\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10075",leadTitle:null,fullTitle:"Nonlinear Optics - From Solitons to Similaritons",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",reviewType:"peer-reviewed",abstract:"With this book, we aim to capture different perspectives of researchers on nonlinear optics and optical devices and we intend to cover the latest developments in optics from theoretical, numerical, and experimental aspects. The eleven selected chapters cover a variety of topics related to nonlinear optics including bright, dark, kink solitary waves in various media, magnetic solitons, lattice solitons, rogue-waves, solid-state lasers, laser cladding, optical sensors, optical vortices, and molecular switches. The book is intended to draw the attention of scientists in academia, as well as researchers and engineers in industry, since the field has a significant potential for the production and design of novel optical devices and other technological applications.",isbn:"978-1-83962-652-4",printIsbn:"978-1-83962-651-7",pdfIsbn:"978-1-83962-653-1",doi:"10.5772/intechopen.87907",price:119,priceEur:129,priceUsd:155,slug:"nonlinear-optics-from-solitons-to-similaritons",numberOfPages:258,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"b034b2a060292c8511359aec0db1002c",bookSignature:"İlkay Bakırtaş and Nalan Antar",publishedDate:"January 27th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",numberOfDownloads:5664,numberOfWosCitations:3,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:9,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:17,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2019",dateEndSecondStepPublish:"February 13th 2020",dateEndThirdStepPublish:"April 13th 2020",dateEndFourthStepPublish:"July 2nd 2020",dateEndFifthStepPublish:"August 31st 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş",profilePictureURL:"https://mts.intechopen.com/storage/users/186388/images/system/186388.jpeg",biography:"Dr. İlkay Bakırtaş is a Professor of Applied Mathematics, Department of Mathematics, Istanbul Technical University (ITU), Turkey. She received her Ph.D. in Mechanics from the same university in 2003. She completed her postdoctoral studies at the University of Colorado at Boulder, USA. She has published eighteen research papers in peer-reviewed journals, four book chapters, and twenty-one conference proceedings in the fields of perturbation methods, nonlinear wave propagation in arteries, optical solitons and wave collapse in optics, and water waves problems. She is the editor of the books Perturbation Methods with Applications in Science and Engineering and Nonlinear Optics - From Solitons to Similaritons. Dr. Bakırtaş is a member of the Scientific Committee of the Turkish National Committee of Theoretical and Applied Mechanics (TUMTMK). She was awarded the 2004 Dr. Serhat Ozyar Young Scientist of the Year Award and the 2003 Best Ph.D. Dissertation Award from TUMTMK",institutionString:"Istanbul Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Istanbul Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"281410",title:"Dr.",name:"Nalan",middleName:null,surname:"Antar",slug:"nalan-antar",fullName:"Nalan Antar",profilePictureURL:"https://mts.intechopen.com/storage/users/281410/images/system/281410.jpg",biography:"Dr. Nalan Antar is a Professor of Applied Mathematics, Department of Mathematical Engineering, Istanbul Technical University, Turkey. She received her Ph.D. in Mechanics from the same university in 1999. She completed her post-doctoral studies at the Department of Mathematics and Statistics, University of Alberta, Canada, and later participated in academic research projects at the University of Colorado at Boulder, USA. She has published thirty-two research papers in peer-reviewed journals, thirteen conference proceedings, and one book chapter in the fields of nonlinear wave propagation in arteries, optical solitons in nonlinear optics, and water waves problems, in particular gravity currents. She has also edited one book, Nonlinear Optics - From Solitons to Similaritons. She has supervised many graduate students in applied mathematics. Dr. Antar is a member of the Scientific Committee of the Turkish National Committee of Theoretical and Applied Mechanics (TUMTMK).",institutionString:"Istanbul Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Istanbul Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1225",title:"Optical Physics",slug:"optics-and-lasers-optical-physics"}],chapters:[{id:"74688",title:"Water Waves and Light: Two Unlikely Partners",doi:"10.5772/intechopen.95431",slug:"water-waves-and-light-two-unlikely-partners",totalDownloads:370,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We study a generic model governing optical beam propagation in media featuring a nonlocal nonlinear response, namely a two-dimensional defocusing nonlocal nonlinear Schrödinger (NLS) model. Using a framework of multiscale expansions, the NLS model is reduced first to a bidirectional model, namely a Boussinesq or a Benney-Luke-type equation, and then to the unidirectional Kadomtsev-Petviashvili (KP) equation – both in Cartesian and cylindrical geometry. All the above models arise in the description of shallow water waves, and their solutions are used for the construction of relevant soliton solutions of the nonlocal NLS. Thus, the connection between water wave and nonlinear optics models suggests that patterns of water may indeed exist in light. We show that the NLS model supports intricate patterns that emerge from interactions between soliton stripes, as well as lump and ring solitons, similarly to the situation occurring in shallow water.",signatures:"Georgios N. Koutsokostas, Theodoros P. Horikis, Dimitrios J. Frantzeskakis, Nalan Antar and İlkay Bakırtaş",downloadPdfUrl:"/chapter/pdf-download/74688",previewPdfUrl:"/chapter/pdf-preview/74688",authors:[{id:"186388",title:"Prof.",name:"İlkay",surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"},{id:"281410",title:"Dr.",name:"Nalan",surname:"Antar",slug:"nalan-antar",fullName:"Nalan Antar"},{id:"287482",title:"Prof.",name:"Theodoros",surname:"Horikis",slug:"theodoros-horikis",fullName:"Theodoros Horikis"},{id:"316029",title:"Dr.",name:"Dimitrios J.",surname:"Frantzeskakis",slug:"dimitrios-j.-frantzeskakis",fullName:"Dimitrios J. Frantzeskakis"},{id:"320148",title:"Mr.",name:"Georgios",surname:"Koutsokostas",slug:"georgios-koutsokostas",fullName:"Georgios Koutsokostas"}],corrections:null},{id:"73138",title:"Soliton and Rogue-Wave Solutions of Derivative Nonlinear Schrödinger Equation - Part 1",doi:"10.5772/intechopen.93438",slug:"soliton-and-rogue-wave-solutions-of-derivative-nonlinear-schr-dinger-equation-part-1",totalDownloads:402,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Based upon different methods such as a newly revised version of inverse scattering transform, Marchenko formalism, and Hirota’s bilinear derivative transform, this chapter aims to study and solve the derivative nonlinear Schrödinger (DNLS for brevity) equation under vanishing boundary condition (VBC for brevity). The explicit one-soliton and multi-soliton solutions had been derived by some algebra techniques for the VBC case. Meanwhile, the asymptotic behaviors of those multi-soliton solutions had been analyzed and discussed in detail.",signatures:"Zhou Guo-Quan",downloadPdfUrl:"/chapter/pdf-download/73138",previewPdfUrl:"/chapter/pdf-preview/73138",authors:[{id:"318550",title:"Ph.D.",name:"Guo-Quan",surname:"Zhou",slug:"guo-quan-zhou",fullName:"Guo-Quan Zhou"}],corrections:null},{id:"73289",title:"Soliton and Rogue-Wave Solutions of Derivative Nonlinear Schrödinger Equation - Part 2",doi:"10.5772/intechopen.93450",slug:"soliton-and-rogue-wave-solutions-of-derivative-nonlinear-schr-dinger-equation-part-2",totalDownloads:421,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A revised and rigorously proved inverse scattering transform (IST for brevity) for DNLS+ equation, with a constant nonvanishing boundary condition (NVBC) and normal group velocity dispersion, is proposed by introducing a suitable affine parameter in the Zakharov-Shabat IST integral; the explicit breather-type and pure N-soliton solutions had been derived by some algebra techniques. On the other hand, DNLS equation with a non-vanishing background of harmonic plane wave is also solved by means of Hirota’s bilinear formalism. Its space periodic solutions are determined, and its rogue wave solution is derived as a long-wave limit of this space periodic solution.",signatures:"Zhou Guo-Quan",downloadPdfUrl:"/chapter/pdf-download/73289",previewPdfUrl:"/chapter/pdf-preview/73289",authors:[{id:"318550",title:"Ph.D.",name:"Guo-Quan",surname:"Zhou",slug:"guo-quan-zhou",fullName:"Guo-Quan Zhou"}],corrections:null},{id:"66415",title:"Magnetic Solitons in Optical Lattice",doi:"10.5772/intechopen.85492",slug:"magnetic-solitons-in-optical-lattice",totalDownloads:677,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"In this chapter, we discuss the magnetic solitons achieved in atomic spinor Bose-Einstein condensates (BECs) confined within optical lattice. Spinor BECs at each lattice site behave like spin magnets and can interact with each other through the static magnetic dipole-dipole interaction (MDDI), due to which the magnetic soliton may exist in blue-detuned optical lattice. By imposing an external laser field into the lattice or loading atoms in a red-detuned optical lattice, the light-induced dipole-dipole interaction (LDDI) can produce new magnetic solitons. The long-range couplings induced by the MDDI and ODDI play a dominant role in the spin dynamics in an optical lattice. Compared with spin chain in solid material, the nearest-neighbor approximation, next-nearest-neighbor approximation, and long-range case are discussed, respectively.",signatures:"Xing-Dong Zhao",downloadPdfUrl:"/chapter/pdf-download/66415",previewPdfUrl:"/chapter/pdf-preview/66415",authors:[{id:"283277",title:"Dr.",name:"Zhao",surname:"Xingdong",slug:"zhao-xingdong",fullName:"Zhao Xingdong"}],corrections:null},{id:"69356",title:"Q-Switched 2 Micron Solid-State Lasers and Their Applications",doi:"10.5772/intechopen.89548",slug:"q-switched-2-micron-solid-state-lasers-and-their-applications",totalDownloads:876,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter, we overview the Q-switched 2 μm solid-state laser development achieved in recent years, including flash- and diode-pumped solid-state lasers based on active and passive modulators. In summary, active Q-switching is still the first choice for obtaining large pulse energy at 2 μm currently, while passive Q-switching based on saturable absorbers (SAs), especially the newly emerging broadband low-dimension nanomaterial, is becoming promising approach in generating Q-switched 2 μm lasers specially with high repetition rate, although the output power, pulse duration, and pulse energy needs further enhancement. Besides, some important applications of 2 μm lasers, such as medicine, laser radar, and infrared directional interference, have also been introduced in brief.",signatures:"Kejian Yang, Yaling Yang, Jingliang He and Shengzhi Zhao",downloadPdfUrl:"/chapter/pdf-download/69356",previewPdfUrl:"/chapter/pdf-preview/69356",authors:[{id:"299494",title:"Prof.",name:"Kejian",surname:"Yang",slug:"kejian-yang",fullName:"Kejian Yang"},{id:"309048",title:"Ms.",name:"Yaling",surname:"Yang",slug:"yaling-yang",fullName:"Yaling Yang"},{id:"309049",title:"Prof.",name:"Shengzhi",surname:"Zhao",slug:"shengzhi-zhao",fullName:"Shengzhi Zhao"},{id:"309050",title:"Prof.",name:"Jingliang",surname:"He",slug:"jingliang-he",fullName:"Jingliang He"}],corrections:null},{id:"68629",title:"Thermal Fields in Laser Cladding Processing: A “Fire Ball” Model. A Theoretical Computational Comparison, Laser Cladding versus Electron Beam Cladding",doi:"10.5772/intechopen.88710",slug:"thermal-fields-in-laser-cladding-processing-a-fire-ball-model-a-theoretical-computational-comparison",totalDownloads:542,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Laser cladding processing can be found in many industrial applications. A lot of different materials processing were studied in the last years. To improve the process, one may evaluate the phenomena behaviour from a theoretical and computational point of view. In our model, we consider that the phase transition to the melted pool is treated using an absorption coefficient which can underline liquid formation. In the present study, we propose a semi-analytical model. It supposes that melted pool is in first approximation a “sphere”, and in consequence, the heat equation is solved in spherical coordinates. Using the Laplace transform, we will solve the heat equation without the assumption that “time” parameter should be interpolated linearly. 3D thermal graphics of the Cu substrate are presented. Our model could be applied also for electron cladding of metals. We make as well a comparison of the cladding method using laser or electron beams. We study the process for different input powers and various beam velocities. The results proved to be in good agreement with data from literature.",signatures:"Mihai Oane, Ion N. Mihăilescu and Carmen-Georgeta Ristoscu",downloadPdfUrl:"/chapter/pdf-download/68629",previewPdfUrl:"/chapter/pdf-preview/68629",authors:[{id:"17636",title:"Prof.",name:"Ion N.",surname:"Mihailescu",slug:"ion-n.-mihailescu",fullName:"Ion N. Mihailescu"},{id:"53011",title:"Dr.",name:"Mihai",surname:"Oane",slug:"mihai-oane",fullName:"Mihai Oane"},{id:"60531",title:"Dr.",name:"Carmen-Georgeta",surname:"Ristoscu",slug:"carmen-georgeta-ristoscu",fullName:"Carmen-Georgeta Ristoscu"}],corrections:null},{id:"70829",title:"Optical Sensor for Nonlinear and Quantum Optical Effects",doi:"10.5772/intechopen.90857",slug:"optical-sensor-for-nonlinear-and-quantum-optical-effects",totalDownloads:353,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this chapter, the main foundations for the conception, design, and the project of optical sensors that explore the effects of nonlinear and quantum optics are presented. These sensors have a variety of applications from the design of waveguides with self-selection of propagation modes to signal processing and quantum computing. The chapter seeks to present formal aspects of applied modern optics in a detailed, sequential, and concise manner.",signatures:"Antônio Carlos Amaro de Faria",downloadPdfUrl:"/chapter/pdf-download/70829",previewPdfUrl:"/chapter/pdf-preview/70829",authors:[{id:"216030",title:"Dr.",name:"Antônio Carlos",surname:"Amaro De Faria",slug:"antonio-carlos-amaro-de-faria",fullName:"Antônio Carlos Amaro De Faria"}],corrections:null},{id:"71168",title:"Digital Sorting of Optical Vortices in Perturbed Singular Beams",doi:"10.5772/intechopen.91419",slug:"digital-sorting-of-optical-vortices-in-perturbed-singular-beams",totalDownloads:709,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The chapter provides a brief overview of shaping and measuring techniques of the vortex spectra (squared amplitudes and initial phases of vortex modes) including radial indices. The main physical mechanisms causing the formation of laser beams with a complex vortex composition, in particular, in biological media, are indicated, and the need for a digital analysis of vortex spectra is substantiated. It is the analysis of vortex spectra that allows us to find the orbital angular momentum and informational entropy (Shannon’s entropy) of perturbed laser beams in real time. In the main part of the chapter, we consider in detail a new approach for measuring vortex spectra without cuts and gluing of the wavefront, based on digital analyzing high-order intensity moments of complex beams and sorting the vortex beam in computer memory sells. It is shown that certain types of weak local inhomogeneities cause a vortex avalanche causing a sharp dips and bursts of the orbital angular momentum spectra and quick ups and downs of the informational entropy. An important object of analysis is also the vortex spectra of beams scattered by simple opaque obstacles such as a hole, a disk, and a sector aperture.",signatures:"Alexander Volyar, Mikhail Bretsko, Yana Akimova and Yuriy Egorov",downloadPdfUrl:"/chapter/pdf-download/71168",previewPdfUrl:"/chapter/pdf-preview/71168",authors:[{id:"313333",title:"Prof.",name:"Alexander",surname:"Volyar",slug:"alexander-volyar",fullName:"Alexander Volyar"},{id:"313335",title:"MSc.",name:"Mikhail",surname:"Bretsko",slug:"mikhail-bretsko",fullName:"Mikhail Bretsko"},{id:"313337",title:"MSc.",name:"Yana",surname:"Akimova",slug:"yana-akimova",fullName:"Yana Akimova"},{id:"313338",title:"Dr.",name:"Yuriy",surname:"Egorov",slug:"yuriy-egorov",fullName:"Yuriy Egorov"}],corrections:null},{id:"72375",title:"Nonlinear Optical Responsive Molecular Switches",doi:"10.5772/intechopen.92675",slug:"nonlinear-optical-responsive-molecular-switches",totalDownloads:376,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Nonlinear optical (NLO) materials have gained much attention during the last two decades owing to their potentiality in the field of optical data storage, optical information processing, optical switching, and telecommunication. NLO responsive macroscopic devices possess extensive applications in our day to day life. Such devices are considered as assemblies of several macroscopic components designed to achieve specific functions. The extension of this concept to the molecular level forms the basis of molecular devices. In this context, the design of NLO switches, that is, molecules characterized by their ability to alternate between two or more chemical forms displaying contrasts in one of their NLO properties, has motivated many experimental and theoretical works. Thus, this chapter focuses on the rational design of molecular NLO switches based on stimuli and materials with extensive examples reported in the literature. The factors affecting the efficiency of optical switches are discussed. The device fabrication of optical switches and their efficiency based on the optical switch, internal architecture, and substrate materials are described. In the end, applications of switches and future prospectus of designing new molecules with references are suitably discussed.",signatures:"Mahadevappa Y. Kariduraganavar, Radha V. Doddamani, Balachandar Waddar and Saidi Reddy Parne",downloadPdfUrl:"/chapter/pdf-download/72375",previewPdfUrl:"/chapter/pdf-preview/72375",authors:[{id:"268327",title:"Prof.",name:"Mahadevappa",surname:"Kariduraganavar",slug:"mahadevappa-kariduraganavar",fullName:"Mahadevappa Kariduraganavar"},{id:"320059",title:"Dr.",name:"Radha",surname:"Doddamani",slug:"radha-doddamani",fullName:"Radha Doddamani"},{id:"320060",title:"Mr.",name:"Balachandar",surname:"Waddar",slug:"balachandar-waddar",fullName:"Balachandar Waddar"},{id:"320061",title:"Prof.",name:"Saidi",surname:"Reddy Parne",slug:"saidi-reddy-parne",fullName:"Saidi Reddy Parne"}],corrections:null},{id:"72536",title:"Bright, Dark, and Kink Solitary Waves in a Cubic-Quintic-Septic-Nonical Medium",doi:"10.5772/intechopen.92819",slug:"bright-dark-and-kink-solitary-waves-in-a-cubic-quintic-septic-nonical-medium",totalDownloads:579,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter, evolution of light beams in a cubic-quintic-septic-nonical medium is investigated. As the model equation, an extended form of the well-known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a special ansatz, exact analytical solutions describing bright/dark and kink solitons are constructed. The existence of the wave solutions is discussed in a parameter regime. Moreover, the stability properties of the obtained solutions are investigated, and by employing Stuart and DiPrima’s stability analysis method, an analytical expression for the modulational stability is found.",signatures:"Mati Youssoufa, Ousmanou Dafounansou and Alidou Mohamadou",downloadPdfUrl:"/chapter/pdf-download/72536",previewPdfUrl:"/chapter/pdf-preview/72536",authors:[{id:"318293",title:"Ph.D. Student",name:"Mati",surname:"Youssoufa",slug:"mati-youssoufa",fullName:"Mati Youssoufa"},{id:"320533",title:"Dr.",name:"Ousmanou",surname:"Dafounansou",slug:"ousmanou-dafounansou",fullName:"Ousmanou Dafounansou"},{id:"320534",title:"Dr.",name:"Alidou",surname:"Mohamadou",slug:"alidou-mohamadou",fullName:"Alidou Mohamadou"}],corrections:null},{id:"72855",title:"Emergence of Raman Peaks Due to Septic Nonlinearity in Noninstantaneous Kerr Media",doi:"10.5772/intechopen.93179",slug:"emergence-of-raman-peaks-due-to-septic-nonlinearity-in-noninstantaneous-kerr-media",totalDownloads:359,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We analyze the modulation instability induced by cross-phase modulation of two co-propagating optical beams in nonlinear fiber with the effect of higher-order dispersion and septic nonlinearity. We investigate in detail the effect of relaxation nonlinear response to the gain spectrum both in normal group velocity dispersion (GVD) and anomalous dispersion regime. We show that the walk-off, the relaxation nonlinear response time as well as the higher-order process particularly influence the generation of the modulation instability gain. Our results shows that the emerging Raman peaks is observable both in the case of weak dispersion and in a higher-order dispersion for mixed GVD regime with slow response time. These Raman peaks are shifted toward higher frequencies with the decrease of their magnitude, when the walk-off increases.",signatures:"Michel-Rostand Soumo Tchio, Saïdou Abdoulkary and Alidou Mohamadou",downloadPdfUrl:"/chapter/pdf-download/72855",previewPdfUrl:"/chapter/pdf-preview/72855",authors:[{id:"318634",title:"Ph.D.",name:"Soumo Tchio",surname:"Michel-Rostand",slug:"soumo-tchio-michel-rostand",fullName:"Soumo Tchio Michel-Rostand"},{id:"318637",title:"Prof.",name:"Alidou",surname:"Mohamadou",slug:"alidou-mohamadou",fullName:"Alidou Mohamadou"},{id:"318640",title:"Prof.",name:"Saïdou",surname:"Abdoulkary",slug:"saidou-abdoulkary",fullName:"Saïdou Abdoulkary"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6716",title:"Perturbation Methods with Applications in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4eb95b646172fe61a2068c4a98ac13e4",slug:"perturbation-methods-with-applications-in-science-and-engineering",bookSignature:"İlkay Bakırtaş",coverURL:"https://cdn.intechopen.com/books/images_new/6716.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8350",title:"Fiber Optic Sensing",subtitle:"Principle, Measurement and Applications",isOpenForSubmission:!1,hash:"d35774b28952d3c4c4643b58dec25549",slug:"fiber-optic-sensing-principle-measurement-and-applications",bookSignature:"Shien-Kuei Liaw",coverURL:"https://cdn.intechopen.com/books/images_new/8350.jpg",editedByType:"Edited by",editors:[{id:"206109",title:"Dr.",name:"Shien-Kuei",surname:"Liaw",slug:"shien-kuei-liaw",fullName:"Shien-Kuei Liaw"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6599",title:"Small Angle Scattering and Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"9b1efb6a54c3fbdadd875f7bac0f6718",slug:"small-angle-scattering-and-diffraction",bookSignature:"Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/6599.jpg",editedByType:"Edited by",editors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7582",title:"Nonlinear Optics",subtitle:"Novel Results in Theory and Applications",isOpenForSubmission:!1,hash:"a3ad4a3553a3ec59f7992d4f6495ac07",slug:"nonlinear-optics-novel-results-in-theory-and-applications",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/7582.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",title:"Erratum - Metallothioneins, Saccharomyces cerevisiae, and Heavy Metals: A Biotechnology Triad?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/60025.pdf",downloadPdfUrl:"/chapter/pdf-download/60025",previewPdfUrl:"/chapter/pdf-preview/60025",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/60025",risUrl:"/chapter/ris/60025",chapter:{id:"56597",slug:"metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",signatures:"Ileana Cornelia Farcasanu and Lavinia Liliana Ruta",dateSubmitted:"December 11th 2016",dateReviewed:"July 7th 2017",datePrePublished:null,datePublished:"December 13th 2017",book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203734",title:"Dr.",name:"Ileana",middleName:"Cornelia",surname:"Farcasanu",fullName:"Ileana Farcasanu",slug:"ileana-farcasanu",email:"ileana.farcasanu@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}},{id:"203865",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ruta",fullName:"Lavinia Ruta",slug:"lavinia-ruta",email:"lavinia.ruta@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}}]}},chapter:{id:"56597",slug:"metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",signatures:"Ileana Cornelia Farcasanu and Lavinia Liliana Ruta",dateSubmitted:"December 11th 2016",dateReviewed:"July 7th 2017",datePrePublished:null,datePublished:"December 13th 2017",book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203734",title:"Dr.",name:"Ileana",middleName:"Cornelia",surname:"Farcasanu",fullName:"Ileana Farcasanu",slug:"ileana-farcasanu",email:"ileana.farcasanu@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}},{id:"203865",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ruta",fullName:"Lavinia Ruta",slug:"lavinia-ruta",email:"lavinia.ruta@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}}]},book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6318",leadTitle:null,title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",subtitle:null,reviewType:"peer-reviewed",abstract:"Recently, the rapid development of microwave technologies has had a significant impact on current industrial, agricultural, medical, and food processing fields. This book is a self-contained collection of valuable scholarly papers related to the microwave applications. This book contains 10 chapters that cover several subtopics of the microwave engineering, namely, microwave system design models, emerging microwave devices, and microwave heating/drying technologies. Hence, this book should be useful to the academics, scientists, practicing researchers, and postgraduate students whose works are related to microwave technologies.",isbn:"978-1-78923-409-1",printIsbn:"978-1-78923-408-4",pdfIsbn:"978-1-83881-397-0",doi:"10.5772/intechopen.69578",price:119,priceEur:129,priceUsd:155,slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",numberOfPages:214,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"67de575df6dcd16554dd8f575e8c8368",bookSignature:"Kok Yeow You",publishedDate:"July 4th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6318.jpg",keywords:null,numberOfDownloads:12159,numberOfWosCitations:3,numberOfCrossrefCitations:16,numberOfDimensionsCitations:30,numberOfTotalCitations:49,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 13th 2017",dateEndSecondStepPublish:"July 4th 2017",dateEndThirdStepPublish:"September 30th 2017",dateEndFourthStepPublish:"December 29th 2017",dateEndFifthStepPublish:"February 27th 2018",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"188673",title:"Dr.",name:"Kok Yeow",middleName:null,surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You",profilePictureURL:"https://mts.intechopen.com/storage/users/188673/images/5521_n.jpg",biography:"Dr. Kok Yeow You obtained his BSc degree in Physics (Honors) from the Universiti Kebangsaan Malaysia (UKM) in 2001. He pursued his MSc degree in Microwave from the Faculty of Science in 2003 and his PhD degree in Wave Propagation from the Institute for Mathematical Research, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia in 2006. His main personal research interest includes the theory, simulation, and instrumentation of electromagnetic wave propagation at microwave frequencies focusing on the development of microwave passive devices and sensors for medical and agricultural applications. For the past 17 years, he has developed numerous projects concerning microwave waveguide measurement systems for agri-/food, biomedical processing, and microwave devices for biomedical treatments, as well as numerical electromagnetic modeling.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Technology Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"750",title:"Microwave Engineering",slug:"microwave-engineering"}],chapters:[{id:"58958",title:"Introductory Chapter: RF/Microwave Applications",slug:"introductory-chapter-rf-microwave-applications",totalDownloads:1451,totalCrossrefCites:1,authors:[{id:"188673",title:"Dr.",name:"Kok Yeow",surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}]},{id:"60385",title:"Fractal Array Antennas and Applications",slug:"fractal-array-antennas-and-applications",totalDownloads:1235,totalCrossrefCites:1,authors:[{id:"210988",title:"Dr.",name:"V.A.Sankar",surname:"Ponnapalli",slug:"v.a.sankar-ponnapalli",fullName:"V.A.Sankar Ponnapalli"},{id:"210989",title:"Prof.",name:"V. Y. Jayasree",surname:"Pappu",slug:"v.-y.-jayasree-pappu",fullName:"V. Y. Jayasree Pappu"}]},{id:"60591",title:"Resonant Systems for Measurement of Electromagnetic Properties of Substances at V-Band Frequencies",slug:"resonant-systems-for-measurement-of-electromagnetic-properties-of-substances-at-v-band-frequencies",totalDownloads:751,totalCrossrefCites:0,authors:[{id:"214492",title:"D.Sc.",name:"Igor",surname:"Kuzmichev",slug:"igor-kuzmichev",fullName:"Igor Kuzmichev"},{id:"220443",title:"Dr.",name:"Aleksey",surname:"Popkov",slug:"aleksey-popkov",fullName:"Aleksey Popkov"}]},{id:"61772",title:"Electromagnetic Computation of the Short-range Wireless Linkbuget for Biomedical Communication",slug:"electromagnetic-computation-of-the-short-range-wireless-linkbuget-for-biomedical-communication",totalDownloads:1381,totalCrossrefCites:1,authors:[{id:"215104",title:"Dr.",name:"Ilkyu",surname:"Kim",slug:"ilkyu-kim",fullName:"Ilkyu Kim"}]},{id:"59214",title:"Microwave Energy and Light Energy Transformation: Methods, Schemes and Designs",slug:"microwave-energy-and-light-energy-transformation-methods-schemes-and-designs",totalDownloads:1178,totalCrossrefCites:1,authors:[{id:"216155",title:"Prof.",name:"Gennadiy I.",surname:"Churyumov",slug:"gennadiy-i.-churyumov",fullName:"Gennadiy I. Churyumov"},{id:"216158",title:"Dr.",name:"Tetyana",surname:"Frolova",slug:"tetyana-frolova",fullName:"Tetyana Frolova"}]},{id:"59538",title:"Additive Manufacturing of 3D Printed Microwave Passive Components",slug:"additive-manufacturing-of-3d-printed-microwave-passive-components",totalDownloads:1399,totalCrossrefCites:3,authors:[{id:"4535",title:"Dr.",name:"Jorge A.",surname:"Ruiz-Cruz",slug:"jorge-a.-ruiz-cruz",fullName:"Jorge A. Ruiz-Cruz"},{id:"124755",title:"Prof.",name:"José",surname:"Montejo-Garai",slug:"jose-montejo-garai",fullName:"José Montejo-Garai"},{id:"124756",title:"Prof.",name:"Jesus",surname:"Rebollar",slug:"jesus-rebollar",fullName:"Jesus Rebollar"},{id:"227557",title:"B.Sc.",name:"Irene",surname:"Saracho-Pantoja",slug:"irene-saracho-pantoja",fullName:"Irene Saracho-Pantoja"}]},{id:"59220",title:"3D Holographic Millimeter-Wave Imaging for Concealed Metallic Forging Objects Detection",slug:"3d-holographic-millimeter-wave-imaging-for-concealed-metallic-forging-objects-detection",totalDownloads:745,totalCrossrefCites:2,authors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}]},{id:"59371",title:"Microwave Technology in Freeze-Drying Process",slug:"microwave-technology-in-freeze-drying-process",totalDownloads:1189,totalCrossrefCites:1,authors:[{id:"216271",title:"Ph.D. Student",name:"Mohsen",surname:"Kalantari",slug:"mohsen-kalantari",fullName:"Mohsen Kalantari"}]},{id:"60454",title:"Microwave-Assisted Green Extraction Technology for Sustainable Food Processing",slug:"microwave-assisted-green-extraction-technology-for-sustainable-food-processing",totalDownloads:1251,totalCrossrefCites:3,authors:[{id:"212644",title:"Dr.",name:"Ruhan",surname:"Aşkın Uzel",slug:"ruhan-askin-uzel",fullName:"Ruhan Aşkın Uzel"}]},{id:"59937",title:"From Field to Shelf: How Microwave-Assisted Extraction Techniques Foster an Integrated Green Approach",slug:"from-field-to-shelf-how-microwave-assisted-extraction-techniques-foster-an-integrated-green-approach",totalDownloads:1582,totalCrossrefCites:3,authors:[{id:"213620",title:"Dr.",name:"Erika",surname:"Ferrari",slug:"erika-ferrari",fullName:"Erika Ferrari"},{id:"213625",title:"Prof.",name:"Paolo",surname:"Veronesi",slug:"paolo-veronesi",fullName:"Paolo Veronesi"},{id:"213627",title:"Dr.",name:"Roberto",surname:"Rosa",slug:"roberto-rosa",fullName:"Roberto Rosa"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177730",firstName:"Edi",lastName:"Lipovic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/177730/images/4741_n.jpg",email:"edi@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6515",title:"Emerging Waveguide Technology",subtitle:null,isOpenForSubmission:!1,hash:"12ab2b13b1ca330409dc239647a53895",slug:"emerging-waveguide-technology",bookSignature:"Kok Yeow You",coverURL:"https://cdn.intechopen.com/books/images_new/6515.jpg",editedByType:"Edited by",editors:[{id:"188673",title:"Dr.",name:"Kok Yeow",surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3707",title:"Microwave and Millimeter Wave Technologies",subtitle:"from Photonic Bandgap Devices to Antenna and Applications",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-from-photonic-bandgap-devices-to-antenna-and-applications",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3707.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3623",title:"Advanced Microwave and Millimeter Wave Technologies",subtitle:"Semiconductor Devices Circuits and Systems",isOpenForSubmission:!1,hash:null,slug:"advanced-microwave-and-millimeter-wave-technologies-semiconductor-devices-circuits-and-systems",bookSignature:"Moumita Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/3623.jpg",editedByType:"Edited by",editors:[{id:"24251",title:"Dr.",name:"Moumita",surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5436",title:"Microwave Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"cdb6126a0b68bc14bc51600c8dc7ccfc",slug:"microwave-systems-and-applications",bookSignature:"Sotirios K. Goudos",coverURL:"https://cdn.intechopen.com/books/images_new/5436.jpg",editedByType:"Edited by",editors:[{id:"171056",title:"Dr.",name:"Sotirios",surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1565",title:"Bolometers",subtitle:null,isOpenForSubmission:!1,hash:"c193ef12df5ac7a70b88a3b56c786e45",slug:"bolometers",bookSignature:"A. G. Unil Perera",coverURL:"https://cdn.intechopen.com/books/images_new/1565.jpg",editedByType:"Edited by",editors:[{id:"92217",title:"Prof.",name:"Unil",surname:"Perera",slug:"unil-perera",fullName:"Unil Perera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3708",title:"Microwave and Millimeter Wave Technologies",subtitle:"Modern UWB antennas and equipment",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-modern-uwb-antennas-and-equipment",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3708.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4617",title:"Advanced Electromagnetic Waves",subtitle:null,isOpenForSubmission:!1,hash:"dffb45dc681f2d74f30ad9ab9c2c527f",slug:"advanced-electromagnetic-waves",bookSignature:"Saad Osman Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/4617.jpg",editedByType:"Edited by",editors:[{id:"100186",title:"Prof.",name:"Saad",surname:"Bashir",slug:"saad-bashir",fullName:"Saad Bashir"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17820",title:"EEG-fMRI Multimodal Integration for Epilepsy Research",doi:"10.5772/21891",slug:"eeg-fmri-multimodal-integration-for-epilepsy-research",body:'Epileptologists have now at their disposal a variety of tools for investigating human brain functions. Among the technologies of non-invasive functional imaging that have flowered in the last years, two techniques became particularly popular: the electroencephalogram (EEG) which records electrical voltages from the electrodes placed on the scalp and functional magnetic resonance imaging (fMRI) which records magnetization changes due to variations in blood oxygenation.
Each of these methods have its own advantages and disadvantages and no single method is best suited for all experimental and clinical conditions. EEG is a long-established tool for the non-invasive brain investigation characterized by the high temporal resolution (measured in milliseconds) but very low spatial resolution (measured in square centimetres). In contrast, fMRI provides good spatial resolution (measured in square millimetres) but relatively poor temporal resolution (measured in seconds). Combining EEG and fMRI provides integration of information that results in an enhanced view of the phenomena of interest.
This fusion of information is particularly useful in the context of the study of the epileptic disorders. The EEG was used in the study of epilepsy since it was discovered and it remains nowadays the gold-standard for the diagnosis of epilepsy, the classification of the seizures types and the localization of the generators of the epileptic activity. The EEG measurements recorded on the scalp is visually inspected by the neurophysiologists in order to detect any epileptic pattern such as spikes, spike-wave bursts, seizures, etc. and to diagnose the epilepsy. From a spatial point of view only a topographic localization of the generators of ictal and interictal activity is possible. Because of poor spatial resolution of the EEG technique, in many cases it means just a lateralization of the generators and not their precise localization.
fMRI, first demonstrated in 1990, is a technique that, through the blood oxygen level dependent (BOLD) effect, allows the localization of brain areas in which there is a variation of the level of neuronal activity during an experimental condition compared to a control condition. fMRI is mostly used in the study of sensory, motor and cognitive functions, in which the experimental condition differs from the control condition in a way that is controlled by the experimenter. In the context of epilepsy or spontaneous physiological changes in brain state, one can consider the control condition at the time when the EEG is at baseline and the experimental condition to occur in presence of endogenous electrophysiological phenomena such as an epileptic discharge or a sleep spindle. To define such an experimental condition, it is necessary to combine fMRI with EEG measurements by recording EEG while the subject is in the MR scanner.
In this way, it is possible to determine the region of the brain in which there is a change in the BOLD signal correlated to modified neuronal activity such as an epileptic discharge recorded on the scalp..
In this chapter, we will present the methods that have been developed for integrated processing of EEG and BOLD signals simultaneously acquired focusing our attention on the application of these methods in the context of epilepsy.
More in details, the chapter is organized into three sections dealing with the following issues: analysis of EEG-fMRI data by General Linear Model (GLM) theory and estimation of the haemodynamic response function correlated to the epileptic discharges; analysis of EEG-fMRI data by separation into Independent Component Analysis; connectivity analysis of the brain networks underlying epileptic activity.
One of the most popular approaches to combine EEG and fMRI measurements is to include EEG-derived information as regressors of interest in the GLM definition commonly used for fMRI analysis. This type of analysis is usually known as EEG-informed fMRI analysis.
The most widely used approach to perform EEG-informed fMRI analysis consists in analyzing EEG in the time domain and in using information derived from EEG time course into the GLM analysis.
This type of analysis allows for the spatial localization of brain areas involved in spontaneously arising neural activities in which the “stimuli” are not exogenous (i.e. externally generated and controlled) but are “task-free”, random and endogenous (i.e. internally generated).
This is the case of pathological disorders such as epilepsy in which EEG-informed regressors can be used to identify and localize the epileptogenic and the irritative areas. In this particular application, the temporal sequence of onset times of epileptic disharges is used to construct regressors forming a design matrix that is than fitted to the fMRI image data.
One of the most critical factors limitating the potential of the above mentioned technique and preventing it from becoming a clinical tool in the context of epilepsy is the few knowledge about the haemodynamic response to the epileptic spikes. The commonly used EEG-informed GLM analysis needs, in fact, the definition of an “a priori” model of neurovascular system impulse response (HRF, Hemodynamic Response Function).
During the GLM analysis of fMRI data, a statistical comparison is made between the real time course of the BOLD signal in each voxel of the acquired volume and an expected time course of the BOLD signal in the same voxel. The latter is obtained convolving a train of impulses synchronized with the epileptic events and an a priori modeled HRF. Such statistical comparison results in a fMRI map representing the resemblance between real data and modeled data. The whole procedure is summarised and depicted in Fig.1.
A wide variety of basis functions has been used to describe the hemodynamic response. The simplest one uses a standard HRF, which is the measured response to a brief stimulus, such as an auditory tone (Glover et al., 1999). Clearly, this model assumes that each event is followed by a stereotyped response, not accounting for differences among patients, among brain regions or among sessions within a single patient, although it is known that these effects can be considerable (Aguirre et al., 1998). There are also no evidences to assume that the behaviour of the neuro-vascular system in response to an “endogenous” and spontaneous event such as an epileptic discharge, or any other pathological activity, is the same as the one observed in normal subjects, performing sensory or cognitive tasks, in which exogenous and experimentally controlled stimuli are used.
Statistical analysis of EEG-fMRI data: the epileptic interictal spikes are detected on the EEG signal an impulse train is then created and convolved with a a set of basis functions representing HRF. Convolved impulse trains are used as regressors of interest, and are inserted into the design matrix which is then fitted to the image data. After the estimation of the regression coefficients, inference on relevant contrasts of their estimates was performed by using a t-test or F-test depending if one is testing for one parameter only or several parameters at the same time. The obtained spatial t-maps or F-maps are thresholded for significance level and the resulting maps are the functional images, where the value at each voxel reflects the resemblance between the model and the data and therefore the probability that this region is involved in the generation of the spikes.
In order to overcome these limitations, several approaches were proposed in literature. In this section we will describe the existing techniques that were developed to study the HRF related to epileptic discharges and how these can be applied in the context of the study of epileptic disorders.
The techniques to estimate the temporal dynamics and the spatial variability of the HRF can be classified into two main classes: parametric and non-parametric methods.
The parametric methods fix the shape of the HRF by fitting to fMRI data a particular non-linear function of parameters which models typically the delay and the blurring effect of the HRF.
where
A hybrid method with parametric and non parametric characteristics at the same time was more recently introduced (Gossl et al., 2001). More in detail, this approach is parametric on the temporal scale and, on the other hand, is not parametric on the spatial scale since it uses only general prior to model the spatial extension of the signal.
The parametric methods are not able to fully capture the shape variations of HRF within the brain, since they unavoidably introduce a bias in the HRF estimate.
In order to overcome such limitations another class of HRF estimation techniques were recently introduced. This novel class of methods are known as non-parametric methods.
Non-parametric techniques for HRF estimation make no prior hypothesis about the shape of the impulse response of the neurovascular system.
The first type of non-parametric method that was applied is the simple averaging over time of the BOLD response. However, this classical voxelwise analysis is precluded by the low signal-to-noise ratio of fMRI data. For these reasons further non parametric methods were proposed: averaging over regions (Kershaw et al., 2000), selective averaging (Dale et al., 1997), introduction of non-diagonal models for the temporal covariance of the noise (Burock et al., 2000), or introduction of smoothing FIR filters (Goutte et al., 2000).
In such a context, recently, a Bayesian, non-parametric estimation of the HRF has been proposed (Marrelec et al., 2003), (Ciuciu et al., 2003) in which information based on the underlying physiological knowledge was used within a Bayesian framework only to temporally regularize the problem. In this way estimates of the HRF are derived without introducing bias into the estimation, since only very soft regularizing constraints, which are clearly derived from physiological requirements, are imposed. By using a Bayesian approach, the HRF estimate results from a tradeoff between information brought by the data and by our prior knowledge (Marrelec et al., 2003), (Ciuciu et al., 2003).
One of the points of strength of this approach is the possibility to extend it from a voxelwise formulation of the problem of HRF estimation to a regional level (Makni et al., 2008). The development of an estimation method of cerebral haemodynamic response at a regional level allows a joint procedure of HRF estimation and detection of active brain areas. The possibility to use a joint-detection estimation approach, avoiding the classical procedure based on GLM, allows to overcome the necessity of an “a-priori” model of HRF.
For this reasons and since this Bayesian non-parametric estimation of HRF has been shown to be able to provide a quantification of the haemodynamic response to epileptic discharges (Tana et al., 2007), hereinafter we will concentrate our attention on this particular approach describing it in details in the following paragraph.
The non-parametric Bayesian HRF estimation approach proposed by (Ciuciu et al., 2003) was first developed in a voxelwise formulation.
The value of the BOLD signal
which in matrix form becomes:
where
The likelihood function of this model is given by:
where:
Bayesian formalism is then used to model temporal prior information about the structure of the HRF. Since the underlying process of BOLD response to epileptic events is object of investigation, only basic and soft constraints, that do not contradict current knowledge, can be used (Ciuciu et al., 2003), (Buxton et al., 1997).
More precisely, it is possible to assume that the amplitude of the HRF starts and ends at zero and that its variations are smooth, i.e. that the underlying process evolves rather slowly on the experimental time scale. The first condition is introduced by setting the first and last sample points of the HRF to zero. Quantification of the second condition is achieved by setting a Gaussian prior
The trade-off between constraints and the information given by data and that is modeled by the hyperparameter
The prior and the likelihood function (3) can be fused by using the Bayes rule into the Gaussian a posteriori distribution whose maximum is the Maximum a Posteriori (MAP) estimate of the HRF
where
Since the BOLD signal is known, to have some spatial structure, this method of HRF estimation can be also extended, in an appropriate region-based HRF model accounting for the spatial dimension of the data (Ciuciu et al., 2004), (Makni et al., 2004).
In the context of the study of fMRI response in epilepsy several attempts have been made to study HRF to epileptic activity and to take into account both the interregional HRF variability and HRF variability between healthy and epileptic patients.
The majority of the studies existing in literature are devoted to the investigation of the BOLD response to interictal epileptic discharges (IED).
One of the first works of this type used a linear estimation approach based on a simple averaging over the time of the BOLD response (Bénar et al., 2002). This method consists mainly in performing the following three steps: detecting activated areas by GLM analysis, obtaining the time courses of the BOLD signal for each region of interest as the spatial average over the voxels of the ROI and, at the end, averaging the extracted BOLD signal over the time using IEDs identified on EEG signal as events. (Bénar et al., 2002) found important variations in amplitude and shape between average HRFs across patients (see Fig. 5 from (Bénar et al. 2002)) that probably could reflect in part different pathophysiological mechanisms. More particularly, findings of (Bénar et al., 2002) showed that average HRF presented a wider positive lobe than the Glover model in three patients and a longer undershoot in two patients and allowed to conclude that the HRF for epileptic spikes can be somewhat different from the standard model and is also different from patient to patient. Although only few patients were analyzed in the work of (Bénar et al., 2002), it opened the door to the necessity to improve the standard GLM analysis with more complex analysis in order to take into account the variability of HRF and the fact that it does not seem to be a standard response to all type of epileptic discharges and, therefore, to all types of pathophysiological mechanisms underlying epileptic activity.
Following the way opened by (Bénar et al., 2002), HRF variability was studied in a wider group of subjects (Bagshaw et al., 2004) and the use of patient–specific haemodynamic response following a
In particularl, in (Bagshaw et al., 2004), a group of 31 patients with focal epilepsy were analysed and variations of the peak time of HRF were taken into account within a GLM framework. Using multiple HRFs (with the following four different peak times: 3, 5, 7, 9, s) composed of a single gamma function, resulted in an increased percentage of data sets with significant fMRI activations, from 45% when using the standard HRF alone, to 62.5%.
The standard HRF was found to be good at detecting positive BOLD responses, but less appropriate for negative BOLD responses, the majority of which were found to be more accurately modelled by an HRF that peaked later than the standard.
(Kang et al., 2003), (Lu et al., 2006), (Lu et al., 2007) proposed to detect fMRI areas of activation using canonical HRF, to subsequently estimate HRF and to use patient-specific (Kang et al., 2003) and voxel-specific HRF (Lu et al., 2006), (Lu et al., 2007) within a GLM framework.
Using patient-specific and voxel-specific HRF, the found active regions are characterized by similar or larger volume extent and higher adjusted coefficient of multiple determination (Razavi et al. 2003) than the regions resulting from GLM analysis with fixed HRF.were found (Kang et al., 2003), (Lu et al., 2006),; and additional activated areas compatible with EEG and anatomical MRI localization of epileptogenic and lesional regions were also found (Kang et al., 2003), (Lu et al., 2006), (Lu et al., 2007).
All the above mentioned work (Bénar et al., 2002), (Kang et al., 2003), (Lu et al., 2006), (Lu et al., 2007) support the hypothesis that the misspecification of the form of the HRF may have an important impact on the probability of detecting significant BOLD responses in epileptic patients.
It is worth mentioning also a recent work of (Lemieux et al., 2008) where
Recently the
In the study of (Tana et al., 2007)
(Tana et al., 2007) observed important variations in the time course of the haemodynamic response both between patients and across the different fMRI areas of a same subject. In Fig. 2 an example is shown of HRF estimation obtained with non-parametric Bayesian method in a subject with a clinical diagnosis of focal epilepsy shown in Fig. 3. It can be noted as the HRFs in region of interest are different from canonical haemodynamic response function defined in (Glover, 1999). In the areas congruent with the scalp EEG alterations the haemodynamic response has an initial pattern similar to the one obtained in classical event-related experiments but it is followed by an increase of fMRI signal activity away from the event. This should be related to deep epileptic activity that is not recorded on the scalp (Bénar et al., 2002). A negative fMRI response was also detected in an area far from the localization of the interictal EEG spikes.
Non-parametric Bayesian estimation appears to confirm that the shape of the HRF of the epileptic spikes may differ from the standard model and it is variable across regions. The fact that the haemodynamic response could be also widespread and found in distant cortical regions from the ones related to the scalp EEG findings could be an artefact or can suggest an underlying biological process that extends beyond the area clinically assumed as focus and, therefore, can suggest the possibility of effects of focal EEG spikes on remote but synaptically connected regions (Lemieux et al, 2008), (Tana et al., 2007). It could be possible to further investigate this issue by means of invasive EEG recordings or by means of methodologies of analysis that do not need the detection of epileptic events on scalp EEG (see section 3).
MAP HRF estimates relatives to the EEG-fMRI areas showed in
EEG -fMRI findings in a patient with a diagnosis of temporal lobe epilepsy Left side of the figure illustrates EEG recording with an example of interictal spike. Right side of the figure illustrates F-maps related to spikes superimposed on axial slices of T2-weigthed image. (the images are shown according the neurological convention (right on right)) (adapted from (
Summarizing all the results described above, it seems possible to conclude that the issue of estimation of the haemodynamic response to epileptic activity and, particularly the potential effect on the detection efficiency remains still an interesting subject of investigation.
This opens the way for new type of analysis of fMRI data that are free not only from whatever type of “a priori” model of HRF but also from the necessity to detect epileptic events on scalp EEG recordings. The following section of this chapter will be devoted to the description of these techniques and to how they are able to significantly contribute to the investigation of haemodynamic correlates of epilepsy.
In contrast to model-based GLM analyses, data-driven techniques applied in fMRI are not constrained by a fixed hypothesis. The most successful one is the Independent Component Analysis (ICA) (McKeown et al., 1998), which separates the data into a large set of independent components showing brain activation patterns with a common time course. Not imposing a-priori models about the shape of the HRF, ICA analysis might find out more information about the BOLD signal.
Let
where
where
All the spatial components, with the possible exception of one, are assumed to be independent and non-Gaussian (Hyvärinen & Oja, 2000): the non-Gaussianity is, hence, the criterion for the blind estimation of the original sources. Several measures are proposed for applying non-Gaussianity in ICA estimation, even if there is no published evidence about different performances in fMRI analysis. The estimation of the significant components (i.e., related to brain activation patterns) is not based on a comparison with a BOLD model or different shapes of HRFs, but on the maximizing of a non-Gaussianity contrast function (Comon, 1994), therefore on the statistical feature of fMRI data.
The critical point is the separation of the significant components related to an investigated process (i.e., spike-related BOLD responses) from no-significant ones (MR artefacts, default state mode).
The first proposal to overcome this limitation was presented for the analysis of interictal fMRI in focal epileptic patients (Rodionov et al., 2007). After IC decomposition, components selection was implemented by an automatic IC classification (De Martino et al., 2007, see Fig. 4) resulting in the following set of labels: (1) the ‘BOLD’ class, which included components that are thought to consistently reflect task-related, transiently task-related and brain state-related (e.g. default state) neuronal activity; (2) residual motion artefacts; (3) EPI-susceptibility artefacts; (4) physiological noise; (5) noise at high spatial frequency; and (6) noise at temporal high frequency (Rodionov et al., 2007).
The classification was based on a training dataset from healthy volunteers: it was designed for revealing stereotypical components of normal brain activity, misclassified components related to motion, blood vessels, noise, and components related to interictal epileptiform discharges (IEDs). The method was tested on 63 patients with focal epilepsy, who underwent EEG-fMRI recording (Salek-Haddadi et al., 2006). A mean of 16 over 20 ICs were classified as significant BOLD-related sources. Concordance between the ICA and GLM-derived results was assessed based on spatial and temporal criteria on 8 case studies. The remaining ICs were associated to BOLD patterns of spontaneous brain activity, introducing the possibility of an epileptic activity that was not evident on the scalp EEG.
Separation and classification of fMRI-ICs: (A) ICA of fMRI data and representation of the ICs in a multi-dimensional space of fingerprints. (B) Classification of IC-fingerprints by an ls-SVM-based algorithm, trained on a small subset of data labelled by an expert. (C) Proportion of data which has been used for training (red, 1/14) and testing (blue, 13/14). (
Using this approach, the potential spike-related components were estimated using the corresponding activation in the GLM analysis and the selection was again depending on the canonical HRF used in the GLM (Moeller et al., 2009). Moreover, the classifier was trained on GLM-activation on a very small number of healthy subjects (De Martino et al., 2007) and the training was implemented on only 7% of the testing dataset, decreasing the statistical significance of the model.
Data analysis scheme and results of the model-free ICA approach. A) 20 ICA decompositions are applied to the fMRI data for determining the number of reproducible components. A lower-dimensional subspace is obtained by PCA and an additional ICA is then performed for identifying which components well-represented the simulated epileptic activity. The deconvolution is then applied to detect time courses that showed significant changes following the spike timings, without constraining the HRF to a canonical shape. B) (left) Percentage of simulations with constant HRF amplitudes where significant components were found. (right) Mean number of falsely activated voxels in concordant components. C) (left) Percentage of simulations with varying HRF amplitudes where significant components were found, either correctly matching the simulated activation region. (right) Mean number of falsely activated voxels in concordant components. (
(LeVan and Gotman, 2009) introduced a more independent ICA method using deconvolution for identifying component time courses significantly related to simulated focal spikes without constraining the shape of the HRF. Artificial time courses were obtained by generating spikes at random tims and convolving them with a canonical HRF computed from the difference of two gamma functions (Glover, 1999), and varying the location of the activation, the number of simulated spikes per run, and the HRF amplitude. The robustness of traditional analysis methods based on the GLM when the HRF is mis-specified was evaluated adding an additional dataset based on a non-canonical HRF. Fig. 5 shows a schematic representation of the data processing and the obtained results related to the percentage of simulations with constant and variable HRF amplitudes, and the related mean number of falsely activated voxels in concordant components.
Components matching the simulated activation regions were found in 84.4% of simulations, while components at discordant locations were found in 12.2% of simulations; large artefacts occurring simultaneously with spikes are the majority of the false activations. This method mainly depends on the simulation parameters because, when the number of spikes was low, concordant components could only be identified when HRF amplitudes were large.
An application of this method was in detecting dynamic ictal BOLD responses in focal seizures (LeVan et al., 2009), for investigating HRFs with clear peaks - but varying latency – and differentiating the ictal focus from propagated activity. Components related to seizures of 15 patients (suffering of focal ictal discharges or generalised spike and slow waves and sharp and slow wave discharges) were identified by fitting an HRF to the component time courses at the time of the ictal EEG events. HRFs with a clear peak were used to derive maps of significant BOLD responses and their associated peak delay (LeVan et al., 2009). The prominence of the HRF peak was defined considering as baseline the data more than 5 s before or after the peak, and computing the ratio of the peak amplitude to the standard deviation of the baseline. The so-obtained ICA maps were significantly correlated with the GLM maps for each patient (Spearman\'s test, p<0.05), for a further confirm. The ictal BOLD responses identified by ICA consisted of the presumed epileptogenic zone, but in more widespread area (about 20.3% in addition of the average value). The introduction of an ICs classification method based on the peak delay showed that BOLD response clusters corresponded to early HRF peaks were concordant with the suspected epileptogenic focus, while late HRF peaks to ictal propagation (Fig. 6).
A last attempt of ICA analysis in epilepsy was presented by Moeller et al. (Moeller et al., 2011), where patients with idiopathic generalized epilepsy (IGE) and generalized spike wave discharges (GSW) were studied for the particularity of having hemodynamic behaviour not easily identified with a standard HRF (Moeller et al., 2008). Moreover, GSW are often related with more robust results in regular areas, thus allowing a good comparison between GLM and ICA methods.
After fMRI preprocessing and ICA decomposition (Moeller et al., 2011), ICA time courses were modelled as blocks with the same timings and durations as the GSWs, and convolved with a Fourier basis set (Josephs et al., 1997), assuming that BOLD response to the GSWs could be contained within an interval from 10 s before to 20 s after the marked events, and accommodating the HRF variability. From each temporal IC, a deconvolved HRF was produced by fitting the Fourier basis set. Components significantly related to the GSW were then identified by an F-test (P < 0.05, corrected for the number of components), with the motion parameters used as confounds as in the following GLM analysis. HRFs fitted to the GSW components were then investigated to determine the sign of the HRF peaks, as in (LeVan & Gotman, 2009).
Spatial topographies, time courses and deconvolved HRFs of seizure-related components extracted by ICA. (
In 12 epileptic patients, comparison of GLM maps and ICA maps showed significant correlation and revealed BOLD responses in the thalamus, caudate nucleus, and default mode areas. Few areas of BOLD signal changes that were only detected by ICA in 8 patients (Fig. 7) and showed variable shapes, different from the canonical HRF in most cases, while one component that was only detected by ICA showed an HRF resembling the canonical HRF.
The particular result is that, in patients with a low rate of discharges per minute, GLM maps detected BOLD signal changes within the thalamus and the caudate nucleus, not present in the ICA ones. Even if these results demonstrated that the BOLD response largely resembles the standard HRF and confirmed the adequacy of GLM analysis, it is worth noting that the number of investigated subjects and their variability in epileptic diseases might compromise the final outcome.
One of the challenges of the neurologists in the study of epileptic disorders is the understanding of the propagation of epileptic abnormal activity inside the brain.
The propagation of epileptic seizure and interictal activity is a key concept in epilepsy which indicates the observation of similar patterns or of signals with different patterns but all suspected of reflecting a common underlying phenomenon, on an increasing number of EEG recording channels. (Lemieux et al., 2011).
Comparison between GLM maps and ICA maps revealed a few areas of BOLD signal changes that were only detected by ICA in 8 patients. HRFs for components in the thalamus, caudate nucleus, and default mode areas. Additionally, components that were only detected by ICA are shown with their corresponding HRF. (
The techniques used to extract information about interacting brain areas involved in the phenomenon of propagation, can be classified according to two broad typologies of approaches: functional connectivity and effective connectivity. Functional connectivity is defined as the “temporal correlation between spatially remote neurophysiological events” (Friston et al., 1993) and effective connectivity is defined as "the causal influence that a system exerts over one other" (Friston et al., 1993) and it reveals the strength and the direction of the flow of information between fMRI areas.
Functional connectivity can only partly account for the wide variety of the interaction patterns that can be expressed by the effective connectivity, (Friston et al. 1993). The full understanding of the network interaction structure need of information about the directionality of flows provided only by effective connectivity.
The issue of effective connectivity can be approached by two main typologies of analysis techniques: model-based methods (e.g. Dynamical Causal Modeling or DCM) and data-driven methods (e.g. Granger Causality Analysis or GCA). Both approaches try to estimate directed casual influences between cerebral structures by extracting useful information from the temporal dynamics in the EEG and fMRI signals. Both DCM and GCA approaches have advantages and disadvantages and, in the case of the fMRI signal, it is a current open issue, strongly debated in literature, to establish which is the most suitable method for the investigation of connectivity (David 2009), (Roebroeck et al., 2009).
In this section we will review and describe both methods and their current applications on the investigation of the propagation of epileptic activity.
The central idea of DCM is to treat the brain as a deterministic non-linear dynamic system that is subject to inputs and produces outputs. DCM relies a dynamic neuronal model of interacting brain regions, whereby neuronal activity in a given brain region causes changes in neuronal activity in other regions according to a graphical model. A further forward model (the so-called balloon model (Friston et al., 2003)) of the relationships between haemodynamic response and neural activity supplements the above mentioned neural model. The use of balloon model allows to include in the analysis the effect of the haemodynamic convolution and to quantify the strength of the interactions within brain networks directly at neural level. The parameters of the model are then inferred using a Bayesian inference scheme, (Stephan et al., 2009).
The point of strength of DCM is that it is able to model the effect of experimental, external, modulatory inputs on network dynamics and but one of its critical features is the effective ability of the proposed neuro-vascular coupling model to capture the real relationships between blood flow changes and oxygen metabolism changes during activation (Marrelec et al. 2006), (Aubert et al., 2002).
Since DCM takes dynamics and modulations into account in the model, its mathematical framework, which is also able to capture nonlinearities and temporal correlations into account, is very complex and, as a consequence, DCM is computationally limited by the number of regions that can be included in the analysis (maximum of eight according to Penny et al. (2004a); three in Mechelli et al. (2003), Penny et al. (2004b), and Ethofer et al. (2006); three and five in Lee et al. (2006)).
In order to overcome this problem, (Penny et al. (2004b) proposed an extension of the DCM framework to perform model comparison within a set of graphs given a priori. How this approach can be generalized to allow for blind model selection from the whole set of structural models (i.e., with no structural model required a priori) remains a central, yet complex, issue (Marrelec et al. 2006).
The most important disadvantage of model-based effective connectivity is that it requires an “a priori” specification of a structural model in the form of a directed graph and that it allows to test hypothesis about connectivity only within a small set of models assumed to be applicable. To overcome this problem GCA was introduced on the basis of the Granger causality concept according to which the activity of a region of interest (ROI)-1 “causes” the activity of a ROI-2 if the knowledge of past values of the ROI-1 time series improves the prediction of the current value of the ROI-2 time-series
GCA does not require any pre-specification or a priori knowledge about the connectivity structure and was successfully applied to fMRI data measuring BOLD response both in bivariate (Roebroeck et al., 2005); (Abler et al. 2006) and multivariate GC models (Deshpande et al., 2008); (Sato et al., 2009); (Deshpande et al. 2009). (Sato et al., 2010), (Havlicek et al., 2010).
Although the choice between GCA and model-based method like DCM is currently debated in literature (David, 2009), (Roebroeck et al., 2009), at the state of art no theoretical reasons exist to exclude the effectiveness of GCA analysis to infer connectivity on BOLD signal (Roebroeck et al., 2009). GCA approach was indeed successfully applied to fMRI data for studying brain connectivity during cognitive (Roebroeck et al., 2005), (Demirci et al., 2009), (Sato et al., 2010), (Ide et al., 2011), (Shippers et al., 2011), (Seger et al., 2011), sensory (Deshpande et al., 2008), (Stilla et al., 2007), (Stilla et al., 2008), (Havlicek et al., 2010), and motor tasks (Abler et al., 2006), (Sato et al, 2006), (Chen et al., 2009) and for investigating resting-state networks, (Liao et al., 2011), (Jiao et al., 2011) and in pathological conditions like epilepsy (Tana et al., submitted).
One of the methodology more widely used to calculate Granger causality are is based on multivariate autoregressive models which are fitted to the signals (EEG or BOLD) of interest.
The multivariate autoregressive (MVAR) recorded from a set of k signals can be expressed as:
where
where
Normalizing the transfer matrix of the model in (8) with respect to the inflows into channel
where
Values of DTF equal to 1 between a pair of channels show maximum direct causal relationships and values of DTF near to 1 indicate that most of the signal in channel
DTF gives information only about the causal relationships underlying the networks of the investigated system and it is not able to discriminate direct transmission for a given pair of regions from indirect propagation of information mediated by other regions. To solve this problem, the estimator dDTF can be introduced, (Korzeniewska et al., 2003). It is given by the following equation:
where
Multiplying DTF by partial coherence, we can combine the information about the directionality of the interactions within the networks with the information provided by partial coherence function and can clearly identify causal direct connections and distinguish them from causal indirect connections.
Another method to identify causal direct connections is the calculation of the Partial Direct Coherence (PDC) introduced by (Baccalà et al., 2001). PDC is a frequency domain representation of the key concept of Granger causality and is defined as:
where
PDC
Significance of both DTF and PDC values can be assessed employing surrogate data (Deshpande et al., 2008), (Korzeniewzka et al., 2003). To this aim, surrogate data can be generated by transforming the data to the frequency domain, randomizing their phases and transforming back to the time domain, (Theiler et al., 1992). The resulting time series have the same power spectrum but random phases with respect to the original signals.
A null distribution can then be obtained by generating a set of sufficient number (for examples 1000 (Deshpande et al., 2008) of surrogate data and calculating the DTF or PDC from these datasets. The DTF or PDC value obtained for each connection from the original time series have then to be compared with the null distribution for a test of significance (e.g. a two-tailed test (Deshpande et al. 2008).
Both interictal and ictal activities can be propagated themselves inside the brain and the progressive recruitment of brain areas far from the origin of the epileptiform activity appears as a spread of pathological EEG pattern.
The causes of the progressive spread of the epileptic activity depends on both the connections existing locally and at a wider range scale and also on the capability of the brain region to be recruited by the abnormal neural activity characteristic of an epileptic discharge (Lemieux et al., 2011).
Sometimes, the pattern of propagation can be studied on the basis of general knowledge of anatomical information and correlated with the temporal evolution of clinical symptoms of the ictal episodes. The majority of the times these general clinical considerations are insufficient to understand the real pattern of propagation which can also vary from event to event (Lemieux et al., 2011) and the question of how an initially spatially localized epileptic focus can spread to involve a larger portion of the cortex remains an open issue.
The identification of the pathways for the spread of partial seizures is, therefore, one of the most relevant and interesting field on which the above described brain connectivity technique can be applied.
The majority of studies existing in literature regarding the connectivity in epilepsy are mainly related to the EEG signal as mean to measure and evaluate neural activity.
Regarding functional connectivity, as reported in (Wendling et al., 2010), the first attempts in the field of epilepsy, were done in the middle of the twentieth century (Barlow and Brazier, 1954), just after the introduction of the Fast Fourier Transform algorithm.
In the 70s the propagation of interictal events was studied by calculating cross-correlation in time domain or equivalently the coherence in the frequency domain using first invasive EEG (Brazier et al., 1972) and later scalp EEG recordings (Lopes da Silva et al., 1977).
Coherence function was then used also to study ictal events, and in particular to study the evolution of the partial seizures and their propagation between the two hemispheres (Gotman et al., 1982). The concept of coherence was extended in 90s in time-varying context in order to study the evolution of the degree of synchronization of interictal and ictal activity (Haykin et al., 1996) and (Franaszcuk et al., 1999).
The methods for studying functional connectivity based on cross-correlation function or on its equivalent form in the frequency domain, that is the coherence function, are based on the assumption that the interaction between EEG signals are linear and, in order to capture also non-linear interactions further techniques were developed. Among these, we can mentioned: mutual information (Mars et al., 1983), non linear regression analysis (Wendling et al, 2001), phase synchronization methods (Rosemblum et al., 2004), generalized synchronization methods (Stam et al., 2003). A recent work of (Wendling et al., 2009) have compared the performance of ten of these methods (which can be grouped into three main families: non linear regression, phase synchronization and generalized synchronization) using simulated data in which the degree of coupling can be controlled. The results obtained by applying the various types of methods to simulated data showed that there is not a “universal” method that performs better than the other ones whatever the considered situation (Wendling et al., 2009), (Wendling et al., 2010).
Regarding effective connectivity, GC has been used to study temporal lobe epileptic seizures in the form of DTF applied to electrocortigram (ECoG) recorded with subdural grids and stereotactic EEG (SEEG) recorded with deep electrodes (Franaszczuk et al. 1998).
(Franaszczuk et al. 1998) extends, in particular, the application of the DTF method to compare patterns of flow of seizures with different sites of origin. Analysis of a seizure originating from mesial temporal structures is compared with a seizure originating from lateral temporal neocortex. The DTF method has the potential to determine patterns of flow of activity, including periods when visual analysis of the intracranial ictal EEG may not allow for definitive source localization.
More recently GC was also applied in the form of PDC to scalp EEG signal in order to study temporal lobe epilepsy (Baccalà et al., 2004).
In particular PDC was applied to mesial temporal epileptic seizures and it has been shown that it is able to localize the epileptogenic focus via the simultaneous analysis of multiple EEG channels thanks to the determination of the direction of information flow among signals and thanks to its representation by means of directed graphs, where focal electrodes are associated with high observed rates of pertinence to strongly connected subgraphs.
It is possible to affirm that both DTF and PDC are able to study effective connectivity in epilepsy, to infer epileptic seizure propagation and to identify the focus of epileptic activity (Cadotte et al., 2009).
Differently from EEG, nowadays there are still few application of fMRI effective connectivity studies in the field of epilepsy.
Effective connectivity studies using DCM have been performed in (David et al., 2008) and (Vaudano et al., 2009).
DCM and Baysian model comparison was used in (Vaudano et al., 2009) to investigate the role of thalamus, prefrontal cortex and precuneus in seizure generation. EEG-fMRI data recorded in a group of seven patients with idiopathic generalized epilepsy (IGE) with frequent generalized SW discharges (GSWD) and significant GSWD-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus.
In order to perform Bayesian model selection three dynamic causal models were constructed: GSWD was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed that, although model C (GSWD as autonomous input to precuneus) is the best in five patients while model A (GSWD as autonomous input to thalamus) prevailed in two cases, at the group level model C dominated.
The findings lead the authors to hypothesize a role for the precuneus as a form of modulator of generalized SW activity, and by extension, of the occurrence of absence seizures, linking spontaneous fluctuations in brain state as reflected by the so-called Default-Mode Network of brain activity to the occurrence of epileptic discharges (Vaudano et al., 2009), (Lemieux et al., 2011).
In a rat model of absence epilepsy (David et al., 2008) performed simultaneous EEG and fMRI measurements, and subsequent intracerebral EEG (iEEG) recordings in regions strongly activated in fMRI (first somatosensory cortex, thalamus and striatum). (David et al., 2008) showed that using DCM, instead of GCA, it is possible to spatially localize the origin of spontaneous spike-and-wave (SW) discharges in the first somatosensory cortex.
More recently, a study of epileptic seizure propagation using GCA was performed in (Tana et al, submitted). In this study, GCA analysis was applied to networks of brain areas showing fMRI activation during epileptic seizures. EEG-fMRI recording was performed on a group of four case studies related to patients with different epileptic pathologies and GCA analysis was applied to networks obtained using different parcellation strategies for the definition of the nodes. In Figure 8, the connectivity pattern of a patient with a diagnosis of occipital lobe epilepsy is shown. The patient shows an area of almost continuous spiking under left occipital lobe revealed by ECoG measurements (not shown in figure) and fMRI activation mainly localized in the left occipital and right parietal lobe. GCA results showed that the source of the connectivity network is the left occipital fusiform gyrus (LOFG) confirming intracranial EEG findings.
The role of LOFG as possible starting point of seizure propagation and, therefore, the ability of GCA to recognize LOFG as epileptogenic focus is also confirmed by the fact that the area identified as GC network source is located within the brain volume removed in successful surgery for epilepsy (Fig. 8b).
a) GC Connectivity graph and fMRI response of a patient with a diagnosis of occipital lobe epilepsy. fMRI findings show both left occipital and right temporal-occipital BOLD activation (radiological convention (left on right)) (The acronyms stand for the following expression: RMTG (right middle temporal gyrus), RpSMG (right supramarginal gyrus, posterior division), LLG (left lingual gyrus), LOFG (left occipital fusiform gyrus), RiLOC (right lateral occipital cortex, inferior division), RAG (right angular gyrus), RICC (right intracalcarine cortex), RSCC (right supracalcarine cortex)); (b) Surgery outcome. White arrow shows the resected area localized in the left occipital lobe. (adapted from (Tana et al., submitted)).
According to GC results, the seizure starting in the left occipital lobe propagates to the contralateral occipital, parietal and temporal regions. The sink of the network (i.e. the area in which the propagation of the seizure terminates) is localized in the contralateral temporo-parietal area.
This chapter summarizes various techniques for integrated analysis of EEG and fMRI signals for the investigation of epilepsy. In particular, we describe how the information coming from the EEG can be used for triggering the analysis of the BOLD signal, in order to establish a direct connection between EEG events and haemodynamic activation, and for a precise localization of the brain areas involved in the specific events. This type of analysis is limited by the current little knowledge about the HRF that is necessary to define a model of expected BOLD signal to construct GLM regressors. In order to improve the understanding of the impulse response function of neurovascular system, several techniques have been developed for the estimation of the HRF temporal and spatial characteristics.
To overcome the limitations of classical GLM approach that are also due to the fact that EEG describes only cortical activity and is not always able to detect deep brain events, other methodologies have been proposed in literature, such ICA, calculated on the BOLD signal only.
After the localization of the activated cortical areas during epileptic seizure, it is of extreme interest to study the temporal interactions inside the network formed by activated brain regions and in order to identify the pattern of seizure propagation. Applying connectivity techniques like GCA and DCM to both EEG and, more recently, BOLD signal it is possible to obtain useful information about the localization of the epileptogenic focus, the propagation of the seizure and sometimes to localize also how the seizure terminates.
Even if some problems are still open and several features are under investigation, all the methodologies described in this chapter are promising tools that will allow a deeper investigation of the mechanisms involved in epileptic activity and can found large application in the clinical field as well as in research.
In Scotland, a radical movement under the umbrella term of community arts that saw socially engaged interventionist artists working in partnership with local people to preserve their tangible and intangible cultural heritage mushroomed in the 1960s. The movement grew in sophistication as well as political impact and persuasion, and subsequently fractured by the end of the 1980s. Adapted and ‘sanitised’ by local authorities, it was brought ‘in-house’ to join community sports activity in learning how to paint or make sculpture.
Community arts as a radical movement has left various legacies that are visible today in a complex landscape of socially engaged arts, including participatory artists working with local people and groups, interventionist arts practice bringing art outside of the gallery spaces and public arts engaging public spaces to make political statements. All of these diverse practices continue to be applied across communities throughout Scotland and beyond.
Helen Crummy [1] and Owen Kelly [2] documented the impact community arts and activism had on arts, cultural and heritage establishments as well as local authorities, disrupting governmental attitudes towards the arts and culture, which hitherto had been regarded as quality only if espousing white, middle class values. The movement towards community driven arts practice got fractured in the 1980s; polarised between artists who regarded the art as a vehicle for political activism and those who believed the quality of the artistic practice to be paramount and would speak for itself without the need for a polemic.
A cultural planning-led movement born in the 1990s in Australia can be traced back to the Scottish community arts when a Scottish diaspora, including Grace and Kieren Grant of Easterhouse Festival Society and Mayfest [3] fled what they regarded at the time as the hostile, instrumentalist political environment of Labour-dominated Glasgow and established their practices in Australia. The cultural planning movement in Australia was documented by Colin Mercer [4] and others, and subsequently travelled back to Scotland via mainland Europe where it was championed by Franco Bianchini and Jude Bloomfield among others [5]. Cultural planning was explored as a method: borrowing from Geddes’
Therefore, with origins in the community arts movement traceable back to the 19th century Scottish geographer and planner Patrick Geddes, cultural planning (as applied in Scotland) advocated bottom up cultural and heritage sensitive community development approaches in city planning [6, 7]. In the late 20th century (in spite of growing traction and lobby voices through the National Cultural Planning forum and the Scottish Centre for Regeneration) these community-centered approaches were soon challenged by local authorities and practitioners [8] who saw the potential in more top down cultural planning approaches from local and national governments. Like community arts before it, the cultural planning movement had fractured by the 2020s. Matthews and O’Brien [9] proposed that we are now in a ‘post post-industrial regeneration’ period. With regeneration as a discredited concept, new thinking is now required for citizen led co-creation and co-production. Once again however, the debate oscillated on political ethics and values, polarising positions along value based fault lines.
The 21st century continues to be regarded as the post-industrial era for river and port cities throughout Europe [10]. At the end of the 20th century, without awareness of what was being lost, derelict shipyards, foundries and textile factories from the Victorian era were demolished. There is scant mourning at the passing of mass industrialisation with all its attendant problems of environmental pollution and community exploitation at the mercy of dominant private sector employers. The heritage, diverse habitats (human and natural), local histories and ways of life continue to be swept away with the detritus, however, creating a mono-culture of non-places in their stead. We argue that in the 2020s, cities and towns throughout Europe are now grappling with the ‘how to’ intervene in futures based on homogeneity: how to make space for distinctiveness and production; how to reimagine places where alternative histories can be heard and local visions not just imagined, but delivered.
Govan in Glasgow, Scotland is one of those post-industrial locations where, throughout the 20th century, shipbuilding defined the character of both the local people and their place. With much of that post-industrial infrastructure demolished, it has been replaced with homogenous housing and retail, which is gradually eroding both ancient Viking heritage remains at the important Water Row river crossing and the 20th century industrial infrastructure. Govan is a unique location. The area has long been recognised for its historical importance. With its medieval heritage, including Water Row the site of an ancient Doomster, or Moot hill, Ting site where the mediaeval kings of Strathclyde were crowned. Outdoor debates and legal courts were conducted there. Armies and goods forded the River Clyde.
Artist interventionism, community arts, and participatory arts practice initiatives have been delivered in Govan over several decades. Artists have supported communities to engage with its unique history, landscape and people (including travelling show people who have made the site their own for over a century). Charrettes, community consultations and artistic projects (some commissioned by the local authority but mostly self-generated) have been enacted. The results of every consultation emphasised the need for more heritage-sensitive development than was proposed in the outline planning. Intensive open days run by the developers and appointed architects, celebrated (or appropriated depending on your point of view) the work of the artists working with local people to create their own alternative visions and ideas. Housing and forced removal of the show people were both deemed unacceptable. In 2019, planning permission was granted for final plans for the Water Row area which are almost identical to the plans that were proposed prior to the consultation. The plans continue to prioritise housing and advocate forced removal of the show people from their homes.
In the heart of Govan, the 20th century industrial heritage site Govan’s A-listed Dry Docks, commonly referred to as Govan Graving Docks, has been a prey to market forces for several years now. Land that was a common space with access rights for grazing of cattle pre 19th century was borrowed for industrial use. Shipyards respected those ancient access rights by laying boardwalks along the banks of the Clyde, which could be lifted and replaced allowing the launch of a ship. Access rights have, however, been conveniently forgotten in the 21st century and this common land is now being appropriated by developers for housing development. Sometimes, as in the case of Govan’s Graving Docks, the owners
Since their closure in 1989, Govan’s Graving Docks have been in private ownership and subject of various top down planning proposals for their redevelopment. The common sense of the economic narrative [11] dictates that the landowner (a housing developer) has the right to make a profit and a proposal for 750 high rise flats on this site was seriously considered. In parallel heritage sensitive, organic planning solutions were proposed by activists and artists together with local residents. These alternative proposals continue to nod to the ideas of 20th century geographer and planner, Patrick Geddes and were developed during a decade of interventionist, socially engaged community arts embedded in cultural planning practices. Local people dared to question why these rich, multilayered, heritage sensitive solutions are still not the default approach in planning.
Geddes worked with whole communities in Edinburgh and Kilmarnock, creating what we would now describe as community arts or participatory arts practice [12]. Through the ‘outlook tower’ device, he encouraged thinking about a place as part of a neighbourhood, as part of a city and a whole region, as a complex ecosystem of heritages, including landscape, history, buildings, stories and its people that must all be respected and included when any new development is envisaged. Geddes referred to the city as being in evolution, as a natural, organic process. Meller [12] admits, however, that Geddes is less clear on how local people can have power and voice in the planning process. Today, Geddes is acknowledged as the father of cultural planning in Europe [13] and there are clues in his organic approach to city planning for the reuse as well as new uses of important post-industrial heritage like Govan’s dry docks that would respect their heritage importance as well as incorporate the local social, economic and biodiverse cultures [14].
The authors of this chapter argue that despite the politics of planning practice, there is a role for the participatory interventionist artists in supporting local communities to create their future visions and challenge the vision resigned to homogenous housing and retail solutions. We argue that interventionist artists who embrace the radical community arts activism of the 1970s, prioritising both the aesthetic and social justice agendas, are best placed to open new dialogues, create shared future visioning and intervene in the default planning process on disputed areas, such as Govan Graving Docks. In spite of focused, artistic interventions around Govan’s Graving Docks spanning several decades, however, there have been obstacles to moving cultural planning from theory to implementation.
Cultural planning methods are now supported by the Scottish Government policies around heritage, sustainability and community ownership [15]. They are also supported by the UK’s Industrial strategy, which emphasises the need for re-industrialisation, as well as an emergent model for the post-industrial city. Cultural planning could possibly offer a solution, but like the community arts movement of the late 20th century, the cultural planning debate in the early 21st century lost its way. We argue that cultural planning impact was diluted by a confusion with arts development, cultural production and planning for culture. Therefore, cultural planning became embroiled in polarised positions about ‘top down’ versus ‘bottom up’ approaches. Although still potent and potentially a panacea, the potential for activation of its ingredients among decision makers has become marginalised.
In Govan artists, activists and local people continue their own reclamation processes, restoring the narrative of the commons over land ownership [16]. The ‘common sense’ narrative in Govan continue to be based on the dominant assumption that shipbuilding is gone forever and what is needed now are ways to preserve its memory. The assumption that this role is the preserve of museums and heritage-plaques is being challenged. Ships are being built all over the world, just not in Govan any more, in spite of having facilities, like its world class dry docks that could, indeed, be restored.
In 2020, a consultation process documenting local attitudes revealed that 90% of respondents wanted employment returned to the docks with an emphasis on heritage and tourism. By early 2021, the developer was working on new proposals for Govan Docks’ regeneration that prioritised heritage, historic ship repair, training and employment which (whilst attractive and mirroring community’s feedback) comes without guarantees of delivery. There is evidence that participatory artistic interventionism has been useful in the transformation of the overall narrative. There is little evidence, however, of what factors must be put in place if we are to move beyond the success of the artists as activist facilitators in creating new, compelling, shared-future visions and to be able to implement those alternative visions on the ground.
The fate of Govan’s Graving Docks remains with the private owners, the City Council (who have power over planning decisions) and housing developers, who are also the owners. Because of activism, participatory interventionism, transformation of the narrative and pressure on the developer from local community, the proposal for 750 high rise flats had been rejected and the developer has come forward with new plans which incorporate heritage, tourism and an employment-focused strategy. Further investigation, however, reveals that what is being proposed are temporary-use pavilions and containers rather than permanent structures. This raises the question over ‘meanwhile use’ that can be swept away in favour of more profitable housing and retail. It is becoming clear to the local community that without actual ownership of the docks, their visions and plans will never be prioritised. In fact, the danger now is that the artists, who worked so hard to profile the importance of the site, have merely raised the land value, playing into the hands of the developers.
Following a year of community consultation, benchmarking with other European Cities, architectural competitions and artist residencies, a new paradigm for heritage is emerging in Govan that are not simply about preservation or even, restoration of the Docks. In dialogue with the local community, shipbuilders, artists, activists, academics, and wider national and international networks, new proposals from community activists emerged which include an interpretation centre, telling the story of shipbuilding in Glasgow, an engineering hub that encourages a new generation of engineers embracing all the skills required for 21st century shipbuilding, a park and walkway that links with the whole of the developing critical mass of attractions. It is a vision for a tourist destination that incorporates industry; including historic ships, the Riverside Museum, distilleries, and the Finnieston Crane, but also some housing to allow footfall and natural surveillance of the rest of the site. All of this sounds remarkably akin to Geddes’
For at least a century, there has been an understanding that artists are key to helping us interpret the world in language and discourse. Claire Bishop and Grant Kester have summarised the polarised, more than decade-old debate around different artistic approaches to transforming the hegemonic narrative through interventionist or socially engaged arts practice. Kester [17] explored the role of the artist as activist, describing the artist as a facilitator in a process of empowerment. Bishop [18, 19] regards the artist as the sole author in an engaged process with participants supporting the act of creation. Bishop cites the work of performance artists like Proletkult Theatre and the Situationists as disrupting forces, taking the artist from the gallery space into the public realm. Bishop’s examples show more genetic similarity to establishment art simply taken outside of the gallery as a disruptive force. Kester on the other hand, points to specific case studies exemplified for instance by work from the Austrian artist collective, Wochenklausur (an embedded discursive process involving key stakeholders in a given community over a whole week of being closeted from the real world). The origins of the work of Wochenklausur, Kester asserts, can be traced back to the activism of the community arts movement of the 1960s and 1970s, He identifies these approaches as having the ability to challenge social and political norms. The work of Kester and Bishop has both promoted and defined the contemporary debate around interventionism versus participatory arts practice, with polarisation implying there is a right or wrong approach. Where both Bishop and Kester agree is that each acknowledges the role of the artist in the process and each approach as having advantages and limitations.
We argue that there is room for the methods proposed by both Kester and Bishop as well as myriad of other socially engaged practices that engage, empower and transform diverse media and perspectives. Our question moves this debate further to ask: What is missing, the presence of which would allow intervention into the dominant narrative, alternative visioning and community-led alternative plans be taken from vision to realisation on the ground?
In Scotland, the tradition of artistic interventionism was highly influenced by George Wylie in the late 20th century. Inspired by European movements like Guy Debord and the Situationists his question mark inside the straw locomotive that hung from the redundant, iconic Finniston Crane and the boat made of paper that sailed into the heart of New York’s World Trade Centre were designed to ask questions about the reasons for the decline of heavy industry on the River Clyde [20]. With his question mark constantly interrogating who has the right to make decisions about the city [21], another key influence on Wylie was Joseph Beuys whose idea of Gesamtkunstwerk was artistic interventionism designed to influence politics, society and planning. A whole generation of artists (inspired by Wylie and these international movements) was encouraged by, for example David Harding who, with Sam Ainsley, founded Sculpture and Environmental Art at Glasgow School of Art, using Bauhaus methods of the peer exploration and learning. The working practices of Wylie, Harding, Ainsley and others contain elements from the polarised positions adopted by Grant Kester and Claire Bishop.
The journey from the 20th century has involved a melding of interventionism with participatory learning and empowerment and it is these influences starting from the radical but aesthetically aware community arts movement of the 1970s and 1980s that have helped shape Scottish artistic participatory interventionism and activism. Like the positioning from within that fractured the community arts movement of the 1980s, perhaps the debate is unnecessarily polarised and the most powerful approaches in participatory artistic interventionism both borrow from myriad practices and invent new ones.
In the case of Govan’s Graving Docks, artists were joined by campaigning activists, local residents, community groups, private and voluntary sector enterprises, representing the existing cultural diversity to commission their own alternative plans for the place. They also engaged ‘glocally’ or ‘inter-locally’ with other post-industrial waterfront struggles across Europe. Mathews [22] argued that across the UK decades of regeneration schemes and partnership initiatives have actively mitigated against the organic growth of these passionate struggles.
What remains unclear is the outcome of the process from acknowledged small victories to real impact on physical planning that does not automatically lead to gentrification. As many artists and writers have discovered, there are limitations to artistic interventionism. The artist can facilitate new vision and aspiration but without ownership, power and economic capital, taking the next steps towards implementation are thwarted. We are mindful that in attempting to challenge the dominant agenda, artists can inadvertently be exploited by these same market forces (Sholette, 2010). Artists still have to pay bills, and a key challenge is how to avoid artists being appropriated to serve other agendas. How does the artist avoid ‘art-wash’ in service of those same market forces? (Pritchard, 2017).
Organic cultural planning often begins with some sort of crisis or intervention [23]; it travels through the process of participation, creative engagement in uncovering and mapping resources, transformation from the inside out, celebrating history and tradition, with iterative community empowerment. Finally, this process supports new legal organisational forms to take ownership, to build their own micro exemplars of alternative future visions that build on what is already there in the landscape, its people and history. The iterative journey often starts with an interventionist approach. As in the case of Govan’s A listed heritage site, Govan Graving Docks, artists discovered there is no route map, however. The journey is messy, unpredictable and unique to the location, the people involved and the scale of the task.
Lorraine Leeson [24] for example discovered through years of engagement in regeneration battle over the London Docklands that community-led planning requires different approaches at different stages of the journey towards community empowerment, depending on levels of confidence and capacity of taking ownership and management of the land and its assets. Through artistic activism, Leeson and local people campaigned on issues of dispossession, relocation and gentrification in the Docklands area. Looking at London Docklands today, the question is how much impact those interventions made beyond the activism and arts practice. Was there real impact on the planning in the end? Leeson acknowledges the limitations of the artists working within a complex landscape of owners, developers, local authority and planners; all with competing agendas which are, whilst diverse, all located within market priorities [24]. Leeson’s decades of work have left however an invaluable legacy; documentary and celebration of what was there, but the impact on the physical planning and what exists there now is difficult to discern.
How do these utopian visions created by the artists, the arts collective or the artists working with the community translate into the lived experience of change? Kester [17, 25, 26] acknowledges that maintaining revolutionary energy in the long term is impossible. But how about the incremental sustained revolution from the grassroots, a creative social enterprise-based movement?
Collectives like Wochenklausur were criticised for confusing art and social practice. Have they been overstepping the mark by moving from intervention to delivery of the solution? Or are Wochenklausur, like artists and activists through Govan Graving Docks Regeneration Trust, delivering quality in both the intervention and in the subsequent practice which supports the creation of a fit for purpose governance structure that can continue to grow and deliver the solution independently? We argue that the expectation of these artists in the process is not only facilitation and creation of the intervention but finding a solution of how to underpin the process, embracing activists, planners and experts through inclusive governance structures involving local networks and key stakeholders, all working together in order to move from intervention to delivery.
Perhaps, as the narrative that overrides discourse co-created by artists and local people (or indeed from any social, heritage, cultural perspective) is that of the ownership and the economic rights of the owner to make profit. Ownership is simply another narrative with another competing set of priorities, but within the limitations of the 21st century global Capitalism, it appears all powerful and regarded as the common sense narrative. Within the Capitalist economic framework, therefore, ownership is perhaps the only solution. The problem remains, however, that even with ownership, these heritage gems, polished by passionate local people, remain individual examples of ‘flowers in the desert’ [27] that are vulnerable to passing trends, changes of personnel and competing political agendas.
Owen Kelly [2] long time ago now pointed out the need to ‘avoid collusion with the organisations providing funding’ by organising in financially independent groupings (p.154). He argued for networks; multi-disciplinary networks of independently financed groupings that include cultural activists. Kelly realised the danger inherent in the notion of sanctioned community control where groups are constantly seeking a mandate or an authorisation because they somehow have sufficient numbers of local residents on board and are therefore allowed to speak for the community. It is this pursuit of the ideal activist grouping with the right to speak for the community that has kept Govan’s community organisations at war for decades with endless debates about who has the right approach, who has the right of influence and ownership over whose voice and whose community; leaving the movement off track and weakened.
Gregory Sholette [28] has analysed art collectives, arguing that these are the kind of structures artists need to have in place to ensure strength in numbers and the ability to avoid appropriation by other agendas. Looking to arts collectives across Europe (particularly Germany) he proposes twenty first century collectivism is a ‘key to understanding available forms of political resistance’.
One of the earliest international networks of artists experimenting with new forms of cultural interventionism under the umbrella of the community-centred socially engaged arts practice and cultural planning was Banlieues d’Europe [29]. In the late 1980s, with Socialism in crisis throughout Europe, Strasbourg based artist and artistic director of La Laiterie, Jean Hurstel was fascinated by the resilience of artists within the turbulent political landscapes of individual European nation states. The vision was born for a network that would support the activities of artists with shared ethics, provide a platform and forum for a debate, share experiences as well as promote learning with successful projects giving strength and support to those who were struggling to survive.
The aim of the Banlieues d’Europe network was to provide that space where socially engaged artists, arts organisations, academics and stakeholders with like minds could come together to debate and develop practice methodologies. Banlieues d’Europe believed that the individual projects on the ground, often taking place in apparently insignificant ghettos of insignificant neighbourhoods, were vital to creating the critical mass required for a rich, culturally diverse and transformed Europe. Banlieues d’Europe did not initiate projects, instead it facilitated the meetings and exchange of projects which prioritised the quality of the aesthetic and democratic social justice within the different European member states. The Banlieues d’Europe network supported the Scottish artists to make those international links.
If international networks are to continue bringing global perspective with learning and sharing of practice, there is also a need for a sustained local support. Evidence from across Europe today and beyond, however, suggests that artists’ collectives are tolerated by the owners of empty buildings just as long as they are useful. They animate and create a buzz by their presence, raise land value, and ruthlessly swept away as soon as the timetable for profitable construction opportunities dictates. Organisational structures must be more robust and sustainable if artists are to avoid becoming the agents of the developers and therefore ultimately letting the communities down that they fought to support.
In Scotland, a local network for social enterprise and social entrepreneurs was created to support social enterprises and their networks. Senscot is perceived as the network of networks, understanding the role of the individual within the group within the collection of groups that form the whole [30]. The network celebrates interdependence between individuals, groups and collections of groups. And it might be this interdependence that can facilitate flourishing futures for the post-industrial milieu.
However, Senscot grapples with the problem of trying to operate as a holistic model within the hegemony of the market economy. Although Senscot has populated the landscape with a support network of holons designed to deliver some aspect of the whole vision, within a market society, it is easy for these seedlings to be taken off track and become parts of the capital growth agenda instead; in other words, become part of the problem. When alternative forms start to mimic Capitalist competition, they become part of the problem. Social enterprises struggling to survive within the market economy are tempted to embrace ideals of growth and expansion and the debate within the social enterprise movement in 2020, asks which model is preferable. In
In 2020, a new body was established in Scotland, a merger of Senscot, and Social Firms Scotland. This new body, SENscot, hopes to work ever more closely with other organisations and networks in the landscape who share ethics, values and aspirations of building the same utopias, including Development Trust Association for Scotland supporting all the community led organisations in their bids to own and develop land and heritage assets through trading. We argue that as with community arts and cultural planning beforehand, the social enterprise movement is now also fractured, divided between those bottom up advocates of organic growth from the grass roots networks and those who advocate organisational growth and personal gain as the access to power.
Over the last six years, there is a growing debate over Industrial City 2.0 with striking similarities to Geddes’
In a seminal text originally written for the Sustainable Development Commission in 2009, Tim Jackson revisited his publication
A new approach to cultural planning, a kind of Cultural Planning 2.0 that is not about arts and cultural development or services, although it does involve artists engaging with communities and their heritage, is neither solely top down nor bottom up but rather, is more inclusive of all parties working in partnership could offer some possibilities as a route map. Just as there may be a place for a refreshed cultural planning solution to delivering the transformation possibilities of the Fourth Industrial Revolution, so there are possibilities in a new approach in artistic interventionism that engages and galvanises communities, cities and governments as a network to deliver on the aspirations of communities and their heritage priorities. In short, to achieve this Geddesian aspiration, we could aspire to Cultural Planning 2.0, which acknowledges cultural planning is neither top down, nor is it bottom up but rather inside out and required the partnership grown from a shared value base that aspires as inclusive as possible.
Reflections from the regeneration process concerning Govan’s Graving Docks indicate that far from post-industrial, we are in fact poised on the cusp of a new epistemic era. There is an emerging new approach to industry, which moves beyond what we know to an industry fit for purpose in allowing delivering the what could be the Fourth Industrial Revolution. Govan’s Graving Docks, as other industrial heritage infrastructure on the River Clyde could be an exemplar in practice of that new potential; an example of practice, based on an organic city development, embracing Geddesian principles of
Artists’ collectives and activists, working together can achieve community engagement and co-created visioning while in parallel lobby voice to intervene in the default direction and propose an alternative. On their own, however, they are vulnerable to being swept away when no longer ‘useful’ risking their work being repurposed to serve the central planning agenda. There is also a requirement for a new business model for delivery which advocates cross-sectoral but prioritising community aspirations, a model that achieves the balance of power, ownership and control.
We conclude that despite new directions, the successful transformation of narrative remains fragile. Artists have the skills to transform the network of conversations, but in parallel, there is a need for partnerships and appropriate governance structures that gives sustainable community power to move beyond the intervention into a delivery of the visions in planning terms. The question of ownership is crucial. Artists are skilled at engaging communities in participatory visioning towards utopian realities. Yet, if the created visions are to be adhered to then iterative creative mapping must underpin not only visioning phases, but every step of the way from inception to delivery. The possible way to ensure this happens is through community ownership of the assets.
A new paradigm is currently being developed for the heritage asset of Govan’s A-listed Graving Docks redevelopment. Govan Docks Regeneration Trust has formed as an independent community development trust with the board of trustees based on networks with the private, public, social enterprise, community and voluntary sectors as well as artists and local residents. There are examples in Scotland from the Easterhouse Festival Society in the 1970s and 1980s to Govanhill Baths Trust in Glasgow where Development Trusts governed by community representatives and led by artists are operating as social enterprises. They have bought their land or buildings and are expanding their vision and operations. These business models, initiated in the 1960s and revisited in the 21st century as community development trusts, are operating within networks of like-minded communities. They have much to offer, giving structure and stability to the messy creativity and community responsiveness.
As discussed in this chapter, cultural planning processes are messy by nature and there is no toolkit or route map that can be rolled out and replicated. Meller [34] some time ago criticised the vagueness in the Geddes’ legacy and it remains unclear how to translate that knowledge and passion into reality within a top down planning framework so that local people and heritage assets, including tangible infrastructure and intangible histories can reliably have power and voice in the planning process. We argue that, rather than imposing a toolkit, there is a need for better articulation of these messy unpredictable processes. And perhaps, the messiness is exactly the crunch point here. There are ingredients, there are underpinning values, but no toolkit because each situation is, of necessity, unpredictable and requires responsiveness to the heritage, the creativity, the people (and their imagination). In other words, the unique DNA and local circumstances of each place are all part of the plan. In fact, they
The Directors of Clyde Docks Preservation Initiative (CDPI).
The Trustees and members of Govan Graving Docks Regeneration Trust (GDRT).
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{id:"15",title:"Mathematics",slug:"mathematics"},numberOfBooks:38,numberOfSeries:0,numberOfAuthorsAndEditors:755,numberOfWosCitations:584,numberOfCrossrefCitations:457,numberOfDimensionsCitations:880,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"163",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10959",title:"The Nonlinear Schrödinger Equation",subtitle:null,isOpenForSubmission:!1,hash:"0ea567b0851316220f6bc2c9c16c3095",slug:"the-nonlinear-schr-dinger-equation",bookSignature:"Nalan Antar and İlkay Bakırtaş",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg",editedByType:"Edited by",editors:[{id:"281410",title:"Dr.",name:"Nalan",middleName:null,surname:"Antar",slug:"nalan-antar",fullName:"Nalan Antar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9965",title:"Computational Optimization Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d2c7d240aed947e7780605dab6dde1c3",slug:"computational-optimization-techniques-and-applications",bookSignature:"Muhammad Sarfraz and Samsul Ariffin Abdul Karim",coverURL:"https://cdn.intechopen.com/books/images_new/9965.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:"advances-in-dynamical-systems-theory-models-algorithms-and-applications",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:4344,totalCrossrefCites:6,totalDimensionsCites:34,abstract:null,book:{id:"122",slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6650,totalCrossrefCites:18,totalDimensionsCites:34,abstract:null,book:{id:"1574",slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"60097",doi:"10.5772/intechopen.75381",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2559,totalCrossrefCites:23,totalDimensionsCites:31,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51131",doi:"10.5772/63785",title:"Survey of Meta-Heuristic Algorithms for Deep Learning Training",slug:"survey-of-meta-heuristic-algorithms-for-deep-learning-training",totalDownloads:3160,totalCrossrefCites:15,totalDimensionsCites:25,abstract:"Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Zhonghuan Tian and Simon Fong",authors:[{id:"1952",title:"Dr.",name:"Simon",middleName:null,surname:"Fong",slug:"simon-fong",fullName:"Simon Fong"},{id:"186166",title:"MSc.",name:"Zhonghuan",middleName:null,surname:"Tien",slug:"zhonghuan-tien",fullName:"Zhonghuan Tien"}]},{id:"51209",doi:"10.5772/62472",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2941,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Firefly algorithm is one of the well-known swarm-based algorithms which gained popularity within a short time and has different applications. It is easy to understand and implement. The existing studies show that it is prone to premature convergence and suggest the relaxation of having constant parameters. To boost the performance of the algorithm, different modifications are done by several researchers. In this chapter, we will review these modifications done on the standard firefly algorithm based on parameter modification, modified search strategy and change the solution space to make the search easy using different probability distributions. The modifications are done for continuous as well as non-continuous problems. Different studies including hybridization of firefly algorithm with other algorithms, extended firefly algorithm for multiobjective as well as multilevel optimization problems, for dynamic problems, constraint handling and convergence study will also be briefly reviewed. A simulation-based comparison will also be provided to analyse the performance of the standard as well as the modified versions of the algorithm.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]}],mostDownloadedChaptersLast30Days:[{id:"74096",title:"Time Frequency Analysis of Wavelet and Fourier Transform",slug:"time-frequency-analysis-of-wavelet-and-fourier-transform",totalDownloads:1283,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Signal processing has long been dominated by the Fourier transform. However, there is an alternate transform that has gained popularity recently and that is the wavelet transform. The wavelet transform has a long history starting in 1910 when Alfred Haar created it as an alternative to the Fourier transform. In 1940 Norman Ricker created the first continuous wavelet and proposed the term wavelet. Work in the field has proceeded in fits and starts across many different disciplines, until the 1990’s when the discrete wavelet transform was developed by Ingrid Daubechies. While the Fourier transform creates a representation of the signal in the frequency domain, the wavelet transform creates a representation of the signal in both the time and frequency domain, thereby allowing efficient access of localized information about the signal.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Karlton Wirsing",authors:[{id:"325178",title:"Dr.",name:"Karlton",middleName:null,surname:"Wirsing",slug:"karlton-wirsing",fullName:"Karlton Wirsing"}]},{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:6866,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Over the last hundred years, many techniques have been developed for the solution of ordinary differential equations and partial differential equations. While quite a major portion of the techniques is only useful for academic purposes, there are some which are important in the solution of real problems arising from science and engineering. In this chapter, only very limited techniques for solving ordinary differential and partial differential equations are discussed, as it is impossible to cover all the available techniques even in a book form. The readers are then suggested to pursue further studies on this issue if necessary. After that, the readers are introduced to two major numerical methods commonly used by the engineers for the solution of real engineering problems.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"56538",title:"Stochastic Resonance and Related Topics",slug:"stochastic-resonance-and-related-topics",totalDownloads:1718,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic systems. In general, it is related with a bistable nonlinear system of Duffing type under additive excitation combining deterministic periodic force and Gaussian white noise. It manifests as a stable quasiperiodic interwell hopping between both stable states with a small random perturbation. Classical definition and basic features of SR are regarded. The most important methods of investigation outlined are: analytical, semi-analytical, and numerical procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic simulation is mentioned and experimental way of results verification is recommended. Some areas in Engineering Dynamics related with SR are presented together with a particular demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperiodic parts of the response is discussed. Some nonconventional definitions are outlined concerning alternative operators and driving processes are highlighted. The chapter shows a large potential of specific basic, applied and industrial research in SR. This strategy enables to formulate new ideas for both development of nonconventional measures for vibration damping and employment of SR in branches, where it represents an operating mode of the system itself. Weaknesses and empty areas where the research effort of SR should be oriented are indicated.",book:{id:"6128",slug:"resonance",title:"Resonance",fullTitle:"Resonance"},signatures:"Jiří Náprstek and Cyril Fischer",authors:[{id:"207472",title:"Dr.",name:"Jiri",middleName:null,surname:"Naprstek",slug:"jiri-naprstek",fullName:"Jiri Naprstek"},{id:"213311",title:"Dr.",name:"Cyril",middleName:null,surname:"Fischer",slug:"cyril-fischer",fullName:"Cyril Fischer"}]},{id:"74032",title:"Wavelets for EEG Analysis",slug:"wavelets-for-eeg-analysis",totalDownloads:1263,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"This chapter introduces the applications of wavelet for Electroencephalogram (EEG) signal analysis. First, the overview of EEG signal is discussed to the recording of raw EEG and widely used frequency bands in EEG studies. The chapter then progresses to discuss the common artefacts that contaminate EEG signal while recording. With a short overview of wavelet analysis techniques, namely; Continues Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Decomposition (WPD), the chapter demonstrates the richness of CWT over conventional time-frequency analysis technique e.g. Short-Time Fourier Transform. Lastly, artefact removal algorithms based on Independent Component Analysis (ICA) and wavelet are discussed and a comparative analysis is demonstrated. The techniques covered in this chapter show that wavelet analysis is well-suited for EEG signals for describing time-localised event. Due to similar nature, wavelet analysis is also suitable for other biomedical signals such as Electrocardiogram and Electromyogram.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Nikesh Bajaj",authors:[{id:"326400",title:"Dr.",name:"Nikesh",middleName:null,surname:"Bajaj",slug:"nikesh-bajaj",fullName:"Nikesh Bajaj"}]},{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:2873,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that define the concept of mathematical probability. This system can be developed to include the set of imaginary numbers by adding a supplementary three original axioms. Therefore, any experiment can be performed in the set \n\nC\n\n of complex probabilities which is the summation of the set \n\nR\n\n of real probabilities and the set \n\nM\n\n of imaginary probabilities. The purpose here is to include additional imaginary dimensions to the experiment taking place in the “real” laboratory in \n\nR\n\n and hence to evaluate all the probabilities. Consequently, the probability in the entire set \n\nC\n=\nR\n+\nM\n\n is permanently equal to one no matter what the stochastic distribution of the input random variable in \n\nR\n\n is; therefore the outcome of the probabilistic experiment in \n\nC\n\n can be determined perfectly. This is due to the fact that the probability in \n\nC\n\n is calculated after subtracting from the degree of our knowledge the chaotic factor of the random experiment. Consequently, the purpose in this chapter is to join my complex probability paradigm to the analytic prognostic of buried petrochemical pipelines in the case of linear damage accumulation. Accordingly, after the calculation of the novel prognostic model parameters, we will be able to evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex probability, the probabilities of the system failure and survival, and the probability of the remaining useful lifetime; after that a pressure time t has been applied to the pipeline, which are all functions of the system degradation subject to random and stochastic influences.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]}],onlineFirstChaptersFilter:{topicId:"163",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:3,group:"subseries"},{caption:"Animal Science",value:19,count:17,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/101387",hash:"",query:{},params:{id:"101387"},fullPath:"/profiles/101387",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()