Comparison between the characteristics of radial artery puncture and blood collection from the arterialized earlobe.
\r\n\tThere will be a chapter on secondary causes of sexual dysfunction disorders related to diabetes, cardiovascular disease, and obesity. A chapter on remedial measures to enhance sexual activity and maintain human relationships will be discussed. As there is a growing number of cancer survivors a chapter on cancer-related sexual dysfunction will be welcomed for including it.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b988fda30a4e2364ee9d47e417bd0ba9",bookSignature:"Dr. Dhastagir Sultan Sheriff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",keywords:"Sex, Sexual Response Cycle, Erection, Premature Ejaculation, Libido, Orgasm, Painful Intercourse, Psychological, Female, Lack of Desire, Erectile Disorders, Pain Disorders",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He has done extensive research in andrology, sex education, and counseling.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff",profilePictureURL:"https://mts.intechopen.com/storage/users/167875/images/system/167875.jpg",biography:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He had editorials written in the British Journal of Sexology, Journal of Royal Society of Medicine, Postgraduate Medicine, and Scientist. He was a former Rotarian, Citizen Ambassador, and was selected for the Ford Foundation Fellowship.",institutionString:"University of Benghazi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Benghazi",institutionURL:null,country:{name:"Libya"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7163",title:"Infertility, Assisted Reproductive Technologies and Hormone Assays",subtitle:null,isOpenForSubmission:!1,hash:"6db6e4ccb7088f17f819121f7eb6424d",slug:"infertility-assisted-reproductive-technologies-and-hormone-assays",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/7163.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72237",title:"A Device for Sampling Earlobe Arterialized Blood in Space and Other Austere Environments",doi:"10.5772/intechopen.93469",slug:"a-device-for-sampling-earlobe-arterialized-blood-in-space-and-other-austere-environments",body:'There is an increased need to accurately monitor and medically evaluate human beings in a variety of clinical and research situations in space, with plans for long-duration manned spaceflight, the proposed return to the moon and potential moon and Mars colonies in the future. In addition, greater flexibility in the selection process of astronauts and the advent of space tourism increases the need for adequate health and medical monitoring and evaluation in space, requiring improvements in currently available space medical monitoring systems.
The accurate measurement of arterial blood gas tensions, as opposed to venous, in medical practice and physiological studies on Earth and in space is of particular importance, as these can better reflect alterations in performance of the cardiopulmonary system and related diseases. However, there is currently no suitable method to access arterial blood in microgravity, and consequently, values for blood gas tensions are usually derived from measurements of respiratory gas partial pressures. Nonetheless, the measurements of oxygen saturation by oximetry are not considered comprehensive or accurate enough for detailed research or clinical practice.
The utility of finding a solution to this problem is not in doubt. Physiological findings could be confirmed with greater accuracy and more detailed studies conducted in the future. Clinical emergencies could also be managed with greater facility, resulting in increased safety for all crew involved in space missions. To this end, the arterialized earlobe blood collection technique for evaluating blood gas tensions has been considered for use in space, as analyses of the blood obtained could provide valuable information regarding the diagnosis of a number of medical conditions. This technique was first developed in 1944 and adopted under certain circumstances as an alternative to arterial puncture and arterial cannulation [1]. Nonetheless, the current earlobe arterialized blood collection technique is untested in microgravity, as is the risk of contamination of the environment with blood droplets. Therefore, a series of researches and tests have taken place to validate the suitability of the arterialized blood as an analogue of arterial blood and its suitability for use in microgravity, the creation of an easy-to-use and safe device for collecting arterialized blood from the earlobe, validating its use in ground-based studies on Earth and in microgravity, and determining the space preparedness of the device for surviving the stresses caused by a space rocket launch.
Arterial gas analyses are essential for the clinical evaluation of astronauts, since they provide important physiologic information and can be an important tool for performing disease diagnoses during a space mission. However, currently available devices and methods, such as puncture and cannulation of an artery, are considered unsuitable for use in this scenario.
Arterial cannulation, the positioning of an intra-arterial catheter, is a technique which allows continuous and direct monitorization of blood pressure and frequent sample withdrawal for blood analyses. Arterial blood by means of puncture is usually collected from the wrist or from the inner part of the elbow or other arteries, through the insertion of a needle in a previously cleaned area. The blood then flows into a heparinized syringe, and the needle is removed as soon as enough blood is collected [2].
Both arterial cannulation and puncture are known to be difficult techniques to perform, requiring specialist training, causing pain to the patient and having the possibility of contamination of the environment with blood droplets. Moreover, although low, there is an increased risk of serious complications, such as haematoma, excessive bleeding and infection. Therefore, it is well accepted that the direct sampling of arterial blood is unsuitable for use in many austere environments, such as in space missions [2].
The earlobe arterialized blood technique makes use of the fact that the capillary blood taken from the arterialized earlobe originates from the arterioles and thus has the composition of arterial blood. The technique has been available as a substitute for arterial puncture for more than 60 years in clinical medicine and physiological research. The success of the technique depends upon careful preparation of the earlobe, which is arterialized by rendering it hyperaemic. This can be executed by heating the earlobe or massaging it with a rubefacient cream, thus ensuring free flow of blood from any incision made. The time of preparation varies from study to study, though conventionally it ranges from 3 to 10 minutes, with the standard being around 4 minutes. Ensuring adequate vasodilatation is of primary importance; therefore, if the earlobe is not hyperaemic after 4 minutes of preparation, massage or heating should continue. Conventionally, the skin of the earlobe is cleaned with alcohol, and a puncture, 2–4 mm deep, is made with a sterile blade. The blood is collected in a heparinized capillary tube or cartridge, which is held in such a way that the blood enters anaerobically by capillary action. This blood can then be analyzed using a standard blood analyzer [1, 3, 4, 5, 6].
Table 1 summarizes the differences between the two techniques of blood collection via arterial puncture and blood collection from an arterialized earlobe.
Characteristic | Radial artery | Arterialized earlobe |
---|---|---|
Level of discomfort | Potentially painful | Virtually pain-free |
Potential complications |
|
|
Ease of use | Requires training: currently only physicians and specialist nurses are able to carry out this procedure | Very easy technique to learn and carry out by non-medically qualified personnel |
Potential usages | Currently used in hospital setting but only by trained personnel Use in research circumstances is limited by the need for a physician to be available to carry out the technique | Potential for many spheres of use: |
Comparison between the characteristics of radial artery puncture and blood collection from the arterialized earlobe.
A series of studies were conducted at King’s College London, as part of the PhD thesis entitled ‘The effect of 3h of 6-degree Head-Down Tilt (HDT) with and without hypoxia and light exercise on lung function’ [7], with the aim of evaluating the feasibility of performing this technique in space missions.
There was first the need to establish whether the lower to upper body redistribution of blood that occurs during microgravity exposure, with the subsequent venous congestion of the face and neck of astronauts, could cause contamination of the arterial blood from venous blood, thereby affecting results. The arterialized capillary blood sample technique had not been used previously during ground-based microgravity simulations, parabolic flights or space missions, and therefore, a preliminary study was designed to evaluate the possible effect of the head congestion on the gas tensions of earlobe arterialized blood samples. In order to avoid the cardiopulmonary changes associated with tilting to the 6° head-down position, the ground-based microgravity simulation used, the increase in venous pressure in the earlobe associated with this position was reproduced by inflating a cuff around the neck, with the volunteer in the supine position.
The venous pressure at the earlobe was calculated as the change in the vertical height of the ear relative to the heart on transition from supine to 6° head-down. Assuming a 30 cm distance between the earlobe and the right atrium, the increase in hydrostatic pressure at the ear was 2.3 mmHg.1 The increase in central venous pressure secondary to the headward shift of the blood during head-down tilt was of the order of 3 [8] to 5 mmHg [9], resulting in a total increase in venous pressure on moving from the horizontal to 6° HDT ranging from 5.3 to 8.3 mmHg. Therefore, a neck cuff pressure of 10 mmHg was adopted for the study, which would produce a slightly greater degree of venous congestion of the ear.
The research evaluated seven healthy volunteers, aged 21–36 years. Each volunteer laid supine on a couch and completed three phases of 10 min each, divided into baseline (neck cuff deflated, control), test (neck cuff inflated) and recovery (neck cuff deflated, recovery). During each phase, the respired gases at the lips were sampled continuously, using O2 and CO2 rapid response gas analysers, from which their outputs were recorded and used to calculate respiratory frequency, end-tidal PO2 (partial pressure of O2) and PCO2 (partial pressure of CO2). Two earlobe arterialized blood samples were collected during the last 2 min of each phase, and the PO2 and PCO2 were determined using the pH/blood gas analyser. During the performance of the earlobe blood collection, no participant showed apprehension or distress, and there were no reports of complication (skin infection or bleeding) after the completion of the experiment. The healing of the incision was well advanced 72 h following the procedures. These findings are in accordance with those of Spiro and Dowdeswell [10], who found the arterialized earlobe technique to have no morbidity and to be virtually pain-free.
The means (±standard deviation, SD) of the respiratory frequency, end-tidal PO2 and PCO2, earlobe arterialized blood PO2 and PCO2 and the end-tidal minus earlobe arterialized blood PO2 and PCO2 differences before, during (test phase) and after inflation of the neck cuff are presented in Table 2.
Baseline mean (±SD) | Test mean (±SD) | Recovery mean (±SD) | |
---|---|---|---|
RF (br/min) | 13.1 ± 2.1 | 13.0 ± 2.2 | 13.0 ± 2.2 |
PETO2 (mmHg) | 103.6 ± 3.3 | 107.2 ± 8.7 | 101.6 ± 5.0 |
PabO2 (mmHg) | 96.2 ± 2.5 | 99.7 ± 7.1 | 93.9 ± 3.7 |
PETCO2 (mmHg) | 38.2 ± 4.0 | 37.8 ± 4.1 | 38.2 ± 4.1 |
PabCO2 (mmHg) | 38.0 ± 4.0 | 38.5 ± 4.0 | 38.8 ± 3.7 |
PET-ab O2 (mmHg) | 7.4 ± 2.8 | 7.7 ± 4.3 | 7.7 ± 3.3 |
PET-ab CO2 (mmHg) | 1.0 ± 0.9 | −0.5 ± 1.4 | −0.6 ± 1.0 |
The effect of inflation of a neck cuff (test) on respiratory frequency (RF, breath/minute), end-tidal PO2 (PETO2) and PCO2 (PETCO2), earlobe arterialized blood PO2 (PabO2) and PCO2 (PabCO2) and end-tidal minus earlobe arterialized blood PO2 (PET-ab O2) and PCO2 (PET-ab CO2) differences.
The findings of this study showed no significant differences in the mean values of respiratory frequency, end-tidal PO2 and PCO2 and earlobe arterialized blood PO2 and PCO2 between the three phases. During the baseline, test and recovery phases, the end-tidal minus earlobe arterialized blood PO2 and PCO2 differences were 7.4 (±2.8) and 1.0 (±0.9), 7.7 (±4.3) and −0.5 (±1.4) and 7.7 (±3.3) and −0.6 (±1.0), respectively. The mean values of the differences found in this study are very similar to those reported in the literature for healthy volunteers breathing air at rest [11, 12].
The findings of this study were very important, as it demonstrated that congestion of the head did not affect the PO2 and PCO2 of the arterialized blood taken from the earlobe and the end-tidal arterialized blood differences. Therefore, it is possible to state that raising the venous pressure in the head by 10 mmHg, used to simulate the venous congestion encountered during microgravity exposure, did not cause any deleterious effect on the relationship between the PO2 and PCO2 of the arterialized blood sampled from the earlobe and the PO2 and PCO2 of the systemic arterial blood [7, 13, 14].
A second experiment was then designed within the scope of the same PhD thesis [7] to further understand the effects of HDT on the earlobe arterialized blood method. Therefore, hypoxia was added to the ground-based microgravity simulation in order to create an extra stressor. The differences between the tensions of oxygen and carbon dioxide in the end-tidal gas and earlobe arterialized blood were examined under two experimental conditions: breathing air (normoxia) and breathing a mixture of 10.7% O2 in N2, which is equivalent to breathing air at an altitude of 16,000 feet2 (hypoxia).
A system was designed for this experiment permitting volunteers to breathe the inspired gas mixture through an oronasal mask. The normoxic gas (air) was supplied to the volunteer from a compressed air cylinder, and the hypoxic gas mixture was produced by mixing appropriate flows of air and nitrogen. The gases were mixed in a 100 L Douglas bag, before being delivered to the participant. The concentration of oxygen in the bag was monitored at 1 min intervals throughout the experiment. The following safety procedures were put in place: a source of 100% O2 was connected to the gas supply, and the concentration of oxygen in the inspired gas was monitored with an oxygen rapid response gas analyser (alarm set to operate at 10.2% O2). Arterial oxygen saturation (alarm set to operate at 65%) by means of pulse oximeter and blood pressure and heart rate were continuously monitored with a Finapres device. The ability of the volunteer to respond to simple commands was assessed every 2 min in order to identify any deleterious effect of hypoxia on mental performance and cognition.
Six healthy volunteers, aged 21–26 years, participated in the experiment and were not informed as to whether they were breathing air or the hypoxic mixture until the study was complete. The experiment began with the tilt table placed horizontally, and the individual was asked to lie in the supine position for 30 min (rest period). They were then placed into the required position (either supine or 6° HDT), wearing an oronasal mask and breathing the gas supply (either 20.9% O2 or 10.7% O2) for 20 min. For the final 10 min, the oronasal mask was replaced with a mouthpiece, a valve box and a nose clip, the earlobe was arterialized using massage and a vasodilating cream, and two earlobe blood samples were collected. The PO2 and PCO2 of the blood samples were immediately determined by means of the pH/blood gas analyser. End-tidal PO2 and PCO2 were continuously analyzed via the gas analysers and recorded during the last 10 minutes.
All volunteers completed the study without any untoward effects. The means of the end-tidal PO2 and PCO2, the earlobe arterialized blood PO2 and PCO2 and the end-tidal minus earlobe arterialized blood PO2 and PCO2 differences for each body position during normoxia and hypoxia are presented in Table 3.
PETO2 mean (±SD) | PabO2 mean (±SD) | PET-abO2 mean (±SD) | PETCO2 mean (±SD) | PabCO2 mean (±SD) | PET-abCO2 mean (±SD) | |
---|---|---|---|---|---|---|
Supine, N | 101.6 ± 8.8 | 92.7 ± 8.9 | 8.9 ± 2.9 | 43.6 ± 2.9 | 42.8 ± 3.2 | 0.77 ± 2.4 |
6° HDT, N | 105.6 ± 4.0 | 95.4 ± 4.5 | 10.3 ± 4.0 | 42.1 ± 2.5 | 41.9 ± 3.7 | 0.13 ± 2.4 |
Supine, H | 40.9 ± 4.5* | 36.5 ± 3.3* | 4.7 ± 1.8* | 37.7 ± 3.3* | 35.7 ± 3.0* | 2.1 ± 3.4* |
6° HDT, H | 40.8 ± 3.8* | 36.9 ± 4.6* | 2.1 ± 3.4* | 35.8 ± 3.8* | 34.3 ± 5.2* | 1.4 ± 3.0* |
Mean end-tidal PO2 and PCO2 (PET), earlobe arterialized blood PO2 and PCO2 (Pab) and end-tidal minus earlobe arterialized blood PO2 and PCO2 differences (PET-ab) during normoxia (N) and hypoxia (H) for 6° HDT and supine positions.
Different from normoxia; p < 0.05. All pressures in mmHg.
End-tidal PO2 and earlobe arterialized blood PO2 decreased, as expected, from approximately 103 and 94 mmHg during normoxia to 40 and 36 mmHg during hypoxia, respectively, for both positions together (p < 0.05). The PET-abO2, consequently, also decreased from a combined mean of 9.6 mmHg during normoxia to a mean of 3.4 mmHg during hypoxia (p < 0.05). The mean end-tidal and earlobe arterialized capillary PCO2 decreased (p < 0.05) during hypoxia in comparison with normoxia in both positions, due to hyperventilation secondary to the low arterial PO2. There were no significant differences between the values of end-tidal, arterialized blood and end-tidal minus earlobe arterialized blood differences for PO2 and PCO2 when the two positions were compared during either normoxia or hypoxia.
These findings led to the conclusion that the 6° HDT position did not alter the end-tidal minus earlobe arterialized blood PO2 and PCO2 differences from those obtained in the supine position during either normoxia or hypoxia, which reinforces the belief that this technique is suitable for use in either ground-based microgravity studies or in space missions.
The previously presented two studies were pioneering, as they were the first to be conducted during HDT using the earlobe arterialized blood collection technique. It was demonstrated that this technique is feasible for application in space missions or for physiological studies during microgravity simulation on Earth; however, the technique has the possibility of causing contamination of the environment to take place. This could be of major concern, especially in a spacecraft or space station, as blood droplets in microgravity would float with the potential to contaminate fellow astronauts or equipment. Taking this into consideration, a self-contained device was developed that would permit a standardized sampling of earlobe arterialized blood to be safely collected in a microgravity environment by non-medical personnel and without discomfort to the volunteer. The device was developed by the Microgravity Centre in collaboration with IDEIA Institute, both from the Pontifical Catholic University of Rio Grande do Sul, Brazil.
The vision for the design of the earlobe arterialized blood collector was to develop a device with the following properties:
Able to produce a suitable incision in the earlobe, such that sufficient flow of blood ensues to allow rapid and easy blood collection.
The incision should be relatively pain-free and as accurate in depth and position as possible (in as far as these two variables should be predictable and easily adjustable).
Capillary tubes or cartridges should provide anaerobic blood collection, through being positioned easily, quickly and precisely over the incision made and reducing the potential for contamination of the environment or any other part of the device.
The device itself should be easy to use in terrestrial, aviation and extraterrestrial environments, with minimal training (user-friendly).
The device must be easy to apply and remove from the earlobe, allowing quick application of gauze or a similar material to the incision to promote rapid hemostasis.
The device must be small, lightweight, disposable and low-cost.
The first prototype was constructed in 1999, being 583 g in weight, 102 mm in length and 40 mm in diameter. This first prototype was mainly used to test the concept, and some earlobe arterialized blood collections were performed to evaluate the ability of the EABC to perform the cut and collect blood anaerobically, providing expected arterial gases results from a healthy volunteer (Figure 1).
First earlobe arterialized blood result using the first version EABC.
The proof-of-concept success of this first EABC design led to its continued development, with a series of seven devices evolving over a 10-year period, leading to changes and improvements in shape, size, weight and used procedures (Table 4).
Version | Dimensions L × Ø (mm) | Weight (g) | Blade model | Blood recipient |
---|---|---|---|---|
1 | 102 × 94 | 583 | No 11 | Capillary tube |
2 | 138 × 40 | 228 | No 11 | Capillary tube |
3 | 107 × 27 | 85 | Adapted No 11 | Capillary tube |
4 | 104 × 26 | 42 | Adapted No 15° | Capillary tube |
5 | 90 × 23 | 18 | Ophthalmic blade | Without cartridge |
6 | 57 × 26 (55 including cartridge) | 29.5 | Ophthalmic blade | I-STAT cartridge |
7 | 73 × 26 (55 including cartridge) | 28.2 | Ophthalmic blade | I-STAT cartridge |
Main characteristics of the seven versions of the EABC.
Figure 2 illustrates the first four generations in the developmental process of the EABC and the final EABC device.
Evolution of the EABC—First four generations on the left and the seventh EABC device on the right.
The technique of blood collection is demonstrated in the sequence of six pictures in Figure 3, which shows the earlobe arterialization procedure with massage and a vasodilating cream, cleaning of the earlobe skin, placement of the EABC with a cartridge, blood collection and analysis in an i-STAT blood analyser device (Abbott Point of Care Inc., Brazil).
Sequence of six pictures showing the earlobe arterialized blood collection and subsequent analysis, placing the EG7 cartridge in the i-STAT device.
An initial EABC validation research was conducted involving six healthy volunteer students from King’s College London, using the second EABC prototype (Figure 4) [15, 16].
Characteristics of the second EABC version.
An 8° HDT was used as a microgravity simulator in combination with hypoxia, equivalent to breathing air at 12,000 ft.3 Blood samples were collected from the radial artery of volunteers and simultaneously from their arterialized earlobe, after being in the HDT position and breathing a 12.8% O2 in N2 mix for 15 min (Figures 5 and 6).
Volunteer in HDT whilst breathing the hypoxic mixture.
Example of data being recorded during the beginning of hypoxic exposure (12.8% O2 in N2, equivalent to breathing air at 12,000 ft3).
The arterialization procedure involved first rendering the earlobe hyperaemic by the application of a rubefacient cream, massaged into the earlobe for a period of 5 minutes. The skin was then cleaned using an alcohol swab and dried with sterile gauze and the second version of the EABC attached to the earlobe. An incision was made in the earlobe and samples of blood collected in the two capillary tubes of the second version of the EABC, simultaneously with the drawing of a 2 mL sample of blood from the radial artery into a syringe lubricated with heparin solution (5000 IU/mL4).
The PO2, PCO2 and pH of the blood samples were determined immediately using a blood gas analyser (Ciba Corning 238 pH/blood gas analyser, Ciba Corning Diagnostics Ltd., Halstead, Essex). The mean differences (±SD) in PO2 between earlobe arterialized and radial artery blood samples were 0.25 ± 1.25 mmHg for PO2 and 1.0 ± 0.75 mmHg for CO2; neither difference was significant. There was no difference between the pH values obtained by the two techniques. Table 5 summarizes the results of the blood analyses.
Radial artery Mean ± SD (range) | Arterialized earlobe Mean ± SD (range) | |
---|---|---|
pH | 7.43 ± 0.02 (7.4–7.46) | 7.43 ± 0.02 (7.4–7.46) |
PO2 (mmHg) | 42.1 ± 3.66 (38–47) | 42.9 ± 3.88 (37–50) |
PCO2 (mmHg) | 34.1 ± 1.88 (31–37) | 33.12 ± 2.38 (29–37) |
SaO2 (%) | 79 ± 3.85 (75–84.5) | 79.9 ± 3.29 (74–85.6) |
Blood gas data for simultaneous radial artery and earlobe arterialized blood samples collected using the EABC.
All EABC clinical studies were funded by the European Space Agency via the Medical Projects and Technology Unit from the Crew Medical Support Office, European Astronaut Centre, Cologne, Germany.
The physiological studies performed during microgravity simulation suggested that the arterialized blood sampled from the earlobe using the EABC may provide sufficiently accurate measurements of the PO2, PCO2 and pH of the arterial blood for clinical or research use in extreme environments, such as space. However, another important step would be to also evaluate the use of the EABC in a clinical setting on Earth, as technology transfer from space to terrestrial application was one of the aims for the use of this pioneering technology.
With this in mind, a first clinical study was conducted involving 12 patients from a hemodialysis clinic, meaning these individuals already had a medically determined need for measurement of arterial blood parameters, including arterial blood gas tensions and acid–base variables, and access to arterial blood was easily provided by an already existing fistula. The main goal was to compare arterial blood variables taken from the arterial side of the arterial–venous fistula with those obtained from the earlobe arterialized blood collected using the seventh version of the EABC. Blood collection was achieved simultaneously from the fistula and the arterialized earlobe in an i-STAT EC8+ cartridge, and the two samples were analyzed using a portable i-STAT blood analyser device (Abbott Point-of-care Inc., Brazil) [17].
In addition to blood parameters, earlobe incision length and subject pain perception were also evaluated. Incision length (mm) was measured with a caliper immediately after blood collection, and the patient pain perception was assessed, using a scale from 0 (no pain) to 10 (maximum perceived pain). Figure 7 shows a schematic view of the earlobe cut and its measurement during the experiment.
Schematic view of the difference between cut length and blade movement profile (left) and cut measurement being performed with a caliper.
The mean of the differences obtained from the earlobe arterialized and arterial samples ranged from 0.006 (for pH) to 2.8 mg/dL (for glucose). The R2 was equal or above 0.93 in 10 of the 13 blood variables measured, and the lowest R2 was for PCO2 (0.68). Of the 13 blood measurements, 9 presented no significant difference, whilst the 4 that were significantly different (BUN, Cl−, K+, anion gap) had their values within normality, presented no clinical implication and did not affect treatment or diagnosis. The mean (±SD) of the earlobe cut length was 4.4 (±1.3) mm, and the patient perceived pain was classified as minor with a mean of 2.7 points out of 10 points.
These findings were very motivating, as they indicated for the first time that the EABC works in a clinical setting and therefore could be considered a method for safe and easy access to arterialized blood sampling for medical diagnoses, not only in space missions but also on Earth. It led to two further studies, which assessed the use of the EABC in more gravely ill hospitalized patients.
Two studies were conducted involving critically ill adult patients in intensive care units, aiming to assess the diagnostic and operational capability of the EABC.
A pilot study was first conducted, evaluating the use of the EABC on a cohort of mechanically ventilated adult critically ill patients admitted to an intensive care unit [18]. A comparison was made between the collected arterial blood and earlobe arterialized blood parameters, and the EABC was evaluated for its ability to diagnose acute respiratory distress syndrome (ARDS) in a total of 55 patients.
The results showed a high precision of earlobe arterialized blood samples. The measures of PO2 demonstrated insufficient agreement levels; however, better agreement was seen for PCO2 and pH measurements. The findings of this experiment showed a sensitivity of 100% and specificity of 92.3% for diagnosing ARDS using earlobe arterialized blood gasometric measures.
Sampling with the EABC proved to be unsuccessful in 43.6% of cases, due to insufficient blood flow, although this is not a surprising result given the circumstances of the patients and some important factors must be taken into account. The haemodynamic conditions of critically ill individuals and the use of medications that can cause vasoconstriction can negatively impact on the production of adequate peripheral blood flow. Therefore, the earlobe arterialized blood technique, with or without the use of the EABC, would not seem to be the best alternative for the management of patients in an intensive care unit, though it may prove useful in several clinical conditions and other critical care scenarios, such as emergency rooms, advanced medical transportation and pre-hospital care.
A second study was conceived to perform an operational evaluation of the EABC in critically ill patients [19], looking at aspects such as the number of cuts and cartridges required, ratio of sampling failure and success, bleeding complications and storage requirements. Fifty-five ventilated patients hospitalized in an intensive care unit participated in the study. The findings revealed that researchers took 26 min to obtain blood analysis, broken down into 15 min of patient preparation and 11 min for earlobe arterialized blood sampling and analysis. An average of 1.3 cartridges was required to achieve a successful cut of the earlobe. The results also demonstrated that researchers faced difficulties in performing blood collection in 59% of cases, but only 10% of these problems were reported to be linked to the EABC itself, such as superficial cut, blood leak, collector misalignment and vision obstruction. After the cut was performed, homoeostasis appeared to occur quickly, and no major complications were reported. The study results suggest that the EABC is quick and safe to use and user-friendly.
It is critically important that any device to potentially be launched into space must be able to withstand the launch process and spaceflight, remaining undamaged. To be considered for use on the International Space Station (ISS) as part of a space mission, the EABC must demonstrate that it can meet the specifications of spaceflight conditions through being submitted to a series of electromechanical tests. The purpose of testing is to expose the EABC to the same circumstances as those encountered during launch onboard a Soyuz rocket and the microgravity environment on the ISS.
The required tests are shock and vibration tests, measurements and mass proprieties, low and high pressure and temperature tests, humidity test and off-gassing evaluation [20]. To confirm its suitability for space use, the following tests were applied:
Shock and vibration tests were conducted to check the functionality of the EABC after being launched to the ISS onboard the Soyuz. Two EABCs were placed inside a padded container and attached to a shaker and then submitted to different shock and vibration protocols.
Measurements and mass proprieties must be known to determine precisely the mass and centre of gravity of the EABC.
Low- and high-pressure and low- and high-temperature tests were performed to verify the physical and chemical stability of the EABC during variations of such conditions.
Humidity test was applied to check the EABC functionality after the changes in relative humidity.
Off-gassing levels were determined as different materials can contaminate the spacecraft ambient air and affect air filters, operation of other equipment and even astronaut health.
These tests were conducted at the National Institute for Space Research (INPE), in São José dos Campos, São Paulo, Brazil, with a successful evaluation of the variables tested. The final conclusion of the INPE experts was that the EABC was ready to fly in a space mission, as it is space-proof.
Having validated the EABC through studies performed in simulated microgravity, it was important to further validate the earlobe arterialized blood collection technique and device in an actual microgravity scenario. A study was conceived using the fifth EABC prototype (Figure 8, this was the prototype available when the proposal was submitted to ESA) to determine if it could effectively be used in the microgravity environment achieved during the free-fall phase of a parabolic flight (42nd ESA Parabolic Flight Campaign in 2006) [21], without contaminating the aircraft environment with blood products.
Fifth version of the EABC.
A total of eight healthy participants took part in the ESA parabolic flight campaign, acting as both volunteers and researchers. The blood collections took place inside a hood, especially designed by the Microgravity Centre/PUCRS, Brazil, in order to prevent any possible escape of blood to the aircraft environment. The hood had two openings on three sides for the insertion of two gloved hands each side and a larger opening in the front plastic wall for the volunteer to place their face and be able to breathe, see and talk well. After blood collection, the capillary tube and blood were placed in a hard, human tissue disposal container placed inside the hood at the back (Figure 9).
Hood system designed to avoid any possible blood contamination of the A300 cabin during the experiment.
An EABC device was assigned to each of the volunteers, and one or two samples were taken from their earlobes during the 20 s period of microgravity provided by the parabolas. This provided a final study sample of 25 successful earlobe arterialized blood collections in the capillary tubes with a volume of 75 mL (Figure 10). Each collection of blood was timed.
Arterialized blood being collected during parabolic flight.
The mean (±SD) time for the collection of the arterialized blood from the earlobe during the microgravity phase of the parabolas was 18.9 ± 7.23 s, which was very similar to the time required for the same group of researchers to collect on the ground (mean of 15 s). Researchers reported no difficulties in their ability to handle the EABC under microgravity conditions. It was also observed that no blood products emanated from the EABC, suggesting that the device seals were secure against blood leakage.
The data from this parabolic flight experiment strongly suggests that the arterialized blood from the earlobe can be as effectively sampled using the EABC in microgravity, in much the same way as the blood collections successfully occurred on the ground. Although this first study demonstrated the ability of the EABC to adequately acquire blood in microgravity, the next step required will be to assess the physiological blood variables in the weightlessness phase of a parabolic flight or during the sustained microgravity offered during space missions to ascertain whether this environment will affect such results [22].
The earlobe arterialized blood collection was considered for use in space and extreme environments by the author, due to the advantages of the technique, and researches were conducted to evaluate this possibility, with results suggesting it could be applied but at the same time highlighting the chance of blood contamination of the environment. Consequently, a device was developed to prevent this possibility, the earlobe arterialized blood collector, which subsequently underwent a series of tests in simulated microgravity on healthy volunteers and then in clinical practice to also evaluate its potential terrestrial use. Further evaluation was conducted in the microgravity provided by an ESA parabolic flight campaign, and the ‘space readiness’ of the EABC was assessed through a series of electromechanical tests. In summary, research results suggest the EABC device to be space-proof, easy-to-use and low-cost, enabling the collection of arterialized blood as an alternative possibility to arterial puncture/cannulation in the austere environment of space.
Communication is ubiquitous in our world and spans the range of human experience from social, to physical, to biological. In all these spheres, systems have been developed, or have evolved, to facilitate the transfer of information. All communication requires the delivery of a shared system of codes and signals between a source and a recipient. The information must be packaged, relayed and received for effective communication to occur.
\nWe package our spoken languages by our choice of words and phrases (diction) from among our vast repertoire, as well as by how we arrange those words (syntax). But other types of information can also be packaged in different ways, like our choice of facial expressions, gestures and body postures. The information is then relayed either verbally or in non-verbal ways, to be received by a recipient who understands and can respond to the information received. If any of these stages is not properly executed, effective communication may not occur.
\nThis chapter will describe an evolutionarily conserved biological method of communication that also packages, transports, and delivers intelligible information, but between a donor and recipient cell. Recipient cells must also be capable of responding to the information received for effective communication to occur. At the heart of this communication system are microscopic lipid-bilayer-encapsulated structures called extracellular vesicles (ECVs) that are released from, and taken up by, cells from all three domains of life.
\nAt its most basic level, communication can be thought of as a process of sending and receiving, involving source, conduit and destination [1]. Many different models of communication and communication systems have been proposed. In healthcare, communication may involve various people, their messages, communication channels, as well as regulatory protocols and policies, all of which facilitates several types of communication services using different communication devices [2]. Others describe the concepts of flow and interactivity. Information flows interactively as it is created, released, transferred, received and processed repeatedly, as applicable for example to computer systems [1]. Biological communication involves the reciprocally adaptive relationship between a signal and response; a signaler and a receiver who have each evolved to interact with each other [3].
\nImplicit in these descriptions is the transfer of meaningful information. To be effective, communication requires that the received message is processed and elicits an appropriate response on the part of the recipient [3]. Such activities are easily identified among higher animals, including humans. However, even among the latter, it is understood that much of this communication is non-verbal [4, 5].
\nBiological communication obviously falls into this latter category. There is a vast amount of interaction that occurs at the cellular and sub-cellular levels. This chapter will discuss one such communication system; extracellular vesicles. But before these are explored, it is important to come to some understanding of what is being communicated. What do ECVs transport?
\nOur genes are comprised of only four different nucleotides, namely guanine, cytosine, adenine, and thymine (Figure 1). As reported by Watson and Crick [6], these are arranged sequentially along two antiparallel strands. Traditionally they have been represented by the letters G, C, A, and T, respectively, giving the impression they are part of some kind of alphabet. Each of the four interacts with a corresponding nucleotide in the adjacent strand, G with C and A with T, forming what is referred to as the double helix that characterizes a deoxyribonucleic acid (DNA) molecule [6].
\nThe molecular codes.
The base adenine was first isolated from pancreatic tissue in 1885 by Albrecht Kossel. This was followed by his isolation of the other three bases over the next few years [7]. The base pairings were deduced from experiments beginning in the 1940s, involving the separation of individual bases by paper chromatography and their subsequent identification and quantification using ultraviolet spectroscopy [8]. The results demonstrated that the A:T and G:C molar ratios were fairly constant and close to unity [9, 10]. Together, these early experiments laid the foundation for our understanding of genetic material as a coded system; a biological alphabet.
\nAt first glance, these four molecules that comprise the genetic code may not appear particularly impressive. English for example has 26 letters in its alphabet, Spanish has 27 and Greek has 24. However, when one considers the average size of a gene in both prokaryotes and eukaryotes [11], then the potential semantic diversity of the code becomes evident.
\nTo complicate matters further, there are other ‘codes’ that must be deciphered by cells. The nucleotides present in a portion of coding DNA, are converted by a process of transcription into messenger ribonucleic acid (mRNA). These molecules also comprise just four different nucleotides, namely guanine, cytosine, adenine, and uracil (Figure 1). Here, thymine is replaced by uracil (U) [12], with the maintenance of an impressive semantic range. Both DNA and RNA molecules are therefore composed of nucleotides and are referred to as nucleic acids.
\nCells have evolved one additional group of codified molecules. The mRNA molecules are further translated into a string of amino acids based on the arrangement of triplet nucleotide sequences [13] in the mRNA molecule, referred to as the RNA codon. Cells therefore possess at least three distinct molecular codes, each with its own ‘alphabet’, that allows the transformation and transfer of information from DNA to RNA to protein (Figure 1).
\nWhat exactly do these molecular codes represent? Do cells use a molecular language? An often-used test is Zipf’s Law, which when applied to languages, states that a word’s rank in terms of frequency is inversely proportional to its frequency. Therefore, the product of a word’s rank and frequency equals a constant, as shown in Eq. (1) below [14].
In addition, if the rank and frequency of all words in a language were determined and plotted on a logarithmic scale, the rank-frequency distribution would approximate a linear plot that obeys a power law (Figure 2), known as a Zipfian distribution [14].
\nZipfian rank-frequency distribution.
But authors disagree on whether the molecular codes obey Zipf’s Law, with some reporting favorable evidence [15, 16], while others refute such claims [17, 18]. In this regard, there appears to be important differences between coding and non-coding regions of the genome. It is the coding regions that appear to lack higher structure and therefore fail Zipf’s Law [16]. The codes simply stand on their own. In contrast, non-coding or ‘junk’ DNA does appear to possess some linguistic features, including compliance with Zipf’s Law and demonstrating redundancy, features not expected in random texts or sequences [16, 19]. Still others argue that DNA does not demonstrate linguistic properties [20].
\nHowever, Zipf’s Law applies to a diverse range of phenomena. For example, the rank-size plot for cities greater than 10 kilometers throughout the world, is remarkably Zipfian [21]. A similar distribution has been reported for global income distribution [22]. In fact, many phenomena obey the power law including number of citations, telephone calls received, relative income, earthquake magnitude, and the number of species in a genus, implying that a Zipfian distribution is not a definitive criterion of languages [17, 23, 24].
\nIt is also worth noting that we still do not fully understand molecular codes. For example, of the approximately 3 billion base pairs that comprise the human genome, it is estimated that only 3% is coding DNA, that is nucleotides that code for proteins [25]. The remaining 97% is described as non-coding DNA and was often referred to as ‘junk‘ [16, 26]. This is an unfortunate term as increasing evidence has accumulated that demonstrate that this ‘junk’ DNA may actually have important functions [27] implying it carries some sort of message [16]. Unlike the non-repetitive coding regions that transmit the conserved blueprints for protein architecture, the repetitive syntax of the non-coding regions governs organization, and coordination; a dualism reflected in natural languages [26].
\nIn addition, parallels can be made between the genetic code and other codes including human speech. Ji outlined eight linguistic analogues between human language and ‘cell language’, including alphabet, lexicon, sentences, grammar, phonetics, semantics, first articulation and second articulation [25]. To this, Witzany adds pragmatics, recognizing context-dependent meaning found in both natural languages and codes [26]. Others suggest that nucleotide bases that represent the fundamental structure of DNA are grouped into triple codons that parallels the fundamental units of sound (phonetic features), which are grouped into phones [28].
\nWhen the molecular codes are finally fully deciphered, it is plausible that we will marvel at the extent of their vocabulary (e.g. non-coding DNA sequences), syntax, grammar (e.g. regulatory units), semantics and pragmatics (e.g. epigenetics). Perhaps only then will the elegance and sophistication of the molecular codes be fully appreciated.
\nHowever, despite the analogies, this chapter does not argue for equivalence. Molecular codes are obviously not natural languages, notwithstanding the challenge of defining the latter [29].
\nAcknowledging the difficulty, Wardhaugh suggests the possibility of different types of language, a situation that makes them hard to be subsumed under a single definition [29]. A pragmatic approach offered by Bell entailed using various criteria to distinguish between these different kinds of languages. These include standardization (process of codification), vitality (existence of community of speakers), historicity (provides a sense of identity), autonomy (distinct from other languages), reduction (existence of subordinate varieties), mixture (lack of purity of the variety), and de facto norms (of proper usage) [29, 30].
\nDirect comparison is obviously futile as it is unreasonable to expect molecular codes to exhibit the linguistic features of natural languages. Yet nucleic acid codes and codons, and amino acid sequences could be described based on some of Bell’s criteria. They entail obvious codification and autonomy. As described above, there are also in-built de facto norms of use. Molecular codes could therefore be considered to represent an ancient mode of communication, a group of biological languages, conveying units of information that are sent and received by cells across the kingdoms of life [31, 32].
\nFurther, our written and spoken codes, remarkably unique among the kingdoms of life, probably represent a relatively recent adaptation to the bio-social conditions that presented a fitness-advantage to reciprocal altruism in humans [33]. It seems intriguing that natural languages, whose development across species was restricted by evolutionary costs [33], still echo some of the blueprints embedded in the molecular codes. The question then is not only whether molecular codes are languages, but also what traces of these ancient codes, prototypes of communication, have bridged the apparent bio-social divide.
\nThe codes and codons transmitted as nucleic acids, and amino acid sequences, must be understood not only by the source or donor cell, but also by other cells with which it communicates. The relationship between these molecular codes is popularly represented by what is known as the central dogma of molecular biology (Figure 3) described by Watson [34] (cf. the original concept published by Francis Crick [35], in 1958).
\nThe central dogma of molecular biology, as described by Watson [
Functional sequences embedded in the DNA code are first transcribed into messenger RNA molecules (mRNA). The resulting nucleic acid sequences represent a complimentary but limited replica of the DNA molecules from which it originated; like a local dialect or subordinate variety [29]. The cell’s machinery recognizes these mRNA molecules, which direct various cellular functions. For example, the mRNA code is reinterpreted as triple codons, another dialect, which directs the cell to add the corresponding amino acid to a growing peptide chain that will ultimately form a mature protein molecule. The latter is represented by yet another code, the amino acid sequence; a different molecular language.
\nSubsequent discoveries have modified and expanded Watson’s portrayal of the central dogma. For example, the unidirectionality of information flow would be challenged [36, 37]. In addition, epigenetic markings are now known to determine context-relevant expression [26, 38]. Further, other types of RNA can direct cellular processes. These include micro-RNA (mi-RNA) molecules, which are involved in the regulation of gene expression [39, 40]. These regulators often determine which, among the vast number of genes, is transcribed. In other words, in a given cell, the local epigenetic and mi-RNA dialects could determine the semantic range of the genetic code.
\nIn addition, there are other types of information that are relayed between cells. These take the form of lipids, carbohydrates and a diverse array of signaling molecules, each with its own set of molecular structures [41].
\nCells must therefore understand various molecular codes in order to function effectively. Throughout the vast diversity of life forms, one mechanism has emerged as a highly conserved communication system, capable of protecting and relaying the multiple codes and other signals utilized by cells. This system is deployed by what are known as extracellular vesicles [41].
\nExtracellular vesicles (ECVs) are produced by cells from all three domains of life: archaea, bacteria, and eukaryotes [42, 43]. Eukaryotic ECVs are classified in many ways, including their mode of biogenesis and size. Based on biogenesis, consensus appears to have emerged around the classification of these vesicles as exosomes, microvesicles or apoptotic bodies [41, 44, 45, 46]. However, some controversy remains regarding their size, with estimates ranging from as low as 10 nm, to over 5000 nm; with exosomes being the smallest, microvesicles intermediate and apoptotic bodies the largest [42, 43, 44, 46]. Gram-negative bacterial vesicles have been referred to as outer membrane vesicles (OMVs) [47] and those of gram positive bacteria and archaea, which both lack an outer membrane, as simply membrane vesicles (MVs) [47, 48]. Vesicles derived from the prokaryotes (bacteria and archaea) tend to be smaller, ranging from well below 100 nm to a few hundred nanometers [42, 47, 48, 49, 50, 51]. This nomenclature will be used throughout the remaining sections.
\nBacterial OMVs were described several decades ago, at least as early as 1966, when Knox et al. described the presence of blebs protruding from the outer membrane of
Eukaryotic vesicles may have been alluded to from as early as 1941, when MacFarlane et al. described the loss of coagulation attributable partly to either the deposit derived from high-speed centrifugation of human plasma or filtration through 0.46 μm membranes [57]. This procoagulant component appears to be the particulate fraction sedimentable at 31,000 g that was referred to as “the thromboplastic protein of blood” a few years later [58], and subsequently a vesicle-containing fraction called “platelet dust” [44, 59]. Another earlier function attributed to these vesicles was the selective removal of no-longer required surface membrane components during reticulocyte maturation. These vesicles were termed “exosomes” [60]. Eventually several other terms would enter the literature, including ectosomes, microvesicles, shedding vesicles, microparticles, apoptotic vesicles and apoptotic bodies [44].
\nSubsequent studies would reveal the ubiquitous secretion of ECVs across the domains of life as well as the plethora of functions related to both normal and pathological processes, as will be discussed later. But before delving into these aspects of vesicular biology, it is important to understand how vesicles are produced, and delivered between donor and recipient.
\nIt has been known for some time that exosomes are formed as part of the endosomal system or endocytic pathway (Figure 4). Early endosomes result from the inward budding of the plasma membrane. When they fuse with endocytic vesicles, they together with their membrane-derived nucleic acids, proteins and lipids are destined for recycling, degradation or secretion [41, 61, 62, 63]. Early endosomes not targeted for recycling, develop into late endosomes that accumulate increasing numbers of inner vesicles by subsequent inward budding of its limiting (outer) membrane, forming what are known as multivesicular bodies MVBs [61, 63, 64]. This process of vesiculation allows for the sorting of cytosolic nucleic acids, proteins and lipids into the inner vesicles [41].
\nECV biogenesis, uptake and cargo.
The process of exosome biogenesis can be mediated by different groups of drivers. These include the endosomal sorting complexes required for transport (ESCRTs) I, II and III, which together induces cargo clustering, membrane bud formation and subsequent cleavage to form inner vesicles in yeast cells [65]. There is also an alternative ESCRT pathway in which syndecan, syntenin and ALIX play key roles in the MCF-7 human cell line [66]. In addition, an ESCRT-independent but ceramide (lipid)-dependent pathway has been reported in Oli-neu cells, a mouse oligodendroglial cell line [67]. Importantly, the mechanism of biogenesis appears to vary with cell type and with exosome content [41], implying that cells may recruit from a slate of internal machinery to produce various exosome phenotypes.
\nMVBs not destined for recycling or degradation complete a membrane-to-membrane cycle by fusing with the plasma membrane to externalize the limiting membrane and release the enclosed vesicles, called exosomes [61]. Exosome release is also influenced by a range of mechanisms: stimulation by RAB GTPases in mouse Oli-neu cells [68]; SNARE proteins in the human chronic myeloid leukemia cell line, K562 [69], as well as diacylglycerol kinase α (DGKα) inhibition in human T-cells [70]. Here again various cell types utilize different mechanisms to trigger the release of exosomes, with distinct cargo [66, 69, 71]. The endocytic pathway therefore facilitates not just the recycling of materials but the selective packaging and release of specific molecular codes and signals.
\nMicrovesicle biogenesis and release are somewhat merged processes as vesiculation involves outward budding of the plasma membrane (Figure 4). This involves initial redistribution of phosphatidylserine to the outer membrane leaflet and completed by ERK-induced phosphorylation and activation of the myosin light chain resulting in cytoskeletal contraction and membrane fission [63, 72]. Phosphatidylserine translocation is induced by increased intracellular Ca2+ and Ca2+-induced activation of the protease calpain [73], as seen for example with platelet microvesiculation [74]. However, as with exosomes, other effectors and mechanisms may be involved, including hypoxia, which induces microvesicle production in human breast cancer cells through hypoxia-inducible factors (HIF)-dependent RAB22A GTPase expression [75].
\nApoptotic bodies, or apoptosomes, are formed during the process of apoptosis (Figure 4) that involves chromatin condensation, membrane blebbing and disintegration of cell contents into the defined membrane-enclosed vesicles [63]. In Jurkat cells (a hematopoietic cell line) vesiculation involves Caspase 3-induced cleavage of the serine/threonine kinase ROCK1, which is associated with myosin light chain phosphorylation [76], suggesting apoptosome formation also involves cytoskeletal rearrangement [63].
\nLike microvesicles, OMV production in gram negative bacteria may be initiated by rearrangement of membrane components, leading to curvature of the lipid bilayer [47]. Such rearrangement could involve deposition of peptidoglycan fragments into the periplasm producing an elevated turgor pressure; down-regulation of outer membrane proteins that favor peptidoglycan interaction; or charge repulsion in regions with accumulation of negatively charged lipopolysaccharide (LPS) O-antigen [51]. Yet another proposed mechanism, potentially highly conserved among gram-negative bacteria, involves membrane curvature induced by accumulation of phospholipids in the outer leaflet of the outer membrane, which is further enhanced by subsequent accumulation in both leaflets, until the vesicle is finally pinched off [77].
\nSimilarly, vesiculation in gram positive bacteria may involve protrusion of plasma membrane microdomains as well as peptidoglycan degradation [51]. Although less is known of archaeal vesicle formation, protein homologs of ESCRT-III subunits have been isolated from these membrane vesicles [48].
\nUptake of eukaryotic ECVs by recipient cells also occurs by several mechanisms. These include the interaction of the vesicle with the plasma membrane with release of content, or the internalization of the ECV through endocytosis (Figure 4). There are several different types of endocytosis recently reviewed by Abels and Breakefield, including clathrin-, caveolin-, and lipid raft-mediated endocytosis, macropinocytosis, and phagocytosis [41]. Internalized ECV exosomes must be released into the cytoplasm and this process is promoted by the low pH-environment within endosomes resulting in fusion of exosomal and endosomal membranes [78]. Interestingly, prokaryotic vesicle uptake is also mediated by similar processes, including macropinocytosis, various endocytosis-dependent processes and membrane fusion [79].
\nApoptotic body uptake is mediated by specific interactions between altered apoptotic cell membrane components and receptors on phagocytes, which engulf and remove these vesicles [63]. These components include phosphatidylserine translocated to the outer membrane leaflet bound by Annexin V in Scott B lymphoblastoid cells [80], complement C3b deposition on Jurkat cells [81], surface molecules bound by thrombospondin, and exposed side chain sugars [82], all of which are recognized by phagocyte receptors [63, 82].
\nThese mechanisms imply that ECV biogenesis, release and uptake are evolutionarily conserved processes that although demonstrate divergence across the domains of life, still exhibit remarkable similarities. This underscores their fundamental functional importance. Considering their cargo, their importance becomes even more evident.
\nThe content of specific ECVs vary based on several factors, including their mode of biogenesis, cell type of origin and the prevailing physiological state [41]. However, both eukaryotic (Figure 4) and prokaryotic vesicles have been shown to carry a wide range of biologically active molecular codes and signals.
\nEukaryotic ECVs contain many types of nucleic acids. These include vesicle enclosed genomic DNA as derived from mouse cardiomyocytes [83], and mitochondrial DNA from rat astrocytes and human glioblastoma cells [84], cargo that could facilitate recipient evolution and enhanced functions, as will be discussed. Also found are various RNA species, including mRNA, tRNA, and rRNA, as well as various non-coding RNAs including miRNA, small nuclear RNA and small nucleolar RNA [39, 83, 85, 86, 87, 88]. Among these, rRNA may dominate in apoptotic bodies [87], and small RNAs including miRNA seem to be the dominant RNA species in exosomes [87, 88]. DNA has also been shown associated with the external surface of bacterial OMVs as well as within intact vesicles [89].
\nIt is difficult to draw conclusions on the protein content of different ECV types as the cell types and research methodology used varies among studies [41]. However, despite this variability, review of different reports gives an overview of the types of proteins normally found in vesicles. Proteins found in eukaryotic ECVs can be classified as biogenesis-related proteins, other common vesicular proteins, and cell-type specific proteins [41, 43]. Among the early proteomic analyses was that performed by Théry et al. on dendritic cell exosomes. They identified proteins involved in exosome biogenesis, release and function as well as intracellular membrane transport and signaling (ALIX, syntenin, cofilin, profilin I, galectin-3 and elongation factor 1a, annexins, RAB 7 and 11, and rap1B), many of which were cytosolic [90]. Parotid gland exosomes also contain several proteins involved in exosome biogenesis and release (ALIX, RAB proteins), as well as several cytosolic proteins involved in signaling and immune functions [91]. Bacterial vesicle proteomes have also been studied. OMVs from the gastric pathogen
Being derived from membrane structures, the lipid composition of ECVs share many similarities with their cells of origin and reflects their biogenesis [41]. However, differences are clear. Exosomes derived from the prostate cancer cell line PC-3, contained several fold greater lipid:protein content and were highly enriched in cholesterol, sphingomyelin, glycosphingolipids, and phosphatidylserine [92]. In contrast, the OMVs of
The diverse cargo of ECVs suggests the involvement of some kind of sorting process in their biogenesis. This is in keeping with an effective communication system that requires targeted delivery of information; a deliberate separation of the signal, from the noise that would otherwise drown it. The immense array of molecular codes and signals that could be packaged into ECVs must be filtered so that meaningful information is ultimately delivered.
\nThe evidence demonstrates that this is exactly what cells do. For example, there is relative enrichment of membrane and cytoplasmic compared with nuclear and mitochondrial proteins in eukaryotic ECVs [43], and preferential selection of specific proteins for inclusion in both prokaryotic and eukaryotic vesicles [43, 94]. During exosome biogenesis, both membrane proteins and lipids are selectively incorporated into the MVB limiting membrane and subsequently into the exosome bound inner vesicles [61]. Similarly,
Several methods may be involved in cargo sorting into eukaryotic ECVs. It has long been know that various proteins can be sorted into, or excluded from, cholesterol/sphingolipid-enriched lipid rafts [96]. Similarly, galectin-3 may be involved in the sorting of proteins into exosomes by stabilizing their cross linking to form high molecular weight clusters in the apical membrane that are sorted into the vesicles [97]. Various mechanisms have been proposed for miRNA sorting. These include an interaction between a four-nucleotide motif (GGAG) and the ribonucleoprotein, hnRNPA2B1; post-transcriptional 3′-uridylation; protein mediated pathways via neutral sphingomyelinase 2 (nSMase2) or Protein Argonaute-2 (AGO2); and elevated cellular levels of miRNA [41, 98]. Loading of mRNAs has been associated in human HEK-293 T cells with a particular 3′ untranslated region (UTR) containing a CUGCC core on a stem-loop structure as well as an miRNA-binding site, whose interaction enhances loading [99].
\nIn bacterial and archaeal vesicles, various mechanisms may also be utilized to accomplish this [51]. Among these mechanisms specific proteins could be localized to certain microdomains based on their affinity to particular moieties, the overall charge or length of local lipopolysaccharide (LPS) molecules, or through recruitment by a sorting factor that simultaneously binds recruiting signals in the protein and specific sites on the LPS molecules [94].
\nCells are therefore not simple automatons. Instead their messages are delivered by multiple molecular codes and signals; diverse, nuanced and presumably meaningful. If they were automatons, ECVs would be produced by repetitive packaging of identical cargo as observed on a factory assembly line. If they were, ECVs would be monosemic, devoid of physiological and pathological pleiotropism. Evidence for this final link in the communicative process, logical response to the transmitted information, will now be presented.
\nNow that the message has been packaged, transported and received, is it intelligible? As with any other form of effective communication, the transferred information delivered by ECVs must have meaning to the recipient. Otherwise, the signal will be understood as non-sense and no communication would have occurred. However, we know that this is not the case. ECVs do affect recipient cells and in specific ways. As shown in Figures 4 and 5, some may initiate signaling through interaction with recipient cell receptors. Others must enter the cell and be released into the cytoplasm or delivered to the nucleus [41].
\nIntercellular communication mediated by extracellular vesicles.
For ECVs to function as a communication system, they must be able to package and transport relevant information to recipient cell(s). This is exactly what they do. There is mounting evidence that the delivered cargo is functional.
\nECVs transport molecules which are themselves living codes of information, in the form of nucleic acids and proteins. For example, DNA associated with mouse cardiomyocyte-derived vesicles has been shown to be distributed within fibroblast cytosol and nuclei, in conjunction with differential gene expression of more than 300 genes [83]. Similarly, new mouse proteins were recovered from recipient cells after the transfer of mouse exosomal RNA to human mast cells, suggesting that the delivered RNA was successfully translated in the presence of functional protein synthesis machinery, made available within the recipient cells [85]. Such translation of functional proteins has also been reported in healthy human brain microvascular endothelial (blood vessel wall) cells in response to delivery of cancer cell (glioblastoma)-derived microvesicles [86], implying that ECVs derived from abnormal cells can be utilized to direct the genetic machinery of normal cells.
\nFurthermore, recipient cells respond predictably to the delivery of ECV-delivered regulatory cargo. Dendritic cell-derived exosomes containing miRNAs, were shown to target and repress mRNAs in recipient dendritic cells [39]. Such responses may also be part of a pathological process. For example, glioblastoma-derived microvesicles can stimulate the proliferation of other glioma cells, as well as promoted angiogenic processes in normal endothelial cells [86]. Viral mi-RNA molecules derived from Epstein–Barr viruses (EBV) that have infected nasopharyngeal carcinoma (NPC) cells are packaged into NPC-derived exosomes [100]. EBV-infected B-cells secrete EBV mi-RNAs via exosomes, which are internalized by dendritic cells in co-culture and lead to suppression of known target genes, including immunoregulatory genes [40]. Similar suppression has been documented in murine endothelial cells treated with exosomes isolated from bone marrow-derived macrophages [98]. Horizontal transfer has also been demonstrated between rat fibroblasts and murine recipient cells, resulting in in-vitro loss of contact inhibition and a tumorigenic phenotype in vivo [101].
\nAs with eukaryotic ECVS, bacterial vesicles have also been shown to package and transport biological codes to others cells. One of the most well studied bacteria,
Multicellular organisms also utilize ECVs to deliver other signaling molecules for physiological processes as well as to facilitate pathogenetic mechanisms.
\nVesicular transport is essential for sperm motility, a critical component of one of the most fundamental biological processes; reproduction. Normal fertility requires, among other factors, motile spermatozoa. Motility is dependent on Ca2+ signaling [102] and involves Ca2+ mobilization and entry [103]. These processes in turn require a slew of molecules, including various receptors and enzymes, which are transferred to the neck of the sperm, delivered by fusion of prostate gland-derived extracellular vesicles called prostasomes [103, 104].
\nAmong the most lethal ECV-mediated dysfunctions, cancers represent a significant cause of mortality worldwide [105]. Evidence suggests that one of the methods involved in the subversion of normal biology, to promote cancer growth and survival, is the delivery of molecules by ECVs. For example, it has been shown that cancer cells release the protein Survivin into the extracellular space, in the form of exosomes [106]. In addition, the extracellular form of Survivin is secreted by several types of cancer cells (including breast, cervical, prostate, pancreatic, bone and blood cancer cells), is transferrable to other cancer cells and induced increased proliferation and reduced apoptosis (cell death) of the recipient cell [107], features that enhance cancer progression.
\nOMVs also mediate host-pathogen interactions that could result in pathology. Vesicles isolated from
Perhaps the most powerful impact one cell could have on another is through horizontal gene transfer. Not only does intercellular genetic transfer allow for an immediate response, there is the possibility that the donor could influence the recipient’s progeny for generations, if not millennia, to come.
\nDespite several claims, genetic transfer from prokaryotes to eukaryotes is replete with challenges [108]. However, there is clear evidence of DNA transported into eukaryotic recipients from endosymbiotic (mitochondria and plastids) and other eukaryotic sources, which could introduce new genes into the genome or replace existing genes [32, 109]. It is now becoming clear that ECVs may also introduce new genetic material into recipient cells. Within a multicellular eukaryotic model, this is what appeared to happen when fibroblasts were transfected with cardiomyocyte-derived vesicles, resulting in altered gene expression within recipient cells [83].
\nOn the contrary, horizontal gene transfer into prokaryotic cells is thought to be common, conferring evolutionary benefits, including acquisition of antibiotic resistance and enhanced virulence. Such transformations can be mediated by mobile genetic elements such as bacteriophages and plasmids [31, 110]. It is therefore not surprising that Yaron et al. had previously reported vesicle-mediated DNA transfer from the food-borne pathogen
ECVs are therefore agents of interspecies genetic transfer. As such, they have the potential to serve as drivers of evolution.
\nCells interact using various coded and non-coded molecules, which although not natural languages, could be considered types of biological language. It seems logical that these highly-conserved molecules pre-date the emergence of natural languages, whose evolutionary advantage arose relatively recently and only in limited circumstances. Ubiquitous molecular languages were, and will remain, fundamental to life because they direct the most basic of cellular functions throughout all life-forms. Natural languages on the contrary probably developed under the limited circumstance when reciprocal altruism conferred a selective advantage [33]. Molecular languages are therefore an adaptable prototype, representing a highly conserved model of information.
\nTheir significance is further underscored by the fact that cells from all three domains of life have evolved limited modes of transporting such crucial cargo. Despite the clearly diverse mechanisms involved in ECV biogenesis, packaging, release and uptake, the basic modes of ECV-mediated intra-cellular, inter-cellular and inter-species communication have been widely replicated. Extracellular vesicles are therefore also another adaptable prototype, representing a highly conserved model of communication.
\nThis scenario probably reflects the enormous evolutionary pressures brought to bear over evolutionary time, as well as across various habitats, for cells to effectively communicate with each other. It also underscores a fundamental biological principle: structure determines function. Development of universal codes allowed for wide-spread interpretation of shared information [111]. Similarly, development of universal cellular transporters allowed for wide-spread accessibility to this information. However, selective packaging and targeting of these codes, which have evolved over time, facilitates an extensive context-relevant semantic range, and therefore selective and specific communication. In this regard, ECVs have proven fit for purpose.
\nAs with any communication system, this prototype is versatile, diverse, nuanced and meaningful. This is exactly what one would expect from an effective communication pipeline that delivers targeted information; one that intuitively separates the signal, from the noise. In so doing, ECVs ensure that actionable biological information is ultimately delivered. It is this prototypal communication system that not only directs normal physiology and induces pathology when disrupted, but has the potential to influence the evolution of recipient cells.
\nThe author would like to thank the University of the West Indies for supporting the publication of this chapter by providing funding through book Grant.
\nThe author has declared no conflict of interest.
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA and her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,annualVolume:null,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,annualVolume:11974,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81909",title:"Educational Paradigm with Ubuntu Mindset: Implications for Sustainable Development Goals in Education",doi:"10.5772/intechopen.104929",signatures:"George Frempong and Raavee Kadam",slug:"educational-paradigm-with-ubuntu-mindset-implications-for-sustainable-development-goals-in-education",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82243",title:"The Language that Grade R Students Use to Achieve the Envisaged Mathematics Outcomes, a South African Perspective",doi:"10.5772/intechopen.105446",signatures:"Shakespear M. Chiphambo and Nosisi N. Feza",slug:"the-language-that-grade-r-students-use-to-achieve-the-envisaged-mathematics-outcomes-a-south-african",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:3,group:"subseries"},{caption:"Education",value:89,count:8,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82465",title:"Agroforestry: An Approach for Sustainability and Climate Mitigation",doi:"10.5772/intechopen.105406",signatures:"Ricardo O. Russo",slug:"agroforestry-an-approach-for-sustainability-and-climate-mitigation",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82754",title:"Impact of Revegetation on Ecological Restoration of a Constructed Soil in a Coal Mining in Southern Brazil",doi:"10.5772/intechopen.105895",signatures:"Lizete Stumpf, Maria Bertaso De Garcia Fernandez, Pablo Miguel, Luiz Fernando Spinelli Pinto, Ryan Noremberg Schubert, Luís Carlos Iuñes de Oliveira Filho, Tania Hipolito Montiel, Lucas Da Silva Barbosa, Jeferson Diego Leidemer and Thábata Barbosa Duarte",slug:"impact-of-revegetation-on-ecological-restoration-of-a-constructed-soil-in-a-coal-mining-in-southern-",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82828",title:"Vegetation and Avifauna Distribution in the Serengeti National Park",doi:"10.5772/intechopen.106165",signatures:"Ally K. Nkwabi and Pius Y. Kavana",slug:"vegetation-and-avifauna-distribution-in-the-serengeti-national-park",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82808",title:"Climate Change and Anthropogenic Impacts on the Ecosystem of the Transgressive Mud Coastal Region of Bight of Benin, Nigeria",doi:"10.5772/intechopen.105760",signatures:"Patrick O. Ayeku",slug:"climate-change-and-anthropogenic-impacts-on-the-ecosystem-of-the-transgressive-mud-coastal-region-of",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82525",title:"Perspective Chapter: Daphnia magna as a Potential Indicator of Reservoir Water Quality - Current Status and Perspectives Focused in Ecotoxicological Classes Regarding the Risk Prediction",doi:"10.5772/intechopen.105768",signatures:"Sara Rodrigues, Ivo Pinto, Sandra Nogueira and Sara C. Antunes",slug:"perspective-chapter-daphnia-magna-as-a-potential-indicator-of-reservoir-water-quality-current-status",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82697",title:"Analyzing the Evolution of Land-Use Changes Related to Vegetation, in the Galicia Region, Spain: From 1990 to 2018",doi:"10.5772/intechopen.106015",signatures:"Sérgio Lousada and José Manuel Naranjo Gómez",slug:"analyzing-the-evolution-of-land-use-changes-related-to-vegetation-in-the-galicia-region-spain-from-1",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"José Manuel",surname:"Naranjo Gómez"},{name:"Sérgio",surname:"Lousada"}],book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82563",title:"Impacts of Human Activities on the High Mountain Landscape of the Tatras (Example of the Border Area of the High and Belianske Tatras, Slovakia)",doi:"10.5772/intechopen.105601",signatures:"Veronika Piscová, Juraj Hreško, Michal Ševčík and Terézia Slobodová",slug:"impacts-of-human-activities-on-the-high-mountain-landscape-of-the-tatras-example-of-the-border-area-",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/100898",hash:"",query:{},params:{id:"100898"},fullPath:"/profiles/100898",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()