Summary of pioneering studies on flexible membrane wing.
\r\n\t
",isbn:"978-1-83968-236-0",printIsbn:"978-1-83968-235-3",pdfIsbn:"978-1-83968-237-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"c85e82851e80b40282ff9be99ddf2046",bookSignature:"Dr. Rama Sashank Madhurapantula, Prof. Joseph Orgel P.R.O. and Ph.D. Zvi Loewy",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",keywords:"Collagen, Proteoglycans, Arthritis, Congenital Diseases, Osteogenesis Imperfecta, Blood Vessels, ECM - Tissue Interfaces, Elasticity, Cartilage Implant, Bone Graft, Angiogenesis, Extracellular Triggers",numberOfDownloads:40,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Most recently, dr. Madhurapantula has been involved with developing microscopy techniques to establish macroscopic stress vs. strain relations in body tissues that present mixed tissue compositions, in conjunction with X-ray diffraction scanning techniques to establish tissue composition.",coeditorOneBiosketch:"Prof. Orgel is a multi-disciplinarian by research and professional practice with international name recognition in the collagen and connective tissue fields and in X-ray diffraction.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",biography:"Dr. Madhurapantula holds a Ph.D. in Biology from the Illinois Institute of Technology, Chicago, with a focus on the molecular structure and function of type I collagen. Since obtaining his Ph.D., he has worked on various ECM based research projects on understanding the structural aspects of various fibrous tissue assemblies in the human body, in non-disease and disease conditions. He is an expert in the field of in situ X-ray fiber diffraction. Most recently, he has been involved with developing microscopy techniques to establish macroscopic stress vs. strain relations in body tissues that present mixed tissue compositions, in conjunction with X-ray diffraction scanning techniques to establish tissue composition. These datasets together are being used to develop a high definition model of human heart valves with accurate stress-strain finite element models to improve the characteristics of these tissues in the CAVEMAN full human body simulation, which is further utilized in simulated blast and vehicular accident calculations, and to develop a simulated surgery apparatus to train surgeons.",institutionString:"Illinois Institute of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"212413",title:"Prof.",name:"Joseph",middleName:null,surname:"Orgel P.R.O.",slug:"joseph-orgel-p.r.o.",fullName:"Joseph Orgel P.R.O.",profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:"Illinois Institute of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:{id:"235950",title:"Ph.D.",name:"Zvi",middleName:null,surname:"Loewy",slug:"zvi-loewy",fullName:"Zvi Loewy",profilePictureURL:"https://mts.intechopen.com/storage/users/235950/images/system/235950.png",biography:"Dr. Zvi Loewy, a senior academic leader and an experienced global pharmaceutical – biotechnology executive leverages a diversified background in big-pharma senior management, biotech startup creation and academia. \nDr. Loewy’s international experience has included leading international research teams; championing the commercial penetration of healthcare products in China; and leading open innovation in the Mid-East. \nDr. Loewy received his education at Rensselaer Polytechnic Institute and at the Albert Einstein College of Medicine. Dr. Loewy is on the faculty of the Touro College of Pharmacy and New York Medical College; is on the boards of the New Jersey Bioscience Incubator; and is an Editor of the Journal of Prosthodontics. Dr. Loewy has published broadly and has over 25 issued patents.",institutionString:"New York Medical College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"New York Medical College",institutionURL:null,country:{name:"United States of America"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:[{id:"74538",title:"The Cellular Stress Response Interactome and Extracellular Matrix Cross-Talk during Fibrosis: A Stressed Extra-Matrix Affair",slug:"the-cellular-stress-response-interactome-and-extracellular-matrix-cross-talk-during-fibrosis-a-stres",totalDownloads:30,totalCrossrefCites:0,authors:[null]},{id:"74739",title:"The Evolutionary Origin of Elastin: Is Fibrillin the Lost Ancestor?",slug:"the-evolutionary-origin-of-elastin-is-fibrillin-the-lost-ancestor",totalDownloads:17,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70899",title:"Traditional and New Types of Passive Flow Control Techniques to Pave the Way for High Maneuverability and Low Structural Weight for UAVs and MAVs",doi:"10.5772/intechopen.90552",slug:"traditional-and-new-types-of-passive-flow-control-techniques-to-pave-the-way-for-high-maneuverabilit",body:'\nBoundary layer transition and separation phenomena have been researchable topics for over 100 years, but there are still many open essential issues and practical challenges containing their controls. It is predicted that the fuel cost of a commercial aircraft could be saved to 8% if the transition phenomenon over its wing could be delayed to 50% [1]. These flow phenomena commonly occur at low Reynolds numbers (Re) at which laminar flow is dominant. A laminar boundary layer can separate from the solid surface when the adverse pressure gradients (APGs) play a preponderant role. Transition phenomenon in the separated region is caused by the separated shear layer, and then the turbulent reattachment starts to occur because of energized vorticial structures. The region between separation and reattachment points is called as laminar separation bubble [2, 3] (LSB), which negatively affects the aerodynamic performance. LSBs can form in many aeronautical applications operating in low Re regime of less than 1 × 106 and angle of attack (AoA) of less than stall angle, such as high latitude aircrafts, micro air vehicles (MAVs), multielement airfoil configurations, unmanned aerial vehicles (UAVs), wind turbine, and low-pressure turbine blades.
\nAs stated above, the aerodynamic efficiency can be severely decreased by LSBs by reducing the lift and increasing the drag forces. Besides this, it causes the increment of unsteadiness and noise, especially for wind turbine applications. Regarding a better understanding of LSBs’ topology, they can be categorized as ‘short’ and ‘long’ bubbles. Aerodynamic researchers recommended a few parameters so that LSBs could be classified whether they are ‘short’ or ‘long’ [3, 4, 5]. Assessment of effects of either ‘short’ or ‘long’ bubbles on the pressure distribution can be the best option and intuitive way. If the pressure field is drastically affected by strong downstream and upstream impacts, it is ‘long’. But, if the LSB causes the local and limited impacts on the pressure distribution, it is ‘short’. LSBs have an unsteady separated shear layer because of the small disturbances and these disturbances cause the vorticial structures to grow rapidly. The separation and reattachment points are affected by these structures and they inherently cause the shape and size of the separated region to change. Therefore, the laminar to turbulent transition and the instability procedures significantly affect the unstable characteristics of LSBs and the mean flow topology [6, 7, 8]. Toward this end, a comprehensive understanding of the concerning physical mechanisms of separation and transition procedures is necessary. This may be concluded with beneficial separation prediction tools, which can result in the development of geometrical structures hydrodynamically and aerodynamically. The probability of active and passive flow control techniques, which cause the negative effects of separation and LSBs to suppress (or at least diminish), may also be revealed by means of these understandings.
\nThe objective of this study is to elucidate the traditional passive control techniques for wind turbine applications operating at low Reynolds number regimes. Besides the explanation of traditional low Reynolds number flow control methods such as VGs etc., new concept pre-stall control mechanisms such as roughness material, flexibility and partially flexibility as mentioned in detailed experimental studies will be enormously highlighted.
\nThe aerodynamic performances of airfoils in low Reynolds number flows considerably relate to a major range of engineering applications. The low Reynolds number flows are described that the viscous forces within fluid gain dominant characterization compared with inertial forces. Hereby, boundary layer physics such as laminar boundary layer separation, reattachment, and transition phenomena can frequently occur at low Reynolds number flows, affecting the performance of airfoils with the important changes of lift and drag forces.
\nGiven there was an inflection point in the velocity profile, it was proposed that all boundary layer profiles were unstable according to inviscid stability theory. Prandtl [9] later explained a physical prediction of transition and then Tollmien [10] proved it mathematically that viscous instability waves (often identified as Tollmien-Schlichting (hereinafter TS) waves) could cause a laminar boundary layer to destabilize. But these findings were not accepted by aerodynamic researchers until the study performed by Schubauer and Skramstad [11], since the early experimental investigation for transition prediction had large free-stream turbulence level.
\nNow, the free-stream turbulence level is accepted as low when it is less than 1% (<1%) [12]. In that flow case, a laminar boundary layer becomes linearly unstable when the critical Reynolds number is increased, showing TS waves that have started to grow.
\nThe sketch of the natural transition process is indicated in Figure 1. The flow in the area indicated by number 1 is laminar. In the area denoted by number 2, TS waves start to grow. After that point, the transition to turbulence may not be concluded every time due to the slow growth of TS waves. In aerodynamic literature, the regular transition starts to occur after the nonlinear waves have taken place. It can be said that the transition to turbulence is inevitable after Λ-structures and three-dimensional disturbance defined as nonlinear waves in the area of number 3 and 4. Once those structures form, spots spread in all directions, resulting in the existing turbulent boundary layer as shown in numbers of 5 and 6, respectively.
\nThe sketch after Kurelek [13], Bertolotti [14] and Schlichting and Gersten [15] with regard to top view of simplified flat plate boundary layer transition. (1) Laminar flow, (2) TS waves, (3) three-dimensional waves and Λ-structure formation, (4) vortex breakdown, (5) turbulent spots formation, (6) turbulent flow.
Another type of transition is bypass transition. In this transition phenomenon, 2D instability cases of natural transition shown in Figure 2 are bypassed when the boundary layer on a flat plate under free-stream turbulence intensity is larger than 1%. But, the explanation of bypass transition has still a mystery when free-stream turbulence level is 1%. Therefore, aerodynamic researchers accept as the boundary among natural and bypass transition as free-stream turbulence level is 1%. As mentioned before, spanwise vorticity and 3D breakdown are bypasses in bypass transition and the turbulence spots are directly produced in the boundary layer.
\nThe different rotary wing applications according to variation in chord Reynolds number [18].
Transition to turbulence can exist in the free shear layer when the laminar boundary layer is separated from a solid surface due to sharp, blunt or rounded leading edges. As explaining physically, the boundary layer is able to overcome the effect of adverse pressure gradients at high Reynolds numbers. But, especially at low Reynolds numbers, the laminar boundary layer cannot overcome the adverse pressure gradient due to lack of momentum in the boundary layer and it separates from the surface. This flow separation can cause the transition in the free shear layer. Moreover, after a while, the separated flow may reattach to the surface, resulting in the formation of the laminar separation bubble.
\nThis type of transition phenomenon can generally be observed in turbomachinery flows because flows on the blade rows are subjected to periodically impinging wakes coming from the preceding blade rows [16]. In aerodynamic literature, it is suspicious whether enhanced turbulence in the wake or the free-stream level triggers the transition phenomenon. Thus, this type of transition is occasionally distinguished from bypass transition phenomenon and is referred to as wake-induced transition.
\nAlso known as re-laminarization, the reverse transition is the transition of turbulent to laminar flow. This mode of transition can highly be observed because of high flow acceleration in the regions where favorable pressure gradients play a dominant role. It can be noted that the regions that have favorable pressure gradient generally occur on an airfoil near the leading edge of suction surface and close to the trailing edge of pressure surface. According to the notification carried out by Narasimha and Sreenivasan [17], turbulence dissipation, surface mass transfer, and thermal effects can cause possible reverse transition.
\nRegarding the different rotary wing applications, the variation of maximum lift coefficient (CL, max) with the chord-based Reynolds number range is shown in Figure 2 [18]. The fluid flows over airfoils at especially chord-based Reynolds number of 104 to 105 are more sophisticated due to the dominant character of viscous effects. Despite most regarding studies performed by aerodynamic researchers, low Reynolds number aerodynamics still have researchable potential. This is because of the following: (i) the separated laminar boundary layer because of adverse pressure gradients (APGs) is sensitive; (ii) transition region is too broad, resulting in more unsteady behavior; (iii) short and long separation bubble formations emerge with these APGs and inadequate momentum in flow; and (iv) susceptible role can be played because of surface conditions free-stream turbulence.
\nDue to these types of flow phenomena mentioned above such as laminar boundary layer separation or LSBs, the detection of flow separation is too important. Flow separation can cause the aerodynamic stall leading to undesired dynamic or static loading statements with a decrease in the lift and an increase in drag for airfoils operating at low Reynolds number ranges. Therefore, flow control methods have been developed to mitigate (to even suppress) their detrimental influences in terms of aerodynamic performances. The flow control mechanism can be divided into two categories as passive and active flow control. The essential difference between active and passive flow control techniques is that some sort of energy input is necessary for active flow control to manipulate the flow, while passive flow control methods manipulate the flow by not requiring any exterior energy resources. These two control methods have advantages and disadvantages compared to each other. One drawback of passive flow control technique can be that it cannot be switched on or off whenever users need. But most aerodynamic researchers have recently preferred the passive flow control methods to provide technologically and economically efficient solutions as long as it does not ensure any undesirable situations except for its design conditions, because they are the quickest solution to implement processes and less expensive. In spite of the advantages and disadvantages of these two control techniques, they have been tested and researched by aerodynamic researchers with the aim of alleviating the stall effects and enhancing the performance of the overall airfoil.
\nThese types of flow control methods generally improve the condition of flight vehicles by manipulating the flow characteristics in the boundary layer, because the flow manipulation is an efficient way to control mixing in the separated shear layer. So far, aerodynamic researchers have utilized these techniques experimentally or numerically in their studies. A detailed explanation of these passive flow control techniques has been presented as follows:
\nThe vortex generators (VGs) as depicted in Figure 3 [19] are the most effective and simplest passive flow control devices that are widely preferred and utilized on wind turbine blades by aerodynamic researchers in order to prohibit and suppress flow separation caused by APGs. VG examples are not limited to airfoil [20], and they can also utilize the devices such as bluff bodies [21], noise reduction [22], wind turbines [23], swept wings [24], and heat exchangers [25, 26], just to name a few. VGs, which were first investigated by Taylor [27], are generally small plates having rectangular or triangular shapes. They can be mounted on the surface where desired to flow control at an angle of the incoming flow. They are used to decrease (to even suppress) the boundary layer separation, which is caused by APGs and turbulence effects [28]. The slower moving boundary layer is energized by VGs in conjunction with high momentum fluid in the outer part of boundary layer and in the free stream [29], resulting in reducing the drag force [30] and increasing the lift force [31, 32].
\nA sketch of vortex generator rows [19].
Regarding the optimization of VGs, many aerodynamic researchers have investigated the VG’s parameters to obtain optimal impacts on fluid flow. As shown in Figure 4 [33], it can be said that the important parameters are height (h), cropped edge length (b), vane length (L), type, shape, pattern, long (D) and short (d) gaps among the vanes, size, location, and inflow angle (β). In addition to these important parameters, VG configurations termed as counter rotational and corotational also play critical roles in terms of rotational directions of vortices formed by VG pairs [34].
\n(a) Isometric perspective and (b) planar sketch of the VG row [33].
The leading-edge slats, which were known as a passive flow controller by delaying the flow separation, were initially presented by Handley Page [35] in Great Britain and it was first utilized for an aircraft [36]. As illustrated in Figure 5 [19, 37], the flow in space between the main body and slat is augmented and accelerated with either large vortices or multiple smaller vortices. Large vortices moving from slat’s midspan to its edge can occur at lower Reynolds number, whereas smaller vortices can be observed at higher Reynolds number. Accelerating flow with leading-edge slats gains kinetic energy and momentum to the boundary layer, resulting in delaying of stall phenomenon [38]. In the literature, there are three types of slats: (i) fixed slat [39], (ii) retractable slat [40], and (iii) Kruger flap [41]. Recently, Genç et al. [42] have investigated NACA2415 airfoil with NACA22 leading-edge slat experimentally and computationally. Their computational results indicated that experimentally stated LSB was correctly estimated. Moreover, delaying of the stall phenomenon was obtained by means of experimental investigation, resulting in providing the maximum lift coefficient of 1.3.
\n(a) Configuration of leading-edge slat [19] and (b and c) its planar view [37].
The flow vane, which is concepted by Pechlivanoglou [19] and can be utilized as a power regulator and stall controller at wind turbines, is an undiscovered item of the wind turbine blades. As seen in Figure 6, the flow vanes have relatively smaller chord length than the main body and this additional aerodynamic profile can be positioned over the suction surface of airfoils. The space among the flow vane and main body is closely equal to the chord length of the flow vane.
\nRepresentation sketch of the flow vane [19].
A passive flow control method entitled as leading-edge serration as shown in Figure 7 [43, 44] is inspired by the morphology of humpback whales [45]. This bioinspired technique has recently been investigated for different purposes experimentally or numerically. Wang and Zhuang [46] designed a modified wind turbine blades with sinusoidal wave serrations employed on the leading edge to control the boundary layer separation. Their numerical results indicated that the leading-edge serration suppressed the flow separation with the generation of the counter-rotating vortex pairs, especially at high AoA. Cai et al. [47] also numerically investigated a modified airfoil with a single leading-edge protuberance at low Reynolds number. The results showed that the stall angle reduced at the modified airfoil. Furthermore, the pre-stall performance of the modified airfoil decreased, whereas post-stall characteristics were increased. Moreover, an experimental study performed by Wei et al. [48] expressed the hydrodynamic characteristics of hydrofoils with leading-edge tubercles at Reynolds number of 1.4 × 104. Their visualization results based on particle tracking revealed that the effects of flow separation were declined with the use of leading-edge tubercles.
\nSchematic view of a wind turbine blade with modified models via serrations [43, 44].
Slots (generally known as a narrow rectangular channel along spanwise of a wind turbine blade) are one of passive flow control methods and flow control is ensured by changing the flow velocity over the airfoil. The principle of a slotted airfoil is that flow velocity increases at the slot exit after interior flow passes within the airfoil. This increment of flow velocity at the slot exit causes the streamlines to disrupt, resulting in creating the flow separation. The flow separation occurred over the airfoil means velocity reduction. This reduction in flow velocity enables the local pressure underneath the airfoil to increase, resulting in producing more lift. Figure 8 illustrates the slot geometric characteristics performed by Belamadi et al. [49]. Symbols of c, X, γ, and ψ mean chord of the airfoil, the slot position, the slot width, and angle between slot axis and chord normal, respectively. Numerical results conducted by Belamadi et al. [49] indicated that stall phenomenon on S809 airfoil at an angle of attack of 20° was completely eliminated by creating a nozzle effect over the airfoil, ensuring the extra kinetic energy (inherently extra momentum) to suction surface. Based on experimental and numerical results obtained by Beyhaghi and Amano [50], an increment of the lift coefficient by 30% was ensured without conceding any drag force.
\nSchematic demonstration of a slotted airfoil [49].
The leading-edge microcylinders, which are used as passive control technique for boundary layer flow separation, are shown as a whole and enlarged view of mesh domain in Figure 9 [51]. Regarding the principle of leading-edge microcylinder, velocity over suction surface of the airfoil can be accelerated by them and thus the Kelvin-Helmholtz instability of fluid flow is decreased. As concerning literature studies performed in advance, Luo et al. [52] designed a microcylinder and used in front of the leading edge of NACA0012 airfoil in order to ensure stall delay and decrease the flow separation zone. Based on the numerical calculation carried out by Wang et al. [53], an increment of 27.3% at blade torque was obtained by positioning a microcylinder with a suitable diameter in front of the leading edge.
\nWhole and enlarged view of mesh domain for a leading-edge microcylinder [51].
Gurney flap is a small boundary layer passive control method and it can be easily mounted at the trailing edge of an airfoil. The Gurney flap with 2% of the chord length of the airfoil can affect the aerodynamic performance by increasing the lift coefficient by 0.4. Moreover, the lift-to-drag ratio of the airfoil can be nearly improved by 35% [54]. Flow progress and mechanism of lift increment by the Gurney flap were explained by Liebeck [55]. As depicted in Figure 10 [55], a pair of counter-rotating vortices composed at downstream of the Gurney flap creates a low-pressure zone within. This low-pressure region makes the flow to increase over the suction surface, resulting in rising to an increase in the suction pressure. On the other hand, the flow velocity is reduced at upstream of Gurney flap by anticlockwise vortices and pressure at the pressure surface is increased. Consequently, the variation of pressure distribution between surfaces leads to an increment of lift force. The unsteady flow characteristics, especially at low Reynolds numbers, may be mitigated and suppressed with the use of Gurney flap. Based on the transient two-dimensional numerical simulations performed by Zhu et al. [56], the adaptive Gurney flap was compared with the fixed Gurney flap and the greater energy harvesting efficiency was obtained when the adaptive Gurney flap was selected for the oscillating wing. Shukla and Kaviti [57] numerically investigated four symmetric NACA airfoils in conjunction with a dimple, Gurney flap and combination of both dimple and Gurney flap at Reynolds number of 3.6 × 105. Their results indicated that better aerodynamic performance was obtained at NACA0021 airfoil with a combination of both dimple and Gurney flap when the angle of attack was 12°.
\nFlow progress at trailing-edge airfoil having a Gurney flap [55].
Recently, aerodynamic researchers have focused on a technique to palliate the adverse effect of flow and increase the lift coefficient by inspiring the biological flows from birds’ wings. Therefore, a self-activated spanwise flap near the trailing edge of the airfoil as a biomimetic device for control of flow separation has been developed as seen in Figure 11 [58]. Regarding the principle of the self-activated flap, it starts to pop-up because of backflow to cope with critical conditions of flight when flow separation occurs on the suction surface of the wing. Thus, the wing can be prevented from an abrupt increase in the angle of attack because of perching maneuvers or gusts. Rosti et al. [59] investigated physical mechanism of the flow field over NACA0020 airfoil having an elastically mounted flap at Reynolds number of 2 × 104. It was founded that these flaps could overcome the effect of dynamic stall breakdown causing the abrupt lift loss. In addition, a more positive aerodynamic response such as increasing of lift amount was obtained during the ramp up motion of movable flap. Arivoli and Singh [60] and Schluter [61] also studied self-activated deployable flaps. Their results demonstrated that deployable flaps played crucial roles in terms of aerodynamic performance even though they had a little effect in Reynolds number and heavy stall conditions.
\nIllustration of a movable flap at a high angle of attack: seagull at landing (top picture) and sketch in principle (bottom picture) [58].
One of the passive control techniques is the application of a cavity mounted on a thick airfoils’ suction surface that is taken from original Kasper’s wings [62]. The principle of this concept is to create a convenient pressure gradient when two counter-rotating vortices inside the cavity are trapped. Furthermore, these trapped vortices over the suction surface not only ensure an extra low-pressure region but also cause a lower drag to produce. Thus, this method has recently gained interests among aerodynamic researchers. Olsman and Colonius [63] investigated an airfoil with a cavity at Reynolds number of 2 × 104 and different angles of attack ranging from 0° to 15° as seen in Figure 12. Their results revealed that stall phenomenon was delayed by means of counter-rotating separated flows, resulted in reduced flow separation region. A detailed numerical study regarding the aeroacoustics of NACA 0018 cavitied airfoil was reported by Lam and Leung [64] at Reynolds number of 2 × 104 and Mach number (Ma) of 0.2. The presence of cavity caused the lift-to-drag ratio to increase. Moreover, cavitied airfoil produced less acoustic power, making it a noiseless airfoil design at low Reynolds number regimes.
\nThe vorticity contour plot over the airfoil with a cavity [63].
The control technique with the roughness material, which is one of the fundamental objectives of the chapter, can passively control the flow over wind turbine blade operating at low Reynolds number ranges. Regarding the development of vortex structures at the wake of VG applications [65], the flow is re-energized with the vortices produced by miniramps as denoted in Figure 13. Furthermore, the flow is inherently gaining momentum by means of that passive flow controller. Therefore, the separated flow because of adverse pressure gradients that occurred generally at leading edge of airfoils may be suppressed with re-energized flows, resulting in the occurrence of more stable flow characteristics without boundary layer separation.
\nVortex structures at the wake of VGs [65].
As occurred in VG applications, the flow control method by means of roughness material is performed with similar ways by intervening the flow. Vortex sheds produced by roughness cause the flow in the boundary layer to gain more energy as seen in Figure 14 [66]. Energized flow hinders the boundary layer flow separation and it ensures the flow to move along the airfoil surface by attaching. The vortex sheds can be used for a few different purposes over the surface of airfoils. For instance, the vortex sheds, which were used for recognition of flow phenomena at the study presented by Koca et al. [67, 68], gave the momentum to flow, resulting in lift recovery and even less vibration or noise for wind turbine blades.
\nComparison of ¼” roughness height and vortex shedding characteristics at different Rec numbers [66].
Regarding identifying the role of roughness material on the flow characteristics over roughened NACA 4412 airfoil as indicated in Figure 15, investigations based on the force measurement, the smoke-wire, hot-film sensor (glue-on type), and hot-wire experiments have been performed by Genç et al. [8, 69]. The purpose of the experimental study was to determine the LSB and transition phenomena over uncontrolled NACA 4412 airfoil in detail and then was to observe how sandpaper as a roughness material affected the flow topology.
\nRepresentation sketch of the roughened airfoil.
The results, which were obtained from smoke-wire experiment and hot-film sensor, showing an integrated graph were denoted in Figure 16 [8]. The streamlines obtained from smoke-wire experiment clearly revealed that LSB occurred between x/c = 0.3 and x/c = 0.7 for uncontrolled airfoil, while it was seen between x/c = 0.3 and x/c = 0.5 for the roughened airfoil. It means that using sandpaper causes LSB’s size to shrink enormously. As physically speaking, the undulations acquired from voltage values, which were predefined how to obtain in Ref. [8], started to increase after x/c = 0.3, meaning the transition inception and separation point due to adverse pressure gradients in Figure 16(a). However, the amount of undulations at x/c = 0.5 was less than that at x/c = 0.3, because small eddies having less energy in the aft portion of LSB caused the undulations amount to reduce. After x/c = 0.5 point, the obvious increment in undulations indicated that the flow in the boundary layer was fully turbulent because of energized vortices.
\nComparison results of two different experiments at Reynolds number of 5 × 104 and α = 8°: (a) k/c = 0 (uncontrolled airfoil) and (b) k/c = 0.003 [8].
\nFigure 17 [8] shows a combination graph consisting of numerical and experimental results for a roughened airfoil with k/c = 0.006 at Reynolds number of 5 × 104 and α = 8°. At first glance, APG exhibits a dominant role on flow and it causes the flow to separate from the airfoil surface of x/c = 0.3 as depicted in the flow visualization graph. Then, the flow reattaches to solid surface nearly at x/c = 0.6 by gaining momentum by means of roughness material. Same flow phenomena like boundary layer separation, reattachment and LSB are shown and proved with streamlines and Cp curves obtained from the numerical study. The peak point among separation (referred to as S) and reattachment (referred to as R) points reveal the LSB in Cp curve. The trend of Cp curve is almost constant after separation point due to the presence of dead air region having as negligible as less flow phenomenon. The position of LSB is between x/c = 0.3 and x/c = 0.6 as shown in the smoke-wire experiment result. Besides, a mild peak at x/c = 0.5 indicates the transition point over the airfoil surface.
\nThe combined results obtained from the numerical and smoke-wire result for the roughened airfoil with k/c = 0.006 at Reynolds number of 5 × 104 and α = 8° [8].
In addition to the results mentioned above, two more important results were obtained from aerodynamic force measurement results as seen in Figure 18. First, the stall phenomenon because of flow separation was pronouncedly postponed in Figure 18(a). Second, lift coefficient (CL) in Figure 18(b) increased with the use of roughness material, resulting in enhancement of aerodynamic performance of airfoil. Moreover, it was clearly seen that roughness material gave good results, especially in the pre-stall region. Thus, the roughness material was firstly entitled as “the pre-stall flow control mechanism” in aerodynamic literature by authors in Ref. [8].
\nForce measurement results at k/c = 0.006: (a) Re = 7.5 × 104 and (b) Re = 1 × 105 [8].
Another essential objective of the chapter in terms of the passive flow control device is doing a detailed survey on flexible membrane wings. The requirement for improving the flight capabilities of MAV and UAV leads to increasing concern in biologically inspired wings. It is well known that the wings of flying animals such as bats resemble a thin membrane-like material with a fixed leading edge and free, scalloped trailing edge that can be easily complied with the flow environment. Moreover, they can regulate the wing planform for a specific flight condition and their flight can be qualified by immensely unsteady and three-dimensional wing motions. A membrane wing is better able to tailor the atmospheric disturbances and makes the vehicle easier to fly [70, 71]. In other respects, the efficacy of the membrane comes from the ability of passive control through the flight as well as decreasing the weight of the wing [70]. Smith [72] paraphrased the emphasis on flexibility and wing stiffness in modeling the flapping motion and generation of the resultant force. A summary presentation study of the aerodynamics of micro air vehicles operating at low Reynolds numbers was carried out by Mueller and DeLaurier [73]. In order to come up with the negative effects of LSB for improving aerodynamic performance, researchers utilized flexible membrane wings for numerous practices such as hang glider, microlight, and UAVs and MAVs. An experimental investigation about time-dependent LSB formation on AR = 3 wing was conducted, and it was seen that in the membrane wings at low Re numbers the LSB was more prevalent. Leading-edge separations were influenced via both Reynolds number and leading-edge vortices occurring because of the separation bubbles led to time-dependent alterations on the vibration of the wing [74, 75]. At low AR, tip vortices delayed stall, exclusively at low Re numbers owing to affecting flow on the wing and separation bubble [76] and analysis of the instant deformation found out spanwise and chordwise, which were due to the shedding of leading-edge vortices’ farther tip vortices [77].
\nRojratsirikul et al. [78, 79] searched flow and deformation characteristics of membrane wings with low aspect ratio via velocity and deformation measurement. They found membrane oscillations in second chordwise mode at higher incidences. The dynamic of membrane wing can be altered with excess length [80, 81] and support [82] of the wing. Genç [80] studied on a membrane wing with excess length. The results depicted that camber of membrane wing induced the separated flow; therefore, small separated regions were seen. Besides, Greenhalgh et al. [81] observed that increasing excess length caused to reduce separation incidence, and hysteresis interval concluded a restricted working area for the highest excess lengths. Arbós-Torrent et al. [82] considered the effects of the geometry of front and aft of the wing on the aeromechanics of membrane wings. It was stated that average camber-like membrane fluctuations altered with respect to the geometry and size of both front and aft supports. Besides, the front and aft support having rectangular cross-section everlastingly provided further lift and deformations of mean camber compared with circular cross-sectional support. Galvao et al. [83] studied experimentally on the compliant membrane wings modeled based on mammalian flight mechanics. They showed that three-dimensional (3D) flow and tip vortices were ascendant. Furthermore, the deformation of compliant wings increased with both incidence and deformation increasing. Bleischwitz et al. [84] surveyed membrane wings aeromechanics in ground effect. Digital image correlation (DIC) and proper orthogonal decomposition (POD) were used for obtaining membrane vibrations. It was seen that fluctuation modes were adequate to hold 90% of all deformation energy closes to stall. Moreover, structural modes of spanwise were ensured in virtue of POD in lift increment areas. On the other hand, Hu et al. [85] executed a study on the flapping flexible membrane wings. It was seen that oscillation provided significant aerodynamic benefits in unsteady state regime. In other respects, it was concluded that generally the rigid wing had better lift capacity for flapping wings. The flexibility of the wing affected its aerodynamics positively [86] and membrane wings had an increase in maximum CL during oscillating. Furthermore, an increase in reduced frequency led to an increase in maximum CL. Membrane wings have a higher slope of lift and postponed stall [87]. Additionally, the membrane kinematics was closely relevant to membrane tension and free-stream velocity [88].
\nAs previously mentioned, numerous studies have been performed for a better understanding of flexible wings and examined their effects in terms of aerodynamic performance. Herein, it is important to give sight for the conducted researches about flexible membrane wing, which are tabulated in Table 1. A common result could be said from all these studies that membrane wings had favorable characteristics such as a higher lift-to-drag ratio and a higher maximum lift coefficient when compared to an equivalent rigid wing from the aerodynamics point of view.
\nAuthor(s) | \nType of wing | \nType of study | \nWorking range of Re number | \n
---|---|---|---|
Timpe et al. [71] | \nRigid flat plate and membrane wings (AR = 4.3) | \nExperimental | \n5 × 104\n | \n
Rojratsirikul et al. [79, 89, 90] | \nRigid and 2D flexible membrane wing | \n5.31 × 104, 7.97 × 104, 10.6 × 104\n | \n|
Rojratsirikul et al. [78] | \nAR = 2 flexible membrane wing and delta wing | \n2.4 × 104–5.9 × 104\n | \n|
Hu et al. [85] | \nCybird-P1® remote control ornithopter model | \n1 × 104, 2 × 104, 8 × 104\n | \n|
Tamai et al. [91] | \nFlexible membrane wings with different numbers of ribs (FM01, FM02, FM03, FM10) | \n7.5 × 104\n | \n|
Arbós-Torrent et al. [82] | \nMembrane airfoils with different geometries of LE and TE support | \n9 × 104\n | \n|
Bleischwitz et al. [84] | \nRigid wing and AR = 2 membrane wing | \n5.6 × 104\n | \n|
Wrist et al. [92] | \nMembrane wing with NACA 2504, 4504, 6504, 4404, 4504, 4604, and 4506 frames | \n5.0 × 104\n | \n|
Attar et al. [93] | \nMembrane wing | \n1.37 × 104, 2.26 × 104, 3.63 × 104\n | \n|
Galvao et al. [83] | \nMembrane wing (AR = 0.92) | \n7 × 104–2 × 105\n | \n|
Viieru et al. [94] | \nFruit fly (Drosophila) | \nNumerical | \n104–105\n | \n
Hefeng et al. [95] | \nNACA0012 segmented flexible airfoil | \n1.35 × 105\n | \n|
Lian and Shyy [96] | \nFlexible wing (SD7003) | \n6 × 104\n | \n|
Gordnier and Attar [97] | \nAR = 2 flexible membrane wing | \nBoth | \n2.43 × 104\n | \n
Song et al. [88] | \nRectangular membrane wing (AR = 0.9, 1.4, 1.8) | \nBoth | \n7 × 104–2 × 105\n | \n
Summary of pioneering studies on flexible membrane wing.
Unlike these studies, Demir [98] investigated the deformation that occurred on the flexible membrane wing surface and how it affected the LSB. Moreover, he examined how LSB affected the vibrations that occurred on the membrane surface, the distribution of the flow characteristics, as well as the fluid-structure interactions between the membrane and flow both experimentally and numerically. An experimental study was conducted by Demir and Genç [74] in order to examine time-dependent circumstance of flow on flexible membrane wing and they noticed that the size of LSB altered with time because of the indecisive flow features of the wing. The indecisive behavior upon the flexible membrane wing brought about various deformation modes to constitute at various angles of attack. The results of time-dependent flow visualizations for angles of attack of α = 12° and α = 10° for different time intervals are given in Figure 19 [75] and Figure 20 [75]. Time-dependent attitudes of LSB was obviously seen as analogizing obtained results at miscellaneous times between t = 0.08 s and t = 0.20 s. The bubble size enlarged at t = 0.16 s and then was smaller at t = 0.20 s for Re = 2.5 × 104 at α = 12°, as seen in Figure 19. Additionally, as it is seen in Figure 20, the size of LSB enlarged until t = 0.12 s and then lessened at t = 0.16 s at α = 12° and Re = 5 × 104. For this purpose, it can be deduced that bubble size varied with time because of the indecisive flow characteristics of flexible membrane wing.
\nSmoke wire flow visualization result of AR = 3 flexible membrane wing at y/s = 0.4 for α = 12° and Re = 2.5 × 104 [75].
Smoke wire flow visualization result of AR = 3 flexible membrane wing at y/s = 0.4 for α = 10° and Re = 5 × 104 [75].
As seen in Figure 21, vibrational modes in the middle section of the wing reduced and joined up at the tip region at α = 10° by the virtue of occurring separation bubble and these vibrational modes became a chordwise mode of two at α = 12° as seen in Figure 22. The holes formed by the separation bubble in the middle of the wing were illustrated with white dashed lines and the regions with red color showed the peaks.
\nThree-dimensional view of standard deviation of mean deformation of AR = 3 flexible membrane wing at α = 10° for Re = 5 × 104.
Three-dimensional view of standard deviation of mean deformation of AR = 3 flexible membrane wing at α = 12° for Re = 5 × 104.
The last major control device, which is the objective of the chapter, among passive flow controllers is the flexible membrane used on the surface of the airfoil. This type of airfoil is called as a segmented or partially flexible airfoil. Since it is a new concept of flow control method, a detailed investigation of a partially flexible membrane is rarely studied in the aerodynamic literature. A pioneered computational fluid dynamics (CFD) analysis was performed using flexible membrane material on the airfoil surface by using ANSYS software [95]. The fluid-structure interaction (FSI) method was used for numerical modeling to investigate interactions between fluid and membrane. The segmented airfoil is seen in Figure 23 [95]. The flexible membrane material was used on the suction side of the airfoil. They numerically modeled four different cases on which the upper surface of the airfoil was flexible. In this numerical model, the effect of flexibility on aerodynamic performance in various regions on the airfoil was investigated for a Reynolds number of 1.35 x 105. Figure 24 [95] gives information about flow over the uncontrolled airfoil and the segmented flexible airfoils. It has been observed that the interaction between flow and the segmented airfoil decreases flow separations at high angles of attack. It has been found that the airfoil with three separate flexible zones shows the best aerodynamic performance and increased the lift coefficient by 39% compared to the rigid airfoil around the stall angle.
\nDifferent types of segmented airfoils [95].
Streamline of rigid and flexible airfoils, α = 13°: (a) rigid; (b) one-segment; (c) two-segment; (d) three-segment; and (e) four-segment [95].
Apart from numerical study, first detailed experimental investigations on a partially flexible airfoil at low Reynolds numbers were carried out by Açıkel and Genç [99]. They modified the rigid NACA 4412 airfoil by using a membrane material that was located on the upper side of the airfoil as denoted in Figure 25 [99]. The location of the membrane was between x/c = 0.2 and x/c = 0.7. In this study, different experimental methods such as force measurement, velocity measurement, deformation measurement, and smoke wire visualization were used to investigate flow control on partially flexible membrane airfoil.
\nConfiguration of the partially flexible airfoil [99].
According to the experimental results, flow control with flexibility is more effective at low angles of attack. Figure 26 [99] demonstrates a combined sketch of the membrane standard deviation and smoke wire visualization for α = 8°. This sketch showed that the membrane vibration modes were increased with increasing Reynolds number.
\nIntegrated sketch of the flow visualization and standard deviation of the deformation at α = 8° for (a) Re = 2.5 × 104 and (b) Re = 5 × 104 [99].
A detailed review with regard to passive control methods affecting the flow especially at low Reynolds numbers was presented in this chapter. The main purpose of this study is to clarify the passive control techniques for UAVs and MAVs operating at low Reynolds numbers. Besides the explanation of those techniques, especially three passive flow methods at low Reynolds numbers have been highlighted with their results as follows:
Using the sandpaper as a passive flow controller [8, 69] on the surface of the airfoil has caused the LSB’s size to reduce enormously, resulting in aerodynamic performance recovery. Moreover, the roughness-induced transition phenomenon also mentioned in studies performed by Puckert and Rist [100] and Bucci et al. [101] has occurred with the usage of sandpaper. Therefore, a more stable flow characteristic has been obtained.
Time-dependent attitudes of LSB obtained from results of flexible membrane wings [74] showed that bubble size first increased and then reduced at different low Reynolds numbers and angles of attack. That is, it can be understood that fluid-structure interaction positively exhibited a good effect on aerodynamic performance by varying the bubble size with time.
Regarding the usage of the partially flexible airfoil [99], flow control in conjunction with partial flexibility is more effective especially at low angles of attack. Both flow and flexibility-induced undulation over membrane material have caused the vibration modes, helping the bubble size to be reduced. Thus, better aerodynamic performance with the increasing of lift coefficient has been obtained.
Consequently, this detailed chapter will present a comprehensive, practical, effective roadmap for the aerodynamic researchers especially interested in the flow control techniques over wind turbine blade or MAV applications operating at low Reynolds number regimes.
\nLSB | laminar separation bubble |
UAV | unmanned aerial vehicle |
MAV | micro air vehicle |
Ma | Mach number |
2D | two dimensional |
3D | three dimensional |
POD | proper orthogonal decomposition |
DIC | digital image correlation |
AR | aspect ratio |
FSI | fluid-structure interaction |
LE | leading edge |
TE | trailing edge |
VG | vortex generator |
CFD | computational fluid dynamics |
APG | adverse pressure gradient |
AoA | angle of attack |
Re | Reynolds number |
Rec | critical Reynolds number |
c | chord length of airfoil |
s | span length of membrane wing |
h | height of VG |
b | cropped edge length of VG |
L | vane length of VG |
D | long gaps among vanes |
d | short gaps among vanes |
β | inflow angle |
X | slot position |
γ | slot width |
ψ | angle between slot axis and chord normal |
t | time |
CL | lift coefficient |
CD | drag coefficient |
k | roughness height |
α | angle of attack |
CL, max | maximum lift coefficient |
L | lift |
D | drag |
max | maximum |
c | critical |
Agriculture is an imperative and steady aspect of human existence, owing to fact that human survival depends on agricultural produce. Our engagement in agricultural activities have potentially and continually been of great assistance in the production and availability of food, raw materials, chemical and several other industrial resources [1, 2]. The agricultural sector as reported by “the Food and Agriculture Organization of the United Nations (FAO)” is faced with several problems such as failures in the market system and barriers in the trade system, uneven and futile socio-economic strategies, insufficient information, availability of finance and infrastructures, pressure at a result of upsurge in the population and insufficiency resources, agronomic practices, unsustainability and dilapidation in the environment, etc. [3]. These problems are further confronted by the influences of climate inconsistency and deviations as agriculture primarily dependent on climate variables/parameters [4, 5, 6]. Consequently, Akrofi-Atitianti et al. [5] in their study reported that agricultural sector in the developing nations (like Africa and most other developing regions) remains one of the furthermost susceptible sectors to these problems of climate inconsistency and deviation. The issue of food safety and security as well as deficiency in food supply and climate change have a very strong relationship and according to Karimi et al. [2], it will be appropriate to always consider them to together. In light of this, “the United Nations Framework Convention on Climate Change (UNFCCC)” and “the Intergovernmental Panel on Climate Change (IPCC)” have always emphases importance of agriculture and have incessantly placed great priority on agricultural activities [3, 4].
According to Karimi et al. [2], the influences of climate change on agricultural activities are still lagged with some uncertainties. Nevertheless, climate modification is anticipated to unpleasantly affect agricultural sector as well as other sectors and human activities globally; this would be as a result of the vicissitudes in precipitation, temperature, carbon dioxide pollination and other weather parameters/variables [7, 8, 9, 10]. Consequently, climate adaptation techniques are ultimately essential for mitigating these increasing climate/weather actions in our environment [6, 11, 12, 13, 14]. According to Abegunde et al. [15], climate smart agriculture is a substantial aspect in proffering solutions for both climate change mitigation, agriculture and environmental sustainability. They reported that agricultural activities can contribute significantly to climate change mitigation in the following ways:
The avoidance of further deforestation and conversion or/and alteration of wetlands (marshlands or swamplands) and grasslands (savannahs).
The intensification and spiraling in the storage of carbon in vegetation and soil.
The reduction of current and the avoidance of future upsurges in greenhouse gases (GHGs) emissions from nitrous oxide, methane and other forms of GHGs.
Efforts genuinely gear toward the reduction of GHG emissions should be embrace agriculture. According to Fanen and Olalekan [16], some of the most important agricultural products are possible of filling the gaps between recent produces and the produces that have the potential for improving inputs and management as well as the promotion of truncated GHS emission possibilities. Climate smart agriculture has some exceptional possibilities in tackling food safety, security, adaptation and moderation tenacities [15, 16]. It has been reported that climate smart agriculture is a dependable alternative that can assist in undertaking the food insecurity issues that are alleged to be caused by the altering of the climate/weather [15, 16]. However, some developing countries have realized that some of these concepts of climate smart agriculture that have been recommended as solutions to existing problems are somehow not too suitable in their contexts as a result of some environmental capriciousness [2, 15, 16]. Besides, agriculture played a fundamental part in the alleviation of poverty and to enact major undesirable influences that climate change is expected to have on several regions globally.
Supposedly, early accomplishment in climate smart agriculture has been recognized as an indispensable means of capacity building as well as skill and guide for future opportunities [15]. However, it is desirable to have a proper meaning of what is meant by smart system before exploring to climate smart agriculture practice. Hence, according to Abegunde et al. [15] “a smart system or product is that which facilitates the interface of a system with persons/users and is able to acclimate the framework of the user without compelling the user to acclimate to it”. Smart system may comprise of the following characteristics [2, 15]:
Capability to collaborate with other devices.
Adaptability to acquire and improve the compatibility between its functioning and its environment.
Self-sufficiency, which indicates that the system can function without intrusion from the user.
Capability to network with person via natural interface.
Multi-purposeful which indicates a single product is capable of executing multiple roles.
Personality which indicates the system is proficient to be active and accomplish the features of credible personality.
Reactivity, which indicates that the system can respond to its environment in a special way.
A smart system is capable to carry out an integral approach, from sensing to acting, to carry out optimal on-line control for performance or product quality through smart sensing techniques, besides the use of biosensors has contributed to the advancement of climate smart agriculture. Biosensors technology has the potential to improve agricultural productivity as well as food, chemical and other industrial innovative tools and techniques for the monitoring and management of swift infection disease diagnostic, the capacity enhancement of plants for the absorption of nutrients, the capacity enhancement of animal production, etc. [16]. In other to address the contribution of agricultural activities to these problems of alterations in the climate system, climate smart agriculture is gradually being indorsed in most parts of the world to assist in the integration of the economy, social and environmental extents of sustainable development in building on the three core aspects, viz.: “sustainably increasing agricultural productivity and revenues; acclimating and building resilience to climate change and; reducing and/or removing GHGs emissions relative to conventional practices” [3]. It is to be reported that climate smart agriculture has not yet be fully adopted in most developing countries (Africa inclusive); this is attributed to the limited understanding of the constraints of these countries to effectively implement the adaptation approaches faced by those involved in agricultural activities across these regions [5, 17]. Even though most developed nations of the world are beginning to adopt and apply climate smart agriculture, there is still a great deal to be done for its improvement. In light of this, biosensor in climate smart organic agriculture need to be incorporated, and this will definitely play a significant role in agricultural and environmental sustainability.
Due to the incessant growing of the world’s population which according to the United Nations (UN) [18] is projected to reach around nine billion by the year 2050 from the present estimated eight billion is considered a time bomb due to the fact that upsurge in population will obviously translate to equivalent increase in food demand. Smart monitoring employing biosensors will ensure that biochemical and other categories of contaminants are kept at bay from conceding the quality and safety of food as well as the pest and pathogens that could affect agricultural produce. Biosensors are also deployed for the purpose of measuring alcohol, carbohydrates, acids, etc. Hence, this chapter will attempt to present an assessment of what has been done from previous studies in biosensing technologies for climate smart organic/biological agriculture as well as their role in agricultural and environmental sustainability vis-à-vis food safe/security and climate change that are been explored by researchers in the area of biosensors technology for the improvement of agriculture. The limitations faced with some of the prominent techniques especially as it relates to climate smart organic/biological agriculture will be highlighted; this will evidently assist in proffering useful suggestions for future research studies as future contribution to knowledge for the advancement in agricultural and environmental sustainability.
Biosensors are diagnostic devices that combine biological constituents and transducers for the discovery of sample like metabolites, drugs, microbial load, contaminants, control parameters, etc. They do so by translating biochemical reactions into quantifiable physiochemical signals such as electrical signal which in turn measure the amount of sample that are used for the discovery of analyte concentration [19, 20, 21, 22]. Biosensors have several applications in the diverse fields or areas such as medicinal discovery and diagnosis, food protection and processing, defense and security, environmental management, etc. [21, 22, 23]. There are several types of biosensors used in the environment as it relates to soil, water and air in the area of in climate smart biological/organic agriculture and these biosensors depend on the sensing rudiments or transducers. Ever since the first discovering of the glucose biosensor in 1956, by Prof. L.C Clark Jnr, which however came in limelight commercially in 1975 [24], there are now several biosensors discovered for various commercial purposes. These contemporary biosensors have wider range of applications which offers additional specific, sensitive, fast, tangible and multiplicative results compared to previous chemical sensors [19, 20, 23].
Presently, with the advancement of nanotechnology, innovative nanomaterials are now being invented and their innovative features as well as their applications in biosensors [23, 25]. Nanomaterials-built biosensors, encompass the combination of biotechnology, molecular engineering, chemistry, physics, environmental and material science. These various fields have been of great assistance in advancing the understanding and specificity of biomolecule discovery, the ability of detecting or manipulating atoms and molecules, biomolecular recognition, pathogenic diagnosis as well as the monitoring and management of agriculture and the environment in general [23, 25]. The application of various biosensors such as nanoparticles/nanomaterials, polymers and microbes built-biosensors for agricultural and environmental activities have assisted in the reduction of the quantity of chemicals spread, reduction in nutrient losses in fertilization and upsurge in the yields via the reduction of pests and diseases for the enhancement of nutrients [26].
Biosensors are broadly categorized into two classes which are based on sensing components and transduction modes. The sensing components consist of enzymes, antibodies (immunosensors), micro-organisms (cell biosensors), biological tissues and organelles. While, the transduction modes hinge on the physiochemical variation resulting from sensing components. Accordingly, dissimilar transducer biosensors can be piezoelectric, electrochemical, calorimetric and optical [19, 27]. As reported by Reyes De Corcuera and Cavalieri [27], the common types of piezoelectric transducer biosensors are acoustic and ultrasonic; the common types of electrochemical transducer biosensors are amperometric, conductometric and potentiometric; while the common types of optical transducer biosensors are absorbance, fluorescence and chemiluminense. According to Arora [20], biosensors can also be categorized based on the period/order they were discovered. In these categories we have first-generation biosensors, second-generation biosensors and third-generation biosensors.
The first-generation biosensors: These biosensors are the modest approach involving the unswerving discovery of either increase of an enzymatically produced product or decrease of a substrate of a redox enzymes using natural mediator for electron transfer. Examples are glucose biosensor which uses enzyme glucose oxidase and oxygen detecting decrease in oxygen level or increase in hydrogen peroxide corresponding to the level of glucose.
The second-generation biosensors: They the biosensors that use non-natural redox mediators like ferricynide, quinones and ferrocene for the movement of electron which increases the reproducibility and sensitivity. Examples are self-monitoring amperometric glucose biosensors.
The third-generation biosensors: These are biosensors wherein the redox enzymes which are immobilized on the electrode surface in such a manner that direct electron transfer is possible between the enzyme and transducer. According to Borgmann et al. [19], it uses organic conducting material like “Tetrathiafulvalnetetracynoquinodi Methane (TTF-TCQN)”.
As mentioned earlier, with the present advancement of nanotechnology, innovative nanomaterials are now being invented and their innovative features as well as their applications exist in biosensors [25]. However, it was in 1962 that Clark and Lyons invented the first biosensor that measure glucose in biological samples which utilized the strategy of electrochemical detection of oxygen or hydrogen peroxide via controlled glucose oxidase electrode and even since then, incredible improvement has been attained both in the skill involved and the applications of biosensors with advanced tactics involving nanotechnology, electrochemistry and bioelectronics [19, 21, 23, 24, 28, 29, 30]. The discovery of biosensors as an influential and pioneering diagnostic device (which has to do with biological sensing component with several applications) has undoubtedly espoused dominant importance in various fields. Its utilization has attained some significant application in the field of pharmacology, biomedicine, environmental science, food protection and processing (agriculture). Biosensors discovery have led to the development of accurate and influential diagnostic tools by means of biological sensing component as biosensor [21, 22]. According to Turner [30], the technical approaches used in biosensors are built on label-built and label-unrestricted detection. Label-built detection is primarily dependent upon the explicit features of label composites to target detection. Nevertheless, these categories of biosensors are reliable; but are habitually involve in the combination of explicit sensing components fabricated with restrained target protein. On the other hand, label-unrestricted technique allows the detection of the target molecules/particles that are not categorized or hard to tag [31, 32]. Topical interdisciplinary approaches of biotechnology and electronics technology paved way for evolving label-unrestricted biosensors for several detection approaches with numerous applications in the areas/fields of medical science and environmental science.
The major distinctive components in a biosensor which are illustrated in Figure 1 as a block prototypical distinctive biosensor with a processor and display unit according to Mehrotra [33] are:
Detecting/Sensing Component: This is also known as a biorecognition component; as in the case of a glucose sensor, the biorecognition component is a deactivated glucose-sensitive enzyme.
The Transducer: The chemical, biochemical, organic, structural or physical device that interpret discrepancies in the target biophysical variables like oxygen, glucose, etc. to a physically quantifiable output signal and/or vice versa.
Signal Processor: This could be an electrical/electronic device with/without a display system, a processor and an amplifier.
Block prototypical of a distinctive biosensor.
Biosensor machineries are also been applied in agriculture and environmental management/monitoring. According to Verma and Bhardwaj [34], this is another important aspect wherein biosensor technology is beginning to gain grounds. These biosensor machineries in agriculture and environmental monitoring/management will undoubtedly assist in the swift identification of pesticidal deposits in order to avert the corresponding health dangers in form of climate smart organic/biological agriculture [16, 26, 34, 35, 36, 37, 38]. According to Verma and Bhardwaj [34], the traditional or conventional means, such as “high-performance liquid chromatography, capillary electrophoresis and mass spectrometry” are efficient for the investigation of environmental pesticides; hitherto, there are some restrictions such as intricacy, time-intense measures, necessity of high-end devices and operative proficiencies. Therefore, even if it is believed that unpretentious biosensors have great advantages; hitherto, it is not easy to invent integrated biosensors that can analyze several categories of pesticides. Hence, steady enzyme-built biosensors have been invented for understanding the physiological (biological and physical) influence of pesticides in the environment, food security and quality management [34, 36, 39]. In the study carried out by Pundir and Chauhan [39], they reported that acetylcholinesterase inhibition-built biosensors have been invented. Over the years, for the purpose of swift analysis, this method has received great improvement with additional topical developments in acetylcholinesterase inhibition-built biosensors including immobilization means as well as other diverse approaches for fabrication [21]. In the same way, piezoelectric biosensors have been established for sensing the organophosphate and carbamate environmental influence of pesticides [36]. Organochlorine pesticides are recognized for affecting the ecosystem where pesticides such as endosulfan cause substantial environmental impairments [40]. Organochlorine pesticides have been reported to cause alteration in the reproductive system of in both male and female fish disparately [40], and in view of these facts, the discovery of biosensors for detecting aquatic ecosystem would have more consequence as a result of biomagnification [21]. In handling this quest, electrochemical biosensors have experienced revolution with swift advances in the fabrication as well as the use of constituents like nanomaterials [21, 24].
At this juncture, it is of great significant to place distinct prominence for the selection or collection of receptors for biosensor advancement, the use of diverse transduction procedures and fast screening approaches for the applications of biosensor in agricultural activities (food production, security and safety) as well as environmental protection, monitoring and management. To aid this, biosensor fabrication appears to be vital and the improvements in this aspect have been absolutely elucidated by several researchers.
The main challenges faced in agriculture vis-à-vis food safety and sustainability are emphasis on three basic aspects as reported by Neethirajan et al. [38], viz.:
Nanomaterials and their application in sustainable agriculture challenges.
Energy sustainability challenges.
Commercialization of sustainable technology challenges.
Nanotechnology is one of the foremost applications in agricultural monitoring and management. It has several valuable possessions and applicability [38]. According to Prasad et al. [41], it has all it takes to improve food safety and quality, enhance the absorption capability of soil nutrient, increase agriculture inputs, and upsurge the potentials in the miniaturized device measurement. Supposedly, nanotechnology has been used effectively for the following: precision in farming machinery (agricultural precision), smart feed management, food waste management, production of agro-chemicals/agro-materials such as nano-pesticides, nano-herbicides and nano-fertilizers, labelling and packaging of agricultural products, and several other agricultural fields [38]. According to Neethirajan et al. [38], the use of nanotechnology for agriculture as it relates to food sustainability is likely to cause some consequences in the upcoming years. This collaborated the study of Dasgupta et al. [42], that notwithstanding the benefits from the recent combination of nanomaterials/nanoparticles and animated charcoal for the enhancement of antimicrobial possessions, food grade nano-emulsion applied in fruit juice, integrated nano-microbials used as water sterilizers, effective nutraceutical nano-delivery and improved plant extracts conjugated by means of nano-packaging could have some consequences as well. A major emphasis in nanotechnology is in its application for agricultural precision (precision in farming machinery), wherein plant excerpts from its main parts such as leaves, flowers, stems and roots, from various species have been effectively integrated into nanoparticles/nanomaterials [42, 43].
Nanomaterials/nanoparticles have all it takes improve green synthesis in a sole/single-step by means of ion and metal diminishing implications; this according to Prasad et al. [41], is auspicious for the application of room temperature, easy-use, adjustable and climbable as well as eco-system friendly. During green synthesis, co-enzymes and solvable metabolites like phenolic composites, alkaloids as well as terpenoids are wholly condensed to nanoparticles/nanomaterials. Intrinsically, nanoparticles/nanomaterials are known as “magic bullets” resulting in improved plant development, location precise delivery of nutrients and amplified plant infection or disease resistance.
One of the utmost substantial challenges in nanotechnology is in the development of consistent rick-advantage evaluations by means of standardized assessment and procedures. The establishment of reliable and standardized procedures in nanomaterial/nanoparticle measurement, classification and assessment of their effect on living organism and the environment as well as the involvement of all relevant stakeholders such as farmers, agents of food industries, non-governmental organizations etc. in a dialog of public support and consumer acceptance [41, 44]. These challenges in sustainable energy can be effectively taken care of by the application biological or organic solutions. According to Adesina et al. [37], some main applications have been explored in applied organic or biological for the generation of energy:
Biofuels could be produced, deposited, transformed and renewed to bio-electricity in order to expressively diminish the cost of producing solar electricity. This can be accomplished by means of leveraging through the intake of H2 or electron lashing carbon fixing metabolism, to simplify the combination by means of photovoltaics effectiveness in a process known as electro-photosynthesis [42].
Hydrogen-built electrosynthesis is one of the furthermost efficacious bioengineering energy creation set-ups. It exhibits exceptional properties such as high effective bioenergy storing capacity for electrical energy of about 80%, lengthy distance transportability with least energy forfeiture, hydrogen oxidation in microorganisms involving “Nicotinamide Adenine Dinucleotide (NAD+; C21H27N7O14P2)” decrease diminishing potential discrepancy and affordability as a result of lesser cell-protein necessities of hydrogen oxidation [38].
Electron transmission can extracellularly arbitrate electro-synthesis efficiently. This can be done reproducible by means of a nanostructured surface to simplify the of creation bio-film. It could prance the necessity of protracted surface area and improve the transfer of hydrogen electron [38].
Applied organic or biological energy creation would be significantly improved by means of the invention of several other machineries. Such innovative machineries are; gene engineering, whole genome engineering, protein engineering, and biosensing [38].
These innovative machineries will curiously enhance the development, production and generation biofuel. Apparently, since one of the furthermost protuberant applications of applied biology is in the area of sustainable energy; hitherto, expectedly biofuel is to become the furthermost positioned procedures in for apprehending and storing solar energy with minimum costs [38]. Presently, the challenges facing the development, production and generation biofuel are: the energy generation effectiveness and scale; competence investigation in cell self-assembly as well as duplication monitoring and management, and antagonistic environmental consequences [38]. Anticipatedly, in the forthcoming years, biofuel is to advance and extend sources of traditional energy to reutilize and replicate the generating constituents of energy and to improve hybrid energy photosynthesis [38]. In Table 1 outlines some of the aspects where biosensors are deployed in agricultural activities.
Transduction | Electrode | Analyte sensed | Applications |
---|---|---|---|
Electrochemical magnet immunosensing [45] | Magnetic graphite-epoxy composite (m-GEC) | Salmonella in milk | The GEC holds a distinct feature of hybridization that allows the pathogens’ DNA to be immobilized instantly. The procedure does not need reagents, and provides swift detection. |
Electrochemical magnet immunosensing [46] | m-GEC | b-lactamase resistance in Staphylococcus aureus | GEC products have feeble generic adsorption for either DNA samples or enzymes labels. They do not need blocking phases on the transducer’s free sites to moderate generic adsorption. |
Gold nanoparticle-based [47] | GEC | Salmonella IS200 | This is a good substrate for enhanced and directed immobilization of biomolecules with exceptional transductive features for the fabrication of a several of electrochemical biosensors, like immunosensors, genosensors, and enzyme sensors. |
Amperometric electrochemical immunoassay [48] | Platinum (Pt) working electrode, Ag/AgCl reference electrode and a Pt counter electrode. | Staphylococcus aureus in food samples such as milk, cheese, and meat | This has been proven to be fast, operative and reproducible, and can be employed to sense specific pathogenic microbes via antibodies against precise antigens. |
Multiplexing optical (luminescence) [49] | na | E. coli O157: H7, S. typhimurium and Legionella pneumophila | The entire quantification and calibration assay period is 18 min, aiding extremely swift analyses. |
High-density microelectrode array [50] | na | E. coli O157: H7 bacteria in food materials | It is field-deployable, easy to use, compact, and reagent-less and provides result in minutes compared to conventional procedures. |
Flow-type antibody sensor [51] | quartz crystal microbalance chip | E. coli in drinking water, beef, pork, and dumpling | The sensor quantifies changes in frequency as a result mass deposits that are designed by antigen-antibody interface. |
Acoustic-based biosensor (the Quartz Crystal Microbalance) [52] | n.a | DNA detection | This enhances the processing of time by circumventing gel electrophoresis and can be combined in a diagnostic laboratory or an automated lab-on-a-chip device for plant pathogen diagnostics as a routine detection device. |
Biosensor applications in agricultural activities.
However, the commercialization or industrialization of sustainable machineries in the agri-food scope is ongoing via some core emphases such as; biosensor commercialization or industrialization, sensing technology commercialization or industrialization, and intelligent agricultural/food commercialization or industrialization (such as climate smart biological or organic agriculture) [26]. In biosensor commercialization or industrialization, important aspects for the determination of its commercialization or industrialization are simpler sample pre-treatment, bioreceptor steadiness, multi-detecting/multi-sensing features, impoverishment/miniaturization, quicker testing period, wireless accessibility and affordability [53]. Some the foremost properties of commercialized accessible well-known biosensors industries are their simple structure, reduced sizes and ideal potentials for “point of care” applications [38]. They target food composition, progression monitoring and management as well as food safety and security such as allergens, pathogens, toxins, pollutants/contaminants and additives have been reported that the industries for food quality biosensors purpose is primarily from the following metabolites; “glucose, sucrose, glycerol, cholesterol, creatinine, alcohol, methanol, lactate, lactose, glutamate, malate and ascorbic acid” [26, 38]. According to Bahadır and Sezgintürk [53], compared to earlier and present/modern considered biosensors in academic/research laboratories, the modern biosensors which are mostly commercialized are far further fewer indicatory of the truncated achievement rates in agri-food-connected biosensor development.
The limitations encumbering biosensor development in agriculture/food sector are substantial impediments, such problems are; “mass production, sensor lifetime, component integration and handling practicability” [38]. The motives behind these restrictions are that the utmost machineries applied in present and forthcoming agriculture/food biosensing technology are in their infancy/early stages and they include; “nanotechnology, agriculture/food material science, biomimetic chemistry and microengineering”. These basic factors could assist in the determination of forthcoming biosensors industries is its safety to human well-being, which implies that it is those with limited or no human well-being effect will have their commercialization in the forthcoming years [38]. The commercialization of intelligent agriculture/food industry specifies urgent needs in new and effective procedures to guarantee food quality and safety, to economize production procedure and to diminish loss in agriculture [54].
Biosensors have been employed for the monitoring and management of remediation procedures via the determination of the parameters that influence the growth of microbes, such as nutrient accessibility, pH, metal ions, liquified oxygen and temperature [55]. Biosensors that are required for the detection of environmental contaminants on field or large scale are not difficult to handle and need little volumes of sample rather than conventional analytical procedures which required active sample pre-treatment phases [25, 56, 57]. However, the quest of effective biosensors is continuously increasing, not just in the field of agricultural and environmental sciences, but also in other fields such as medical sciences and engineering. Presently, as a result of the wide range applications of biosensors, potential markets are still been advanced and some the few available commercial biosensors industries for environmental monitoring and management are listed in Table 2.
Biosensors | Industries |
---|---|
BIACORE | Biacore AB located in Sweden |
Model-Amp Biosens, BioITO biosens, SMAlgal | Biosensor srl located in Formello, Italy |
MB-DBO, Polytox-Res, Biocounter | Biosensores SL located in Moncofar, Spain |
Portable Toxicity Screen (PTS) | 52 Biotechnology Ltd. located in Uxbridge, UK |
Cellsense | Euroclon Ltd. located in Yorkshire, UK |
DropSens- Screen printed Electrodes | DropSense located in Asturia, Spain |
Model-B.LV5, Model-B.IV4 | Innovative Sensor Technology located in Nevada, USA |
NECi’s Nitrate Biosensor | Nitrate Elimination Co. Inc. located in Michigan, USA |
Optiqua EventLab™, Optiqua MiniLab™ | Optisense located in Netherlands |
REMEDIOS | Remedios located in Aberdeen, Scotland |
SciTOX-ALPHA, SciTOX-UniTOX | SciTOX Ltd. located in Oxford, USA |
Commercial biosensors industries for environmental monitoring and management.
Climate smart agriculture purposes exceptional prospects for handling the issues of food security as well as easing the adaptation and mitigation succors for environmental and agricultural sustainability. Climate smart agriculture has been of great assistance in this regard to most developed nations. Implementing climate smart agriculture as a capable and swift climate change response is extremely vital for building capacity and achieving food security as well as sustainable agriculture and environment globally In developing nations especially those of Sub-Sahara Africa, viewing the susceptibility to the altering climatic/weather conditions, their substantial dependence on agriculture for livelihoods and the critical role agriculture play in their economic sector; they would predominantly benefit from climate smart agriculture. Considering these regions’ susceptibility to the changing climatic condition, their heavy reliance on agriculture for livelihoods, and the critical position agricultural sector holds concerning food security in these nations climate smart agriculture would undoubtedly be of great assistance. Nevertheless, there is a necessity for variance methods in encouraging the acceptance and advancement of climate smart agriculture. The small-scale agricultural segment in most developing nations is categorized by a diverse inhabitant. Consequently, a solitary even method would not be suitable in advancing climate smart agriculture practices among these set of farmers. The consequence of this is that approaches to support climate smart agriculture implementation should factor in specific collective as a replacement for mainstreaming approaches globally. Consequently, all stakeholders should contemplate of employing modalities that can accommodate the diverse features of climate smart agriculture and circumvent the potential challenges that could otherwise ascend. Additionally, since climate smart agriculture development in developing countries depends on the willingness of those involved in agricultural activities, hence, there is a need for all stakeholders to understand the multi-dimensional climate change issues and the subsequent self-mobilization for evolving and executing strategies to respond to the issues at appropriate scales.
Conclusively, in spite of the numerous benefits of biosensors and biosensing machineries such as nanoparticles/nanomaterials, polymers and microbes built-biosensors in solving some of the challenges in agricultural activities vis-à-vis environmental sustainability; there is still the need to significantly assimilate multi-faceted methods in developing biosensors that can potentially be used for diverse applications in climate smart organic/biological agriculture for environmental sustainability. Therefore, it is suggested that appropriate combination of biosensing as well as bio-fabrication with non-natural/synthetic biology methods by applying either/both electrochemical, optical, bio-electronic moralities would be crucial for efficacious development of comprehensive and influential biosensors for contemporary future contribution to knowledge in the field of biosensor machinery in climate smart organic/biological agriculture for environmental sustainability.
The author is sincerely grateful to authors and agencies whose research studies and publications were used for this chapter.
There is no conflict to declare.
This research has not received any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"187",title:"Mental and Behavioural Disorders and Diseases of the Nervous System",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:136,numberOfAuthorsAndEditors:3838,numberOfWosCitations:2365,numberOfCrossrefCitations:1147,numberOfDimensionsCitations:3064,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9778",title:"Migraine",subtitle:null,isOpenForSubmission:!1,hash:"ba52761e098431d3113b538e9f6427f6",slug:"migraine",bookSignature:"Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/9778.jpg",editedByType:"Edited by",editors:[{id:"83372",title:"Prof.",name:"Wojciech",middleName:null,surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8087",title:"Neuroprotection",subtitle:"New Approaches and Prospects",isOpenForSubmission:!1,hash:"10acd587ca2c942616bfc09c4b79df39",slug:"neuroprotection-new-approaches-and-prospects",bookSignature:"Matilde Otero-Losada, Francisco Capani and Santiago Perez Lloret",coverURL:"https://cdn.intechopen.com/books/images_new/8087.jpg",editedByType:"Edited by",editors:[{id:"193560",title:"Dr.",name:"Matilde",middleName:null,surname:"Otero-Losada",slug:"matilde-otero-losada",fullName:"Matilde Otero-Losada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7983",title:"Psychosomatic Medicine",subtitle:null,isOpenForSubmission:!1,hash:"4eabb8ae6669b096f822a3ebd57ef59d",slug:"psychosomatic-medicine",bookSignature:"Ignacio Jáuregui Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/7983.jpg",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7882",title:"Behavioral Pharmacology",subtitle:"From Basic to Clinical Research",isOpenForSubmission:!1,hash:"39b4b6a6a15f5131f34bfcb11b050523",slug:"behavioral-pharmacology-from-basic-to-clinical-research",bookSignature:"Juan Francisco Rodríguez-Landa and Jonathan Cueto-Escobedo",coverURL:"https://cdn.intechopen.com/books/images_new/7882.jpg",editedByType:"Edited by",editors:[{id:"45702",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Rodríguez-Landa",slug:"juan-francisco-rodriguez-landa",fullName:"Juan Francisco Rodríguez-Landa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9489",title:"Neurological and Mental Disorders",subtitle:null,isOpenForSubmission:!1,hash:"3c29557d356441eccf59b262c0980d81",slug:"neurological-and-mental-disorders",bookSignature:"Kaneez Fatima Shad and Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/9489.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",middleName:null,surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8781",title:"Weight Management",subtitle:null,isOpenForSubmission:!1,hash:"865bbf7988bae3fdb09bf58d6e6a6cd5",slug:"weight-management",bookSignature:"Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/8781.jpg",editedByType:"Edited by",editors:[{id:"231568",title:"Dr.",name:"Hubertus",middleName:null,surname:"Himmerich",slug:"hubertus-himmerich",fullName:"Hubertus Himmerich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8172",title:"Amyotrophic Lateral Sclerosis",subtitle:"Recent Advances and Therapeutic Challenges",isOpenForSubmission:!1,hash:"454a2d1c81a4a4452f791a8b31b427dd",slug:"amyotrophic-lateral-sclerosis-recent-advances-and-therapeutic-challenges",bookSignature:"Muralidhar L. Hegde",coverURL:"https://cdn.intechopen.com/books/images_new/8172.jpg",editedByType:"Edited by",editors:[{id:"264616",title:"Dr.",name:"Muralidhar L.",middleName:null,surname:"Hegde",slug:"muralidhar-l.-hegde",fullName:"Muralidhar L. Hegde"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8203",title:"Peripheral Nerve Disorders and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"faa3d9b75498d42c252aa550b9346922",slug:"peripheral-nerve-disorders-and-treatment",bookSignature:"Hande Turker, Leonel Garcia Benavides, Guillermo Ramos Gallardo and Miriam Méndez Del Villar",coverURL:"https://cdn.intechopen.com/books/images_new/8203.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",middleName:null,surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8317",title:"Cognitive Behavioral Therapy",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"2c0d8be344e32f62e4ea4223425d8e4c",slug:"cognitive-behavioral-therapy-theories-and-applications",bookSignature:"Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/8317.jpg",editedByType:"Edited by",editors:[{id:"103586",title:null,name:"Sandro",middleName:null,surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7070",title:"Novel Aspects on Motor Neuron Disease",subtitle:null,isOpenForSubmission:!1,hash:"3ea8aa08fd9d45d806411a8c60b7adab",slug:"novel-aspects-on-motor-neuron-disease",bookSignature:"Humberto Foyaca Sibat and Lourdes de Fátima Ibañez-Valdés",coverURL:"https://cdn.intechopen.com/books/images_new/7070.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",middleName:null,surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8917",title:"Glia in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"d5e6046e0b91d39d6e9e51cb92f09374",slug:"glia-in-health-and-disease",bookSignature:"Tania Spohr",coverURL:"https://cdn.intechopen.com/books/images_new/8917.jpg",editedByType:"Edited by",editors:[{id:"280385",title:"Dr.",name:"Tania",middleName:"Cristina Leite De Sampaio E",surname:"Spohr",slug:"tania-spohr",fullName:"Tania Spohr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:136,mostCitedChapters:[{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8059,totalCrossrefCites:57,totalDimensionsCites:145,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]},{id:"30007",doi:"10.5772/31597",title:"Automated Epileptic Seizure Detection Methods: A Review Study",slug:"automated-epileptic-seizure-detection-methods-a-review-study",totalDownloads:8769,totalCrossrefCites:15,totalDimensionsCites:94,book:{slug:"epilepsy-histological-electroencephalographic-and-psychological-aspects",title:"Epilepsy",fullTitle:"Epilepsy - Histological, Electroencephalographic and Psychological Aspects"},signatures:"Alexandros T. Tzallas, Markos G. Tsipouras, Dimitrios G. Tsalikakis, Evaggelos C. Karvounis, Loukas Astrakas, Spiros Konitsiotis and Margaret Tzaphlidou",authors:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas"},{id:"94709",title:"Dr.",name:"Markos",middleName:null,surname:"Tsipouras",slug:"markos-tsipouras",fullName:"Markos Tsipouras"},{id:"94710",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Tsalikakis",slug:"dimitrios-tsalikakis",fullName:"Dimitrios Tsalikakis"},{id:"94712",title:"Dr.",name:"Loukas",middleName:null,surname:"Astrakas",slug:"loukas-astrakas",fullName:"Loukas Astrakas"},{id:"94714",title:"Dr.",name:"Spiros",middleName:null,surname:"Konitsiotis",slug:"spiros-konitsiotis",fullName:"Spiros Konitsiotis"},{id:"94873",title:"Prof.",name:"Margarita",middleName:null,surname:"Tzaphlidou",slug:"margarita-tzaphlidou",fullName:"Margarita Tzaphlidou"},{id:"128137",title:"Dr.",name:"Evaggelos",middleName:null,surname:"Karvounis",slug:"evaggelos-karvounis",fullName:"Evaggelos Karvounis"}]},{id:"26608",doi:"10.5772/28363",title:"Sex Differences in PTSD",slug:"sex-differences-in-ptsd",totalDownloads:4708,totalCrossrefCites:10,totalDimensionsCites:32,book:{slug:"post-traumatic-stress-disorders-in-a-global-context",title:"Post Traumatic Stress Disorders in a Global Context",fullTitle:"Post Traumatic Stress Disorders in a Global Context"},signatures:"Dorte Christiansen and Ask Elklit",authors:[{id:"73642",title:"Prof.",name:"Ask",middleName:null,surname:"Elklit",slug:"ask-elklit",fullName:"Ask Elklit"},{id:"113525",title:"MSc.",name:"Dorte",middleName:null,surname:"M. Christiansen",slug:"dorte-m.-christiansen",fullName:"Dorte M. Christiansen"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39763,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"48642",title:"Therapy for ADHD Directed Towards Addressing the Dual Imbalances in Mental Effort and Reward as Illustrated in the Mental Effort-Reward Imbalances Model (MERIM)",slug:"therapy-for-adhd-directed-towards-addressing-the-dual-imbalances-in-mental-effort-and-reward-as-illu",totalDownloads:6029,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"adhd-new-directions-in-diagnosis-and-treatment",title:"ADHD",fullTitle:"ADHD - New Directions in Diagnosis and Treatment"},signatures:"Alison Poulton",authors:[{id:"173967",title:"Dr.",name:"Alison",middleName:null,surname:"Poulton",slug:"alison-poulton",fullName:"Alison Poulton"}]},{id:"52275",title:"Impact of Social Media on Social Anxiety: A Systematic Review",slug:"impact-of-social-media-on-social-anxiety-a-systematic-review",totalDownloads:4788,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"new-developments-in-anxiety-disorders",title:"New Developments in Anxiety Disorders",fullTitle:"New Developments in Anxiety Disorders"},signatures:"Anca Dobrean and Costina-Ruxandra Păsărelu",authors:[{id:"188659",title:"Dr.",name:"Anca",middleName:null,surname:"Dobrean",slug:"anca-dobrean",fullName:"Anca Dobrean"},{id:"188660",title:"Mrs.",name:"Costina",middleName:null,surname:"Păsărelu",slug:"costina-pasarelu",fullName:"Costina Păsărelu"}]},{id:"71936",title:"Feeding and Eating Disorders",slug:"feeding-and-eating-disorders",totalDownloads:810,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neurological-and-mental-disorders",title:"Neurological and Mental Disorders",fullTitle:"Neurological and Mental Disorders"},signatures:"Bianca Suciu and Cătălina-Angela Crișan",authors:null},{id:"60608",title:"Mucuna and Parkinson’s Disease: Treatment with Natural Levodopa",slug:"mucuna-and-parkinson-s-disease-treatment-with-natural-levodopa",totalDownloads:3375,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"parkinson-s-disease-understanding-pathophysiology-and-developing-therapeutic-strategies",title:"Parkinson's Disease",fullTitle:"Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies"},signatures:"Rafael González Maldonado",authors:[{id:"214658",title:"Dr.",name:"Rafael",middleName:null,surname:"Gonzalez-Maldonado",slug:"rafael-gonzalez-maldonado",fullName:"Rafael Gonzalez-Maldonado"}]},{id:"57015",title:"The Impact of Psychopathy on the Family",slug:"the-impact-of-psychopathy-on-the-family",totalDownloads:5119,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"psychopathy-new-updates-on-an-old-phenomenon",title:"Psychopathy",fullTitle:"Psychopathy - New Updates on an Old Phenomenon"},signatures:"Liane J. Leedom",authors:[{id:"197751",title:"Dr.",name:"Liane",middleName:null,surname:"Leedom",slug:"liane-leedom",fullName:"Liane Leedom"}]},{id:"28239",title:"ADHD in Children and Adolescents: A Good Practice Guidance",slug:"adhd-in-children-and-adolescents-a-good-practice-guideline",totalDownloads:2857,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"current-directions-in-adhd-and-its-treatment",title:"Current Directions in ADHD and Its Treatment",fullTitle:"Current Directions in ADHD and Its Treatment"},signatures:"Somnath Banerjee",authors:[{id:"73771",title:"Dr.",name:"Somnath",middleName:null,surname:"Banerjee",slug:"somnath-banerjee",fullName:"Somnath Banerjee"}]},{id:"62216",title:"Subtypes of Psychotic-Like Experiences and Their Significance for Mental Health",slug:"subtypes-of-psychotic-like-experiences-and-their-significance-for-mental-health",totalDownloads:1324,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"psychosis-biopsychosocial-and-relational-perspectives",title:"Psychosis",fullTitle:"Psychosis - Biopsychosocial and Relational Perspectives"},signatures:"Lui Unterrassner",authors:[{id:"245870",title:"Ph.D. Student",name:"Lui",middleName:null,surname:"Unterrassner",slug:"lui-unterrassner",fullName:"Lui Unterrassner"}]},{id:"56699",title:"Development of Psychopathy from Childhood",slug:"development-of-psychopathy-from-childhood",totalDownloads:1232,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"psychopathy-new-updates-on-an-old-phenomenon",title:"Psychopathy",fullTitle:"Psychopathy - New Updates on an Old Phenomenon"},signatures:"Merve Cikili Uytun",authors:[{id:"163607",title:"Ms.",name:"Merve",middleName:null,surname:"Cikili",slug:"merve-cikili",fullName:"Merve Cikili"}]},{id:"51973",title:"Current Rehabilitation Methods for Cerebral Palsy",slug:"current-rehabilitation-methods-for-cerebral-palsy",totalDownloads:3107,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"cerebral-palsy-current-steps",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Current Steps"},signatures:"Nilay Çömük Balcı",authors:[{id:"185483",title:"Ph.D.",name:"Nilay",middleName:null,surname:"Çömük Balcı",slug:"nilay-comuk-balci",fullName:"Nilay Çömük Balcı"}]}],onlineFirstChaptersFilter:{topicSlug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/111311/kostas-rontos",hash:"",query:{},params:{id:"111311",slug:"kostas-rontos"},fullPath:"/profiles/111311/kostas-rontos",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()