Part of the book: Bio-Inspired Computational Algorithms and Their Applications
This chapter is concerned with the stability enhancement of a power system using power system stabilizers (PSSs) designed based on four evolutionary algorithms (EAs), namely, genetic algorithms (GAs), breeder genetic algorithm (BGA), population-based incremental learning (PBIL), and differential evolution (DE). GAs have been widely applied in many fields of engineering and science and have shown to be a robust and powerful adaptive search algorithm. However, GAs are known to have several limitations. To deal with these limitations, many variant forms of GAs have been suggested often tailored to specific problems. In this research, we investigated the performances of GA-PSS and three other EAs-based PSSs (i.e., BGA-PSS and PBIL-PSS and DE-PSS) in improving the small-signal stability of a power system. These EAs have been selected on the basis of their simplicity, efficiency, and effectiveness in solving the optimization problem at hand. Frequency domain and time-domain simulation results show that DE-PSS, PBIL-PSS, and BGA-PSS performed better than GA-PSS. Time domain simulations suggest that overall, DE-PSS performs better than PBIL-PSS and BGA-PSS in terms of undershoot and subsequent swings, albeit with a relatively large first swing overshoot. The performances of BGA-PSS and PBIL-PSS are similar. On the other hand, GA-PSS gives a better response than the conventional PSS (CPSS).
Part of the book: Genetic Algorithms