Characteristic bands of oligosaccharide and polysaccharide.
\r\n\tMalware detection and defences continue to be most challenging for the Network Administrators of the Internet and the Cyber Critical Infrastructures worldwide. Both, hardware and software vulnerabilities are often exploited via malware which may compromise the cyber system integrity and its business continuity. The continuous evolution of malicious malware drives the evolution of new malware detection and defences in support of Cyber Systems' strong Resilience and Reliability 24/7.
\r\n\r\n\tThe book will present a collection of the most up-to-date literature and current state-of-the-art in the field of Cyber and Computer Security, bringing to light the most recent research findings and relevant case studies. The book will also promote the creation of global interdisciplinary research teams to face new cyber challenges today and in years to come.
\r\n\t
In a vibrational spectroscopy, near-infrared spectroscopy (NIRS) covers the transition from the visible spectral range to the mid-infrared region. The NIR spectral region ranges from 800 to 2500 nm (12,500–4000 cm−1) with absorptions representing overtones and combinations mainly associated with –CH, –OH, –NH, and –SH functional groups [1]. NIR spectroscopy in combination with chemometric analyses can provide unique information in a wide field of applications from life sciences to environmental issues. It is more frequently used in the agricultural field [2–5], in particular, on the elucidation of nonstructural carbohydrates (NSCs) of plants. NSCs are products of the photosynthesis, providing substrates for growth and metabolism and can be stored by the plant playing a central role in the plant response to the environment [6, 7]. This type of carbohydrates is classified into monosaccharides (glucose and fructose), disaccharides (sucrose), polysaccharides (starch and fructans), oligosaccharides (raffinose), and sugar alcohols (inositol, sorbitol, and mannitol) [8, 9].
\nNIR spectroscopy is widely used to follow the chemical, physical, technological, or physiological processes that affect the structure and composition of carbohydrates found in many different organisms [10]. The success of this technique relies on the rapid and nondestructive analysis of the sample without the use of chemicals [11]. In addition, the data can be analyzed with chemometric methods. In this regard, partial least squares regression (PLSR) and principal component analysis (PCA) are two of the most recognized statistical methods that can be used to build NIR-chemometric models. PLSR is a well-established method for multivariate modeling and calibration [12]. Meanwhile, PCA analyzes data tables representing observations described by several dependent variables, which are, in general, intercorrelated [13].
\nThe objective of this chapter is to give a comprehensive overview of NIR spectroscopy for analyzing carbohydrates, such as glucose, fructose, sucrose, and fructans. In addition, we describe NIR spectroscopy and multivariate methods used to identify, classify, and quantify carbohydrates in plant tissues. Furthermore, we present the main applications of NIR-chemometrics on carbohydrate analyses.
The term “near” in NIR relies on the position of the electromagnetic energy lying next to or near the visible energy range. Molecular vibrations in the middle infrared (MIR) range cover absorptions bands between 2500 and 25,000 nm (4000 and 400 cm−1) representing the most intense and simplest bands in the whole infrared range, whereas NIR bands arise in the interval between 800 and 2500 nm (12,500 and 4000 cm−1) covering absorptions corresponding to overtones and combinations of fundamental vibrations [14]. NIR spectroscopy is concerned with both electronic and vibrational transitions [1]. Bands due to electronic transitions are observed in the NIR region and in general are presented as weak bands. Moreover, bands arising from overtones and combination modes are so-called forbidden transitions. Starting from the diatomic molecule as the simplest vibrating system, described by the harmonic and anharmonic oscillator, the study of more complex substances is referred to as polyatomic molecules [14].
\nThe NIR region can be divided into three regions. Region I spans from 800 to 1200 nm (12,500–8500 cm−1), also known as the “the short-wave NIR region (SWNIR),” “near-NIR region (NNIR),” or “the Herschel region,” represents bands resulting from electronic transitions, overtones, and combinations modes. Region II ranges from 1200 to 1800 nm (8500–5500 cm−1) and covers first overtones of XH (X = C, O, N), stretching vibrations and various types of combination modes. Finally, Region III (1800–2500 nm or 5500–4000 cm−1) is a combination mode region. Many applications utilize Regions II and III [1].
\nAbsorptions due to different functional groups, especially –CH, –OH, and –NH, are displayed as molecular overtones and combination vibrations at specific wavebands [15, 16]. NIR spectral data are influenced by a particle size (e.g., ground or powder) and need to be properly calibrated [17]. In Table 1, the characteristic bands of oligosaccharide and polysaccharide are listed.
Carbohydrate type | Waveband | Wavenumber | Reference | |
---|---|---|---|---|
nm | cm−1 | |||
Glucose | OH stretch 1st overtone | 2340, 2255, 2150, 2085, 1902, 1730, 1590, 1520, 1385, 1195 | 4274, 4435, 4651, 4796, 5258, 5780, 6289, 6579, 7220, 8368 | [19] |
Glucose | OH stretch/OH bend | 1688 | 5924 | [20] |
Sucrose | OH stretch 1st overtone | 1433 | 6978 | [20] |
Sucrose/glucose/fructose | OH combination | 1928 | 5186 | [21] |
Sucrose/glucose/fructose | OH stretch/CO stretch combination | 2123–2200 | 4710–4717 | [22] |
Crystalline sucrose | OH stretch 1st overtone | 1443–1440 | 6930–6944 | [23, 24] |
Polysaccharides | CH stretch/CH deformation combination | 2328 | 4295 | [25] |
Polysaccharides | OH stretch/CO stretch combination | 2274, 2271–2270 | 4398, 4403–4405 | [22, 25] |
Polysaccharides | OH combination | 2090 | 4785 | [25] |
Polysaccharides | OH stretch/OH bend | 1920 | 5208 | [25] |
Polysaccharides | CH combination/CH 1st overtone | 2328, 2270, 2078, 1920, 1587–1583 | 4295, 4405, 4813, 5208, 6300–6317 | [19, 22] |
Polysaccharides | OH stretch 1st overtone | 1437–1389 | 6960–7200 | [26–29] |
Characteristic bands of oligosaccharide and polysaccharide.
NIRS has been used as a fingerprint technique for all kinds of samples (liquids, solids, and semisolids), independently of their nature, relatively simple substances or pure compounds, most times they show broad and overlapping bands, it is impossible to correctly assign the specifically vibrations, and cannot be used for structural determination of a sample [18].
NIR spectra are characterized for their complexity and difficulty to be interpreted. For these reasons, multivariate methods from chemometrics are required to understand NIR spectra.
\nChemometrics comprise the development and use of mathematical and statistical methods for applications in chemistry. As a discipline, the aim of chemometrics is to provide methods to extract relevant chemical information out of measured chemical data in order to represent and display this information.
\nFigure 1 shows a general scheme for multivariate techniques, including the two different chemometric groups that are frequently employed in the NIR spectra analysis: the qualitative (classification) methods and the quantitative (regression) methods. As a first step, before choosing any method, usually NIR spectra are preprocessed with mathematical treatments, such as baseline correction, normalizations, derivatives, and smoothing, in order to enhance the relevant information and reduce the influence of side information contained in the spectra. The classification methods are used to group or separate the samples according to their spectra. The regression methods correlate the spectrum to quantifiable properties of the samples.
General scheme showing the commonly multivariate techniques employed by NIR spectroscopy.
The basic principles used for quantitative analysis are fundamentally invariable for all optical and spectral measurement methods. The principle behind any quantitative analysis is that the desired quantity, property, parameter, or compound can be determined from the signal obtained by an instrument, and this signal differs in a predictable manner for a given experimental system. The magnitude of the signal obtained can be correlated, directly or by mathematical algorithms, to the target characteristic properties of a sample. A common implementation of quantitative analysis is the determination of the concentration of a given analyte. For most applications, an attempt is made to linearize the relationship between the analyte and the instrument response, although this is not essential if a well-defined mathematical relationship can be established. This leads to the generation of a calibration from a characterized standard set (references) with the objective to construct a prediction model for a group of samples (Figure 2) [30].
Scheme for the construction of a quantitative model.
Many successful NIRS analysis have been performed using PLSR as a quantitative chemometric technique. Its usefulness derives from its potential to analyze data with numerous, noisy, collinear, and even incomplete variables. By establishing a linear relationship between two data matrices, the spectral data X and the reference values Y, through a linear multivariate model, the PLSR technique finds out the variables in the X matrix that will best define the Y matrix. In other words, it represents the NIR spectra in the space of wavelengths in order to display directions that will be linear combinations of wavelengths called factors that describe the studied property [31, 32].
Qualitative analyses are used for the classification of samples in accordance with their NIR spectra. Two general approaches can be used for qualitative classification: the unsupervised and the supervised methods. In the first approach, samples are classified lacking preceding knowledge, except the spectra. On the other hand, supervised methods require a prior knowledge of the sample, for instance, a category membership, generating a classification model with a training set of samples with well-established categories. The obtained model performance is evaluated by relating the classification predictions to the well-known categories of the validation samples [33].
\nPrincipal component analysis (PCA) is one of the most popular classification methods utilized in life sciences. PCA is used to visualize the most important information from a given data. One of the most significant advantages of PCA application is the reduction of the number of variables (scores), allowing the representation of a multivariate data table in a small dimensional area. Its purpose is to obtain significant information from the NIR spectra to express it as a set of new orthogonal variables called principal components (PC). The first principal component (PC1) defines the maximum variability scattered within the samples. A second principal component (PC2), uncorrelated and orthogonal to the first principal component, explains the maximum variability not described by the first component, this behavior continues with the next principal component (PC3), and so on [12]. Thereby, a display pattern of similarity of the variables as points in maps is created.
The near-infrared spectroscopy (NIRS) is a technique that allows the measurement of carbohydrates in a wide variety of samples. Nowadays, NIRS-chemometrics have proven their effectiveness for both qualitative and quantitative carbohydrate analysis. NIRS has several advantages such as allowing the sample remains intact after analysis and giving access to multiple chemical as well as physical properties at the same time [34].
\nNIR spectroscopy is generally chosen for its high-throughput screening, reduced sample preparation, low cost, and the nondestructive nature toward the analyzed sample [14]. However, establishing a suitable calibration demands a big effort and requires reference values for each sample, which makes it time-consuming and costly at the beginning [35].
\nIn the agrifood sector, the potential of NIRS have been widely investigated, this is a very powerful tool that provides meaningful information about internal and external properties of fruits, such as sugar content, total acidity, pH, soluble solid content, dry matter, firmness, and bruises, to mention some [36]. Moreover, NIRS can be applied to a wide variety of problems such as determination of particle size [38], determination of the best harvesting time [37], and investigation of geographical origin of foods such as apples, meat, and cheese [39].
\nHowever, and particularly to specific sugar content, NIRS in combination with PLSR models has been used in sorghum stalks [40] and sweet sorghum (cellulose, lignin, and hemicellulose) [41], fruit juices [42, 43], rice (amylose) [44], whey (lactose) [45], grasses (fructans) [46, 47], maize (nonstructural and water soluble carbohydrates) [48], intact apple fruit to determinate fructose, glucose, and sucrose [49], orange [50], apricot [51], sugar beet [52], cherries [53], and other fruits (Table 2). All these studies accorded that the performance of NIR spectroscopy is comparable to the reference chromatographic method, but the former is much faster and easier to carry out.
Sample | Carbohydrate | Analysis | Reference |
---|---|---|---|
Grain sorghum stalks | Sucrose, glucose | PLSR | [41] |
Fruit juices | Glucose, fructose, sucrose | PLSR, PCA | [43, 44] |
Rice | Amylose | mPLSs | [45] |
Whey | Lactose | PLS | [46] |
Grasses | Fructan | PLSR | [47, 48] |
Apple fruit | Glucose, fructose, sucrose | PLS | [50] |
Sugar beet | Sucrose | SEPs | [53, 55] |
Cherries | Total carbohydrates | PLSR | [54] |
Oranges | Glucose, fructose, sucrose | PLSR | [56, 57] |
Kiwifruit | Glucose, fructose, sucrose | PLS | [58] |
Potato | Glucose, fructose | PLSR | [59] |
Wine | Glucose | PLSR, PCR | [60] |
Cakes | Sucrose | MLR | [61] |
Syrup | Glucose, fructose, sucrose | PLSR | [62] |
Nules Clementine | Glucose, fructose, sucrose total carbohydrates | PLS, PCR | [63] |
Chinese yams | Total carbohydrates | PLS, PCA, LS-SVM | [64] |
Samples analyzed by NIR in a carbohydrate study.
mPLSs, various modified partial least square; PLS, partial least square; SEPs, standard errors of prediction; MLR, multiple linear regressions; and LS-SVM, least squares-support vector machine.
On the other hand, NIRS has been applied on food quality evaluation; it is often used to check if fruits or vegetables are green or rotten to detect surface defects. NIRS is also employed to check sugar concentrations, for instance, not only in apples [64], oranges [55, 56], mango [65], kiwifruits [57], sugar beet [54], peaches [66], jujube [67], onion [68], potato tubers [58], Nules Clementine [62], passion fruit [69], but also in fruit juices [43], wine [59], or cakes [60] (Table 2). Additionally, it has been used in breadstuff, dairy products, meat, vegetables, and fish products and in processed food to provide information about overtones and their combinations [70]. Moreover, studies have been performed to demonstrate that NIRS-chemometric analyses are of greater predictive value than mid-infrared data. In Chinese yams, Zhuang et al. [63] analyzed with NIR and MIR spectroscopy, the authors concluded that reasonable results were obtained using both spectral data sets and methods, but that NIR-chemometric data derived better prediction models.
\nIn respect to specific absorption peaks, sugar analyses have been carried out in fruit juices establishing that NIRS can deal with the distortions due to water clusters [20–22, 42].
\nNIR techniques have also been applied to measure biomass composition, especially on the presence of structural carbohydrates. The National Renewable Energy Laboratory (NREL) reported sorghum composition prediction models for glycan, xylan, lignin, starch, extractives, and ash [71].
\nNIR spectroscopy is not only useful in laboratory measurements sites but also applicable to online and field studies. The study of 116 syrup samples to compare a portable spectrometer and a benchtop device showed that the reduced wavelength range and reduced resolution of the portable device is sufficient to receive calibrations with
A relevant novel application of the predictive models, particularly of the direct NIR prediction on diverse parameters on fruit quality was demonstrated. In Ref. [50], the authors compared two commercial portable spectrometers (Vis/NIR spectrometer versus OTF-NIR) for four orange varieties quality: soluble solids content, acidity, titratable acidity, maturity index, flesh firmness, juice volume, fruit weight, rind weight, juice volume to fruit weight ratio, fruit color index, and juice color index, and they found relevant the prediction of maturity index. The Lab spec spectrometer showed better predictive performance than the laminar instrument.
\nIn another study, a Lab spec Pro portable spectrophotometer to conduct an online classification of beef tenderness was also successful [72].
\nIn sugar-flour mixtures, NIR spectroscopy displayed proper results on the characteristic absorption bands of sugars, which are 1200 nm (8333 cm−1), 1437 nm (6959 cm−1), 2074 nm (4822 cm−1), and 2320 nm (4310 cm−1). However, it was not possible to distinguish various sorts of sugars, for instance, make a difference between the sucrose of the powdered sugar and the numerous carbohydrates present in the flour. Nevertheless, the identification of specific signatures of sugars can be very useful for rapid detection in the industrial sector [73].
\nHoney represents another class of samples that have proven the effectiveness of a NIR analysis [74]. In a study on Galicia honeys with protected geographical indication (PGI), the samples were processed by different chemometric methods to develop an authentication system specific to this type of honey. In this work, fifteen Galicia certificated PGI honeys were differentiated from other fifteen commercial available honeys by PCA, demonstrating that a single and fast chemometric method could be used to indicate the genuineness of Galicia PGI samples. Figure 3A shows the NIR spectra of all the analyzed samples and Figure 3B, illustrates the discrimination of Galicia PGI honeys from the other samples by the PCA plot.
(A) NIR spectra of honey samples. (B) Score plot of the honey samples in the space defined by the first two principal components. Adapted from Ref. [
Similarity, the potential use of NIR-PCA analysis to monitor sugar adulteration in onion powders was assessed through a detailed examination of the feasibility of quantification of cornstarch as an adulterating ingredient in onion powders [75]. Spectral analysis of 18 concentrations of starch in 180 onion powders, ranging from 0 to 35%, was conducted. The NIR spectra of the pure and adulterated onion powders (Figure 4A) reveal differences in the absorption intensities between 1920 (5208 cm−1) and 1980 nm (5051 cm−1). The absorption bands in these regions correspond to the O–H stretch and O–H band combination and the H–O–H deformation combination, which represents the starch content. The spectral fluctuations from 1400 (7143 cm−1) to 1600 nm (6250 cm−1) correspond to the first overtone of the hydroxyl group. The precise position of these bands is very sensitive to hydrogen bonding in the starch molecule, causing a difference between genuine and adulterated samples. The application of PCA (Figure 4B) resulted in a data grouping of each of the different concentrations used, working as a discriminative screening tool of authentic and adulated samples.
(A) Original NIR spectra of pure onion and starch onion mixtures at different concentrations. (B) Principal component score plot for the first three PCs for discrimination among different adulteration concentrations in onion powder. Adapted from Ref. [
Applications of NIRS have been developed also in the nutrition and health fields. NIR and MIR spectroscopy measurements and multivariate calibration methods based on partial least square regression have been used in a determination of fat, proteins, carbohydrates, and energy values in baby food, infant fast food, and canteen menus, with a simple, fast, and good predictive capabilities [70]. Another great diagnostic application is the measurement of blood glucose [1].
\nFinally, another notable capacity of NIRS was the prediction of carbohydrates concentrations, and distribution, leading to high ratio of performance to deviation (RPD) values, reducing the use of chemicals and working time, confirming that this makes a suitable technique of industry applications [61].
The potential of NIR spectroscopy in combination with chemometrics on carbohydrate analysis has been fully demonstrated. NIR is a powerful technique to study carbohydrates composition, type, and levels. This method can be used qualitatively and quantitative to detect, identify, and qualify carbohydrates. These unique capabilities enable the employment of NIR-chemometric in numerous applications: from state-of-the-art scientific experiments to on-line industrial processing control.
The purpose of buildings is to protect the occupants from a harsh outdoor climate, but also to provide a comfortable and healthy indoor environment. The latter two objectives are intimately related to building ventilation, i.e. the exchange of indoor air with outdoor air. However, 40% of the total consumption of energy resources in the European Union (EU) can be traced to building use. [1] A large part of the consumption is due to the need to condition the indoor air for the thermal comfort of the occupants, i.e. heating or cooling depending on the outdoor climate. In these situations, exchanging the conditioned indoor air for unconditioned outdoor air obviously raises the energy consumption. On the other hand, striving for more energy efficient buildings without a clear strategy for adequate ventilation is likely to lead to more toxic and hazardous indoor environments. In a wider perspective, the relative projected societal costs for the occupants of a building, compared to the energy use in that building, are probably nine to one. [2] Compromising public health in the name of “energy efficiency” can therefore lead to a considerable economic backlash for society. In a larger perspective, many indoor sources of pollutants in the world have been identified as major causes of premature mortality, e.g. combustion of biomass fuels for cooking, burning incense or mosquito coils and parental smoking. [3, 4] In addition, if the occupants perceive the indoor environment to be unhealthy or uncomfortable, they are likely to take actions (e.g. use air cleaners or increase ventilation flows) that will increase the energy use in buildings. [5]
\nAfter the energy crisis in 1973, new and renovated buildings have been built with increasingly tighter envelopes to stop uncontrolled air exchanges through cracks and leaks in the construction and to improve energy efficiency. In 1974, the “Passivhaus”-concept combined three energy-saving measures: adequate thermal insulation, a tight envelope, and heat recovery into the idea of a building requiring no, or very little, energy use after it was built. [6] After a few serious backlashes in the early days, the building technologies used to achieve energy efficiency in nearly zero energy (NZE) buildings are currently more mature, but the efficiency of the corresponding ventilation strategies have not been given the same attention. There are several examples of inadequate ventilation in NZE buildings. [7] After the EU Energy Performance in Buildings Directive (EPBD) in 2010, [1] stipulating that all new building should meet the NZE requirements, a majority of EU ventilation experts were worried that EPBD would lead to a worse indoor air quality as compared to the current state. [8]
\nThe EPBD is an integral part of the European Green Deal: an action plan to reach a “climate neutral” EU economy. [9] The European Green Deal outlines a more sustainable path for economic and societal development to “transform the EU into a fair and prosperous society, with a modern, resource-efficient and competitive economy”. [9] The European Green Deal addresses many issues: a toxic-free environment; preserving and restoring ecosystems and biodiversity; circular economy; a fair, healthy and environmentally friendly food system; but much focus is devoted to an energy transition to reach zero net emissions of greenhouse gases in the EU by 2050 at the latest. [9] Zero net emissions means that there should be a balance, between the actual emissions of greenhouse gases and the absorption of greenhouse gases by nature (or other processes), in some bookkeeping system like the Emission Trading System. [9, 11] This goal of net zero emissions by 2050 will be legally binding for the member states if the proposal for an EU Climate Law is ratified. [10] Renewable energy sources as well as moving to more energy efficient and sustainable solutions play essential roles in the European Green Deal. [9] The EPBD is the result of the European Commission’s resolve to “rigorously enforce legislation related to the energy performance of buildings”. [9]
\nAnother issue addressed in EPBD (and its amendments as well as in the European Green Deal) is that 85% of the present building stock in the EU is built before 2001, and most of those buildings are not considered energy efficient. [12, 13] More importantly, at the current rate of renewal (1%), 85–95% of the buildings that will be standing in 2050 are already built. [9, 12, 13] Increasing the rate of renovation of the existing building stock to NZE standard should therefore be strongly encouraged in order to reach “climate neutrality”. [12] Recently, the European Commission also proposed to triple the building renewal rate to 3% coupled with an even more aggressive renovation strategy to kick-start the EU economy after Covid-19. [14]
\nAdapting existing buildings to NZE are much more complex tasks than to build a NZE-building from scratch. It requires a considerable knowledge-base of old building techniques, old installations, and the consequences that may arise when NZE technologies are retrofitted to these older structures. In addition, 25% of the existing buildings are historic and will require respect for aesthetics, conservations principles and architectural craftsmanship. [15] In fact, the craftsmanship in many older buildings, although non-historic, deserve the same respect. However, the guiding principle of EPBD: “Energy efficiency first”, clearly states that the energy aspect will be given a high weight in a decision conflict. [14] Even though the EPBD states that indoor environments should be healthy or that cultural heritage should be safeguarded and preserved, it is obvious that these incentives will be pushed towards the minimum legal requirements when they are in conflict with the efforts to achieve energy efficiency. [12]
\nIn the decision conflict between energy efficiency in buildings and adequate ventilation, EPBD has put an increasing pressure on governmental agencies in the member states to lower the standards for ventilation and air quality in existing building codes and ventilation regulations (see discussion in Section 2.3). [12] From a ventilation perspective, the standards for air quality should rather become more stringent when the buildings become tighter. There is a balance between the existing ventilation regulations in a country and the air leakages in its building stock because these air leakages contribute to the indoor ventilation, albeit uncontrollably. Legislative regulations on the performance of ventilation systems are also important counter balances to the quest for energy efficiency in buildings. The pressing question is
Another effect, of the coming EPBD renovation wave, is probably that the number of buildings with natural ventilation systems will decrease. [8] Many of the older buildings have some kind of natural ventilation system, whereas most new buildings have mechanical ventilation systems. Because heat recovery is such an important ingredient in NZE buildings, mechanical ventilation systems will be chosen more frequently in spite of the fact that some of the energy recovered will be offset by the energy used by the fans. In a milder climate, a balanced mechanical ventilation system with heat recovery will probably save very little energy and would be costly from a life cycle perspective. [16] Fully functional older buildings with natural ventilation systems will perhaps be retrofitted with mechanical ventilation systems and lose some of their aesthetical or cultural heritage values. On the other side of the spectrum, if such a building cannot satisfy the building code regulations, it may be declared unfit for use and demolished. [17] It would naively appear that natural ventilation, where natural driving forces for air flows are used to ventilate the building, is a more sustainable solution than mechanical ventilation, where electrical energy is used to power fans that generate air flows with high pressures. While even the older natural ventilation systems have many advantages regarding occupant satisfaction, they have some difficulties to compete with the mechanical systems when it comes to predictability, controllability, and heat recovery. [16, 18] Nevertheless, natural ventilation systems are considered the more sustainable options in many research initiatives. [19, 20, 21, 22]
\nFrom this perspective, a revival of the use of natural ventilation systems, rather than the projected decline outlined above, would be desired. There are a number of new promising innovations and old, forgotten, know-how is rediscovered, e.g. wind towers, evaporative cooling, solar chimneys and box windows to name a few. [23] The thermal performances of many ancient buildings, with natural ventilation systems, are far superior to many modern buildings, with mechanical ventilation systems. The list could probably be made very long, but some selected examples are: the “baadgir” in the Dolatabaad garden in Yazd, Iran, that uses several of the mentioned techniques [24]; the Villas at Costozza, Italy, use cool air from nearby caves; the Palazzo Pitti in Florence, Italy, use the cooler air from the Boboli gardens and further cool it underground; the cloister Palazzo Marchese in Palermo, Italy, cool the air underground and augment the effect using underground rivers. [23] Natural ventilation systems thus display many good properties, but their drawbacks will prevent them from fulfilling all ventilation needs. The future of sustainable ventilation will probably be centered on optimal combinations of natural and mechanical ventilation techniques instead, i.e. hybrid ventilation systems.
\nWhile there are many good modern examples of buildings with natural and hybrid ventilation systems, [21] there are at least three important hurdles to cross. One hurdle is that the local building codes and the ventilation regulations in many instances are written with mechanical ventilation systems in mind, which makes it difficult for natural ventilation systems to comply. The second hurdle is that architects and builders may consider natural ventilation systems as a more risky option than mechanical ventilation systems. Describing the low pressure systems of natural ventilation is inherently more difficult than to describe the high pressure systems of mechanical ventilation. The most diligent Computational Fluid Dynamics (CFD) description of natural ventilation can be completely transformed when occupants are moving or closing doors. To cross this hurdle, better tools for design of larger buildings with natural or hybrid ventilation are needed. [16, 25] The third hurdle is urbanization. Many effects of urbanization: pollution, “heat islands”, and wind obstruction, favor the use of mechanical ventilation systems. [20] Ventilation requires the outdoor air to be healthy, otherwise it must be cleaned at a considerable cost of energy. There are many issues concerning natural ventilation to discuss, but in this chapter, there is only a brief discussion (at the end of Section 2) on the hurdles for natural ventilation systems in the local building codes and ventilation regulations.
\nThe purpose of building ventilation is to provide a healthy and comfortable environment for the occupants. However, the human perception of the conditions that constitute a healthy and comfortable environment depends on many factors. [26, 27] The section starts with a historical perspective on the evolution of different ideas concerning the relationship between ventilation and human health and comfort. This is followed by a theoretical treatment of ventilation that hopefully will give the reader some insights into how a good ventilation system performance may be specified. The section finishes with a critical examination of how legislative regulations of ventilation are specified and some suggestions on how it may be modified to facilitate the use of natural and hybrid ventilation systems.
\nThe notion that “bad air” leads to health problems has a long history. The name for the disease malaria is derived from the Italian
Today this issue may not be altogether black or white. Ventilation and overcrowding have been shown to indirectly influence the spread of diseases. [32] It becomes difficult to conduct good scientific work when political polarization and strong emotions enter the scientific discussion. The historical lessons are not so easy to adopt, as evidenced by more recent heated scientific battles such as global warming or the present Covid-19 battles (see for example [33]).
\nA remaining
The final blow to the
The need for ventilation, and the chemical perspective, slowly crept back via odor-control. The human nose is in fact very sensitive to certain indoor odors. From an evolutionary perspective, it appears to have been advantageous for humans to judge a dwelling by its smell. While the human nose may adapt, people were not comfortable with entering a room with foul smells. This angle provided an incentive for new and fruitful experiments on ventilation requirements. In 1936, Yaglou et al. [40] extended some experiments performed by Lehmberg et al. [41] the year before. They conducted a series of experiments on a group of people to determine their subjective acceptance of the perceived air quality upon entering a test chamber. By varying a number of parameters in the test chamber, Yaglou et al. demonstrated a correlation between the degree of acceptance, the pollution load, and the ventilation air flow into the test chamber. Their results were immediately, but cautiously, adopted by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). [38]
\n\n\nFigure 1\n (inspired by Awbi [35]) shows a compilation of the ventilation requirements historically recommended by ASHRAE, including its predecessors. [38] The news of Flügge’s experiments hit like a bomb when it was presented at the ASHRAE 1911-meeting. [30] All previously accepted ventilation requirements were for all practical purposes under reevaluation until 1936. [37] (The reason why the old high ventilation requirements were maintained for some time (as shown in \nFigure 1\n) had to do with the fact that the previous requirements were included in many state laws. [37]) Yaglou also studied the ventilation requirements in relation to environmental tobacco smoke (ETS). [42] As non-smokers are very sensitive to any remaining smoke odor, he found that very high ventilation rates were required to reach acceptance (from them). Smoking was very common at the time. In 1965, 43% of U.S. adults were regular smokers. [43] As health concerns in U.S.A. regarding smoking and indoor ETS were starting to be officially recognized from 1964 and onwards, the question of ventilation requirements started to become a hot topic again. [43] In the ASHRAE Standard 62 (1981), two ventilation requirements for offices were proposed (shown in red in \nFigure 1\n). The lower one applied to offices without smokers and the higher one to offices where smoking was allowed. This was immediately perceived as a business threat by the tobacco industry. A memorandum circulated at Philip Morris concludes that adopting and enforcing this standard would at least double the maintenance costs for a workplace that allow smoking. [44] In the end, neither the American National Standards Institute (ANSI), nor the Building and Official Code Administrators adopted the 1981 standard as it was considered “controversial”. Therefore, the standard was never enforced. In the next “revised” standard that was accepted by ANSI, i.e. ASHRAE 62 (1989), the lower ventilation requirement was retained and moderate smoking was allowed. [44] The tobacco industry succeeded to block the enforcement of new ASHRAE standards until 2000. [44] The recent decreases in the recommended ventilation requirements, shown in \nFigure 1\n, can probably also be interpreted as energy-saving measures.
\nVentilation requirements recommended by ASHRAE and predecessors. From 1936 and forward (grey) the required flow per person in a standard office is shown. The earlier values (blue) are per room. The red shows the unadopted ASHRAE 62 (1981).
Note that the lower limit proposed in ASHRAE Standard 62 (1981) (red in \nFigure 1\n) essentially is a revocation to the lowest ventilation requirements proposed in 1836. The guidelines for ventilation requirements are in fact influenced by a number societal parameters. By this time a fair amount of the newer buildings were mechanically ventilated. In Sweden, mechanical ventilation was primarily used in industrial buildings before 1947, but the invention of the less noisy radial fans opened the market for ventilating other buildings. [30] When the energy crisis hit in 1973, the energy used for ventilating buildings suddenly became a liability. The lowered ventilation requirements in the standard of 1981 can therefore be understood in terms of the corresponding decrease in the energy use for the fans in mechanical ventilation and for heating (or cooling) the air supplied. The air supplied into dwellings was further reduced by efforts to reduce air leakages through the building envelope, particularly in the Nordic countries. After a while, reports of occupant discomfort started pouring in. It appeared that up to 30% of the newly built office buildings had an unusually high amount of complaints. In some cases, causal relations to ill-health could be found: e.g. in the use of new materials, moisture damage, or improperly performed building techniques. [39, 45] A large group of diffuse symptoms such as headache, fatigue, lack of concentration and irritation of the skin and mucous membranes remained unexplained. In 1984 the WHO Regional Office for Europe collectively referred to these symptoms as a new medical diagnosis: Sick Building Syndrome (SBS). [46] The onset of constructing tighter building envelopes seemed to be a likely cause. This sparked a renewed research interest in finding the optimal ventilation requirements.
\nFanger and coworkers repeated the Yaglou experiments, but with a much larger sample size in the 1980s. [47] In addition, Fanger attempted to quantify the perceived emissions from the human body and suggested a new subjective, relative unit:
where PD is the percent dissatisfied “judges”,
Fanger’s correlation between the required ventilation rate per person (or
No single factor causing SBS has yet found any consensus. Sometime after its last official document on SBS in 1995, WHO discontinued the use of SBS as a medical diagnose. A contemporary search on the homepage of WHO yields zero hits. However, that a correlation seem to exist between SBS-related issues and some ventilation parameters receives some consensus in the multidisciplinary field concerned with healthy buildings. In 2001 [50], Jan Sundell managed to convene several European principal researchers in the field to search for consensus on the connection between ventilation and health. There are few well-designed studies that adequately account for all the multiple factors that are encountered when assessing indoor environments. Out of the selected 105 scientific papers in peer-reviewed journals only 30 were deemed conclusive for the question at hand. The consensus statement include the conclusions that there is:
\n“
A similar exercise, with a larger geographical spread of the researchers, was initiated by Jan Sundell and Hal Levin in 2010. Many conclusions were similar, but it should be noted that the panel members were divided as to whether the association between ventilation and health outcomes (excluding SBS) was strong or simply suggestive. [51] Both studies conclude that air change rates (see Section 2.2) below 0.5 h−1 leads to increased infestations of house dust mites in the Nordic countries. The latter was deemed important, since there is a plausible link between exposures to the feces of house dust mites and the prevalence of asthma and allergic rhinitis. [52]
\nThis concludes the selective short history of ventilation. The idea that ventilation promotes health by removing harmful substances has been a lingering and recurring theme. The effects of indoor exposure to harmful substances are typically studied as dose–response assessments. [39] The relevant exposure dose is the
Nevertheless, there is a case for using ventilation as a precautionary measure to prevent adverse health effects caused by the indoor environment. There has been a significant increase in the number of chemicals never before encountered in the indoor environment, particularly in the last fifty years. [43] Today, literally thousands of chemicals are present in the indoor air (see for example [53]). Since most studies of dose–response assessments focus on one single substance at the time, the effects of mixtures of substances are largely unknown. [54] In addition, a majority of these new indoor chemicals have not been studied for health effects. When a harmful substance is forbidden, it is often substituted for new substances with (as yet) unknown health effects. In light of these
Before critically examining the existing guidelines for ventilation requirements a few theoretical explanations of the salient points are needed. Consider first the One-zone model as shown in \nFigure 3a\n. The flows of air supply to, and air exhaust from, the zone are equal. An air pollutant is emitted at a constant rate into the zone. The assumption for now is that the zone is fully mixed, i.e. the concentration of air pollutant is exactly the same everywhere in the zone. The validity of this assumption, and other assumptions, will be discussed below.
\nAssuming that the initial concentration of air pollutant is zero and no air pollutant enters via the air supply (\n
Simple zone models. (a) One-zone model. (b) Two-zone model.
where
where \n
For the case of a hermetically closed zone, i.e. when \n
\nEq. (4) shows that the air pollutant concentration will increase linearly with time in a hermetically closed zone. Note that the volume of the zone (
Another illustrative one-zone case is obtained by allowing an initial concentration \n
where the hourly air change rate (ACH) for a completely mixed zone is defined as \n
The simple One-zone model of ventilation presented above has two main problems: (i) Emission sources are not evenly distributed in the zone volume. They are local and confined to surfaces, objects or humans. (ii) Complete mixing of a zone is difficult to achieve. Both points can be illustrated with a simple Two-zone model, originally proposed by Etheridge and Sandberg [55], as shown in \nFigure 3b\n. In the Two-zone model, emission sources are allowed to be slightly more local and the required mixing air flows are made slightly more explicit in terms of the inter-zonal air flows. Inter-zonal air flows are given as \n
The steady state solutions for the concentrations in each zone are then
\nNote that the steady state result for
Increase in the relative concentration in the lower zone
The special case when the fresh air from the supply flow never enters the lower zone and directly exits by the extract is called ventilation short-circuiting. In this case,
Retrofit of cooling beam (with attached light fixture) leading to a high degree of ventilation short-circuiting. Air supply device to the left and air exhaust to the right.
In a more general theoretical approach, allowing for non-homogeneous concentration distributions in the zone, all possible paths of a very small package of air from the inlet to the outlet are considered (see Etheridge and Sandberg [55] for a complete treatment). A long and tortuous path for the package or air will result in a long residence time for the package within the zone, whereas a short path corresponding to a ventilation short-circuit would lead to a very short residence time. At the outlet, packages of air escaping the zone in every instance of time will represent many different residence times. At steady state, in a similar manner as in Eqs. (3) and (7), the distribution of residence times will converge to a constant average residence time \n
The simple process of plug (or piston) flow illustrates the age concept well. It is the most efficient method to ventilate and is used in so called “clean rooms”. The idea is to achieve a laminar flow by supplying slightly colder air from the roof and letting it fall vertically to the floor where it is extracted. Ideally, all air packages entering from the whole area of the roof fall at the same speed and reach the floor simultaneously. This means that all air packages have exactly the same residence time in the zone. It is easy to show that the residence time only depends on Q and V, regardless of the shape of the zone, and is given by
\nwhere the nominal time constant of the ventilation system \n
This result can be generalized since the residence time and the local mean age of air of an arbitrary path of the air packages are related by
\nwhere
Note that the averages of the local mean age of air over all paths or over the zone space give the same results.
\nSince no other ventilation process can be more efficient than plug flow, the average local mean age of air for other ventilation processes cannot be lower than that for plug flow. It therefore seems natural to assign a 100% air change efficiency to plug flow and consequently define the general air change efficiency in a zone as
\nFor the case of complete mixing, the paths of all air packages should reach any volume element within the zone with the same probability. Complete mixing may also be viewed as a process where all volume elements in the zone are instantaneously considered identical at all times. All volume elements have identical characteristics, such as the same concentrations of molecules and the same local mean age of air. Air entering through the inlet will therefore, in theory, simultaneously enter all volume elements. Within each volume element, air packages with increasing ages will continue to accumulate until the steady state is reached and the local mean age of air stays constant. In analogy, the mass balance given in Eq. (2), describes how a contaminant is accumulated in each volume element until a steady state concentration is reached. Since the mixing conditions are the same, the accumulation of ages and of concentration, respectively, follow the same time evolution. Solving for
where Eqs.(3) and (8) were used. In the field of statistics, \n
Now the average local mean age of air for a volume element (and for the whole zone) can be evaluated to
The average air change efficiency of a mixing ventilation system is at best 50% as compared to plug flow. In analogy with the nominal air change rate
An effective local air exchange rate of the zone can be defined as
\nwhere
The aim of the above theoretical exercises for two mixing models is mainly to introduce the concept of local mean age of air and its properties. The fact that it is a local property that can be determined experimentally by tracer gas techniques [55] means that interior points of any ventilated zone can be characterized by it. In particular, in means that the distribution of fresh air to the occupied volumes of a zone can be tested.
\nThe insights from this subsection can now be summarized. It has been shown that requiring a specific ventilation rate is not a guarantee for good performance of a ventilation system. The supplied air must also be distributed efficiently and this capacity should be evaluated. Possibilities for ventilation short-circuiting should be eliminated. Finally, a large zone volume can be a strategy to prevent build-up of concentrations from transient sources of air pollutants.
\nMost of the contemporary legislative guidelines for ventilation requirements are based on criteria for perceived air quality, as concluded in Section 2.1. For more than 20 years, the basic guidelines in the U.S.A. (and also in Europe) have been based on the recommendation that no more than 20% of the occupants should be dissatisfied with the perceived indoor air quality. [56] Nevertheless, the adaptation of the human nose adds a dimension and there is a difference between the philosophy in Europe and the U.S.A on how perceived air quality should be measured. The guidelines in Europe (following Fanger et al. [49]) are based on the perceived air quality as judged by an un-adapted visitor to the room, whereas the guidelines in the U.S.A. (ASHRAE) are based on the perceived air quality by a judge that has been allowed to adapt to the room air for 15 minutes. [5] The American guidelines therefore recommend lower ventilation rates than the European guidelines at the same level of dissatisfied judges. [5]
\nComparison of the work place ventilation rates required per sedentary person in \nTable 1\n (i.e. 7 L⋅s−1/person) with the ventilation rates given in \nFigure 2\n, show that The Swedish Work Environment Authority appears to follow the European philosophy in the old, [57] as well as in the new, guidelines. [58] In line with the findings of Fanger et al. [49], many guidelines assume that all other indoor emissions of pollutants (e.g. from building materials and human activities, such as smoking, cleaning, and cooking) should be added to the emissions of bio-effluents from the occupants. All these emissions are lumped into a floor-area-based emission rate. The total required ventilation rate is then the sum of two contributions as shown in Eq. (18).
\n\n | FoHMFS 2014:18 | \nAFS 2009:2 | \nAFS 2020:1 | \n
---|---|---|---|
Air supply/person | \n≥ 4 L⋅s−1\n ≥ 7 L⋅s−1 (schools) | \n≥ 7 L⋅s−1\n | \n≥ 7 L⋅s−1\n | \n
Air supply/m2\n | \n≥ 0.35 L⋅s−1\n + 0.35 L⋅s−1 (schools) | \n+ 0.35 L⋅s−1\n | \n+ 0.35 L⋅s−1\n | \n
Air change rate | \n≥ 0.5 h−1\n | \n\n | \n |
CO2 concentration | \nNormally < 1000 ppm | \nNormally < 1000 ppm | \nNormally < 1000 ppm | \n
Air change efficiency | \n\n | ≥ 40 % | \n≥ 40 % | \n
Values are extracted from the official Swedish guidelines for ventilation requirements and air quality. FoHMFS are the ventilation guidelines issued by The Public Health Agency of Sweden. [59] AFS are the old [57] and the new guidelines (valid from 1 January, 2021) [58] issued by The Swedish Work Environment Authority. The +-sign signifies that the required air supply per m2 must be added to the air supply per person.
where
There are mutual dependencies between the ventilation rates presently required by government agencies and the properties of the existing building stock. [8] If the building stock can be shown to cause health problems that can be traced to inadequate ventilation, then the government agencies will try to improve the situation by requiring higher ventilation rates. On the other hand, if air leakages through the building envelopes provide ample contributions to the ventilation of the building stock, in addition to the controllable ventilation rates, then the required ventilation rates need not be as stringent because the total ventilation rate will be sufficient anyway. The point here is to highlight plausible dependencies on average, even though there may be a wide spectrum of properties in the building stock. Thus, changes in the properties of the building stock will lead to changes in the ventilation requirements recommended by government agencies.
\nThe EPBD objective to transform the building stock to NZE- buildings with tighter building envelopes should, with the above logic, lead to a more stringent requirements for ventilation rates. [8] However, as mentioned in the Introduction, the “energy efficiency first” principle in EPBD [12] pushes other incentives towards their minimum legal limits when they are in conflict with the efforts to improve the energy performance of buildings. Maintaining a good indoor air quality by ventilation is such an incentive, and therefore ventilation rates will be pushed towards their minimum legal limits. As a consequence, in the coming EPBD transformation of the building stock, the minimum legally required ventilation rates play a critical role as counterbalances to prevent a decline in indoor air quality. The required ventilation rates will probably need to be increased to maintain the present levels of indoor air quality in the building stock.
\nIt is therefore doubly worrying that the ventilation requirements in the standards on the European level recently have been lowered as shown in \nTable 2\n. For example, in a standard 10 m2 office for one person, the required ventilation rate (
Category | \nCEN EN 15251:2006 | \nCEN EN 16278.1:2019 | \n||
---|---|---|---|---|
\n | Expected Percent Dissatisfied [%] | \nAirflow per person [L⋅s−1/person] | \nExpected Percent Dissatisfied | \nAirflow per person L⋅s−1/person | \n
I | \n10 | \n10 | \n10 | \n10 | \n
II | \n\n | \n\n | \n20 | \n7 | \n
III | \n30 | \n\n | \n | \n\n | \n
IV | \n< 30 | \n< 4 | \n40 | \n2.5 | \n
\n | \n | \n\n | \n\n | \n\n | \n
I | \n10 | \n0.5 | \n10 | \n0.5 | \n
II | \n\n | \n\n | \n20 | \n0.35 | \n
III | \n30 | \n\n | \n | \n\n | \n
IV | \n< 30 | \n<0.2 | \n40 | \n0.15 | \n
Values are extracted from the official European guidelines for ventilation requirements and air quality. CEN EN 15251:2006 are the old guidelines from 2006 [61] and CEN EN 16278.1:2019 are the new guidelines (valid from 8 May, 2019) [62] issued by European Committee for Standardization. The bold figures are the recommended values.
As concluded in the previous section, simply specifying required ventilation rates cannot guarantee an adequately low exposure to indoor pollutants. [63] Legislation also need to address the air distribution. In the European Standard [62] and in the ASHRAE Standard [56], the given ventilation rates assume complete mixing in the room. Thus, they presuppose a mixing mechanical ventilation system. Other ventilation systems are accommodated by dividing with a correction factor. ASHRAE [26] proposes a correction factor called the air change effectiveness defined as \n
Legal ventilation requirements also address air distribution, but rephrased into requirements that newly installed ventilation should be shown to function as designed, that the ventilation rate should be sufficient, or by requiring a specified air change efficiency as in \nTable 1\n. I have the impression that air change efficiency is seldom tested in the field. The control of newly installed ventilation systems mostly consist of ensuring that the design ventilation flows are obtained, otherwise the ventilation system components are assumed to function with the same efficiency as in laboratory tests. However, there are a number of factors that may lower the ventilation system efficiency in a real building. Some of these factors were mentioned in connection with ventilation short-circuiting in previous section (see also \nFigure 5\n); ventilation systems may be very complex and design choices may have unforeseeable consequences; a ventilation designer may enter late in the planning process and may be forced to make suboptimal choices, e.g. inlets vents may end up too close to outlet vents; or occupants may tamper with the intended function of the ventilation components to minimize perceived draft. It may be prudent to verify that air is distributed with the intended efficiency in new and old ventilation installations.
\nThe above standards clearly favor mechanical ventilation systems where ventilation rate is an easy parameter to measure. It is not that easy to measure ventilation rate for natural ventilation systems. It is more difficult to demonstrate that natural ventilation systems are in compliance with the legal requirements than it is for mechanical ventilation systems. In addition, rooms with natural ventilation systems typically have higher room heights, than rooms with mechanical ventilation systems. Naturally ventilated rooms require larger room volumes to prevent concentration build-up of transient pollution sources to offset the natural fluctuations in the ventilation rate. Historically, the introduction of mechanical ventilation systems allowed building entrepreneurs to squeeze in three floors in the same volume where previously there would be two floors in older naturally ventilated buildings. [30] Using this observation, rooms with natural ventilation are roughly estimated to be 50% larger than rooms with mechanical ventilation. If there is a legally required air change rate or a required ventilation rate per floor area (as exemplified in \nTable 1\n), the prescribed ventilation rates will also be 50% larger for naturally ventilated rooms, as compared to a mechanically ventilated room. This increase is probably unnecessary and it arises because the legal requirements does not consider the different ventilation strategies used in natural ventilation systems. It would be desirable that all ventilation strategies should be treated equally in the eyes of the law, with the same objective requirements for adequate indoor air quality.
\nIf the objective of the legal regulations is to ensure that 80% of the occupants find the perceived air quality to be acceptable, as it appears to be, then it would be more fitting to simply require that less than 20% of the occupants are feeling uncomfortable. This could be tested in a questionnaire. Note that this approach is suggested in some environmental certification systems for buildings, e.g. the level GULD in Miljöbyggnad 3.1. [64] The problem with such an approach is that other factors, than the actual air quality, may affect the outcome. [27] Alternatively, the regulations should apply specifically to the occupied zone of a room. This would lead to more balanced demands on natural ventilation systems as compared to the demands on mechanical ventilation systems. To specify concentration limits in the occupied zone would be preferable because of the direct link to exposure, but the challenge is that the human nose is very sensitive so some substances and there may be difficulties to measure such low concentrations at the present time. An indirect approach would be to specify some local ventilation parameter, such as the local mean age of air, in the occupied zone.
\nThe fact that ventilation requirements primarily targets occupant comfort, does not mean that ventilation is irrelevant for the health of the occupants. Adverse health effects caused by exposure to indoor air pollution have been estimated to cause that approximately two million disability-adjusted lifetime years (DALYs) are lost annually, based on the population in 26 European countries. In economic terms this corresponds to a societal cost exceeding €200 billion. [60] It is very likely that the combined effect of the lower ventilation requirements and tighter building envelopes due to EPBD will increase this societal cost considerably. The prospect of turning buildings into unhealthy containers for the occupants certainly tempers my enthusiasm for the projected EPBD energy savings.
\nMost legislations concerning ventilation are based on perceived air quality, but ventilation is also important for the health of the occupants. Perceived air quality can be viewed as a pragmatic tool to achieve an adequate ventilation for precautionary health measures. From a perceived air quality and health perspective, the ventilation rate and an efficient air distribution are both important for achieving a healthy and comfortable indoor environment. Yet, most legislative requirements focus on the ventilation rate. This is not enough, and it is recommended that legislation also address the air distribution with equal zeal. In particular, verifying the efficient distribution of fresh air to the occupied zones or the concentrations of pollutants in the occupied zones.
\nBecause there are clear links between ventilation and health, [3, 4, 50, 51, 60], it is extremely worrying that the “energy efficiency first” principle advocated in EPBD has led to decreasing ventilation requirements in the EU legislations, at the same time as the objective is to aggressively tighten the envelopes of the building stock. A second consequence of EPBD is probably that many naturally ventilated buildings will be retrofitted with mechanical ventilation systems. It is not clear that this would be the more sustainable solution in the long run.
\nEvery citizen’s right to a healthy indoor environment has been suggested to be a basic Human Right by WHO. [65] Adequate ventilation is at the heart of the solutions to reach this commendable goal. The mantra “build tight – ventilate right” [66] is a good one, but do not forget the second part!
\nThe author wishes to acknowledge helpful discussions with Jan Sundell. He will be missed.
\nThe author also works as a ventilation consultant.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:8616},{group:"region",caption:"Middle and South America",value:2,count:7693},{group:"region",caption:"Africa",value:3,count:3005},{group:"region",caption:"Asia",value:4,count:15646},{group:"region",caption:"Australia and Oceania",value:5,count:1284},{group:"region",caption:"Europe",value:6,count:22554}],offset:12,limit:12,total:134465},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:14},{group:"topic",caption:"Materials Science",value:14,count:23},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:105},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:661},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4553},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1227",title:"Particle Physics",slug:"particle-physics",parent:{id:"228",title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:46,numberOfWosCitations:44,numberOfCrossrefCitations:22,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1227",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8628",title:"Synchrotron Radiation",subtitle:"Useful and Interesting Applications",isOpenForSubmission:!1,hash:"5bbb65395b91d370fc0f3652e9fbc359",slug:"synchrotron-radiation-useful-and-interesting-applications",bookSignature:"Daisy Joseph",coverURL:"https://cdn.intechopen.com/books/images_new/8628.jpg",editedByType:"Edited by",editors:[{id:"187281",title:"Dr.",name:"Daisy",middleName:null,surname:"Joseph",slug:"daisy-joseph",fullName:"Daisy Joseph"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5236",title:"High Energy and Short Pulse Lasers",subtitle:null,isOpenForSubmission:!1,hash:"481d4221e58d2c90fe398be93d898f43",slug:"high-energy-and-short-pulse-lasers",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/5236.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50866",doi:"10.5772/63892",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6082,totalCrossrefCites:10,totalDimensionsCites:34,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"65611",doi:"10.5772/intechopen.83633",title:"Full-Field Transmission X-ray Microspectroscopy (FF-XANES) Applied to Cultural Heritage Materials: The Case of Ancient Ceramics",slug:"full-field-transmission-x-ray-microspectroscopy-ff-xanes-applied-to-cultural-heritage-materials-the-",totalDownloads:1508,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Synchrotrons provide more and more significant analytical techniques to investigate ancient materials from cultural heritages. New ways to visualize the complex structure of these materials are developed on the basis of elemental, density, and refraction contrasts. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Among them the full-field X-ray absorption near-edge structure (XANES) imaging technique using hard X-rays is particularly efficient. It allows investigating a significant volume of material with a very good spatial resolution, which is invaluable for ancient material because of their heterogeneity and complexity. After presenting the technique and its variants, we will show its ability to study cultural heritage materials through a few examples.",book:{id:"8628",slug:"synchrotron-radiation-useful-and-interesting-applications",title:"Synchrotron Radiation",fullTitle:"Synchrotron Radiation - Useful and Interesting Applications"},signatures:"Philippe Sciau and Tian Wang",authors:[{id:"98593",title:"Dr.",name:"Philippe",middleName:null,surname:"Sciau",slug:"philippe-sciau",fullName:"Philippe Sciau"},{id:"285658",title:"Dr.",name:"Tian",middleName:null,surname:"Wang",slug:"tian-wang",fullName:"Tian Wang"}]},{id:"51364",doi:"10.5772/63972",title:"Multiterawatt Hybrid (Solid/Gas) Femtosecond Systems in the Visible",slug:"multiterawatt-hybrid-solid-gas-femtosecond-systems-in-the-visible",totalDownloads:1785,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"A novel hybrid (solid/gas) approach to the development of femtosecond high‐intensity laser systems operating in the visible is presented in this chapter. Behind this approach is a combination of a solid‐state front end relying on widespread and highly developed techniques for femtosecond pulse generation in the near infrared with a photochemically driven boosting amplifier operating in the visible spectral range. Historical background of developing photochemically pumped gas lasers on broad bandwidth electronic transitions in molecules and physical principles of their operation are briefly summarized as well. The architecture and the design issues of the hybrid femtosecond systems relying on the amplification of the second harmonic of Ti:sapphire front ends in the photodissociation XeF(C‐A) power‐boosting amplifiers driven by the VUV radiation from electron‐beam‐to‐VUV‐flash converters are described, as well as breakthrough results of proof‐of‐principle experiments demonstrating a high potential of the hybrid approach. Wavelength scaling of laser‐matter interaction is shortly discussed to demonstrate advantages of shorter driver wavelengths for some applications with main emphasis placed on recombination‐pumped soft X‐ray lasers.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Leonid D. Mikheev and Valery F. Losev",authors:[{id:"183138",title:"Dr.",name:"Leonid",middleName:"Dmitrievich",surname:"Mikheev",slug:"leonid-mikheev",fullName:"Leonid Mikheev"},{id:"183140",title:"Prof.",name:"Valery",middleName:null,surname:"Losev",slug:"valery-losev",fullName:"Valery Losev"}]},{id:"65550",doi:"10.5772/intechopen.82202",title:"Fundamental of Synchrotron Radiations",slug:"fundamental-of-synchrotron-radiations",totalDownloads:1534,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Synchrotron radiations are emerging as a real-time probing tool for the wide range of applied sciences. Synchrotron radiations have unique properties because of their high brilliance, collimations, broad energy spectrum, and coherence power that break the limits to characterize the material properties than previous laboratory-based tabletop sources. The third-generation synchrotron light sources are capable of producing 1012 times higher brilliance than laboratory-based sources using insertion devices. In this chapter, the fundamental aspects of synchrotron radiations and their generation process have been discussed. The effect of insertion devices and the double-crystal monochromator (DCM) toward the X-ray beam optics has been also discussed.",book:{id:"8628",slug:"synchrotron-radiation-useful-and-interesting-applications",title:"Synchrotron Radiation",fullTitle:"Synchrotron Radiation - Useful and Interesting Applications"},signatures:"Amardeep Bharti and Navdeep Goyal",authors:[{id:"267703",title:"Dr.",name:"Amardeep",middleName:null,surname:"Bharti",slug:"amardeep-bharti",fullName:"Amardeep Bharti"},{id:"280741",title:"Prof.",name:"Navdeep",middleName:null,surname:"Goyal",slug:"navdeep-goyal",fullName:"Navdeep Goyal"}]},{id:"51630",doi:"10.5772/64238",title:"Excimer Laser and Femtosecond Laser in Ophthalmology",slug:"excimer-laser-and-femtosecond-laser-in-ophthalmology",totalDownloads:2347,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Laser technology is used in many basic and clinical disciplines and specialties, and it has played an important role in promoting the development of ophthalmology, especially corneal refractive surgery. We provide an overview of the evolution of laser technology for use in refractive and other ophthalmologic surgeries, mainly focusing on two types of lasers and their applications. First, we discuss the characteristics of the excimer laser and its application in corneal refractive surgery treating ametropia (e.g., photorefractive keratectomy (PRK), laser epithelial keratomileusis (LASEK), epipolis laser in situ keratomileusis (Epi-LASIK), and transepithelial photorefractive keratectomy (Trans-PRK) and presbyopia surgery). Second, we discuss the characteristics of the femtosecond laser and its application in corneal refractive surgery (e.g., femtosecond laser in situ keratomileusis (FS-LASIK), insertion of intracorneal ring segments, small-incision lenticule extraction (SMILE), and femtosecond lenticule extraction (FLEx)) and other ophthalmologic surgeries (e.g., penetrating keratoplasty (PKP), deep anterior lamellar keratoplasty, Descemet’s stripping endothelial keratoplasty (DSEK), and cataract surgery). The patients studied received many benefits from the excimer laser and femtosecond laser technologies and were satisfied with their clinical outcomes.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Liang Hu, Yiqing Huang and Meng Lin",authors:[{id:"183882",title:"Prof.",name:"Liang",middleName:null,surname:"Hu",slug:"liang-hu",fullName:"Liang Hu"},{id:"188684",title:"Dr.",name:"Yiqing",middleName:null,surname:"Huang",slug:"yiqing-huang",fullName:"Yiqing Huang"},{id:"188686",title:"Dr.",name:"Meng",middleName:null,surname:"Lin",slug:"meng-lin",fullName:"Meng Lin"}]}],mostDownloadedChaptersLast30Days:[{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6073,totalCrossrefCites:10,totalDimensionsCites:34,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"65611",title:"Full-Field Transmission X-ray Microspectroscopy (FF-XANES) Applied to Cultural Heritage Materials: The Case of Ancient Ceramics",slug:"full-field-transmission-x-ray-microspectroscopy-ff-xanes-applied-to-cultural-heritage-materials-the-",totalDownloads:1495,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Synchrotrons provide more and more significant analytical techniques to investigate ancient materials from cultural heritages. New ways to visualize the complex structure of these materials are developed on the basis of elemental, density, and refraction contrasts. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Among them the full-field X-ray absorption near-edge structure (XANES) imaging technique using hard X-rays is particularly efficient. It allows investigating a significant volume of material with a very good spatial resolution, which is invaluable for ancient material because of their heterogeneity and complexity. After presenting the technique and its variants, we will show its ability to study cultural heritage materials through a few examples.",book:{id:"8628",slug:"synchrotron-radiation-useful-and-interesting-applications",title:"Synchrotron Radiation",fullTitle:"Synchrotron Radiation - Useful and Interesting Applications"},signatures:"Philippe Sciau and Tian Wang",authors:[{id:"98593",title:"Dr.",name:"Philippe",middleName:null,surname:"Sciau",slug:"philippe-sciau",fullName:"Philippe Sciau"},{id:"285658",title:"Dr.",name:"Tian",middleName:null,surname:"Wang",slug:"tian-wang",fullName:"Tian Wang"}]},{id:"65550",title:"Fundamental of Synchrotron Radiations",slug:"fundamental-of-synchrotron-radiations",totalDownloads:1531,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Synchrotron radiations are emerging as a real-time probing tool for the wide range of applied sciences. Synchrotron radiations have unique properties because of their high brilliance, collimations, broad energy spectrum, and coherence power that break the limits to characterize the material properties than previous laboratory-based tabletop sources. The third-generation synchrotron light sources are capable of producing 1012 times higher brilliance than laboratory-based sources using insertion devices. In this chapter, the fundamental aspects of synchrotron radiations and their generation process have been discussed. The effect of insertion devices and the double-crystal monochromator (DCM) toward the X-ray beam optics has been also discussed.",book:{id:"8628",slug:"synchrotron-radiation-useful-and-interesting-applications",title:"Synchrotron Radiation",fullTitle:"Synchrotron Radiation - Useful and Interesting Applications"},signatures:"Amardeep Bharti and Navdeep Goyal",authors:[{id:"267703",title:"Dr.",name:"Amardeep",middleName:null,surname:"Bharti",slug:"amardeep-bharti",fullName:"Amardeep Bharti"},{id:"280741",title:"Prof.",name:"Navdeep",middleName:null,surname:"Goyal",slug:"navdeep-goyal",fullName:"Navdeep Goyal"}]},{id:"51599",title:"Undulators for Short Pulse X-Ray Self-Amplified Spontaneous Emission-Free Electron Lasers",slug:"undulators-for-short-pulse-x-ray-self-amplified-spontaneous-emission-free-electron-lasers",totalDownloads:1596,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"We review the synchrotron type radiation sources with focus on undulator and free-electron laser (FEL) schemes, aimed on working in X-ray range and ultra-short time interval. Main FEL schemes, useful for generation of high frequency radiation, extending to X-rays, are presented. High harmonic generation is explored. The advantages and disadvantages of single pass and of multipass designs are discussed. The viable ways to reduce the duration of the pulse, with the goal to generate femtosecond pulses, are indicated. Future developments of X-ray FELs (X-FELs) and the ways to improve the quality of the FEL radiation in this context are discussed.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"K. Zhukovsky",authors:[{id:"183581",title:"Dr.",name:"K.",middleName:null,surname:"Zhukovsky",slug:"k.-zhukovsky",fullName:"K. Zhukovsky"}]},{id:"50815",title:"Phase Manipulation of Ultrashort Soft X-Ray Pulses by Reflective Gratings",slug:"phase-manipulation-of-ultrashort-soft-x-ray-pulses-by-reflective-gratings",totalDownloads:1560,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, we discuss the use of reflective diffraction gratings to manipulate the phase of ultrashort pulses in the extreme ultraviolet (XUV) and soft X-ray spectral regions. Gratings may be used to condition the spectral phase of ultrashort pulses, e.g., to compensate for the pulse chirp and compress the pulse, similarly to what is routinely realized for visible and infrared pulses. The chirped pulse amplification technique has been already proposed for soft X-ray free-electron laser radiation; however, it requires the use of a compressor to compensate for the pulse chirp and get closer to the Fourier limit. There are fundamental differences when operating the gratings at wavelengths shorter than ≈40 nm on a broad band: (a) the gratings are operated at grazing incidence; therefore, the optical design has to be consequently tailored to this peculiar geometry; (b) the grating efficiency is definitely lower; therefore, the number of diffractions has to be limited to two. We discuss the different configurations that can be applied to the realization of a grating stretcher/compressor.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Fabio Frassetto, Paolo Miotti and Luca Poletto",authors:[{id:"4861",title:"Dr.",name:"Luca",middleName:null,surname:"Poletto",slug:"luca-poletto",fullName:"Luca Poletto"},{id:"186618",title:"Dr.",name:"Fabio",middleName:null,surname:"Frassetto",slug:"fabio-frassetto",fullName:"Fabio Frassetto"},{id:"186619",title:"MSc.",name:"Paolo",middleName:null,surname:"Miotti",slug:"paolo-miotti",fullName:"Paolo Miotti"}]}],onlineFirstChaptersFilter:{topicId:"1227",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:13,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:114,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:7,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"June 20th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:1,group:"subseries"},{caption:"Business and Management",value:86,count:7,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ghana Health Service",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:6,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/112579",hash:"",query:{},params:{id:"112579"},fullPath:"/profiles/112579",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()