Summary of the main features characterizing the most abundant pigments in bird feathers.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"3129",leadTitle:null,fullTitle:"Physics and Technology of Silicon Carbide Devices",title:"Physics and Technology of Silicon Carbide Devices",subtitle:null,reviewType:"peer-reviewed",abstract:"Recently, some SiC power devices such as Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effect-transistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. However, to stably supply them and reduce their cost, further improvements for material characterizations and those for device processing are still necessary. This book abundantly describes recent technologies on manufacturing, processing, characterization, modeling, and so on for SiC devices. In particular, for explanation of technologies, I was always careful to argue physics underlying the technologies as much as possible. If this book could be a little helpful to progress of SiC devices, it will be my unexpected happiness.",isbn:null,printIsbn:"978-953-51-0917-4",pdfIsbn:"978-953-51-6283-4",doi:"10.5772/3428",price:139,priceEur:155,priceUsd:179,slug:"physics-and-technology-of-silicon-carbide-devices",numberOfPages:414,isOpenForSubmission:!1,isInWos:1,hash:"8635479660e93cb1129f0a92cf15a124",bookSignature:"Yasuto Hijikata",publishedDate:"October 16th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/3129.jpg",numberOfDownloads:44090,numberOfWosCitations:61,numberOfCrossrefCitations:26,numberOfDimensionsCitations:62,hasAltmetrics:1,numberOfTotalCitations:149,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 29th 2012",dateEndSecondStepPublish:"March 21st 2012",dateEndThirdStepPublish:"June 17th 2012",dateEndFourthStepPublish:"July 17th 2012",dateEndFifthStepPublish:"October 16th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"18137",title:"Dr.",name:"Yasuto",middleName:null,surname:"Hijikata",slug:"yasuto-hijikata",fullName:"Yasuto Hijikata",profilePictureURL:"https://mts.intechopen.com/storage/users/18137/images/system/18137.jpg",biography:"Dr. Yasuto Hijikata is an associate professor of electrical and electronics systems engineering in Saitama University, Saitama, Japan, where he has taught for 13 years. He was born in Tokyo on April 1971 and received his doctor degree of engineering in light-wave sensing technology from Tokyo Institute of Technology in 1999. After that he arrived at Saitama University as an assistant professor. He was previously in the national research institute (CNR) in Italy as a guest researcher from October 2005 to March 2006. He has been the current position since 2006.\nDr. Hijikata has been interest in characterizations of surfaces and interfaces of SiC semiconductor material for its device applications, especially on characterizations and processing of MOS interfaces as well as on the oxidation mechanism of SiC.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Saitama University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"950",title:"Solid-State Chemistry",slug:"metals-and-nonmetals-solid-state-chemistry"}],chapters:[{id:"37704",title:"Nondestructive and Contactless Characterization Method for Spatial Mapping of the Thickness and Electrical Properties in Homo-Epitaxially Grown SiC Epilayers Using Infrared Reflectance Spectroscopy",doi:"10.5772/50749",slug:"nondestructive-and-contactless-characterization-method-for-spatial-mapping-of-the-thickness-and-elec",totalDownloads:2110,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Sadafumi Yoshida, Yasuto Hijikata and Hiroyuki Yaguchi",downloadPdfUrl:"/chapter/pdf-download/37704",previewPdfUrl:"/chapter/pdf-preview/37704",authors:[{id:"18137",title:"Dr.",name:"Yasuto",surname:"Hijikata",slug:"yasuto-hijikata",fullName:"Yasuto Hijikata"},{id:"18271",title:"Prof.",name:"Hiroyuki",surname:"Yaguchi",slug:"hiroyuki-yaguchi",fullName:"Hiroyuki Yaguchi"},{id:"18272",title:"Dr.",name:"Sadafumi",surname:"Yoshida",slug:"sadafumi-yoshida",fullName:"Sadafumi Yoshida"}],corrections:null},{id:"40374",title:"Characterization of Defects Evolution in Bulk SiC by Synchrotron X-Ray Imaging",doi:"10.5772/52058",slug:"characterization-of-defects-evolution-in-bulk-sic-by-synchrotron-x-ray-imaging",totalDownloads:1956,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"T. S. Argunova, M. Yu. Gutkin, J. H. Je, V. G. Kohn and E. N. Mokhov",downloadPdfUrl:"/chapter/pdf-download/40374",previewPdfUrl:"/chapter/pdf-preview/40374",authors:[{id:"52618",title:"Dr.",name:"Jung Ho",surname:"Je",slug:"jung-ho-je",fullName:"Jung Ho Je"}],corrections:null},{id:"40362",title:"Ion Synthesis of SiC and Its Instability at High Temperatures",doi:"10.5772/51389",slug:"ion-synthesis-of-sic-and-its-instability-at-high-temperatures",totalDownloads:1578,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kair Kh. Nussupov and Nurzhan B. Beisenkhanov",downloadPdfUrl:"/chapter/pdf-download/40362",previewPdfUrl:"/chapter/pdf-preview/40362",authors:[{id:"56747",title:"Prof.",name:"Kair",surname:"Nussupov",slug:"kair-nussupov",fullName:"Kair Nussupov"}],corrections:null},{id:"37749",title:"Etching of Silicon Carbide Using Chlorine Trifluoride Gas",doi:"10.5772/50387",slug:"etching-of-silicon-carbide-using-chlorine-trifluoride-gas",totalDownloads:2772,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Hitoshi Habuka",downloadPdfUrl:"/chapter/pdf-download/37749",previewPdfUrl:"/chapter/pdf-preview/37749",authors:[{id:"17197",title:"Prof.",name:"Hitoshi",surname:"Habuka",slug:"hitoshi-habuka",fullName:"Hitoshi Habuka"}],corrections:null},{id:"39120",title:"PECVD Amorphous Silicon Carbide (α-SiC) Layers for MEMS Applications",doi:"10.5772/51224",slug:"pecvd-amorphous-silicon-carbide-sic-layers-for-mems-applications",totalDownloads:3448,totalCrossrefCites:2,totalDimensionsCites:8,signatures:"Ciprian Iliescu and Daniel P. Poenar",downloadPdfUrl:"/chapter/pdf-download/39120",previewPdfUrl:"/chapter/pdf-preview/39120",authors:[{id:"152764",title:"Dr.",name:"Ciprian",surname:"Iliescu",slug:"ciprian-iliescu",fullName:"Ciprian Iliescu"},{id:"152820",title:"Prof.",name:"Daniel",surname:"Poenar",slug:"daniel-poenar",fullName:"Daniel Poenar"}],corrections:null},{id:"37682",title:"Physics Behind the Ohmic Nature in Silicon Carbide Contacts",doi:"10.5772/50767",slug:"physics-behind-the-ohmic-nature-in-silicon-carbide-contacts",totalDownloads:2030,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Zhongchang Wang",downloadPdfUrl:"/chapter/pdf-download/37682",previewPdfUrl:"/chapter/pdf-preview/37682",authors:[{id:"39169",title:"Prof.",name:"Zhongchang",surname:"Wang",slug:"zhongchang-wang",fullName:"Zhongchang Wang"}],corrections:null},{id:"37701",title:"Thermal Oxidation Mechanism of Silicon Carbide",doi:"10.5772/50748",slug:"thermal-oxidation-mechanism-of-silicon-carbide",totalDownloads:2949,totalCrossrefCites:5,totalDimensionsCites:7,signatures:"Yasuto Hijikata, Shuhei Yagi, Hiroyuki Yaguchi and Sadafumi Yoshida",downloadPdfUrl:"/chapter/pdf-download/37701",previewPdfUrl:"/chapter/pdf-preview/37701",authors:[{id:"18137",title:"Dr.",name:"Yasuto",surname:"Hijikata",slug:"yasuto-hijikata",fullName:"Yasuto Hijikata"},{id:"18271",title:"Prof.",name:"Hiroyuki",surname:"Yaguchi",slug:"hiroyuki-yaguchi",fullName:"Hiroyuki Yaguchi"},{id:"18272",title:"Dr.",name:"Sadafumi",surname:"Yoshida",slug:"sadafumi-yoshida",fullName:"Sadafumi Yoshida"},{id:"152822",title:"Dr.",name:"Shuhei",surname:"Yagi",slug:"shuhei-yagi",fullName:"Shuhei Yagi"}],corrections:null},{id:"39997",title:"Materials and Processing for Gate Dielectrics on Silicon Carbide (SiC) Surface",doi:"10.5772/52553",slug:"materials-and-processing-for-gate-dielectrics-on-silicon-carbide-sic-surface",totalDownloads:5334,totalCrossrefCites:3,totalDimensionsCites:7,signatures:"Sanjeev Kumar Gupta, Jitendra Singh and Jamil Akhtar",downloadPdfUrl:"/chapter/pdf-download/39997",previewPdfUrl:"/chapter/pdf-preview/39997",authors:[{id:"39067",title:"Dr.",name:"Sanjeev Kumar",surname:"Gupta",slug:"sanjeev-kumar-gupta",fullName:"Sanjeev Kumar Gupta"},{id:"56696",title:"Prof.",name:"Jamil",surname:"Akhtar",slug:"jamil-akhtar",fullName:"Jamil Akhtar"},{id:"153995",title:"Mr.",name:"Jitendra",surname:"Singh",slug:"jitendra-singh",fullName:"Jitendra Singh"}],corrections:null},{id:"39648",title:"Fundamental Aspects of Silicon Carbide Oxidation",doi:"10.5772/51514",slug:"fundamental-aspects-of-silicon-carbide-oxidation",totalDownloads:3993,totalCrossrefCites:5,totalDimensionsCites:8,signatures:"Heiji Watanabe and Takuji Hosoi",downloadPdfUrl:"/chapter/pdf-download/39648",previewPdfUrl:"/chapter/pdf-preview/39648",authors:[{id:"153696",title:"Prof.",name:"Heiji",surname:"Watanabe",slug:"heiji-watanabe",fullName:"Heiji Watanabe"}],corrections:null},{id:"41551",title:"Tailoring Oxide/Silicon Carbide Interfaces: NO Annealing and Beyond",doi:"10.5772/54396",slug:"tailoring-oxide-silicon-carbide-interfaces-no-annealing-and-beyond",totalDownloads:2909,totalCrossrefCites:5,totalDimensionsCites:6,signatures:"John Rozen",downloadPdfUrl:"/chapter/pdf-download/41551",previewPdfUrl:"/chapter/pdf-preview/41551",authors:[{id:"153661",title:"Dr.",name:"John",surname:"Rozen",slug:"john-rozen",fullName:"John Rozen"}],corrections:null},{id:"38133",title:"Conductance Deep-Level Transient Spectroscopic Study of 4H- SiC MESFET and Traps",doi:"10.5772/51212",slug:"conductance-deep-level-transient-spectroscopic-study-of-4h-sic-mesfet-and-traps",totalDownloads:1829,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Malek Gassoumi and Hassen Maaref",downloadPdfUrl:"/chapter/pdf-download/38133",previewPdfUrl:"/chapter/pdf-preview/38133",authors:[{id:"54008",title:"Dr.",name:"Malek",surname:"Gassoumi",slug:"malek-gassoumi",fullName:"Malek Gassoumi"},{id:"153516",title:"Prof.",name:"Hassen",surname:"Maaref",slug:"hassen-maaref",fullName:"Hassen Maaref"}],corrections:null},{id:"38398",title:"Silicon Carbide Power MESFET",doi:"10.5772/51085",slug:"silicon-carbide-power-mesfet",totalDownloads:2269,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Yintang Yang, Baoxing Duan and Xianjun Zhang",downloadPdfUrl:"/chapter/pdf-download/38398",previewPdfUrl:"/chapter/pdf-preview/38398",authors:[{id:"152348",title:"Prof.",name:"Yintang",surname:"Yang",slug:"yintang-yang",fullName:"Yintang Yang"},{id:"153223",title:"Dr.",name:"Duan",surname:"Baoxing",slug:"duan-baoxing",fullName:"Duan Baoxing"}],corrections:null},{id:"37838",title:"Applications of SiC-Based Thin Films in Electronic and MEMS Devices",doi:"10.5772/50998",slug:"applications-of-sic-based-thin-films-in-electronic-and-mems-devices",totalDownloads:3661,totalCrossrefCites:0,totalDimensionsCites:8,signatures:"Mariana Amorim Fraga, Rodrigo Sávio Pessoa, Marcos Massi and Homero Santiago Maciel",downloadPdfUrl:"/chapter/pdf-download/37838",previewPdfUrl:"/chapter/pdf-preview/37838",authors:[{id:"38456",title:"Dr.",name:"Mariana",surname:"Amorim Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"53494",title:"Dr.",name:"Rodrigo",surname:"Pessoa",slug:"rodrigo-pessoa",fullName:"Rodrigo Pessoa"},{id:"91253",title:"Dr.",name:"Homero",surname:"Maciel",slug:"homero-maciel",fullName:"Homero Maciel"},{id:"91254",title:"Dr.",name:"Marcos",surname:"Massi",slug:"marcos-massi",fullName:"Marcos Massi"}],corrections:null},{id:"40250",title:"High-Power Hexagonal SiC Device: A Large-Signal High- Frequency Analysis",doi:"10.5772/52982",slug:"high-power-hexagonal-sic-device-a-large-signal-high-frequency-analysis",totalDownloads:1562,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Moumita Mukherjee",downloadPdfUrl:"/chapter/pdf-download/40250",previewPdfUrl:"/chapter/pdf-preview/40250",authors:[{id:"24251",title:"Dr.",name:"Moumita",surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee"}],corrections:null},{id:"39994",title:"Silicon Carbide: A Biocompatible Semiconductor Used in Advanced Biosensors and BioMEMS/NEMS",doi:"10.5772/51811",slug:"silicon-carbide-a-biocompatible-semiconductor-used-in-advanced-biosensors-and-biomems-nems",totalDownloads:2811,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Mahboobeh Mahmoodi and Lida Ghazanfari",downloadPdfUrl:"/chapter/pdf-download/39994",previewPdfUrl:"/chapter/pdf-preview/39994",authors:[{id:"17813",title:"Dr.",name:"Mahboobeh",surname:"Mahmoodi",slug:"mahboobeh-mahmoodi",fullName:"Mahboobeh Mahmoodi"},{id:"21336",title:"Prof.",name:"Lida",surname:"Ghazanfari",slug:"lida-ghazanfari",fullName:"Lida Ghazanfari"}],corrections:null},{id:"38917",title:"Radiation Response of Silicon Carbide Diodes and Transistors",doi:"10.5772/51371",slug:"radiation-response-of-silicon-carbide-diodes-and-transistors",totalDownloads:2881,totalCrossrefCites:2,totalDimensionsCites:7,signatures:"Takeshi Ohshima, Shinobu Onoda, Naoya Iwamoto, Takahiro Makino, Manabu Arai and Yasunori Tanaka",downloadPdfUrl:"/chapter/pdf-download/38917",previewPdfUrl:"/chapter/pdf-preview/38917",authors:[{id:"154078",title:"Dr.",name:"Takeshi",surname:"Ohshima",slug:"takeshi-ohshima",fullName:"Takeshi Ohshima"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6215",title:"Graphene Materials",subtitle:"Advanced Applications",isOpenForSubmission:!1,hash:"3a921aba41351ab84fd7a9b4ea63914d",slug:"graphene-materials-advanced-applications",bookSignature:"George Z. Kyzas and Athanasios Ch. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/6215.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Dr.",name:"George",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6335",title:"Iron Ores and Iron Oxide Materials",subtitle:null,isOpenForSubmission:!1,hash:"26195f784577133f2972d538cef6f8c9",slug:"iron-ores-and-iron-oxide-materials",bookSignature:"Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/6335.jpg",editedByType:"Edited by",editors:[{id:"111000",title:"Dr.",name:"Volodymyr",surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6134",title:"Intermetallic Compounds",subtitle:"Formation and Applications",isOpenForSubmission:!1,hash:"d417aabc209ed4ce28dee750fd15c479",slug:"intermetallic-compounds-formation-and-applications",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/6134.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5722",title:"Graphene Materials",subtitle:"Structure, Properties and Modifications",isOpenForSubmission:!1,hash:"6ebc42323146bb1d453a4f2785ce8029",slug:"graphene-materials-structure-properties-and-modifications",bookSignature:"George Z. Kyzas and Athanasios Ch. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/5722.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Dr.",name:"George",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8886",title:"Cobalt Compounds and Applications",subtitle:null,isOpenForSubmission:!1,hash:"0241f740fc6e17cd9dc69362ef388d04",slug:"cobalt-compounds-and-applications",bookSignature:"Yasemin Yıldız and Aynur Manzak",coverURL:"https://cdn.intechopen.com/books/images_new/8886.jpg",editedByType:"Edited by",editors:[{id:"208129",title:"Dr.",name:"Yasemin",surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6850",title:"Crystal Growth",subtitle:null,isOpenForSubmission:!1,hash:"6dfc582440368fdfd9e72511c1a23f94",slug:"crystal-growth",bookSignature:"Vadim Glebovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6850.jpg",editedByType:"Edited by",editors:[{id:"101945",title:"Dr.",name:"Vadim",surname:"Glebovsky",slug:"vadim-glebovsky",fullName:"Vadim Glebovsky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73763",slug:"corrigendum-to-microbial-biofilms",title:"Corrigendum to: Microbial Biofilms",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73763.pdf",downloadPdfUrl:"/chapter/pdf-download/73763",previewPdfUrl:"/chapter/pdf-preview/73763",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73763",risUrl:"/chapter/ris/73763",chapter:{id:"71189",slug:"microbial-biofilms",signatures:"Princy Choudhary, Sangeeta Singh and Vishnu Agarwal",dateSubmitted:"September 9th 2019",dateReviewed:"December 6th 2019",datePrePublished:"February 21st 2020",datePublished:"October 7th 2020",book:{id:"8967",title:"Bacterial Biofilms",subtitle:null,fullTitle:"Bacterial Biofilms",slug:"bacterial-biofilms",publishedDate:"October 7th 2020",bookSignature:"Sadik Dincer, Melis Sümengen Özdenefe and Afet Arkut",coverURL:"https://cdn.intechopen.com/books/images_new/8967.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"220858",title:"Ms.",name:"Princy",middleName:null,surname:"Choudhary",fullName:"Princy Choudhary",slug:"princy-choudhary",email:"princy.choudhary34@gmail.com",position:null,institution:{name:"Indian Institute of Information Technology",institutionURL:null,country:{name:"India"}}},{id:"251063",title:"Dr.",name:"Sangeeta",middleName:null,surname:"Singh",fullName:"Sangeeta Singh",slug:"sangeeta-singh",email:"sangeeta@iiita.ac.in",position:null,institution:null},{id:"318847",title:"Dr.",name:"Vishnu",middleName:null,surname:"Agarwal",fullName:"Vishnu Agarwal",slug:"vishnu-agarwal",email:"vishnua@mnnit.ac.in",position:null,institution:null}]}},chapter:{id:"71189",slug:"microbial-biofilms",signatures:"Princy Choudhary, Sangeeta Singh and Vishnu Agarwal",dateSubmitted:"September 9th 2019",dateReviewed:"December 6th 2019",datePrePublished:"February 21st 2020",datePublished:"October 7th 2020",book:{id:"8967",title:"Bacterial Biofilms",subtitle:null,fullTitle:"Bacterial Biofilms",slug:"bacterial-biofilms",publishedDate:"October 7th 2020",bookSignature:"Sadik Dincer, Melis Sümengen Özdenefe and Afet Arkut",coverURL:"https://cdn.intechopen.com/books/images_new/8967.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"220858",title:"Ms.",name:"Princy",middleName:null,surname:"Choudhary",fullName:"Princy Choudhary",slug:"princy-choudhary",email:"princy.choudhary34@gmail.com",position:null,institution:{name:"Indian Institute of Information Technology",institutionURL:null,country:{name:"India"}}},{id:"251063",title:"Dr.",name:"Sangeeta",middleName:null,surname:"Singh",fullName:"Sangeeta Singh",slug:"sangeeta-singh",email:"sangeeta@iiita.ac.in",position:null,institution:null},{id:"318847",title:"Dr.",name:"Vishnu",middleName:null,surname:"Agarwal",fullName:"Vishnu Agarwal",slug:"vishnu-agarwal",email:"vishnua@mnnit.ac.in",position:null,institution:null}]},book:{id:"8967",title:"Bacterial Biofilms",subtitle:null,fullTitle:"Bacterial Biofilms",slug:"bacterial-biofilms",publishedDate:"October 7th 2020",bookSignature:"Sadik Dincer, Melis Sümengen Özdenefe and Afet Arkut",coverURL:"https://cdn.intechopen.com/books/images_new/8967.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7647",leadTitle:null,title:"Abrasive Processes - Researches & Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tWhen the diverse types of wear reported in the different industrial segments are studied it is observed that, approximately, 50% of them are related to the action of “abrasive wear” and/or “micro-abrasive wear”, being occasioned, in many circumstances, by natural abrasives. In contrast, the same abrasive materials that cause tribologic damage and financial loss in machines and equipment used in mechanical, metallurgical, materials, mining industries and agricultural sector, are applied on the analysis of dental materials, biomaterials adopted in the manufacturing of orthopaedic implants and complements, as well as industrial processes of manufacturing: conventional machining processes, special machining processes, lapidation and polishing. Consequently, the researches focused on wear analysis occasioned during work become important, as well as the scientific researches with the purpose of to study and to develop materials for the benefit of the human, like materials used in dental and orthopaedic areas. Thereby, this book aims to focus on the topics mentioned above, beyond general aspects related to natural abrasives.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"7298928150289ddbe3451d34e413cca3",bookSignature:"Prof. Ronaldo Cozza",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7647.jpg",keywords:"Abrasion, Dental Materials, Biomaterials, Orthopaedic Implants, Thin Films Tribology, Lapidation and Polishing, Wear Industrial Costs, Surface Topography, Hard Particle Wear, Testing Methods, Wear Modelling, Mapping",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 31st 2019",dateEndSecondStepPublish:"March 6th 2020",dateEndThirdStepPublish:"May 5th 2020",dateEndFourthStepPublish:"July 24th 2020",dateEndFifthStepPublish:"September 22nd 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"283058",title:"Prof.",name:"Ronaldo",middleName:null,surname:"Cozza",slug:"ronaldo-cozza",fullName:"Ronaldo Cozza",profilePictureURL:"https://mts.intechopen.com/storage/users/283058/images/system/283058.jpg",biography:"Ronaldo Câmara Cozza received the titles of Mechanical Engineering by University Center FEI – Educational Foundation of Ignatius “Padre Sabóia de Medeiros” in 2002 and Mathematical by Methodist University of São Paulo, in 2005. He conducted his Programs of Master Degree and Doctor Degree in the Department of Mechanical Engineering of the Polytechnic School of the University of São Paulo – 2006 e 2011, respectively; in 2015, he finished the Post-Doctorate in Metallurgical and Materials Engineering, also in the Polytechnic School of the University of São Paulo. Nowadays, Ronaldo Câmara Cozza works as Titular Professor in two Universities: University Center FEI – Educational Foundation of Ignatius “Padre Sabóia de Medeiros” – Departments of Mechanical and Materials – and CEETEPS – State Center of Technological Education “Paula Souza” – Department of Mechanical Manufacturing – both in São Paulo State – Brazil, teaching “Technical Drawing”, “Mechanical Processes of Manufacturing”, “Machine Kinematics and Dynamics” and “Tribology”. Since 2003, Prof. R.C. Cozza researches the fundamentals and tribological behavior of materials under conditions of micro-abrasive wear.",institutionString:"University Center FEI – Educational Foundation of Ignatius “Padre Sabóia de Medeiros”",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh Shamrao",surname:"Kamble",slug:"ganesh-shamrao-kamble",fullName:"Ganesh Shamrao Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42114",title:"Oxidative Stress and Lipid Peroxidation – A Lipid Metabolism Dysfunction",doi:"10.5772/51627",slug:"oxidative-stress-and-lipid-peroxidation-a-lipid-metabolism-dysfunction",body:'Free radicals are chemical compounds with unpaired electron(s), therefore being considered very active molecules. The cells had developed their own antioxidant defence systems in order to prevent the free radicals synthesis and to limit their toxic effects. These systems consist of enzymes which breakdown the peroxides, enzymes which bind transitional metals or compounds which are considered scavengers of the free radicals. Reactive species oxidize the biomolecules that will further elicit tissue injury and cell death. Evaluation of free radicals involvement in pathology is rather difficult due to their short life time.
Free radicals can be formed by three mechanisms:
Homolytic cleavage of a covalent bond of a molecule, each fragment retaining one electron
Loss by a molecule of a single electron
Addition by a molecule of a single electron
Heterolytic cleavage – covalent bond electrons are held up by only one of the molecule’s fragments. Basically, charged ions occur.
Oxygen activation is the main factor that induces enhanced formation of ROS. Due to its presence in the atmosphere, but also in the body, free radicals reaction with oxygen is inevitable. A second characteristic of oxygen refers to its electronic structure. Thus, O2 has on the outer layer two unpaired electrons, each located on one orbital. Therefore, oxygen can be considered a free di-radical, but with a lower reactivity. Oxidation of this electron donor is achieved by spin inversion from the O2 reaction with transition metals or by univalent reduction in two phases of one electron [5]. These two mechanisms underlie oxidation reactions that occur in nature. Although this process represents only 5%, following the univalent reduction of O2, ROS occurs, with greater reactivity and toxicity, as is the hydroxyl radical OH.
In biological systems, the most important free radicals are oxygen derivate radicals formed by the following mechanisms:
Degradation of H2O2 in the presence of transition metal ions leads to the formation of the most reactive and toxic ROS: the hydroxyl radical (OH.) (Fenton and Haber-Weiss reaction). To this radical, the body does not present antioxidant defense systems such as for the superoxide anion or hydrogen peroxide (H2O2). Although metallothioneins (natural antioxidants) are proteins that bind to metal ions, including Fe2+, thus inhibiting the Haber-Weiss reaction, however they are found in too low concentrations in the body to be effective in the decomposition of the hydroxyl radical. But these reactions can be inhibited by specific scavengers for OH, such as mannitol and chelating agents: desferroxamine. However, chelators as EDTA stimulate this reaction.
H2O2 is often formed in biological systems via peroxide anion production.
H2O2 is not a free radical, but falls within the category of reactive oxygen species that include not only free radicals but also its non-radical derivatives involved in producing these ROS. Of all free radicals, H2O2 is the most stable and the easiest to quantify. Intracellular formation of hydrogen peroxide, depending on the content of catalase, is the way by which the bactericidal mechanism is achieved in phagocytosis.
Singlet oxygen is formed in the following reactions:
Reaction of hydrogen peroxide or hydroxyl radical with the superoxide anion
Different enzymatic catalyzed reactions
Decomposition of endoperoxides
Degradation of hydroperoxides in liver microsomes
Lipid peroxidation is a complex process consisting of three major phases: initiation, propagation and end of the reaction. The initiation phase is slow due to the need of accumulation of a sufficient quantity of ROS, followed by the activation process of oxygen which is the amplifier factor. The process’ latency period is that which determines the continuation of reactions by altering the oxidative balance in favor of pro-oxidant factors. The evolution of these reactions is unpredictable due to the formation of own catalysts determining the complexity of the process [1].
Free radicals are very unstable, their lifetime being very short. Their reactivity results from their coupling at the end of the reaction, only for an unpaired electron to reappear, thus stimulate the propagation of the reaction by forming a new radical.
The end of the reaction occurs by:
Free radical recombination among them or,
Intervention of antioxidant systems with membrane or intracellular action: superoxide dismutase (SOD), catalase.
Peroxides and their decomposition products (aldehydes, lipofuscin) are the most stable and represent the final link of O2 activation. They are produced directly by the hydroxyl or singlet oxygen radical. During these reactions, own catalysts are formed, represented by free radicals or degradation products that diversify and increase the oxidation reactions; the structures involved are diverse, and are represented by polyunsaturated fatty acids, hemoproteins, nucleic acids, carbohydrates or steroids [4].
If the anion is released in a low in protons environment, it will initiate peroxidation, the substrate being formed by polyunsaturated fatty acids from cell membranes.
If the anion will reach a proton rich environment, dismutation will take place; this following auditioning an electron from another anion and by proton reaction will form hydrogen peroxide. Dismutation can occur spontaneously, but in this case it takes place very slowly or catalyzed by SOD, which increases 1010 the reaction rate to the body’s pH. There is an inversely proportional relationship between reaction rate and pH value. The efficiency of this enzyme is proven by its presence in all aerobic cells, and cells exposed to oxygen action, as hepatocytes and erythrocytes, contain large amounts of SOD [6].
Superoxide anion production during mitochondrial respiration has a self-regulation mechanism. Superoxide anion formed in part by autoxidation of NADH dehydrogenase, can then induce this enzyme’s inactivation, so the presence of SOD in the membrane matrix to achieve dismutation is absolutely necessary. It results that the two enzymes SOD and NADPH dehydrogenase are a metabolic control and energy preservation couple in the presence of oxygen [7].
The release of hydrogen peroxide is proportional to the partial pressure of O2. In case of a cerebral or cardiac ischemia, extramitochondrial concentration decreases, disrupting oxidative phosphorylation and ATP levels. An inversely proportional relationship between mitochondrial H2O2 formation rate and lifetime exists. Thus, it was observed experimentally that old animals present an increase in lipid peroxide formation in the mitochondria as a result of increased production of superoxide anion compared with young animals.
The sequence of reactions initiated in the membrane continues into the cytoplasm where a substantial amount of superoxide anion is formed which then is diffuses also extracellularly. Increased use of glucose occurs for energetic purposes and for restoring NADPH and oxygen consumption necessary for the production of ROS [8].
Hydrogen peroxide is toxic on the neutrophil, which is inhibited by the presence at this level of the three enzymes that degrade the excess of peroxide: GSH-peroxidase, catalase and myeloperoxidase.
The enzyme present in phagosome, myeloperoxidase, will catalyze in the presence of H2O2 and chloride ions, forming toxic halogenated derivatives.
In turn, hypochlorous acid can react with aminic groups or with the ammonium ion (NH4) forming chloramines. In the presence of hydrogen peroxide, HOCl forms singlet oxygen. These products of activated leukocytes have bactericidal properties.
Based on the properties of leukocytes to emit chemiluminescence during phagocytosis, this method has a clinic utility. Chemiluminescence emission is due to formation of free radicals, lipid peroxides and prostaglandin synthesis, a process associated with phagocytosis. This property is suppressed by anesthesia, cytostatic agents and anti-inflammatory preparations. Drugs with anti-inflammatory effect inhibit the activity of cyclooxygenase, the enzyme involved in prostaglandin synthesis.
A deficiency in the leukocyte production of free radicals (septic granulomatosis) or decrease of myeloperoxidase activity (following corticotherapy) is characterized by particularly sensitivity to infections.
During phagocytosis, three cytotoxic and antimicrobial effect mechanisms take place:
oxygen dependent mechanism involves activation of myeloperoxidase and other peroxidases
Nitrogen compounds dependent mechanism involving participation of NO, NO2, other nitrogen oxides and nitrites. In this mechanism both types of cytotoxic inorganic oxidants interact: oxygen and nitrogen reactive radicals.
The third mechanism is independent of oxygen and nitrogen by changing phagolysosome pH that favors the action of antimicrobial substances present in the lysosomal or nuclear level.
The constitutive form of NO synthase is found in endothelial cells, neutrophils, neurons. The existence of the inducible form has been shown in macrophages, hepatocytes, endothelial cells, neutrophils and platelets. Glucocorticoids inhibit the expression of inducible NO synthase but not of the constitutive enzyme.
Nitrogen reactive radicals have a cytotoxic effect by inhibiting mitochondrial respiration, DNA synthesis, and mediate oxidation of protein and non-protein sulfhydryl groups.
Although NO has a protective role at the vascular level by a relaxing effect (EDRF), under certain conditions it may exert a cytotoxic effect, causing pathological vasodilatation, tissue destructions, inhibits platelet aggregation, modulates lymphocyte and immune response function.
Under the action of lipoxygenase, arachidonic acid is converted into a hydroperoxide: hydroperoxyeicosatetraenoic acid (HPETE) which will release the hydroxyl radical during its transformation into hydroxyeicosatetraenoic acid (HETE). Hill et al. have emphasized the role of glutathione peroxidase (GSH-Px) and of glutathione in this reaction: blocking the activity of this enzyme, they have noticed a significant decrease (of 66%) of HPETE conversion in HETE [14, 16].
Under the action of cyclooxygenase, arachidonic acid incorporates two oxygen molecules to form an endoperoxide, PGG; it loses the OH group to form PGH. This transformation, which is accompanied by the release of hydroxyl radical, exerts a negative retro-control to prostaglandin synthesis, inactivating the cyclooxygenase. Some of the products developed have a complex effect on the inflammatory process: thus, in the first phase, PGE2 acts on cells from the vascular wall with a procoagulant effect, and in the late phase it has an inflammatory effect by inhibiting leukocyte activation and oxidative metabolism of these cells during phagocytosis. The byproducts resulting from this process will be the ones to modulate the intensity of the next phase [15, 22].
The two endoperoxides formed, PGG2 and PGH2, have an inducible role on the production of PCI2 or TxA, being involved in the mechanism that ensures homeostasis of the vascular and platelet phase of hemostasis.
The other enzyme has a dual effect, and promotes the initiation of lipid peroxidation and the decomposition of resulting products of these reactions.
The human body is subjected to aggression from various agents capable of producing free radicals. Thus, UVs induce the synthesis of ROS and free radicals generating molecules via photosensitizing agents.
Ingestion of alcohol causes ROS synthesis by different mechanisms: xanthine oxidase and aldehyde oxidase can oxidase the main metabolite of ethanol (acetaldehyde) resulting in superoxide anion.
Ethanol also stimulates the production of superoxide anion and, by inducing NADPH-oxidase synthesis, NADPH cytochrome reductase and P450 cytochrome.
The alcohol ingestion decreases the activity of protective enzymes (SOD, glutathione peroxidase). Also low serum concentrations of selenium and vitamin E have been found in alcoholics.
Toxic substances as nitrogen oxide and nitrogen dioxide in the environment are responsible for autoxidation of polyunsaturated fatty acids in lung alveoli. The reaction may be reversible or irreversible. NO. and NO2 may react with H2O2 produced by alveolar macrophages and can generate the hydroxyl radical.
The reduction of carbon tetrachloride (CCl4) in CCl3. performed under the action of cytochrome P450 or in the presence of Fe2 is another factor that induces autoxidation of polyunsaturated fatty acids, increasing lipid hydroperoxides concentration.
Anticancer drugs are able to synthesize free radicals, this process depending on the mode of action and their toxicity.
These drugs under the action of cytochrome P450-dependent enzymes produce the activation of O2 with the formation of ROS which will attack GSH and other thiols (hemoglobin), causing the formation of lipid peroxides and activation of Ca2+-dependent endonucleases.
These mechanisms can induce disturbances of the coagulation system (increased hemolysis), severe forms of cardiomyopathies, because of the low level of cardiac antioxidants (AO) [25].
In physiological conditions a delicate balance exists between ROS production and the antioxidant capacity. A higher ROS production and/or a decreased antioxidant capacity is responsible for the harmful effects of free radicals or the oxidative stress (OS). Oxidative stress represents an important pathogenic mechanism involved in inflammation, cancerogenesis or aging [24].
End products of free radicals action, aldehydes, inhibit the activity of membrane enzymes (glucose-6-phosphate, adenylate cyclase). These aldehydes react selectively with proteins or enzymes containing SH groups and cause tissue destructions.
The emergence of OS is one of the most important pathogenic mechanisms involved in inflammation, carcinogenesis, radiation disease and aging.
The objective of various experimental models was to study erythrocyte response to oxidant substances action. Erythrocyte characteristics and test substance dosing allowed the evaluation of OS; these experiments can be extrapolated to explain various physiological or pathological processes in the body.
Oxidative stress is an ongoing process in the body, and under physiologic conditions there are effective mechanisms that negate its effects, thus high concentration of erythrocyte GSH and related enzyme equipment provide a defense against ROS.
Erythrocyte congenital enzyme deficiencies confer erythrocytes an increased sensitivity to OS.
A section of the body intensely studied to assess OS is the liver due to its role in the metabolism of a wide range of endogenous and exogenous products. Thus, by the metabolism of aromatic compounds, drugs or carcinogenic hydrocarbons in the live, a large amount of FR occurs, which will initiate in the next phase OS from this level.
Liver antioxidant systems are represented by SOD, GSH and dependent enzymes (transferase and peroxidase). Using ESR and spin trapping, FR resulting from chemical pollutants metabolism were identified, and a strong correlation between the functional impairment of the hepatic parenchyma, free radicals formation and decrease in GSH was noted. Under these conditions, free radicals of that substance occur which can cause tissue destructions also without O2 activation.
The experimental poisoning of rats with alcohol (1.5 mmol/kg) showed significant decrease at one hour of ingestion of GSH, vitamin E and C along with hepatic necrosis and formation of lipid peroxides [2, 11].
GSH is an important protective factor against OS. Its level is interrelated with other antioxidants (vitamin C and E) that stimulate its preservation in reduced form.
The tissue repair process is enzymatically catalyzed (repair enzymes) that break down damaged cellular particles, take intact aminoacids to synthesize new defense proteins.
Before discussing the negative effect of oxygen activation on the body, we should also take into consideration their involvement in certain physiological processes, when these ROS are produced in quantities which do not exceed the antioxidant capacity. Thus, the superoxide anion is produced by leukocytes during phagocytosis and in smooth muscle cells, epithelial cells, skin fibroblasts and endothelial cells [27].
The anion produced by macrophages and endothelial cells induces conformational changes of receptors on the LDL lipoprotein surface, allowing their recognition and involvement in atherogenesis [10, 12].
It is also involved in cascade-type metabolic reactions of arachidonic acid and in achieving platelet adhesion and aggregation function.
Formation of peroxides, especially lipid ones, is a consequence of the activation of O2, the interconversion of reactive species and natural systems protection overcoming. In biological environments, the most favorable substrate for peroxidation is represented by polyunsaturated fatty acids (PUFA), components of cell and subcellular membranes.
Peroxidation is a complex process that includes three phases: initiation, propagation, end-decomposition, which interpose, so that only end products can be determined chemically: aldehydes (malondialdehyde), polymerized carbonyl compounds (lipofuscin) [9].
A radical character initiator (which may have different structures and origins, including peroxy ROO. radicals) removes a hydrogen atom from polyunsaturated fatty acid diallyl carbon, forming a favorable reactive center for oxygen action. The peroxy ROO. radicals which become hydroperoxides result. In fact, due to side reactions, other locations of the peroxide group per PUFA molecule occur [28].
Since the formation of peroxides and their decomposition products, the sequence of reactions passes from a molecular level to a cellular one due to structural changes that occur in membranes: structural disorganization of the membrane and deterioration of pores crossing the double phospholipid layers. Peroxidation leads to changes in fatty acid qualitative composition of phospholipids composition with changing the ratio between PUFA and other acids. The first two effects induce the third, which consists in a decrease in membrane fluidity and altered active ion transport; these effects finally lead to changes in ion and other intracellular compounds concentration [26].
Numerous experimental studies have shown that tissue injury caused by free radicals determined at one point an imbalance of Ca2+ (i.e., increases in intracellular Ca2+ concentration). Under physiological conditions, there are effective homeostatic mechanisms (enzyme systems, protein transporters) to keep an optimum ratio between intracellular (0.1-0.4 microM) and extracellular of the mM order concentration. Overcoming these mechanisms (in this case by producing free radicals) determines the accumulation of calcium in the cell which will lead to structural membrane alterations, production of unsaturated lipids, efflux of GSH, its transition to an oxidized form and the creation of an intracellular oxidative potential [21, 23].
Experimental studies on isolated hepatocytes have shown the correlation between the cellular toxicity of calcium and the decrease of tocopherols levels, substances with strong antioxidant character.
Maintaining the cell functional state ultimately depends on the level of proteins containing SH groups. Thus, the role of GSH in protection against oxidative stress is precisely regeneration of protein SH groups which in turn will ensure intracellular calcium homeostasis. Vitamin E stabilizes ATPase activity dependent of calcium in the endoplasmic reticulum by maintaining SH groups in the structure of the enzyme in reduced state. Also, vitamin E is protective against the compounds resulting from lipid peroxidation: a molecule of alpha-tocopherol protects against 500 molecules of polyunsaturated fatty acids.
The results of chromatographic technique used to determine the urinary excretion products resulting from scission of DNA in humans showed a normal excretion in average of 100 nmol products. This total represents 103 thymine molecules oxidized per day for each of the 6X1013 cells in the body.
Between eliminating these products and the specific metabolic rate (SMR) there is a linear correlation.
The specific metabolic rate of an organism is dependent on the O2 use rate by its tissues and it is proportional to the free radicals production rate. In this case, the ratio between the total concentration of antioxidants (enzymatic and non-enzymatic systems) and the metabolic rate represents the protection degree of a tissue or body to free radicals. It seems that there is a genetic programming of the metabolic rate for each species and individual.
Looking at the hypothesis on free radicals involvement in aging, it has been shown that there is an inversely proportional relationship between the metabolic rate, free radicals production, respectively, and he maximum lifespan potential (MLP). Thus, on the evolutionary scale, metabolic rate decreased and lifespan increased, in mammals their product being constant.
One can calculate the lifespan energy potential (LEP), expressed in kcal-kg as follows: LEP 2.70 X MLP X SMR. This potential is directly proportional to the total concentration of antioxidants.
During aging, the formation of free radicals amplifies by exposure to prooxidant factors from the environment, and by the decreased antioxidant defense capacity.
At an intracellular level (especially in muscles and neurons), deposits of lipofuscin pigments, lipid peroxides and their breakdown products are formed.
These deposits are mainly localized in the myocardium, brain, and, by the age of 80, they represent 70% of cytoplasmic volume of neurons and 6% of that of myocardiocytes.
Experimental studies demonstrated that in 50 years a person accumulates 13.4 mg/lipofuscin/gram of myocardium, pigment formation taking place once with exceeding the absorption of 0.6 free radicals micromoles/gram of tissue.
There is an inversely proportional relationship between the formation of these products and the concentration of vitamin E in the body.
To control the effects of aging, ones requires a moderate diet, which reduces metabolic rate and O2 consumption with an optimal concentration of lipids and a quantitatively and qualitatively balanced intake of antioxidants and other factors that enhance assimilation and their metabolism. It is also necessary to achieve a balanced interaction of endogenous antioxidants.
The antioxidants level varies greatly depending on the age of the body, that organ and subcellular components; thus an increase of GSH-Px activity was noted in mitochondria of cardiac cells and erythrocytes in the elderly, and a decrease of activity in liver and kidneys. The decrease of SOD activity in the liver of the elderly was highlighted and no significant changes in the concentration of intramitochondrial SOD in the heart were noted.
Also, there is a correlation between the intensity of DNA destructions caused by FR and xanthine oxidase concentration. This enzyme, present in low concentrations, in tissue or plasma, increases under tissue injury.
Free radicals are responsible for the inactivation of enzymes especially of serine proteases, the fragmentation of macromolecules (collagen, proteoglycans, hyaluronic acid), the formation of dimers, the protein aggregates in the cytoplasmic membranes. The most susceptible amino acids to their action are tryptophan, tyrosine, phenylalanine, methionine and cysteine.
Transition metal ions (Fe, Cu, Ni, Co, Cd) have a pro-oxidant action by intensifying reactions in which FR are formed and those in which the decomposition of lipid peroxides takes place. At the molecular level, Fe2+ ion contributes to the induction of oxidative stress by increasing non-enzymatic oxidation of catecholamines and GSH, promoting lipid peroxide decomposition and the formation of the most toxic free radicals, the hydroxyl radical. Fe2+, under complexed form as transferrin, is inactive against peroxides. Fe2+ release from transferrin takes place under pH decrease as it does in hypoxia, leukocyte activation or in muscle tissue during strenuous physical exercise. Another source of free Fe2+ is represented by hemoglobin, which at low concentrations acts as a pro-oxidant favoring PUFA peroxidation. Proteins that bind Fe2+ have a different action: thus, ferritin has a pro-oxidant capacity, while hemosiderin and lactoferrin are antioxidants.
Bilirubin, resulting from the metabolism of hemoglobin, as transition metal ions, causes alterations in the membrane structure by initiating PUFA peroxidation. Bilirubin crosses the blood-brain barrier, inhibits oxidative phosphorylation and decreases AMPc and GSH concentration. Thus, the encephalopathy caused by intense hemolytic jaundice in neonates is correlated with elevated levels of bilirubin, blood lipid peroxides and GSH decrease.
The same changes were observed in hepatitis of various etiologies (viral, ethanolic) and were correlated with graded morphological changes of the steatosis type, up to the irreversible ones, cirrhosis, caused by exceeding the protective antioxidant systems.
The bilirubin has an antioxidant effect, enhanced by binding to albumin, its plasma transport form. This different behavior of bilirubin depends on the concentration and the environment, like ascorbic acid, which features a pro- and antioxidant character, widely accepted today.
Atherosclerosis (ATS) and its notable complication, coronary heart disease, still represent the major cause of premature death worldwide. Several lines of evidence suggest that the major risk factors (hypertension, diabetes mellitus, hyperlipemia, smoking) elicit oxidative stress at the luminal surface of vascular wall that will be further responsible for the oxidative damage of lipoproteins, formation of lipid peroxides, platelet aggregation and activation of macrophages [10]. LDL lipoproteins are the easiest to be oxidized because of their high PUFA content; at variance from native LDL, oxidatively modified LDLs are more avidly taken up by macrophages via the scavenger receptor thus generating the well-known “foam cells” of the atherosclerotic plaques. Experimental studies demonstrated that LDL can be oxidized by all of the major cells of the arterial wall (macrophages, endothelial cells, smooth muscle cells). Besides its rapid uptake by macrophages, oxidized LDL elicit a chemoatractive effect facilitating monocyte adhesion to the endothelium and a toxic affect at the level of endothelial cells by inhibiting the release of nitric oxide.
Highly reactive aldehydes are one of the major causative factors in oxidative related cardiovascular pathology and ageing. Specific aldehydes (e.g., 4-hydroxynonenal acetaldehyde, acrolein) were reported to be transiently increased in the settings of heart failure and ischemia-reperfusion injury [13] and to interfere with transcriptional regulation of endogenous anti-oxidant networks in mitochondria [1]. Recently, accumulation of reactive aldehydes was studied from the point of view of the subsequent protein carbonylation and its implication in cardiovascular pathophysiology [4].
On the other hand, decreased antioxidant defense further contributes to the oxidative damage. Low concentration of GSH-peroxidase in the vascular wall creates conditions favorable to the actions of hydrogen peroxide and other FR on lipids and lipoproteins [28]. In physiological conditions, nitric oxide acts as an antioxidant, inhibiting LDL peroxidation and their destructive effect on interstitial proteoglycans. With the increased production of FR, NO may become a prooxidant factor, stimulating LDL peroxidation by a mechanism involving myoglobin. Deficiency of other protective factors will favor oxidative injury. Lipid-soluble antioxidants such as tocopherols and ubiquinol are present in the hydrophobic environment of the lipoproteins in order to protect PUFA from FR attack.
Accordingly, the beneficial role of antioxidant supplementation has been extensively investigated in the past decades in a variety of animal models. Most investigators reported beneficial effects, i.e., prevention of atherosclerotic lesions with vitamin E supplementation, yet an early study by Keaney et al. mentioned a deleterious effect of high doses of tocopherol on endothelial-dependent relaxation in cholesterol fed rabbits [11]. Unfortunately, despite the promising observational experimental data, several prospective, double-blind, placebo-controlled trials did not support a causal relationship between vitamin C and E supplementation and a lower risk of coronary heart disease [21]. Similarly, lack of beneficial effect with long term vitamin E supplementation was recently reported in large clinical trial (the Women’s Health Study) that addressed the role of antioxidant therapy in the primary prevention of heart failure [2].
These negative results may be related to the fact that antioxidant supplements could abolish the physiological role of ROS as signaling molecules [18], especially when considering that most cardiovascular patients are treated with “pleiotropic” drugs such as statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, that besides their major effects are reported to reduce ROS formation [23]. Indeed, a large body of evidence demonstrated unequivocally that reduced amounts of reactive oxgen species, most probably of mitochondrial origin [17] but not exclusively, are essential in regulating cardiovascular homeostasis [19] as well as the powerful mechanisms of endogenous cardioprotection at postischemic reperfusion, namely pre- and postconditioning [20].
In conclusion, increasing the level of endogenous antioxidants, as recently suggested via the supplimentation of weak "pro-oxidants" [8], and not chronic supplementation with large dose of exogenous antioxidants could become in the future a more appropriate approach to treat diseases that share oxidative stress as a common denominator.
Coloration is one of the most conspicuous traits that varies among organisms. In the case of animals, colour is mainly due to: (i) the presence of pigments (carotenoids, melanin, turacoverdin, biliverdin, protoporphyrin, etc); (ii) light phenomena such as reflection/emission from animal structures (skin, feathers, etc.); (iii) the presence of microscopic structure in scales, bristles, or feathers, which give them brilliant iridescent colours (commonly named “structural colours”) [1]; and (iv) general aspects related to genetics [2]. Due to these reasons, animals show different colours, which can slightly vary even between individuals belonging to the same species. Animal colorations are strongly linked to different biological roles: camouflage, sexual, social, and interspecific signalling, physical protection (against UV radiation for instance), and sexual dimorphism [3, 4, 5, 6].
\nIn the case of the birds, feathers play a key role in general coloration. Those that are red orange show these colours thanks to the presence of different carotenoids within their structures. Carotenoids are natural pigments widely spread in nature: chloroplasts and chromoplasts of plants, bacteria, archaea, microalgae, fungi and even phytoplankton [7, 8, 9]. All the mentioned organisms can synthesize carotenoids, but animals in general are not able to produce them
There are over 600 known carotenoids classified into two classes: xanthophylls (which contain oxygen) and carotenes (which are hydrocarbons without oxygen). Thanks to their chemical structure, they absorb wavelengths ranging from 400–550 nanometres (violet to green light) [12]. Consequently, these pigments are deeply coloured yellow, orange or red. Some carotenoids have vitamin A activity (they can be converted into retinol) and most of them can also act as antioxidants. Recently, it has been stated that cytochrome P450 enzymes are also involved in red carotenoid coloration [13].
\nRed coloured birds inhabiting salted environments such as salt marshes, seaside ecosystems, salted lagoons etc. may often acquire carotenoids by ingesting small organisms or even microorganisms like yeast and algae. Thus, flamingos (
The nature of the colour shown by red-pink feathers is one of the aspects strongly discussed during the last few years. Many works have demonstrated that the colour is due to the carotenoids obtained through the diet, whilst other studies suggested that other external factors like microorganisms or light phenomena could contribute to the final red-orange-pink phenotype. This chapter summarizes recent knowledge about the presence of alive microorganisms belonging to the Archaea domain on the surface of red-pink feathers thus may contributing to their colour. General aspects related to the carotenoids produced by haloarchaea inhabiting feathers of coastal birds are also discussed.
\nBird feathers have been the aim of several works during the last two centuries. Thus, the first reports on bird plumage listed in databases like PUBMED, Web of Science or Scopus analysed aspects focused on the muscles in charge of the feathers movement [17] or their growth [18]. Other aspects of bird feathers related to biological roles like sexual selection, colonization strategies or signalling have also been extensively explored [19, 20, 21, 22, 23]. These aspects are intricately connected to the coloration of avian plumage.
\nThe first detailed studies about the colour of bird feathers were published in indexed scientific journals in the middle fifties last century. Since then, around 500 manuscripts have been reported on this subject (Figure 1). It is worthy to note that the number of studies about the colouration of plumage significantly increased at the beginning of XXI century (Figure 1). However, the number of publications focused on the presence of carotenoids in bird feathers is lower compared to those related to other issues affecting the phenotype of birds (Figure 1). Bird coloration (mainly in feathers) is one of the most studied topics to elucidate the role of natural and sexual selection in the evolution of phenotypic diversity. Thus, the variety of vibrant plumage colours has evolved as a direct result of social and environmental pressures.
\nGraph representation of the total number of publications per year from the database PubMed concerning the combination of the following keywords: (
The colour of plumage and other structures in animals and plants is due to the presence of pigments (pigment-based coloration) or the presence of microscopically structured surfaces fine enough to interfere with visible light (structural coloration) [24]. Iridescence for instance, is one of the better-known examples of it [25]. In some cases, feather colours are the result of a combination of both [26, 27].
\n\nTable 1 summarizes the most representative pigments already identified as part of the colour of bird plumage. The most abundant are melanin and carotenoids [28, 29]. On the one hand, melanin-based coloration switches from brown to black due to the presence of phaeomelanin or eumelanin, respectively, or the number and distribution of the melanosomes [30, 31]. On the other hand, carotenoids-based colorations vary from yellow to red as previously mentioned.
\nMelanins | \n||
---|---|---|
Name | \nColour | \nReferences | \n
Eumelanin | \nGrey/Black | \n[29, 30, 31, 37] | \n
Pheomelanin | \nBrown | \n[29, 30, 37, 38, 39] | \n
Zeaxanthin | \nYellow | \n[2, 40, 41] | \n
Lutein | \nBright Yellow | \n[2, 40, 41, 42] | \n
β-carotene | \nYellow | \n[2, 42] | \n
β-cryptoxanthin | \nYellow | \n[2, 42] | \n
Canthaxanthin | \nOrange Red | \n[2, 40, 41, 42] | \n
Astaxanthin | \nRed | \n[2, 41, 42, 43] | \n
Rhodoxanthin | \nPurple-red | \n[41, 44, 45] | \n
Turacoverdin | \nGreen | \n[36] | \n
Coproporphyrin III | \nRed Brown | \n[46] | \n
Turacin | \nRed | \n[47] | \n
Summary of the main features characterizing the most abundant pigments in bird feathers.
The genetics of coloration in birds remains poorly described. However, it is extensively accepted that its expression is phenotypically plastic with a high sensitivity to variation in environmental conditions. Therefore, the melanin-based colour should be considered the key system to understand the molecular basis of phenotypic variations [32]. Some other pigments are only present in some species. This is the case of psittacofulvins, which are found just in a few species of parrots (
Archaea, one of the three Domains of life, make up a significant fraction of the microbial biomass on Earth [48]. It was thought that Archaea microbes were restricted to extreme environments, such as those with elevated temperatures, low or high pH, high salinity, or strict anoxia [49]. However, environmental sampling analysis based on rRNA sequences has revealed that archaea are widespread in “normal” ecosystems, including soils, oceans, marshlands, human colon, human oral cavity and even in human skin. They are particularly numerous in the oceans; thus, archaea in plankton may constitute one of the most abundant groups of organisms on the planet. From a metabolic point of view, they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, playing important roles in the Earth’s global geochemical cycles [50].
\nSalty environments are dominated by organisms commonly named “halophiles” (it comes from the Greek word for “salt-loving”). They are usually classified into three groups according to their NaCl requirements: slight halophiles (2–5% or 0.34–0.85 M), moderate halophiles (5–20% or 0.85–3.4 M) and extreme halophiles (20–30% or 3.4–5.1 M) [51].
\nHalophilic archaea, also called Haloarchaea, are extreme or moderated halophilic species inhabiting neutral saline environments such as salt lakes, marine salterns, marshes, saltern crystallizer ponds or genuine environments like the Dead Sea [52, 53]. In those natural ecosystems, salt concentrations are around 1.5–4 M, which corresponds to 9–30% of salts (w/v). NaCl is the predominant salt and ionic proportions are like those dissolved salts in seawater.
\nThese halophilic ecosystems harbour a large diversity of microorganisms of all three domains: small eukaryotes such the shrimp
(A)
(A)
Studies in the early nineties of the last century demonstrated that the carotenoids of the feathers were derived from the diet and deposited within tissues selectively [54] being the liver one of the most important organs involved in the conversion of carotenoids uptaken [55]. Some years before, other studies focused on seaside birds as flamingos stated that the major carotenoids in blood and feathers were canthaxanthin and a rare β-carotene derivative (4-keto-α-carotene) [56, 57]. Limitations on chemical and analytical techniques have contribute to the poor knowledge about carotenoids in birds up to nowadays. Fortunately, new advances in spectrometry and HPLC have made possible a significant improvement in this field of knowledge [47, 58]. Thus, during the last 15 years, several research groups worldwide have characterised the nature (and even the concentrations) of carotenoids in blood and feathers, mainly in finches [59, 60] and parrots [33, 61]. All the reported results show that the most important carotenoids contributing to the red-orange-pink colours in feathers are: canthaxanthin, astaxanthin, zeaxanthin and carotene (including its derivatives). In the case of seaside birds, it has been stated that the main rich carotenoids sources are the small shrimps and algae co-inhabiting the salty environments (
Recent contributions in this field have revealed that there are other important factors contributing to the red-orange-pink colour of the feathers. Between them, it is important to highlight the following: (i) genetics [2]; (ii) variation in carotenoid-protein interactions in bird feathers structures, which produces novel plumage coloration [63] and (iii) the presence of alive red-orange microorganisms on the surface of the feathers [64]. This last factor has recently been reported from flamingos growing up in captivity: viable, red-coloured archaeal strains belonging to the genera
Chemical structure of bacterioruberin. This compound has promising potential uses as antioxidant, antitumoral and immunomodulatory molecule for pharmaceutical and cosmetical formulations [
This carotenoid is involved in several biological roles in haloarchaea: it protects the cells against the damage produced by high intensities of sun radiation, it provides aid in photoreactivation [67] and it promotes membranes stability [8, 66]. Characterisation of pure bacterioruberin samples revealed that it is more powerful than carotene as antioxidant compound [68, 69]. Due to these facts, bacterioruberin could be used in biotechnology and biomedicine for different purposes [8, 70].
\nConsequently, haloarchaea in general and their pigments in particular, may contribute to the orange-red colour of the feathers in two ways: (i) pink-red haloarchaea cells on the surface contribute to the pink-red phenotype in flamingos’ feathers and (ii) haloarchaeal cells are part of the marine birds’ diet (at least flamingos), consequently their carotenoids (mainly bacterioruberin) are ingested, metabolised and further assimilated.
\nNew advances in the knowledge of animal pigmentation state that not only the pigments (carotenoids, melanin, etc.), but also the microstructure of the feathers as well as external factors, contribute to the final phenotype in terms of coloration. Related to birds, and particularly to seaside birds, it was thought that microalgae and small shrimps were the major sources of carotenoids so far. Nevertheless, recent results revealed that other small microbes such as haloarchaea could contribute significantly to the red-orange colours showed by birds like flamingos. In that sense, bacterioruberin becomes a new pigment to be considered to explain animal colours in marine environments. The potential influence of haloarchaea as an environmental factor determining avian plumage coloration or even protecting the microstructures of feathers against UV radiation must be investigated in further studies. Although bacterioruberin has been very well described, only few studies about its biological implications are available at the time of writing this review. Thus, more efforts must be done to explain basic aspects related to bacterioruberin metabolism and its effects on animal health and animal phenotypes. On the other hand, associations between different haloarchaeal-bird species as well as changes in these associations promoted by environmental conditions or anthropogenic actions are worthy to be analysed into detail. Hypothesis based on potential symbiotic relationship between haloarchaea and seaside birds remains unexplored.
\nThis work was funded by research grant from the University of Alicante (VIGROB-309). The authors would like to thank Francisco Grimalt Salvá and José Antonio Abellán for their helpful discussions about the color of the feathers in genera of the
The authors declare no conflict of interest.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5828},{group:"region",caption:"Middle and South America",value:2,count:5288},{group:"region",caption:"Africa",value:3,count:1765},{group:"region",caption:"Asia",value:4,count:10557},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15951}],offset:12,limit:12,total:119466},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10695",title:"Computational Fluid Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"1f8fd29e4b72dbfe632f47840b369b11",slug:null,bookSignature:"Dr. Suvanjan Bhattacharyya",coverURL:"https://cdn.intechopen.com/books/images_new/10695.jpg",editedByType:null,editors:[{id:"233630",title:"Dr.",name:"Suvanjan",surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:29},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:53},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:4},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:193},popularBooks:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5334},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9559",title:"Teamwork in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"0053c2ff8d9ec4cc4aab82acea46a41e",slug:"teamwork-in-healthcare",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/9559.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editedByType:"Edited by",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"718",title:"Electronics and Instrumentation",slug:"electronics-and-instrumentation",parent:{title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:3,numberOfAuthorsAndEditors:92,numberOfWosCitations:95,numberOfCrossrefCitations:47,numberOfDimensionsCitations:111,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electronics-and-instrumentation",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2011",title:"Introduction to PID Controllers",subtitle:"Theory, Tuning and Application to Frontier Areas",isOpenForSubmission:!1,hash:"653714a5cce15c0bc109cf0387e51dde",slug:"introduction-to-pid-controllers-theory-tuning-and-application-to-frontier-areas",bookSignature:"Rames C. Panda",coverURL:"https://cdn.intechopen.com/books/images_new/2011.jpg",editedByType:"Edited by",editors:[{id:"87548",title:"Prof.",name:"Rames C.",middleName:null,surname:"Panda",slug:"rames-c.-panda",fullName:"Rames C. Panda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"247",title:"Advances in PID Control",subtitle:null,isOpenForSubmission:!1,hash:"f0a5bf1875562e6d243c8ea120cf4284",slug:"advances-in-pid-control",bookSignature:"Valery D. Yurkevich",coverURL:"https://cdn.intechopen.com/books/images_new/247.jpg",editedByType:"Edited by",editors:[{id:"56191",title:"Dr.",name:"Valery D.",middleName:null,surname:"Yurkevich",slug:"valery-d.-yurkevich",fullName:"Valery D. Yurkevich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"125",title:"PID Control",subtitle:"Implementation and Tuning",isOpenForSubmission:!1,hash:"85fa6169048e8bdeb686e8c50cdce0d7",slug:"pid-control-implementation-and-tuning",bookSignature:"Tamer Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/125.jpg",editedByType:"Edited by",editors:[{id:"64880",title:"Dr.",name:"Tamer",middleName:null,surname:"Mansour",slug:"tamer-mansour",fullName:"Tamer Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"29818",doi:"10.5772/32471",title:"PID Controller Design for Specified Performance",slug:"pid-controller-design-for-specified-performance",totalDownloads:3836,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"introduction-to-pid-controllers-theory-tuning-and-application-to-frontier-areas",title:"Introduction to PID Controllers",fullTitle:"Introduction to PID Controllers - Theory, Tuning and Application to Frontier Areas"},signatures:"Štefan Bucz and Alena Kozáková",authors:[{id:"21933",title:"Ms.",name:"Alena",middleName:null,surname:"Kozakova",slug:"alena-kozakova",fullName:"Alena Kozakova"},{id:"91652",title:"Dr.",name:"Stefan",middleName:null,surname:"Bucz",slug:"stefan-bucz",fullName:"Stefan Bucz"}]},{id:"19181",doi:"10.5772/18888",title:"Predictive PID Control of Non-Minimum Phase Systems",slug:"predictive-pid-control-of-non-minimum-phase-systems",totalDownloads:5671,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Kenny Uren and George van Schoor",authors:[{id:"32897",title:"Dr.",name:"Kenny",middleName:null,surname:"Uren",slug:"kenny-uren",fullName:"Kenny Uren"},{id:"50050",title:"Prof.",name:"George",middleName:null,surname:"Van Schoor",slug:"george-van-schoor",fullName:"George Van Schoor"}]},{id:"29823",doi:"10.5772/32970",title:"Robust Decentralized PID Controller Design",slug:"robust-decentralized-pid-controller-design",totalDownloads:2431,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"introduction-to-pid-controllers-theory-tuning-and-application-to-frontier-areas",title:"Introduction to PID Controllers",fullTitle:"Introduction to PID Controllers - Theory, Tuning and Application to Frontier Areas"},signatures:"Danica Rosinová and Alena Kozáková",authors:[{id:"21933",title:"Ms.",name:"Alena",middleName:null,surname:"Kozakova",slug:"alena-kozakova",fullName:"Alena Kozakova"},{id:"19392",title:"Dr.",name:"Danica",middleName:null,surname:"Rosinova",slug:"danica-rosinova",fullName:"Danica Rosinova"}]}],mostDownloadedChaptersLast30Days:[{id:"19185",title:"From Basic to Advanced PI Controllers: A Complexity vs. Performance Comparison",slug:"from-basic-to-advanced-pi-controllers-a-complexity-vs-performance-comparison",totalDownloads:5225,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Aldo Balestrino, Andrea Caiti, Vincenzo Calabró, Emanuele Crisostomi and Alberto Landi",authors:[{id:"34820",title:"Dr.",name:"Emanuele",middleName:null,surname:"Crisostomi",slug:"emanuele-crisostomi",fullName:"Emanuele Crisostomi"},{id:"48871",title:"Prof.",name:"Aldo",middleName:null,surname:"Balestrino",slug:"aldo-balestrino",fullName:"Aldo Balestrino"},{id:"48872",title:"MSc.",name:"Vincenzo",middleName:null,surname:"Calabrò",slug:"vincenzo-calabro",fullName:"Vincenzo Calabrò"},{id:"48873",title:"Prof.",name:"Alberto",middleName:null,surname:"Landi",slug:"alberto-landi",fullName:"Alberto Landi"},{id:"49886",title:"Prof.",name:"Andrea",middleName:null,surname:"Caiti",slug:"andrea-caiti",fullName:"Andrea Caiti"}]},{id:"19194",title:"PID Controller Using FPGA Technology",slug:"pid-controller-using-fpga-technology",totalDownloads:15305,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Abdesselem Trimeche, Anis Sakly, Abdelatif Mtibaa and Mohamed Benrejeb",authors:[{id:"19211",title:"Prof.",name:"Mohamed",middleName:null,surname:"Benrejeb",slug:"mohamed-benrejeb",fullName:"Mohamed Benrejeb"},{id:"31012",title:"Mr.",name:"Trimeche",middleName:null,surname:"Abdesselem",slug:"trimeche-abdesselem",fullName:"Trimeche Abdesselem"},{id:"57991",title:"Mr",name:"Anis",middleName:null,surname:"Sakly",slug:"anis-sakly",fullName:"Anis Sakly"},{id:"57993",title:"Mr",name:"Abdelatif",middleName:null,surname:"Mtibaa",slug:"abdelatif-mtibaa",fullName:"Abdelatif Mtibaa"}]},{id:"19184",title:"A PI2D Feedback Control Type for Second Order Systems",slug:"a-pi2d-feedback-control-type-for-second-order-systems",totalDownloads:2863,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"América Morales Díaz and Alejandro Rodríguez-Angeles",authors:null},{id:"19191",title:"Air-Conditioning PID Control System with Adjustable Reset to Offset Thermal Loads Upsets",slug:"air-conditioning-pid-control-system-with-adjustable-reset-to-offset-thermal-loads-upsets",totalDownloads:7792,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Takanori Yamazaki, Yuji Yamakawa, Kazuyuki Kamimura and Shigeru Kurosu",authors:[{id:"2700",title:"Dr.",name:"Yuji",middleName:null,surname:"Yamakawa",slug:"yuji-yamakawa",fullName:"Yuji Yamakawa"},{id:"32678",title:"Dr.",name:"Shigeru",middleName:null,surname:"Kurosu",slug:"shigeru-kurosu",fullName:"Shigeru Kurosu"},{id:"34457",title:"Dr.",name:"Takanori",middleName:null,surname:"Yamazaki",slug:"takanori-yamazaki",fullName:"Takanori Yamazaki"},{id:"34458",title:"Dr.",name:"Kazuyuki",middleName:null,surname:"Kamimura",slug:"kazuyuki-kamimura",fullName:"Kazuyuki Kamimura"}]},{id:"19193",title:"PID Application: RTLS",slug:"pid-application-rtls",totalDownloads:2059,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Jae Ho Hwang and Jae Moung Kim",authors:[{id:"48927",title:"Mr",name:"Jaeho",middleName:null,surname:"Hwang",slug:"jaeho-hwang",fullName:"Jaeho Hwang"},{id:"50652",title:"Prof.",name:"Jae Moung",middleName:null,surname:"Kim",slug:"jae-moung-kim",fullName:"Jae Moung Kim"}]},{id:"19188",title:"High-Speed and High-Precision Position Control Using a Nonlinear Compensator",slug:"high-speed-and-high-precision-position-control-using-a-nonlinear-compensator",totalDownloads:2465,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Kazuhiro Tsuruta, Kazuya Sato and Takashi Fujimoto",authors:[{id:"31823",title:"Prof.",name:"Kazuhiro",middleName:null,surname:"Tsuruta",slug:"kazuhiro-tsuruta",fullName:"Kazuhiro Tsuruta"},{id:"45823",title:"Prof.",name:"Kazuya",middleName:null,surname:"Sato",slug:"kazuya-sato",fullName:"Kazuya Sato"},{id:"45824",title:"Prof.",name:"Takashi",middleName:null,surname:"Fujimoto",slug:"takashi-fujimoto",fullName:"Takashi Fujimoto"}]},{id:"19190",title:"Pole-Zero-Cancellation Technique for DC-DC Converter",slug:"pole-zero-cancellation-technique-for-dc-dc-converter",totalDownloads:5346,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Seiya Abe, Toshiyuki Zaitsu, Satoshi Obata, Masahito Shoyama and Tamotsu Ninomiya",authors:[{id:"31952",title:"Dr.",name:"Seiya",middleName:null,surname:"Abe",slug:"seiya-abe",fullName:"Seiya Abe"},{id:"43664",title:"Prof.",name:"Toshiyuki",middleName:null,surname:"Zaitsu",slug:"toshiyuki-zaitsu",fullName:"Toshiyuki Zaitsu"},{id:"43665",title:"Mr.",name:"Satoshi",middleName:null,surname:"Obata",slug:"satoshi-obata",fullName:"Satoshi Obata"},{id:"43666",title:"Prof.",name:"Masahito",middleName:null,surname:"Shoyama",slug:"masahito-shoyama",fullName:"Masahito Shoyama"},{id:"43667",title:"Prof.",name:"Tamotsu",middleName:null,surname:"Ninomiya",slug:"tamotsu-ninomiya",fullName:"Tamotsu Ninomiya"}]},{id:"29822",title:"Identification and Control of Multivariable Systems – Role of Relay Feedback",slug:"identification-and-control-of-multivariable-systems-role-of-relay-feedback",totalDownloads:5520,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"introduction-to-pid-controllers-theory-tuning-and-application-to-frontier-areas",title:"Introduction to PID Controllers",fullTitle:"Introduction to PID Controllers - Theory, Tuning and Application to Frontier Areas"},signatures:"Rames C. Panda and V. Sujatha",authors:[{id:"87548",title:"Prof.",name:"Rames C.",middleName:null,surname:"Panda",slug:"rames-c.-panda",fullName:"Rames C. Panda"}]},{id:"15194",title:"Stable Visual PID Control of Redundant Planar Parallel Robots",slug:"stable-visual-pid-control-of-redundant-planar-parallel-robots",totalDownloads:2350,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"pid-control-implementation-and-tuning",title:"PID Control",fullTitle:"PID Control, Implementation and Tuning"},signatures:"Miguel A. Trujano, Rubén Garrido and Alberto Soria",authors:[{id:"19283",title:"MSc.",name:"Miguel Angel",middleName:null,surname:"Trujano",slug:"miguel-angel-trujano",fullName:"Miguel Angel Trujano"},{id:"19284",title:"Dr.",name:"Ruben",middleName:null,surname:"Garrido",slug:"ruben-garrido",fullName:"Ruben Garrido"},{id:"22945",title:"Dr.",name:"Alberto",middleName:null,surname:"Soria",slug:"alberto-soria",fullName:"Alberto Soria"}]},{id:"15200",title:"Neural Network Based Tuning Algorithm for MPID Control",slug:"neural-network-based-tuning-algorithm-for-mpid-control",totalDownloads:2808,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"pid-control-implementation-and-tuning",title:"PID Control",fullTitle:"PID Control, Implementation and Tuning"},signatures:"Tamer Mansour, Atsushi Konno and Masaru Uchiyama",authors:[{id:"5455",title:"Dr.",name:"Tamer",middleName:null,surname:"Mansour",slug:"tamer-mansour",fullName:"Tamer Mansour"},{id:"23157",title:"Prof.",name:"Atsushi",middleName:null,surname:"Konno",slug:"atsushi-konno",fullName:"Atsushi Konno"},{id:"23158",title:"Dr.",name:"Masaru",middleName:null,surname:"Uchiyama",slug:"masaru-uchiyama",fullName:"Masaru Uchiyama"}]}],onlineFirstChaptersFilter:{topicSlug:"electronics-and-instrumentation",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"profile.detail",path:"/profiles/114849/jui-min-li",hash:"",query:{},params:{id:"114849",slug:"jui-min-li"},fullPath:"/profiles/114849/jui-min-li",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()