Description of basic factors that influence the success of a biodegradation process
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"6282",leadTitle:null,fullTitle:"Noble and Precious Metals - Properties, Nanoscale Effects and Applications",title:"Noble and Precious Metals",subtitle:"Properties, Nanoscale Effects and Applications",reviewType:"peer-reviewed",abstract:"The use of copper, silver, gold and platinum in jewelry as a measure of wealth is well known. This book contains 19 chapters written by international authors on other uses and applications of noble and precious metals (copper, silver, gold, platinum, palladium, iridium, osmium, rhodium, ruthenium, and rhenium). The topics covered include surface-enhanced Raman scattering, quantum dots, synthesis and properties of nanostructures, and its applications in the diverse fields such as high-tech engineering, nanotechnology, catalysis, and biomedical applications. The basis for these applications is their high-free electron concentrations combined with high-temperature stability and corrosion resistance and methods developed for synthesizing nanostructures. Recent developments in all these areas with up-to-date references are emphasized.",isbn:"978-1-78923-293-6",printIsbn:"978-1-78923-292-9",pdfIsbn:"978-1-83881-377-2",doi:"10.5772/intechopen.69142",price:139,priceEur:155,priceUsd:179,slug:"noble-and-precious-metals-properties-nanoscale-effects-and-applications",numberOfPages:430,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"e4c28d6be4fd7b5f5b787d4dabbf721b",bookSignature:"Mohindar Singh Seehra and Alan D. Bristow",publishedDate:"July 4th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6282.jpg",numberOfDownloads:29667,numberOfWosCitations:63,numberOfCrossrefCitations:54,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:113,numberOfDimensionsCitationsByBook:11,hasAltmetrics:1,numberOfTotalCitations:230,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 16th 2017",dateEndSecondStepPublish:"June 6th 2017",dateEndThirdStepPublish:"September 2nd 2017",dateEndFourthStepPublish:"December 1st 2017",dateEndFifthStepPublish:"January 30th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"48086",title:"Prof.",name:"Mohindar",middleName:"Singh",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra",profilePictureURL:"https://mts.intechopen.com/storage/users/48086/images/system/48086.jpg",biography:"Professor Mohindar S. Seehra received his early education in India (B.Sc. Punjab University; M.Sc.: Aligarh University). He joined West Virginia University as Assistant Professor of Physics in 1969 after receiving Ph.D. (University of Rochester, USA), becoming Associate Professor in 1973, Professor in 1977 and Eberly Distinguished Professor in 1992. His honors in research include: A. P. Sloan Foundation Research Fellow (1974-1976); Fellow of the American Physical Society (1984-present); Fellow of the Institute of Physics, UK (2001-present); and Outstanding Referee Award of the American Physical Society in 2010. He has guided the research of 65 graduate and postdoctoral students and authored over 300 publications on the magnetic, dielectric, optical and catalytic properties of materials and nanoparticles and edited two books. In 2016, he became Eberly Professor Emeritus.",institutionString:"West Virginia University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"208444",title:"Dr.",name:"Alan",middleName:"D.",surname:"Bristow",slug:"alan-bristow",fullName:"Alan Bristow",profilePictureURL:"https://mts.intechopen.com/storage/users/208444/images/5351_n.jpg",biography:"Professor Alan D. Bristow received his Ph.D. in Physics from the University of Sheffield in 2004. He was a Postdoctoral Fellow at the University of Toronto (2003-2006) and a Research Associate at JILA – a division of National Institute of Standards and Technology at the University of Colorado (2006-2010). He was an Adjunct Instructor at Colorado School of Mines (2009), Assistant Professor at West Virginia University (2010-2016), and is currently an Associate Professor at WVU, where he leads the Ultrafast Nano-photonics Group in studying light-matter interaction of nanoscale materials. Dr. Bristow is a member of the American Physical Society and the Optical Society of America.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"West Virginia University",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals"}],chapters:[{id:"60006",title:"Introductory Chapter: Overview of the Properties and Applications of Noble and Precious Metals",doi:"10.5772/intechopen.75503",slug:"introductory-chapter-overview-of-the-properties-and-applications-of-noble-and-precious-metals",totalDownloads:1289,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Mohindar S. Seehra and Alan D. Bristow",downloadPdfUrl:"/chapter/pdf-download/60006",previewPdfUrl:"/chapter/pdf-preview/60006",authors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"},{id:"208444",title:"Dr.",name:"Alan",surname:"Bristow",slug:"alan-bristow",fullName:"Alan Bristow"}],corrections:null},{id:"58870",title:"Band Structure, Morphology, Functionality, and Size- Dependent Properties of Metal Nanoparticles",doi:"10.5772/intechopen.72761",slug:"band-structure-morphology-functionality-and-size-dependent-properties-of-metal-nanoparticles",totalDownloads:2207,totalCrossrefCites:11,totalDimensionsCites:20,hasAltmetrics:0,abstract:"Metallic nanoparticles are gradually emerging as important materials because of their novel shape and size-dependent chemical and physical properties that differ drastically from their bulk counterparts. The main challenges in the field of nano-chemistry are the rational control and manipulation of synthesis to derive materials with one of their dimensions in nanometer regime, and upscale production of nanomaterials for device fabrication. This chapter reviews the fundamentals of the quantum properties of metals and quantum mechanical size effects with special focus on clusters of Pd, Pt, Au and Ag. Effects of reduction in size of metal nanoparticles to nanoscale on their various properties (structural, thermal, mechanical, chemical, electronic, magnetic and optical) are reviewed. The chapter concludes with a review of select medical applications of metal nanoparticles.",signatures:"Joseph Adeyemi Adekoya, Kehinde Olurotimi Ogunniran, Tolutope\nOluwasegun Siyanbola, Enock Olugbenga Dare and Neerish\nRevaprasadu",downloadPdfUrl:"/chapter/pdf-download/58870",previewPdfUrl:"/chapter/pdf-preview/58870",authors:[{id:"196765",title:"Prof.",name:"Enock Olugbenga",surname:"Dare",slug:"enock-olugbenga-dare",fullName:"Enock Olugbenga Dare"},{id:"213394",title:"Dr.",name:"Kehinde",surname:"Ogunniran",slug:"kehinde-ogunniran",fullName:"Kehinde Ogunniran"},{id:"213396",title:"Dr.",name:"Tolutope",surname:"Siyanbola",slug:"tolutope-siyanbola",fullName:"Tolutope Siyanbola"},{id:"213399",title:"Dr.",name:"Joseph",surname:"Adekoya",slug:"joseph-adekoya",fullName:"Joseph Adekoya"},{id:"213400",title:"Prof.",name:"Neerish",surname:"Revaprasadu",slug:"neerish-revaprasadu",fullName:"Neerish Revaprasadu"}],corrections:null},{id:"58348",title:"Effect of Size, Shape and Environment on the Optical Response of Metallic Nanoparticles",doi:"10.5772/intechopen.71574",slug:"effect-of-size-shape-and-environment-on-the-optical-response-of-metallic-nanoparticles",totalDownloads:1361,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The aim of this chapter is to investigate the effect of size, shape and environment on the optical properties of metallic nanoparticles in a large spectral range (λ = 300–900 nm) using quasi-static approximation for nanoparticles of sizes (D = 10–40 nm) and Mie theory for nanoparticles of sizes (D = 40–100 nm). Extinction (scattering and absorption) cross-sectional spectrum of nanoparticles is obtained for different diameters embedded in different matrices. Collective oscillation of electrons in conduction band in metallic nanoparticles is known as surface plasmon resonance (SPR) phenomena. SPR of metallic nanoparticles has significant applications in optics, communications and biosensors. We present in this chapter the effects of the interparticle distance on the optical response of gold dimer nanoparticles of 100 nm diameter. The extinction spectra of dimer nanoparticles are calculated by using generalized Mie theory.",signatures:"Salem Marhaba",downloadPdfUrl:"/chapter/pdf-download/58348",previewPdfUrl:"/chapter/pdf-preview/58348",authors:[{id:"211194",title:"Associate Prof.",name:"Salem",surname:"Marhaba",slug:"salem-marhaba",fullName:"Salem Marhaba"}],corrections:null},{id:"59555",title:"Origins of the High Reactivity of Au Nanostructures Deduced from the Structure and Properties of Model Surfaces",doi:"10.5772/intechopen.74006",slug:"origins-of-the-high-reactivity-of-au-nanostructures-deduced-from-the-structure-and-properties-of-mod",totalDownloads:906,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, experimental and theoretical studies on surface segregation in Ag-Au systems, including our own thermodynamic studies and molecular dynamics simulations of surface restructuring, on the basis of density functional theory are reviewed. The restructuring processes are triggered by adsorbed atomic O, which is supplied and consumed during catalysis. Experimental evidence points to the essential role of Ag impurities in nanoporous gold for activating O2. At the same time, increasing Ag concentration may be detrimental for the selectivity of partial oxidation. Understanding the role of silver requires a knowledge on its chemical state and distribution in the material. Recent studies using electron microscopy and photoelectron spectroscopy shed new light on this issue revealing a non-uniform distribution of residual Ag and co-existence of different chemical forms of Ag. We conclude by presenting an outlook on electromechanical coupling at Ag-Au surfaces, which shows a way to systematically tune the catalytic activity of bimetallic surfaces.",signatures:"Sandra Hoppe and Lyudmila V. Moskaleva",downloadPdfUrl:"/chapter/pdf-download/59555",previewPdfUrl:"/chapter/pdf-preview/59555",authors:[{id:"212786",title:"Dr.",name:"Lyudmila",surname:"Moskaleva",slug:"lyudmila-moskaleva",fullName:"Lyudmila Moskaleva"},{id:"238980",title:"Ms.",name:"Sandra",surname:"Hoppe",slug:"sandra-hoppe",fullName:"Sandra Hoppe"}],corrections:null},{id:"57439",title:"Exciton-Plasmon Interactions in Quantum Well Structures Near Silver Nanoparticles",doi:"10.5772/intechopen.71466",slug:"exciton-plasmon-interactions-in-quantum-well-structures-near-silver-nanoparticles",totalDownloads:1011,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The chapter reports photoluminescence (PL) and an energy transfer dynamic in a hybrid heterostructure consisting of an Ag nanoparticle (NP) layer and Cd0.08Zn0.92O/ZnO quantum well (QW). The observed PL quenching was closely related to electronic states of excitons confined in the QW. The PL quenching of the QW emission was only observed at low temperatures which excited carriers were radiatively recombined due to excitonic localization derived from fluctuated energy potentials in the QW. In contrast, delocalization of excitons from the QW with increasing temperature resulted in disappearance of the PL quenching. Time-resolved PL measurements revealed a decay rate of PL from the QW emission through the presence of energy transfer from the QW to Ag NP layer. The temperature-dependent energy-transfer rate was similar to that of the radiative recombination rate. The Ag NP layer surface showed a visible light absorption caused by localized surface plasmons (LSPs), which was very close to the PL peak energy of the QW. These results indicated that the excitonic recombination energy in the QW was nonradiatively transferred to Ag NP layer owing to energy resonance between the LSP and the QW. These phenomena could be explained by a surface energy transfer mechanism.",signatures:"Hiroaki Matsui",downloadPdfUrl:"/chapter/pdf-download/57439",previewPdfUrl:"/chapter/pdf-preview/57439",authors:[{id:"7227",title:"Dr.",name:"Hiroaki",surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui"}],corrections:null},{id:"57501",title:"Recent Developments on Metal Nanoparticles for SERS Applications",doi:"10.5772/intechopen.71573",slug:"recent-developments-on-metal-nanoparticles-for-sers-applications",totalDownloads:1805,totalCrossrefCites:8,totalDimensionsCites:15,hasAltmetrics:1,abstract:"Surface-enhanced Raman spectroscopy (SERS) is a popular and potential area of investigation in many applications because of its high sensitivity even at mono-molecular level. SERS substrates that typically composed of metal nanostructures can enhance the Raman signal level up to several orders of magnitude, making it a powerful analytical tool in chemical and biomedical applications. The present book chapter is aimed to provide insight about design and latest developments on metal nanoparticles and their application in the field of SERS. The chapter starts with the discussion of basic concept and theories of Raman scattering and SERS based on examples from recent research. It then primarily reviews various potential metallic nanostructures and their geometry as SERS substrates, followed by recent reports and theories on application of bimetallic nanostructures for the purpose. Toward the end, we briefly discuss the research progress in designing hybrid SERS substrates using emerging materials like photonic crystals and graphene.",signatures:"Tanujjal Bora",downloadPdfUrl:"/chapter/pdf-download/57501",previewPdfUrl:"/chapter/pdf-preview/57501",authors:[{id:"213258",title:"Dr.",name:"Tanujjal",surname:"Bora",slug:"tanujjal-bora",fullName:"Tanujjal Bora"}],corrections:null},{id:"59015",title:"Nano- and Micro-Patterning of Gold Nanoparticles on PEG- Based Hydrogels for Controlling Cell Adhesion",doi:"10.5772/intechopen.71548",slug:"nano-and-micro-patterning-of-gold-nanoparticles-on-peg-based-hydrogels-for-controlling-cell-adhesion",totalDownloads:1559,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Gold nanoparticles (Au NPs) have unique and tunable size- and shape-dependent optical and chemical properties and little toxicity. In this chapter, we describe results on Au NPs employed as cell-binding entities at biomaterials’ interfaces. Hereby, Au NPs with different sizes and shapes were nano- or micro-patterned on the surface of poly(ethylene glycol) (PEG)-based hydrogels by using our recently developed patterning strategies based on soft lithography. These hybrid biomaterials can be applied in various biological or biomedical applications, such as for fundamental cell studies considering adhesion and migration, tissue engineering, drug delivery, or as biosensors by using surface plasmon resonance (SPR) or surface-enhanced Raman spectroscopy (SERS).",signatures:"Cigdem Yesildag, Zhenfang Zhang, Fang Ren, Gonzalo de Vicente\nand Marga C. Lensen",downloadPdfUrl:"/chapter/pdf-download/59015",previewPdfUrl:"/chapter/pdf-preview/59015",authors:[{id:"56428",title:"Prof.",name:"Marga",surname:"Lensen",slug:"marga-lensen",fullName:"Marga Lensen"},{id:"221530",title:"Dr.",name:"Zhenfang",surname:"Zhang",slug:"zhenfang-zhang",fullName:"Zhenfang Zhang"},{id:"221531",title:"Dr.",name:"Gonzalo",surname:"De Vicente",slug:"gonzalo-de-vicente",fullName:"Gonzalo De Vicente"},{id:"221532",title:"Dr.",name:"Fang",surname:"Ren",slug:"fang-ren",fullName:"Fang Ren"},{id:"221533",title:"MSc.",name:"Cigdem",surname:"Yesildag",slug:"cigdem-yesildag",fullName:"Cigdem Yesildag"}],corrections:null},{id:"57338",title:"Substrate Effects of Noble Metal Nanostructures Prepared by Sputtering",doi:"10.5772/intechopen.71340",slug:"substrate-effects-of-noble-metal-nanostructures-prepared-by-sputtering",totalDownloads:1099,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cathode sputtering is a well-established technique for preparation of metal nanostructures. However, the substrate properties are very important in this process. On glass substrates, there is a difficulty with poor adhesion of the metal layers, but thanks to this, metal nanostructures can be produced using solid state dewetting process. Thin metal films on polymer substrates are strongly influenced by the surface properties of the polymers, which originate in the method of their preparation. A recent focus is direct sputtering of metal nanoparticles (NPs) into liquid substrates and their characterizations and applications. Polyethylene glycol (PEG) is one of the most commonly used liquid, which provides “stealth” character to nanostructures. Recent results in this area are reviewed in this chapter. PEGylated NPs could find application in drug delivery systems, therapy, imaging, biosensing, and tissue regeneration.",signatures:"Alena Reznickova, Ondrej Kvitek, Dominik Fajstavr, Nikola Slavikova\nand Vaclav Svorcik",downloadPdfUrl:"/chapter/pdf-download/57338",previewPdfUrl:"/chapter/pdf-preview/57338",authors:[{id:"212850",title:"Ph.D.",name:"Alena",surname:"Reznickova",slug:"alena-reznickova",fullName:"Alena Reznickova"},{id:"212851",title:"Dr.",name:"Ondrej",surname:"Kvitek",slug:"ondrej-kvitek",fullName:"Ondrej Kvitek"},{id:"212854",title:"MSc.",name:"Dominik",surname:"Fajstavr",slug:"dominik-fajstavr",fullName:"Dominik Fajstavr"},{id:"212855",title:"MSc.",name:"Nikola",surname:"Slavikova",slug:"nikola-slavikova",fullName:"Nikola Slavikova"},{id:"212856",title:"Prof.",name:"Vaclav",surname:"Svorcik",slug:"vaclav-svorcik",fullName:"Vaclav Svorcik"}],corrections:null},{id:"57724",title:"Silver Nanoparticles Fabricated Using Chemical Vapor Deposition and Atomic Layer Deposition Techniques: Properties, Applications and Perspectives: Review",doi:"10.5772/intechopen.71571",slug:"silver-nanoparticles-fabricated-using-chemical-vapor-deposition-and-atomic-layer-deposition-techniqu",totalDownloads:1649,totalCrossrefCites:10,totalDimensionsCites:20,hasAltmetrics:0,abstract:"Silver nanoparticles with unique physicochemical properties and high biocide activity attract great interest in the design and in the manufacture of the new generation materials intended for biomedical technologies. This review aims to provide assessment of the bioactivity and usefulness of Ag-based materials in biomedical technologies, which are produced with the use of chemical vapor deposition (CVD) and atomic layer deposition (ALD) methods. The use of CVD and ALD technologies in the fabrication of silver layers, nanoparticles, and nanocomposites are discussed in the first part of this chapter. The second half of this review deals with the topics associated with the release of silver ions from nanoparticles or nanolayers and discusses the antimicrobial activity, bio-integration properties and toxicity of these materials.",signatures:"Piotr Piszczek and Aleksandra Radtke",downloadPdfUrl:"/chapter/pdf-download/57724",previewPdfUrl:"/chapter/pdf-preview/57724",authors:[{id:"202372",title:"Dr.",name:"Aleksandra",surname:"Radtke",slug:"aleksandra-radtke",fullName:"Aleksandra Radtke"},{id:"212896",title:"Associate Prof.",name:"Piotr",surname:"Piszczek",slug:"piotr-piszczek",fullName:"Piotr Piszczek"}],corrections:null},{id:"58180",title:"Copper Metal for Semiconductor Interconnects",doi:"10.5772/intechopen.72396",slug:"copper-metal-for-semiconductor-interconnects",totalDownloads:2692,totalCrossrefCites:5,totalDimensionsCites:13,hasAltmetrics:0,abstract:"Resistance-capacitance (RC) delay produced by the interconnects limits the speed of the integrated circuits from 0.25 mm technology node. Copper (Cu) had been used to replace aluminum (Al) as an interconnecting conductor in order to reduce the resistance. In this chapter, the deposition method of Cu films and the interconnect fabrication with Cu metallization are introduced. The resulting integration and reliability challenges are addressed as well.",signatures:"Yi-Lung Cheng, Chih-Yen Lee and Yao-Liang Huang",downloadPdfUrl:"/chapter/pdf-download/58180",previewPdfUrl:"/chapter/pdf-preview/58180",authors:[{id:"59549",title:"Prof.",name:"Yi-Lung",surname:"Cheng",slug:"yi-lung-cheng",fullName:"Yi-Lung Cheng"}],corrections:null},{id:"58613",title:"Preparation of Highly Dispersed Pd-Supported Catalysts for Hydrogenation Processes by Microemulsion Method",doi:"10.5772/intechopen.72986",slug:"preparation-of-highly-dispersed-pd-supported-catalysts-for-hydrogenation-processes-by-microemulsion-",totalDownloads:1048,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Preparation of nano-dispersed palladium particles on alumina support is described here using reverse microemulsion (water-in-oil) method. This synthesis protocol leads to a narrow Pd particle size distribution with particles of average size, which were significantly smaller compared to those prepared by classical impregnation method. It is shown that the particle size could be effectively controlled both by the microemulsion chemical composition such as concentration of PdCl2 and the water/surfactant molar ratio and by the catalyst reduction process. Under the optimal reaction conditions, a Pd/Al2O3 catalyst with a homogeneous distribution of Pd particles of average size ~2.2 nm was obtained.",signatures:"Jan Patera, Iva Paterová, Jiří Krupka and Květa Jirátová",downloadPdfUrl:"/chapter/pdf-download/58613",previewPdfUrl:"/chapter/pdf-preview/58613",authors:[{id:"224100",title:"Dr.",name:"Iva",surname:"Paterova",slug:"iva-paterova",fullName:"Iva Paterova"},{id:"229887",title:"Dr.",name:"Jan",surname:"Patera",slug:"jan-patera",fullName:"Jan Patera"},{id:"229888",title:"Dr.",name:"Jiri",surname:"Krupka",slug:"jiri-krupka",fullName:"Jiri Krupka"},{id:"229893",title:"Dr.",name:"Kveta",surname:"Jiratova",slug:"kveta-jiratova",fullName:"Kveta Jiratova"}],corrections:null},{id:"58284",title:"Symbiosis in Plasmonic Nanoparticles",doi:"10.5772/intechopen.71730",slug:"symbiosis-in-plasmonic-nanoparticles",totalDownloads:1066,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The focus of this chapter is on how the symbiotic relationship existing in nature can easily be translated to the nanoscale systems, particularly in plasmonic nanoparticles. Here, we discuss the synthesis and properties of bimetallic nanoparticles, consisting of plasmonic silver (Ag) with ferromagnetic cobalt (Co). The symbiotic properties in the Co-Ag bimetallic plasmonic nanoparticles are discussed in the chapter where Ag and Co are the beneficiary elements due to the presence of each other. These bimetallic plasmonic nanomaterials demonstrate multi-functionalities which are not just limited to well-known bio-sensing or magneto-optical effects but also expand to highly unexpected and exotic properties such as extreme oxidation resistance, ferroplasmons, improved quality factor, and tunable radiative quantum efficiency.",signatures:"Abhinav Malasi and Ritesh Sachan",downloadPdfUrl:"/chapter/pdf-download/58284",previewPdfUrl:"/chapter/pdf-preview/58284",authors:[{id:"216967",title:"Dr.",name:"Abhinav",surname:"Malasi",slug:"abhinav-malasi",fullName:"Abhinav Malasi"},{id:"222250",title:"Dr.",name:"Ritesh",surname:"Sachan",slug:"ritesh-sachan",fullName:"Ritesh Sachan"}],corrections:null},{id:"57037",title:"Applications of Gold Nanoparticles in Cancer Imaging and Treatment",doi:"10.5772/intechopen.70901",slug:"applications-of-gold-nanoparticles-in-cancer-imaging-and-treatment",totalDownloads:2497,totalCrossrefCites:5,totalDimensionsCites:14,hasAltmetrics:0,abstract:"Cancer is one of the leading causes of death worldwide. In the last two decades, the development of nanotechnology has facilitated our ability to design new nanoparticles for the diagnosis and treatment of cancer. In this chapter, we reviewed the applications of gold nanoparticles as contrast agents for cancer imaging, including optical imaging, photoacoustic imaging, and X-ray–based imaging. We also reviewed their applications as delivery carriers for small molecule drugs, therapeutic genes, vaccines, and adjuvants and as therapeutic agents by themselves in cancer treatment, including photothermal therapy, photodynamic therapy, and radiation therapy.",signatures:"Shouju Wang and Guangming Lu",downloadPdfUrl:"/chapter/pdf-download/57037",previewPdfUrl:"/chapter/pdf-preview/57037",authors:[{id:"58560",title:"Prof.",name:"Guangming",surname:"Lu",slug:"guangming-lu",fullName:"Guangming Lu"},{id:"210708",title:"Dr.",name:"Shouju",surname:"Wang",slug:"shouju-wang",fullName:"Shouju Wang"}],corrections:null},{id:"57424",title:"Structure-Dependent Biological Response of Noble Metals: From Nanoparticles, Through Nanowires to Nanolayers",doi:"10.5772/intechopen.71440",slug:"structure-dependent-biological-response-of-noble-metals-from-nanoparticles-through-nanowires-to-nano",totalDownloads:1090,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Noble metals in their diverse nanoforms bring revolution to many fields of science and technology, as they provide unique properties over their bulk counterparts. Thanks to these completely unprecedented properties, commercial sphere pressure is growing to use them in everyday life. Unfortunately, one of the issues that are subject to dramatic changes is the reactivity of these structures. This may have often fatal consequences to the living organisms. Due to the fact that the mechanism of action of metal nanostructures on living organisms is not yet fully elucidated even in the case of the most studied noble metals such as gold and silver, it is necessary to continue intensively in their research, characterization and categorization. The main prerequisite for the undistorted study of interactions of nanostructures with living organisms is the use of suitable methods of their preparation. Within this context, this chapter attempts to summarize current knowledge form the field of synthesis of metal nanoparticles, layers, wires, and other nanostructures, especially regarding novel techniques of their preparation and extend them by our own results in this area, in the context of their biological properties. More specifically, antibacterial efficacy and potential cytotoxicity of those structures are thoroughly addressed.",signatures:"Jakub Siegel, Marek Staszek, Markéta Polívková, Michaela Valová,\nPavla Šuláková and Václav Švorčík",downloadPdfUrl:"/chapter/pdf-download/57424",previewPdfUrl:"/chapter/pdf-preview/57424",authors:[{id:"212856",title:"Prof.",name:"Vaclav",surname:"Svorcik",slug:"vaclav-svorcik",fullName:"Vaclav Svorcik"},{id:"146109",title:"Associate Prof.",name:"Jakub",surname:"Siegel",slug:"jakub-siegel",fullName:"Jakub Siegel"},{id:"220887",title:"Dr.",name:"Marketa",surname:"Polivkova",slug:"marketa-polivkova",fullName:"Marketa Polivkova"},{id:"220888",title:"Dr.",name:"Marek",surname:"Staszek",slug:"marek-staszek",fullName:"Marek Staszek"},{id:"220889",title:"MSc.",name:"Michaela",surname:"Valova",slug:"michaela-valova",fullName:"Michaela Valova"},{id:"220890",title:"BSc.",name:"Pavla",surname:"Sulakova",slug:"pavla-sulakova",fullName:"Pavla Sulakova"}],corrections:null},{id:"57468",title:"Structure and Applications of Gold in Nanoporous Form",doi:"10.5772/intechopen.71439",slug:"structure-and-applications-of-gold-in-nanoporous-form",totalDownloads:1519,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Nanoporous gold (np-Au) has many interesting and useful properties that make it a material of interest for use in many technological applications. Its biocompatible nature and ability to serve as a support for self-assembled monolayers of alkanethiols and their derivative make it a suitable support for the immobilization of carbohydrates, enzymes, proteins, and DNA. Its chemically inert, physically robust and conductive high-surface area makes it useful for the design of electrochemistry-based chemical/bio-sensors and reactors. Furthermore, it is also used as solid support for organic molecular synthesis and biomolecules separation. Its enhanced optical property has application in design of plasmonics-based sensitive biosensors. In fact, np-Au is one of the few materials that can be used as a transducer for both optical and electrochemical biosensing. Due to the presence of low-coordination surface sites, np-Au shows remarkable catalytic activity for oxidation of molecules like carbon monoxide and methanol. Owing to the importance of np-Au, in this chapter we will highlight different strategies of fabrication of np-Au and its emerging applications based on its unique properties.",signatures:"Jay K. Bhattarai, Dharmendra Neupane, Bishal Nepal, Vasilii\nMikhaylov, Alexei V. Demchenko and Keith J. Stine",downloadPdfUrl:"/chapter/pdf-download/57468",previewPdfUrl:"/chapter/pdf-preview/57468",authors:[{id:"192643",title:"Prof.",name:"Keith J.",surname:"Stine",slug:"keith-j.-stine",fullName:"Keith J. Stine"},{id:"213383",title:"Dr.",name:"Jay",surname:"Bhattarai",slug:"jay-bhattarai",fullName:"Jay Bhattarai"},{id:"213384",title:"Mr.",name:"Dharmendra",surname:"Neupane",slug:"dharmendra-neupane",fullName:"Dharmendra Neupane"},{id:"213385",title:"Mr.",name:"Vasily",surname:"Mikhalov",slug:"vasily-mikhalov",fullName:"Vasily Mikhalov"},{id:"213386",title:"Prof.",name:"Alexei",surname:"Demchenko",slug:"alexei-demchenko",fullName:"Alexei Demchenko"}],corrections:null},{id:"60746",title:"Colorimetric Detection of Copper Ion Based on Click Chemistry",doi:"10.5772/intechopen.76024",slug:"colorimetric-detection-of-copper-ion-based-on-click-chemistry",totalDownloads:1087,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Two colorimetric assays, lateral flow biosensor (LFB) and hemin/G-Quadruplex DNAzyme-based colorimetric assay, were developed for the detection of copper ion based on click chemistry. Two single-strand DNA (ssDNA) with azide- and alkyne-modified at 3′ and 5′ separately can be linked by the Cu+-catalyzed click chemistry. For hemin/G-Quadruplex DNAzyme-based assay, the two ssDNA fragments linked by Cu+-catalyzed click chemistry could form a complete G-rich sequence that severed as a horse-radish peroxidase. In the presence of hemin and K+, the colorless substrate tetramethyl benzidine (TMB) is catalyzed into a colored product by the G-rich sequence. The concentration of Cu2+ can then be quantitatively analyzed by measuring the color density. For the LFB assay, the two ligated ssDNA fragments could form a sandwich complex between an ssDNA fragment immobilized on gold nanoparticles and another ssDNA fragment on test zone of a biosensor, respectively. The biosensor enables visual detection of copper ion with excellent specificity. In comparison with conventional methods, the present assays are simpler to operate and more cost-effective to use, and so have great potential in point-of-care diagnosis and environmental monitoring.",signatures:"Lingwen Zeng, Zhiyuan Fang and Yunbo Wang",downloadPdfUrl:"/chapter/pdf-download/60746",previewPdfUrl:"/chapter/pdf-preview/60746",authors:[{id:"173972",title:"Dr.",name:"Lingwen",surname:"Zeng",slug:"lingwen-zeng",fullName:"Lingwen Zeng"},{id:"228491",title:"Dr.",name:"Zhiyuan",surname:"Fang",slug:"zhiyuan-fang",fullName:"Zhiyuan Fang"}],corrections:null},{id:"61475",title:"Properties and Applications of Ruthenium",doi:"10.5772/intechopen.76393",slug:"properties-and-applications-of-ruthenium",totalDownloads:1956,totalCrossrefCites:7,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Ruthenium (Ru) with atomic number of 44 is one of the platinum group metals, the others being Rh, Pd, Os, Ir and Pt. In earth’s crust, it is quite rare, found in parts per billion quantities, in ores containing some of the other platinum group metals. Ruthenium is silvery whitish, lustrous hard metal with a shiny surface. It has seven stable isotopes. Recently, coordination and organometallic chemistry of Ru has shown remarkable growth. In this chapter, we review the application of Ru in diverse fields along with its physical and chemical properties. In the applications part of Ru we have primarily focused on the biomedical applications. The biomedical applications are broadly divided into diagnostic and treatment aspects. Ru and their complexes are mainly used in determination of ferritin, calcitonin and cyclosporine and folate level in human body for diagnosis of diseases. Treatment aspects focuses on immunosuppressant, antimicrobial and anticancer activity.",signatures:"Anil K. Sahu, Deepak K. Dash, Koushlesh Mishra, Saraswati P.\nMishra, Rajni Yadav and Pankaj Kashyap",downloadPdfUrl:"/chapter/pdf-download/61475",previewPdfUrl:"/chapter/pdf-preview/61475",authors:[{id:"204256",title:"Dr.",name:"Anil",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu"},{id:"211230",title:"Mr.",name:"Pankaj",surname:"Kashyap",slug:"pankaj-kashyap",fullName:"Pankaj Kashyap"},{id:"211868",title:"Ms.",name:"Rajni",surname:"Yadav",slug:"rajni-yadav",fullName:"Rajni Yadav"},{id:"221419",title:"Mr.",name:"Koushlesh",surname:"Mishra",slug:"koushlesh-mishra",fullName:"Koushlesh Mishra"},{id:"221420",title:"Mr.",name:"Sarawati Prasad",surname:"Mishra",slug:"sarawati-prasad-mishra",fullName:"Sarawati Prasad Mishra"},{id:"250558",title:"Dr.",name:"Deepak Kumar",surname:"Dash",slug:"deepak-kumar-dash",fullName:"Deepak Kumar Dash"}],corrections:null},{id:"58968",title:"Extraction of Platinum Group Metals",doi:"10.5772/intechopen.73214",slug:"extraction-of-platinum-group-metals",totalDownloads:2717,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"About 80% of the worlds’ reserves for platinum group metals (PGMs) are in South Africa’s Bushveld Igneous Complex. Processing of PGM involves comminution, flotation, smelting, converting, base metals refinery and precious metals refinery. Due to increasing chrome content in the feed and the challenges associated with operating high chrome feed, alternative routes to smelting of PGM are being investigated. Some hydrometallurgical routes have been proposed. However, none of the reported potential routes have yet been commercialised.",signatures:"Bongephiwe Mpilonhle Thethwayo",downloadPdfUrl:"/chapter/pdf-download/58968",previewPdfUrl:"/chapter/pdf-preview/58968",authors:[{id:"224083",title:"Dr.",name:"Bongephiwe",surname:"Thethwayo",slug:"bongephiwe-thethwayo",fullName:"Bongephiwe Thethwayo"}],corrections:null},{id:"57050",title:"Rare Earth Extraction from NdFeB Magnets",doi:"10.5772/intechopen.70881",slug:"rare-earth-extraction-from-ndfeb-magnets",totalDownloads:1110,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"There is a considerable interest in the extraction of rare earths (RE) from NdFeB magnets in order to recycle rare earth elements. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between rare earths and Fe at room temperature is desired. We have recently proposed a pretreatment of corrosion before the hydrochloric acid (HCl) leaching and the oxalic acid precipitation. Almost full recovery of rare earths can be achieved even at room temperature process. In practical extraction methods, employing wet processes, the discharge of waste acid solution is a problem that needs to be solved to reduce the environmental impact. We further present an encouraging demonstration of rare earth extraction from NdFeB magnet using a closed-loop HCl-based process. Triple extraction has been conducted, and the recovery ratio of rare earths is approximately 50% in each extraction, which is reduced from almost 100% recovery in a one-shot extraction. Despite the reduced extraction efficiency, our method with a rather small number of procedures at almost room temperature is still highly advantageous in terms of cost and environmental friendliness. This study represents the initial step toward the realization of a closed-loop acid process in the recycling of rare earth elements.",signatures:"Jiro Kitagawa and Masami Tsubota",downloadPdfUrl:"/chapter/pdf-download/57050",previewPdfUrl:"/chapter/pdf-preview/57050",authors:[{id:"210570",title:"Prof.",name:"Jiro",surname:"Kitagawa",slug:"jiro-kitagawa",fullName:"Jiro Kitagawa"},{id:"220323",title:"Dr.",name:"Masami",surname:"Tsubota",slug:"masami-tsubota",fullName:"Masami Tsubota"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5514",title:"Magnetic Spinels",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"c3c43611e3fb0a8ab988acc896eae935",slug:"magnetic-spinels-synthesis-properties-and-applications",bookSignature:"Mohindar Singh Seehra",coverURL:"https://cdn.intechopen.com/books/images_new/5514.jpg",editedByType:"Edited by",editors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5734",title:"Nanostructured Materials",subtitle:"Fabrication to Applications",isOpenForSubmission:!1,hash:"85a5487dd4ccb4f6768163f69ae0ef90",slug:"nanostructured-materials-fabrication-to-applications",bookSignature:"Mohindar Singh Seehra",coverURL:"https://cdn.intechopen.com/books/images_new/5734.jpg",editedByType:"Edited by",editors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6426",title:"Titanium Dioxide",subtitle:"Material for a Sustainable Environment",isOpenForSubmission:!1,hash:"5626c0fe0b53330717e73094946cfd86",slug:"titanium-dioxide-material-for-a-sustainable-environment",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6426.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6529",title:"Bismuth",subtitle:"Advanced Applications and Defects Characterization",isOpenForSubmission:!1,hash:"55ed997d678e9c18382af23ab873ba85",slug:"bismuth-advanced-applications-and-defects-characterization",bookSignature:"Ying Zhou, Fan Dong and Shengming Jin",coverURL:"https://cdn.intechopen.com/books/images_new/6529.jpg",editedByType:"Edited by",editors:[{id:"176372",title:"Dr.",name:"Ying",surname:"Zhou",slug:"ying-zhou",fullName:"Ying Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9949",title:"Lead Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"b2f999b9583c748f957f612227976570",slug:"lead-chemistry",bookSignature:"Pipat Chooto",coverURL:"https://cdn.intechopen.com/books/images_new/9949.jpg",editedByType:"Edited by",editors:[{id:"197984",title:"Ph.D.",name:"Pipat",surname:"Chooto",slug:"pipat-chooto",fullName:"Pipat Chooto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7213",title:"Shape-Memory Materials",subtitle:null,isOpenForSubmission:!1,hash:"4e3e756cd4f8a8617dffdc36f8dce7c7",slug:"shape-memory-materials",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10629",title:"Advances in High-Entropy Alloys",subtitle:"Materials Research, Exotic Properties and Applications",isOpenForSubmission:!1,hash:"eef8e329dc2559a9dbe5f1522ec690e3",slug:"advances-in-high-entropy-alloys-materials-research-exotic-properties-and-applications",bookSignature:"Jiro Kitagawa",coverURL:"https://cdn.intechopen.com/books/images_new/10629.jpg",editedByType:"Edited by",editors:[{id:"210570",title:"Prof.",name:"Jiro",surname:"Kitagawa",slug:"jiro-kitagawa",fullName:"Jiro Kitagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7787",title:"Rare Earth Elements and Their Minerals",subtitle:null,isOpenForSubmission:!1,hash:"7ba4060b0830f7a68f00557da8ed8a39",slug:"rare-earth-elements-and-their-minerals",bookSignature:"Michael Aide and Takahito Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/7787.jpg",editedByType:"Edited by",editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6870",title:"Novel Metal Electrodeposition and the Recent Application",subtitle:null,isOpenForSubmission:!1,hash:"be9124dc8c5a6c7c7d367cac1ac9062a",slug:"novel-metal-electrodeposition-and-the-recent-application",bookSignature:"Masato Sone and Kazuya Masu",coverURL:"https://cdn.intechopen.com/books/images_new/6870.jpg",editedByType:"Edited by",editors:[{id:"157966",title:"Prof.",name:"Masato",surname:"Sone",slug:"masato-sone",fullName:"Masato Sone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5825",title:"Superalloys for Industry Applications",subtitle:null,isOpenForSubmission:!1,hash:"4cbaaafeb4958d641b74988e33229020",slug:"superalloys-for-industry-applications",bookSignature:"Sinem Cevik",coverURL:"https://cdn.intechopen.com/books/images_new/5825.jpg",editedByType:"Edited by",editors:[{id:"117212",title:"MSc.",name:"Sinem",surname:"Cevik",slug:"sinem-cevik",fullName:"Sinem Cevik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-surgical-digitally-guided-planning-for-the-mini-screw-assisted-rapid-palatal-expansio",title:"Corrigendum to: Surgical Digitally Guided Planning for the Mini-Screw Assisted Rapid Palatal Expansion (MARPE) and Suture Perforation: MARPE Guide",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79422.pdf",downloadPdfUrl:"/chapter/pdf-download/79422",previewPdfUrl:"/chapter/pdf-preview/79422",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79422",risUrl:"/chapter/ris/79422",chapter:{id:"78828",slug:"surgical-digitally-guided-planning-for-the-mini-screw-assisted-rapid-palatal-expansion-marpe-and-sut",signatures:"Cristiane Barros André, Bruno de Paula Machado Pasqua, José Rino Neto and Fábio Dupart Nascimento",dateSubmitted:"August 27th 2021",dateReviewed:"August 31st 2021",datePrePublished:"October 2nd 2021",datePublished:null,book:{id:"10780",title:"Current Trends in Orthodontics",subtitle:null,fullTitle:"Current Trends in Orthodontics",slug:"current-trends-in-orthodontics",publishedDate:"August 17th 2022",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"78828",slug:"surgical-digitally-guided-planning-for-the-mini-screw-assisted-rapid-palatal-expansion-marpe-and-sut",signatures:"Cristiane Barros André, Bruno de Paula Machado Pasqua, José Rino Neto and Fábio Dupart Nascimento",dateSubmitted:"August 27th 2021",dateReviewed:"August 31st 2021",datePrePublished:"October 2nd 2021",datePublished:null,book:{id:"10780",title:"Current Trends in Orthodontics",subtitle:null,fullTitle:"Current Trends in Orthodontics",slug:"current-trends-in-orthodontics",publishedDate:"August 17th 2022",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"10780",title:"Current Trends in Orthodontics",subtitle:null,fullTitle:"Current Trends in Orthodontics",slug:"current-trends-in-orthodontics",publishedDate:"August 17th 2022",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12020",leadTitle:null,title:"Fixed Point Theory and Chaos",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThis book is intended to serve as a guide and support to those undergraduate, postgraduate students, and researchers interested in understanding the process of dynamical evaluation of discrete and continuous systems with behavior from fixed points to chaos and vice-versa, and also to those who are interested in the most recent knowledge about fixed points evolution to chaos. Some dynamical systems are designated to have well-defined behavior but under certain not previewed conditions, the behavior of those systems could evolve into a very complex dynamical response. By the use of adequate mathematical tools, the complex behavior produced by unstable fixed points could be studied, characterized, and in most cases controlled. Moreover, it is well known that systems evaluated from fractional calculus models are capable to present stable, and unstable fixed points, and variations of them under parametric modification or variation in the integration order, which also could be controlled under different control mechanisms.
",isbn:"978-1-83768-436-6",printIsbn:"978-1-83768-435-9",pdfIsbn:"978-1-83768-437-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"256aaeeb2cfa765c6a37c73e4fe7402f",bookSignature:"Dr. Guillermo Huerta-Cuellar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12020.jpg",keywords:"Stability of Fixed Points, Banach Fixed Points Theorem, Fractional Calculus, Discontinuity of Fixed Points, Stability of Systems, Route to Chaos, Multistability, Perturbations Theory, Unstable Fixed Points, Adaptive Control, Control of Discrete-Time Chaotic Systems, Pseudo-Random Bit Generator",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 17th 2022",dateEndSecondStepPublish:"July 15th 2022",dateEndThirdStepPublish:"September 13th 2022",dateEndFourthStepPublish:"December 2nd 2022",dateEndFifthStepPublish:"January 31st 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Guillermo Huerta Cuellar is a researcher in the area of nonlinear dynamics and chaotic systems, with experimental and theoretical results. Has been an author of more than 40 high-level papers, and academic editor in 4 journals, and 3 books.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar",profilePictureURL:"https://mts.intechopen.com/storage/users/237167/images/system/237167.jpg",biography:"Guillermo Huerta Cuellar received a B.Sc. degree from Instituto de Investigación en\r\nComunicaciones Ópticas (IICO), from the Universidad Autónoma de San Luis Potosí, San Luis\r\nPotosí in 2004. After, he received a Ph.D. degrees from Centro de Investigaciones en Óptica\r\n(CIO), León Guanajuato, Mexico, in 2009. During 2010 to present he have been working at the\r\nExact Sciences and Technology Department in Centro Universitario de los Lagos, Universidad de\r\nGuadalajara. He has been Visiting Researcher in the department of Applied Mathematics at\r\nInstituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México (2012-\r\n2014), in Department of Theory of Oscillations and Automatic Control, Faculty of Radiophysics,\r\nLobachevsky State University of Nizhny Novgorod, Russia (2016), sabbatical stay in the\r\nDepartment of Physics and Environmental Science at St. Mary's University, San Antonio, TX, US\r\n(2018-2019), and in División de Matemáticas Aplicadas, Instituto Potosino de Investigación\r\nCientífica y Tecnológica (IPICYT), in San Luis Potosí, S. L. P., México (2019-2020). He has\r\neditor of 3 books, and coauthor of 6 book chapters, international journals and conferences, and\r\nmore of 40 high impact publications. He is member in the National System for Researchers (SNI-\r\nCONACyT-México). He participates as Academic Editor in the Journal Complexity (2021),\r\nFrontiers in Applied Mathematics and Statistics (2022), and Axioms (2022). He has participations\r\nas a reviewer in high impact-factor journals. His research interests include study, characterization,\r\ndynamical behavior and design in nonlinear dynamical systems as lasers, electronics, and in\r\nnumerical models.",institutionString:"University of Guadalajara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Guadalajara",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"478197",firstName:"Veronika",lastName:"Radosavac",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"veronika@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"9272",title:"Optical Fiber Applications",subtitle:null,isOpenForSubmission:!1,hash:"dd156cc0568d8a4204d9f13609d8ff9e",slug:"optical-fiber-applications",bookSignature:"Guillermo Huerta-Cuellar and Roghayeh Imani",coverURL:"https://cdn.intechopen.com/books/images_new/9272.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49732",title:"Biodegradation of Petroleum-Polluted Soils Using CNB-Tech – The Nigerian Experience",doi:"10.5772/62116",slug:"biodegradation-of-petroleum-polluted-soils-using-cnb-tech-the-nigerian-experience",body:'Nigeria is a constitutional federal republic, the most populous country in Africa with over 170 million people of divergent cultural values, inhabited by over 300 ethnic groups. The country comprises thirty-six states and the capital territory (Abuja) out of which nine (Abia, Akwa Ibom, Bayelsa, Cross River, Delta, Edo, Ondo, Imo and Rivers States) fall within the Niger Delta Region. The Niger Delta region is reputed for oil industry operations that commenced in 1956. The first oil well (Fig. 1) was discovered in Oloibiri, Bayelsa State, after which many oil wells were found in the other states of the Niger Delta Region. The advent of oil mining brought financial boom but afterward came trails of petroleum-based pollution. Environmental degradation due to crude oil spill on land, into the swamps and water bodies with attendant consequences on the ecosystem and public health became topical issue both at the national and international levels. Factors influencing petroleum-based environmental pollutions in the country were identified as: (i) operational failures (corrosion of pipeline, human error and equipment failure); (ii) accidental discharge; (iii) acts of sabotage (oil theft, pipeline bunkering and artisanal refining) and (iv) inappropriate handling and disposal of petroleum wastes.
Status of the first oil well in Nigeria 57 years after discovery, from 1956 to 2013
Most of the oil companies claim that acts of sabotage contribute the most to the release of petroleum products into the environment relative to operational failures. This is corroborated by some spill data (Fig. 2) put in the public domain by the Shell Petroleum Development Company, Port Harcourt, Nigeria [24]. These data show that oil spill incidents traceable to operational failure range from 7 to 35%; inferring that acts of sabotage are responsible for 65–93% of oil spill in the Nigerian environment. Secondary data as shown in Fig. 2a bring out the following facts: (i) the number of oil spill incidents and spill volumes are recorded on a monthly basis, (ii) a high spill incident number does not necessarily imply a high spill volume. For instance, the highest number of spill incident (28) was recorded in July 2014, but the largest volume of spill was obtained in April, 2014 with a total number of 14 spill incidents, (iii) acts of sabotage seem to be at the peak three times in a year (at the beginning of the year [92%], midyear [93%], and end of year [93%]) and (iv) the season of the year (wet or dry) does not really play a significant role in the acts of sabotage. These facts, however, require further verification by conducting more detailed analyses using statistical data of previous years.
Irrespective of the oil spill causative factor, petroleum-based pollution endangers the entire environment including the human population [25]. Once petroleum product (crude or refined) is either intentionally or unintentionally released into the environment, the consequences remain the same. In any community impacted by oil spill, the degree of response to such an incident plays an important role in ensuring environmental safety, protection, and sustainability. From the environmental standpoint, the most important issue is that swift, positive and appropriate action aimed at safeguarding the ecosystem be taken once an oil spill occurs.
a: Oil spill incidents and volume of spill for 2014 in the Niger Delta region of Nigeria as presented by the Shell Petroleum Development Company, Port Harcourt, Nigeria. b: Secondary data showing numerical values of oil spill incidents, volume of spill, and trend in oil spill incident due to sabotage for 2014 in the Niger Delta region of Nigeria
Response actions include site cleanup via recovery of free phase oil, subsequent reduction of the residual petroleum hydrocarbon concentrations to an acceptable value, followed by restoration of the environment to its previous utility status. Options for the reduction of residual petroleum hydrocarbon concentrations are preferably eco-safe techniques. After a cleanup exercise, detoxification of soils polluted with residual petroleum hydrocarbon compounds is necessary. There are different methods by which the concentrations of these pollutants (total petroleum hydrocarbon – TPH, and polynuclear aromatic hydrocarbon – PAH) could be reduced to fall within the acceptable level. The major mechanism involves degradation processes. Degradation generally applies to the breakdown or transformation of complex materials into simpler ones.
Various types of degradation processes include (i) thermal degradation that occurs via the application of heat, (ii) mechanical degradation, which takes place by the application of mechanical force, (iii) photo degradation, which is the transformation of complex compounds by the action of sunlight, (iv) oxidation/chemical degradation that occurs by the addition of chemicals and (v) biodegradation, which proceeds by the action of microorganisms (yeast, fungi, or bacteria). Organic substances that can be broken down by the action of microorganisms are said to be biodegradable. The technique that enables the application of biodegradation to clean up biodegradable organic pollutants from the environment is referred to as bioremediation. An example of a class of organic compounds that can be detoxified via biodegradation is petroleum-derived hydrocarbons. Petroleum-based hydrocarbons generally belong to the normal hydrocarbons known in organic chemistry. Hydrocarbons vary in their degree of susceptibility to microbial degradation. Some high molecular weight polynuclear aromatic hydrocarbons (PAHs) may not be degraded by microorganisms at all. Biodegradation of hydrocarbons proceeds through the major pathways presented in Fig. 3 [19]. A given hydrocarbon is eventually transformed to an acid, which is finally converted to innocuous end product(s).
Major processes involved in biodegradation of a typical hydrocarbon compound
For a given biodegradation process, a hydrocarbon compound is generally transformed, through biochemical processes, to more polar organic compounds such as alcohol, ketone, aldehyde and organic acid. Essentially, biodegradation of an organic pollutant depends on the nature of the target compounds, environmental factors and microorganisms as highlighted in Table 1 [9, 23, 26, 27]. The success of biodegradation of petroleum hydrocarbons at the field-scale platform is highly dependent on effective maneuvering of these three factors. Doing otherwise would endanger the environment.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
1. | \n\t\t\t\n\t\t\t\t \n\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
2. | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
3. | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
4. | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t (i) Soil organic matter content: this readily absorbs hydrophobic compounds such as petroleum hydrocarbons. The major binding sites in soil organic matter are the soluble humic substances, in particular, humic and fulvic acids. | \n\t\t\t\n\t\t\t\t The availability of microorganisms with appropriate metabolic capabilities is a major requirement for biodegradation of oil sample | \n\t\t
(ii) Soil moisture: facilitates biodegradation of petroleum compounds because microbes thrive better in moist than in dry environments | \n\t\t|||
(iii) Soil pH: is a measure of soil acidity or alkalinity. The acidity (pH) of the soil is an important soil parameter. Soil pH can vary from 2.5 (highly acidic soils) to 11.0 (highly alkaline soils). Soil pH value affects microbial activity with moderate alkaline being the most favorable | \n\t\t|||
(iv) Soil aggregate: this increases bioavailability of the pollutant | \n\t\t|||
(v) Soil oxygen: little or no hydrocarbon metabolism occurs in strictly anoxic soil condition; hence, oxygen is a very important parameter for biodegradation | \n\t\t
Description of basic factors that influence the success of a biodegradation process
The objectives of this study are (i) to present an overview of past and present practices in field-scale biodegradation procedures employed in the detoxification of petroleum hydrocarbon polluted soils in Nigeria and (ii) to demonstrate the efficacy of the novel, eco-safe and nanotechnology based bioremediation technique (CNB-Tech) in the remediation and restoration of petroleum impacted soils to beneficial end products.
In this study, the research methods used were literature review, field survey, screen house farming, pilot-scale bioremediation and standard laboratory techniques for relevant chemical and biological analyses.
Research tools used for this study were literature review and field survey. Formal and informal interactions with relevant stakeholders utilizing remediation procedures in petroleum industries and remediation project sites.
Research method employed for this study was a practical pilot-scale remediation using a biodegradation process referred to as CNB-Tech, whose basic procedure has been described in [1]. However, there were modifications specific to the sample matrix used in this study. Permissions to procure petroleum impacted soil material consignments from the Shell Petroleum Development Company’s remediation project site and to conduct the pilot-scale project were obtained from the appropriate authorities in the company. The spill site of about 15.6 hectares was situated between latitude 4°N and longitude 7° 7.5’E, in Eleme Local Government Area of Rivers state. This site was impacted by crude oil in 1969 as a result of damage by external device to Bomu-Bonny Trans Niger Pipeline (TNP) at Ejema and was accompanied by fire outburst. The hydrocarbon pollution was therefore up to 42 years long at the time study (ERMS, 2011). With the assistance of project site workers, clay soil sample bulk was collected in 2 x 200 L plastic drums, which were immediately conveyed to the pilot-scale remediation project site in Shell Industrial Area (Shell IA), Port Harcourt.
CNB-Tech biodegradation procedures were then applied to the samples. Untreated clay soil samples served as controls. Both controls and tests were replicated three times. Composite samples, collected under appropriate conditions and methods (before and after treatment) were sent to an ISO certified laboratory in the USA (by courier) and another in Nigeria for the analyses. Quality control and quality assurance protocols were strictly followed and parameters of interest were:
Hydrocarbon compounds: Total petroleum hydrocarbon (TPH) and 17 polynuclear aromatic hydrocarbons (PAHs)
Soil fertility parameters: pH, electrical conductivity and nitrogen (N), phosphorus (P), potassium (K)
Heavy metals: Lead (Pb), mercury (Hg), arsenic (As), barium (Ba), copper (Cu), zinc (Zn), cobalt (Co), and nickel (Ni)
Soil recovery and restoration indices: Reestablishment of microbial community and ability to sustain plant life investigated via microbial activity assessments at 48 h and 96 h periods (conducted only by the USA-based laboratory) and seed germination potential assessment conducted in Nigeria.
As a demonstration of the beneficial utility of the end product, the CNB-Tech remediated soils were used to grow indicator crops, namely
In this study, soil samples from one of the rural communities in Rivers State, Nigeria, called Bomu (K-Dere) in Gokana, Ogoniland (Fig. 4), where crude-oil-impacted farm land area was remediated using RENA technique, were collected and used for this comparative evaluation. The major remediation technique adopted by one of Nigeria’s leading international oil companies (the Shell Petroleum Development Company, Port Harcourt, Nigeria) for crude-oil-impacted soil, at the time of study, is referred to as RENA (Remediation by Enhanced Natural Attenuation). Permission to conduct the investigation was obtained from the designated authority of the oil company. Sample collection was supervised by (i) two representative staff of the oil company, (ii) a community relations officer (CRO) and (iii) some representatives of the community youth forum. Due to low literacy level, oral interviews were conducted on the community representatives to elicit information on factors such as (i) type of actions taken during the RENA remediation project, (ii) common utility of the land area prior to spill and (iii) experiences of farmers utilizing the remediated land area. Information was also obtained from the staff of the oil company on the mode of RENA remediation works carried out at the study site.
Map showing the location of Bomu in Ogoniland, Nigeria; sourced from [
On arrival at the pilot-scale remediation project site in Port Harcourt, the three different sample bulks of 56 kg each were homogenized, spread out on blue PVC sheets (in order not to contaminate the surrounding environment), air dried in the laboratory and then sieved through a 2 mm mesh size. Grid templates of 12 cells were then created for each sample bulk as shown in Fig. 5. Approximately 2 kg soil was collected from each of the12 subcells, mixed together to give the final composite of 24 Kg soil for a subsite. This was repeated four more times to give five replicate samples for each subsite. All together, 15 samples (n = 15) were obtained for the three subsites in the study area. The 15 soil samples were contained in properly labeled sample bottles, transferred into thermostated, ice-packed boxes and sent to a Chemical laboratory (Laser Engineering and Resources Consultants Limited, Port Harcourt, Nigeria) certified by the National regulatory body. The 15 parameters analyzed for in each soil sample were: temperature, pH, electrical conductivity (EC), total organic carbon (TOC), total nitrogen (N), soil organic matter (SOM), total petroleum hydrocarbons (TPH), potassium (K), sodium (Na), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni) and zinc (Zn) using standard methods.
The three different sample bulks showing grid template of 12 cells created on each sample, from which samples were collected for physicochemical analyses
Data obtained in this study were subjected to relevant statistical analysis using SPSS 17.0 for Windows Evaluation Version. Descriptive statistics were used to obtain means and deviations, Pearson linear correlations were useful for the establishment of relationships and means were compared by Analysis of variance (ANOVA).
Information from literature review showed that most researchers focused on two major factors: (i) isolation of potential hydrocarbon degrading microbial strains and biostimulation via nutrient augmentation. For instance, [17] isolated about 15 hydrocarbon-degrading bacterial and fungal species from three bitumen deposits believed to be of relevance in biodegradation of petroleum (kerosene and diesel) contaminated systems in Nigeria. [9] carried out an experiment involving biostimulation with agricultural fertilizers to evaluate the biodegradation of hydrocarbon compounds found in a crude-oil-polluted agricultural soil at different levels of soil water. Petroleum pollution of an agricultural soil was simulated on the field by pouring crude oil on the cells from perforated cans. Biostimulation options were (i) introduction of mineral fertilizers and (ii) periodic application of different amounts of water. Results showed an increase in the total heterotrophic bacterial (THB) counts and a corresponding reduction in soil organic carbon and total hydrocarbon content (THC) at the end of the six-week remediation period. The implication is that by manipulating soil water content and nutrient levels (via inorganic fertilizer application), microbial population and activity were stimulated, suggesting that the level of water in the soil is a major factor that affects biodegradation rate. The use of isolated microbial strains to biodegrade petroleum hydrocarbon has not been successfully applied at the field scale for the remediation and restoration of crude-oil-polluted soils. Most of these works are still at the laboratory scale.
In practice, oil companies in Nigeria contract out bioremediation projects to certified vendors who then apply approved technologies under the supervision of the particular oil company and National Regulatory Agencies. The most commonly practiced bioremediation is land farming, a process believed to utilize indigenous microorganisms to biodegrade petroleum hydrocarbon pollutants under specified conditions.
This is a type of biodegradation by enhanced natural attenuation, which goes by different names for different companies such as RENA for the Shell Petroleum Development Company, Nigeria [25]. Limitations of in situ biodegradation via land farming where environmental controls are not put in place are highlighted in Table 2.
The issues highlighted in Table 2 clearly show that in situ biodegradation via land farming without the necessary environmental control measures, as often practiced, do not achieve legislative compliance and do not meet best management practices locally or internationally and constitute risk to the environment and public health.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
1. | \n\t\t\tImpact of rainfall/precipitation | \n\t\t\tWhen rain falls on the project site, due to lack of critical environmental controls, there will be leaching of hydrocarbons from the windrows and runoffs will be generated | \n\t\t
2. | \n\t\t\tEffect of temperature | \n\t\t\tThis results in evaporation of hydrocarbons with associated occupational hazards to on-site workers and endangered health of neighboring communities | \n\t\t
3. | \n\t\t\tFate of runoffs | \n\t\t\tRunoffs emanating from impact of rainfalls on the windrows, constructed during land farming, will endanger nearby farms, communities, swamps, water bodies (ponds, lakes, streams, rivers, and groundwater). Runoffs have the potential to increase polluted land area | \n\t\t
4. | \n\t\t\tAir pollution | \n\t\t\tIncreased temperature such as is experienced in Nigeria will enhance the presence of volatile hydrocarbons in the atmosphere, resulting in air pollution. Most often, air pollution is not monitored during the remediation projects | \n\t\t
5. | \n\t\t\tVertical infiltration of pollutant | \n\t\t\tDuring the in situ biodegradation via land farming, the absence of impervious barriers allows for vertical penetration of oil/pollutants, thus resulting in the pollution of subsoil and groundwater | \n\t\t
Limitations of in situ biodegradation via land farming
Percent composition of PAH compounds relative to total PAH found in the petroleum-impacted clay soil
Amazingly but very reassuring, none was detected in the CNB-Tech treated samples. Results from the Nigeria-based laboratory showed that by the application of CNB-Tech remediation procedures to the petroleum-hydrocarbon-polluted clay soils, the five PAHs were completely degraded, resulting in 100% reduction in concentration.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t
1. | \n\t\t\tpH | \n\t\t\t7.47 ± 0.06 (7.40–7.50) | \n\t\t\t9.06 ± 0.12 (9.00–9.20) | \n\t\t\t3 | \n\t\t\tNA | \n\t\t
2. | \n\t\t\tCd (mg/kg) | \n\t\t\t7.05 ± 0.60 (6.40–7.65) | \n\t\t\tND | \n\t\t\t3 | \n\t\t\t12 | \n\t\t
3. | \n\t\t\tCu (mg/kg) | \n\t\t\t9.37 ± 0.53 (7.70–9.85) | \n\t\t\t12.30 ± 0.69 (11.50–12.70) | \n\t\t\t3 | \n\t\t\t190 | \n\t\t
4. | \n\t\t\tPb (mg/kg) | \n\t\t\tBDL | \n\t\t\t5.79 ± 0.66 (5.10–6.41) | \n\t\t\t3 | \n\t\t\t530 | \n\t\t
5. | \n\t\t\tNi (mg/kg) | \n\t\t\t4.55 ± 1.34 (3.10–5.75) | \n\t\t\t3.39 ± 0.58 (2.96–4.05) | \n\t\t\t3 | \n\t\t\t210 | \n\t\t
6. | \n\t\t\tZn (mg/kg) | \n\t\t\t122.86 ± 4.20 (120–128) | \n\t\t\t51.73 ± 19.50 (12.90–74.40) | \n\t\t\t3 | \n\t\t\t720 | \n\t\t
7. | \n\t\t\tCo (mg/kg) | \n\t\t\tBDL | \n\t\t\tND | \n\t\t\t3 | \n\t\t\t240 | \n\t\t
8. | \n\t\t\tAs (mg/kg) | \n\t\t\tBDL | \n\t\t\tND | \n\t\t\t3 | \n\t\t\t55 | \n\t\t
9. | \n\t\t\tCr (mg/kg) | \n\t\t\t11.13 ± 1.17 (10.10–12.40) | \n\t\t\tND | \n\t\t\t3 | \n\t\t\t380 | \n\t\t
10. | \n\t\t\tHg (mg/kg) | \n\t\t\t4.83 ± 0.50 (3.90–5.60) | \n\t\t\t0.02 ± 0.01 (BDL -0.03) | \n\t\t\t3 | \n\t\t\t10 | \n\t\t
11. | \n\t\t\tBa (mg/kg) | \n\t\t\tND | \n\t\t\t437.33 ± 66.71 (263–4920 | \n\t\t\t3 | \n\t\t\t625 | \n\t\t
Selected properties (pH and heavy metal levels) of CNB-Tech treated soil samples
DPR = Department of Petroleum Resources, BDL = below detection limit, ND = not determined, n = sample population and NA = not available, values in parenthesis stand for minimum–maximum
Reduction in soil heavy metal concentrations in CNB-Tech-treated soil samples
Appearance of the crude-oil-impacted clay soil before and after CNB-Tech treatment
a: Qualitative microbial population in contaminated soil sample (CTS) and samples undergoing remediation (RS01 and RS02) as obtained by the USA-based laboratory. b: Quantitative representation of the microbial population in contaminated soil sample (CTS) and samples undergoing remediation (RS01 and RS02) as obtained by the USA-based laboratory
At 48 h and 96 h assessments, the microbial activity found in the CNB-Tech treated soils exceeded that found in the polluted samples by approximate factors of 13 and 19, respectively. Results indicate that the polluted clay soils did not totally inhibit microbial growth, unlike what was obtainable for polluted oil-based mud [1]. CNB-Tech treatment replenished the microbial community. When soil is fully recovered and administration of treatment terminated, microbial population gradually adjusts back to normal population in the habitat [1].
In terms of crop growth, the CNB-Tech remediated soils gave excellent support to both germination and growth of the vegetable crop. A mean plant height of 207 ± 10 cm was recorded for crops grown in CNB-Tech-treated soils, which excelled over crop performance (171 ± 8 cm) of vegetable crops grown in the control (farm soil) by 21%. On the other hand, petroleum-impacted clay soils used in this study did not support germination or growth of the vegetable, giving 100% inhibition to plant growth. The aim of remediation is to restore polluted site/land area to its previous use or modified beneficial use. The common land use in the Niger Delta region of Nigeria is crop production. Results have shown that CNB-Tech biodegradation remediation protocol achieved detoxification and restoration of petroleum-hydrocarbon-polluted soil to original land use. Results are in line with the findings reported by [1] for the treatment of polluted-oil-based mud using CNB-Tech. The enhanced crop growth performance of CNB-Tech treated soils could be attributed to increased fertility of the treated soils as supported by data on NPK status obtained in this study. Nitrogen was increased from 0.026% to 0.431%. Phosphorus was raised from mean values of 0.003 to 2.530% and potassium was raised from 0.082% to 0.481% (results from Nigerian laboratory). This is further strengthened by favorable pH status (which has the potential to enhance plant nutrient uptake and soil microbial activity) and reduction of heavy metal concentration (Fig. 7) thereby reducing their potential phytotoxicity.
Digital capture, showing cross sections of a green, leafy vegetable crop (Fluted pumpkin:
The safety of crops grown in CNB-Tech treated soils for animal and human consumption is presently under intensive investigation. The crops are being assessed for hydrocarbon and metal contents in addition to other phytotoxicological parameters. Results of these investigations will soon be published.
Results on comparative evaluation of CNB-Tech and RENA remediated soils for crop production are presented and discussed. Data are provided on (i) plant height, (ii) stem girth and (iii) leaf number.
Variance of height of cassava crop grown in certain RENA remediated soils with time
Variance of stem girth of cassava crop grown in certain RENA remediated soils with time
The cassava grown in the control (AGS) produced mean stem girth of 2.20± 0.01. Relative to this, the crop grown in RENA remediated soil (RMS) manifested 48.64% reduction in stem girth, having a mean stem girth of 1.13± 0.06 while that grown in IMS experienced 53.18% reduction; having stem girth of 1.03 ± 0.01. Graph of changes in leaf number relative to growth period is shown in Fig.13. The coefficient of correlation for leaf number versus growth period was 0.871 (p < 0.002) for IMS, 0.774 (p = 0.014) for RMS, and 0.903 (p = 0.001) for AGS. The mean leaf number of cassava grown in the control (AGS) was 55 ± 1. Using the performance of cassava in AGS as reference, cassava crops grown in RENA remediated soils (RMS and IMS) experienced 36.36% and 49.09% reductions in leaf number, respectively; having leaf numbers of 28 ± 6 and 35 ± 6, respectively. Generally, results showed that irrespective of the agronomical parameter, the best performance was obtained in this order: AGS (Subsite C) > RMS (Subsite B) > IMS (Subsite A).
Variance of leaf number of cassava crop grown in certain RENA remediated soils with time
The very poor performance of crops grown in IMS (Subsite A) in comparison to the crops grown in RMS (Subsite B) and AGS (Subsite C) was attributed largely to an observation made at the site. This is briefly explained thus; after a heavy rainfall, the soil surface appeared to be coated with water but underneath was very dry, as illustrated in Fig. 14. This indicates severe soil hydrophobicity; which is a situation where water content of soil is extremely low. By contrast, the soil found at the agricultural site (AGS) after the same rainfall demonstrated satisfactory water penetration into the soil. The causative factor to this observation is not well-understood but it could have been due to crude oil effect. The release of crude oil into the soil environment often leads to alteration of normal activities of the soil medium. It adversely impacts soil’s physical, chemical, and biological characteristics [14]. This perhaps explains why the local farmers did not use Subsite A (IMS) for crop production.
Reduced water infiltration in Subsite B (RMS) relative to the agricultural farm soil (Subsite C: AGS)
Highlights of results from comparative analysis between the performances of RENA remediated soil (RMS) and CNB-Tech remediated soils (CRMS) are shown in Fig. 15. ME02 stands for the name of the indicator crop and its replicate number (
Digital capture, illustrating growth of cassava crop grown in RENA remediated soil (RMS) and CNB-Tech remediated soil (CRMS), where DAG stands for day after germination, H stands for height, SG stands for stem girth, and ME02 stands for
Keeping day of growth constant (Fig. 15a), and c at DAG-37 (37th day of growth), height of cassava grown in RENA remediated soil was 15.10 cm and that grown CNB-Tech remediated soil (CRMS) was 43.40cm, showing an enhanced performance by CNB-Tech relative to RENA by 187.42%. The growth of crop height per day, presented in Fig. 16, gave 0.31 cm for cassava grown in RENA remediated soil, 0.57 cm per day for that grown in farm soil (AGS), and 0.90 cm for the crop grown in CNB-Tech remediated soil. The improved performance of crops grown in CNB-Tech treated soils over those grown in RENA treated soils was attributed to positive modification of soil properties such as pH, temperature, water dynamics, electrical conductivity, and enhanced plant nutrient bioavailability for easy plant nutrient [2, 3, 6, 7]. CNB-Tech products, which are biodegradable and eco-friendly, are also sources of natural plant and soil-beneficial mixed microbial consortia. CNB-Tech procedures do not involve the use of genetically engineered microorganisms and as a result of in situ generation of microorganisms, eliminates the daunting task of isolating specific microorganisms needed to remove specific contaminant.
Growth in height of cassava crop per day for RENA remediated soil (RMS), CNB-Tech remediated soil (CRMS), and farm soil (AGS: control)
According to [15], most remediation/biodegradation guidelines for detoxification of petroleum hydrocarbons are developed mainly for TPH or total mineral oil concentration but the spill of crude oil into the soil could cause varying degrees of toxicity, phytotoxicity, mutagenicity and carcinogenicity actions. Ecotoxicity bioassays should therefore be incorporated as supplementary tools for monitoring treatment effects. In a situation where, for instance, the end-use of the land is farming, using reduction of petroleum hydrocarbon concentrations as the only or major index for closeout of remediation projects without recourse to other ecological and socioenvironmental factors poses some threats to the environment in terms of soil quality, food security, food safety and means of livelihood for the populace. These in turn could stimulate poverty, endanger public health and impact negatively on national security.
In comparison with other works, the result obtained in this study on TPH reduction was higher than 7.42 ±1.02% reduction obtained by [18] when poultry manure alone and in combination with glucose was applied to crude-oil-contaminated soil. Comparing the results obtained in this study with related investigations in other parts of the globe, [8] carried out bioremediation on sand samples contaminated with oil spill, which were collected from Pensacola beach (Gulf of Mexico) using isolated fungal diversity associated with beach sands. They investigated the ability of isolated fungi for crude oil biodegradation. Results from their study gave 4.7–7.9% biodegradation. [10] obtained 24.0–57.1% reduction in TPH by applying a biological treatment to crude-oil-contaminated soil in Russia. They used composting system, enhanced by nutrient (NPK fertilizer) addition and inoculation of
In China, [20] conducted an investigation on two bioremediation technologies (bioremediation by augmentation and conventional composting using crude manure and straw) as treatment options for oily sludge and oil-polluted soil in which the total hydrocarbon content (THC) varied from 327.7 to 371.2 g/kg (327700 to 371200 mg/kg) for dry sludge and 151.0 g/kg (151000 mg/kg) for soil for a period of 56 days; after three times of biopreparation application, THC decreased by 46–53% in the oily sludge and soil. Note that the results (88–99% degradation in TPH) obtained from this present study was from only one dose application of CNB-Tech products. As stated earlier, repeated application of CNB-Tech products by two to three dose applications will achieve 100% degradation of TPH.
[13] carried out bioremediation of petroleum-hydrocarbon-–contaminated soil by composting in biopiles and recorded mineral oil decrease from 2400 to 700 mg/kg, corresponding to 70% reduction after 5 months. Majority of remediation works carried out in other parts of the globe took a period of 3 months to over 12 months to achieve between 75 and 98% reduction in TPH in hydrocarbon-contaminated soils (SGBP, 2007; [16]. CNB-Tech achieves a faster cleanup/TPH reduction, since projects can be completed in days/weeks instead of months/years.
CNB-Tech is an innovative, time-effective, cost-effective and eco-friendly remediation technique developed for the detoxification and restoration of crude-oil-impacted environmental matrices polluted with petroleum hydrocarbons, incorporating biodegradation process. This study revealed that it compares and has the potential to excel over some existing biodegradation procedures employed by many oil industries, especially in developing countries. Presently, a mini field-scale project sponsored by National Tertiary Education Trust Fund (TETFUND) is ongoing, focusing on optimization of the CNB-Tech in readiness for field-scale applications for industrial operations and safety assessments of different crops grown in the treated soils.
The Shell Petroleum Development Company, Port Harcourt, Nigeria, through its University Liaison and Remediation Units sponsored this project.
Soil is usually the most available growing medium for all kinds of plants. Almost all of the vegetables we find on grocery store shelves are produced either directly or indirectly in open field soils. In general, soil serves two basic purposes—it acts as a reservoir to retain nutrients and water, and it provides physical support for the plant through its root system [1]. A well-drained, pathogen-free field soil of uniform texture is the least-expensive medium for plant growth, but the soil does not always occur in this perfect package [2]. Existing levels of abiotic and biotic stresses in soil severely affects agricultural and horticultural production. Some soils are poorly textured or shallow and provide an unsatisfactory root environment because of limited aeration and slow drainage. Pathogenic organisms are a common problem in field soils. On the other side, the shrinking of agricultural land due to continuous urbanization and industrialization also affects the total agriculture and horticulture production [1]. Strong worldwide urbanization also puts a demand for producing vegetables in close proximity to the consumers. When adverse conditions are found in soil and reclamation is impractical, some form of an alternate method of cultivation without soil may be justified. Soilless cultivation is another way of growing agricultural and horticultural crops. The recent scientific invention proved that it is also possible to produce crop plants without soil,
Presently, many countries are focusing special attention towards soilless cultivation,
Soilless culture is rapidly gaining momentum and popularity and is one of the fastest-growing sectors of agriculture. There has already been a great deal of buzz throughout the scientific community for the potential to use soilless culture in future food production. Soilless culture could well dominate food production in the future. The application of these systems is likely to increase close to existing cities as well as in mega-cities worldwide in the near future. To meet the growing demand for soilless culture technology, ICAR-Indian Institute of Horticultural Research, Bengaluru has standardized a simple and low-cost production technology, including nutrient formulations for open and polyhouse soilless cultivation of most commonly consumed vegetables
Soilless culture is a method of growing plants without soil. In this method of cultivation, plants are grown by providing nutrients, water, and physical support in a container. Soilless culture is normally called water or solution culture, the technique was firstly termed by W.F. Gericke as hydroponics (water working) in the 1930s [8]. Several workers use the term hydroponics to mention the systems that include some kind of organic or inorganic substrates to support the plant physically and to hold water in its inert matrix. The hydroponics method of cultivation has been used every now and then in the world as a profitable business of growing vegetable, flower, ornamental and medicinal plants. Because of the availability of various types of substrates along with scientific advancements, soilless culture has entered into the viable commercial stage. It supplies fresh vegetables in countries with limited arable land as well as in small countries with dense populations. Plants grown in hydroponics or soilless culture had consistently superior quality, high yield, rapid harvest, and high nutrient content.
Soilless culture in bags, pots, or troughs with a lightweight medium,
The existence of a diverse climate in India ensures the availability of all types of fresh vegetables. India stands second in vegetable production in the world, after China. As per National Horticulture Database (Second Advance Estimates) published by National Horticulture Board, during 2019–2020, India produced 191.77 million metric tonnes of vegetables. The area under vegetable cultivation is 10.35 million hectares. The global area under soilless cultivation of vegetables is 95,000 ha only. This is a very meagre area at the world level when compared to an area under soil-based cultivation of vegetables. There is a range of limitless options in soilless culture regarding the type of vegetable crops to be grown. The list of suitable vegetable crops under different groups for growing in both open-field and polyhouse soilless culture conditions is given in Table 1.
Type of vegetable crops | Name of the vegetable crops |
---|---|
Transplanted vegetables | Tomato, brinjal, chilli, onion, cabbage, cauliflower, and broccoli |
Direct sown vegetables | Okra, zucchini, cucumber, ridge gourd, bottle gourd, spine gourd, radish, beetroot |
Perennial vegetables | Drumstick, curry leaf, chekkurmanis and agathi |
Leafy vegetables | Amaranthus, palak, and lettuce |
Spice crops | Coriander and fenugreek |
Legume vegetables | French bean, garden peas, Dolichos, cowpea, and yard long bean |
List of vegetable crops that can be grown successfully under soilless culture.
Source: Kalaivanan
Based on the space available in terrace or rooftop of home two types of gardens can be adopted
Terrace garden can be two models i. open garden and ii. shade net garden. In an open garden, containers are placed on the terrace, and vegetables and medicinal herbs are grown. Hence, the investment is only on containers, growing media, seeds, crop production and protection chemicals, and home garden tools. In the case of a shade net garden, a shade net is installed and crops are grown inside the shade net. The investment is Rs 100/square feet in addition to the above-mentioned investment. However, the shade net garden protects the plants from pests and diseases to a greater extent, reduces the use of crop protection measures, and the crops and produce are much healthier as they are grown under protected conditions.
Installation of shade net is very simple and can be done by any local artisans (Figure 1). It requires galvanized pipes (G.I.) of 60 mm diameter (“B” Class), fasteners, and an agro shade net (50%). The length and width of the shade net can be any size based on the area available and the height will be 8½ feet. The G.I pipes are grouted to the terrace if it is to be on a terrace or can be fixed on the ground with proper concrete foundation if it is to be on an open yard. The space between two adjacent G.I. columns is 10 feet. A simple door is required to be provided at any one convenient place of the structure. The dimension of the door is 1.2 × 1.8 m (W × H). The entire G.I structure is covered with a 50% agro shade net with fasteners. The containers, such as grow bags, pots, and rectangular trays, can be placed inside the shade net.
Shade net garden.
The vertical home structure is designed considering (i) size suitable for terrace/utility area, (ii) to grow vegetables consumed by a family on daily basis, (iii) pots suitable for respective vegetables/leafy vegetables/flowers/medicinal plants, (iv) structure suitable for handling in terms of the height of reach, mobility, the requirement of light available to all the pots, and (v) effective utilization of maximum area for growing plants. The vertical garden structure has three major substructures
Vertical garden.
The vertical garden has four height levels and the topmost level was decided based on the maximum reach of a normal human being hand reach. Vegetable crops that grow a height of higher than 2 feet (tomato, chilli, brinjal, peas, etc.,) are placed in the bottom-most level of the vertical garden structure. Leafy vegetables (palak, amaranthus, coriander, etc.) that grow to a height of about one foot are placed above the bottom layer. Medicinal crops or again leafy vegetables are placed above the second bottom layer. Flowers are placed at the topmost level of the structure which would give aesthetic look.
According to [11, 12, 13] substrates must have the following properties:
Inert (no reaction with the nutrients)
pH neutral
Porous
Low density
Hydrophilic
There should not be any radioactive pollutants and heavy metals in substrates
As much as possible the substrate should be usable in natural form without any additional processing
The substrate can either be obtained by mining from nature or otherwise produced in the industry
It should have constant quality without much change particularly in physical properties during use
Substrate should have a lifetime of a minimum of 3 years
The substrate should be easy to handle and use
The cost of the substrate should be low
The nature of the substrate should be either biodegradable or destroyed without causing any environmental risk
It should not undergo any structural change during repeated sterilization
The substrate must be free from pest and disease-causing agents/pathogens.
Substrates, such as rockwool, cocopeat, clay granulates, pumice, sand, Irish peat, and perlite, are able to meet the above specifications [14, 15].
Ideal substrate should fulfil four important roles
Authors reference | Country | Area in ha | Media/ system | Key crops grown |
---|---|---|---|---|
Hassall | Spain | 4000 | Rockwool, sand, perlite | Cucumber, capsicum, tomato, lettuce |
Hassall | Netherlands | 10,000 | Rockwool | Strawberry, tomato, cucumber, lettuce, cauliflower, muskmelons, gerbera, chrysanthemum, carnation |
Jiang | China | 1250 | Rockwool, NFT, DFT | Carnation, roses, chrysanthemum, tomato, cucumber, lettuce |
Donnan [18] | France | 1000 | Rockwool | Capsicum, tomato, cucumber, cut flowers |
Bradley | Canada | 2000 | Rockwool and perlite | Cucumber, capsicum, tomato, |
Various soilless culture media and crops grown.
An ideal potting medium for vegetable crops must be well aerated and porous, hold sufficient moisture, have adequate drainage, and must provide adequate nutrients to the plants. Among all substrates, cocopeat is the one that retains moisture, stores, and releases nutrients to roots over an extended period of time for enhancing plant growth. Therefore, it is considered an ideal soilless growing media for vegetable crops. In this connection, the technology for conversion of raw coir pith into fermented cocopeat has been standardized at ICAR-Indian Institute of Horticultural Research, Bengaluru and released as a product called Arka Fermented Cocopeat (AFC). Arka Fermented Cocopeat is developed by the solid-state fermentation of raw coir pith, by employing a fungal consortium and enriched with the Arka Microbial Consortium comprising of N fixing, P and Zn solubilizing, and plant growth-promoting microbes could be a potential substrate for soilless cultivation of vegetables, flowers, and medicinal crops, etc. Arka Fermented Cocopeat is very popular and used as a growing media in the nursery for raising seedlings of various vegetable crops and rootstocks of different fruit crops. However, it has not been evaluated as a growing media for the cultivation of vegetables under soilless conditions. Therefore, a series of experiments on soilless cultivation of different vegetables were conducted at ICAR-IIHR to study the suitability of Arka Fermented Cocopeat (AFC) as substrate along with commercial cocopeat and soil. The results revealed that the substrate AFC recorded better yield and quality in vegetable crops compared to commercial cocopeat and soil. Arka Fermented cocopeat (AFC) alone or AFC + vermicompost or AFC + vermicompost/FYM/compost are also the best substrate combination for growing vegetable crops under soilless cultivation.
Raw coir pith fermented cocopeat
Seventeen nutrient elements are considered essential for the growth and development of any living plant on the earth. The absence of anyone essential nutrient will make it difficult for the growth of plants and will not allow the plant to complete its life cycle. Further, the role of essential nutrients cannot be played or replaced by any other nutrients. In soilless culture or hydroponics, the nutrients which are considered essential should be supplied in the form of nutrient solution. Mostly C, H, and O are taken by the plants from water and CO2 in the air. Remaining essential nutrients
Nutrient | Cooper [20] | Steiner [21] | Hewitt [22] | Hoagland & Arnon [23] |
---|---|---|---|---|
mg L−1 | ||||
N | 200–236 | 168 | 168 | 210 |
P | 60 | 31 | 41 | 31 |
K | 300 | 273 | 156 | 234 |
Ca | 170–185 | 180 | 160 | 160 |
Mg | 50 | 48 | 36 | 34 |
S | 68 | 336 | 48 | 64 |
Fe | 12 | 2–4 | 2.8 | 2.5 |
Cu | 0.1 | 0.02 | 0.064 | 0.02 |
Zn | 0.1 | 0.11 | 0.065 | 0.05 |
Mn | 2.0 | 0.62 | 0.54 | 0.5 |
B | 0.3 | 0.44 | 0.54 | 0.5 |
Mo | 0.04 | Not considered | 0.04 | 0.01 |
Concentration ranges of essential mineral elements according to various authors.
Proper nutrition factors, such as pH level, electrical conductivity (EC), the types of nutrition, the composition of nutrients irrigated, and so on are the key factors to improve the quality and yield of vegetables. Vegetable crops can be grown organically by mixing organic manures, such as FYM, compost (kitchen waste compost, city compost), and vermicompost, with substrate cocopeat @ 1:1:1 ratio which will take care of the nutrient requirement of the plants. Vermicompost @100 g/plant should be applied at monthly intervals. Decomposed kitchen waste can also be applied. ICAR-IIHR standardized nutrient solution (Arka Sasya Poshak Ras) may be practiced for meeting the nutrient requirement of the plants under cocopeat-based soilless cultivation. Arka Sasya Poshak Ras is a liquid nutrient formulation (comprising solutions A and B) is a unique blend of the macro and micronutrients which are well balanced to support the growth of vegetables.
It is suitable for most commonly used vegetables (tomato, chilli, cabbage, zucchini, cucumber, ridge gourd, French bean, peas, cowpea, Dolichos, etc.) and leafy vegetables (amaranthus, coriander, palak, etc.)
One litre each of nutrient solution
For leafy vegetables, 3.5 ml of each nutrient solution A and B may be diluted in 1 litre of water and applied @ 600 ml per bag of size 4 × 1 × 1 feet.
For peas, beans, Dolichos, and cowpea, 4.0 ml of each nutrient solution A and B may be diluted and applied @ 600 ml per bag of size 4 × 1 × 1 feet.
The frequency of nutrient solution application is two times per week starting from the 10th day of transplantation up to 30 days from the date of sowing or transplanting and three times per week thereafter.
pH regulates/controls the availability of most of the essential plant elements in a nutrient solution. The nutrient solution pH between 5.8 and 6.5 is considered as most optimal. Higher or lower nutrient solution pH than the suggested range for individual crops, the nutrient deficiencies will become apparent or toxicity symptoms will grow.
Similar to pH, electrical conductivity (EC) is one of the most important properties of nutrient solutions. The EC level between 1.5 and 2.5 dS/m is considered ideal for hydroponics/soilless culture. The strength of the nutrient solution strictly depends on the EC level of the solution. The total concentration of the solution is only indicated by the EC and not the specific nutrient components. Too high or too low EC level in nutrient solution may create salinity problems or the supply of some nutrients to the crop may be insufficient. Higher EC will not allow nutrient absorption to take place due to osmotic pressure and lower EC severely affects plant health and yield. However, among different species, the yield response of the plants may vary widely with respect to the EC level of the nutrient solution. So, the terms “too low” and “too high” need to be quantitatively defined for each cultivated plant species based on experimental results. When plants take up nutrients and water from the solution, the total salt concentration, i.e., the EC of the solution changes. Freshwater must be added If the EC is higher than the recommended range. Add nutrients if the EC is lower in the nutrient solution.
The production technology for soilless cultivation of zucchini, colour cabbage, chilli, coriander, cucumber, French bean, peas, and tomato on Arka Fermented Cocopeat under open as well as in protected conditions has been standardized at ICAR-Indian Institute of Horticultural Research, Bengaluru. The results of most of the experiments conducted with different vegetable crops in grow bags under open-field and polyhouse soilless culture indicated that the plants grown in soilless culture recorded higher yield and better quality, particularly in mineral nutrient content compared to soil-grown plants. This technology would be highly suited for urban and peri-urban vegetable cultivation for meeting the food security in cities. This particular technology has already been popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting IIHR soilless culture technology in the cultivation of vegetables using AFC as a substrate.
Between open and polyhouse soilless cultivation, the highest yield and better fruit quality were recorded with zucchini, chilli, coriander, cucumber, French bean, peas, and tomato with open conditions. However, colour cabbage recorded maximum head weight and highest yield in polyhouse soilless cultivation. Similarly, brinjal also recorded higher yield in polyhouse than in open-field soilless culture because of better control of pests, particularly brinjal shoot and fruit borer. Pest and disease management was easier in polyhouse than in open-field soilless culture [24].
Between open and polyhouse soilless cultivation of zucchini, the highest stem diameter (35.2 mm), maximum fruit length (23.2 cm), fruit girth (42.9 mm), fruit weight (315.4 g), and yield (5.27 kg/plant and 65.8 t/ha) were recorded with open conditions [25, 26]. However, the maximum plant height (80.6 cm), number of leaves (47.4), number of fruits (22.3), and total plant dry biomass (144.7 g/plant) were recorded with polyhouse conditions.
When open and polyhouse soilless cultivation of red cabbage were compared, the maximum plant height (25.71 cm), head diameter (33.7 cm), head length (12.9 cm), average head weight (817.8 g/plant), and yield (45.43 t/ha) was recorded with polyhouse conditions [27].
Open field soilless cultivation outperformed polyhouse cultivation in almost all the parameters (number of fruits (228), fruit length (11.8 cm), fruit girth (10.3 cm), average fruit weight (5.68 g), and yield (1.29 kg/plant)) recorded during the course of the experiment except plant height [28].
The performance of coriander under open-field soilless culture was found to be better than polyhouse soilless culture [28].
In French bean, open field soilless cultivation outclassed polyhouse in stem diameter (11.2 mm), number of branches (6.14), number of pods (42.74), pod length (15.04 cm), pod girth (7.23 mm), and pod yield (286.4 g/plant)) recorded during the course of the experiment except for plant height [29].
Best nutrient scheduling found in open-field conditions recorded better growth and yield in garden peas under polyhouse also. Between soil and cocopeat, soil recorded maximum growth and better yield compared to cocopeat [30].
With respect to different substrates studied, zucchini, chilli, coriander, cucumber, and tomato raised on Arka Fermented Cocopeat registered better growth and yield than soil. However, colour cabbage and peas recorded better growth and yield with soil. French bean plants recorded on par yield with both soil and soilless substrate.
Zucchini plants recorded maximum plant height (54.7 cm), stem diameter (35.2 mm), number of leaves (39.3), total plant dry biomass (139.8 g/plant), number of fruits (16.8), fruit length (23.2 cm), fruit girth (42.9 mm), fruit weight (315.4 g) and yield (5.27 kg/plant and 65.8 t/ha) when the plants raised on Arka Fermented Cocopeat compared to soil (3.70 kg/plant and 46.3 t/ha) [25, 26].
Among the substrates, soil registered maximum stem diameter (24.9 mm), number of leaves (28.3), head diameter (36.8 cm), head length (13.7 cm), average head weight (977.8 g), and yield (54.32 t/ha) in red cabbage compared to Arka Fermented Cocopeat (817.8 g and 45.43 t/ha, respectively). Nevertheless, AFC recorded maximum plant height (25.7 cm) than soil (24.5 cm) [27].
In grow bags, chilli raised on Arka Fermented Cocopeat registered maximum number of fruits (232), fruit length (11.8 cm), fruit girth (10.3 mm), average fruit weight (5.68 g), and yield (1.29 kg/plant) compared to soil (1.02 kg/plant) [28].
Plants grown in AFC and soil (41 pods, 6.83 g pod weight, 283 g/plant, and 19.97 t/ha) were recorded on par yield with each other. Most of the macro and micronutrient concentrations in French bean pods were found to be higher in soilless plants than in those grown in soil [29].
Between soil and cocopeat, soil recorded maximum growth and better yield compared to cocopeat. The results showed or indicated that the soil is found to be more suitable for peas followed by cocopeat. However, most of the mineral nutrient contents in pods were found higher in soilless plants than in those grown in soil. In peas, root growth was better in plants grown on cocopeat than the plants grown under soil. However, when it comes to nodule formation, a good number of nodules was observed in the roots of plants grown on soil but no nodulation in the roots of the pea plants grown on cocopeat [30].
Arka Fermented Cocopeat recorded better growth and the highest yield of cucumber compared to soil [31]. Alifar
Among the substrates studied, tomato plants raised on Arka Fermented Cocopeat registered maximum growth and yield (87.6 t/ha) compared to commercial cocopeat (76.7 t/ha) and soil (58.2 t/ha). The fruit quality was better when tomato plants were grown on Arka Fermented Cocopeat compared to commercial cocopeat and soil [33]. Plants grown in cocopeat substrate produced a higher fruit number (5.2%) and total yield (0.7%) than that of rockwool substrate. Fruit size and fruit quality characters showed no significant differences within growing substrates [34].
Liquid nutrient formulations for growing zucchini, colour cabbage, chilli, coriander, cucumber, French bean, peas, and tomato on Arka Fermented Cocopeat under open and polyhouse soilless culture have also been developed. Best nutrient scheduling under open conditions was found to register maximum growth and yield in polyhouse conditions as well.
Nutrient scheduling of 168 ppm N-NO3, 16 ppm P, and 189 ppm K recorded maximum fruit length (24.12 cm), fruit girth (44.4 mm), fruit weight (335.6 g), and yield (5.71 kg/plant and 71.39 t/ha) under open conditions. The above-mentioned nutrient scheduling recorded maximum growth and zucchini fruit yield in protected conditions also [25, 26].
Nutrient scheduling of 185 ppm N-NO3, 41 ppm P, and 210 ppm K recorded maximum stem diameter (25.71 mm), a number of leaves (24.82), head diameter (36.79 cm), head length (14.64 cm), average head weight (972.25 g/plant), and yield (54.01 t/ha). The best nutrient scheduling under protected conditions is also found to register maximum growth and red cabbage yield in open conditions [27].
In Chilli hybrid Arka Meghana, the highest number of fruits (248.2) and yield per plant (1.43 kg) was recorded with scheduling of 176 ppm N-NO3, 29 ppm P, and 200 ppm K per plant and found to be on par with 194 ppm N-NO3, 32 ppm P, and 228 ppm K (218.6 fruits and 1.30 kg yield per plant). However, the maximum fruit length (12.22 cm), fruit girth (10.98 mm), average fruit weight (5.96 g per fruit), and dry chilli yield (287 g per plant) was recorded with 194 ppm N-NO3, 32 ppm P, and 228 ppm K nutrient scheduling [28].
The production technology for soilless cultivation of coriander var.
Supplying of 166 ppm N-NO3, 33 ppm P, and 207 ppm K recorded the maximum stem girth (18.43 mm), highest fresh (1690 g/plant), and dry plant biomass (540.8 g/plant), highest average fruit weight (212.9 g) and yield (2.11 kg/plant and 32.51 t/ha) under open-field conditions [31].
Scheduling 141 ppm N-NO3, 29 ppm P, and 179 ppm K recorded maximum plant height (47.11 cm), stem diameter (11.22 mm), number of branches (6.14), highest total fresh (205.8 g/plant), and dry biomass (35.89 g/plant), highest number of pods (42.74), pod length (15.04 cm), pod girth (7.31 mm), average pod weight (6.69 g), and yield (286.4 g/plant and 20.18 t/ha) [29].
Nutrient scheduling of 133 ppm N-NO3, 27 ppm P, and 168 ppm K recorded maximum plant height (65.66 cm), stem diameter (6.51 mm), number of branches (3.14), highest plant biomass (24.04 g/plant), number of pods (15.14), pod length (7.07 cm), pod girth (9.67 mm), average pod yield (83.25 g/plant and 1.17 kg/bag) under open-field soilless cultivation. The best nutrient scheduling found in open-field conditions recorded better growth and yield under polyhouse also [30].
Tomato, colour cabbage, zucchini, and peas in soilless cultivation
The highest number of fruits (80.14) and yield (93.9 t/ha) of tomato hybrid Arka Rakshak was recorded with the split application of 15:35:15 percent of the recommended NPK (180:120:180 kg NPK/ha), during establishment to early flowering, followed by 12.5:12.5:12.5 percent application during fruit development and 72.5:52.5:72.5 percent application during harvest. Nutrient scheduling significantly improved the TSS while other quality parameters were not significantly enhanced [33].
Knowledge of the nutritional status of all components (nutrient solution, substrate/media, and plant tissues) of a soilless cultivation system is very much required to judge the success of fertilizer schedules with respect to plant nutrients availability and the plant tissue nutrient content and it also helps to identify the reasons of any deficiency and toxicity symptoms that may appear in plants. The costs of the information with respect to the nutritional status of all components are a form of assurance towards success. The nutrient solution in a recirculated hydroponics system of cultivation may be utilized for a few days (short use) to a few weeks (extended use). To extend the life of nutrient solution to a few weeks in recirculated soilless culture/hydroponics system, it is always better to analyse the solution periodically for pH, EC, and individual nutrient concentration. Based on the nutrient analysis, periodic replenishment or adjustment in nutrient solutions can be made using nutrient stock solutions. By doing so, the longevity of nutrient solutions can be extended and the cost required for buying nutrient solutions or soluble salts can be reduced. Total salt content estimation on daily basis will also give the status of the nutrient content in the solution even though this cannot substitute for comprehensive analysis [2].
To avoid toxicity and deficiencies of nutrients in recirculated solutions due to continuous variation in nutrient status, it is necessary to do solution analysis for complete control over nutrient management in liquid soilless culture. The frequent requirement of solution analysis in water-based soilless culture gives a reason for switching over to solid substrate-based soilless culture. In solid substrate-based soilless culture systems, the evenly balanced nutrient solution is given to plants at the time of irrigation. In this way, the problem of nutrient solution management in solid substrate-based soilless cultivation systems can be minimized. Also, by accurately weighing the soluble salts at the time of nutrient solution preparation, it is possible to make a very properly working solution.
Like nutrient solution and substrate analysis, tissue analysis (leaf petioles or blades and whole leaves) is also warranted for successful nutrient management in plants. Tissue analysis during the crop growth period provides the current status of nutrient content in plants. Based on the nutrient content in plants, the fertilizer program may be adjusted or modified for better plant growth and productivity in soilless cultivation. Nutrient data obtained through tissue analysis may also help in interpreting nutrient deficiency or toxicity symptoms. Depending on plant parts sampled, location of sampling, and method used for analysis, the critical nutrient levels may vary. Critical nutrient concentrations for tomatoes, cucumbers, and different vegetables have been reported by various researchers [2, 35, 36, 37].
Substrate texture, porosity, and surface area to be wetted are vital considerations in making the right choice of irrigation in soilless vegetable cultivation [15]. While selecting an irrigation system for container or bag culture, one should keep in mind that the main purpose of irrigation is to apply nutrient solution homogeneously by making wet of entire growing media. A dry substrate or medium will make it very difficult for the plant root system to function properly [38]. Therefore, proper water management in soilless culture is very much important not only for meeting the water requirement of the plants but also for distributing the nutrients uniformly in the media. During summer, plants need extra water and hence the plants should preferably be irrigated twice a day. For soilless media, watering needs to be done only when the surface/subsurface of the media/substrate is dried and excess watering may be avoided.
The results of most of the experiments conducted with different vegetable crops under open-field and polyhouse soilless culture indicated that the fruits of plants grown in soilless culture recorded better quality, particularly in mineral nutrient content compared to soil-grown plants [7, 33]. Most of the nutrient concentrations in zucchini fruits were found to be higher in soilless plants than in those grown in soil [7]. The fruit quality was better when tomato plants were grown on Arka Fermented Cocopeat compared to commercial cocopeat and soil. Calcium content in tomato fruit samples was found to vary significantly among soilless media
The substrate combinations,
In polyhouse French bean cultivation, nematode infection was found to be almost nil in plants grown on cocopeat but nearly half of the plants grown in soil were affected with a nematode [29]. In peas, root growth was better in plants grown on cocopeat than the plants grown under soil. However, when it comes to nodule formation, a good number of nodules was observed in the roots of plants grown on soil but no nodulation in the roots of the pea plants grown on cocopeat [30].
The results of most of the experiments conducted at ICAR-IIHR, Bengaluru with different vegetable crops in grow bags under open-field and polyhouse soilless culture indicated that the plants grown in soilless culture recorded higher yield and better quality, particularly in mineral nutrient content compared to soil-grown plants. The yield of different vegetables grown under soilless culture in an area of 100 m2 is as follows; 1260 kg for tomato, 803.6 kg for zucchini, 204 kg for colour cabbage, 300 kg for chilli, 441 kg for cucumber 280 kg for French bean, and 81.9 kg for garden peas. Net profit from the vegetables grown in an area of 100 m2 varied from Rs 7140 for cucumber to Rs 35,960 for zucchini and the net profits of the rest of the crops found to fit in between. This technology would be highly suited for urban and peri-urban vegetable cultivation for meeting the food security in cities. The production technology developed at ICAR-Indian Institute of Horticultural Research for soilless cultivation of most commonly consumed vegetables in India has generated a lot of interest among the soilless growers for the cultivation of vegetables on AFC. This particular technology is being popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting this particular technology in the cultivation of vegetables using AFC as a substrate.
A substantial quantum of research work carried out in recent past stating the advantages and disadvantages of soilless cultivation of vegetables.
Compared to a conventional soil-based cultivation system, soilless cultivation provides several advantages than disadvantages. Soilless cultivation provides ideal conditions for the growth of plants which in turn helps in getting a higher yield. With little effort, time and cost, it is possible to do very relaxed and clean vegetable cultivation under soilless culture. The majority of soil-born pests and diseases can be controlled just by shifting over to soilless cultivation from the traditional way of farming. Degraded and poor fertile soils can be easily brought into soilless cultivation. It affords an unsoiled working environment and thus labour engagement is easy. List of other advantages of soilless culture is control of plant nutrition, ability to control pH and EC, water economy and control, reduction of labour requirement, sterilization practices, control of root environment, multiple crops per year and unsuitable soil can be used, etc.
In spite of several merits offered by soilless culture, it has few demerits as well. Technical know-how and high initial cost are the two important things required for scaling up of soilless culture at the commercial level. The requirement of investment and technical knowledge will go up further when combining soilless culture with protected cultivation. Experts with precision management skills are needed for nutrient solution preparation, pH and EC maintenance, identification and correction of mineral nutrient deficiency, aeration; upkeeping all the weather parameters in support of ideal plant growth in protected structures, etc. Above all, much attention is important for plant health management. The requirement of energy inputs is very high to run the soilless culture system, particularly in hydroponics. Because of higher initial cost, technical knowledge on crop agronomy and physiology limits the soilless culture to high-value crops cultivation. Growing low-value crops in hydroponics may not be so economical.
In urban and peri-urban agriculture, no doubt that the soilless culture is rapidly gaining impetus and acceptance among growers. In advanced countries, the system of soilless cultivation is so popular and well-received mainly for commercial cultivation of high-value vegetable crops, medicinal and ornamental crops but now it is spreading very rapidly in rest of the world. With this speed, the soilless culture is certainly going to dominate in future food production. Growers are presently turning towards alternate technologies, such as soilless culture due to the decline in the availability of arable lands and the problem of soil-borne diseases in soil-based cultivation. Due to better water use efficiency in soilless culture, this particular system of cultivation can also be taken to places where water availability is limited. Presently the hydroponics unit setting up cost is too high because of limited adoption but by acceptance and adoption of more and more growers, the cost of the unit can be brought to affordable levels. Further, this technology is not getting popularity as expected in some of the developing and underdeveloped countries due to various reasons, such as high initial investment and the requirement of skilled manpower. Standardized soilless production technology by the public and private research institutions is very important to popularize and create mass awareness among urban and peri-urban growers. In this direction, ICAR-IIHR is not stopping after standardizing the soilless production technology for vegetables but also putting more and more effort into the spread of this particular technology at the national level. ICAR-IIHR soilless culture production technology has already been popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting IIHR soilless culture technology in the cultivation of vegetables, flowers, and medicinal crops.
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"161925"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:313,numberOfSeries:0,numberOfAuthorsAndEditors:8593,numberOfWosCitations:11955,numberOfCrossrefCitations:6922,numberOfDimensionsCitations:17175,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"6",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:"potassium-in-human-health",bookSignature:"Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:"Edited by",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:"Edited by",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms",subtitle:"New Insights",isOpenForSubmission:!1,hash:"a71558dd7dfd16ad140168409f887f7e",slug:"genetic-polymorphisms-new-insights",bookSignature:"Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",middleName:null,surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:"Edited by",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10541",title:"Regulation and Dysfunction of Apoptosis",subtitle:null,isOpenForSubmission:!1,hash:"1d45e84353c25037adb996a7a46c1af1",slug:"regulation-and-dysfunction-of-apoptosis",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10541.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10746",title:"Prebiotics and Probiotics",subtitle:"From Food to Health",isOpenForSubmission:!1,hash:"3ab2902c0d43605ab43cd0868542db95",slug:"prebiotics-and-probiotics-from-food-to-health",bookSignature:"Elena Franco Robles",coverURL:"https://cdn.intechopen.com/books/images_new/10746.jpg",editedByType:"Edited by",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",isOpenForSubmission:!1,hash:"8b43add5389ba85743e0a9491e4b9943",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:"Edited by",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10745",title:"Nematodes",subtitle:"Recent Advances, Management and New Perspectives",isOpenForSubmission:!1,hash:"975ef07a02e028baac4d50b9f0a733b5",slug:"nematodes-recent-advances-management-and-new-perspectives",bookSignature:"Cristiano and Tiago Edu Kaspary",coverURL:"https://cdn.intechopen.com/books/images_new/10745.jpg",editedByType:"Edited by",editors:[{id:"274523",title:"Dr.",name:"Cristiano",middleName:null,surname:"Bellé",slug:"cristiano-belle",fullName:"Cristiano Bellé"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:313,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"38477",doi:"10.5772/45943",title:"Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination",slug:"lipid-peroxidation-chemical-mechanism-biological-implications-and-analytical-determination",totalDownloads:13516,totalCrossrefCites:80,totalDimensionsCites:223,abstract:null,book:{id:"2553",slug:"lipid-peroxidation",title:"Lipid Peroxidation",fullTitle:"Lipid Peroxidation"},signatures:"Marisa Repetto, Jimena Semprine and Alberto Boveris",authors:[{id:"36452",title:"Dr.",name:"Marisa",middleName:"Gabriela",surname:"Repetto",slug:"marisa-repetto",fullName:"Marisa Repetto"}]},{id:"41116",doi:"10.5772/51572",title:"Algal Polysaccharides, Novel Applications and Outlook",slug:"algal-polysaccharides-novel-applications-and-outlook",totalDownloads:14079,totalCrossrefCites:71,totalDimensionsCites:187,abstract:null,book:{id:"2323",slug:"carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology",title:"Carbohydrates",fullTitle:"Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology"},signatures:"Stefan Kraan",authors:[{id:"142720",title:"Dr.",name:"Stefan",middleName:null,surname:"Kraan",slug:"stefan-kraan",fullName:"Stefan Kraan"}]},{id:"40938",doi:"10.5772/48294",title:"Dehydrogenase Activity in the Soil Environment",slug:"dehydrogenase-activity-in-the-soil-environment",totalDownloads:6940,totalCrossrefCites:72,totalDimensionsCites:182,abstract:null,book:{id:"2524",slug:"dehydrogenases",title:"Dehydrogenases",fullTitle:"Dehydrogenases"},signatures:"Agnieszka Wolińska and Zofia Stępniewska",authors:[{id:"141696",title:"Dr.",name:"Agnieszka",middleName:"Maria",surname:"Wolinska",slug:"agnieszka-wolinska",fullName:"Agnieszka Wolinska"}]},{id:"18396",doi:"10.5772/22331",title:"Salinity Stress and Salt Tolerance",slug:"salinity-stress-and-salt-tolerance",totalDownloads:21995,totalCrossrefCites:56,totalDimensionsCites:161,abstract:null,book:{id:"371",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",title:"Abiotic Stress in Plants",fullTitle:"Abiotic Stress in Plants - Mechanisms and Adaptations"},signatures:"Petronia Carillo, Maria Grazia Annunziata, Giovanni Pontecorvo, Amodio Fuggi and Pasqualina Woodrow",authors:[{id:"47290",title:"Prof.",name:"Giovanni",middleName:null,surname:"Pontecorvo",slug:"giovanni-pontecorvo",fullName:"Giovanni Pontecorvo"},{id:"47803",title:"Dr.",name:"Pasqualina",middleName:null,surname:"Woodrow",slug:"pasqualina-woodrow",fullName:"Pasqualina Woodrow"},{id:"47804",title:"Prof.",name:"Petronia",middleName:null,surname:"Carillo",slug:"petronia-carillo",fullName:"Petronia Carillo"},{id:"47808",title:"Prof.",name:"Amodio",middleName:null,surname:"Fuggi",slug:"amodio-fuggi",fullName:"Amodio Fuggi"},{id:"47809",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Annunziata",slug:"maria-grazia-annunziata",fullName:"Maria Grazia Annunziata"}]},{id:"57644",doi:"10.5772/intechopen.71570",title:"Polysaccharides: Structure and Solubility",slug:"polysaccharides-structure-and-solubility",totalDownloads:4480,totalCrossrefCites:41,totalDimensionsCites:121,abstract:"Understanding the solubility of polysaccharides is extremely important for their food applications as most functions of polysaccharides including stability, emulsifying property, drug delivery, membrane forming properties, etc., are all achieved in aqueous solution. This chapter aims specifically at the mechanism of solubility of polysaccharides from the molecular level. General understandings of the solubility including definition, testing methods, and the solution behaviors were provided; the relationships between polysaccharide solubility and the structural features in terms of molecular weight, degree of branching, charging properties, chain flexibility, and the special groups were all discussed. With all the information provided, the molecular modification and further applications of polysaccharides in both food and nonfood areas could be promoted.",book:{id:"5935",slug:"solubility-of-polysaccharides",title:"Solubility of Polysaccharides",fullTitle:"Solubility of Polysaccharides"},signatures:"Mark Q. Guo, Xinzhong Hu, Changlu Wang and Lianzhong Ai",authors:[{id:"202384",title:"Dr.",name:"Qingbin",middleName:null,surname:"Guo",slug:"qingbin-guo",fullName:"Qingbin Guo"},{id:"203883",title:"Dr.",name:"Changlu",middleName:null,surname:"Wang",slug:"changlu-wang",fullName:"Changlu Wang"},{id:"203884",title:"Prof.",name:"Xinzhong",middleName:null,surname:"Hu",slug:"xinzhong-hu",fullName:"Xinzhong Hu"}]}],mostDownloadedChaptersLast30Days:[{id:"69775",title:"Principles of Chromatography Method Development",slug:"principles-of-chromatography-method-development",totalDownloads:4293,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"This chapter aims to explain the key parameters of analytical method development using the chromatography techniques which are used for the identification, separation, purification, and quantitative estimation of complex mixtures of organic compounds. Mainly, the versatile techniques of ultra−/high-performance liquid chromatography (UPLC/HPLC) are in use for the analysis of assay and organic impurities/related substances/degradation products of a drug substance or drug product or intermediate or raw material of pharmaceuticals. A suitable analytical method is developed only after evaluating the major and critical separation parameters of chromatography (examples for UPLC/HPLC are selection of diluent, wavelength, detector, stationary phase, column temperature, flow rate, solvent system, elution mode, and injection volume, etc.). The analytical method development is a process of proving the developed analytical method is suitable for its intended use for the quantitative estimation of the targeted analyte present in pharmaceutical drugs. And it mostly plays a vital role in the development and manufacture of pharmaceuticals drugs.",book:{id:"8912",slug:"biochemical-analysis-tools-methods-for-bio-molecules-studies",title:"Biochemical Analysis Tools",fullTitle:"Biochemical Analysis Tools - Methods for Bio-Molecules Studies"},signatures:"Narasimha S. Lakka and Chandrasekar Kuppan",authors:[{id:"304950",title:"Prof.",name:"Chandrasekar",middleName:null,surname:"Kuppan",slug:"chandrasekar-kuppan",fullName:"Chandrasekar Kuppan"},{id:"309984",title:"Mr.",name:"Narasimha S",middleName:null,surname:"Lakka",slug:"narasimha-s-lakka",fullName:"Narasimha S Lakka"}]},{id:"33046",title:"Affinity Chromatography: Principles and Applications",slug:"affinity-chromatography-principles-and-applications",totalDownloads:48679,totalCrossrefCites:8,totalDimensionsCites:21,abstract:null,book:{id:"1490",slug:"affinity-chromatography",title:"Affinity Chromatography",fullTitle:"Affinity Chromatography"},signatures:"Sameh Magdeldin and Annette Moser",authors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"},{id:"136483",title:"Dr.",name:"Annette",middleName:"C.",surname:"Moser",slug:"annette-moser",fullName:"Annette Moser"}]},{id:"50574",title:"Bioinformatics for RNA‐Seq Data Analysis",slug:"bioinformatics-for-rna-seq-data-analysis",totalDownloads:6047,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"While RNA sequencing (RNA‐seq) has become increasingly popular for transcriptome profiling, the analysis of the massive amount of data generated by large‐scale RNA‐seq still remains a challenge. RNA‐seq data analyses typically consist of (1) accurate mapping of millions of short sequencing reads to a reference genome, including the identification of splicing events; (2) quantifying expression levels of genes, transcripts, and exons; (3) differential analysis of gene expression among different biological conditions; and (4) biological interpretation of differentially expressed genes. Despite the fact that multiple algorithms pertinent to basic analyses have been developed, there are still a variety of unresolved questions. In this chapter, we review the main tools and algorithms currently available for RNA‐seq data analyses, and our goal is to help RNA‐seq data analysts to make an informed choice of tools in practical RNA‐seq data analysis. In the meantime, RNA‐seq is evolving rapidly, and newer sequencing technologies are briefly introduced, including stranded RNA‐seq, targeted RNA‐seq, and single‐cell RNA‐seq.",book:{id:"5160",slug:"bioinformatics-updated-features-and-applications",title:"Bioinformatics",fullTitle:"Bioinformatics - Updated Features and Applications"},signatures:"Shanrong Zhao, Baohong Zhang, Ying Zhang, William Gordon,\nSarah Du, Theresa Paradis, Michael Vincent and David von Schack",authors:[{id:"176364",title:"Dr.",name:"Shanrong",middleName:null,surname:"Zhao",slug:"shanrong-zhao",fullName:"Shanrong Zhao"}]},{id:"49873",title:"An Introduction to Actinobacteria",slug:"an-introduction-to-actinobacteria",totalDownloads:8178,totalCrossrefCites:33,totalDimensionsCites:108,abstract:"Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Ranjani Anandan, Dhanasekaran Dharumadurai and Gopinath\nPonnusamy Manogaran",authors:[{id:"48914",title:"Dr.",name:"Dharumadurai",middleName:null,surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}]},{id:"72074",title:"The Chemistry Behind Plant DNA Isolation Protocols",slug:"the-chemistry-behind-plant-dna-isolation-protocols",totalDownloads:3797,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Various plant species are biochemically heterogeneous in nature, a single deoxyribose nucleic acid (DNA) isolation protocol may not be suitable. There have been continuous modification and standardization in DNA isolation protocols. Most of the plant DNA isolation protocols used today are modified versions of hexadecyltrimethyl-ammonium bromide (CTAB) extraction procedure. Modification is usually performed in the concentration of chemicals used during the extraction procedure according to the plant species and plant part used. Thus, understanding the role of each chemical (viz. CTAB, NaCl, PVP, ethanol, and isopropanol) used during the DNA extraction procedure will benefit to set or modify protocols for more precisions. A review of the chemicals used in the CTAB method of DNA extraction and their probable functions on the highly evolved yet complex to students and researchers has been summarized.",book:{id:"8912",slug:"biochemical-analysis-tools-methods-for-bio-molecules-studies",title:"Biochemical Analysis Tools",fullTitle:"Biochemical Analysis Tools - Methods for Bio-Molecules Studies"},signatures:"Jina Heikrujam, Rajkumar Kishor and Pranab Behari Mazumder",authors:[{id:"74521",title:"Dr.",name:"Rajkumar",middleName:null,surname:"Kishor",slug:"rajkumar-kishor",fullName:"Rajkumar Kishor"},{id:"309357",title:"Prof.",name:"Pranab Behari",middleName:null,surname:"Mazumder",slug:"pranab-behari-mazumder",fullName:"Pranab Behari Mazumder"},{id:"318351",title:"Ph.D. Student",name:"Jina",middleName:null,surname:"Heikrujam",slug:"jina-heikrujam",fullName:"Jina Heikrujam"}]}],onlineFirstChaptersFilter:{topicId:"6",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.106489",abstract:"As inflammatory and oxidative stress are associated with cardiometabolic diseases, detection of abnormal fasting levels of inflammatory and oxidative biomarkers are indicative disease presence and may be too late for any preventive management. Metabolic flexibility refers to the ability of various metabolic processes to compensate for these acute changes and return all metabolites to baseline levels. By monitoring responses of key biomarkers to a standardized physiologic challenge, it is possible to assess the ability of the body to restore homeostasis, that is a measure of metabolic flexibility. Acute changes in lipoprotein-associated biomarkers of oxidative stress have been demonstrated following meal consumption. These include changes in circulating levels of oxidized low-density lipoproteins (LDL), levels of autoantibodies to malondialdehyde-modified LDL, as well as the oxidative susceptibility of isolated plasma LDL. These responses depend on the type and amount of dietary fats in the meal. Management with certain lipid-lowering drugs could also be shown to affect these meal-induced changes. However, plasma levels may be underestimated as we can demonstrate a spike in lipoprotein-associated biomarkers of oxidative stress resulting from the release oxidatively modified epitopes from the arterial wall by an intravenous bolus of heparin.",book:{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg"},signatures:"Ngoc-Anh Le"},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.106590",abstract:"Global climate change has resulted in alterations in the biotic and abiotic conditions of the planet. This has led to changes in the agricultural system resulting from reduced water availability, increased temperature increase in the population and occurrences of pests and diseases. Plants are adversely affected when they experience any stress retarding their growth, development and productivity. Endoplasmic Reticulum (ER) is an organelle that shows a tremendous response when subjected to stress conditions. Therefore, to explore and comprehend plants’ multidimensional interactions when subjected to stress conditions, an insight into the molecular stress signalling in the ER in response to the stress situation is discussed in this chapter.",book:{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg"},signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood"},{id:"83046",title:"Gene Expression and Transcriptome Sequencing: Basics, Analysis, Advances",slug:"gene-expression-and-transcriptome-sequencing-basics-analysis-advances",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105929",abstract:"Gene expression studies are extremely useful for understanding a broad range of biological, physiological, and molecular responses. The techniques for gene expression reflect differential patterns of gene regulation and have evolved with time from detecting one gene to many genes at a time laterally. Gene expression depends on the spatiotemporal expression in a particular tissue at a given time point and needs critical examination and interpretation. Transcriptome sequencing or RNA-seq using next-generation sequencing (short and long reads) is the most widely deployed technology for accurate quantification of gene expression. According to the biological aim of the experiment, replications, platform, and chemistries, propelling improvement has been demonstrated and documented using RNA-seq in plants, humans, animals, and clinical sciences with respect to gene expression of mRNA, small non-coding, long non-coding RNAs, alternative splice variations, isoform variations, gene fusions, single-nucleotide variants. Integrating transcriptome sequencing with other techniques such as chromatin immunoprecipitation, methylation, genome-wide association studies, manifests insights into genetic and epigenetic regulation. Epi-transcriptome including RNA methylation, modification, and alternative polyadenylation events can also be explored through long-read sequencing. In this chapter, we have presented an account of the basics of gene expression methods, transcriptome sequencing, and the various methodologies involved in the downstream analysis.",book:{id:"11349",title:"Gene Expression",coverURL:"https://cdn.intechopen.com/books/images_new/11349.jpg"},signatures:"Yogesh Shukla, Amol Phule, Harshvardhan Zala, Nakul D. Magar, Priya Shah, K. Harish, Tejas C. Bosamia, Kalyani M. Barbadikar, Maganti Sheshu Madhav, Satendra Kumar Mangrauthia, Chirravuri Naga Neeraja and Raman Meenakshi Sundaram"},{id:"83043",title:"Applications of CRISPR/Cas9 for Selective Sequencing and Clinical Diagnostics",slug:"applications-of-crispr-cas9-for-selective-sequencing-and-clinical-diagnostics",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.106548",abstract:"In this chapter, we will discuss the applications of CRISPR/Cas9 in the context of clinical diagnostics. We will provide an overview of existing methods and their use cases in the diagnostic field. Special attention will be given to selective sequencing approaches using third-generation sequencing and PAM-site requirements. As target sequences in an AT-rich environment cannot easily be accessed by the commercially available SpCas9 due to rarity of NGG PAM-sites, new enzymes such as ScCas9 with PAM-site requirements of NNG will be highlighted. Original research on CRISPR/Cas9 systems to determine molecular glioma markers by enriching regions of interest will be discussed in the context of potential future applications in clinical diagnostics.",book:{id:"11804",title:"CRISPR Technology",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg"},signatures:"Maximilian Evers, Björn Brändl, Franz-Josef Müller, Sönke Friedrichsen and Stephan Kolkenbrock"},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.105049",abstract:"In this chapter, we will discuss the importance of genetic variations in the IL-23 receptor (IL-23R) gene in driving the process of inflammation-induced carcinogenesis. By applying bladder cancer (BLC) as a model, we will focus on two contradictory genetic mutations within the receptor gene. The first one is enhanced by cancer and induces inflammation-induced carcinogenesis via up-regulating IL-23/IL-17 inflammatory axis. However, the other preventive one deregulates this inflammatory pathway by distorting the protein nature of the receptor, leading to block its binding affinity. During the process of carcinogenesis, cancer genetically inclines the balance towards the protumor, via over-expressing the IL-23R on the surfaces of immune-bearing cells, particularly tumor-associated monocytes (TAMs) and thus increasing the levels of pro-angiogenic cytokines IL-23 and IL-17.",book:{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg"},signatures:"Mohammed El-Gedamy"},{id:"82259",title:"p53 Tumor Suppressor: Functional Regulation and Role in Gene Therapy",slug:"p53-tumor-suppressor-functional-regulation-and-role-in-gene-therapy",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.105029",abstract:"p53, a homo-tetrameric protein found in mammalian cells, derives its name from the fact that it settles at around 53KDa position in SDS-PAGE, due to a “kink” in its structure. In its functional state, p53 forms a homo-tetramer and binds to the promoters of a wide array of genes. Binding of p53 downregulates the transcription of target genes. Most of the gene targets of p53 are involved in cell cycle progression, and therefore, any malfunctions associated with p53 have catastrophic consequences for the cell. The gene encoding for p53 known as TP53 is the most well-studied gene in the entire genome because of being the most highly mutated gene in all cancer types. It is due to this widely accepted and documented “cell protective feature” that p53 is generally referred to as “the guardian of the genome.” In this chapter, we will discuss the involvement of p53 in relation to carcinogenesis. We will also cover the major functions of p53 under normal conditions, major mutations of the TP53 gene, and their association with different forms of cancer.",book:{id:"10246",title:"P53 - A Guardian of the Genome and Beyond",coverURL:"https://cdn.intechopen.com/books/images_new/10246.jpg"},signatures:"Zeenat Farooq, Shahnawaz Wani, Vijay Avin BR, Rakesh Kochhar and Mumtaz Anwar"}],onlineFirstChaptersTotal:81},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:332,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:143,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:6,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Climate Change and Environmental Sustainability",value:94,count:2,group:"subseries"},{caption:"Sustainable Economy and Fair Society",value:91,count:7,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Sustainable Economy and Fair Society",value:91,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"92",type:"subseries",title:"Health and Wellbeing",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health Production",scope:"\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580"},editorialBoard:[{id:"169536",title:"Dr.",name:"David",middleName:null,surname:"Claborn",slug:"david-claborn",fullName:"David Claborn",profilePictureURL:"https://mts.intechopen.com/storage/users/169536/images/system/169536.jpeg",institutionString:null,institution:{name:"Missouri State University",institutionURL:null,country:{name:"United States of America"}}},{id:"248594",title:"Ph.D.",name:"Jasneth",middleName:null,surname:"Mullings",slug:"jasneth-mullings",fullName:"Jasneth Mullings",profilePictureURL:"https://mts.intechopen.com/storage/users/248594/images/system/248594.jpeg",institutionString:"The University Of The West Indies - Mona Campus, Jamaica",institution:null},{id:"331299",title:"Prof.",name:"Pei-Shan",middleName:null,surname:"Liao",slug:"pei-shan-liao",fullName:"Pei-Shan Liao",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000032Fh2FQAS/Profile_Picture_2022-03-18T09:39:41.jpg",institutionString:"Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan",institution:null}]},onlineFirstChapters:{paginationCount:7,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"78064",title:"The Salivary Secretome",doi:"10.5772/intechopen.98278",signatures:"Luís Perpétuo, Rita Ferreira, Sofia Guedes, Francisco Amado and Rui Vitorino",slug:"the-salivary-secretome",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"65334",title:"Introductory Chapter: Some Important Aspects of Root Canal Treatment",doi:"10.5772/intechopen.83653",signatures:"Ana Luiza de Carvalho Felippini",slug:"introductory-chapter-some-important-aspects-of-root-canal-treatment",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ana Luiza",surname:"De Carvalho Felippini"}],book:{title:"Root Canal",coverURL:"https://cdn.intechopen.com/books/images_new/7133.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:10,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:108,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/115345",hash:"",query:{},params:{id:"115345"},fullPath:"/profiles/115345",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()