Characteristic gases of several styles of faults.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"2046",leadTitle:null,fullTitle:"Machine Vision - Applications and Systems",title:"Machine Vision",subtitle:"Applications and Systems",reviewType:"peer-reviewed",abstract:"Vision plays a fundamental role for living beings by allowing them to interact with the environment in an effective and efficient way. The ultimate goal of Machine Vision is to endow artificial systems with adequate capabilities to cope with not a priori predetermined situations. To this end, we have to take into account the computing constraints of the hosting architectures and the specifications of the tasks to be accomplished, to continuously adapt and optimize the visual processing techniques. Nevertheless, by exploiting the low?cost computational power of off?the?shell computing devices, Machine Vision is not limited any more to industrial environments, where situations and tasks are simplified and very specific, but it is now pervasive to support system solutions of everyday life problems.",isbn:null,printIsbn:"978-953-51-0373-8",pdfIsbn:"978-953-51-5654-3",doi:"10.5772/2456",price:119,priceEur:129,priceUsd:155,slug:"machine-vision-applications-and-systems",numberOfPages:286,isOpenForSubmission:!1,isInWos:1,hash:"a5e8fcd36ede802fd6462fb9fa996838",bookSignature:"Fabio Solari, Manuela Chessa and Silvio P. Sabatini",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2046.jpg",numberOfDownloads:25423,numberOfWosCitations:6,numberOfCrossrefCitations:9,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:29,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2011",dateEndSecondStepPublish:"May 10th 2011",dateEndThirdStepPublish:"September 14th 2011",dateEndFourthStepPublish:"October 14th 2011",dateEndFifthStepPublish:"February 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"13366",title:"Dr.",name:"Fabio",middleName:null,surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari",profilePictureURL:"https://mts.intechopen.com/storage/users/13366/images/2513_n.jpg",biography:"Fabio Solari received the Laurea degree in Electronic Engineering from the University of Genoa, Italy, in 1995. In 1999 he obtained his Ph.D. in Electronic Engineering and Computer Science from the same University. Since 2005, he has been appointed as Assistant Professor of Computer Science at the Faculty of Engineering of the University of Genoa. His research activity concerns the study of the physical processes of biological vision to inspire novel algorithms and artificial perceptual machines based on neuromorphic computational paradigms. In particular, he is interested in: \n- Computational models of neural architectures, mainly in the dorsal stream of the visual cortex.\n- Algorithms for motion and depth computation, exploiting processing techniques based on spatio-temporal, multi-channel and multi-scale filtering. \n- Robotic systems for active vision: functional assessment of anthropomorphic robotic heads for active foveation; sensorimotor coordination in the peripersonal (e.g., reaching and grasping) and extrapersonal (e.g., navigation) space; space-variant vision systems (log-polar mapping).\n- Context sensitive receptive fields: motion analysis and motion interpretation, e.g. the time-to-contact estimation.\n- Software tools for the simulation of robotic systems and for the real-time processing of complex visual descriptors: neuromorphic algorithms for graphics processing units, GPGPU; virtual environments for the simulation of stereo active vision systems.\n- Augmented reality systems for the study of the visuo-motor coordination in the peripersonal space.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Genoa",institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"15165",title:"Dr.",name:"Manuela",middleName:null,surname:"Chessa",slug:"manuela-chessa",fullName:"Manuela Chessa",profilePictureURL:"https://mts.intechopen.com/storage/users/15165/images/system/15165.jpg",biography:"Manuela Chessa is a Postodoctoral Research scientist at the University of Genoa, Italy. She received her MSc in Bioengineering from the University of Genoa in 2005, and the Ph.D. in Bioengineering from University of Genoa in 2009. She has been working in the PSPC Lab since 2005, and her research interests are focused on the study of biological and artificial vision systems, on the development of bioinspired models for the estimation of optic flow and disparity, on the study of the interplay existing between vision and motion control in the peripersonal space, and on the development of virtual and augmented reality system for the study of the perception of tridimensionality.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"15166",title:"Dr.",name:"Silvio P.",middleName:null,surname:"Sabatini",slug:"silvio-p.-sabatini",fullName:"Silvio P. Sabatini",profilePictureURL:"https://mts.intechopen.com/storage/users/15166/images/system/15166.jpg",biography:"Silvio P. Sabatini received the Laurea Degree in Electronics Engineering and the Ph.D. in Computer Science from the University of Genoa in 1992 and 1996. He is currently Associate Professor of Bioengineering at the Department of Informatics, Bioengineering, Robotics and Systems of the University of Genoa. In 1995 he promoted the creation of the “Physical Structure of Perception and Computation” (PSPC) Lab to develop models that capture the “physicalist” nature of the information processing occurring in the visual cortex, to understand the signal processing strategies adopted by the brain, and to build novel algorithms and architectures for artificial perception machines. His research interests relate to visual coding and multidimensional signal representation, early-cognitive models for visually-guided behavior, and robot vision.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"527",title:"System Automation",slug:"system-automation"}],chapters:[{id:"33553",title:"Bio-Inspired Active Vision Paradigms in Surveillance Applications",doi:"10.5772/38872",slug:"bio-inspired-active-vision-paradigms-in-surveillance-applications",totalDownloads:1866,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Mauricio Vanegas, Manuela Chessa, Fabio Solari and Silvio Sabatini",downloadPdfUrl:"/chapter/pdf-download/33553",previewPdfUrl:"/chapter/pdf-preview/33553",authors:[{id:"13366",title:"Dr.",name:"Fabio",surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari"}],corrections:null},{id:"33554",title:"Stereo Matching Method and Height Estimation for Unmanned Helicopter",doi:"10.5772/29665",slug:"stereo-matching-method-and-height-estimation-for-unmanned-helicopter",totalDownloads:1663,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Kuo-Hsien Hsia, Shao-Fan Lien and Juhng-Perng Su",downloadPdfUrl:"/chapter/pdf-download/33554",previewPdfUrl:"/chapter/pdf-preview/33554",authors:[{id:"78819",title:"Dr.",name:"Kuo-Hsien",surname:"Hsia",slug:"kuo-hsien-hsia",fullName:"Kuo-Hsien Hsia"},{id:"85733",title:"Prof.",name:"Juhng-Perng",surname:"Su",slug:"juhng-perng-su",fullName:"Juhng-Perng Su"},{id:"85735",title:"MSc.",name:"Shao-Fan",surname:"Lien",slug:"shao-fan-lien",fullName:"Shao-Fan Lien"}],corrections:null},{id:"33555",title:"Fast Computation of Dense and Reliable Depth Maps from Stereo Images",doi:"10.5772/34976",slug:"fast-computation-of-dense-and-reliable-depth-maps-from-stereo-images",totalDownloads:2652,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"M. Tornow, M. Grasshoff, N. Nguyen, A. Al-Hamadi and B. Michaelis",downloadPdfUrl:"/chapter/pdf-download/33555",previewPdfUrl:"/chapter/pdf-preview/33555",authors:[{id:"102462",title:"Dr.",name:"Michael",surname:"Tornow",slug:"michael-tornow",fullName:"Michael Tornow"},{id:"103726",title:"MSc.",name:"Thien-Nghia",surname:"Nguyen",slug:"thien-nghia-nguyen",fullName:"Thien-Nghia Nguyen"},{id:"103727",title:"Prof.",name:"Bernd",surname:"Michaelis",slug:"bernd-michaelis",fullName:"Bernd Michaelis"},{id:"137516",title:"MSc.",name:"Michael",surname:"Grasshoff",slug:"michael-grasshoff",fullName:"Michael Grasshoff"}],corrections:null},{id:"33556",title:"Real-Time Processing of 3D-TOF Data in Machine Vision Applications",doi:"10.5772/34160",slug:"real-time-processing-of-3d-tof-data-in-machine-vision-applications",totalDownloads:2671,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Stephan Hussmann, Torsten Edeler and Alexander Hermanski",downloadPdfUrl:"/chapter/pdf-download/33556",previewPdfUrl:"/chapter/pdf-preview/33556",authors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann"}],corrections:null},{id:"33557",title:"Rotation Angle Estimation Algorithms for Textures and Their Implementations on Real Time Systems",doi:"10.5772/26657",slug:"rotation-angle-estimation-algorithms-for-textures-and-their-real-time-implementation-",totalDownloads:1958,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Cihan Ulas, Onur Toker and Kemal Fidanboylu",downloadPdfUrl:"/chapter/pdf-download/33557",previewPdfUrl:"/chapter/pdf-preview/33557",authors:[{id:"67465",title:"Mr.",name:"Cihan",surname:"Ulas",slug:"cihan-ulas",fullName:"Cihan Ulas"},{id:"127960",title:"Dr.",name:"Onur",surname:"Toker",slug:"onur-toker",fullName:"Onur Toker"},{id:"127961",title:"Prof.",name:"Kemal",surname:"Fidanboylu",slug:"kemal-fidanboylu",fullName:"Kemal Fidanboylu"}],corrections:null},{id:"33558",title:"Characterization of the Surface Finish of Machined Parts Using Artificial Vision and Hough Transform",doi:"10.5772/35182",slug:"characterization-of-surface-finish-of-machined-parts-using-artificial-vision-and-hough-transform",totalDownloads:2501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alberto Rosales Silva, Angel Xeque-Morales, L.A. Morales -Hernandez and Francisco Gallegos Funes",downloadPdfUrl:"/chapter/pdf-download/33558",previewPdfUrl:"/chapter/pdf-preview/33558",authors:[{id:"2941",title:"Dr.",name:"Alberto",surname:"Rosales-Silva",slug:"alberto-rosales-silva",fullName:"Alberto Rosales-Silva"},{id:"11317",title:"Dr.",name:"Francisco J.",surname:"Gallegos-Funes",slug:"francisco-j.-gallegos-funes",fullName:"Francisco J. Gallegos-Funes"},{id:"103334",title:"MSc.",name:"Angel",surname:"Xeque",slug:"angel-xeque",fullName:"Angel Xeque"},{id:"103340",title:"Dr.",name:"Luis",surname:"Morales",slug:"luis-morales",fullName:"Luis Morales"}],corrections:null},{id:"33559",title:"Methods for Ellipse Detection from Edge Maps of Real Images",doi:"10.5772/35150",slug:"methods-for-ellipse-detection-from-edge-maps-of-real-images",totalDownloads:2491,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Dilip K. Prasad and Maylor K.H. Leung",downloadPdfUrl:"/chapter/pdf-download/33559",previewPdfUrl:"/chapter/pdf-preview/33559",authors:[{id:"103174",title:"Dr.",name:"Dilip",surname:"Prasad",slug:"dilip-prasad",fullName:"Dilip Prasad"}],corrections:null},{id:"33560",title:"Detection and Pose Estimation of Piled Objects Using Ensemble of Tree Classifiers",doi:"10.5772/33551",slug:"detection-and-pose-estimation-of-piled-objects-using-ensemble-of-tree-classifiers",totalDownloads:2112,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitarai and Hiroto Yoshii",downloadPdfUrl:"/chapter/pdf-download/33560",previewPdfUrl:"/chapter/pdf-preview/33560",authors:[{id:"96123",title:"Dr.",name:"Masakazu",surname:"Matsugu",slug:"masakazu-matsugu",fullName:"Masakazu Matsugu"},{id:"100026",title:"Mr.",name:"Katsuhiko",surname:"Mori",slug:"katsuhiko-mori",fullName:"Katsuhiko Mori"},{id:"100027",title:"Mr.",name:"Yusuke",surname:"Mitarai",slug:"yusuke-mitarai",fullName:"Yusuke Mitarai"},{id:"100034",title:"Mr.",name:"Hiroto",surname:"Yoshii",slug:"hiroto-yoshii",fullName:"Hiroto Yoshii"}],corrections:null},{id:"33561",title:"Characterization of Complex Industrial Surfaces with Specific Structured Patterns",doi:"10.5772/27201",slug:"characterization-of-complex-industrial-surfaces-with-specific-structured-patterns",totalDownloads:1636,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yannick Caulier",downloadPdfUrl:"/chapter/pdf-download/33561",previewPdfUrl:"/chapter/pdf-preview/33561",authors:[{id:"69180",title:"Dr.",name:"Yannick",surname:"Caulier",slug:"yannick-caulier",fullName:"Yannick Caulier"}],corrections:null},{id:"33562",title:"Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space",doi:"10.5772/27502",slug:"discontinuity-detection-from-inflection-of-otsu-s-threshold-in-the-derivative-of-scale-space",totalDownloads:1714,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rahul Walia, David Suter and Raymond A. Jarvis",downloadPdfUrl:"/chapter/pdf-download/33562",previewPdfUrl:"/chapter/pdf-preview/33562",authors:[{id:"70415",title:"Mr.",name:"Rahul",surname:"Walia",slug:"rahul-walia",fullName:"Rahul Walia"},{id:"119864",title:"Prof.",name:"Raymond A",surname:"Jarvis",slug:"raymond-a-jarvis",fullName:"Raymond A Jarvis"},{id:"119865",title:"Prof.",name:"David",surname:"Suter",slug:"david-suter",fullName:"David Suter"}],corrections:null},{id:"33563",title:"Reflectance Modeling in Machine Vision: Applications in Image Analysis and Synthesis",doi:"10.5772/26554",slug:"reflectance-modeling-in-machine-vision-applications-in-image-analysis-and-synthesis",totalDownloads:2106,totalCrossrefCites:2,totalDimensionsCites:1,signatures:"Robin Gruna and Stephan Irgenfried",downloadPdfUrl:"/chapter/pdf-download/33563",previewPdfUrl:"/chapter/pdf-preview/33563",authors:[{id:"67059",title:"Mr.",name:"Robin",surname:"Gruna",slug:"robin-gruna",fullName:"Robin Gruna"},{id:"74290",title:"MSc.",name:"Stephan",surname:"Irgenfried",slug:"stephan-irgenfried",fullName:"Stephan Irgenfried"}],corrections:null},{id:"33564",title:"Towards the Optimal Hardware Architecture for Computer Vision",doi:"10.5772/34023",slug:"towards-the-optimal-hardware-architecture-for-computer-vision",totalDownloads:2053,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Alejandro Nieto, David López Vilarino and Víctor Brea Sánchez",downloadPdfUrl:"/chapter/pdf-download/33564",previewPdfUrl:"/chapter/pdf-preview/33564",authors:[{id:"2541",title:"Mr.",name:"Alejandro",surname:"Nieto",slug:"alejandro-nieto",fullName:"Alejandro Nieto"},{id:"103915",title:"Dr.",name:"David",surname:"López Vilariño",slug:"david-lopez-vilarino",fullName:"David López Vilariño"},{id:"103916",title:"Dr.",name:"Víctor M.",surname:"Brea Sánchez",slug:"victor-m.-brea-sanchez",fullName:"Víctor M. Brea Sánchez"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"850",title:"Human-Centric Machine Vision",subtitle:null,isOpenForSubmission:!1,hash:"eb922d441849d97d0f39989c3437ba69",slug:"human-centric-machine-vision",bookSignature:"Manuela Chessa, Fabio Solari and Silvio P. Sabatini",coverURL:"https://cdn.intechopen.com/books/images_new/850.jpg",editedByType:"Edited by",editors:[{id:"13366",title:"Dr.",name:"Fabio",surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9288",leadTitle:null,title:"Design and Manufacturing",subtitle:null,reviewType:"peer-reviewed",abstract:"In product development, decisions taken in design and manufacturing are considered the most influential factors for succeeding commercialisation. Product development is a complex integrated process of several steps starting from design where the market needs are identified and turned into competitive product specifications and different design concepts. In other words, design is about identifying a problem, developing solution proposals, and validating the most feasible solution with real users. Manufacturing technologies, on the other hand, help designers to make those virtual models into physical parts by transforming different types of raw materials. This book on design and manufacturing, written by a number of experts from all over the world, presents a design perspective and different manufacturing applications from various industrial sectors.",isbn:"978-1-78985-866-2",printIsbn:"978-1-78985-865-5",pdfIsbn:"978-1-83962-889-4",doi:"10.5772/intechopen.83290",price:119,priceEur:129,priceUsd:155,slug:"design-and-manufacturing",numberOfPages:266,isOpenForSubmission:!1,hash:"29172b8e746a303c2c48f39292fd4c10",bookSignature:"Evren Yasa, Mohsen Mhadhbi and Eleonora Santecchia",publishedDate:"July 29th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9288.jpg",keywords:null,numberOfDownloads:3056,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:7,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 14th 2019",dateEndSecondStepPublish:"August 28th 2019",dateEndThirdStepPublish:"October 27th 2019",dateEndFourthStepPublish:"January 15th 2020",dateEndFifthStepPublish:"March 15th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",middleName:null,surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa",profilePictureURL:"https://mts.intechopen.com/storage/users/219594/images/9465_n.jpg",biography:"Dr. Evren Yasa graduated with her degree in Mechanical Engineering from the Istanbul Technical University and completed\nher master degree at the University of British Columbia on\nvolumetric error modeling and compensation. She received her\nPh.D. degree with her thesis on “Combined Process of Selective\nLaser Melting and Selective Laser Erosion/Laser Re-melting” at\nthe Catholic University of Leuven, and won the “Emerald Outstanding Doctoral Study-Highly commended” award with her doctoral dissertation.\nAfter her Ph.D. study, she worked as a senior engineer at TEI, a GE-joint venture\ncompany specializing in manufacturing aero-engine parts, where she led Additive\nManufacturing projects. Later, she joined Eskisehir Osmangazi University as an\nassistant professor. Moreover, she has been working as an independent expert in\nlaser-based manufacturing on behalf of European Commission in FP7 and Horizon2020 projects.",institutionString:"Eskisehir Osmangazi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Eskişehir Osmangazi University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"228366",title:"Dr.",name:"Mohsen",middleName:null,surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi",profilePictureURL:"https://mts.intechopen.com/storage/users/228366/images/system/228366.jpeg",biography:"Dr. Mohsen Mhadhbi obtained his Ph.D. degree from the Faculty\nof Sciences of Sfax, Tunisia. He is currently Assistant Professor\nof Chemistry in the National Institute of Research and Physical-chemical Analysis, Tunisia. His research interests include\ninorganic chemistry, material engineering, intermetallics, and\npowder technology. He has published works in national and\ninternational impacted journals and books. He is a teacher in\ninorganic chemistry. He has supervised several researchers in materials science. He\nis a member of various scientific journals and associations and has been serving as\nan editorial board member of repute.",institutionString:"National Institute of Research and Physical-Chemical Analysis",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tunis El Manar University",institutionURL:null,country:{name:"Tunisia"}}},coeditorTwo:{id:"270298",title:"Dr.",name:"Eleonora",middleName:null,surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia",profilePictureURL:"https://mts.intechopen.com/storage/users/270298/images/system/270298.jpeg",biography:"Dr. Eleonora Santecchia (PhD) is Assistant Professor in Metallurgy at the Marche Polytechnic University (UNIVPM) located in Ancona, Italy. Her current research activities are mainly\nfocused on metal additive manufacturing and, in particular, on\nthe laser powder bed fusion (LPBF) and direct energy deposition\n(DED) techniques. She received her Master Degree (cum laude)\nin Thermomechanical Engineering at the Marche Polytechnic\nUniversity (Ancona, Italy) in 2010, and obtained her Ph.D. in Materials, Waters\nand Soils Engineering on March 2014 (Marche Polytechnic University, Ancona,\nItaly). She accomplished a two years postdoctorate fellowship at Qatar University\nin Doha (Qatar) working on the Project NPRP 5-423-2-167 “Advanced ultra-hard\nnanostructured coatings for innovative applications in mechanical and chemical\nindustries”. From 2016 to 2019 she worked as an INSTM Postdoctoral Researcher at\nthe Marche Polytechnic University (Ancona), within the European Project DREAM\nH2020 “Driving up Reliability and Efficiency of Additive Manufacturing”. She is\nexperienced in microstructural characterization by scanning electron microscopy,\nenergy dispersive spectroscopy, and X-ray diffraction techniques. Furthermore, Dr.\nSantecchia is an enthusiastic additive manufacturing researcher, with a particular\npassion for laser-based 3D printing techniques.",institutionString:"Marche Polytechnic University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1356",title:"Manufacturing Engineering",slug:"technology-industrial-engineering-manufacturing-engineering"}],chapters:[{id:"70110",title:"Design for Manufacturing of Electro-Mechanical Assemblies in the Aerospace Industry",slug:"design-for-manufacturing-of-electro-mechanical-assemblies-in-the-aerospace-industry",totalDownloads:234,totalCrossrefCites:0,authors:[null]},{id:"68474",title:"Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization",slug:"industrial-applications-of-intelligent-adaptive-sampling-methods-for-multi-objective-optimization",totalDownloads:288,totalCrossrefCites:0,authors:[null]},{id:"68343",title:"Design for Sustainability with Biodegradable Composites",slug:"design-for-sustainability-with-biodegradable-composites",totalDownloads:349,totalCrossrefCites:0,authors:[null]},{id:"70001",title:"Integrating Sustainability in the Strategic Stage of an Innovation Process: A Design Brief Perspective",slug:"integrating-sustainability-in-the-strategic-stage-of-an-innovation-process-a-design-brief-perspectiv",totalDownloads:192,totalCrossrefCites:0,authors:[{id:"154290",title:"M.Sc.",name:"Kristel",surname:"Dewulf",slug:"kristel-dewulf",fullName:"Kristel Dewulf"}]},{id:"70473",title:"Prologue: The New Era of Sintering",slug:"prologue-the-new-era-of-sintering",totalDownloads:169,totalCrossrefCites:0,authors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"},{id:"270298",title:"Dr.",name:"Eleonora",surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia"}]},{id:"69701",title:"Utilization of Additive Manufacturing to Produce Tools",slug:"utilization-of-additive-manufacturing-to-produce-tools",totalDownloads:241,totalCrossrefCites:0,authors:[{id:"219596",title:"Dr.",name:"Kıvılcım",surname:"Ersoy",slug:"kivilcim-ersoy",fullName:"Kıvılcım Ersoy"}]},{id:"67294",title:"Fabrication of Fine-Grained Functional Ceramics by Two-Step Sintering or Spark Plasma Sintering (SPS)",slug:"fabrication-of-fine-grained-functional-ceramics-by-two-step-sintering-or-spark-plasma-sintering-sps-",totalDownloads:242,totalCrossrefCites:0,authors:[{id:"216560",title:"Dr.",name:"Walace",surname:"Matizamhuka",slug:"walace-matizamhuka",fullName:"Walace Matizamhuka"}]},{id:"69886",title:"Rapid Physical Models: A New Phase in Industrial Design",slug:"rapid-physical-models-a-new-phase-in-industrial-design",totalDownloads:211,totalCrossrefCites:0,authors:[null]},{id:"67448",title:"Effects of Dispersed Sulfides in Bronze During Sintering",slug:"effects-of-dispersed-sulfides-in-bronze-during-sintering",totalDownloads:257,totalCrossrefCites:0,authors:[null]},{id:"70809",title:"Comprehensive Review on Full Bone Regeneration through 3D Printing Approaches",slug:"comprehensive-review-on-full-bone-regeneration-through-3d-printing-approaches",totalDownloads:230,totalCrossrefCites:0,authors:[null]},{id:"72320",title:"3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs",slug:"3d-printed-bioscaffolds-for-developing-tissue-engineered-constructs",totalDownloads:206,totalCrossrefCites:0,authors:[{id:"39279",title:"Prof.",name:"Md Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}]},{id:"69997",title:"Application the Geometric Modeling Methods and Systems in Design Engineering and Manufacturing on Example of Agriculture Engineering",slug:"application-the-geometric-modeling-methods-and-systems-in-design-engineering-and-manufacturing-on-ex",totalDownloads:197,totalCrossrefCites:0,authors:[{id:"268891",title:"Ph.D.",name:"Tojiddin",surname:"Juraev",slug:"tojiddin-juraev",fullName:"Tojiddin Juraev"}]},{id:"71402",title:"Manufacturing a Ceramic Water Filter Press for Use in Nigeria",slug:"manufacturing-a-ceramic-water-filter-press-for-use-in-nigeria",totalDownloads:240,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5266",title:"Sustainable Drying Technologies",subtitle:null,isOpenForSubmission:!1,hash:"b181534649ba314c0b6b66563924b0b5",slug:"sustainable-drying-technologies",bookSignature:"Jorge del Real Olvera",coverURL:"https://cdn.intechopen.com/books/images_new/5266.jpg",editedByType:"Edited by",editors:[{id:"166103",title:"Dr.",name:"Jorge",surname:"Del Real Olvera",slug:"jorge-del-real-olvera",fullName:"Jorge Del Real Olvera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6245",title:"Pulp and Paper Processing",subtitle:null,isOpenForSubmission:!1,hash:"02d43c16cfb998c3a76fb4aab8d88403",slug:"pulp-and-paper-processing",bookSignature:"Salim Newaz Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/6245.jpg",editedByType:"Edited by",editors:[{id:"93483",title:"Dr.",name:"Salim Newaz",surname:"Kazi",slug:"salim-newaz-kazi",fullName:"Salim Newaz Kazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9278",title:"Mass Production Processes",subtitle:null,isOpenForSubmission:!1,hash:"789ba305188dfbafa096787e75c14ffc",slug:"mass-production-processes",bookSignature:"Anil Akdogan and Ali Serdar Vanli",coverURL:"https://cdn.intechopen.com/books/images_new/9278.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,isOpenForSubmission:!1,hash:"165b06fe031e98420855654b0a5e25c4",slug:"applications-of-design-for-manufacturing-and-assembly",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6736",title:"Abrasive Technology",subtitle:"Characteristics and Applications",isOpenForSubmission:!1,hash:"928e702841e3f565da642039ea0c31ce",slug:"abrasive-technology-characteristics-and-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/6736.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55417",title:"Experimental Analysis of Modified CNTs-Based Gas Sensor",doi:"10.5772/intechopen.68590",slug:"experimental-analysis-of-modified-cnts-based-gas-sensor",body:'\n
The stability of electrical equipment is the key factor for the running safety and economy of electrical power system. Along with the extra‐high‐voltage grid construction, power transmission capacity becomes larger, coverage area becomes wider, and the national power grids at all levels are closely linked to each other, so the harm of grid accidents would be more serious [1]. Large power transformer, as the key equipment of power system, plays influential role to ensure the safe operation of power system. Real‐time detection of insulation state of transformer, accurately predicting the fault and avoiding possible trouble are important measures to ensure the safe operation of the electrical grid [2], to improve equipment utilization and reduce costs of equipment maintenance, which are also key technical issues of constructing the strong and intelligent electrical grid. A lot of study and practice has proved that the main reason for the transformer accident is the deterioration of its insulation performante. With the development of electronic, computer, sensor and information processing technology recently, detection ways for insulation state of large‐scale power transformer have been rapidly developing. For example, dissolved gas analysis (DGA) [3], partial discharge (PD) [4], winding coefficient of dielectric loss measurement, winding insulation resistance measurements, winding deformation and winding hot spot temperature monitoring the micro water insulation monitoring, etc. [5], these ways can help people to get the insulation state of transformer from different aspects.
\nDissolved gas-in-oil analysis (Oil-DGA) is the most convenient and effective method of judging the early potential fault of oil‐immersed power transformers at present [6–8], and the method is the most extensive one in the real application, which has become an indispensable approach to judge the internal fault of oil‐filled electrical equipment and oversee the safe operation of equipment [9]. Research shows that, among main obstacle and defects of transformers discovered by experiment examinations, faults found by dissolved gas analysis of test standard always take up the highest percentage, 60.1% in 2004 and 68.5% in 2005 [10]. The international electro technical commission develops standard IEC60567 “Oil‐filled electrical equipment—Sampling of gases and analysis of free and dissolved gases—Guidance” and IEC60599 “Mineral oil‐impregnated electrical equipment in service—Guide to the interpretation of dissolved and free gases analysis.” Gas chromatography is widely applied to quantitative analysis of various gases dissolved in transformer oil content. For the past few years, it has become the new trend to develop the pint‐sized gas‐detecting device by using the gas‐sensing technology, which is aimed at achieving on‐line monitoring to dissolved gas in transformer oil and grasping the operational state of equipment at any time [11, 12]. On‐line monitoring of dissolved gas analysis could help reduce the unavailability of equipment in the long run‐time [13], thus it can improve the economic benefit, optimize cycle and content of maintenance job to decrease maintenance fee and improve control of power system and the reliability of monitoring performance in overload operation [14].
\nThe high‐sensitivity gas sensors are used to detect dissolved gas in transformer oil [15], structure of test system is simple and it is easy to implement. In recent years, a breakthrough has been making in the sensor technology [16, 17]. Especially, the development of nanotechnology has been providing the new material and processing method [18], in which the carbon nanotubes (CNTs) gas sensor has become the new research focus [19]. CNTs have abundant pore structure, large specific surface area, and a strong ability of adsorption and desorption for chemical composition of the gas phase, these properties make CNTs, as gas sensor, incomparable in conventional sensors of the detection sensitivity and miniaturization [20]. At present, this technology obtains rapid development in the biological, chemical, machinery, aviation, military, and other aspects.
\nAs the pressure of global resources and environment is increasing, the society demand for environmental protection, energy conservation, and emissions reduction and sustainable development is increasing day by day. Along with sustainable development of social economy, the rapid growth of electricity demand, carrying out the energy conservation and emissions reduction and construction of “resource saving and environment‐friendly society,” has become a very urgent task. The Electric Power Research Institute (EPRI) put forward the concept of smart grid in 2000; they think this is development tendency in the future power grid and a way to solve the problem of the grid in twenty‐first century. So‐called smart grid is the advanced sensor measurement technology, information technology, communication technology, computer technology, automatic control technology, and the original transport and distribution infrastructure highly integrated to form a new type of power grid. The observability based on advanced measurement, sensing technology, and real‐time analysis based on comprehensive analysis of decision‐making reflects mainly intelligence in grid [21, 22], and it is one of the hot topics in the study of the current smart grid.
\nIn conclusion, new sensors researched are used to detect equipment on real‐time and accurately predict failure, do nip in the bud. These are important measures to ensure the safety of the grid in production, improve equipment utilization, and reduce the equipment maintenance cost, also, is the key technology of construction for unified strong smart grid. Based on the study of the existing transformer oil gas detection and analysis method, this chapter studies deeply application of nanometer gas‐sensitive sensor technology for transformer oil gas detection and analysis, develops a new CNTs gas sensor and, tests its gas‐sensing property, master the basic law, put forward an algorithm of dissolved gas analysis in oil‐based dynamic tunnel fuzzy c‐means to rich analysis method of transformer fault characteristics. This research topic from the urgent demand in reality not only has important academic value but also has significant economic and social benefits and broad application prospects.
\nAt present, most of high‐voltage and large‐capacity power transformers used oil filled; this transformer used composite structure including insulating oil and insulation paper (plate) and has the very high‐electric strength. During long‐running process, insulating oil and other insulating materials of transformer under the effect of electricity and heat will gradually age and decompose, resulting in the production of gases such as low molecular hydrocarbons, CO, and CO2 that get dissolved in insulating oil [23, 24]. When the transformer is in normal operation condition, the outside factors such as electricity, heat, and mechanical stress cannot break chemical bond of insulating oil and insulation paper (plate). Insulating materials only produce little gas when they are normal aging. But the discharge and overheating fault occur in the equipment, deterioration process of insulating materials is greatly accelerated to accelerate rate of biogas production of the above gas [25]. The study demonstrated composition and content of these gas has close relation with property of fault, these gases are called as characteristic gases, as shown in Table 1.
\nFault type | \nInsulation medium | \nMain components | \nMinor components |
---|---|---|---|
Overheating | \nOil | \nCH4, C2H4 | \nC2H6, H2 |
Transformer oil paper insulation | \nCH4, C2H4, CO, CO2 | \nC2H6, H2 | |
Arc discharge | \nOil | \nC2H2, H2 | \nC2H6, CH4, C2H4 |
Transformer oil insulation paper | \nC2H2, H2, CO, CO2 | \nC2H6, CH4, C2H4 | |
Partial discharge | \nTransformer oil and insulation paper | \nCH4, CO, H2 | \nC2H6, CO2 |
Spark discharge | \nTransformer oil | \nC2H2, H2 | \n/ |
Bubble discharge | \nWatered oil | \nH2 | \n/ |
Characteristic gases of several styles of faults.
It has a great significance for indication of the transformer early fault to monitor change of characteristics of the gas composition and content in insulating oil. Electromagnetic interference shows no influence on dissolved gases analysis, and dissolved gases analysis shows high data reliability. The technology develops maturely and accumulates considerable experience from qualitative to quantitative analysis to form relative regulation, such as International Electrotechnical Commission standard IEC60567 and IEC60599. Since the 1970s, transformer fault diagnosis based on characteristic gases dissolved in transformer oil has widely spread all over world and gradually applied in the field.
\nAccording to “the guidelines for the dissolved gas in transformer oil analysis, and judgment,” detection of gas content first needs gas separation from oil (i.e., the degassing). The gas separated from oil is a mixture of various gas components. The general gas content detection method has sensitive for all kinds of gases or a gas. To detect a single gas, we usually use gas chromatography to separate various gas components [26]. The advantage of gas chromatographic method is quantitative analysis for a variety of gas content dissolved in oil; meanwhile, there are characteristics in it, such as many test links, complex operation, high technical requirements, and long test cycle. Therefore, this method is usually used to regular checking for main equipment (e.g., once half a year), professional workers conduct it in laboratory. However, in two regular interval periods, the internal condition changes of transformer cannot be found in a timely manner. Application of micro gas‐sensor technology is developed to miniaturized gas detection device, which can monitor on‐line dissolved gas in transformer oil to master the running status of equipment whenever. When an alarm occurs in on‐line monitor, we could use method such as chromatographic analysis to secondary diagnosis [27].
\nThe on‐line monitor of dissolved gas in transformer oil still based on the categories and quantities of dissolved gas which can be seen as fault characteristic quantities. The difference is that real‐time on‐line monitoring of oil chromatography and intelligent fault diagnosis can be realized using this technology. This can not only gain the running state of the transformer timely, based on which latent faults can be detected and tracked, but also diagnose fault automatically due to the expert system so as for operating crew, fault can be handled rapidly. Using on‐line monitoring device can improve the management level of substation operation and lay a foundation of transition from preventive maintenance system to predictive maintenance system [28].
\nChoosing different sensors and cooperating to use different ways to take air and use diagnostic devices due to different test object can make up a variety of on‐line or portable monitoring device to detect the dissolved gases in transformer oil [29, 30]. The method of detecting the dissolved gases in transformer oil can be divided into the following categories:
\n1. According to the categories of test object
\na. Measuring the total content of combustible gases
\nThe amount of combustible gases refers to the total quantities of H2, CO, and all kinds of gaseous hydrocarbons. These kind of devices represented by TCG detection device of Japan\'s Mitsubishi electric power company can only give the amount of combustible gas but cannot measure the content of one component.
\nb. Measuring the content of single component: H2
\nWhen overheating or partial discharge occurred in the equipment, hydrogen would appear. Fuel cell sensor such as HYDRAN produced by SYPROTEC Company in Canada can acquire signals. This device is suitable for the preliminary diagnosis for fault on the spot based on its simple structure, but chromatographic analysis must be applied to further determine the fault.
\nc. Measuring the content of composite gas components
\nWith the development of on‐line monitoring technology, on‐line chromatographic detection devices have been invented for measuring full‐component gases. The gas transformer oil on‐line gas monitoring equipment of AVO Company in the USA can measure the contents of up to eight kinds of gases. DRMCC transformer on‐line monitoring system can monitor the working status of transformer continuously, timely, and systematically. The main monitoring objects include dissolved substances such as hydrogen, water and wind temperature, position of tap, etc. The CONEDISON Company analyzed and measured the contents of CH4, C2H4, CO, CO2, and C2H6 using infrared spectroscopy method and measured the content of H2 with an oxide electrochemical sensor. The on‐line transformer fault prediction system developed by Chongqing university can measure the concentration of H2, CO, CH4, C2H4, C2H2, and C2H6 timely and can availably predict the concentrations of the dissolved gases in transformer oil and diagnose insulation condition of transformer in future with the method of gray clustering, paste pattern multi‐level clustering, and kernel‐based possibilistic clustering. Due to the limitation of sensing technology, the current on‐line monitoring devices are not satisfactory in reliability and sensitivity, but on‐line monitoring is the development direction of analysis technology of dissolved gases in transformer oil.
\n2. According to the categories of methods of extracting gas
\na. Polymer separation membrane permeability method
\nPolymer membranes of organic synthesis have different degrees of permeability and can be used in industrial gas separation and purification process. In the mid‐1960s, use of polyester hollow fiber membrane to recover hydrogen by Du Pont Company is one of the earliest attempts to use membrane to separate gases. The gases in oil follow Henry\'s law and go through the membrane into the air chamber so the gas concentration in the chamber and the dissolved gas concentration in the oil are balanced. The transmittance of the film is as high as possible to minimize the detection cycle, so that timely detection, timely alarm can be realized. Kurz first produced the polymer membrane and made its use for separation of transformer oil and gas, then the polyimide, polyhexafluoroethylene, polytetrafluoroethylene, and other polymer membranes were studied. China Electric Power Research Institute, Chongqing University, and other research institutions made repeated tests on the permeability of a variety of membranes, the results showed that Polytetrafluoroethylene (PTFE) film not only had good air permeability but also had good mechanical properties and resistance to oil, high temperature, and many other advantages. Therefore, it is often used as breathable film on the detectors of dissolved gas [31].
\nb. Method of vacuum pumping to extract gas
\nAccording to the principle of vacuum degassing, vacuum pump or bellows vacuum is used to extract dissolved gas in oil to achieve on‐line monitoring of dissolved gas in transformer oil.
\nc. Other methods of extracting gas
\nUse different methods of blowing gas to replace oil‐soluble gas so that the concentration of one kind of gas on surface and the concentration of that in oil gradually reach equilibrium and then analyze the gas on surface using a detector. Common methods contain carrier gas elution, air circulation, colorimetric pool method, etc.
\n3. According to the sensors that collect the signals
\nThe detector that is used to detect separated or unseparated gases and has responses to a sample or samples is an important component of a detection device. It can be divided into palladium gate Field Effect Transistor (FET), semiconductor sensor, catalytic combustion sensor, combustion cell sensor, and other types of sensors [32].
\nThe results show that combining two or more sensors, using modern computer technology, and developing the corresponding data processing software, we can measure the content of two kinds of fault gases and can achieve significantly better detection performance than one conventional sensor with a single monitoring device [33]. The development of gas‐sensor array technology includes two aspects, one is to develop integrated micro gas‐sensor array using micro‐manufacturing, micro‐machining technology; the other is to improve the accuracy of a single gas identification and realize quantitative analysis mixed gas using multi‐sensor information fusion technology. Whether in the integration of sensor array, or in the analysis theory and technology of sensor array, it has become the hot spots of current sensor researches.
\nUsing high‐sensitivity gas sensor to detect dissolved gases in oil is easy to realize due to its simple gas line. But the existing gas sensor\'s detection sensitivity and reliability have not yet reached the level of sensitivity and reliability of off‐line detection, so there are a lot of work to do. With the continuous development of detection technology, a variety of new sensors continues to come out, such as photoionization detector using energy of photons to ionize each type of gas, methane gas sensor, CO gas sensor based on vibration at room temperature, CO2 gas sensor using solid battery, Pt doped SnO2 separation membrane gas sensor by impregnation, CNTs sensor, etc. These new sensors create a good prospect of developing for the detection of high‐sensitivity transformer oil‐dissolved gas using on‐line monitoring device. However, due to the harsh natural environment of on‐line monitoring, complex strong electromagnetic interference, a large number of studies is also needed in selecting these sensors for gas detector [34].
\nSensor is a type of device that can transfer physical or chemical parameters into available electric information. Sensor can be defined as “device or apparatus which can sense the specified measurement and transfer it into available output signals by some laws” [35].
\nGas sensors, namely gas‐sensitive devices, are a type of device or apparatus that can sense specific gases and their concentrations in the environment. Information about the species and concentrations of gases can be transferred into electric signals for detection, monitoring, analysis, and alarm. Gas sensor is an important branch of sensor technology. Since the research on gas sensors started in the 1930s, it has passed more than half a century and there are several hundred kinds of sensors, which have been utilized in many aspects of human life, including national defense and military, industrial and agricultural production, energy and resource exploit, medicine, environment protection, disaster prediction, transport, etc. [36].
\nThe fundamental characters of gas sensors include: sensitivity, selection, stability and resistant ability to corrosion, etc. Those characters are ensured by the selection of materials. Based on the characteristics of aimed gases, the environment conditions, detection requirements, and proper materials can be chosen or prepared for best gas‐sensing properties of gas sensors. According to gas‐sensing materials and gas‐sensing response, gas sensors can be roughly divided into electric, optical, electrochemical, and other types, shown in Figure 1. The advantages and disadvantages of different gas sensors are shown in Table 2.
\nClassification chart of gas sensors.
Detectors | \nAdvantages | \nDisadvantages |
---|---|---|
Field‐effect tube detector | \nOnly for H2 detection, no interference by other gases | \nNot long lifespan, severe zero drift, false alarm |
Catalysis incendiary detector [37] | \nLow cost, long lifespan, low effect by temperature and humidity, high‐speed response, widely used for H2, CH4 detection | \nNot suitable for other gases, low gas selectivity |
Semiconductor detector [38, 39] | \nBy far the most widely used sensors, high response value, high response speed, good stability | \nLow gas selectivity |
Combustion cell detector | \nOften used for H2 detection, high detection precision, good repeat response capability | \nLimited lifespan, high cost and detection error |
Infrared absorption detector | \nOften used for CO2 detection, no sample separation | \nFor useable for other gases |
Optical gas sensor [40–42] | \nElectromagnetic insulation properties, high response speed, high response value, long lifespan, good stability | \nComplex detection system, high cost |
Electrochemical gas sensor [43–45] | \nHigh response value, good gas selectivity | \nEasy influence from outside environment |
High polymer gas sensor [46] | \nHigh response value to specific gases, good gas selectivity, important in food production | \nOnly works under common temperature |
Comparison of the use features of common detectors.
Microelectromechanical technology (MEMT) is the main manufacturing technology of gas sensors. MEMT is a type of new technology based on microelectronic technique and micro‐machining technology, including bulk micro‐machining technology, surface micro‐machining technology, and Lithographie, Galvanoformung and Abformung (LIGA) technology based on X‐ray. Bulk micro‐machining technology mainly aims at single silicon crystal, of which the key technique is corrosion and wire bonding technology with processing thickness of dozens to hundreds micron; surface micro‐machining technology is based on semiconductor technique like oxidation, spread, photoetching, thin‐film deposition, and other techniques, with thickness of several micron; LIGA technology adopts conventional X‐ray for procession, with thickness of several to dozens micron. In those years, new processing techniques such as nanotechnology have provided more choices for sensors manufacturing technology and the development of processing techniques also motivates the breakthrough of sensor technology.
\nNowadays, with the development of industry manufacturing, environment detection as well as nanotechnology, nanogas‐sensing technology has become the research focus of sensing technology. The development of nanotechnology provides not only excellent gas‐sensing materials such as nanoparticles, nanowire, and nanoplane, but also new preparation and processing technology like scanning tunneling microscopy (STM) which enables researchers to observe the atoms and handle these atoms using probe. Therefore, this technology has developed a lot in biology, chemistry, machine, aviation, etc. Another important aspect of nanogas‐sensing technology is CNTs gas sensors.
\nSince Iijima [47] found CNTs in 1991, both physical and chemical properties have been investigated widely. CNTs can be seen as tubes with nanosizes by graphite flake rolling. Hexagonal structural carbon atoms constitute several to 10 layers of tubes, with the distance between interfacing layers of 0.34 nm. There are single‐wall CNTs (SWNT) and multi‐wall CNTs (MWNT) according to the layers of CNTs as shown in Figure 2. The external diameter of CNTs is about several to dozens of nanometers and the length is about micron, much longer than the diameter.
\nStructure sketch of CNTs: (a) single‐wall nanotubes, (b) multi‐wall nanotubes.
CNTs possess abundant pore structure, large specific surface area, and excellent adsorption and desorption ability to gas molecules. Due to the interaction of adsorbed gas molecules with CNTs, the fermi level of it will change, thus leading to large macroscopic change of its resistance, which provides a way to detect the gases by the measurement of resistance. Those properties enable CNTs huge advantages as gas sensors. Firstly, large interaction surface provides gas adsorption sites with gas‐sensing response enhanced largely. Secondly, working temperature can be lowered largely. Thirdly, gas sensors can also be controlled at very small size.
\nIn recent years, considerable researches on CNTs sensors have been carrying on for the exploration of novel sensing materials. In 2000, Kong et al. [48] first applied the SWCNT to prepare gas sensors for detecting the mixture of NO2 and NH3, and they found that the conductivity of sensors after adsorbing NH3 can reduce two orders of magnitudes and improve three orders of magnitudes in terms of NO2. In that case, the sensors can be regarded as having a relatively high selectivity in complex gas environment. Subsequently, Kong et al. [49] successfully prepared the N‐modified SWCNTs with inconsecutive Pt metal thin film, which has better sensing property and quicker recovery property to H2, demonstrating that this semi‐conductivity single‐wall CNTs sensors have better sensitivity, selectivity, and recovery characteristics than before. Dai et al. [6] developed a novel type of CNTs sensors, which were also made by SWCNT that have the semi‐conductivity property, and they studied the change of electric property with the import of gases. The results showed that the gas responses of NO2 and NH3 are both good. Qi et al. [50] introduced a type of gas sensors using SWCNTs, which can detect NO2 with the minimum content to 1 ppb.
\nVarghese et al. [51] proposed two kinds of means to prepare CNTs sensors. The first one is to cover a layer of CNTs‐SiO2 thin film on the flat interdigital capacitor, named capacitance sensor; the other one is to carve a crooked SiO2 groove on a Si substrate and then to grow CNTs on the SiO2, called resistive transducer. It has been proved that these two types of sensors are both sensitive to NH3, presenting the liner change. Modi et al. [52] employed CNTs arrays and developed micro gas‐sensing device using Thompson discharge characteristic that can sensitively detect the content of atmosphere gases.
\nRobinson et al. [53] of the America Marine laboratory designed a capacitance gas sensor based on CNTs, where the interdigital electrodes and the SWCNT that distributes in the interdigital electrodes are acted as a counter electrode of the capacitance, the 30nm SiO2 layer acted as insulating layer between two poles, low‐resistance silicon acted as another counter electrode. The experimental results showed that these sensors have quick response and short recovery time to NO2, NH3, and dimethyl methylphosphonate (DMMP). Pulichel M. hjayan and Nikhil Koratkar in Rensselaer Polytechnic Institute successfully developed the micro gas‐sensing samples, which can sensitively quantify and qualitatively analyze varying gases in the atmosphere.
\nWhen implementing direct voltage on the gas sensors, the low voltage would generate strong electric field on the CNTs, and therefore form the dielectric breakdown condition. The experimental results reveal that the voltage values vary obviously with the difference of the type of gas, so that it can be qualitatively analyzed. The analyzable gases are extensive, ranging from Ar to He as well as some inert gases. Furthermore, it has been proved that the generated electricity values present direct proportion to the logarithm of the concentrations, which indicates the gas content could be quantitatively analyzed.
\nZhang et al. [54] of Xi’an Jiaotong University as well as Bondavalliet al. [55] had performed an in‐deep research to Thompson discharge type CNTs gas sensor. Xi Li also conducted primary study on CNTs film sensors. Zhang et al. [56] of Chongqing University also performed related studies on the electric properties of CNTs.
\nIn terms of sensing mechanism of CNTs, many calculations based on first principle theory have been carried out. Goldoni et al. [57] deemed that the reasons SWCNTs are sensitive to O2, CO, H2O, and N2 could be attributed to the combined induction of surfactant, lauryl sodium sulfate and contaminant come from NaOH, or the chemical adsorption between the defect zone of the CNTs and O2.
\nJing Li [58] considered that two sensing mechanisms are existed in the adsorption process of SWCNTs: (i) the direct charge transfer between single‐wall CNTs and the acceptor or receptor, inducing the change of semi‐conductivity CNTs in Femi energy, which further results in the change in conductivity, named in‐tube adjust and (ii) inside the SWCNT existing the adsorption points between targeted molecules and SWCNT, leading to the charge transfer, contributing to the change of conductivity, named inter‐tube adjust.
\nZhou et al. [59] who applied density functional theory calculated the effect of B‐ and N‐doped SWCNT on adsorption to H atom and H2 molecules. Owing to the complexity of porous materials and diversity of doping substance of CNTs, the gas‐sensing mechanism of CNTs still remains in qualitative or half qualitative stage, which also needs further studies both experimental and theoretical.
\nTo improve the sensitivity and selectivity of the CNTs sensors, a large number of modified methods such as chemical doped, molecules doped, molecular coating, as well as mechanical deformation [60–69] were introduced by scholars to modify the CNT, and acquired the desirable results. The variety of chemical doped and doped materials contributes to the selectivity to various gas adsorption. For example, the B‐doped and N‐doped make the intrinsic CNTs become P‐model and N‐model semiconductor, improving the density of the carrier so that make the charge transforms much easier between gas molecules and CNTs. Through doping Au, Pt, Pd, Ir, and the other expensive metal nanoparticles, the activation energy of chemical adsorption for gases can be reduced; at the same time, these expensive metal nanoparticles become the core of the catalytic activity, so that can effectively enhance the sensitivity, selectivity, and response time of the sensors.
\nThe simulation of quantum mechanics is realized by the Dmol3 of Material Studio software, which is developed by an American company of Accelrys. The PW91 function of the generalized gradient approximation (GGA) was employed for the exchange correlation of electrons. P polarized function is used for modified hydroxyl (OH)‐wall (8, 0) SWNT in presence of gas molecule adsorption density functional calculations. Previous theoretical calculations [70] show that the generalized gradient approximation (GGA) method can accurately describe the geometric structure and electronic structure of CNTs, and the process of interaction with molecules. To avoid the interaction between the nanotubes, we designed a large lattice of 20 Å × 20 Å × 85 Å, and use the periodic boundary conditions. In a superlattice, the SWNT‐OH is made up with 64 C atoms and the ‐OH which modified in the sidewall of CNTs. The initial action distance between gas dissolved in oil‐filled transform and SWNT‐OH can be set to 0.15 nm. All atoms are calculated by the atomic potential, self‐consistent field convergence value is set to 10 × 10−5. Literature [70] shows we can get more accurate calculation results on CNTs (8, 0) brillouin zone 2 K points. All the calculation procedures completed on the Dmol3.
\nBefore each calculation, the first stage is to optimize the SWNT‐OH of the superlattice and the isolated typical dissolved gases to get their stable configuration. And CO, H2, CH4 C2H4, and C2H2 are chosen as the typical dissolved gases to be detected by SWNT‐OH in this part. Then let the CO, H2, CH4, C2H4, and C2H2 molecule in various passible ways, respectively, to approach the O and H atom of the ‐OH of the tube wall to make atomic optimization, and form the oil‐dissolved gases molecule SWNT‐OH system preliminarily. Finally, this system is unconstrained optimized to find the stable configuration and calculate its electronic properties.
\nIn Figure 3, it is the SWNT‐OH stable configuration after geometry optimization. In Figure 4(a)–(e), they are CO, C2H2, H2, CH4, and C2H4 stable configuration after geometry optimization. And in Table 3, is the calculation results of SWNT‐OH respectively absorb the CO, H2, CH4, C2H4, and C2H2. In Figure 5, are the most stable configuration of after interaction between the geometrically optimized gas molecules and SWNT‐OH. The unit of structure parameter is Å. The brackets correspond to adsorption energy which unit is eV. The charge transfers QT between oil‐dissolved gases molecule and SWNT‐OH are shown in Table 3.
\n(8, 0) SWNT‐OH.
Optimized supercell structures for (a) CO, (b) C2H2, (c) H2, (d) CH4, and (e) C2H4.
The most stable configurations of H2, CO, C2H4, and C2H2 interacting with SWNT‐OH after optimization, respectively.
Structural system | \nGraphic | \nAdsorption energy (eV) | \nCharge‐transfer (au) | \nInteracting distance (nm) |
---|---|---|---|---|
H2 + SWNT‐OH | \nFigure 5(a) | \n−0.25 | \n0.012 | \n0.2211 |
CO + SWNT‐OH | \nFigure 5(b) | \n−0.22 | \n0.062 | \n0.2159 |
CH4 + SWNT‐OH | \nFigure 5(c) | \n−0.36 | \n0.017 | \n0.2409 |
C2H4 + SWNT‐OH | \nFigure 5(d) | \n−0.49 | \n0.052 | \n0.2413 |
C2H2 + SWNT‐OH | \nFigure 5(e) | \n−0.59 | \n0.068 | \n0.2409 |
Calculated binding energy, net charge transfer, and interacting distance.
In order to determine the most stable geometry configuration of the system of oil‐dissolved gases molecule and SWNT‐OH, we designed the different initial configuration. In other words, let the different atoms of CO, H2, CH4, C2H4, and C2H2 molecule with the same initial distance (1.5) approach the O and H atom of ‐OH to optimize. And in order to evaluate the adsorption energy between molecules and SWNT‐OH, we calculated their adsorption energy Eb. Eb is defined as Eb = E(B + SWNT‐OH) − E(SWNT‐OH) − E(B). In this formula, E(B + SWNT‐OH) is the total energy of molecular adsorption on the surface of SWNT‐OH; E(SWNT‐OH) and E(B), respectively, are the energy of SWNT‐OH and single molecule. If E < 0, the adsorption process is an exothermic process, the adsorption can be occurred spontaneously. In order to characterize the electrical conductivity of SWNT‐OH, we calculated the charge transfers QT between molecule and SWNT‐OH. The amount of charge transfer is able to provide the important information of the electronic response of the system. QT is defined as the charge transfer between SWNT‐OH and single molecule [71].
\nAs shown in Table 3, all of adsorption energy between CNT‐OH and each oil‐dissolved gas molecules are less than 0.6 eV. Therefore, the interaction between CNTs‐OH and each oil‐dissolved gas molecules is physisorption because chemisorption energy should be larger than 0.6 eV. As shown in Figure 5 and Table 3, the value of charge transfer between CO and CNTs‐OH (0.052 au) is nearly six times the value of that between H2 and CNTs‐OH (0.012 au) though the interaction distance and adsorption energy between H2 and CO and CNTs‐OH are almost the same. Then CNTs‐OH can be used to detect CO due to the strong sensitivity if there is no organic gas in oil‐dissolved gas molecules. Comparing with inorganic gas, the average adsorption energy between organic gas (CH4, C2H4, C2H2) is about 0.48 eV, which is two times the average adsorption energy (0.23 eV) between inorganic gas (CO, H2) and CNTs‐OH. In addition, the charge transfer (0.046 au) between organic gas and SWNT‐OH is far more than that between the inorganic gas value (0.037 au) between inorganic gas and SWNT‐OH. This is because the hydroxyl modification on the surface of SWNT enhances its interaction to organic gas molecules due to the activation of hydroxyl. Thus, SWNT‐OH is more sensitive to organic gas in oil. If we only consider the organic gas: CH4, C2H4, and C2H2, the adsorption energy decreases in order: C2H2 (0.59 eV) > C2H4 (0.49 eV) > CH4 (0.36 eV), and charge transfer decreases in order: C2H2 (0.068 au) > C2H4 (0.052 au) > CH4 (0.017 au) as shown in Table 3. With the increase of C—C covalent, it leads to the increase of adsorption energy, resulting in the high sensitivity to C2H2. Hence, CNTs‐OH can be used to detect C2H2 component in oil‐dissolved transformer.
\nIn order to evaluate the influence of oil‐dissolved gas to the change of conductivity during the adsorption process, density of states (DOS) is calculated as shown in Figure 6. On comparing the calculation results shown in Figure 6(a)–(f), gas adsorption narrows down the DOS at fermi level. Upon inorganic gas: H2 and CO adsorption shown in Figure 5(b) and (c), it is found that the energy gap of DOS around fermi level for CO + CNTs‐OH is smother and narrower than that of H2 + CNTs‐OH adsorption system, signifying the increase of conductivity after CO adsorption. The result is also in consistence with the results that the charge transfer in CO + CNTs‐OH system is larger than that of H2 + CNTs‐OH. Upon organic gas: CH4, C2H4, and C2H2 adsorption shown in Figure 6(d)–(f), the DOS of organic gas molecules adsorbed SWNT‐OH system at fermi level is greater than that of inorganic adsorbed SWNT‐OH system, indicating the strong interaction between organic gas molecules and SWNT‐OH comparing with that of inorganic adsorption, which is also consistence with the results in Table 3. And the DOS for C2H2 + CNTs‐OH system around at fermi level is obviously larger than that of other gas adsorption systems, thus SWNT‐OH is most sensitive to C2H2 gas. Therefore, SWNT‐OH can be used to detect C2H2 in oil‐filled transformer.
\nCalculated density of states for SWNT‐OH, H2 + SWNT‐OH, CO + SWNT‐OH, CH4 + SWNT‐OH, C2H4 + SWNT‐OH, C2H2 + SWNT‐OH.
In this study, density functional theory has been used to study the adsorption properties of hydroxyl‐modified CNTs (CNTs‐OH) upon gases dissolved in oil‐filled transformer. According to the calculation results of first‐principles calculations, the adsorptions to all of the gases are physisorption, which leads to the change of geometric and electronic structures. The adsorption energy to organic gases is bigger than inorganic gases, especially reflecting in the great adsorption energy to C2H2. Therefore, we conclude that SWN‐OH can be chosen as gas sensor to detect C2H2 gas dissolved in oil‐filled transformer.
\nThe results showed that different oil‐dissolved gases have different responses on the Ni‐CNT sensor. To further understand the sensing mechanism, we established a properly simplified model to calculate and analyze the adsorption properties of the supports (CNTs and Ni‐CNTs) to the gases. Ni‐substituted CNTs and typical oil‐dissolved gases were constructed to simulate the sensor in this part. C2H2, C2H4, and C2H6 are chosen as the target measured gases due to the specific sensitivity and selectivity of Ni‐CNT sensor.
\nTotally optimized geometries and related properties of the configurations were carried out by Design for Testability (DFT) calculations in the generalized gradient approximation using the Dmol3 model with double‐numerical polarized basis sets. The whole calculations were performed using the Perdew-Burke-Ernzerhof (PBE) DFT. The geometrical structures are shown in Figures 7 and 8.
\nGeometrical structures of CNTs and Ni‐CNTs. (a) CNTs, (b) Ni‐CNTs.
Geometrical structures of oil‐dissolved gases (a) C2H2, (b) C2H4, (c) C2H6.
The spontaneity of these interactions can be described by the adsorption energy Eads, which is defined as follows:
\nwhere E(gas/support) is total energy of adsorbed system after adsorption of gas molecule, E(support) is the energy of support without gas molecules adsorption, E(gas) is the energy of individual gas molecule. Eads < 0 represents that adsorption process is exothermic and spontaneous.
\nMulliken population of gas molecules and support were calculated, respectively, so that the charge distribution of the system can be obtained in the adsorption process. Charge transfers QT was defined as charge variation before and after adsorption of gas molecules. The values of adsorption energies were negative showed that the adsorption was exothermic. And in this CNT system, the values of the energy were small (<0.6eV), and as follow order: C2H2 > C2H4 > C2H6. The charge transfers close to zero show that the adsorptions of gas molecules on the surface of CNTs are physisorption. And the sensitivity of adsorption is as follows: C2H2 > C2H4 > C2H6.
\nTable 4 shows the adsorption energy and charge transfers of the Ni‐CNT system and the CNT system. Compared with the CNT system, the doped Ni effectively improved the electronic structure and sensitivities of CNTs. The adsorption energies of C2H6 are the lowest, and C2H2 and C2H4 are 8.7 and 4.6 times larger than that of C2H6, respectively. The values of charge transfers of three gases are as follows: C2H2 > C2H4 > C2H6. Both the adsorption energies and charge transfers of C2H2 are highest. Thus, Ni‐CNTs have the highest sensitivity to C2H2, which is similar to that of the CNTs.
\n\n | Eads (eV) | \nQT (e) |
---|---|---|
C2H2‐CNTs | \n−0.3265 | \n0.006 |
C2H4‐CNTs | \n−0.2814 | \n0.003 |
C2H6‐CNTs | \n−0.0458 | \n0.002 |
C2H2‐Ni‐CNTs | \n−1.7412 | \n0.091 |
C2H4‐Ni‐CNTs | \n−0.9246 | \n0.069 |
C2H6‐Ni‐CNTs | \n−0.1994 | \n0.043 |
Adsorption energy and charge transfer.
In summary, the sensitivity of the CNT sensor for the gases is as follows: C2H2 > C2H4 > C2H6, and the doped Ni can improve the sensor sensitivity.
\nThe molecular orbit theory was calculated to obtain the highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy of the three gas molecules and the supports. The analysis of HOMO and LUMO and related energy gap are able to determine whether charges can easily transform between gases and adsorbent or not. EL‐H is calculated based on the following equation:
\nA small EL‐H corresponds to an easy transferred charges between the orbitals and to a good conductivity for this material. The calculated EHOMO, ELUMO, and EL‐H are depicted in Table 5. The EL‐H of CNTs and Ni‐CNTs are 0.6911 and 0.5470 eV, respectively. The Ni dopant reduces the EL‐H of 0.1441 eV so that enhances the conductivity of the carbon nanotube. After adsorption, the frontier orbital energies of the adsorption configurations are increased and EL‐H changed as well, their values are in order as follows: C2H2‐Ni‐CNTs < C2H4‐Ni‐CNTs < C2H6‐Ni‐CNTs. Therefore, conductivities of adsorbent in the adsorption systems are in order as follows: C2H2‐Ni‐CNTs > C2H4‐Ni‐CNTs > C2H6‐Ni‐CNTs.
\nAdsorption type | \nEHOMO (eV) | \nELUMO (eV) | \nEL‐H (eV) |
---|---|---|---|
CNTs | \n−4.5606 | \n−3.8695 | \n0.6911 |
Ni‐CNTs | \n−4.9797 | \n−4.4327 | \n0.5470 |
C2H2‐Ni‐CNTs | \n−4.5906 | \n−4.1606 | \n0.4300 |
C2H4‐Ni‐CNTs | \n−4.6940 | \n−4.2477 | \n0.4463 |
C2H6‐Ni‐CNTs | \n−4.7593 | \n−4.1933 | \n0.5660 |
Molecular frontier orbital energy and orbital energy differences.
In the process of Ni‐CNTs adsorption, the conductivity change of the adsorption system shows that C2H2 is the highest, while C2H6 is the lowest. The change of resistance shows the same changing characteristics. This result indicates that the sensitivity of Ni‐CNTs is as follows: C2H2 > C2H4 > C2H6. This finding is consistent with the results based on gas‐sensing experiments.
\nIn this chapter, to detect oil‐dissolved gases in a transformer, the research\'s work includes theoretical and experimental studies on a Ni‐CNT sensor. This study focuses on the response and mechanism of gas sensing. The results of gas‐sensing experiment are consistent with the simulation.
\nCharge redistribution between the surface and the adsorbed molecules results in changes in the electronic structure and conductivity. Higher charge transfer results in greater conductivity changes. The values of transfer charges calculated based on DFT are shown in Table 4. Compare with other two gases, the transfer charges of C2H2 are the highest, and C2H2 has the highest response on the gas sensor. In addition, the orbital theory results are consistent with the charge transfer analysis and experimental results. Thus, in this chapter, the theoretical analysis results are consistent with the experimental results, and the sensitivities of the three gases on Ni‐CNTs are as follows: C2H2 > C2H4 > C2H6. Moreover, as the C2H2 concentration increases, the response time becomes shorter. High gases concentration leads to fast sensor response.
\nPrevious researches signified that gas‐sensing properties can be enhanced by metal doping. The transition metal is rich in d‐electrons and has empty orbits, and the small gas molecules can be strongly combined with the metal when adsorbed on the surface. In this chapter, nickel ions are the transition metal divalent cations used, which make nickel ions more accessible to the internal tubes in the capillary. Moreover, due to the coordination unsaturation of the surface atoms of nickel ions, the surface active sites of CNT increase and the catalytic activity is greatly enhanced. In general, the order of the chemical adsorption capacity of the transition metal to the gas is as follows: O2 > C2H2 > C2H4 > CO > H2 > CO2 > N2. The results of this paper are consistent with this order, which indicating that the doped Ni increases the chemical adsorption of the gas molecules.
\na. The adsorption between three gases and intrinsic CNTs is physical adsorption, and the order of adsorption sensitivity is as follows: C2H2 > C2H4 > C2H6.
\nb. The adsorption sensitivity of the Ni‐CNTs was consistent with that of the CNTs, doping Ni improves the conductivity of the CNT, and the adsorption of the three gases becomes easier on Ni‐CNTs.
\nc. Due to the coordination unsaturation of the surface atoms of nickel ions, the surface activity sites of CNTs increase and the catalytic activity is greatly improved. Doped Ni improves the ability of the tube to adsorb gas molecules.
\nd. When a low concentration (1–10 μL/L) of C2H2 is detected, the relative change in sensor resistance R% and gas concentration satisfies a certain linear relationship, indicating that the developed sensor can detect low gas concentrations.
\nIt is the first and most used method to prepare CNTs. The main processes are: (a) keep a certain pressure of inert gas or hydrogen in vacuum vessel and (b) choose graphite (with catalyst: nickel, cobalt and iron, etc.) as electrode. The graphite is consumed by evaporation at anode during the arc discharge process, and CNTs are received by depositing at cathode. Ebbsen and Ajayan [72] successfully prepared gram order weight of CNTs under nitrogen gas condition, and then this method is widely adopted. In 1994, Bethune introduced catalyst for arc reaction, reducing the reaction temperature and enhancing the productivity of CNTs. In 1997, Journet et al. [73] used catalysts for synthesizing single CNTs under helium condition. Mingliang et al. [74] studied the influence factors to CNTs prepared by DC arc discharge method: (a) inert gas pressure will affect the diameter and length of CNTs. (b) How much the adhesion of particles? (c) Oxygen and water vapor will lead to defects in CNTs, and it is unable to separate and purify after sintering together. (d) Current and voltage will affect the yield and production rate of CNTs, but length to diameter ratio of graphite does not affect the generation of CNTs.
\nCatalytic cracking method, also known as chemical vapor deposition, prepares CNTs through cracking hydrocarbons or carbon oxides with the help of catalyst. The basic preparation processes are: (a) mix the organic gases (such as acetylene and ethylene) with certain proportion of nitrogen gas in quartz tube. (b) CNTs grow on the surface of catalyst under certain temperature when the carbon source flow past and pyrolysis onto the surface of catalyst, and pushing forward the small catalyst particles [75]. (c) The growth of CNTs ends till all of the catalyst particles were coated with graphite layer. The advantages of the method are: easy to control the reaction process, simple equipment, low raw material cost, easy to produce the product in large scale, and the high productivity. The disadvantages are: too much CNTs layers, poor graphitization, exist crystalline defects. Theses disadvantages have great adverse influence on the physical and chemical properties of CNTs.
\nLaser evaporation method prepares CNTs by illuminating the graphite target that contain metal catalyst. Then the vapor mix with carbon source and deposit on the surface of substrate and the wall of reaction chamber. Smalley et al. received SWCNTs after adding a certain amount of catalyst to the electrode during preparing C60. After improving the method, Thess et al. [76] successfully fabricated amount of SWCNTs. Under the condition of 1473 K, the graphite target with Ni/Co catalyst particles was irradiated by double pulse laser with 50 ns, receiving the high quality SWCNTs bundles.
\nLow temperature solid state pyrolysis prepares CNTs through intermediate. First, the nanometer level silicon nitride (Si2C2N) ceramic intermediate was prepared. The nanoceramic intermediate is then placed in a boron nitride crucible, which is heated in a graphite resistance furnace to decompose it with nitrogen gas as the protective gas. After 1 h, the nanointermediate powder begins to paralyze, and the carbon atoms migrate to the surface. A high proportion of CNTs is obtained with amount of silicon nitride powder in the surface pyrolysis products. The advantage of the low temperature solid state pyrolysis method is the repeatable production, which is beneficial for large‐scale CNTs production.
\nThe method prepares CNTs by decomposition of hydrocarbons precursor (such as acetylene and benzene) at high temperature. Cho et al. [70] prepared CNTs by heating the polymer obtained from citric acid and glycol after polyesterification under 400°C for 8 hours. The CNTs were synthesized by using metal Ni as catalyst in the temperature ranged from 420 to 450°C and under H2 atmosphere. Under the 900°C and Ar‐H2 atmosphere conditions, Sen et al. [77] obtained CNTs by pyrolyzing ferrocene, nickelocene, and cobaltocene. These metal compounds not only provide carbon source after pyrolysis but also provide the catalyst particles. The growth mechanism of the method is similar to the catalytic cracking method.
\nIn a vacuum furnace, carbon is evaporated by ion or electron discharge and deposit on the condenser. Chernozatonskii et al. [78] synthesized CNTs with diameter range from 10 to 20 nm and high alignment by evaporating the graphite coated on the surface of substrates. Yamamoto et al. [79] got CNTs with diameter range from 10 to 15 nm by irradiating amorphous carbon with argon ion beam under high‐vacuum environment [80].
\nFlame synthesis method utilizes the heat, produced by burning methane and a small amount of oxygen, and imports hydrocarbons and catalysts at temperature of 600–1300°C to synthesize CNTs. The CNTs prepared by this method have the disadvantages of low crystallinity and large amount of amorphous carbon. There is still no definite explanation for the growth mechanism of CNTs nanostructure by flame method. Richter et al. [81] found SWCNTs that attached with a large amount of amorphous carbon from carbon black after burning the mixture of acetylene, oxygen, and argon gases. Das Chowdhury et al. [82] found nanometer tubular CNTs by detecting carbon black after burning the mixture of benzene, acetylene, ethylene, and oxygen gases.
\nThe CNTs are received from the condensation of high temperature (3000 K) mixture vapor of graphite and metal catalyst that heated by focusing the sunlight. This method is initially used for buckyballs production, then adopted for CNTs synthesis since 1996. Laplaze et al. [83] synthesized that the CNTs and SWCNTs use this method.
\nThe preparation of CNTs by electrochemical method is a novel technique. This method adopted graphite electrode (electrolytic cell as anode) and obtained carbon nanomaterials by electrolyzing molten alkali halide salts (such as LiCl) under a certain voltage and current with the protection of air or argon gases at about 600°C. The products include packaged or not packaged CNTs and carbon nanoparticles, and the form of carbon nanomaterials can be controlled by changing the process conditions of electrolysis. Goldoni et al. [57] found that CNTs can directly grow on the surface of n type of (1 0 0) silicon electrode in solution of acetylene/ammonia. Hsu et al. [84] synthesized nanotubular and onion‐like CNTs under argon environment by using molten alkali metal halide as electrolyte and graphite as electrode. Hui et al. [85] successfully synthesized CNTs and carbon nanowires using LiCl and LiCl + SnCl2 as molten salt electrolyte.
\nStevens et al. [86] got CNTs by using an exothermic reaction between cesium and nanoporous amorphous carbon in the low temperature of 50°C. Chernozatonskii et al. [87] found the fullerene and CNTs at the micro holes of Fe2Ni2C, Ni2Fe2C, and Fe2Ni2Co2C alloy prepared by powder metallurgy method [88]. Kyotani et al. [89] first pyrolyze and deposit carbon on the wall of anodic alumina model (with nanometer trench) under 800°C. Then hollow CNTs with open‐end on both sides after removing the anodic alumina membrane by hydrofluoric acid. Matveev et al. [90] synthesized CNTs using liquid nitrogen solution of acetylene at 233 K by electrochemical method. It is the lowest temperature ever reported to synthesize CNTs.
\nThis chapter used CNTs which were made by chemical vapor deposition method. Tube diameter is 20–30 nm, with a length of 10–30 μm, purity > 95%, the catalyst residue (ash) < 1.5 wt%, and multi‐walled structure. Around 0.1 g of CNTs was placed in an appropriate amount of anhydrous ethanol, then adding surface active agent. Afterward, it had been scattered by ultrasonic oscillator with 2 hours in order to obtain a moderate concentration of CNTs solution, which was set as the sample I. Similarly, another 0.1 g of CNTs was immersed in 50 mL mixed acid solution, which was initially prepared by mixing concentrated sulfuric acid and concentrated nitric acid with the volume ratio of 3:1. The solution was put in ultrasonic oscillator for about 2 hours of dispersion. And then the solution was diluted with deionized water, and filtrated by filter membrane with an aperture of 0.22 μm. This progress should be conducted repeatedly until the diluted solution becomes neutral. The finally collected sample is named as sample II.
\nThe printed circuit board was used to make the substrate of CNTs sensors. The surface of substrate was etched by copper to generate interdigital electrodes. Copper foil has the thick of 30 μm, with 0.5 mm electrode interval and 0.5 mm line width, as shown in Figure 9.
\nThe geometric sketch of CNTs sensor.
Once moderate concentration solution of the sample I was obtained, the micro‐scale parts were spread on the space between the interdigital electrodes, and then placed in a drying oven at 80°C to dry it. Uniform dense of MWNTs film with smooth surface was able to be prepared with repeated operations. The obtained sample is named as the sensor I, as shown in Figure 9(b). Take appropriate sample II placed in anhydrous ethanol, and then after ultrasonic dispersion for 10 min to get moderate concentration of the suspension. Sensor II was obtained in the same way. These two‐dimensional CNTs films generated from the deposition of the one‐dimensional CNTs have so many structural defects, making it possess specificity of electrical properties.
\nDevice for detection of dissolved gas in transformer oil by CNTs‐based sensors is shown in Figure 10. Prepared CNTs sensors were initially placed in the test device. It was a sealed chamber designed to perform this experiment. Then the sensor was connected with the impedance analyzer by wire and the chamber was then sealed with a round head passing through the spherical ring with a screw and a nut.
\nDetection test device for the CNTs sensor adsorbing gases dissolved in transformer oil. 1: sealed metal can, 2: vacuum gauge and pressure gauge, 3: intake valve, 4: vacuum pump, 5: CNTs sensors, 6: impedance analyzer.
The standard gas of CH4 with concentration of 200 μL/L is injected through the intake valve into the test device, as shown in Figure 10, and use sensors I and II to detect gas response, respectively. The acquired gas response curves are shown in Figure 11. Based on Figure 11, S% indicates the relative change of resistance, R is the sensor resistance value after the interaction with injected gas, and R0 is the resistance of the sensors in a vacuum environment.
\nThe MWNTs sensor response to CH4, C2H6, C2H4, C2H2, CO, H2.
In Figure 11(a), curves I and II show response curve of sensors I and II, respectively. It can be observed that the changes of MWNTs thin‐film sensor in resistance value are very small without chemical modification, about 0.4%; while the one conducted with chemical modification has great change with respect to resistance value, reaching to 1.8%.
\nAfter detection, a vacuum pump is used to make the device vacuumed again, according to the same method. Inject C2H6, C2H4, C2H2, CO, and H2 gas into the tank, respectively, with concentration of 200 μL/L. Then detect the response curve using sensors I and II, respectively. Obtained response curves are shown in Figure 11(b)–(f).
\nCombining Figure 11(a)–(f) obtains Table 6, the resistance value change of CNTs which had adsorb the measured gas and being chemically modified is much greater than that of the non‐modified CNTs. After calculation, adsorption capacity of modified CNTs to CH4, C2H6, C2H4, C2H2, CO, and H2 increased by about 4.6, 5.9, 4.2, 5.3, 2.9, and 2.4 times, respectively. It can be seen that chemical modification contributes great affection upon the electrical properties of MWNTs.
\nGas (200 μL/L) | \nThe relative change in resistance value (%) | |
---|---|---|
I | \nII | |
CH4 | \n0.39 | \n1.81 |
C2H6 | \n0.27 | \n1.60 |
C2H4 | \n0.47 | \n1.96 |
C2H2 | \n0.33 | \n1.76 |
CO | \n0.48 | \n1.38 |
H2 | \n0.38 | \n0.90 |
Relative changes of CNTs resistance value to different gases in oil.
The CNTs film is regarded as a connection of many disordered CNTs or CNTs, among which there are considerable series‐parallel paths. The high‐resistance samples contain more series path than parallel paths, while low‐resistance samples on the opposite. Gas‐adsorption property is closely related to charge transfer capacity, adsorption sites, and the characteristics of gas molecules as well. Adsorption sites of gas molecules in carbon nanotubes include: the tube gaps of a bundle of CNTs, the grooves on the surface of the bundle between tubes, the inner cavity of CNTs as well as the tube surface. Recently, many researchers agree that there are two kinds of carriers in CNTs, electrons and holes, Cantalini et al. [91] and some other scholars argue that the MWNTs is a P‐type semiconductor properties, namely the electron would be accepted by gas molecules after adsorption of oxidation substances, so that concentration of holes would be increased, and resistance value would be decreased; on the other hand, once reducing gases are adsorbed on the CNTs surface, their electrical resistance increases. Given that in oil, methane and other gases have certain reducibility, it can result in an increase in electrical resistance after their adsorption on CNTs surface. As analyzed, if the carbon nanotubes are pretreated with concentrated nitric acid and concentrated sulfuric acid, its length would be shortened, ports be opened, and a lot of depressions on the surface as well as at ports be generated. Then a large number of stable functional groups such as carboxyl, hydroxyl, and carbonyl are bonded to the adsorbing sites of depression, which would increase the number of active sites for gas adsorption, contributing to better gas sensitivity.
\nCNTs‐based gas sensors that have advantages of high sensitivity, fast response, and small size can work at room temperature. This chapter took good use of these electrical properties, introduced a multi‐walled CNTs gas sensor. Laboratory mixed acid modification was employed to improve the gas‐sensing properties of CNTs to dissolve gases in transformer. Results show that without modification, MWNTs sensors are insensitive to dissolved gas in transformer oil; while the modified MWNTs sensor that has many faults and contains active functional groups guarantee the good sensitivity and fast response characteristics to the dissolved gas in oil. Synthesis of CNTs sensors industrially and large‐scaly to realize this purpose is hard, but it provides a novel way for this detection. In the further work, researches should focus on gas‐sensing response mechanism, sensitivity, and selectivity of so‐prepared CNTs. It is hopeful and promising to prepare CNTs‐based sensors that have better performance for detection of dissolved gas in oil.
\nDue to the low growth temperature, and the atmospheric pressure during the reaction, etc., the Chemical Vapor Deposition (CVD) is widely used in the synthesis of CNTs. The sensitivity of the sensor to typical oil‐dissolved gases was studied. C2H2, C2H4, and C2H6 are chosen as the target measured gases in consistence with theoretical calculation above.
\nIn this chapter, the purity of the CNTs is more than 95%, which diameter and length are ranged from 20 to 30 nm and 10 to 30 μm, respectively. At first, a mixed solution of concentrated sulfuric acid (98%) and nitric acid (78%) at a concentration ratio of 3:1 was arranged, then put into 0.1 g CNTs, and dispersed in an ultrasonic shaker for 60 min. Second, washed several times with deionized water until the solution became neutral and then dried at 70°C. After these two steps, the dark powder of the mixed acid‐modified CNTs can be obtained.
\nTo prepare 1 mg/mL solutions of CNTs, take appropriate amount of CNTs dissolved in anhydrous ethanol. Take 20 mg NiCl26H2O dissolved in 50 mL 1 mg/mL solutions of CNTs. In order to obtain a uniform dispersed Ni‐CNTs solution, put the beaker in an ultrasonic bath for 90 min. Using coating drops prepared the Ni‐CNTs thin films on the surface of interdigital electrodes and dried at 80°C. To ensure a compact and smooth distribution of the sensing film, repeated this process.
\nThe device for detecting the gas‐sensing properties is shown in Figure 12. The main part of the device is a steel chamber that is sealed by screws. Before the test, the pressure tightness of the device should be examined and guaranteed.
\nGeometry of the experimental equipment.
First, the sensor was put inside the chamber and connected with an impedance analyzer through wires to record the measured resistance. Second, nitrogen was passed through the chamber until the resistance of the sensor becomes stabilized. Then, different concentrations of the target gas species were injected into the sealed chamber through the inlet valve. The relative variation of the resistance was calculated as expressed:
\nwhere R is the sensor resistance in relevant gas and R0 is the sensor resistance in the environment full of nitrogen. After each test, the chamber should be evacuated for the next test. All the operations in this work were performed at room temperature.
\nThe gas responses of the Ni‐CNTs prepared gas sensor upon the concentrations of 10 μL/L C2H2, C2H4, and C2H6 were detected using the method described above. The gas response curves are shown in Figure 13, where the horizontal axis represents time, and the vertical axis represents resistance. In order to avoid accidental factors that affect the detection results, data presented here are the results of statistical analysis preformed on 10 sensor samples instead of one set. The gas sensitivity in this work is an average value. The calculated standard deviations of C2H2, C2H4, and C2H6 are 0.0374, 0.0288, 0.0275, respectively (data not shown).
\nNi‐CNT sensor response to 10 μL/L C2H2, C2H4, and C2H6.
Figure 13 shows that there is a sharp rise in the resistance of the Ni‐CNT‐based sensor at first when exposed to atmosphere filled with C2H2, C2H4, and C2H6, and then becomes stable after 400 s. It can be observed that the relative variations of the resistance for C2H2, C2H4, and C2H6 are nearly unchanged at 2.52, 1.95, and 1.61%, respectively. These results indicate that the Ni‐CNTs sensor presents the most sensitivity to C2H2 under the same concentration compared with the other two gases.
\nA standard value of the dissolved gas in the transformer oil is 5 μL/L. In order to meet the engineering requirements, the gas‐sensitive response of C2H2 at concentrations of 1, 3, 5, and 10 μL/L were all tested, with related result shown in Figure 14(a). The change of prepared sensors in resistance to 1, 3, 5, and 10 μL/L C2H2 are obtained as 0.52, 1.05, 1.18, and 2.52%, respectively. With the increasing concentration, the relevant change in resistance increases as well, and the response time is accordingly shortened. Figure 14(b) depicts the linear fit curve of the response and gas concentrations with the linear correlation coefficient (R2) of 0.98. These results imply that when the C2H2 concentration is between 1 and 10 μL/L, the change of Ni‐modified CNT in resistance meets a certain linear dependence with the gas concentration, which indicates that this material can be applied to estimate the concentration of C2H2 gas.
\nThe gas response of Ni‐CNTs sensors to different concentrations of C2H2. (a) Gas response curve to different concentrations of C2H2, (b) liner fitting curve.
The sensor reliability is strongly depended on the reproducibility that is exhibited by the sensor material. The reproducibility of the Ni‐doped CNTs sensor was evaluated by repeating the response experiments for three times. Tests were conducted according to the experimental steps described in Section 2.2. Pure N2 was employed to accelerate desorption of gas molecules. The dynamic response transients for the Ni‐doped CNTs sensors toward 10 μL/L C2H2 gas is depicted in Figure 15 in order to illustrate desorption and repeatability processes. Based on this figure, one can find that the response of the material is almost constant, confirming the reproducibility of sensor material, which suggests that the Ni‐CNTs‐prepared sensor can be applied as a reusable sensing material for detecting oil‐dissolved gases.
\nReproducibility of Ni‐doped CNTs sensor to 10 μL/L C2H2.
Today, information has become the main component of what we produce, do, buy, and consume. Having an economic value in almost all products and services that meet the needs of today’s societies, it has been now obligatory for individuals and organizations to obtain information technologies and to actively use them in both work and social life domains. Hence, in the current information age, where information is seen as power, this situation has made it imperative for organizations to become increasingly information-based and to benefit from information technologies in many processes and activities.
The intensive use of information technologies in many functions and processes has also required some changes in organizations [1]. This is due to the fact that information technologies, unlike traditional technologies, do not only change the technical fields but also affect the communication channels, decision-making functions and mechanisms, control, etc. [2]. Consequently, one of the most striking developments is on organizational structures that are becoming increasingly flattened and horizontal. Relatedly, information technologies have begun to take over the role of middle management, which supports decision-making processes of senior management and has reduced the importance of this level [3, 4, 5]. Similarly, while information technologies enable managers to obtain faster, more accurate, and more information [6, 7, 8], it also provides lower-level managers with more information about the general situation of the organization, the nature of current problems, and important organizational matters [9, 10, 11, 12].
Moreover, information technologies also have an important potential in determining whether organizations have a mechanical or an organic structure [13]. Within the mechanical organizational structures, people do not have much autonomy, and behaviors expected from employees are being careful and obedience to upper authority and respect for traditions. In such organizations, predictability, consistency, and stability are desirable phenomena. In contrast, people in organic structures have more freedom in shaping and controlling their activities, and being enthusiastic, creative, and taking risks have important places among the desired behaviors [14].
Accordingly, information technologies begin to influence the cultural values of the organization over time, through these transformations they create on organizational structures, processes, and operations. In other words, the fact that organizational structures are mechanical or organic causes the formation of diverse cultural values in organizations [15]. Therefore, the desired cultural values in mechanical organizations are quite different from those in organic structures [1, 16, 17]. In this context, this chapter deals with the influences of information technologies on cultural characteristics of organizations along with the reflections of the use of these technologies on organizational structures and their functioning.
When we look at studies on the relations between organizational culture and information technologies, we generally see the studies on the effects of culture on technology adaptation or use [18, 19, 20, 21], as well as on the effects of certain specific information technologies and applications (e.g., e-mail use, group support practices, etc.) on some aspects of any organizational culture [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, the number of studies that consider the use of information technologies as a “whole” and that address “why” and “how” its effects on organizational culture occurred is still limited. And so, this chapter aims to examine and discuss the overall effects of the usage and intensity of information technologies established in organizations on the cultural life within.
In this context, the chapter plan is as follows: Firstly, the basic concepts related to information and information technologies are included. Emphasis is placed on the meaning differences between knowledge and information, and their connections to information technologies are tried to be explained briefly. Secondly, the effects of information technologies on organizational structure are given particular attention. The reason for this is that as a system of values, beliefs, assumptions, and practices [32], organizational culture encompasses many features closely related to structures of organizations. Thirdly, possible links between organizational structure and organizational culture are included. Fourthly, important theoretical approaches and studies on the relationships between information technologies and organizational culture are provided. Finally, by deepening a bit more and by emphasizing key points, some important arguments are discussed.
In the literature, the concepts of information and knowledge are sometimes expressed by a single term, “information.” However, although the concepts of knowledge and information are intertwined, they are two different concepts that have different meanings and describe different phenomena. The reason for this is that knowledge is also included in the concept of information as it is transformed into a commodity when it begins to be processed, stored, and shared by information technologies.
Becoming the basic elements of today’s economic, social, and cultural systems, information is obtained in a certain hierarchy. The images are at the beginning of the process, and the process is completed with a hierarchical staging in the form of data, information, and knowledge, respectively [33]. Image is located in the first step of the process. Humans copy the picture of any object and event they previously perceived by sensory organs. When faced with a similar phenomenon in the later stages of life, these pictures in the mind are redesigned. We call these pictures of realities occurring in the human mind as images [33]. The next stage, the data, contains symbols that represent events and their properties. For this reason, data are expressed as figures and/or facts without content and interpretation [34]. Information that constitutes the next stage of the process and is mixed with knowledge and used interchangeably is expressed as a reporting of one system’s own status to another system [33]. In information, associated data are combined for a specific purpose. Therefore, we can explain information as meaningful data [35]. Knowledge, on the other hand, is defined as personalized information that allows people to fully and accurately grasp what is happening around them and manifests itself in the form of thoughts, insights, intuition, ideas, lessons learned, practices, and experiences [36]. According to Kautz and Thaysen [37] who stated that knowledge is found only in the people’s minds, knowledge is, therefore, a subjective formation. In other words, knowledge is the form of information enriched with interpretation, analysis, and context [38]. However, here, it should be emphasized again by highlighting a very important issue that knowledge is also accepted as information when this knowledge begins to be processed, stored, shared, and used over information technologies. Therefore, after this, when talking about information, one should consider not only the information created by the data brought together in a meaningful way but also the knowledge shared and used over information technologies.
On the other hand, information technologies, used as the most important tool of generating value today, are defined as the technologies that enable processes such as recording and storing data, producing information through certain operational processes, and accessing, storing, and transmitting this produced information effectively and efficiently [39, 40, 41, 42, 43, 44, 45, 46]. The term information technologies is used to cover computer and electronic communication technologies, as they are now inseparably intertwined in literature and everyday use and are generally used in this way [47]. In this context, data processing systems, management information systems (MIS), office automation systems, executive support systems, expert systems, intranet and extranet, electronic mail (e-mail), group applications (groupware), database management systems, decision support systems, artificial intelligence, and telecommunication systems can be given as examples of information technologies [33, 48, 49].
Towards the end of the twentieth century, the rapid changes with the impact of developments in information technologies led to the emergence of customer satisfaction-based, learning, knowledge-based, and constantly changing organizations [50]. The fact that organizations have become considerably information-based and benefit from information technologies intensively in their activities and processes has made also the changes in their organizational structures mandatory [1]. Accordingly, the effects of information technologies on organizational structure will be summarized under the subtitles of differentiation, centralization, and standardization/formalization, which are the three main components of organizational structure [15].
Differentiation within an organization occurs in three ways: Specialization/division of labor, horizontal and vertical differentiation, and hierarchy and size [15]. Specialization refers to the amount of different expertise or types of work [51, 52]. Specialization generally increases the number of subunits and makes it harder to understand the larger structure that people contribute to with their skills and expertise [53]. Information technologies have the potential to reduce this tendency by providing more access to information and experts at this point. In this way, access to information resources provides synergy [54].
Vertical and horizontal differentiation refers to the amount of hierarchical levels in an organization [55]. Information technologies, with the support of problem solving and decision-making, lead to the emergence of more flattened organizational structures as they require fewer levels within the hierarchy [56]. Since information technologies give employees in lower positions more autonomy to harmonize their activities, this can allow them to find and try better methods while performing their work. In this context, we can increasingly see that organizational structures have become horizontal and strengthened and that virtual organizations have begun to emerge as the most cost-effective structure [17].
In terms of hierarchy and size, Heinze and Stuart [4] argue that the mid-level management staff is unnecessary, increases bureaucracy, reduces efficiency, and has no function in organizations any more. Since most of the tasks performed by mid-level executives can be fulfilled by computers, both less costly and faster, information technology has begun to take over the role of mid-level management, which supports the decision-making process of senior management [5]. Sharing the same opinion, Fulk and DeSanctis [57] also stated that the largely witnessed situation in modern organizational designs is the reduction of intermediate-level managers and administrative support.
Centralization points to the extent to which decision-making power within an organization is scattered or centered [58]. Due to increasing local and global competition, many companies have started to leave their strategic decision-making task further down the organization to benefit from the expert people with more precise and timely local knowledge [10]. Information technologies affect these efforts directly in two ways. Firstly, information technologies increase local knowledge by contributing to obtaining closer information about market trends, opportunities, and customers. Secondly, information technologies can create synergies for organizations because, thanks to information technologies, communication and coordination between distributed decision makers, central planners, and senior managers can be realized more effectively and efficiently [59].
However, whether information technologies will lead to centralization or decentralization is a very controversial question. Regarding centralization, it enables managers to acquire faster, more accurate, and more information, reduces uncertainty, and allows them to make decisions that they cannot make before [6, 7, 8]. Conversely, by the use of other forms of information technologies (e.g., electronic bulletin boards), decentralization provides more information to lower- and mid-level managers about the general situation of the organization and the nature of current matters and problems [9, 10, 11, 12]. Raymond et al. [60] argued that because information technologies facilitate the use and transmission of information by all levels and units in the organization, it enables top management, which is the decision authority, to be disabled in certain areas and the decentralization of control. Thach and Woodman [61] maintained that this is due to the fact that as a result of sharing information at lower levels with the help of information technologies, this power of senior management has decreased to a certain extent, and the knowledge and participation of the staff in organizational matters have increased.
The literature shows that information technologies allow both centralization and decentralization. Researchers are in the agreement that information technologies make it possible for organizational managers to leave their decision-making power to a large part of the hierarchical levels without compromising the quality and timeliness of the decision [62, 63]. Keen [64] combined the concepts of centralization and decentralization and used the term “federated organization” in which organizations do not have to choose either because information technologies simultaneously allow centralization-decentralization [64, 65].
Formalization is the process of detailing how activities are coordinated for organizational purposes in order for employees and organizational units to respond routinely to recurring situations [51, 66]. Formalization involves rules, instructions, shared values, and norms [67]. In fact, formalization is based on the objective of more efficiency and less uncertainty [13].
Information technologies provide the ability to reduce the negative effects of formalization by facilitating the documenting and retrieving of information on organizational occurrences and endeavors that make behaviors and processes more consistent through formalization [63]. The more information technologies assist in reducing search times and preventing downtime, the more the administrative cost of formalization decreases and the productivity increases, which ultimately benefits the path to innovation [68].
Different organizational structures lead to the development of different cultural values [15]. The fact that the structure which an organization has established to control its activities and is defined as a formal system consisting of duties and authority relations is mechanical or organic causes the emergence of completely different cultural values, rules, and norms [69]. While mechanical structures are vertical, highly centralized, and almost everything in them are standardized, organic structures are horizontal, decentralized, and based on mutual adaptation [14]. People feel relatively less autonomous in vertical and centralized organizations, and being careful, obeying the upper authority, and respecting traditions are among the desired behaviors. Therefore, in a mechanical organizational structure, there are cultural values where predictability and stability are important [69]. In contrast, in horizontal and decentralized organizations, people can freely choose their own activities and control them. Creativity, courage, and risk-taking are given importance as desired behaviors. Therefore, organic structures contribute to the formation of cultures that value innovation and flexibility [15].
Organizational structure is also important for the development of cultural values that support integration and coordination. In a structure with stable task and role relations, sharing of rules and norms is more since there will be no communication problems and the information flow will be fast [70]. In organizations where the sharing of cultural values, norms, and rules is at a high level, the level of performance also increases [15]. Particularly in team or matrix structures where face-to-face communication is intense, the sharing of these cultural values and common reactions to the problems develop more rapidly [9].
Whether an organization is centralized or not causes different cultural values to emerge. In decentralized structures, authority is divided into subordinate levels, and an environment is created for the formation of cultural values in which creativity and innovation are rewarded [13]. Employees are allowed to use the organization’s resources and work in projects that they want, by spending some of their time in these projects, thus contributing to the production of innovative and creative products and services [15]. The structures of such organizations constitute the cultural values that give their employees the message “as long as it is in the interest of the organization, it is okay to do things in an innovative and the way you want.”
Conversely, in some organizations, it may be more important for employees not to decide on their own and all activities to be followed and controlled by their superiors. In such cases, a centralized structure is preferred to create cultural values that will ensure accountability and obedience [71]. Through norms and rules, all employees are expected to behave honestly and consistently and inform their superiors about wrongs or mistakes, because this is the only acceptable form of behavior within these structures [72].
Since working on the factors that determine the consequences of the adoption and use of information technologies, researchers have focused on people’s beliefs, values, assumptions, and codes of conduct. As a result, they have given names to this research field such as “socio-technical systems,” “social system,” “social structure,” and most recently “culture” [73]. For example, Markus and Robey [23] using “social elements” and Barley [26] using “social system” or “social structure” tried to explain this phenomenon. When examined more closely, it is seen that the details that these authors emphasize while depicting the case are the assumptions, beliefs, and values that exist in common among the group members, and this corresponds to the definition of organizational culture.
Research examining the relationships between information technologies and values, beliefs, and norms belonging to a particular group has gone through certain stages and used rich and complex research models to explain the relationships in each of these stages [74]. In the first studies on information technology applications, it has been suggested that information technologies cause changes in various organizational phenomena including structural features and thus have certain effects on organizations [74]. For instance, in some studies on adoption of groupware software, several researchers have used this deterministic approach to describe how groupware use affects communication and collaboration among employees and their productivity [27, 28]. These studies assume that certain results will certainly emerge after the adoption of information technologies, without considering the motives or activities that shape the use of information technologies by managers and employees. Like much more deterministic studies, these authors often assumed that information technologies would have predetermined influences on the adoption of information technologies, regardless of the environment in which information technologies were applied, how they were applied, and the users’ specific behaviors and particular purposes.
The second group of views concerning the relationships between organizational culture and information technologies includes the fact that information technologies are seen as a tool that can be used for any change that managers desire to make in organizational practices [22]. In studies in this approach, researchers believe that there is a wide range of possibilities to identify changes in organizational culture, structure, processes, and performance [22, 75]. Researchers from this tradition presume that with the right choice of information technologies and appropriate system design, managers can achieve whatever goals they desire.
These works were mostly adopted in the 1980s and reflect a perspective that managers think can manipulate organizational culture in the way they want. Often called “management and control,” “a functional or instrumental approach” to organizational culture, this methodology has caused serious debate in the literature [76]. This approach attributes great powers to the management level in this regard, which conflicts with anthropologists’ views that culture cannot be consciously controlled and goes much deeper to understand it [76]. Robey and Azevido [77] also do not accept the rational thought on the assumption that culture can be manipulated directly in this way.
Studies with this rational perspective in the information technology literature assume that managers can use information technologies as a leverage to make changes in the norms of behavior, strategy, structure, and performance among members within the organization. For example, in studies on group support systems (GSS), we find managers’ beliefs that they can use collaborative technologies to create a more cooperative organizational culture. This perspective was not accepted by Karsten [78] and some experimental research on GSS [30, 79]. Organizational necessity is no longer accepted, as it is viewed by information technology researchers as an overly simple approach [23, 80].
Researchers who take another approach suggest that information technologies and organizational culture can interact with each other to produce various results [22, 23]. These results can be in the form of adoption and effective use of information technologies (if there is a harmony between organizational culture and information technologies) or user reluctance, refusal, or sabotage (if no fit). Researchers who have been working on information systems since the 1980s have focused on understanding information technology features and functionality that cause effective or problematic information technology applications and the interaction between users’ values, assumptions, and other elements of organizational culture. In this regard, Romm et al. [81] argued that many forms of information technologies comprise cultural assumptions embedded within themselves and these assumptions may conflict with existing values of a particular organization. The authors argued that these embedded assumptions present information technologies as a “cultural boundary” and that a cultural analysis should be made to predict compliance or incompatibility. The authors in this approach warn managers to think of organizational culture as a binding limitation in information technology applications. In a warning by Pliskin et al. [76], managers are advised not to try to change the culture of the organization. Regarding this issue, Orlikowski [30] cites Lotus Notes (a group software) application at Alpha Corporation, a consultancy company. In this example, this system, which was established by the CEO of the company only with the benefits to be obtained, did not create the expected effects, became unsuccessful, and disappointed due to reasons such as no cultural analysis and inadequate training. Employees responded to the use of Notes with resistance and refrained from using it. The reason for this was that the employees in this organization, which had a competitive culture where information was seen as a power, avoided sharing information with others. As a result, this incompatibility between the collaborative culture that Notes had in itself and the competitive culture of the organization in question had failed this application of information technologies.
In a different approach, it is stated that information technologies and culture are not fixed and they are more flexible in terms of change [23, 75]. Managers in this approach may set specific goals for the use of information technologies, but actual results of the use of information technologies are not deterministic, and results cannot be predicted or controlled even under the best conditions [23]. The effects of information technologies are not deterministic because technology has interpretable flexibility considering that it can have different meanings for different employees. Similar technology can be interpreted in a different way by distinct people, based on certain assumptions, beliefs, and values. Robey and coauthors [24, 25], for instance, showed that it would be an empty attempt for organizational managers to try to intentionally manipulate the effects of these technologies, since there are many ways that diverse employees can configure a particular technology in different social environments.
Gopal and Prasad [31] also achieved similar results in their work on group support system (GSS), claiming that for researchers seeking fixed laws or regulations on how information technologies affect user behaviors, this would be an impossible goal to pursue. Conversely, the results of using information technologies depend on the symbolic meanings that information technologies have for a particular user. This work of Gopal and Prasad [31] expresses similar results with the work of Barley [26] and Robey and Sahay [25]. The authors stated that the symbolic meanings of certain technologies for users affect their perceptions of information technologies and their specific behaviors.
In the light of the above-mentioned approaches, arguments, and important studies in the literature, it will be useful to discuss some important points by deepening a little more and by emphasizing the key features related to the concepts of information, information technologies, and organizational culture.
First, organizational culture is a complex phenomenon that develops and changes in a historical process [32, 82, 83]. Thus, although it might seem like a plain and simple concept, organizational culture includes many subdimensions and processes. When considered as a complex pattern of these interactions of many factors with each other, it is also a difficult process to identify the direct and indirect effects of information technologies on organizational culture within this cluster of relationships and interactions. Moreover, culture is not a phenomenon that changes and develops in a short time and is therefore open to manipulations of managers. On the contrary, from this point of view, it is not possible to easily achieve control over cultural changes, and it is necessary to go much deeper [76]. So, it is not rational to expect that the rapid developments and changes in information technologies will cause changes in cultural characteristics at the same speed. In this sense, it could be inaccurate to seek direct relationships between two phenomena in question, whose rates of change are quite different.
Second, for cultural changes, there must also be changes in the basic assumptions, beliefs, and values on which the culture is built [84]. It would be misleading to expect little or intensive use of information technologies to cause changes in these rooted assumptions. For the desired changes in these basic assumptions, beliefs, and values, it is necessary to design the structure accordingly, to recruit employees who are qualified for the targeted culture, and to set ethical values and property rights to employees in accordance with this culture [15]. In this sense, information technologies may only catalyze the contribution of organizational structure to organizational culture.
Third, there are many and different types of hardware and software that fall under the scope of information technologies. It is not logical to accept all of them as homogeneous technologies in all aspects (with the same functions and features, similar usage areas, standard conditions they are applied, similar intentions, and behaviors of all users), and it can be, therefore, misleading to carry out research under a single “IT” concept from this perspective. The reason for this is that, as stated in the sections above, cultural features of each information technology application or product embedded in it might be different. The interactions between the cultural characteristics of the environment in which information technologies are applied and the unique cultural contents of information technologies may cause different results on the culture of the organization.
Fourth, contrary to what is believed, some of cultural features that we anticipate to support information technology applications and products may be interpreted otherwise by diverse people contingent on different assumptions, beliefs, and values. In fact, Robey et al. [24, 25] showed that managers cannot control the effects of these technologies, since different users can configure a particular technology in numerous ways in different social environments. Also, Gopal and Prasad [31] argued that this would be an impossible achievement for researchers looking for fixed laws or regulations on how information technologies affect user behaviors.
Fifth, information technologies were defined above as technologies that enable processing, storage, and sharing of information. The key concept in this definition is “knowledge-based” information and not the technology itself. Therefore, what makes information technologies essential and important is the information itself. According to the definition of knowledge, the most significant characteristic that differentiates it from information is its being a product of the human mind [37]. Because knowledge is the interpretation of information and expresses the value produced from it, qualifying information technologies as good-bad, useful-useless, and necessary-unnecessary can be a meaningless evaluation. So, the basic thing that creates value-added for organizations is not the technology used but the information itself, which is processed, stored, and shared on this technology. In this context, even if it is the latest, most advanced, and most expensive technology in the world, if the organization does not have a qualified human resource capable of producing knowledge that will create value-added, an appropriate organizational structure and culture that will activate this creative potential, and a management approach, all investments in these technologies will also be wasted.
This chapter has aimed to examine the impacts of information technologies on organizations’ cultures, and for this purpose, a special emphasis is given to the concept of “organizational structure” within the theoretical framework presented above. The most important reason for this is that relevant literature shows that organizational culture and organizational structure are in a very close relationship. Indeed, when the question items in the Denison organizational culture scale [85], which is the most frequently used in the literature, are examined, it is possible to see that most of these items point to many features of organizational structure concerning centralization, formalization, and differentiation dimensions. Therefore, it is a very rational approach to expect that information technologies can have direct and indirect effects on organizational cultures based on the influences of information technologies on structures of organizations. However, it should be underlined that different and controversial approaches and findings in the literature mentioned above on the relations between information technologies and organizational culture generate question marks in the minds as well.
In this regard, it is already quite difficult to draw a clear picture of the impacts of information technologies on cultural characteristics of organizations. The number of studies on the subject in the literature is still very limited. Accordingly, it is necessary to underline the great need for interdisciplinary studies in this field. But still, this study argues that the main factor that determines the actual impact and value of information technologies, which have become an integral part of human life in today’s world, is the information itself rather than technology, and it should be kept in mind that information technologies can only function as a means or tool in this knowledge-based social, economic, and cultural life. In other words, the determinant of the benefits, meaning, and importance of information technologies might be the conditions created by organizational factors such as cultural environment and organizational structure where knowledge is created, developed, and used and human resources have become the most important capital element and source of wealth.
The author declares no conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"23",title:"Social Sciences",slug:"social-sciences",parent:{title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities"},numberOfBooks:83,numberOfAuthorsAndEditors:1292,numberOfWosCitations:289,numberOfCrossrefCitations:397,numberOfDimensionsCitations:757,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8090",title:"Who Wants to Retire and Who Can Afford to Retire?",subtitle:null,isOpenForSubmission:!1,hash:"90fe30d224594414bb156e42afa47f5e",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/8090.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",middleName:null,surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10032",title:"Fire Safety and Management Awareness",subtitle:null,isOpenForSubmission:!1,hash:"ba924ac3ec282316ae8ba97882cc4592",slug:"fire-safety-and-management-awareness",bookSignature:"Fahmina Zafar and Anujit Ghosal",coverURL:"https://cdn.intechopen.com/books/images_new/10032.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7806",title:"Public Sector Crisis Management",subtitle:null,isOpenForSubmission:!1,hash:"84a998820880e0f006a5e9eac40d83e7",slug:"public-sector-crisis-management",bookSignature:"Alexander Rozanov, Alexander Barannikov, Olga Belyaeva and Mikhail Smirnov",coverURL:"https://cdn.intechopen.com/books/images_new/7806.jpg",editedByType:"Edited by",editors:[{id:"233092",title:"Dr.",name:"Alexander",middleName:null,surname:"Rozanov",slug:"alexander-rozanov",fullName:"Alexander Rozanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9256",title:"Risk Management and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"b5547d1d68d2db6f22eedb8f306b0276",slug:"risk-management-and-assessment",bookSignature:"Jorge Rocha, Sandra Oliveira and César Capinha",coverURL:"https://cdn.intechopen.com/books/images_new/9256.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7810",title:"Quality of Life",subtitle:"Biopsychosocial Perspectives",isOpenForSubmission:!1,hash:"0392d2712c58885b729bd943f9aac37f",slug:"quality-of-life-biopsychosocial-perspectives",bookSignature:"Floriana Irtelli, Federico Durbano and Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/7810.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",middleName:null,surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6927",title:"Intellectual Property Rights",subtitle:"Patent",isOpenForSubmission:!1,hash:"9fd5884b3bce2ec6f77a8356ea384a37",slug:"intellectual-property-rights-patent",bookSignature:"Sakthivel Lakshmana Prabu, Suriyaprakash Tnk, Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/6927.jpg",editedByType:"Edited by",editors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6944",title:"Heritage",subtitle:null,isOpenForSubmission:!1,hash:"80ee36ba67b1fe4ff971074f7ddc4d00",slug:"heritage",bookSignature:"Daniela Turcanu-Carutiu",coverURL:"https://cdn.intechopen.com/books/images_new/6944.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7823",title:"Off and Online Journalism and Corruption",subtitle:"International Comparative Analysis",isOpenForSubmission:!1,hash:"a9255404676105c3160a4b0bd63e4b36",slug:"off-and-online-journalism-and-corruption-international-comparative-analysis",bookSignature:"Basyouni Ibrahim Hamada and Saodah Wok",coverURL:"https://cdn.intechopen.com/books/images_new/7823.jpg",editedByType:"Edited by",editors:[{id:"245157",title:"Prof.",name:"Basyouni",middleName:null,surname:"Hamada",slug:"basyouni-hamada",fullName:"Basyouni Hamada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7822",title:"Second Language Acquisition",subtitle:"Pedagogies, Practices and Perspectives",isOpenForSubmission:!1,hash:"fc5086868a638baf9f0f09eac83cb346",slug:"second-language-acquisition-pedagogies-practices-and-perspectives",bookSignature:"Christine Savvidou",coverURL:"https://cdn.intechopen.com/books/images_new/7822.jpg",editedByType:"Edited by",editors:[{id:"1264",title:"Dr.",name:"Christine",middleName:null,surname:"Savvidou",slug:"christine-savvidou",fullName:"Christine Savvidou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",middleName:null,surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:83,mostCitedChapters:[{id:"42656",doi:"10.5772/55538",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1531,totalCrossrefCites:13,totalDimensionsCites:15,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]}],mostDownloadedChaptersLast30Days:[{id:"58890",title:"Philosophy and Paradigm of Scientific Research",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:7810,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"34156",title:"History and Sociology: What is Historical Sociology?",slug:"history-and-sociology-what-is-historical-sociology-",totalDownloads:14526,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"sociological-landscape-theories-realities-and-trends",title:"Sociological Landscape",fullTitle:"Sociological Landscape - Theories, Realities and Trends"},signatures:"Jiri Subrt",authors:[{id:"119641",title:"Dr",name:null,middleName:null,surname:"Subrt",slug:"subrt",fullName:"Subrt"}]},{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:6585,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"74219",title:"Introductory Chapter: Pleistocene Archaeology - Migration, Technology, and Adaptation",slug:"introductory-chapter-pleistocene-archaeology-migration-technology-and-adaptation",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono and Alfred Pawlik",authors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"}]},{id:"52475",title:"Teenage Pregnancies: A Worldwide Social and Medical Problem",slug:"teenage-pregnancies-a-worldwide-social-and-medical-problem",totalDownloads:5625,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"an-analysis-of-contemporary-social-welfare-issues",title:"An Analysis of Contemporary Social Welfare Issues",fullTitle:"An Analysis of Contemporary Social Welfare Issues"},signatures:"Sylvia Kirchengast",authors:[{id:"188289",title:"Prof.",name:"Sylvia",middleName:null,surname:"Kirchengast",slug:"sylvia-kirchengast",fullName:"Sylvia Kirchengast"}]},{id:"58894",title:"Research Ethics",slug:"research-ethics",totalDownloads:1673,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"42656",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"63639",title:"Cooperative Learning: The Foundation for Active Learning",slug:"cooperative-learning-the-foundation-for-active-learning",totalDownloads:1952,totalCrossrefCites:6,totalDimensionsCites:5,book:{slug:"active-learning-beyond-the-future",title:"Active Learning",fullTitle:"Active Learning - Beyond the Future"},signatures:"David W. Johnson and Roger T. Johnson",authors:[{id:"259976",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"263004",title:"Dr.",name:"Roger",middleName:null,surname:"Johnson",slug:"roger-johnson",fullName:"Roger Johnson"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59744",title:"Advantages of Bilingualism and Multilingualism: Multidimensional Research Findings",slug:"advantages-of-bilingualism-and-multilingualism-multidimensional-research-findings",totalDownloads:2348,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"multilingualism-and-bilingualism",title:"Multilingualism and Bilingualism",fullTitle:"Multilingualism and Bilingualism"},signatures:"Evelyn Fogwe Chibaka",authors:[{id:"220564",title:"Dr.",name:"Evelyn Fogwe",middleName:null,surname:"Chibaka",slug:"evelyn-fogwe-chibaka",fullName:"Evelyn Fogwe Chibaka"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74808",title:"Development Strategies towards a Reputable International Program: Special Focus at International Program for Islamic Economics and Finance, Universitas Muhammadiyah Yogyakarta",slug:"development-strategies-towards-a-reputable-international-program-special-focus-at-international-prog",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.94322",book:{title:"Education at the Intersection of Globalization and Technology"},signatures:"Dimas Bagus Wiranatakusuma"},{id:"74503",title:"Alignment between the Strategic Plans of Island Regions and the Agenda 2030 for Sustainable Development",slug:"alignment-between-the-strategic-plans-of-island-regions-and-the-agenda-2030-for-sustainable-developm",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.95344",book:{title:"Peripheral Territories, Tourism, and Regional Development"},signatures:"Deolésio Mendes, Ana José and Joaquim Mourato"},{id:"74651",title:"Can Turn-Taking Highlight the Nature of Non-Verbal Behavior: A Case Study",slug:"can-turn-taking-highlight-the-nature-of-non-verbal-behavior-a-case-study",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.95516",book:{title:"Types of Nonverbal Communication"},signatures:"Izidor Mlakar, Matej Rojc, Darinka Verdonik and Simona Majhenič"}],onlineFirstChaptersTotal:53},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/101392/dirk-mueller",hash:"",query:{},params:{id:"101392",slug:"dirk-mueller"},fullPath:"/profiles/101392/dirk-mueller",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()