\r\n\tThis book will address the various modern, technical, and practical aspects of smart technology for capturing solar radiation and converting it into different forms of energy, as well as enabling it for renewables integration in energy generation and transformation, built environment, transportation, buildings, and agriculture.
\r\n\r\n\tThe book will cover the most recent developments, innovations and applications concerning the following topics:
\r\n\t• Solar radiation – Smart and enabling technologies for measurement, modelling, and forecasting
\r\n\tHigh-resolution measurement sensor and instrument technology (Pyranometers, Albedometers, Pyrheliometers, UV Radiometers, Sun Trackers, Spectroradiometer, Pyrgeometers, etc.), Artificial intelligence techniques for modelling and forecasting of solar radiation, Solar Irradiance forecast with satellite data, Solar potential analysis, Short-term forecasting of photovoltaic power and solar irradiance prediction with sky imagers.
\r\n\t• Renewable energy integration – Smart solutions for integration of RE in distributed generation, energy storage, and demand-side management.
\r\n\tIntegrated Photovoltaics: Smart technology for vehicle-integrated PV, Building Integrated PV, Agrivoltaics, Road-Integrated PV, Floating PV, Product-integrated PV.
\r\n\tRenewable Energy Applications in Built Environment and mobility: Solar cars, solar-powered electric charging stations, passive solar systems, solar heating, and cooling systems, building-integrated vegetation, multifunctional solar systems, solar pumps, solar lighting, solar shading, Natural lighting, Solar dryer, Greenhouse.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"0400d540d2b8fb55d4cc8590e1e58844",bookSignature:"Dr. Mohammadreza Aghaei and Associate Prof. Amin Moazami",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11493.jpg",keywords:"High-Resolution Measurement Technology, Solar Irradiance Prediction, Integrated Photovoltaics, Energy Storage, Photovoltaics Technology, Nano Materials, Life Cycle Assessment, Photovoltaic Power Plants, UAV-Based Aerial Inspection, Bankability, Blockchain Technology, Circular Solar Economy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 5th 2022",dateEndSecondStepPublish:"June 2nd 2022",dateEndThirdStepPublish:"August 1st 2022",dateEndFourthStepPublish:"October 20th 2022",dateEndFifthStepPublish:"December 19th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Aghaei is a pioneering researcher in Renewable Energy, Solar photovoltaics, Energy systems, Autonomous and Smart Monitoring, Aerial Robotics, and Artificial Intelligence. He received a Ph.D. degree in electrical engineering from Politecnico di Milano. Dr. Aghaei was a Postdoctoral Scientist at Fraunhofer ISE and Helmholtz-Zentrum Berlin-PVcomB, Germany. He joined the University of Freiburg as a lecturer. He also fulfilled another 2 years postdoc at the Eindhoven University. He is IEEE senior member.",coeditorOneBiosketch:"Dr. Moazami is a pioneering researcher in smart buildings and energy flexibility and distributed intelligence (Swarm Intelligence, Collective Intelligence, Multi-Agent systems) for energy management. He is appointed as head of the Energy Management and Efficiency Research Group (EMERGE). He is the coordinator of the COLLECTiEF project and was actively involved in several national and international projects.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",middleName:null,surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei",profilePictureURL:"https://mts.intechopen.com/storage/users/317230/images/system/317230.jpg",biography:"Mohammadreza Aghaei is a senior researcher in the field of photovoltaic solar energy and energy system. \nHe received the Ph.D. degree in electrical engineering from Politecnico di Milano, Italy, in 2016. He was a Postdoctoral Scientist with Fraunhofer ISE and Helmholtz-Zentrum Berlin (HZB)-PVcomB, Germany, in 2017 and 2018, respectively. He is a Guest Scientist with the Department of Microsystems Engineering (IMTEK)/Department of Sustainable Systems Engineering (INATECH), Solar Energy Engineering, the University of Freiburg since 2017. He also fulfilled another two years postdoc in the Design of Sustainable Energy Systems Group, at Eindhoven University of Technology (TU/e), The Netherlands. Dr. Aghaei is currently a senior scientist with the Faculty of Engineering, Norwegian University of Science and Technology Norwegian (NTNU), Norway. He is also co-coordinator of EU-project 'COLLECTiEF” - Collective Intelligence for Energy Flexibility.\nHe has authored numerous publications in international refereed journals, book chapters, and conference proceedings. Main his research interests include Energy transition, Energy flexibility, Solar Energy, Photovoltaics, predictive and autonomous monitoring, solar cells, Artificial intelligence (AI), and Unmanned Aerial vehicle (UAV). Dr. Aghaei is a member of the International Energy Agency (IEA), PVPS program - Task 13, and International Solar Energy Society (ISES). Since 2019 he has been the chair/vice-chair of the working group 2: reliability and durability of PV in EU COST Action PEARL PV.",institutionString:"Norwegian University of Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Norwegian University of Science and Technology",institutionURL:null,country:{name:"Norway"}}}],coeditorOne:{id:"327897",title:"Associate Prof.",name:"Amin",middleName:null,surname:"Moazami",slug:"amin-moazami",fullName:"Amin Moazami",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zb1jQQAQ/Profile_Picture_2022-04-26T08:22:52.jpg",biography:"Amin Moazami received a Ph.D. degree in building energy performance from the Norwegian University of Science and Technology (NTNU) in 2019.\r\nHe is an Associate Professor in the Department of Ocean Operations and Civil Engineering at NTNU. He has strong experience in building performance simulation, energy flexibility, climate robustness and resilience in buildings, occupant behaviour, etc. He is the coordinator of the COLLECTiEF project and was actively involved in several national and international projects. In 2019, he has been awarded an innovation grant (innovasjonsstipend 2019) for the proposal “A simulation-based tool for the development of Collective Intelligence (CI) at the urban scale to mitigate the impacts of extreme climate conditions”, focusing on developing a new solution for increasing the energy demand flexibility of urban areas.",institutionString:"Norwegian University of Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Norwegian University of Science and Technology",institutionURL:null,country:{name:"Norway"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429342",firstName:"Zrinka",lastName:"Tomicic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429342/images/20008_n.jpg",email:"zrinka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50856",title:"Therapeutic Potential of Nonpsychoactive Cannabinoids by Targeting at Glycine Receptors",doi:"10.5772/63360",slug:"therapeutic-potential-of-nonpsychoactive-cannabinoids-by-targeting-at-glycine-receptors",body:'\n\n
Abbreviations
\n
AEA, anandamide; THC, Δ9-tetrahydrocannabinol; CBD, cannabidiol; GABA, γ-aminobutyric acid; I\nGly, glycine-activated current; TM, transmembrane domain; VTA, ventral tegmental area
\n
\n\n
1. Molecular composition and tissue distribution
\n
Glycine receptors (GlyRs) belong to the Cys-loop ligand-gated ion channel (LGIC) family, a group of membrane ion channel receptors including γ-aminobutyric acid type A (GABAA), neuronal nicotinic acetylcholine (nACh), 5-HT3, and GlyRs. These receptors are critical for fast synaptic neurotransmission in the central nervous system. GlyRs are known to predominantly mediate fast synaptic inhibitory neurotransmission in the spinal cord and brain stem [1]. To date, four GlyRs subunits have been identified in humans including three α subunits (α1–3) and one β subunit [1]. The α subunits share a high degree of homology in the amino acid sequence (>90%), especially in the large extracellular domain that bears agonist- and antagonist-binding sites. This has posted a challenge to the development of selective ligands for specific GlyR subunits. Two very recent studies have resolved crystal structures of GlyRα1 and α3 subunits with high level of resolution (3.0 A) [2, 3]. These studies have detailed the molecular insights of GlyR-agonist/antagonist interaction and channel-gating dynamics.
\n
It is well established that GlyR β subunits are expressed at postsynaptic sites where they can assemble with the α subunit to form heteromeric functional channels [4]. A cytoskeleton protein, gephyrin, plays a critical role in targeting heteromeric GlyRs at postsynaptic sites. While the GlyRs represent the primary inhibitory neurotransmission in spinal cord, the role of GlyRs in most supraspinal areas has been less clear [5, 6]. Although the β subunit mRNA is relatively abundant in all brain areas at the adult stage, the β subunit protein expression in many brain regions appears very low for an unknown mechanism [5]. Coincidently, glycinergic synaptic transmission in all brain areas except the spinal cord and brain stem are nearly absent at the adult stage [1]. While the α2 subunit represents the dominant form of GlyRs at early development stage, it gives way to the α1 subunit after postnatal stage [7, 8]. The α1β subunits are found to serve as the dominant functional form of GlyRs in the spinal cord and brain stem at the adult stage [9]. The biological switch between the α1 and α2 subunits occurs at a time point of ~postnatal 16–20 days [6, 10]. This timing is consistent with a shift from GABAergic to glycinergic transmission representing the maturity of brain stem and spinal inhibitory systems [6, 10]. In some brain areas such as forebrain and hippocampus, however, the mRNA levels of the α2 subunit remain to be at the steady state from developmental to adult stage [11–15]. Distinct expression of GlyR subunits is consistent with their physiological and pathological roles. For instance, the α3 subunits are restrictively expressed in the superficial layers of the spinal cord dorsal horn, consistent with the involvement of their role in the regulation of nociceptive process [16]. On the other hand, the dominant expression of GlyRα1 subunits in spinal cord and brain stem motor neurons explains well how the functional deficiency in the α1 subunits can cause human hyperekplexia disease, a neuromotor disorder [17, 18].
\n
\n\n
2. Presynaptic and extrasynaptic GlyRs
\n
While postsynaptic GlyRs have been the major interest of many previous and current studies [1], evidence has emerged to suggest that functional GlyRs are also located at presynaptic terminals and extrasynaptic sites in many brain areas [19–25].
\n
\n
2.1. Presynaptic receptors
\n
Presynaptic GlyRs are first described in calyceal synapses in the medial nucleus of the trapezoid body (MNTB) in rat brainstem [19]. These receptors are thought to play an important role in the modulation of glutamate release [6, 10, 23, 26]. Presynaptic GlyRs have also been reported from studies of other brain areas such as spinal cord, ventral tegmental area (VTA), hippocampus and periaqueductal gray area (PAG), and brain stem hypoglossal nucleus [22, 24, 25, 27, 28].
\n
Presynaptic GlyRs are believed to regulate releases of major neurotransmitters including GABA, DA, and glutamate. All three α [1–3] subunits have been identified to contribute to presynaptic glycinergic activity in different brain regions. While the α2 subunits mediate the facilitation of presynaptic GABAergic transmission in VTA at early development stage [20], the α1 subunits emerge and facilitate glutamate release at presynaptic sites of brain stem calyx in the postnatal stage [6, 26]. A very recent study has shown that the α3 subunits are involved in presynaptic glycine release in brain stem hypoglossal motor neurons [25].
\n
Different from postsynaptic heteromeric GlyRs, presynaptic GlyRs are the likely homomeric α subunits [23, 27, 28]. There are a number of evidence to support this idea. First, the β subunit is always bound with postsynaptic cytoskeleton protein, gephyrin [4, 29]. Second, low concentrations of picrotoxin (PTX) that are found to preferentially inhibit homomeric α GlyRs in vitro selectively alter presynaptic GlyR functionality in the spinal cord and brainstem [23, 27, 30–33]. Finally, this idea is consistent with microscopic observation that the GlyRs at presynaptic terminals of calyceal synapses are composed of homomeric α1 subunits [23]. The presynaptic GlyRs have been the interest of recent research because they disinhibit GABA-mediated synaptic inhibition of VTA dopaminergic neurons [20, 34]. There is evidence suggesting that these receptors are involved in the reward mechanism of drugs of abuse [34].
\n
Presynaptic GlyRs are a potential therapeutic target for the treatment of hyperekplexia disease [26]. A very recent study has shown that streptozotocin-induced diabetic nerve injury caused a decrease in the paw withdrawal latency to mechanical stimuli and reduced the mean frequency of glycinergic miniature inhibitory post-synaptic current (mIPSC) in spinal dorsal horn neurons [35]. This effect is selectively mediated through a presynaptic mechanism because there is no change in miniature inhibitory post-synaptic current rise, decay kinetics, and mean mIPSC amplitude following streptozotocin injection.
\n
\n
\n
2.2. Extrasynaptic GlyRs
\n
Extrasynaptically located GlyRs have been identified in many brain regions, including hippocampus, supraoptic nucleus, and prefrontal cortex (PFC) [13, 36–39]. Functional extrasynaptic GlyRs are likely α homomers because clustering and synaptic targeting of GlyR β subunit requires postsynaptic protein gephyrin [4]. The endogenous agonists of nonsynaptic GlyRs have been postulated to be glycine and taurine [37, 39–41]. While glycine is originated from either synaptic spillover or via release from glia [39, 42], taurine is released from glial cells where the synthesizing enzyme and the transporter for taurine are present [40, 43–45]. Taurine can be released in high levels in response to physiological and pathological conditions. For instance, taurine is released in response to hypotonic stimulus [46]. There is strong evidence to suggest that ethanol can promote the release of taurine in mesolimbic structure [47–49]. The biological role of tonic activation of extrasynaptic GlyRs remains elusive. Accumulating evidence has suggested that these extrasynaptic GlyRs are likely the target for ethanol modulation in vitro and in vivo [48, 50, 51].
\n
Although our knowledge about presynaptic and extrasynaptic GlyRs is still limited, these receptors could represent emerging targets attractive for future mechanistic and therapeutic studies.
\n
\n
\n\n
3. GlyR-related disease
\n
\n
3.1. GlyRs in chronic pain
\n
The GlyRs mediate fast synaptic inhibitory neurotransmission and regulate pain formation at spinal level. The α3GlyRs are thought to be the key player involving in spinal antinociceptive process [16, 52].
\n
\n
3.1.1. α3GlyRs in inflammatory pain
\n
α3GlyR knockout mice demonstrate a reduction in pain hypersensitivity in several lines of chronic pain models. Prostaglandin E2 (PGE2), which promotes central and peripheral pain sensitization, selectively inhibits α3GlyRs channel activity through the activation of receptor phosphorylation in vitro [16]. Consistent with this, PGE2 inhibits the glycinergic inhibitory postsynaptic currents in spinal cord slices of wild type (WT), but not in α3GlyRs knockout mice [16]. These α3 knockout mice reduce thermal hyperalgesia induced by the intrathecal injection of PGE2 [16, 52]. PGE2 inhibition of the α3GlyRs is attributed to the mechanism of chronic inflammatory pain induced by the intra-plantar injection of complete Freund’s adjuvant (CFA) [16, 52]. The α3GlyRs are not involved in all inflammatory pain animal models. While the α3GlyR knockout mice show reduced pain hypersensitivity to spinal PGE2 injection and CFA- or zymosan-induced peripheral inflammation, these mice do not display altered pain hypersensitivity after the injection of capsaicin, carrageenan, kaolin/carrageenan, or monosodium iodoacetate, which produces rheumatoid and osteoarthritis [53]. A very recent study suggested that glucose at 5 mM can allosterically increase α3GlyR receptor activity, and this interaction between the α3 subunit and sugar may underlie some of the analgesic effects of glucose [54].
\n
\n
\n
3.1.2. α3GlyRs in neuropathic pain
\n
Similarly, the α3GlyRs are also found to play a selective role in some forms of neuropathic and visceral pain models. For instance, there is no significant difference in pain behaviors between α3GlyR knockout mice and wild-type littermates following partial sciatic nerve ligation and colorectal distension [53]. On the other hand, evidence is also available suggesting that these receptors are involved in some forms of neuropathic pain models. For instance, there is a substantial reduction in the frequency of GlyR-mediated mIPSC of lamina I neurons in rat diabetic neuropathic pain after treatment with streptozotocin in rats [35]. Intrathecal injection of glycine reverses streptozotocin-induced tactile pain hypersensitivity. Moreover, the intrathecal injection of α3GlyR siRNA can reduce the anti-allodynia effect of platelet-activating factor antagonists in three different nerve injury animal models including partial sciatic nerve ligation injury, streptozotocin-induced diabetic nerve injury, and infraorbital nerve injury [55]. Overall, these data indicate that the α3GlyRs are involved in the mechanism of neuropathic pain pathway.
\n
The role of the α2GlyR subunit in antinociception is unclear. A previous study has reported that the mice lacking the α2 subunits showed prolonged mechanical hyperalgesia induced by the peripheral injection of zymosan [56]. The α2 subunits are unlikely to play a role in persistent neuropathic pain (partial sciatic nerve ligation) as the mice lacking either α2 subunit demonstrated a normal nociceptive behavior after spinal nerve injury [56]. So far, the α1GlyRs have not been reported to play any role in pain modulation [57].
\n
Taken together, the α3GlyRs have been the interest of many research interest because of their unique role in nociceptive process and their therapeutic potential in the development of new anti-pain drugs [52, 58–60].
\n
\n
\n
\n
3.2. Alcohol use disorder
\n
Several lines of studies have provided consistent evidence to suggest that GlyRs are one primary target that mediates alcohol-induced behaviors in the brain [61–65]. Activation of VTA GlyRs reduces GABAergic transmission and increases the activity of dopaminergic neurons originated from VTA [20, 34]. GlyRs in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region as local injection of strychnine can inhibit ethanol-induced DA release in nAc [48, 66]. There is strong evidence that extrasynaptic GlyRs are the candidate that, at least in part, mediates ethanol-induced dopamine elevation and reward system in nAc [49, 51, 67, 68]. These receptors are likely activated by taurine, which is released from glial cells upon exposure to ethanol [49]. Microinjection of glycine into the VTA reduced the intake of ethanol in rats chronically exposed to ethanol under the intermittent-access and continuous-access procedures and decreased lever-press responding for ethanol under an operant self-administration procedure [69]. VTA microinjection of strychnine completely reversed glycine inhibition of alcohol consumption behaviors, suggesting that GlyRs in the VTA may play a critical role in ethanol self-administration in animals [69]. Consistent with this idea, a recent study in α2- and α3GlyR knockout mice has shown that the depletion of the α2GlyRs decreased ethanol intake and preference in the 24-h two-bottle choice test, whereas the depletion of the α3GlyRs increased ethanol intake and preference in the 24-h intermittent access test [70]. It appears that these GlyR subunits are selectively involved in ethanol consumption behavior but not acute ethanol intoxication-induced behaviors such as motor incoordination, loss of righting reflex, and acoustic startle response [70]. By contrast, mice carrying knock-in mutations in the GlyR α1 subunit alter the behaviors induced by acute ethanol intoxication [71, 72]. Thus, the α2- and α3GlyR subunits are involved in the reward mechanism of chronic ethanol consumption, while α1GlyR subunits are attributed to acute alcohol intoxicating-induced behaviors.
\n
\n
\n
3.3. Rare genetic disease: hyperekplexia
\n
Human exaggerated startle disease, also known as hyperekplexia, is a rare genetic neurological disorder caused by deficiency in glycinergic neurotransmission [73]. Missense point mutations in the human GlyRs α1 subunit gene disrupt GlyRs function resulting in familial startle disease, an autosomal-dominant disorder [74, 75]. Although rare, this disease is often characterized by an exaggerated startle reaction to sudden, unexpected auditory and tactile stimuli. The most frequently occurring mutation causing human hyperekplexia is the R271Q/L mutation in the α1 subunit [75]. Mice carrying the R271Q mutation exhibit severe neuromotor defects that resemble human hyperekplexia disease [57]. Except for the mutations occurring in the GlyR α1 subunit, point mutations in the GlyR β subunit are also linked to recessive human hyperekplexia disease [76].
\n
\n
\n\n
4. Cannabinoid interaction with GlyRs
\n
\n
4.1. Cannabinoid potentiation of GlyRs
\n
\n
4.1.1. Allosteric modulation
\n
A previous study from our laboratory has shown first evidence that both exogenous and endogenous cannabinoids such as ∆9-tetrahydrocannabinol (THC), the principle psychoactive component of marijuana, and endocannabinoid anandamide (AEA) potentiate the amplitude of glycine-activated current (I\nGly) in cells expressing homomeric α1 and heteromeric α1β GlyRs and in acutely isolated VTA neurons [77]. The modulation by cannabinoids is not dependent on CB1 receptors. This initial finding has been tested and supported by a number of studies [58, 78–82]. The EC50 values for the THC-induced potentiation are 73 nM for human α1GlyRs, 109 nM for human α1β GlyRs expressed in Xenopus oocytes, and 320 nM for native GlyRs in rat VTA neurons [83]. THC at low concentrations of 100 and 300 nM can significantly enhance I\nGly in HEK-293 cells expressing the α1 and α3 subunits [58]. This concentration range of THC has been found to induce psychotropic and antinociceptive effects in humans [84]. The concentrations of THC in human blood can peak as high as 800 nM for 15 min after a casual marijuana inhalation and stay at 100 nM for 60 min after the smoke. The potentiation of I\nGly by either exogenous or endogenous cannabinoids depends on the concentration of glycine [58, 78, 81–83]. Maximal potentiation of GlyRs induced by cannabinoids occurs at the lowest concentration of glycine. With increasing glycine concentrations, the cannabinoid potentiation decreases [83].
\n
\n
\n
4.1.2. Subunit-specific modulation
\n
Both endogenous and exogenous cannabinoids modulate GlyRs in a subunit-specific manner [58, 78, 81, 82]. AEA has been found to produce various effects on I\nGly in different neurons [82, 83, 85]. Among all three GlyRs α subunits (α1, α2, and α3) expressed in HEK-293 cells, the α1 subunit is most sensitive to AEA-induced potentiation [78, 81, 82]. In addition to AEA, other cannabinoids and cannabinoid-mimic lipids such as N-arachidonyl-glycine (NA-glycine) exhibit complex action (both potentiation and inhibition) of I\nGly in a subunit-specific manner [81]. NA-glycine potentiated the amplitude of I\nGly in HEK-293 cells expressing the α1 subunits and inhibits the amplitude of I\nGly in HEK-293 cells expressing the α2 and α3 subunits [81]. Similarly, THC has been shown to potentiate GlyRs in a subunit-specific manner expressed in HEK-293 cells [58]. The most significant difference among the three subunits appears to be the efficacy of the THC potentiation [58]. For instance, the magnitudes of the THC (1-μM)-induced potentiation of I\nGly are 1156, 1127, and 232% in HEK-293 cells expressing the α1, α3, and α2 subunits, respectively. It should be mentioned that heteromeric α1β1 subunits are less sensitive than their counterpart homomeric α1 receptors to THC-induced potentiation [58, 83]. This is also the case that DH-cannabidiol (CBD), a modified cannabidiol, selectively rescues the function of mutant homomeric α1GlyR subunits [26].
\n
\n
\n
\n
4.2. Molecular mechanisms
\n
\n
4.2.1. Direct interaction and the site
\n
The α1, α2, and α3GlyR subunits are differentially sensitive to THC- and AEA-induced potentiation of I\nGly [58]. Molecular analysis has identified single amino acid residue, serine (S), in the TM3, the α1 and α3 subunits critically involved in cannabinoid-GlyR interaction [58, 82]. Substituting the serine (S) at 296 of the α1 subunit and at 307 of the α3 subunit with an alanine (A) converts the α1/α3 subunits from cannabinoid high-sensitive receptors to cannabinoid low-sensitivity receptors. This suggests that S296 is a molecular determinant of cannabinoid potentiation of GlyRs. This idea has gained support from an experiment involving nuclear magnetic resonance (NMR) chemical shift measurement [58]. THC selectively shifts the S296 residue in a concentration-dependent manner in the purified proteins of the full-length four TMs of the human α1 subunit. This hypothesis is further tested by NMR titration and nuclear Overhauser effect spectroscopy (NOESY) analysis of the interaction between cannabidiol and purified α3GlyR protein. The data from these experiments favor a direct interaction of cannabidiol with residue S296 of the GlyR α3 subunit. The analysis of the α3GlyR transmembrane (TM) domains indicates that S296 is located near the intracellular end of the TM3 helix. Direct interaction of CBD with α3GlyR-TM protein is confirmed by the intermolecular NOESY cross-peaks between CBD and the protein. This finding also favors a protein conformational change at S296 in the presence of CBD.
\n
Electrophysiological experiments using mutagenesis analysis indicate a hydrogen-bonding interaction between cannabinoid and S296 residue [58, 86]. Consistent with this idea, chemically the removal of both hydroxyl and oxygen groups from THC abolishes the efficacy of THC in potentiating GlyRs [58]. However, the compound with retaining oxygen group is still potent in potentiating GlyR function but demonstrates significantly reduced binding affinity to CB1 receptors.
\n
\n
\n
4.2.2. A common molecular basis for endogenous and exogenous cannabinoids
\n
It has been proposed that exogenous and endogenous cannabinoids potentiate GlyRs via a common molecular basis. This idea is based on the following evidence. First, the point mutation at the S296 residue in the TM3 is critical for both THC and AEA potentiation of the α1 and α3 subunits [58, 83, 86]. Second, the hydroxyl/oxygen groups are essential for AEA and THC potentiation of GlyRs. Third, the deletion of these groups results in reduction in the efficacy of AEA and THC potentiation. Finally, desoxy-AEA and didesoxy-THC are found to inhibit AEA- and THC-induced potentiation of GlyRs in a similar manner.
\n
\n
\n
\n\n
5. Therapeutic potential of glycinergic cannabinoids
\n
\n
5.1. Suppression of acute and chronic pain by targeting α3GlyRs
\n
One popular medical benefit from the use of cannabis is its therapeutic relief of chronic pain. There is evidence showing that some of the THC-induced cellular and behavioral effects are independent of CB1 receptors.
\n
\n
5.1.1. α3GlyR dependent
\n
A previous study has shown that the THC-induced analgesic effect in tail-flick reflex (TFR) test remained unchanged in CB1 and CB1-CB2 double-knockout mice, suggesting a different target that may mediate THC analgesia [87]. In view of this observation, we tested whether or not GlyRs are involved in the THC-induced analgesia in the TFR. Both THC and 5-desoxy-THC, a nonpsychoactive cannabinoid, produced a strong analgesic effect in TFR test, and this effect was completely abolished by the administration of strychnine. Cannabinoid-induced analgesic effect was completely absent in the α3GlyR knockout mice. By contrast, the analgesic effect induced by THC remains unchanged in both CB1 and α2GlyR subunit knockout mice [58]. The THC-induced hypothermia did not significantly differ between the α3GlyR knockout and wild-type mice. While 5-desoxy-THC is analgesic, it does not significantly affect locomotor activity and body temperature of mice. Collectively, these data have provided first evidence that α3GlyRs are the target that selectively mediates some of cannabinoid analgesic effects.
\n
The α3GlyRs contribute to the mechanism of chronic inflammatory pain induced by the intra-plantar injection of complete Freund’s adjuvant [16, 53]. Intrathecal injection of cannabidiol, the major nonpsychoactive component of cannabis, and DH-CBD, a chemically modified CBD, suppress pain hypersensitivity following CFA intra-plantar injection [52]. In addition, DH-CBD significantly attenuates both mechanical and heat-induced pain hypersensitivity following spinal sciatic nerve ligation [52]. Both DH-CBD- and CBD-induced analgesic effects in CFA-induced pain hypersensitivity were significantly reduced in mice lacking the α3 subunits. On the other hand, CBD- and DH-CBD-induced analgesic effects remained unchanged in either CB1 or CB2 knockout mice as compared to their WT littermates.
\n
\n
\n
5.1.2. A correlation between cannabinoid potentiation of I\nGly and cannabinoid analgesia
\n
To explore the interrelationship between cannabinoid in vitro and in vivo effects, 11 synthetic cannabinoids structurally similar to CBD were collected and their structural and functional activity was evaluated. Overall, there is a strong correlation between the cannabinoid-induced potentiation of GlyRs and cannabinoid-induced analgesic effect in chronic inflammatory pain in mice. By contrast, there is no such interrelationship between cannabinoid-induced analgesia and cannabinoid-binding affinity for either CB1 or CB2 receptors. Neither cannabinoid-induced potentiation of GlyRs nor cannabinoid-induced analgesia is significantly correlated with cannabinoid-induced psychoactive effects such as hypothermia, hypolocomotion, and incoordination. Collectively, these data suggest that cannabinoids selectively target at α3GlyRs to produce some of the analgesic effects.
\n
\n
\n
\n
5.2. Rescue of hyperekplexia by targeting presynaptic α1GlyRs
\n
Despite overwhelming evidence for functional deficiency of GlyRs in hyperekplexia disease, current therapeutic agents do not target GlyRs [88]. While postsynaptic GlyRs as α/β heteromers attract the most research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Therefore, two testable questions emerge. Can DH-CBD treat exaggerated startle response by restoring deficiency in GlyR function? What is the role of presynaptic α1GlyRs in hyperekplexia disease?
\n
\n
5.2.1. Cannabinoid restoration of exaggerated startle response
\n
DH-CBD, in a concentration-dependent manner, rescued the functional deficiency caused by α1R271Q-mutant GlyRs expressed in HEK-293 cells in spinal neurons isolated from α1R271Q-mutant mice [26]. Intraperitoneal injection of DH-CBD at 10–50 mg/kg suppressed both acoustic noise and tactile-induced exaggerated reflex displayed in α1R271Q-mutant mice. Similarly, DH-CBD restored a hind feet-clenching behavior and exaggerated tremor when picked up by the tail demonstrated in these hyperekplexia mice. 9 hyperekplexic-mutant α1GlyRs are classified as cannabinoid-sensitive and -insensitive receptors based on their response to cannabinoid potentiation of I\nGly and rescue of startle behavior. A correlational analysis was conducted between DH-CBD potentiation of mutant GlyR function and DH-CBD therapeutic efficacy of 4 hyperekplexia-mutant α1GlyR knock-in mice. The efficacy of DH-CBD rescue of GlyR function is correlated with its restoration of exaggerated startle behaviors. This suggests that DH-CBD restoration of hyperekplexic-mutant receptors and mice appears to be a site/genotype-specific effect.
\n
\n
\n
5.2.2. Therapeutic potential of presynaptic GlyRs
\n
There is strong evidence to suggest that presynaptic GlyRs are a potential therapeutic target of dominant hyperekplexia disease [26]. First, hyperekplexic point mutations in the α1 subunits disrupted the function of homomers more significantly than that of heteromers when expressed in HEK-293 cells. Consistent with this, the hyperekplexic mutation was found to preferentially impair I\nGly recorded in presynaptic terminals but not that from postsynaptic sites of calyceal/MNTB synapses. Second, hyperekplexic-mutant homomers were more sensitive than heteromers to DH-CBD-induced rescue. Third, DH-CBD potentiated presynaptic homomeric α1GlyRs without significantly altering postsynaptic GlyR activity recorded in calyx slices isolated from hyperekplexic-mutant mice. In line with this observation, DH-CBD preferentially restored the diminished frequencies of Gly sIPSCs and mIPSCs, whereas DH-CBD did not significantly alter the amplitudes of Gly sIPSCs and mIPSCs in spinal cord slices from hyperekplexic-mutant mice. PTX at a concentration preferentially blocked DH-CBD rescue of functional deficiency of homomeric-mutant GlyRs but not their heteromeric counterparts. Finally, the observation that DH-CBD increased pre-pulse ratio (PPR) suggests an enhanced probability of glycine release in the spinal cord slice of adult hyperekplexic-mutant mice.
\n
\n
\n
\n\n
6. Summary
\n
Recent progress as summarized in this chapter has indicated that GlyRs are the target that mediates some of the therapeutic effects of nonpsychoactive cannabinoids in the brain. The widespread medical use of cannabis has been so controversial because the plant can produce both therapeutic and unwanted effects. The cannabinoid-GlyRs interaction opens up a new avenue to separate cannabis-induced analgesic effects from cannabis-induced psychoactive effects [89]. For instance, a very recent study has successfully developed a strategy to discover and develop analgesic drugs based on NMR structure of the GlyR and the critical role of residue S296 in THC potentiation of GlyRs [60]. The therapeutic potential for nonpsychoactive cannabinoids by targeting GlyRs has been implied to hyperekplexia disease. Unlike GABAA-acting agents that are plagued by various side effects [90], DH-CBD does not produce significant psychoactive or sedative effects even at high concentrations [58]. Finally, presynaptic GlyRs are proposed to be an emerging target for the pathological mechanism of hyperekplexia disease. This idea is consistent with recent research trend toward the roles of presynaptic and extrasynaptic GlyRs in various neurological disorders [25, 63, 66, 69, 91, 92]. Thus, like postsynaptic GlyRs, presynaptic and extrasynaptic GlyRs should emerge as therapeutic targets for nonpsychoactive cannabinoids in the treatment of various neurological diseases with GlyR deficiency.
\n
\n\n',keywords:"glycine, receptor, cannabinoid, pain, nonpsychoactive, therapeutics, action of mechanism",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/50856.pdf",chapterXML:"https://mts.intechopen.com/source/xml/50856.xml",downloadPdfUrl:"/chapter/pdf-download/50856",previewPdfUrl:"/chapter/pdf-preview/50856",totalDownloads:1699,totalViews:259,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:1,impactScore:1,impactScorePercentile:58,impactScoreQuartile:3,hasAltmetrics:1,dateSubmitted:"October 13th 2015",dateReviewed:"March 29th 2016",datePrePublished:null,datePublished:"June 15th 2016",dateFinished:"May 30th 2016",readingETA:"0",abstract:"The glycine receptors (GlyRs) have been identified as major inhibitory neurotransmission receptors in the brain since the mid of last century. Unfortunately, no therapeutic agent has been developed from targeting these receptors. Accumulating evidence has suggested that GlyRs are one primary target for exogenous and endogenous cannabinoids in the central nervous system. Cannabinoids enhance the function of GlyRs in various neurons in the brain. However, this line of research has been largely ignored since little is known about the molecular mechanism and behavioral implication of cannabinoid modulation of GlyRs. Recent studies using various experimental approaches have explored molecular insights into cannabinoid-GlyR interaction and shed light on the molecular basis of nonpsychoactive cannabinoid modulation of GlyRs. Emerging evidence has suggested that cannabinoid modulation of GlyRs can contribute to some of the cannabis-induced therapeutic effects. In this chapter, I discuss recent development in studies of mechanism and therapeutic potential of cannabinoid modulation of GlyR subunits. This research direction shows considerable promise toward the development of novel therapeutic agents acting at defined modulatory sites of GlyRs in the treatment of various chronic pain, neuromotor disorders, and other GlyR deficiency diseases.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/50856",risUrl:"/chapter/ris/50856",book:{id:"5222",slug:"cannabinoids-in-health-and-disease"},signatures:"Li Zhang",authors:[{id:"179194",title:"Dr.",name:"Li",middleName:null,surname:"Zhang",fullName:"Li Zhang",slug:"li-zhang",email:"lzhang@mail.nih.gov",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"National Institutes of Health",institutionURL:null,country:{name:"United States of America"}}}],sections:[{id:"sec_1",title:"Abbreviations",level:"1"},{id:"sec_2",title:"1. Molecular composition and tissue distribution",level:"1"},{id:"sec_3",title:"2. Presynaptic and extrasynaptic GlyRs",level:"1"},{id:"sec_3_2",title:"2.1. Presynaptic receptors",level:"2"},{id:"sec_4_2",title:"2.2. Extrasynaptic GlyRs",level:"2"},{id:"sec_6",title:"3. GlyR-related disease",level:"1"},{id:"sec_6_2",title:"3.1. GlyRs in chronic pain",level:"2"},{id:"sec_6_3",title:"3.1.1. α3GlyRs in inflammatory pain",level:"3"},{id:"sec_7_3",title:"3.1.2. α3GlyRs in neuropathic pain",level:"3"},{id:"sec_9_2",title:"3.2. Alcohol use disorder",level:"2"},{id:"sec_10_2",title:"3.3. Rare genetic disease: hyperekplexia",level:"2"},{id:"sec_12",title:"4. Cannabinoid interaction with GlyRs",level:"1"},{id:"sec_12_2",title:"4.1. Cannabinoid potentiation of GlyRs",level:"2"},{id:"sec_12_3",title:"4.1.1. Allosteric modulation",level:"3"},{id:"sec_13_3",title:"4.1.2. Subunit-specific modulation",level:"3"},{id:"sec_15_2",title:"4.2. Molecular mechanisms",level:"2"},{id:"sec_15_3",title:"4.2.1. Direct interaction and the site",level:"3"},{id:"sec_16_3",title:"4.2.2. A common molecular basis for endogenous and exogenous cannabinoids",level:"3"},{id:"sec_19",title:"5. Therapeutic potential of glycinergic cannabinoids",level:"1"},{id:"sec_19_2",title:"5.1. Suppression of acute and chronic pain by targeting α3GlyRs",level:"2"},{id:"sec_19_3",title:"5.1.1. α3GlyR dependent",level:"3"},{id:"sec_20_3",title:"5.1.2. A correlation between cannabinoid potentiation of I\nGly and cannabinoid analgesia",level:"3"},{id:"sec_22_2",title:"5.2. Rescue of hyperekplexia by targeting presynaptic α1GlyRs",level:"2"},{id:"sec_22_3",title:"5.2.1. Cannabinoid restoration of exaggerated startle response",level:"3"},{id:"sec_23_3",title:"5.2.2. Therapeutic potential of presynaptic GlyRs",level:"3"},{id:"sec_26",title:"6. Summary",level:"1"}],chapterReferences:[{id:"B1",body:'[\nLynch JW. Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009 Jan;56(1):303–9. PubMed PMID: 18721822.\n]'},{id:"B2",body:'[\nDu J, Lu W, Wu S, Cheng Y, Gouaux E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. 2015 Oct 8;526(7572):224–9. PubMed PMID: 26344198. Pubmed Central PMCID: 4659708.\n]'},{id:"B3",body:'[\nHuang X, Chen H, Michelsen K, Schneider S, Shaffer PL. Crystal structure of human glycine receptor-alpha3 bound to antagonist strychnine. Nature. 2015 Oct 8;526(7572):277–80. PubMed PMID: 26416729.\n]'},{id:"B4",body:'[\nMeyer G, Kirsch J, Betz H, Langosch D. Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron. 1995 Sep;15(3):563–72. PubMed PMID: 7546736.\n]'},{id:"B5",body:'[\nWeltzien F, Puller C, O’Sullivan GA, Paarmann I, Betz H. Distribution of the glycine receptor beta-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J Comp Neurol. 2012 Dec 1;520(17):3962–81. PubMed PMID: 22592841.\n]'},{id:"B6",body:'[\nTurecek R, Trussell LO. Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13884–9. PubMed PMID: 12370408. Pubmed Central PMCID: 129792.\n]'},{id:"B7",body:'[\nBecker CM, Hoch W, Betz H. Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J. 1988 Dec 1;7(12):3717–26. PubMed PMID: 2850172. Pubmed Central PMCID: 454946. Epub 1988/12/01. eng.\n]'},{id:"B8",body:'[\nBecker CM, Betz H, Schroder H. Expression of inhibitory glycine receptors in postnatal rat cerebral cortex. Brain Res. 1993 Mar 26;606(2):220–6. PubMed PMID: 8387859.\n]'},{id:"B9",body:'[\nMalosio ML, Marqueze-Pouey B, Kuhse J, Betz H. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J. 1991 Sep;10(9):2401–9. PubMed PMID: 1651228.\n]'},{id:"B10",body:'[\nAwatramani GB, Turecek R, Trussell LO. Staggered development of GABAergic and glycinergic transmission in the MNTB. J Neurophysiol. 2005 Feb;93(2):819–28. PubMed PMID: 15456797.\n]'},{id:"B11",body:'[\nBetz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ. Structure and functions of inhibitory and excitatory glycine receptors. Ann New York Acad Sci. 1999 Apr 30;868:667–76. PubMed PMID: 10414351.\n]'},{id:"B12",body:'[\nJonsson S, Kerekes N, Hyytia P, Ericson M, Soderpalm B. Glycine receptor expression in the forebrain of male AA/ANA rats. Brain Res. 2009 Dec 11;1305 Suppl:S27–36. PubMed PMID: 19781529. Epub 2009/09/29. eng.\n]'},{id:"B13",body:'[\nDanglot L, Rostaing P, Triller A, Bessis A. Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci. 2004 Dec;27(4):394–403. PubMed PMID: 15555918.\n]'},{id:"B14",body:'[\nAroeira RI, Ribeiro JA, Sebastiao AM, Valente CA. Age-related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. J Neurochem. 2011 Aug;118(3):339–53. PubMed PMID: 21272003.\n]'},{id:"B15",body:'[\nAvila A, Vidal PM, Dear TN, Harvey RJ, Rigo JM, Nguyen L. Glycine receptor alpha2 subunit activation promotes cortical interneuron migration. Cell Reports. 2013 Aug 29;4(4):738–50. PubMed PMID: 23954789. Pubmed Central PMCID: 3763372.\n]'},{id:"B16",body:'[\nHarvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004 May 7;304(5672):884–7. PubMed PMID: 15131310.\n]'},{id:"B17",body:'[\nBaer K, Waldvogel HJ, Faull RL, Rees MI. Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Front Mol Neurosci. 2009;2:25. PubMed PMID: 19915682. Pubmed Central PMCID: 2776491.\n]'},{id:"B18",body:'[\nBode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain. 2014;7:2. PubMed PMID: 24405574. Pubmed Central PMCID: 3895786.\n]'},{id:"B19",body:'[\nTurecek R, Trussell LO. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature. 2001 May 31;411(6837):587–90. PubMed PMID: 11385573.\n]'},{id:"B20",body:'[\nYe JH, Wang F, Krnjevic K, Wang W, Xiong ZG, Zhang J. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area. J Neurosci. 2004 Oct 13;24(41):8961–74. PubMed PMID: 15483115.\n]'},{id:"B21",body:'[\nWang F, Xiao C, Ye JH. Taurine activates excitatory non-synaptic glycine receptors on dopamine neurones in ventral tegmental area of young rats. J Physiol. 2005 Jun 1;565(Pt 2):503–16. PubMed PMID: 15817633. Pubmed Central PMCID: 1464534.\n]'},{id:"B22",body:'[\nLee EA, Cho JH, Choi IS, Nakamura M, Park HM, Lee JJ, et al. Presynaptic glycine receptors facilitate spontaneous glutamate release onto hilar neurons in the rat hippocampus. J Neurochem. 2009 Apr;109(1):275–86. PubMed PMID: 19200346.\n]'},{id:"B23",body:'[\nHruskova B, Trojanova J, Kulik A, Kralikova M, Pysanenko K, Bures Z, et al. Differential distribution of glycine receptor subtypes at the rat calyx of held synapse. J Neurosci. 2012 Nov 21;32(47):17012–24. PubMed PMID: 23175852. Pubmed Central PMCID: 3531607.\n]'},{id:"B24",body:'[\nChoi KH, Nakamura M, Jang IS. Presynaptic glycine receptors increase GABAergic neurotransmission in rat periaqueductal gray neurons. Neural Plast. 2013;2013:954302. PubMed PMID: 24078885. Pubmed Central PMCID: 3773970.\n]'},{id:"B25",body:'[\nKono Y, Hulsmann S. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking alpha3 glycine receptor subunits. Neuroscience. 2016 Feb 3;320:1–7. PubMed PMID: 26851771.\n]'},{id:"B26",body:'[\nXiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, et al. Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci. 2014 Feb;17(2):232–9. PubMed PMID: 24390226. Pubmed Central PMCID: 4019963.\n]'},{id:"B27",body:'[\nJeong H-J, Jang I-S, Moorhouse AJ, Akaike N. Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons. J Physiol. 2003 July 15;550(2):373–83.\n]'},{id:"B28",body:'[\nYe J-H, Wang F, Krnjevic K, Wang W, Xiong Z-G, Zhang J. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area. J Neurosci.. 2004 October 13, 2004;24(41):8961–74.\n]'},{id:"B29",body:'[\nGriffon N, Buttner C, Nicke A, Kuhse J, Schmalzing G, Betz H. Molecular determinants of glycine receptor subunit assembly. EMBO J. 1999 Sep 1;18(17):4711–21. PubMed PMID: 10469650. Pubmed Central PMCID: 1171544.\n]'},{id:"B30",body:'[\nPribilla I, Takagi T, Langosch D, Bormann J, Betz H. The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 1992 Dec;11(12):4305–11. PubMed PMID: 1385113. Pubmed Central PMCID: 557003. Epub 1992/12/01. eng.\n]'},{id:"B31",body:'[\nYang Z, Cromer BA, Harvey RJ, Parker MW, Lynch JW. A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J Neurochem. 2007 Oct;103(2):580–9. PubMed PMID: 17714449.\n]'},{id:"B32",body:'[\nTurecek R, Trussell LO. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature. 2001;411(6837):587.\n]'},{id:"B33",body:'[\nDeleuze C, Runquist M, Orcel H, Rabie A, Dayanithi G, Alonso G, et al. Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system. Neuroscience. 2005;135(2):475–83. PubMed PMID: 16125853. Epub 2005/08/30. eng.\n]'},{id:"B34",body:'[\nGuan YZ, Ye JH. Glycine blocks long-term potentiation of GABAergic synapses in the ventral tegmental area. Neuroscience. 2016 Mar 24;318:134–42. PubMed PMID: 26806277. Pubmed Central PMCID: 4753108.\n]'},{id:"B35",body:'[\nChiu YC, Liao WT, Liu CK, Wu CH, Lin CR. Reduction of spinal glycine receptor-mediated miniature inhibitory postsynaptic currents in streptozotocin-induced diabetic neuropathic pain. Neurosci Lett. 2016 Jan 12;611:88–93. PubMed PMID: 26598022.\n]'},{id:"B36",body:'[\nChattipakorn SC, McMahon LL. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol. 2002 Mar;87(3):1515–25. PubMed PMID: 11877523.\n]'},{id:"B37",body:'[\nDeleuze C, Alonso G, Lefevre IA, Duvoid-Guillou A, Hussy N. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience. 2005;133(1):175–83. PubMed PMID: 15893641.\n]'},{id:"B38",body:'[\nKarnani MM, Venner A, Jensen LT, Fugger L, Burdakov D. Direct and indirect control of orexin/hypocretin neurons by glycine receptors. J Physiol. 2011 Feb 1;589(Pt 3):639–51. PubMed PMID: 21135047. Pubmed Central PMCID: 3055548.\n]'},{id:"B39",body:'[\nSalling MC, Harrison NL. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated. J Neurophysiol. 2014 Sep 1;112(5):1169–78. PubMed PMID: 24872538. Pubmed Central PMCID: 4122733.\n]'},{id:"B40",body:'[\nFlint AC, Liu X, Kriegstein AR. Nonsynaptic glycine receptor activation during early neocortical development. Neuron. 1998 Jan;20(1):43–53. PubMed PMID: 9459441.\n]'},{id:"B41",body:'[\nMangin JM, Baloul M, Prado De Carvalho L, Rogister B, Rigo JM, Legendre P. Kinetic properties of the alpha2 homo-oligomeric glycine receptor impairs a proper synaptic functioning. J Physiol. 2003 Dec 1;553(Pt 2):369–86. PubMed PMID: 12972628. Pubmed Central PMCID: 2343566.\n]'},{id:"B42",body:'[\nSipila ST, Spoljaric A, Virtanen MA, Hiironniemi I, Kaila K. Glycine transporter-1 controls nonsynaptic inhibitory actions of glycine receptors in the neonatal rat hippocampus. J Neurosci. 2014 Jul 23;34(30):10003–9. PubMed PMID: 25057202.\n]'},{id:"B43",body:'[\nAlmarghini K, Remy A, Tappaz M. Immunocytochemistry of the taurine biosynthesis enzyme, cysteine sulfinate decarboxylase, in the cerebellum: evidence for a glial localization. Neuroscience. 1991;43(1):111–9. PubMed PMID: 1922763.\n]'},{id:"B44",body:'[\nHussy N, Bres V, Rochette M, Duvoid A, Alonso G, Dayanithi G, et al. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci. 2001 Sep 15;21(18):7110–6. PubMed PMID: 11549721.\n]'},{id:"B45",body:'[\nChoe KY, Olson JE, Bourque CW. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci. 2012 Sep 5;32(36):12518–27. PubMed PMID: 22956842.\n]'},{id:"B46",body:'[\nDeleuze C, Duvoid A, Hussy N. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol. 1998 Mar 1;507 (Pt 2):463–71. PubMed PMID: 9518705. Pubmed Central PMCID: 2230788.\n]'},{id:"B47",body:'[\nDahchour A, Quertemont E, De Witte P. Taurine increases in the nucleus accumbens microdialysate after acute ethanol administration to naive and chronically alcoholised rats. Brain Res. 1996 Sep 30;735(1):9–19. PubMed PMID: 8905164.\n]'},{id:"B48",body:'[\nAdermark L, Clarke RB, Olsson T, Hansson E, Soderpalm B, Ericson M. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens. Addict Biol. 2011 Jan;16(1):43–54. PubMed PMID: 20331561.\n]'},{id:"B49",body:'[\nEricson M, Chau P, Adermark L, Soderpalm B. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol. Adv Exp Med. Biol. 2013;775:215–23. PubMed PMID: 23392937.\n]'},{id:"B50",body:'[\nBadanich KA, Mulholland PJ, Beckley JT, Trantham-Davidson H, Woodward JJ. Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology. 2013 Jun;38(7):1176–88. PubMed PMID: 23314219. Pubmed Central PMCID: 3656360.\n]'},{id:"B51",body:'[\nJonsson S, Adermark L, Ericson M, Soderpalm B. The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology. 2014 Jul;82:69–75. PubMed PMID: 24686030.\n]'},{id:"B52",body:'[\nXiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting alpha3 glycine receptors. J Exp Med. 2012 Jun 4;209(6):1121–34. PubMed PMID: 22585736. Pubmed Central PMCID: 3371734.\n]'},{id:"B53",body:'[\nHarvey VL, Caley A, Muller UC, Harvey RJ, Dickenson AH. A selective role for alpha3 subunit glycine receptors in inflammatory pain. Front Mol Neurosci. 2009;2:14. PubMed PMID: 19915732. Pubmed Central PMCID: 2776487. Epub 2009/11/17. eng.\n]'},{id:"B54",body:'[\nBreitinger U, Breitinger HG. Augmentation of glycine receptor alpha3 currents suggests a mechanism for glucose-mediated analgesia. Neurosci Lett. 2016 Jan 26;612:110–5. PubMed PMID: 26656729.\n]'},{id:"B55",body:'[\nMotoyama N, Morita K, Kitayama T, Shiraishi S, Uezono Y, Nishimura F, et al. Pain-releasing action of platelet-activating factor (PAF) antagonists in neuropathic pain animal models and the mechanisms of action. Eur J Pain. 2013 Sep;17(8):1156–67. PubMed PMID: 23355413.\n]'},{id:"B56",body:'[\nKallenborn-Gerhardt W, Lu R, Lorenz J, Gao W, Weiland J, Del Turco D, et al. Prolonged zymosan-induced inflammatory pain hypersensitivity in mice lacking glycine receptor alpha2. Behav Brain Res. 2012 Jan 1;226(1):106–11. PubMed PMID: 21924294.\n]'},{id:"B57",body:'[\nBecker L, von Wegerer J, Schenkel J, Zeilhofer HU, Swandulla D, Weiher H. Disease-specific human glycine receptor alpha1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice. J Neurosci. 2002 Apr 1;22(7):2505–12. PubMed PMID: 11923415.\n]'},{id:"B58",body:'[\nXiong W, Cheng K, Cui T, Godlewski G, Rice KC, Xu Y, et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol. 2011 May;7(5):296–303. PubMed PMID: 21460829. Pubmed Central PMCID: 3388539.\n]'},{id:"B59",body:'[\nZhang JY, Gong N, Huang JL, Guo LC, Wang YX. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal alpha3 glycine receptors. Pain. 2013 Nov;154(11):2452–62. PubMed PMID: 23886522.\n]'},{id:"B60",body:'[\nWells MM, Tillman TS, Mowrey DD, Sun T, Xu Y, Tang P. Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor alpha1 for the treatment of pain. J Med Chem. 2015 Apr 9;58(7):2958–66. PubMed PMID: 25790278. Pubmed Central PMCID: 4414066.\n]'},{id:"B61",body:'[\nMolander A, Soderpalm B. Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system. Alcohol Clin Exp Res. 2005 Jan;29(1):27–37. PubMed PMID: 15654288.\n]'},{id:"B62",body:'[\nMolander A, Soderpalm B. Glycine receptors regulate dopamine release in the rat nucleus accumbens. Alcohol Clin Exp Res. 2005 Jan;29(1):17–26. PubMed PMID: 15654287.\n]'},{id:"B63",body:'[\nChau P, Hoifodt-Lido H, Lof E, Soderpalm B, Ericson M. Glycine receptors in the nucleus accumbens involved in the ethanol intake-reducing effect of acamprosate. Alcohol Clin Exp Res. 2009 Jan;34(1):39–45. PubMed PMID: 19860809. Epub 2009/10/29. eng.\n]'},{id:"B64",body:'[\nAdermark L, Clarke RB, Olsson T, Hansson E, Soderpalm B, Ericson M. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens. Addict Biol. 2010 Jan;16(1):43–54. PubMed PMID: 20331561. Epub 2010/03/25. eng.\n]'},{id:"B65",body:'[\nLi J, Nie H, Bian W, Dave V, Janak PH, Ye JH. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption. J Pharmacol Exp Ther. Epub 2012 Jan 11. Apr;341(1):196–204. doi: 10.1124/jpet.111.190058.\n\n]'},{id:"B66",body:'[\nAdermark L, Clarke RB, Soderpalm B, Ericson M. Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons. Neurochem Int. 2011 May;58(6):693–9. PubMed PMID: 21333709.\n]'},{id:"B67",body:'[\nClarke RB, Adermark L, Chau P, Soderpalm B, Ericson M. Increase in nucleus accumbens dopamine levels following local ethanol administration is not mediated by acetaldehyde. Alcohol Alcohol. 2014 Sep–Oct;49(5):498–504. PubMed PMID: 25063803.\n]'},{id:"B68",body:'[\nClarke RB, Soderpalm B, Lotfi A, Ericson M, Adermark L. Involvement of inhibitory receptors in modulating dopamine signaling and synaptic activity following acute ethanol exposure in striatal subregions. Alcohol Clin Exp Res. 2015 Dec;39(12):2364–74. PubMed PMID: 26614538.\n]'},{id:"B69",body:'[\nLi J, Nie H, Bian W, Dave V, Janak PH, Ye JH. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption. J Pharmacol Exp Ther. 2012 Apr;341(1):196–204. PubMed PMID: 22238211. Pubmed Central PMCID: 3310696.\n]'},{id:"B70",body:'[\nBlednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Harris RA. Glycine receptors containing alpha2 or alpha3 subunits regulate specific ethanol-mediated behaviors. J Pharmacol Exp Ther. 2015 Apr;353(1):181–91. PubMed PMID: 25678534. Pubmed Central PMCID: 4366753.\n]'},{id:"B71",body:'[\nBlednov YA, Benavidez JM, Homanics GE, Harris RA. Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor alpha1 subunit. J PharmacolExp Ther. 2012 Feb;340(2):317–29. PubMed PMID: 22037202. Pubmed Central PMCID: 3263963.\n]'},{id:"B72",body:'[\nAguayo LG, Castro P, Mariqueo T, Munoz B, Xiong W, Zhang L, et al. Altered sedative effects of ethanol in mice with alpha1 glycine receptor subunits that are insensitive to Gbetagamma modulation. Neuropsychopharmacology. 2014 Oct;39(11):2538–48. PubMed PMID: 24801766. Pubmed Central PMCID: 4207329.\n]'},{id:"B73",body:'[\nDavies JS, Chung SK, Thomas RH, Robinson A, Hammond CL, Mullins JG, et al. The glycinergic system in human startle disease: a genetic screening approach. Front Mol Neurosci. 2010;3:8. PubMed PMID: 20407582. Pubmed Central PMCID: 2854534.\n]'},{id:"B74",body:'[\nShiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connell P, Wasmuth JJ. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993 Dec;5(4):351–8. PubMed PMID: 8298642.\n]'},{id:"B75",body:'[\nHarvey RJ, Topf M, Harvey K, Rees MI. The genetics of hyperekplexia: more than startle! Trends Genet. 2008 Sep;24(9):439–47. PubMed PMID: 18707791. Epub 2008/08/19. eng.\n]'},{id:"B76",body:'[\nJames VM, Bode A, Chung SK, Gill JL, Nielsen M, Cowan FM, et al. Novel missense mutations in the glycine receptor beta subunit gene (GLRB) in startle disease. Neurobiol Dis. 2013 Apr;52:137–49. PubMed PMID: 23238346. Pubmed Central PMCID: 3581774.\n]'},{id:"B77",body:'[\nHejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. {Delta}9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol. 2006 Mar;69(3):991–7. PubMed PMID: 16332990.\n]'},{id:"B78",body:'[\nYang Z, Aubrey KR, Alroy I, Harvey RJ, Vandenberg RJ, Lynch JW. Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochem Pharmacol. 2008 Oct 15;76(8):1014–23. PubMed PMID: 18755158. Epub 2008/08/30. eng.\n]'},{id:"B79",body:'[\nAhrens J, Demir R, Leuwer M, de la Roche J, Krampfl K, Foadi N, et al. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function. Pharmacology. 2009;83(4):217–22. PubMed PMID: 19204413.\n]'},{id:"B80",body:'[\nDelaney AJ, Esmaeili A, Sedlak PL, Lynch JW, Sah P. Differential expression of glycine receptor subunits in the rat basolateral and central amygdala. Neurosci Lett. 2009 Jan 22;469(2):237–42. PubMed PMID: 19995593. Epub 2009/12/10. eng.\n]'},{id:"B81",body:'[\nYevenes GE, Zeilhofer HU. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PloS One. 2011;6(8):e23886. PubMed PMID: 21901142. Pubmed Central PMCID: 3162021.\n]'},{id:"B82",body:'[\nXiong W1, Wu X, Li F, Cheng K, Rice KC, Lovinger DM, Zhang L. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J Neurosci. 2012; Sep 12;32(37):12979.\n]'},{id:"B83",body:'[\nHejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol. 2006 Mar;69(3):991–7. PubMed PMID: 16332990.\n]'},{id:"B84",body:'[\nHuestis MA, Cone EJ. Relationship of Delta 9-tetrahydrocannabinol concentrations in oral fluid and plasma after controlled administration of smoked cannabis. J Anal Toxicol. 2004 Sep;28(6):394–9. PubMed PMID: 15516285.\n]'},{id:"B85",body:'[\nLozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci. 2005 Aug 17;25(33):7499–506. PubMed PMID: 16107637.\n]'},{id:"B86",body:'[\nXiong W, Wu X, Li F, Cheng K, Rice KC, Lovinger DM, et al. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J Neurosci. 2012 Apr 11;32(15):5200–8. PubMed PMID: 22496565. Pubmed Central PMCID: 3334839.\n]'},{id:"B87",body:'[\nZimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5780–5. PubMed PMID: 10318961. Pubmed Central PMCID: 21937.\n]'},{id:"B88",body:'[\nBakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA. Startle syndromes. Lancet Neurol. 2006 Jun;5(6):513–24. PubMed PMID: 16713923. Epub 2006/05/23. eng.\n]'},{id:"B89",body:'[\nChristie MJ, Vaughan CW. Receptors: cannabis medicine without a high. Nat Chem Biol. 2011 May;7(5):249–50. PubMed PMID: 21502945. Epub 2011/04/20. eng.\n]'},{id:"B90",body:'[\nAshton H. Guidelines for the rational use of benzodiazepines. When and what to use. Drugs. 1994 Jul;48(1):25–40. PubMed PMID: 7525193. Epub 1994/07/01. eng.\n]'},{id:"B91",body:'[\nYe JH, Tao L, Ren J, Schaefer R, Krnjevic K, Liu PL, et al. Ethanol potentiation of glycine-induced responses in dissociated neurons of rat ventral tegmental area. Journal Pharmacol Exp Ther. 2001 Jan;296(1):77–83. PubMed PMID: 11123365.\n]'},{id:"B92",body:'[\nSebe JY, Eggers ED, Berger AJ. Differential effects of ethanol on GABA(A) and glycine receptor-mediated synaptic currents in brain stem motoneurons. J Neurophysiol. 2003 Aug;90(2):870–5. PubMed PMID: 12702707.\n]'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Li Zhang",address:"lzhang@mail.nih.gov",affiliation:'- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MA, USA
'}],corrections:null},book:{id:"5222",type:"book",title:"Cannabinoids in Health and Disease",subtitle:null,fullTitle:"Cannabinoids in Health and Disease",slug:"cannabinoids-in-health-and-disease",publishedDate:"June 15th 2016",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/5222.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-2430-6",printIsbn:"978-953-51-2429-0",pdfIsbn:"978-953-51-4198-3",reviewType:"peer-reviewed",numberOfWosCitations:38,isAvailableForWebshopOrdering:!0,editors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"244717",title:"Dr.",name:"Rosanna",middleName:null,surname:"Chianese",slug:"rosanna-chianese",fullName:"Rosanna Chianese"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"992"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"50857",type:"chapter",title:"The Endocannabinoid System in Human Physiology",slug:"the-endocannabinoid-system-in-human-physiology",totalDownloads:1953,totalCrossrefCites:1,signatures:"Rosanna Chianese and Rosaria Meccariello",reviewType:"peer-reviewed",authors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",fullName:"Rosaria Meccariello",slug:"rosaria-meccariello"}]},{id:"50674",type:"chapter",title:"Endocannabinoid Signaling in Neural Circuits of the Olfactory and Limbic System",slug:"endocannabinoid-signaling-in-neural-circuits-of-the-olfactory-and-limbic-system",totalDownloads:1602,totalCrossrefCites:1,signatures:"Thomas Heinbockel, Ze-Jun Wang, Edward A. Brown and Paul T.\nAustin",reviewType:"peer-reviewed",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",fullName:"Thomas Heinbockel",slug:"thomas-heinbockel"},{id:"185616",title:"Dr.",name:"Ze-Jun",middleName:null,surname:"Wang",fullName:"Ze-Jun Wang",slug:"ze-jun-wang"},{id:"185617",title:"Mr.",name:"Edward",middleName:null,surname:"Brown",fullName:"Edward Brown",slug:"edward-brown"},{id:"185618",title:"Mr.",name:"Paul",middleName:null,surname:"Austin",fullName:"Paul Austin",slug:"paul-austin"}]},{id:"50651",type:"chapter",title:"The Potential Therapeutic Role of the Cannabinoid System in Neurological Disorders of the Basal Ganglia: An Overview",slug:"the-potential-therapeutic-role-of-the-cannabinoid-system-in-neurological-disorders-of-the-basal-gang",totalDownloads:1518,totalCrossrefCites:0,signatures:"Gabriela Aguilera and Abel Santamaría",reviewType:"peer-reviewed",authors:[{id:"178440",title:"Ph.D.",name:"Abel",middleName:null,surname:"Santamaria",fullName:"Abel Santamaria",slug:"abel-santamaria"},{id:"184809",title:"MSc.",name:"Gabriela",middleName:null,surname:"Aguilera",fullName:"Gabriela Aguilera",slug:"gabriela-aguilera"}]},{id:"50166",type:"chapter",title:"Cannabinoids and Motor Control of the Basal Ganglia: Therapeutic Potential in Movement Disorders",slug:"cannabinoids-and-motor-control-of-the-basal-ganglia-therapeutic-potential-in-movement-disorders",totalDownloads:1587,totalCrossrefCites:1,signatures:"Teresa Morera-Herreras, Cristina Miguelez, Asier Aristieta, María Torrecilla, José Ángel Ruiz-Ortega and Luisa Ugedo",reviewType:"peer-reviewed",authors:[{id:"178735",title:"Dr.",name:"Teresa",middleName:null,surname:"Morera-Herreras",fullName:"Teresa Morera-Herreras",slug:"teresa-morera-herreras"},{id:"179364",title:"Dr.",name:"Maria",middleName:null,surname:"Torrecilla",fullName:"Maria Torrecilla",slug:"maria-torrecilla"},{id:"179365",title:"Dr.",name:"Cristina",middleName:null,surname:"Miguelez",fullName:"Cristina Miguelez",slug:"cristina-miguelez"},{id:"179366",title:"Dr.",name:"Asier",middleName:null,surname:"Aristieta",fullName:"Asier Aristieta",slug:"asier-aristieta"},{id:"179367",title:"Dr.",name:"Jose Angel",middleName:null,surname:"Ruiz-Ortega",fullName:"Jose Angel Ruiz-Ortega",slug:"jose-angel-ruiz-ortega"},{id:"179368",title:"Prof.",name:"Luisa",middleName:null,surname:"Ugedo",fullName:"Luisa Ugedo",slug:"luisa-ugedo"}]},{id:"50856",type:"chapter",title:"Therapeutic Potential of Nonpsychoactive Cannabinoids by Targeting at Glycine Receptors",slug:"therapeutic-potential-of-nonpsychoactive-cannabinoids-by-targeting-at-glycine-receptors",totalDownloads:1699,totalCrossrefCites:0,signatures:"Li Zhang",reviewType:"peer-reviewed",authors:[{id:"179194",title:"Dr.",name:"Li",middleName:null,surname:"Zhang",fullName:"Li Zhang",slug:"li-zhang"}]},{id:"50397",type:"chapter",title:"Dietary Omega-6/Omega-3 and Endocannabinoids: Implications for Brain Health and Diseases",slug:"dietary-omega-6-omega-3-and-endocannabinoids-implications-for-brain-health-and-diseases",totalDownloads:2533,totalCrossrefCites:6,signatures:"Clémentine Bosch-Bouju and Sophie Layé",reviewType:"peer-reviewed",authors:[{id:"178351",title:"Dr.",name:"Sophie",middleName:null,surname:"Layé",fullName:"Sophie Layé",slug:"sophie-laye"}]},{id:"50549",type:"chapter",title:"The Endocannabinoid-Like Derivative Oleoylethanolamide at the Gut–Brain Interface: A “Lipid Way” to Control Energy Intake and Body Weight",slug:"the-endocannabinoid-like-derivative-oleoylethanolamide-at-the-gut-brain-interface-a-lipid-way-to-con",totalDownloads:1893,totalCrossrefCites:1,signatures:"Maria Beatrice Passani and Roberto Coccurello",reviewType:"peer-reviewed",authors:[{id:"178510",title:"Ph.D.",name:"Roberto",middleName:null,surname:"Coccurello",fullName:"Roberto Coccurello",slug:"roberto-coccurello"}]},{id:"50317",type:"chapter",title:"Cannabinoid CB1/CB2 Receptors in the Heart: Expression, Regulation, and Function",slug:"cannabinoid-cb1-cb2-receptors-in-the-heart-expression-regulation-and-function",totalDownloads:2075,totalCrossrefCites:6,signatures:"Elena Kaschina",reviewType:"peer-reviewed",authors:[{id:"32266",title:"Dr.",name:"Elena",middleName:null,surname:"Kaschina",fullName:"Elena Kaschina",slug:"elena-kaschina"}]},{id:"50351",type:"chapter",title:"The Role for the Endocannabinoid System in Cardioprotection and Myocardial Adaptation",slug:"the-role-for-the-endocannabinoid-system-in-cardioprotection-and-myocardial-adaptation",totalDownloads:1543,totalCrossrefCites:2,signatures:"Oliver Dewald and Georg D. Duerr",reviewType:"peer-reviewed",authors:[{id:"178354",title:"Dr.",name:"Oliver",middleName:null,surname:"Dewald",fullName:"Oliver Dewald",slug:"oliver-dewald"},{id:"185056",title:"Dr.",name:"Georg",middleName:null,surname:"Duerr",fullName:"Georg Duerr",slug:"georg-duerr"}]},{id:"50593",type:"chapter",title:"Cannabinoids: Drug or Medication?",slug:"cannabinoids-drug-or-medication-",totalDownloads:1929,totalCrossrefCites:0,signatures:"Léa Giron and Katia Befort",reviewType:"peer-reviewed",authors:[{id:"179154",title:"Dr.",name:"Katia",middleName:null,surname:"Befort",fullName:"Katia Befort",slug:"katia-befort"},{id:"179388",title:"MSc.",name:"Léa",middleName:null,surname:"Giron",fullName:"Léa Giron",slug:"lea-giron"}]}]},relatedBooks:[{type:"book",id:"6079",title:"Spermatozoa",subtitle:"Facts and Perspectives",isOpenForSubmission:!1,hash:"2d4488814a6ea68efcd3544209c9e4d2",slug:"spermatozoa-facts-and-perspectives",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/6079.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"60076",title:"Introductory Chapter: Spermatozoa - Facts and Perspectives",slug:"introductory-chapter-spermatozoa-facts-and-perspectives",signatures:"Rosanna Chianese and Rosaria Meccariello",authors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",fullName:"Rosaria Meccariello",slug:"rosaria-meccariello"},{id:"244717",title:"Dr.",name:"Rosanna",middleName:null,surname:"Chianese",fullName:"Rosanna Chianese",slug:"rosanna-chianese"}]},{id:"58017",title:"Sequence of Germ Cells Differentiation During Spermiogenesis of the Amphibian Urodele Ambystoma dumerilii",slug:"sequence-of-germ-cells-differentiation-during-spermiogenesis-of-the-amphibian-urodele-ambystoma-dume",signatures:"Mari Carmen Uribe and Sergio Gracia-Fernández",authors:[{id:"208123",title:"Dr.",name:"Mari-Carmen",middleName:null,surname:"Uribe",fullName:"Mari-Carmen Uribe",slug:"mari-carmen-uribe"},{id:"208125",title:"BSc.",name:"Sergio",middleName:null,surname:"Gracia-Fernández",fullName:"Sergio Gracia-Fernández",slug:"sergio-gracia-fernandez"}]},{id:"59998",title:"In Vitro Spermatogenesis; Past, Present, and Future",slug:"in-vitro-spermatogenesis-past-present-and-future",signatures:"DMAB Dissanayake",authors:[{id:"220140",title:"Dr.",name:"Anura",middleName:null,surname:"Dissanayake",fullName:"Anura Dissanayake",slug:"anura-dissanayake"}]},{id:"57404",title:"Assessment of Human Sperm Cells Morphological Parameters",slug:"assessment-of-human-sperm-cells-morphological-parameters",signatures:"Kristina Lasiene",authors:[{id:"206099",title:"Dr.",name:"Kristina",middleName:null,surname:"Lasiene",fullName:"Kristina Lasiene",slug:"kristina-lasiene"}]},{id:"57694",title:"Ultrastructure of Spermatozoa from Infertility Patients",slug:"ultrastructure-of-spermatozoa-from-infertility-patients",signatures:"Elizaveta E. Bragina and Elena N. Bocharova",authors:[{id:"207294",title:"Dr.",name:"Elizaveta",middleName:null,surname:"Bragina",fullName:"Elizaveta Bragina",slug:"elizaveta-bragina"}]},{id:"60429",title:"Male Accessory Glands and Sperm Function",slug:"male-accessory-glands-and-sperm-function",signatures:"Lozano Hernández Jesús Ricardo",authors:[{id:"219504",title:"Ph.D.",name:"Ricardo",middleName:null,surname:"Lozano",fullName:"Ricardo Lozano",slug:"ricardo-lozano"}]},{id:"57417",title:"Physiological and Pathological Roles of Free Radicals in Male Reproduction",slug:"physiological-and-pathological-roles-of-free-radicals-in-male-reproduction",signatures:"Eva Tvrdá, Peter Massanyi and Norbert Lukáč",authors:[{id:"204993",title:"Dr.",name:"Eva",middleName:null,surname:"Tvrdá",fullName:"Eva Tvrdá",slug:"eva-tvrda"},{id:"206075",title:"Prof.",name:"Norbert",middleName:null,surname:"Lukáč",fullName:"Norbert Lukáč",slug:"norbert-lukac"},{id:"220755",title:"Prof.",name:"Peter",middleName:null,surname:"Massanyi",fullName:"Peter Massanyi",slug:"peter-massanyi"}]},{id:"57682",title:"Environmental Factors and Male Infertility",slug:"environmental-factors-and-male-infertility",signatures:"Qiuqin Tang, Wei Wu, Jing Zhang, Rong Fan and Mu Liu",authors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",fullName:"Wei Wu",slug:"wei-wu"},{id:"184798",title:"Ms.",name:"Qiuqin",middleName:null,surname:"Tang",fullName:"Qiuqin Tang",slug:"qiuqin-tang"},{id:"207434",title:"Mr.",name:"Mu",middleName:null,surname:"Liu",fullName:"Mu Liu",slug:"mu-liu"},{id:"218026",title:"Mrs.",name:"Jing",middleName:null,surname:"Zhang",fullName:"Jing Zhang",slug:"jing-zhang"},{id:"218027",title:"Mrs.",name:"Rong",middleName:null,surname:"Fan",fullName:"Rong Fan",slug:"rong-fan"}]},{id:"59074",title:"The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health",slug:"the-role-of-human-semen-as-an-early-and-reliable-tool-of-environmental-impact-assessment-on-human-he",signatures:"Luigi Montano, Paolo Bergamo, Maria Grazia Andreassi and\nStefano Lorenzetti",authors:[{id:"206180",title:"Dr.",name:"Luigi",middleName:null,surname:"Montano",fullName:"Luigi Montano",slug:"luigi-montano"},{id:"222782",title:"Dr.",name:"Paolo",middleName:null,surname:"Bergamo",fullName:"Paolo Bergamo",slug:"paolo-bergamo"},{id:"222783",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Andreassi",fullName:"Maria Grazia Andreassi",slug:"maria-grazia-andreassi"},{id:"222784",title:"Dr.",name:"Stefano",middleName:null,surname:"Lorenzetti",fullName:"Stefano Lorenzetti",slug:"stefano-lorenzetti"}]},{id:"59268",title:"Interacytoplasmic Morphologically Selected Sperm Injection: A Tool for Selecting the Best Sperm in Real Time",slug:"interacytoplasmic-morphologically-selected-sperm-injection-a-tool-for-selecting-the-best-sperm-in-re",signatures:"Yona Barak and Adrian Ellenbogen",authors:[{id:"209136",title:"Ph.D.",name:"Yona",middleName:null,surname:"Barak",fullName:"Yona Barak",slug:"yona-barak"},{id:"209147",title:"Prof.",name:"Adrian",middleName:null,surname:"Ellenbogen",fullName:"Adrian Ellenbogen",slug:"adrian-ellenbogen"}]},{id:"57212",title:"Advanced Label-Free Optical Methods for Spermatozoa Quality Assessment and Selection",slug:"advanced-label-free-optical-methods-for-spermatozoa-quality-assessment-and-selection",signatures:"Annalisa De Angelis, Maria Antonietta Ferrara, Giuseppe Coppola\nand Anna Chiara De Luca",authors:[{id:"104314",title:"Dr.",name:"Maria Antonietta",middleName:null,surname:"Ferrara",fullName:"Maria Antonietta Ferrara",slug:"maria-antonietta-ferrara"},{id:"106792",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Coppola",fullName:"Giuseppe Coppola",slug:"giuseppe-coppola"},{id:"206226",title:"Ph.D.",name:"Annalisa",middleName:null,surname:"De Angelis",fullName:"Annalisa De Angelis",slug:"annalisa-de-angelis"},{id:"207532",title:"Dr.",name:"Anna Chiara",middleName:null,surname:"De Luca",fullName:"Anna Chiara De Luca",slug:"anna-chiara-de-luca"}]}]}],publishedBooks:[{type:"book",id:"4625",title:"Complementary Therapies for the Body, Mind and Soul",subtitle:null,isOpenForSubmission:!1,hash:"48cd88cd7a6ffb4ade0088448e5ac56b",slug:"complementary-therapies-for-the-body-mind-and-soul",bookSignature:"Marcelo Saad",coverURL:"https://cdn.intechopen.com/books/images_new/4625.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5222",title:"Cannabinoids in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"d684a703afd17dc97d18480a982e5316",slug:"cannabinoids-in-health-and-disease",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/5222.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"5222",title:"Cannabinoids in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"d684a703afd17dc97d18480a982e5316",slug:"cannabinoids-in-health-and-disease",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/5222.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"78782",title:"Trust in Leader as a Psychological Factor on Employee and Organizational Outcome",doi:"10.5772/intechopen.100372",slug:"trust-in-leader-as-a-psychological-factor-on-employee-and-organizational-outcome",body:'1. Introduction
Trust in leader has been discussed in numerous studies and across several disciplines. Trust can be defined as “the belief that something/someone is true or correct, or that you can rely on it” [1]. In current business world, leaders play a major role in the outcomes of organizations. These can be turnover, environmental responsibilities, wellbeing, social image, and market elements. It is widely believed that trust carries a vital importance in the relationship between leader and follower. The higher the extent of trust, the higher the likelihood of positive behavioral and performance outcomes. Sciences such as psychology, behavioral science, neuroscience, education, and politics have noted the aforementioned vitality. To provide a thorough understanding on the linkage of leadership and trust, an array of recent studies have been reviewed. In this sense, different styles of leadership and their impact on trust are highlighted. This provides a pathway for comprehending how trust as a psychological factor is linked to leadership and subsequently, employee and organizational outcomes.
The manner in which businesses are managed, requires leaders to meet high standards by being able to comprehend data, communicate and interact across various media channels, be aware of political situations and changes. Notably, leaders are to provide quality services, and compete with others for achieving organizational success [2]. For leaders, it is imperative that their bonds and linkage with others (staff or clients) are recognized as a prevalence for business conduct. This becomes more explicit in service sectors as human interaction are constant or higher compared to other industries. However, empowering followers, focusing on their wellbeing, and provision of an organizational culture, where resilience is encouraged have become easier to comprehend through development of neuroscience and other relevant fields of psychology and behavior. Emergence of these disciplines have provided a combination of scientific and psychological factors that aid leaders in obtaining higher levels of effectiveness [2]. Making better decisions, finding new solutions, regulating emotions, sense of teamwork, and being more influential on others as well as implementing change more smoothly are among the traits that a leader with scientific knowledge can exhibit [3]. Neuro-leadership has been examined in human services with consideration of issues such as, effect of toxic leadership, turnover, and organizational culture. These are reflections of a leaders’ approach, staff and their engagement with job, and organizational trust [4]. Leader is not a mere title in business but rather a behavioral framework, in which the linkage between leader and their staff is focused [5]. In this sense, there are three fundamental aspects, which are required to exist that are namely, leaders’ commitment, harmonized followers, and a mutual aspiration towards the firms’ vision among all members.
Among the attributes and traits of leaders, trust is a key factor that can lead to emergence of positive behavioral outcomes. Psychologically, trust can lead to employees exhibiting extra role behaviors, volunteer intent, engagement, higher job satisfaction, and performance. Embedded in the premise of leader-member exchange (LMX) theory [6], a two-way relationship between leader and their followers is shaped through trust, emotions, and respect. It is important to note that from psychological perspective, trust is a fundamental element for psychosocial development [7]. In this regard, leaders may treat each individual differently and thus, have high or low quality exchanges, which will lead to varying perceptions and trust degrees among staff. The higher the quality of exchanges between leader and follower, the higher the extent of trust, respect and obligation and vice versa [8]. Based on LMX, leader and follower become acquainted (from not knowing one another) in a process that matures through exchanges and is shaped by support, loyalty, respect, emotions, and trust that are mutually inclusive. This highlights the psychological, and social capabilities of a leader to establish an environment, in which individuals can thrive as their psychology is engaged with the workplace. Therefore, leadership and trust should be taken into consideration from both negative and positive aspects.
2. Trust hinderer
2.1 Toxic leadership
As noted, leaders can boost or dampen trust based on their approach and behavior. Toxic leadership can be referred to as traditional, autocratic and against values and ethics of work in a social setting. Toxic leadership leads to negativity in organizational culture with significant effects on work processes, approach towards operations, which become highly vivid in times of difficulty and crises [9]. Leaders, who deploy such approach disregard and diminish social values at work and ethical means of business conduct. A negative culture is cultivated through this approach that comprises fear, which in turn lowers engagement and response. Boldly, toxic approach of a leader can hinder welfare and wellbeing due to excessive stress. Decreased morale, emotional drainage, and lack of trust are among the explicit outcomes of this style which turns to higher rates of turnover and burnout.
The word toxic can be applied not only to leaders, but to management, organizations, and work environments [10]. Albeit, being a toxic leader varies from transactional or ‘hard individual’ [11]. It is interesting to note that only individual characteristics are not determinants of toxic behavior. In this sense, traits (behavioral), and factors such as, culture, climate, and environment can be influential in the extent of toxicity. While personal characteristics (e.g. hard or tough, and authoritarian-directed) are important for understanding and pinpointing toxic leadership, culture has been noted to be significant for thoroughly analyze this behavior [12]. Thus, it can be interpreted that toxic characteristics of a leader can be enhanced through proper organizational culture and environments. Such aspects can be integrated in organizational strategies for further development.
Notably, communication techniques or attitude of a leader are not the predictors of a toxic persona, but rather dynamics of toxicity are derived from negative discouraging effects [13]. Thus, such leaders may prove to be very efficient in their tasks. However, they add fuel to the fire of a climate or culture that subdues wellbeing of followers/staff. In other words, instead of motivating and aspiration, they tend to control others, leaning towards a toxic climate. Turnover, drug or substance abuse, lowered motivation and productivity, and other negative outcomes arise through such approach in the workplace.
In this sense, as trust is a psychological state which incorporates depending on other(s) based on expectations and intentions, and acceptance of being vulnerable [14]. Cognitive trust that is the belief of the extent of which someone can be trusted; affective trust, that is the expression of emotions and their vitality in shaping trust; and behavioral trust that is the actual disclosure and dependency through sharing important information with the other individual are the three components of trust [10, 15]. These components are formed through observations of attitudes and behaviors of others such as, leader, organization, or group based on equity, ethics, fairness, friendliness, and being considerate to others’ rights. This implies that a leaders’ behavior and approach should comprise of emphasis on developing trust, and not unethical or discouraging behaviors. Cognitive trust addresses the extent of which another person is trustworthy. These are sets of beliefs and value-related aspects. Affective trust explains the importance of emotions in the process of trust. The role of leader and relationship with individual is of significance due to emotions at work. This is while behavioral trust is the notion of sharing important/sensitive information with an individual, or being able to rely on them.
3. Trust boosters
3.1 Empowering leadership
This style is the by-product of praising shared, transformational, and democratic leadership styles, which focus on the leaders’ role as a single player in decision-making, autonomy, an authority. In this sense, empowering leaders inherit foundational frameworks of the aforementioned styles, and reshape it into a different structure. Empowering leadership delegates autonomy and responsibilities of managers among members of the firm, leading to a shared power situation that constantly promotes inner motivation [16]. As empowering leaders delegate responsibilities, they create a sense of involvement, commitment, and support for individuals for improving professional aspect of their lives. Through self-determination theory [17] individuals meet the needs to thrive, develop and psychological wellbeing via autonomy, relatedness, and competence. This leads to high levels of self-satisfaction. Empowering leaders further provide psychological strengthening that is explained through social exchange theory (SET) [18]. This theory states that emotional support, encouragement, and desirable incentives can enhance self-efficacy for carrying out tasks at job. Moreover, SET incorporates the link between empowering leadership and trust. Trust is accumulated through gathering data regarding an individual or via a cognitive evaluation of the bond and experiences with that individual. Being trustworthy is considered to be the most vital virtue of a leader. Honesty of a leader blooms trust in their followers and thus, leaders’ behavior is adjusted accordingly.
Sense of security and positivity is created, when trust in leader/manager is developed by staff. This is while stress, burnout, lack of engagement, lowered focus and other negative emotions arise when trust lacks. It is perceived by employees that personal achievements are likely to fail, when trust in leader is absent, which leads to reduced job satisfaction and development of negative attitudes towards the firm, colleagues and leader [16]. It has also been noted that empowering leaders can trigger innovativeness by fostering trust. Through trust leaders are able to exchange knowledge with their followers, which can lead to emergence of new ideas. The mediating effect of trust in leader on creativity and empowering leadership has been noted in the literature [19]. As staff are given power in the company, they are more likely to develop trust, since the organizational climate provides support and respect. Subsequently, staff will tend to be more involved and make an effort to aid the organization. If members have high uncertainty avoidance, empowering leaders should utilize trust as an element for promoting innovativeness. Thus, employees, who trust in their leader are more capable of handling risk and dealing with the unknown [20].
When concern is genuine and is combined with care and emotions, trust in leader is shaped as affect-based [19, 21]. This is reflected in a sincere feeling of empowerment for employees by the leaders’ behavior, which in turn enables the staff to exhibit higher rates of creativity. Self-efficacy is facilitated when leaders are trusted, especially when their guidance is sought by their followers. Empowering leaders show confidence in their followers, which in turn enhances their performance [22]. This is while employees who do not trust their leaders will limit the effectiveness of empowering leaders on self-efficacy, hindering their creative abilities. Thus, this style of leadership is adequate for those with high levels of uncertainty avoidance, and have developed affect-based trust in their leader.
3.2 Transformational leadership
This style of leadership is effective on individual and team levels as well as being applicable in any society [23]. It focuses on improvement on a constant basis through competence of followers and their trust in leader. The extent of trust in leader is among the main predictors of organizational identification and improvement in the firm, which is highly influenced by the behavior of a leader. Transformational leaders are successful in enhancing trust for their employees, making them feel belonged to the organization, and thus, improve performance and outcomes of the company. SET implies that experiences that are shared among individuals lead to exchanges that are embedded with reciprocation. This further shows the vitality of trust in relationships among individuals, and particularly in the bond between a leader and follower. Trust is the glue that holds a linkage between a leader and their followers and is regarded as the risk and vulnerability that are perceived [14]. Individuals in the firm assume trust based on the treatment they receive from the firm and especially, its leader. This treatment has to be fair and desirable so that trust can be built. Moreover, confidentiality, identification with the firm, and safety are important factors for an individual in a company to build his/her trust.
The leader or supervisor of a company is regarded as the agent, which makes them extremely important for creation and establishment of trust. Trust in leader has been linked to a variety of positive outcomes such as, performance, satisfaction, autonomy, extra-role behavior, and creativity and innovation as when employees trust their leader, the workplace environment becomes safe and nurturing. Transformational leaders focus on provision of motivation for their subordinates and push them towards performing beyond the norms. Additionally, they provide meaning and value for the goals that are to be achieved. This enables the transformational leader to meet higher needs of their followers, and aspire self-interest. Idealized influence is among the characteristics of these leaders, which triggers trust as followers can take their leader as a role model [24]. They emphasize on organizational goals prior to their own, which further induces affective trust in their followers. Provision of feedback, variations in tasks, and autonomy in decision-making are among the key factors that a transformational leader uses to facilitate trust. Furthermore, they use their charismatic personality to motivate followers towards seeking organizational goals with higher commitment. This leads to an environment, where trust is fostered as vision is shared and workplace has harmony [25].
Transformational leaders project trustworthiness, which is defined as integrity, benevolence, and ability and is regarded as a major element for followers to trust in their leader. Moreover, these leaders elaborate on company’s vision and goals in a manner that attracts others. This is referred to as inspirational motivation and enables staff to be more focused on their tasks, and in turn have more trust in their leaders. They have high concerns for the needs of their followers and seek to strengthen them through various means. This is referred to as individualized consideration, which shows high levels of genuine care that will lead to followers perceiving their leader as a trustworthy individual. Employees are more likely to exchange information and knowledge, when trust is present [24, 25]. Though means such as, technology, management, and infrastructure aid employees in gaining knowledge and improve their abilities, it is not enough to have a sufficient communication flow. This is where trust shows its importance as personal features such as, reputation and fulfilling promises are factors that facilitate trust. Thus, the role of leader is imperative for establishing a smooth communication process, in which trust can be built. Communication becomes more efficient as trust is built, and knowledge sharing, cooperation, and better interactions are shaped as leaders provide an atmosphere, where employees have necessities for proper interaction. This in turn, leads to higher levels of trust [26].
In the light of what was mentioned, trust in leader is regarded as a psychological process between a transformational leader and his/her followers, which leads to sense of identification with the firm by employees, and allows them to improve on a constant manner. Embedded in the premise of SET, transformational leaders are more effective in establishing trust, when compared to other traditional leadership styles such as, transactional or charismatic. This is due to the fact that transformational leaders develop the workplace through social exchanges and not economic ones. This is the main difference between transactional leadership and transformational in developing trust. Similarly, charismatic leaders are less successful in building trust, when compared to transformational due to their focus on organizational goals. SET explains how reciprocation is the basis of leader-follower linkage. Transformational leadership is more effective in building trust among traditional styles. As followers trust in their leader and exchanges between them grow, the sense of organizational identification and belongingness improves, which positively impacts employee performance. Transformational leadership is known as an antecedent of newer styles such as, servant leadership, and has been known to be of significance in modern contexts of business.
3.3 Servant leadership
This style of leadership as the name shows, focuses on serving others. In this sense, servant leaders tend to serve their followers’ needs and wants before their own [27]. The theoretical foundation and nexus of servant leadership can be found in chaos theory, where decentralization, differentiation of tasks, collaboration, flexibility and adaptability of structures and processes, participation, and autonomy are focused [28]. In the premise of chaos theory, it is important to recognize the difference between unpredictability and complexity, and randomness. While the former have causes whether known or unknown at the time of occurrence, the latter refers to events that have no cause. Chaotic systems comprise sensitive initial conditions, self-similarity, iterative feedback, and strange attractor [see [29]]. As organizations are dynamic, complex, and nonlinear systems, chaos theory is applied in organizational theory. Notwithstanding that servant leadership constructs have been linked to those of chaos theory. Personal bond created by servant leaders or the organizational culture they establish address initial conditions and strange attractor aspects through psychological effects. Moreover, servant leaders reshape their systems to achieve development and positive results. This is similar to situational variables that are incorporated in chaos theory for alteration in systems [29]. In addition, chaos and servant leadership are alike in growth manner. Servant leaders tend to grow their linkage with their followers through ever-growing systems, which links to iterative feedback and strange attractor dimensions of chaos theory.
From an individual perspective, servant leaders constantly seek skilled followers and value their input and ideas. This is a means for establishing trust between leader and followers. Moreover, responsibility of failure or negative results is taken by the servant leader, which further promotes trust. From a cultural perspective, servant leaders affectively facilitate a learning environment through role model behavior, training, and initiatives that enhances the atmosphere of work. As they create personal bonds with their followers, collaboration, value and accountability are promoted and learning is motivated. Furthermore, servant leaders exhibit high levels of integrity, which further established the notion of trust [30, 31].
Servant leaders are employee-oriented [30, 31], with significant influence on positive outcomes in different sectors and industries, and levels (personal, team, and organizational). As these leaders are people-centric, their effect in service industry has been note to be significant as they focus on others’ wellbeing and serving their needs, which goes beyond the organization, and to the society. Through personal and close bonds with followers, servant leaders are able to facilitate higher qualities of relationships, which in turn can be seen in performance of their followers. Early works on servant leadership indicates a number of dimensions that are namely, listening, empathy, healing, conceptualization, awareness, persuasion, stewardship, building community, foresight, and high commitment [32]. In this sense, servant leadership and transformational leadership share features of vision, being influential, and trust. Servant leaders distinguish themselves from transformational, transactional and charismatic leaders with their emphasis on development and wellbeing of others around them. With altruism, servant leaders tend to their followers’ needs and goals prior to their own, or the organizations’ goals. This behavior puts the attention and focus on others and their progress rather than making the leader a sole importance.
Characteristics of a servant leader predict various behavioral outcomes such as, trust. They can further enhance trust in organization as they act as stewards of the firm. Due to the fact that trust plays a major role in the relationship between a leader and his/her followers, interpersonal trust, communication, harmonization, and integrity of the leader become vivid elements. Notably, trust and its existence provides a stable climate within the organization, which leads to positive results. Servant leaders foster trust by being role- models and serving others. Long-lasting relationships with their followers, trusting their peers and strong personal bonds distinguish servant leaders from traditional styles. Regardless of philosophy of the firm, servant leaders focus on provision of care to others and exhibition of trustworthiness behavior [33]. Via open communication, honesty, moral integrity, and empathy, servant leaders create an atmosphere, where trust can shine and commitment is promoted. As followers perceive care for their wellbeing, and support for their professional and personal development, they are more likely to trust in servant leaders [27].
3.4 Neuro-leadership
This style merges the science of brain with leadership for better motivation, influence and adjusting changes while promoting engagement with the staff to comprehend their responses [34]. Various circumstances trigger reactions in the brain that can be linked to marketing, economics, and leadership. Leaders and leadership can benefit from the emergence of neuroscience and its bond with psychology to better grasp the factors that influence behavior unconsciously. Leaders with knowledge of biology can deploy their awareness towards enhancing performance of those, who work with/for them. Considering the recency of this area, it has been argued that neuro-leaders can generate trust as they understand the mechanisms of brain and implement this understanding in their strategies. In turn, they can shape a climate at workplace that fosters wellbeing, retention, productivity, effectiveness, and more energy for work [34, 35]. Neuro-leaders are to exhibit vulnerability, humility, and integrity alongside being optimist, present, and actively engaging with their subordinates.
Linked to transformational leadership model, an atmosphere of positivity is shaped in the organizational culture that leads to better performance levels. Usage of influence and authenticity for bonds between leader and follower is shared in neuro and transformational leadership styles. Furthermore, servant leadership emphasizes on serving others that fosters positive relationships and promotes appreciative, engaging and integrated behavior from the leader. Organizational trust has been noted to be shaped through ovation, expectation, yield, transfer, openness, caring, invest, and natural factors [35]. These factors can be seen in Table 1 with their linkage to leadership traits. Production of oxytocin in the brain is bound to promotion of trust in the behavior of leaders in neuro-leadership style. This chemical is what apprises the notion of trust that is not limited to those whom we are familiar with, but to any social or professional context that we face or interact with. Particular to leaders, this understanding can be used to increase performance, enhance organizational culture, and sow trust. Studies have shown that oxytocin is released significantly amid being trusted or trusting another individual [35].
Trust factor | Leadership trait |
---|
Ovation | Recognition of excellence and expect logical performance |
Yield | Discretion in task completion, and encouragement |
Openness | Communication, listening and sharing |
Caring | Authentic relationship creation with intent |
Invest | Facilitate growth for individuals |
Natural | Authentic leadership, integrity, being humble and vulnerable |
Table 1.
Trust factors and leadership traits – derived from Zak [35].
Neuro-leaders can emphasize on trust through their knowledge of science and psychology, leading the firm towards a higher level of change acceptance, resilience, and retention of talent. When trust is highly embedded in a company, productivity increases, collaboration develops, and relationships among members last longer, when compared to firms in which trust is lower. As trust is a psychological and vital factor, wellbeing and quality of life are affected by its level. For instance, chronic stress can be lowered, which adds to the overall healthiness of individuals. Leaders commonly understand this crucial factor and tend to focus on development of trust in their firms. However, neuro-leaders possess the know-how of enabling trust to grow. Having purpose can release oxytocin similar to sense of trust on a mutually inclusive manner. Work becomes joyous when it is combined with purpose and a trustworthy environment. Thus, neuro-leaders focus on stimulating oxytocin to increase engagement, wellbeing, performance, and other positive elements in the workplace [34, 35].
Neuro-leaders can reshape organizational culture through building factors, situations and practices that trigger oxytocin for individuals in the company.
3.5 Virtual/e-leadership
The environment of work has changed as the technological advances reshape our world. Virtual or online platforms now allow people to carry out their work from a laptop regardless of their location. Communication has evolved from its traditional form and individuals can work together without having met each other in person. Accordingly, the context of leadership and management has adjusted to this new business environment [36]. This virtual era has aided firms to become more resilient, and flexible to meet the demands of market and thus, a leadership style that is adequate for this instance is referred to as E-leadership or virtual leadership. The concept can be explained as a means of being influential on behavior, attitude, thoughts and feelings, and performance of workforce through the medium of technology [37]. E-leaders have to overcome the challenges of this modern and advanced working environment. In this sense, both traditional challenges of handling teams and virtual management become apparent.
The role of these leaders are vital as the virtual workplace does not provide constant in-person interaction. It has been noted that leading the virtual workplace is reliant on both transformational and transactional leadership [38]. Efficiency of teams can be enhanced through the aforementioned styles as they can facilitate uncertainty and where trust is not present. Efficiency of online/virtual teams incorporate both satisfaction of employees and the extent of their performance. In such environment, communication can vary from distance to face-to-face depending on the work itself and thus, conflict management becomes more difficult to handle. Due to varying communications, interactions differ from standard and members can grow apart as they do not interact physically. As such, e-leaders face issues regarding coordination, trust building, conflict management, and shared mental settings in their teams. Comparably, this is much more complex than having a traditional organizational format [39].
Accordingly, various levels of work require leaders to have strategies and measurements for each construct. Team level consists of global, shared, and configural constructs [40]. Global construct explains a team-level setting that does not include individual elements [39]. In other words, global features of team are not based on individual characteristics. Shared construct refers to a collective situation, where members share perception (e.g. quality or extent of cooperation and coordination to task completion among tem members). Experiences, attitudes, perception, values, cognitions, and behaviors that are common among the members are referred to as the shared construct [40]. Cohesion of the team, its norms, climate, and mental models are among the shared constructs. Similar to shared construct, configural features of a team reside in the characteristics of individual team members. This construct includes pattern, variations and array of each members’ characteristics such as, interpersonal network density of the team, its personality composition, and diversity (e.g. age).
E-leaders are aware of the abovementioned constructs and utilize this understanding to overcome challenges of lack of social presence among team members. This lack leads to decreased trust, which e-leaders must control through collective identity and proper communication means for their teams. Thus, e-leaders endeavor to establish a common meaning and perspective so that trust is enhanced [37]. In this sense, a number of factors are influential on trust in virtual teams such as, time, culture, geographical proximity and interactions that can be both online and face-to-face. As virtual systems are temporary, trust in such systems is also not permanent. This is mainly due to lack of direct management. Therefore, trust has been noted to be instant in a virtual setting. As virtual teams are vulnerable, trust becomes more important and difficult to establish. Hence, the strength of transformational leadership has been proven to be significant in this case, more than transactional. Both styles are linked to virtual settings and their effectiveness in establishing collective trust has been shown. Through expression of concern for needs of members, a transformational leader can generate trust, and exhibition of will to achieve the goals of the group. This is while transactional leader establishes trust through maintaining their promises and showing respect and fairness. It is imperative that trust is built so that a virtual team can obtain its goals and remain efficient. As interactions are coordinated, existence of trust enhances performance and increases satisfaction for the individuals in the team.
Leaders use different means of technology to provide feedback, signals and messages through an integrated format and tailored tones for each individual in the team. This is referred to as media richness that is a moderating factor for e-leaders in online settings of work, and its efficiency that is based on trust and cohesion [37].
Especially in the occurrence of global pandemic, virtual leaders have become more crucial for organizations. These leaders can aid the business to survive and avoid bankruptcy. E-leaders operate remotely and maintain virtual interactions with more emphasis on those, who might have issues with the technology and thus, are less likely to trust and communicate through virtual settings [41]. Ethical issues, cultural differences, and communication means are main challenges of building trust for e-leaders alongside usage of technology in a manner that will keep the leader effective. In this sense, e-leaders rely on education, training, and development practices to build trust for their followers, and they endeavor to maintain a high standard of communication, and coordinating tasks among team members.
4. Conclusion
Leaders can deploy different aspects of highlighted models in this chapter so that their approaches are enhanced and developed. While some characteristics are deeply embedded in individuals, recent studies show that organizational elements, culture, environment, and psychological dimensions such as, coping mechanisms, burnout, and wellbeing are influential. This suggests a pathway for leaders to adjust their styles with current demands of business in the modern world, especially during and after global pandemic of Covid-19, which has drastically changed work environment. Resilience, flexibility, and change are essential for leaders to maintain competitiveness in markets. Thus, regardless of its difficulty or uncertainty, leaders should endeavor to effectively lead their firms towards sustainable advantages, and higher levels of productivity. Leaders can adjust their approach towards their followers, considering various elements that can boost trust. In turn, this will lead to better performance and a positive workplace, leading to organizational achievements.
Conflict of interest
The authors declare no conflict of interest.
Notes/thanks/other declarations
The authors would like to show appreciation and gratitude to Mr. Mark Unwin, and Ms. Marjaneh Arasteh.
\n',keywords:"trust, leadership, psychology, organizational behavior, employees",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/78782.pdf",chapterXML:"https://mts.intechopen.com/source/xml/78782.xml",downloadPdfUrl:"/chapter/pdf-download/78782",previewPdfUrl:"/chapter/pdf-preview/78782",totalDownloads:158,totalViews:0,totalCrossrefCites:0,dateSubmitted:"May 6th 2021",dateReviewed:"September 9th 2021",datePrePublished:"September 27th 2021",datePublished:null,dateFinished:"September 27th 2021",readingETA:"0",abstract:"While leadership studies have tackled the concept in various ways, it can be said that often basic psychological elements are overlooked. In this sense, the notion of trust is focused in this chapter to highlight, elaborate, and provide a thorough understanding on the vitality of trust between leader and his/her followers. Whether a business achieves success or not is highly dependent on leadership of the firm. Mutual trust among staff and their managers is a crucial matter that can hinder or enhance the process of success. With the existence of trust, workplace and environment of company become soothing for individuals, leading to positive psychological outcomes, and improved wellbeing. Therefore, we argue that building, and gaining trust should be the focus of leaders regardless of their style for it will improve performance, and thus, organizational outcome while simultaneously benefiting the staff via psychological elements. This becomes more vivid in modern business world as wellbeing of individuals and their mental health are more emphasized. Both leaders and scholars can benefit from this manuscript.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/78782",risUrl:"/chapter/ris/78782",signatures:"Panteha Farmanesh and Pouya Zargar",book:{id:"10673",type:"book",title:"The Psychology of Trust",subtitle:null,fullTitle:"The Psychology of Trust",slug:null,publishedDate:null,bookSignature:"Dr. Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83969-873-6",printIsbn:"978-1-83969-872-9",pdfIsbn:"978-1-83969-874-3",isAvailableForWebshopOrdering:!0,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Trust hinderer",level:"1"},{id:"sec_2_2",title:"2.1 Toxic leadership",level:"2"},{id:"sec_4",title:"3. Trust boosters",level:"1"},{id:"sec_4_2",title:"3.1 Empowering leadership",level:"2"},{id:"sec_5_2",title:"3.2 Transformational leadership",level:"2"},{id:"sec_6_2",title:"3.3 Servant leadership",level:"2"},{id:"sec_7_2",title:"3.4 Neuro-leadership",level:"2"},{id:"sec_8_2",title:"3.5 Virtual/e-leadership",level:"2"},{id:"sec_10",title:"4. Conclusion",level:"1"},{id:"sec_14",title:"Conflict of interest",level:"1"},{id:"sec_11",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'[Oxford English Dictionary. Oxford: Clarendon Press. 1993]'},{id:"B2",body:'[Pittman A. Leadership rebooted: Cultivating trust with the brain in mind. Human Service Organizations: Management, Leadership & Governance. 2020 Mar 14;44(2):127-143]'},{id:"B3",body:'[Ringleb AH, Rock D. The emerging field of neuroleadership. NeuroLeadership Journal. 2008;1(1):3-19]'},{id:"B4",body:'[Liu Y, Fuller B, Hester K, Bennett RJ, Dickerson MS. Linking authentic leadership to subordinate behaviors. Leadership & Organization Development Journal. 2018 Apr 10]'},{id:"B5",body:'[Bennis W. The challenges of leadership in the modern world: Introduction to the special issue. American psychologist. 2007 Jan;62(1):2]'},{id:"B6",body:'[Dansereau Jr F, Graen G, Haga WJ. A vertical dyad linkage approach to leadership within formal organizations: A longitudinal investigation of the role making process. Organizational behavior and human performance. 1975 Feb 1;13(1):46-78]'},{id:"B7",body:'[Rosenthal DA, Gurney RM, Moore SM. From trust on intimacy: A new inventory for examining Erikson\'s stages of psychosocial development. Journal of Youth and Adolescence. 1981 Dec;10(6):525-537]'},{id:"B8",body:'[Graen GB, Uhl-Bien M. Relationship-based approach to leadership: Development of leader-member exchange (LMX) theory of leadership over 25 years: Applying a multi-level multi-domain perspective. The leadership quarterly. 1995 Jun 1;6(2):219-247]'},{id:"B9",body:'[Lipman-Blumen J. Toxic leadership: When grand illusions masquerade as noble visions. Leader to Leader. 2005 Mar;2005(36):29-36]'},{id:"B10",body:'[Behery, M., Al-Nasser, A. D., Jabeen, F., & El Rawas, A. S. (2018). TOXIC LEADERSHIP AND ORGANIZATIONAL CITIZENSHIP BEHAVIOR: A MEDIATION EFFECT OF FOLLOWERS\'TRUST AND COMMITMENT IN THE MIDDLE EAST. International journal of Business and Society, 19(3), 793-815]'},{id:"B11",body:'[Blomme, R. J., Kodden, B., & Beasley-Suffolk, A. (2015). Leadership theories and the concept of work engagement: Creating a conceptual framework for management implications and research. Journal of Management & Organization, 21(2), 125-144]'},{id:"B12",body:'[Smith, N., & Fredricks-Lowman, I. (2020). Conflict in the workplace: a 10-year review of toxic leadership in higher education. International Journal of Leadership in Education, 23(5), 538-551]'},{id:"B13",body:'[Burton, J. P., & Hoobler, J. M. (2011). Aggressive reactions to abusive supervision: The role of interactional justice and narcissism. Scandinavian Journal Of Psychology, 52(4), 389]'},{id:"B14",body:'[Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all: a cross-discipline view of trust. Academy of Management Review, 23(3), 393−404]'},{id:"B15",body:'[Gillespie, N. A., & Mann, L. (2004). Transformational leadership and shared values: the building blocks of trust. Journal of Managerial Psychology, 19(6), 588−607]'},{id:"B16",body:'[ATIK, S., & CELIK, O. T. (2020). An Investigation of the Relationship between School Principals\' Empowering Leadership Style and Teachers\' Job Satisfaction: The Role of Trust and Psychological Empowerment. International Online Journal of Educational Sciences, 12(3)]'},{id:"B17",body:'[Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American psychologist, 55(1), 68]'},{id:"B18",body:'[Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359-373]'},{id:"B19",body:'[Martono, S., Wulansari, N. A., & Khoiruddin, M. (2020). The role of empowering leadership in creating employee creativity: moderation–mediation mechanism. In IOP Conference Series: Earth and Environmental Science (Vol. 485, No. 1, p. 012060). IOP Publishing]'},{id:"B20",body:'[Zhang, X., & Zhou, J. (2014). Empowering leadership, uncertainty avoidance, trust, and employee creativity: Interaction effects and a mediating mechanism. Organizational Behavior and Human Decision Processes, 124(2), 150-164]'},{id:"B21",body:'[McAllister, D. J. (1995). Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations. Academy of management journal, 38(1), 24-59]'},{id:"B22",body:'[Siachou, E., Gkorezis, P., & Adeosun, F. (2020, April). The relationship between empowering leadership and volunteers\' service capability: intention to share knowledge as mediator. In Evidence-based HRM: a Global Forum for Empirical Scholarship. Emerald Publishing Limited]'},{id:"B23",body:'[Bass, B.M. (1997), “Does the transactional–transformational leadership paradigm transcend organizational and national boundaries?”, American Psychologist, Vol. 52 No. 2, pp. 130-139]'},{id:"B24",body:'[Zhu, W., Newman, A., Miao, Q. and Hooke, A. (2013), “Revisiting the mediating role of trust in transformational leadership effects: do different types of trust make a difference?”, The Leadership Quarterly, Vol. 24 No. 1, pp. 94-105]'},{id:"B25",body:'[Khattak, M. N., Zolin, R., & Muhammad, N. (2020). Linking transformational leadership and continuous improvement: The mediating role of trust. Management Research Review]'},{id:"B26",body:'[Holtz, B.C. and Harold, C.M. (2008), “When your boss says no! The effects of leadership style and trust on employee reactions to managerial explanations”, Journal of Occupational and Organizational Psychology, Vol. 81 No. 4, pp. 777-802]'},{id:"B27",body:'[Zargar, P., Sousan, A., & Farmanesh, P. (2019). Does trust in leader mediate the servant leadership style–job satisfaction relationship? Management Science Letters, 9(13), 2253-2268]'},{id:"B28",body:'[Wheatley, M. J. (2006). Leadership and the new science: discovering order in a chaotic world (3rd ed.). San Francisco, CA: Berrett-Koehler]'},{id:"B29",body:'[Rennaker, M. (2006). Servant-leadership: A model aligned with chaos theory. The International Journal of Servant-Leadership, 2(1), 427-453]'},{id:"B30",body:'[Lowder, B. T. (2009). The best leadership model for organizational change management: Transformational verses servant leadership. Available at SSRN 1418796]'},{id:"B31",body:'[Greenleaf, R. K. (1998). The power of servant-leadership: Essays. Berrett-Koehler Publishers]'},{id:"B32",body:'[Van Dierendonck, D. (2011). Servant leadership: A review and synthesis. Journal of management, 37(4), 1228-1261]'},{id:"B33",body:'[Bavik, A. (2020). A systematic review of the servant leadership literature in management and hospitality. International Journal of Contemporary Hospitality Management]'},{id:"B34",body:'[Angela Pittman (2020) Leadership Rebooted: Cultivating Trust with the Brain in Mind, Human Service Organizations: Management, Leadership & Governance, 44:2, 127-143, DOI: 10.1080/23303131.2019.1696910]'},{id:"B35",body:'[Zak, P. J. (2017). The neuroscience of trust. Harvard Business Review, 95(1), 84-90]'},{id:"B36",body:'[Avolio, B.J., Kahai, S., Dumdum, R. and Sivasubramaniam, N. (2001a), “Virtual teams: implications for e-leadership and team development”, in London, M. (Ed.), How People Evaluate Others in Organizations, Mahwah, Lawrence Erlbaum, NJ, pp. 337-358]'},{id:"B37",body:'[Sedrine, S. B., Bouderbala, A., & Nasraoui, H. (2020). Leadership style effect on virtual team efficiency: trust, operational cohesion and media richness roles. Journal of Management Development]'},{id:"B38",body:'[Avolio, B.J., Kahai, S. and Dodge, G.E. (2001b), “E-leadership: implications for theory, research, and practice”, The Leadership Quarterly, Vol. 11 No. 4, pp. 615-668, doi: 10.1016/S1048-9843(00) 00062-X]'},{id:"B39",body:'[Liao, C. (2017). Leadership in virtual teams: A multilevel perspective. Human Resource Management Review, 27(4), 648-659]'},{id:"B40",body:'[Klein, K. J., & Kozlowski, S. W. (2000). From micro to meso: Critical steps in conceptualizing and conducting multilevel research. Organizational research methods, 3(3), 211-236]'},{id:"B41",body:'[Samartinho, J., Silva, P., & Faria, J. (2014). Good practices in virtual leadership–the e-3cs rule (communication, trust and coordination)]'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Panteha Farmanesh",address:"pantehafarmanesh@gau.edu.tr",affiliation:'- Girne American University, Girne, Northern Cyprus, Turkey
'},{corresp:null,contributorFullName:"Pouya Zargar",address:null,affiliation:'- Girne American University, Girne, Northern Cyprus, Turkey
'}],corrections:null},book:{id:"10673",type:"book",title:"The Psychology of Trust",subtitle:null,fullTitle:"The Psychology of Trust",slug:null,publishedDate:null,bookSignature:"Dr. Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83969-873-6",printIsbn:"978-1-83969-872-9",pdfIsbn:"978-1-83969-874-3",isAvailableForWebshopOrdering:!0,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"10275",title:"Prof.",name:"Nicholas",middleName:"A.",surname:"Nechval",email:"nechval@junik.lv",fullName:"Nicholas Nechval",slug:"nicholas-nechval",position:null,biography:"NICHOLAS A. NECHVAL received the PhD degree in automatic control and systems engineering from the Riga Civil Aviation Engineers Institute (RCAEI) in June, 1969, and the DSc degree in radio engineering from the Riga Aviation University (RAU) in June, 1993. At present, he is Professor of Mathematics and Computer Science at the University of Latvia, Riga, Latvia. In 1992, Dr. Nechval was awarded a Silver Medal of the Exhibition Committee (Moscow, Russia) in connection with research on the problem of Prevention of Collisions between Aircraft and Birds. His book, ‘Improved Decisions in Statistics’ (co-authored with E.K. Vasermanis) was awarded the ‘2004 Best Publication Award’ by the Baltic Operations Research Society.",institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"41187",title:"Stochastic Control and Improvement of Statistical Decisions in Revenue Optimization Systems",slug:"stochastic-control-and-improvement-of-statistical-decisions-in-revenue-optimization-systems",abstract:null,signatures:"Nicholas A. Nechval and Maris Purgailis",authors:[{id:"10275",title:"Prof.",name:"Nicholas",surname:"Nechval",fullName:"Nicholas Nechval",slug:"nicholas-nechval",email:"nechval@junik.lv"}],book:{id:"2174",title:"Stochastic Modeling and Control",slug:"stochastic-modeling-and-control",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/9849/images/system/9849.jpeg",biography:"Ricardo López-Ruiz, MS, Ph.D., is an associate professor in the Department of Computer Science and Systems Engineering, Faculty of Science, University of Zaragoza, Spain. He is also an associate researcher in Complex Systems at the School of Mathematics, University of Zaragoza. Previously, he worked as a lecturer at the University of Navarra, the Public University of Navarra, and UNED Calatayud, all in Spain. He completed his postdoc with Prof. Yves Pomeau at the École Normale Supérieure, Paris, France, and with Prof. Gabriel Mindlin at the University of Buenos Aires, Argentina. His areas of interest include statistical complexity and nonlinear models, chaotic maps and applications, multiagent systems, econophysics, big data, and artificial intelligence techniques.",institutionString:"University of Zaragoza",institution:{name:"University of Zaragoza",institutionURL:null,country:{name:"Spain"}}},{id:"10431",title:"Dr.",name:"Vladimir",surname:"Simovic",slug:"vladimir-simovic",fullName:"Vladimir Simovic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/10431/images/1537_n.jpg",biography:"Brief Biography for Prof. Vladimir Simovic, Ph. D., Dr. H. C.\nVladimir Simovic is a full professor of Information Systems at the University of Zagreb, Croatia, where he is a chief at the Department of Information Systems at the Faculty of Teacher Education, and has also the scientific and professional responsibility for the development of various Information Systems. His main teaching and research interests concern various areas of information systems, project management and analysis. In these fields, he authored or co-authored over 7 books and 100 scientific papers published in reviewed journals or presented at international conferences. As the Fellow of the IIAS (The International Institute for Advanced Studies in Systems Research and Cybernetics - Windsor - Canada, Ontario) he also received Dr. Honoris Causa in Economics and Informatics aspects of Financial Modelling.",institutionString:null,institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}},{id:"10457",title:"Prof.",name:"Hui",surname:"Zhang",slug:"hui-zhang",fullName:"Hui Zhang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Zhejiang University",institutionURL:null,country:{name:"China"}}},{id:"11301",title:"Dr.",name:"David",surname:"Opeyemi",slug:"david-opeyemi",fullName:"David Opeyemi",position:"Senior Lecturer",profilePictureURL:"https://mts.intechopen.com/storage/users/11301/images/2991_n.jpg",biography:"David Opeyemi is a Structural Engineer, Consultant and Reseacher. He is currently a Senior Lecturer in Civil Engineering Technology Department, Rufus Giwa Polytechnic, Owo, Nigeria.",institutionString:null,institution:null},{id:"58480",title:"Dr.",name:"Raquel",surname:"Caballero-Aguila",slug:"raquel-caballero-aguila",fullName:"Raquel Caballero-Aguila",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"58489",title:"Dr.",name:"Josefa",surname:"Linares-Perez",slug:"josefa-linares-perez",fullName:"Josefa Linares-Perez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"147233",title:"MSc.",name:"Irene",surname:"García-Garrido",slug:"irene-garcia-garrido",fullName:"Irene García-Garrido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"148120",title:"Prof.",name:"Sergey",surname:"Sokolov",slug:"sergey-sokolov",fullName:"Sergey Sokolov",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"149501",title:"Dr.",name:"Sinisa",surname:"Fajt",slug:"sinisa-fajt",fullName:"Sinisa Fajt",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"149527",title:"Dr.",name:"Miljenko",surname:"Krhen",slug:"miljenko-krhen",fullName:"Miljenko Krhen",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding",title:"Open Access Funding",intro:"IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
",metaTitle:"Open Access Funding",metaDescription:"Open Access Funding",metaKeywords:null,canonicalURL:"/page/open-access-funding",contentRaw:'[{"type":"htmlEditorComponent","content":"Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\nIn order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\n\\n\\t- Does your institution already have a budget for covering Open Access publication costs?
\\n\\t- Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\\n
\\n\\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\nPlease note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\nPlease be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\nIn order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\n\n\t- Does your institution already have a budget for covering Open Access publication costs?
\n\t- Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\n
\n\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nPlease note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\nPlease be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24 FILLER ads"},books:[{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11512",title:"Photodetectors - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"01d4be8e37c9bf12fd8dcb67c135b29b",slug:null,bookSignature:"Prof. Kuan W. A. Chee",coverURL:"https://cdn.intechopen.com/books/images_new/11512.jpg",editedByType:null,editors:[{id:"206271",title:"Prof.",name:"Kuan",surname:"Chee",slug:"kuan-chee",fullName:"Kuan Chee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11544",title:"Failure Analysis",subtitle:null,isOpenForSubmission:!0,hash:"4ff5277ca99c7d717cc47be22b0d92de",slug:null,bookSignature:"Dr. Gobinath Ravindran",coverURL:"https://cdn.intechopen.com/books/images_new/11544.jpg",editedByType:null,editors:[{id:"145364",title:"Dr.",name:"Gobinath",surname:"Ravindran",slug:"gobinath-ravindran",fullName:"Gobinath Ravindran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11534",title:"Renewable Energy - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"170d1a20a1925b6a29c6146f12ade4a5",slug:null,bookSignature:"Prof. Ahmed M. Nahhas",coverURL:"https://cdn.intechopen.com/books/images_new/11534.jpg",editedByType:null,editors:[{id:"140058",title:"Prof.",name:"Ahmed",surname:"Nahhas",slug:"ahmed-nahhas",fullName:"Ahmed Nahhas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:184},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"145",title:"Sustainable Management",slug:"sustainable-management",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:16,numberOfWosCitations:13,numberOfCrossrefCitations:8,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"145",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1675",title:"Sustainable Natural Resources Management",subtitle:null,isOpenForSubmission:!1,hash:"73b3d7d9bea3fd36b94299f40088e0e8",slug:"sustainable-natural-resources-management",bookSignature:"Abiud Kaswamila",coverURL:"https://cdn.intechopen.com/books/images_new/1675.jpg",editedByType:"Edited by",editors:[{id:"115390",title:"Prof.",name:"Abiud L.",middleName:"Lucas",surname:"Kaswamila",slug:"abiud-l.-kaswamila",fullName:"Abiud L. Kaswamila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"25746",doi:"10.5772/32987",title:"An Analysis of the Contribution of Community Wildlife Management Areas on Livelihood in Tanzania",slug:"an-analysis-of-the-contribution-of-community-wildlife-management-areas-on-livelihood-in-tanzania",totalDownloads:4546,totalCrossrefCites:5,totalDimensionsCites:7,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Abiud Kaswamila",authors:[{id:"115390",title:"Prof.",name:"Abiud L.",middleName:"Lucas",surname:"Kaswamila",slug:"abiud-l.-kaswamila",fullName:"Abiud L. Kaswamila"}]},{id:"25747",doi:"10.5772/36424",title:"Assessment of Livestock Loss Factors in the Western Serengeti, Tanzania",slug:"assessment-of-livestock-loss-factors-in-the-western-serengeti-tanzania",totalDownloads:2362,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"J. W. Nyahongo and E. Røskaft",authors:[{id:"108296",title:"Dr.",name:"Julius",middleName:null,surname:"Nyahongo",slug:"julius-nyahongo",fullName:"Julius Nyahongo"}]},{id:"25744",doi:"10.5772/35035",title:"Sustainable Natural Resource Management, a Global Challenge of This Century",slug:"sustainable-natural-resource-management-a-global-challenge-of-this-century",totalDownloads:3513,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Esmail Karamidehkordi",authors:[{id:"102701",title:"Dr.",name:"Esmail",middleName:null,surname:"Karamidehkordi",slug:"esmail-karamidehkordi",fullName:"Esmail Karamidehkordi"}]},{id:"25743",doi:"10.5772/36369",title:"Sustainable Use of Natural Resources of Dryland Regions in Controlling of Environmental Degradation and Desertification",slug:"sustainable-use-of-natural-resources-of-dryland-regions-in-controlling-of-environmental-degradation-",totalDownloads:2211,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Peter F. Ffolliott",authors:[{id:"108039",title:"Dr.",name:"Peter",middleName:null,surname:"Ffolliott",slug:"peter-ffolliott",fullName:"Peter Ffolliott"}]},{id:"25741",doi:"10.5772/33762",title:"Upstream Landscape Dynamics of US National Parks with Implications for Water Quality and Watershed Management",slug:"upstream-landscape-dynamics-of-us-national-parks-with-implications-for-water-quality-and-watershed-m",totalDownloads:1907,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"William B. Monahan and John E. Gross",authors:[{id:"96954",title:"Dr.",name:"William",middleName:null,surname:"Monahan",slug:"william-monahan",fullName:"William Monahan"},{id:"100976",title:"Dr.",name:"John",middleName:null,surname:"Gross",slug:"john-gross",fullName:"John Gross"}]}],mostDownloadedChaptersLast30Days:[{id:"25747",title:"Assessment of Livestock Loss Factors in the Western Serengeti, Tanzania",slug:"assessment-of-livestock-loss-factors-in-the-western-serengeti-tanzania",totalDownloads:2364,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"J. W. Nyahongo and E. Røskaft",authors:[{id:"108296",title:"Dr.",name:"Julius",middleName:null,surname:"Nyahongo",slug:"julius-nyahongo",fullName:"Julius Nyahongo"}]},{id:"25744",title:"Sustainable Natural Resource Management, a Global Challenge of This Century",slug:"sustainable-natural-resource-management-a-global-challenge-of-this-century",totalDownloads:3514,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Esmail Karamidehkordi",authors:[{id:"102701",title:"Dr.",name:"Esmail",middleName:null,surname:"Karamidehkordi",slug:"esmail-karamidehkordi",fullName:"Esmail Karamidehkordi"}]},{id:"25743",title:"Sustainable Use of Natural Resources of Dryland Regions in Controlling of Environmental Degradation and Desertification",slug:"sustainable-use-of-natural-resources-of-dryland-regions-in-controlling-of-environmental-degradation-",totalDownloads:2211,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Peter F. Ffolliott",authors:[{id:"108039",title:"Dr.",name:"Peter",middleName:null,surname:"Ffolliott",slug:"peter-ffolliott",fullName:"Peter Ffolliott"}]},{id:"25745",title:"Roles of Diverse Stakeholders in Natural Resources Management and Their Relationships with Regional Bodies in New South Wales, Australia",slug:"roles-of-diverse-stakeholders-in-natural-resources-management-and-their-relationships-with-regional-",totalDownloads:2404,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"Brent C. Jacobs and Peter R. Brown",authors:[{id:"93667",title:"Dr.",name:"Peter",middleName:null,surname:"Brown",slug:"peter-brown",fullName:"Peter Brown"},{id:"93672",title:"Dr.",name:"Brent",middleName:"Charles",surname:"Jacobs",slug:"brent-jacobs",fullName:"Brent Jacobs"}]},{id:"25741",title:"Upstream Landscape Dynamics of US National Parks with Implications for Water Quality and Watershed Management",slug:"upstream-landscape-dynamics-of-us-national-parks-with-implications-for-water-quality-and-watershed-m",totalDownloads:1908,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1675",slug:"sustainable-natural-resources-management",title:"Sustainable Natural Resources Management",fullTitle:"Sustainable Natural Resources Management"},signatures:"William B. Monahan and John E. Gross",authors:[{id:"96954",title:"Dr.",name:"William",middleName:null,surname:"Monahan",slug:"william-monahan",fullName:"William Monahan"},{id:"100976",title:"Dr.",name:"John",middleName:null,surname:"Gross",slug:"john-gross",fullName:"John Gross"}]}],onlineFirstChaptersFilter:{topicId:"145",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfOpenTopics:4,numberOfPublishedChapters:9,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"38",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n\r\n\tThe following are the main causes of biodiversity loss:
\r\n\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",annualVolume:11968,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",annualVolume:11969,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/10275",hash:"",query:{},params:{id:"10275"},fullPath:"/profiles/10275",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()