorganisms that are naturally present or intentionally added. Since it is so important to maintain the structural integrity of cucumbers, both physical and chemical factors are involved. The interactions between these factors lead to an extremely interesting and complex fermentation process [16]. A lot of research on the fermentation of cucumbers and other fruits and vegetables has been done. However, there is an incomplete understanding of the interactions between the microbiological, chemical, and physical factors involved.
\nBefore the cucumber fermentation industry can take full advantage of the biotechnology revolution that looms for many fermentation industries, more understanding of these interactions is needed [17].
\nThe production of CO2 in the cover brine of fermenting vegetables by heterofermentative LAB and fermentative species of yeasts has been linked with gas pockets formation inside the cucumber, which called formation of bloater (Figure 1). Homofermentative LAB capable of decarboxylating malic acid, as example L. plantarum, might cause bloating by producing a sufficient CO2 when combined with the CO2 formed from the respiring vegetable tissues [9, 18]. Prevention of bloater formation was effective in fermented cucumber brines by using nitrogen or air [6, 19]. Air purging has to be carefully controlled as it may result in fruit softening due to mold growth [20, 21] reduced brine acidity due to yeast growth and off-colors and flavors. The addition of potassium sorbate to fermentation brines, including the application of spray to brine surfaces, is widely used to minimize the growth of yeast and the development of CO2.
\nSteps brine fermentation of cucumber [8].
Oxidative yeasts may cause malodorous spoilage of fermented cucumbers to develop. The lactic acid generated during fermentation can be consumed by these microorganisms, with a subsequent increase in pH that facilitates the development of spoilage microorganisms [22, 23]. In cucumbers, lactic acid produced during primary fermentation can be catabolized by yeasts of the genera Pichia and Issatchenkia, causing an increase in pH.
\nPectinolytic enzymes derived from plant material or microbes can cause the softening of brined vegetables (Figure 2).
\n\nLactobacillus plantarum cells colonizing the cucumber tissue [24].
Mold growth accompanying film-forming yeast growth on the brine surface can cause softening of cucumbers. In the absence of sunlight and the presence of minimal amounts of oxygen, heavy scum yeast and/or mold growth is generally the result of neglecting brine material during extended storage. [25]. In order to maintain anaerobic conditions and to limit the growth of surface yeasts and molds, Pickled cucumber tanks are usually held indoors, with a seated plastic cover weighted down with water or brine. Mold polygalacturonases associated with cucumber flowers can also result in the softening of brined cucumbers. [26] By draining and rebrining the tank with calcium chloride, this problem can be reduced. 36 hours after the initial brining procedure. However, this solution is not about salt disposal. Recycled brines are instead treated to inactivate the softening enzymes, if necessary. [15] The addition of calcium chloride may slow down the rate of fermenting cucumbers’ enzymatic softening. This should not, however, be relied upon to eliminate problems with enzymatic softening. Care must be taken to minimize the contamination of flowers and plant debris by cucumbers, especially small fruits, which may be a source of contamination by pectinolytic molds. Due to the reduced amount of brine surface in contact with air compared to the total volume, softening is not a very serious problem in bulk Spanish-style cucumber fermentation. Yeasts and/or molds on the plastic drums used during the conditioning operations (sizing, grading, pitting, stuffing, etc.) can, however, cause softening. [22]. Desalting is used to prepare non-pasteurized fermented cucumbers, followed by the addition of cover liquor, often containing acetic acid and preservatives. Sugar is added to sweet pickles at concentrations of up to 40 percent. The main spoilage organisms in such products are osmotolerant yeasts, and a preservation prediction chart, based on the concentration of acid and sugar required for shelf stability, has been developed. On the surface of the liquid, aerobic molds and film yeasts may grow, mainly as a result of defective jar closure. Spoilage microorganisms in sweet pickles include yeasts [27] and lactobacilli, particularly the heterofermentative Lactobacillus fructivorans. In order to prevent the growth of LAB and yeast, non-fermented pickle products in which acetic acid is added to fresh cucumbers (known as fresh-pack pickles) are pasteurized. Recommended procedures include 165 °F (74 °C) for 15 minutes, as described by [28]. Spoilage usually occurs due to improper processing (insufficient heat to pasteurize) and/or improper acidification of pasteurized pickle products, so that a balanced brine product of pH 3.8 to 4.0 is not achieved. Molds and film yeasts are factors in cases of poor jar closure, where oxygen is introduced into the container, as with sweet pickles.
\nThis can lead to a potentially dangerous situation triggered by an increase in pH as the spoilage microorganisms consume organic acids. Germination of Clostridium botulinum spores can occur if the pH rises above 4.6. Non-acidified refrigerated products are sold commercially under a variety of names, including half-sour dills, real kosher dills, new kosher dills, sour overnight dills, garlic pickles, new half-sour pickles, new half-sour pickles, new half-sours, new home-style pickles, etc. [29]. These cucumbers may be kept at room temperature in barrels for a few days or longer and then refrigerated at 2–5 ° C to allow fermentation to occur. Microbial growth, enzymatic activity, and the curing process continue at a slow rate under cooling conditions. [29] The gaseous spoilage of the product is caused primarily by the previously mentioned microbial groups that form gas. Due to the much lower concentrations of salt added to these product types, softening issues in refrigerated-fermented products may develop. To such products, fresh, whole garlic cloves and other spices are normally added. It is possible that these spices contain softening enzymes. Whether the half-sour products are manufactured in bulk or in the retail jar, for more than a few weeks, the very nature of the product makes it difficult to maintain good quality. The barreled product achieves the Good Manufacturing Practices (GMP)-recommended brine pH of 4.6 or lowers for acidified foods typically before or shortly after refrigeration, and then slowly begins to produce acid. For a product made in a retail jar, this recommended condition for brine-product pH cannot be ensured because there is no uniform process adopted by the packers in which the product is initially acidified or intentionally incubated for the development of natural fermentation with lactic acid.
\nThe refrigerated fresh-pack (non-fermented) products contain 2–3 percent NaCl and sometimes sodium benzoate or other preservatives and are acidified with vinegar at a balanced pH of around 3.7. [29] The cucumbers are not heated, like the half-sour pickles, either before or after packing. The products will maintain an acceptable quality for several months if properly acidified, refrigerated, and preserved. However, recipes containing no vinegar or other acid in the initial cover liquor should be considered with caution. Quality assurance of cucumber products begins with the removal of the cucumber’s outer leaves and woody core. In addition to its undesirable texture, the existing sucrose in the core could be utilized by Lactobacillus mesenteroides resulting in formation of dextran which lead to a stringy and slimy texture. Cucumbers marketed under refrigerated conditions are preserved by the addition of sodium benzoate and metabisulfite [30]. Chemical changes that can result in discoloration (browning) and the formation of objectionable flavors influence the shelf life of such products. The growth of naturally occurring yeasts in cucumbers may result from uneven salting during cucumber preparation and may induce pink coloring and vegetable softening. Spanish-style olives were formerly preserved in cover solutions containing relatively high salt concentrations through fermentation. However, it has been demonstrated that an appropriate combination of low pH (3.5), combined acidity (0.025) mill equivalents (mEq)/L) and moderate proportions of acid (>20.4%) and salt (>25.0%) is also able to preserve well-cured cucumbers [31]. Incompletely cured cucumbers or those with characteristics outside the ranges necessary for complete stabilization without heat treatment have been gradually used to allow pasteurization to be commercialized. [22] In some cases, particularly when pasteurization is not recommended (plastic bags, seasoned olives, etc.), producers used authorized preservatives such as potassium sorbate or sodium benzoate [31].
\nUsually, fermentation is defined as an anaerobic process. Within the cucumber fermentation process, LAB and yeast convert glucose and fructose into lactic acid, ethanol, acetic acid, and CO2. The homofermentative LAB main pathway is breaking down of one six-carbon sugar (glucose) to produce two molecules of three-carbon lactic acid. More complex metabolism is used by Heterofermentative organisms. At the beginning, glucose is converted into CO2 five-carbon sugar phosphate, and furthermore degraded into lactic acid and a two-carbon compound, acetic acid or ethanol [32]. We shall concentrate here on vegetable fermentation biochemical features that link to quality of the product. So far, many researches are paying more attention in vegetables fermentation and storage, especially cucumbers, with reduced salt. Vegetable fermentations’ chloride waste can be extremely reduced in case of reducing the required salt for fermentation and storage in order to exclude the desalting step before the conversion to final products. Many research studied the relationship between concentration and type of the salt [33]. Replacing of NaCl with various cations and anions on fermentation of sugar in cucumber juice. The most interesting thing, fructose was the most preferred fermentable sugar to Lactobacillus plantarum more than glucose in most of experiments. Along with addition of different salts, the utilization of sugar was decreasing as anion or cation concentrations increasing. [33, 34] have identified various volatile ingredients in cucumbers that fermented with Lactobacillus plantarum (2% NaCl). About 37 volatile ingredients were determined, and as a result of fermentation, there was a little change in most of them. Inhibition of (E, Z)-2,6-nonadienal and 2-nonenal production was the most outstanding fermentation effect on cucumber volatiles. [35] Characterized trans- and cis-4-hexenoic acid as the strongest odors that specify the brine aroma properties of commercially fermented cucumbers in nearly 6% NaCl. [36] Illustrated that exposing the slurries (2% NaCl) of fermented cucumber to oxygen resulting in formation of nonenzymatic hexanal plus a series of trans unsaturated aldehydes with 5–8 carbon atoms that linked with oxidized odor intensity development the tissue of fermented cucumber. In the existence of light, about 100 μg/ml concentration of calcium disodium EDTA preserve nonfermented pickles against bleaching of pigments and lipid oxidation [15]. Although, when using this compound, there was a little reduction in pickles’ firmness retention. Firmness retention in cucumbers fermentation and storage is a key quality issue. It is difficult to assure the firmness retention (in reduced salt fermented cucumbers) equal to what can be accomplished by fermenting and storage in 6% NaCl or more. Nevertheless, over many previous years there was a wide understanding for softening of cucumber tissue.
\n[21] Showed the importance of calcium in keeping fermented cucumbers’ firmness. It was found that first-order kinetics is followed by the nonenzymatic softening of acidified, blanched cucumber tissue [37]. The mentioned kinetic manner made it reasonable to identify the activation of entropy and enthalpy of cucumbers’ nonenzymatic softening, although that the chemical reactions in charge of softening were not known. At 1.5 M NaCl, both activation of entropy and enthalpy were high. Cucumber softening was inhibited by calcium because it reduced activation entropy too much into a limit that activation overall free energy was reduced [38]. This behavior of thermodynamic is resembled to that which occurs when changing conformation of polymers, just like in denaturation of protein. It is totally differed from the observed properties of pectin acid hydrolysis. [39] Figured out that pectin’s acid hydrolysis rate was inefficient to be the reason for non-enzymatic softening the tissue of the cucumber. [40] Identified salt, temperature, and calcium concentrations combined effects on fermented cucumber tissue’s softening rate. The softening kinetics of fermented cucumbers did not follow the first-order simple reaction. Just like the tissues of many other plants, cucumber possesses enzymes that have the ability to degrade the ingredients of plant cell walls, which may lead to changing in the texture.
\nIn cucumbers, many activities of enzymes have been found such as exopolygalacturonase, pectinesterase, and endopolygalacturonase [41]. When fermenting or acidifying of cucumber, methyl groups are removed from pectin by pectinesterase [42]. Nevertheless, pectin’s’ enzymatic hydrolysis by polygalacturonases from cucumber has not been identified if it is a significant factor in fermented cucumbers’ softening. Adding of fungal polygalacturonases into the tanks of fermentation, especially on the flowers attached to small cucumbers has been linked to the commercially importance of fermented cucumbers’ enzymatic softening. [43] developed a sensitive new method of diffusion plate to determine the activity of polygalacturonase in the brines of fermentation and found that alumino-silicate clay has the ability of adsorbing and removing the activity of polygalacturonase from the brines of fermentation that are recycled. Enzymes which could hydrolyze polysaccharides of the cucumbers cell wall have not studied widely comparing with the enzymes that degrade pectin. [45] Showed that the activity of endo-β-1,4- gluconase in cucumber is inhibited under pH of 4.8 while endoglucomannan-splitting enzyme retains its activity under pH of 4.0 but is inhibited within the fermentation. In fresh cucumbers, they characterized 6 enzymes which hydrolyze p-nitrophenylglycosides of β-d-glucose, β-d-galactose, α-d-galactose, β-d-xylose, α-d-mannose, and α-l-arabinose, which were inhibited throughout the fermentation. The enzymes that have the ability to hydrolyze the synthetic substrates are widespread in plants. Resemble enzymatic activities were found in olives, pears, and Semillon grapes.
\n[44, 45] Discovered the same p-nitrophenyl glycosidases detected by [44] in cucumbers. She reported undetectable levels in 2% NaCl brines throughout the first week of fermentation [46, 47]. Gathered calcium addition, fresh cucumbers’ blanching relatively to enzyme inactivation, and a quick fermentation using a malolactic-negative Lactobacillus plantarum culture for cucumbers’ fermentation and keeping a required texture in reduced (4%) sodium chloride concentration. [48] Found notable degradation products of glucosinolate in cucumbers fermented with Lactobacillus sakei compared to cucumbers manufactured with lactic acid bacteria starter cultures. [49] Reported that ascorbigen, a compound resulted from a degradation product reaction of indole glucosinolate (glucobrassicin) and ascorbic acid, is the cucumbers’ dominant glucosinolate degradation product. Glucoraphinin existed in fresh cucumbers was converted over the fermentation into sulforphorane, however, sulforphorane was a relatively small glucosinolate degradation product in fermented cucumbers. There are many concerns about the biogenic amines’ formation in cucumbers. [50] Reported that storing cucumbers up to 12 months led to the formation of tyramine. While very trace amounts of tryptamine, histamine, and spermine were determined. These findings were assured in a study on vegetable products which concluded that tyramine concentration was about 4.9 mg/100 g in canned cucumbers [51], and the same finding and the concentration reported by [50]. No health risk existed referring to these mentioned biogenic amine levels, with the possible exception that individuals taking medications possessing monoamine oxidase inhibitors.
\nCompared to the fermentation of liquids such as beer, wine, and milk, unique problems are involved in the fermentation of whole vegetables. Structural integrity has to be preserved in whole vegetables, which is not a factor with liquids [52]. Tissue softening is also a serious defect that can be caused by pectinolytic enzymes of either microbial (primarily fungal) source [53] or of the cucumber fruit itself. Off-flavors and off-colors may result from improper methods of fermentation and handling.
\nThe cucumber pickle industry is faced with waste disposal, in addition to spoilage problems. These wastes consist of the salt used to prevent softening during fermentation and storage, and the organic wastes. Salt concentrations used greatly exceed the 2–3 percent desired in the final product [54].
\nThus, after storing the brine, the excess salt must be leached from the cucumbers before they are processed into finished products. Disposal of this non-biodegradable waste salt is a source of serious environmental concern. As the salt is extracted during leaching, soluble cucumbers, including desirable nutrients and flavor compounds, are also removed. These desirable components are not only lost, they must be degraded before being discharged into waterways. Discharge of salt and organic materials into municipal disposal systems typically entails an extra expense for pickle companies, since municipalities must charge for recovering the cost of handling such waste. [55] (Figure 3).
\nCucumber bloater defect caused by carbon dioxide microbiologically produced during fermentation by either yeasts or LAB [56].
Purge-and-trap analysis of cucumber slurries’ volatile ingredients in 2 percent reduced-salt salt brine before and after cucumber fermentation. Volatile components’ comparison before and after fermentation led to the derivation that the main influence of fermentation on volatile flavors was to prohibit the enzymatic production of E, Z-2,6-nonadienal and 2-nonenal enzymes in cucumbers [34]. These aldehydes are the major ingredients in charge of cucumbers’ fresh flavor [57]. Although, after a few days of cucumber fermentation, when tearing the tissue of cucumber, the pH descends low enough to deactivate the enzymes that forming these compounds. In fresh cucumber slurries, just benzaldehyde, ethyl benzene, and o-xylene were not found within the volatile ingredients characterized in the fermented cucumbers. Recently, the absence of flavor influence of volatile aldehydes is the main effect of the fermentation on flavor [35]. In fermented pickled cucumber brines, a low influence of volatility flavor compound was characterized. Adding of saturated salt to brine samples and heating to 50 °C, SPME (solid-phase microextraction) fiber sampling followed by GC-olfactometry resulted in the identification of a component with an odor close to that of the fermentation brine. The component with a fermentation brine odor was characterized as trans-4-hexenoic acid. The existence of cis-4-hexenoic acid was also tentatively characterized. A solution containing 25 ppm trans-4-hexenoic acid, 10 ppm phenyl ethyl alcohol, 0.65 percent lactic acid, 0.05 percent acetic acid, and 8 percent sodium chloride in a reconstitute experiment had an odor very similar to that of fermented cucumber brine. Lactic acid, acetic acid, and sodium chloride concentrations are acceptable for commercial brines after completing the fermentation. Adding of phenyl ethyl alcohol resulted in in a few enhancements in the matching odor. For that, the key component in the simulated brine solution was trans-4-hexenoic acid. The source of trans-4-hexenoic acid in fermentation brines is, unfortunately, not recognized.
\nContent alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"133"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"111",title:"Aerospace Engineering",slug:"aerospace-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:30,numberOfAuthorsAndEditors:692,numberOfWosCitations:724,numberOfCrossrefCitations:539,numberOfDimensionsCitations:1002,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"aerospace-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editedByType:"Edited by",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10224",title:"Safety and Risk Assessment of Civil Aircraft during Operation",subtitle:null,isOpenForSubmission:!1,hash:"d966066f4fa44f6b320cd9b40ed66bbd",slug:"safety-and-risk-assessment-of-civil-aircraft-during-operation",bookSignature:"Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/10224.jpg",editedByType:"Edited by",editors:[{id:"260011",title:"Dr.",name:"Longbiao",middleName:null,surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10445",title:"Preparation of Space Experiments",subtitle:null,isOpenForSubmission:!1,hash:"5bfa68c29ae5337ce970b83f7d8b9f03",slug:"preparation-of-space-experiments",bookSignature:"Vladimir Pletser",coverURL:"https://cdn.intechopen.com/books/images_new/10445.jpg",editedByType:"Edited by",editors:[{id:"320503",title:"Dr.",name:"Vladimir",middleName:null,surname:"Pletser",slug:"vladimir-pletser",fullName:"Vladimir Pletser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7403",title:"Environmental Impact of Aviation and Sustainable Solutions",subtitle:null,isOpenForSubmission:!1,hash:"1702df68cc7756c9e6c3d414adfc370c",slug:"environmental-impact-of-aviation-and-sustainable-solutions",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/7403.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9420",title:"Risk Assessment in Air Traffic Management",subtitle:null,isOpenForSubmission:!1,hash:"91e95c7c9fc0be27b80a269a9fa81d90",slug:"risk-assessment-in-air-traffic-management",bookSignature:"Javier Alberto Pérez Castán and Álvaro Rodríguez Sanz",coverURL:"https://cdn.intechopen.com/books/images_new/9420.jpg",editedByType:"Edited by",editors:[{id:"222047",title:"Dr.",name:"Javier Alberto",middleName:null,surname:"Pérez Castán",slug:"javier-alberto-perez-castan",fullName:"Javier Alberto Pérez Castán"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7761",title:"Advances in Spacecraft Attitude Control",subtitle:null,isOpenForSubmission:!1,hash:"933b56622351819a21f036a4295e45c2",slug:"advances-in-spacecraft-attitude-control",bookSignature:"Timothy Sands",coverURL:"https://cdn.intechopen.com/books/images_new/7761.jpg",editedByType:"Edited by",editors:[{id:"258189",title:"Prof.",name:"Timothy",middleName:null,surname:"Sands",slug:"timothy-sands",fullName:"Timothy Sands"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8613",title:"Aerospace Engineering",subtitle:null,isOpenForSubmission:!1,hash:"075278075d72ebe02490ff58675119ef",slug:"aerospace-engineering",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8613.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8643",title:"Hypersonic Vehicles",subtitle:"Past, Present and Future Developments",isOpenForSubmission:!1,hash:"c8b071f76d5ebaa5d249d728be4f42dd",slug:"hypersonic-vehicles-past-present-and-future-developments",bookSignature:"Giuseppe Pezzella and Antonio Viviani",coverURL:"https://cdn.intechopen.com/books/images_new/8643.jpg",editedByType:"Edited by",editors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7571",title:"Aviation and Its Management",subtitle:"Global Challenges and Opportunities",isOpenForSubmission:!1,hash:"6c1503ac6f4d2bba190dbe2af0716b0b",slug:"aviation-and-its-management-global-challenges-and-opportunities",bookSignature:"Arif Sikander",coverURL:"https://cdn.intechopen.com/books/images_new/7571.jpg",editedByType:"Edited by",editors:[{id:"253791",title:"Dr.",name:"Arif",middleName:null,surname:"Sikander",slug:"arif-sikander",fullName:"Arif Sikander"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6399",title:"Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"37811f78d88a70cfe7a89ffb0889102a",slug:"aircraft-technology",bookSignature:"Melih Cemal Kuşhan",coverURL:"https://cdn.intechopen.com/books/images_new/6399.jpg",editedByType:"Edited by",editors:[{id:"185873",title:"Dr.",name:"Melih",middleName:"Cemal",surname:"Kushan",slug:"melih-kushan",fullName:"Melih Kushan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6350",title:"Space Flight",subtitle:null,isOpenForSubmission:!1,hash:"023c9b0d77a58c0a263c075a7deed7e5",slug:"space-flight",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6350.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6442",title:"Into Space",subtitle:"A Journey of How Humans Adapt and Live in Microgravity",isOpenForSubmission:!1,hash:"e7414f85fdf56e54bfd694d91fa492ac",slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",bookSignature:"Thais Russomano and Lucas Rehnberg",coverURL:"https://cdn.intechopen.com/books/images_new/6442.jpg",editedByType:"Edited by",editors:[{id:"220541",title:"Dr.",name:"Thais",middleName:null,surname:"Russomano",slug:"thais-russomano",fullName:"Thais Russomano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:30,mostCitedChapters:[{id:"26018",doi:"10.5772/38918",title:"Fault Tolerant Flight Control Techniques with Application to a Quadrotor UAV Testbed",slug:"fault-tolerant-flight-control-techniques-with-application-to-a-quadrotor-uav-testbed",totalDownloads:4451,totalCrossrefCites:29,totalDimensionsCites:43,book:{slug:"automatic-flight-control-systems-latest-developments",title:"Automatic Flight Control Systems",fullTitle:"Automatic Flight Control Systems - Latest Developments"},signatures:"Youmin Zhang and Abbas Chamseddine",authors:[{id:"20035",title:"Dr.",name:"Youmin",middleName:null,surname:"Zhang",slug:"youmin-zhang",fullName:"Youmin Zhang"},{id:"148350",title:"Dr.",name:"Abbas",middleName:null,surname:"Chamseddine",slug:"abbas-chamseddine",fullName:"Abbas Chamseddine"}]},{id:"19526",doi:"10.5772/22396",title:"Nonequilibrium Plasma Aerodynamics",slug:"nonequilibrium-plasma-aerodynamics",totalDownloads:3722,totalCrossrefCites:25,totalDimensionsCites:39,book:{slug:"aeronautics-and-astronautics",title:"Aeronautics and Astronautics",fullTitle:"Aeronautics and Astronautics"},signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",authors:[{id:"29275",title:"Dr.",name:"Andrey",middleName:null,surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",middleName:null,surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}]},{id:"13473",doi:"10.5772/13640",title:"Green Propellants Based on Ammonium Dinitramide (ADN)",slug:"green-propellants-based-on-ammonium-dinitramide-adn-",totalDownloads:13437,totalCrossrefCites:20,totalDimensionsCites:38,book:{slug:"advances-in-spacecraft-technologies",title:"Advances in Spacecraft Technologies",fullTitle:"Advances in Spacecraft Technologies"},signatures:"Anders Larsson and Niklas Wingborg",authors:[{id:"15475",title:"Prof.",name:"Anders",middleName:null,surname:"Larsson",slug:"anders-larsson",fullName:"Anders Larsson"},{id:"17904",title:"Prof.",name:"Niklas",middleName:null,surname:"Wingborg",slug:"niklas-wingborg",fullName:"Niklas Wingborg"}]}],mostDownloadedChaptersLast30Days:[{id:"57483",title:"Helicopter Flight Physics",slug:"helicopter-flight-physics",totalDownloads:6140,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Constantin Rotaru and Michael Todorov",authors:[{id:"206857",title:"Prof.",name:"Constantin",middleName:null,surname:"Rotaru",slug:"constantin-rotaru",fullName:"Constantin Rotaru"},{id:"209010",title:"Prof.",name:"Michael",middleName:null,surname:"Todorov",slug:"michael-todorov",fullName:"Michael Todorov"}]},{id:"64957",title:"The Evolution of the Composite Fuselage: A Manufacturing Perspective",slug:"the-evolution-of-the-composite-fuselage-a-manufacturing-perspective",totalDownloads:2934,totalCrossrefCites:2,totalDimensionsCites:1,book:{slug:"aerospace-engineering",title:"Aerospace Engineering",fullTitle:"Aerospace Engineering"},signatures:"Alan Hiken",authors:null},{id:"16873",title:"New Antenna Array Architectures for Satellite Communications",slug:"new-antenna-array-architectures-for-satellite-communications",totalDownloads:12051,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"advances-in-satellite-communications",title:"Advances in Satellite Communications",fullTitle:"Advances in Satellite Communications"},signatures:"Miguel Alejandro Salas Natera, Andrés García Aguilar, Jonathan Mora Cueva, José Manuel Fernández, Pablo Padilla De La Torre, Javier García-Gasco Trujillo, Ramón Martínez Rodríguez-Osorio, Manuel Sierra-Perez, Leandro De Haro Ariet and Manuel Sierra Castañer",authors:[{id:"47892",title:"Dr.",name:"Miguel Alejandro",middleName:null,surname:"Salas Natera",slug:"miguel-alejandro-salas-natera",fullName:"Miguel Alejandro Salas Natera"},{id:"55109",title:"Mr.",name:"Andrés",middleName:null,surname:"García Aguilar",slug:"andres-garcia-aguilar",fullName:"Andrés García Aguilar"},{id:"55110",title:"Mr.",name:"Jonathan",middleName:null,surname:"Mora Cueva",slug:"jonathan-mora-cueva",fullName:"Jonathan Mora Cueva"},{id:"55111",title:"Dr.",name:"Ramón",middleName:null,surname:"Martínez Rodríguez-Osorio",slug:"ramon-martinez-rodriguez-osorio",fullName:"Ramón Martínez Rodríguez-Osorio"},{id:"55112",title:"Prof.",name:"Manuel",middleName:null,surname:"Sierra-Perez",slug:"manuel-sierra-perez",fullName:"Manuel Sierra-Perez"},{id:"55113",title:"Dr.",name:"Leandro",middleName:null,surname:"De Haro Ariet",slug:"leandro-de-haro-ariet",fullName:"Leandro De Haro Ariet"},{id:"56081",title:"Dr.",name:"José Manuel",middleName:null,surname:"Fernández",slug:"jose-manuel-fernandez",fullName:"José Manuel Fernández"},{id:"63116",title:"Mr",name:"Javier",middleName:null,surname:"García-Gasco Trujillo",slug:"javier-garcia-gasco-trujillo",fullName:"Javier García-Gasco Trujillo"},{id:"63250",title:"Dr.",name:"Pablo",middleName:null,surname:"Padilla De La Torre",slug:"pablo-padilla-de-la-torre",fullName:"Pablo Padilla De La Torre"},{id:"91100",title:"Dr.",name:"Manuel",middleName:null,surname:"Sierra Castañer",slug:"manuel-sierra-castaner",fullName:"Manuel Sierra Castañer"}]},{id:"66116",title:"High Entropy Alloys for Aerospace Applications",slug:"high-entropy-alloys-for-aerospace-applications",totalDownloads:811,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"aerodynamics",title:"Aerodynamics",fullTitle:"Aerodynamics"},signatures:"Modupeola Dada, Patricia Popoola, Samson Adeosun and Ntombi Mathe",authors:[{id:"169258",title:"Dr.",name:"Patricia",middleName:null,surname:"Popoola",slug:"patricia-popoola",fullName:"Patricia Popoola"},{id:"285697",title:"M.Sc.",name:"Modupeola",middleName:null,surname:"Dada",slug:"modupeola-dada",fullName:"Modupeola Dada"},{id:"292368",title:"Dr.",name:"Samson",middleName:null,surname:"Adeosun",slug:"samson-adeosun",fullName:"Samson Adeosun"},{id:"292369",title:"Dr.",name:"Ntombi",middleName:null,surname:"Mathe",slug:"ntombi-mathe",fullName:"Ntombi Mathe"}]},{id:"56629",title:"Aeroelastic Stability of Turboprop Aircraft: Whirl Flutter",slug:"aeroelastic-stability-of-turboprop-aircraft-whirl-flutter",totalDownloads:1137,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Jiří Čečrdle",authors:[{id:"207285",title:"Dr.",name:"Jiri",middleName:null,surname:"Cecrdle",slug:"jiri-cecrdle",fullName:"Jiri Cecrdle"}]},{id:"65403",title:"Green Comparable Alternatives of Hydrazines-Based Monopropellant and Bipropellant Rocket Systems",slug:"green-comparable-alternatives-of-hydrazines-based-monopropellant-and-bipropellant-rocket-systems",totalDownloads:1026,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"aerospace-engineering",title:"Aerospace Engineering",fullTitle:"Aerospace Engineering"},signatures:"Dov Hasan, Dan Grinstein, Alexander Kuznetsov, Benveniste Natan, Zohar Schlagman, Avihay Habibi and Moti Elyashiv",authors:null},{id:"47449",title:"Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances",slug:"network-real-time-kinematic-nrtk-positioning-description-architectures-and-performances",totalDownloads:2611,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"satellite-positioning-methods-models-and-applications",title:"Satellite Positioning",fullTitle:"Satellite Positioning - Methods, Models and Applications"},signatures:"Alberto Cina, Paolo Dabove, Ambrogio M. Manzino and Marco\nPiras",authors:[{id:"86027",title:"Prof.",name:"Ambrogio",middleName:null,surname:"Manzino",slug:"ambrogio-manzino",fullName:"Ambrogio Manzino"},{id:"86028",title:"Dr.",name:"Paolo",middleName:null,surname:"Dabove",slug:"paolo-dabove",fullName:"Paolo Dabove"},{id:"159903",title:"Dr.",name:"Marco",middleName:null,surname:"Piras",slug:"marco-piras",fullName:"Marco Piras"},{id:"160993",title:"Prof.",name:"Alberto",middleName:null,surname:"Cina",slug:"alberto-cina",fullName:"Alberto Cina"}]},{id:"65435",title:"Aviation of the Future: What Needs to Change to Get Aviation Fit for the Twenty-First Century",slug:"aviation-of-the-future-what-needs-to-change-to-get-aviation-fit-for-the-twenty-first-century",totalDownloads:1123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"aviation-and-its-management-global-challenges-and-opportunities",title:"Aviation and Its Management",fullTitle:"Aviation and Its Management - Global Challenges and Opportunities"},signatures:"Ursula Silling",authors:[{id:"256247",title:"B.A.",name:"Ursula",middleName:null,surname:"Silling",slug:"ursula-silling",fullName:"Ursula Silling"}]},{id:"58067",title:"Cassini Spacecraft-DSN Communications, Handling Anomalous Link Conditions, and Complete Loss-of-Spacecraft Signal",slug:"cassini-spacecraft-dsn-communications-handling-anomalous-link-conditions-and-complete-loss-of-spacec",totalDownloads:655,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"space-flight",title:"Space Flight",fullTitle:"Space Flight"},signatures:"Paula S. Morgan",authors:[{id:"110221",title:"Dr.",name:"Paula",middleName:"Suzanne",surname:"Morgan",slug:"paula-morgan",fullName:"Paula Morgan"}]},{id:"6832",title:"Artificial Intelligence in Aerospace",slug:"artificial-intelligence-in-aerospace",totalDownloads:7675,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"aerospace-technologies-advancements",title:"Aerospace Technologies Advancements",fullTitle:"Aerospace Technologies Advancements"},signatures:"David John Lary",authors:null}],onlineFirstChaptersFilter:{topicSlug:"aerospace-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/118458/dejan-ljiljak",hash:"",query:{},params:{id:"118458",slug:"dejan-ljiljak"},fullPath:"/profiles/118458/dejan-ljiljak",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()