\r\n\tFourth, the effects of digitalization on economic and sustainable development and the benefits of digitization for public services, including e-governance, e-payments, e-democracy, e-health, e-learning, e-payments, and so on, are also presented.
\r\n
\r\n\tAt the fifth stage, we will try to highlight the imperative role of blockchain technology, artificial intelligence, and machine learning in the digitization process.
\r\n
\r\n\tLast but not least, the main threats of a digital economy are presented under the form of cybercrime and “surveillance capitalism”, including the impact of financial crimes referring to card frauds, online frauds, digital frauds, digital shadow economy, black market, money laundering, etc.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"45ca4a969c50d02d2bab6894218c7ef8",bookSignature:"Prof. Monica Violeta Achim and Dr. Nawazish Mirza",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10918.jpg",keywords:"Definition, Digital Transactions, Innovative Financial Services, Cryptocurrency, E-governance, E-payments, Spiral Transformation of Knowledge, Financial Education, Artificial Intelligence, Machine Learning, Money Laundering Surveillance Capitalism Economy, the General Data Protection Regulation (GDPR)",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 25th 2021",dateEndSecondStepPublish:"September 17th 2021",dateEndThirdStepPublish:"November 16th 2021",dateEndFourthStepPublish:"February 4th 2022",dateEndFifthStepPublish:"April 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"In February 2020, Ph.D. Achim won the Prize for Excellence in Scientific Research, at Babeș-Bolyai University, Cluj-Napoca, Romania. Since 2020, she became a member of the Romanian Ministery of Education and Research, as a representative in the panel of Economic Sciences.",coeditorOneBiosketch:"Prof.Mirza obtained a Ph.D. from the University of Paris Dauphine and has over 18 years of research, teaching, and consulting experience across Western Europe, Middle East, Asia Pacific, and Australia.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",slug:"monica-violeta-achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",biography:"Monica Violeta Achim is is currently full professor and doctoral supervisor in the field of Finance at the Faculty of Economic Sciences and Business Administration, Babeş-Bolyai University, Cluj-Napoca. She teaches the disciplines 'Diagnosis and Financial Analysis”, 'Financial analysis in banks” and 'Economic and financial crime” at the same faculty. She has many research concerns in the area of financial analysis, business performances, corporate governance, economic and financial crimes and public finance. With over 22 years of experience in academia, she has published as author and co-author, over 130 scientific articles and 25 books. Among the main targeted top journals, the following can be mentioned: The European Journal of Health Economics, Technological and Economic Development of Economy, Population Health Management, Social Indicators Research, Apply Research in Quality Life, Journal of Business Economics and Management, E+M Ekonomie and Management, Economic Research-Ekonomska Istraživanja, Sustainability, Entrepreneurship Research Journal, Singapore Economic Review. Her most recent reference work is the book Economic and financial crime. Corruption, Shadow economy and Money laundering, published as co-authored at Springer. She is also reviewer and board member for many international journals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:{id:"420517",title:"Dr.",name:"Nawazish",middleName:null,surname:"Mirza",slug:"nawazish-mirza",fullName:"Nawazish Mirza",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000039UrYIQA0/Profile_Picture_1622035121865",biography:"Nawazish Mirza is a professor of finance at the Excelia Business School, La Rochelle, France. He obtained a Ph.D. from the University of Paris Dauphine and has over 18 years of research, teaching, and consulting experience across Western Europe, Middle East, Asia Pacific, and Australia. His research interests include financial technology, credit ratings, risk management, financial intermediation, and valuations. He has extensive professional and consulting experience in credit ratings, investment banking, and the valuation of new technologies. His recent research has been published in the Resources Policy, Journal of Environmental Management, International Review of Economics and Finance, Economic Modelling, Pacific-Basin Finance, Technology, and Social Forecasting, Finance Research Letters, among others. He is associate editor of the Journal of Economic and Administrative Sciences and Economic Research. He is guest editor of Climate Change Economics.",institutionString:"Excelia Business School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55381",title:"Protective Coatings for Low-Cost Bipolar Plates and Current Collectors of Proton Exchange Membrane Electrolyzers for Large Scale Energy Storage from Renewables",doi:"10.5772/intechopen.68528",slug:"protective-coatings-for-low-cost-bipolar-plates-and-current-collectors-of-proton-exchange-membrane-e",body:'
1. Introduction
On November 4, 2016, the Paris Agreement entered into force aiming to limit the global temperature rise to at least 2°C above the pre-industrial level [1, 2]. To achieve this goal, the necessary worldwide net zero carbon emission point is expected to be reached between 2045 and 2060 [3]. The energy sector represents worldwide the biggest greenhouse emitter but thanks to the resent progress in renewable energy technology such as wind, water and solar, the total energy consumption is to be substituted by green energy. However, those energy sources are strongly fluctuating and difficult to control increasing the need of large-scale energy storage. Independently of geological environment, water electrolysis is a promising technology to convert electricity to chemicals such as hydrogen and oxygen by splitting water. Hydrogen is the basis of all relevant energy carriers and enables even the connection of different sectors such as mobility or industry, the two other main greenhouse gas emission sources.
Already in 1800, William Nicholson and Anthony Carlisle established a new field in chemistry by splitting water by using direct current, that is, the electrochemistry [4]. It was Russell and co-workers who published first in 1973 the use of a solid polymer electrolyte (SPE) and anticipate the huge potential for a future energy market [5]. The two main technologies for a sustainable hydrogen production are Alkaline- and polymer exchange membrane (PEM) electrolyzers. Alkaline electrolysis is a well-established and mature technology. However, based on efficiency [6, 7], flexibility [8] and power density [6, 9, 10], the potential of economic hydrogen production by PEM electrolysis is higher, which justifies the increased interest in this technology even if it is more costly. On the other hand, open questions regarding durability and degradation remain. Moreover, the needs of rare and expensive metal, which are required to withstand the harsh acidic conditions, delay the large-scale penetration of PEM electrolyzers in the market. Indeed, potentials up to 2 V, pH values between 2 and 0 in oxygen-saturated environment require outstanding properties of the used materials.
Currently, there is no PEM electrolyzer supplier who does not use iridium as an oxygen evolution reaction (OER) catalyst, which is the rarest metal on earth. However, it is not the electro catalytic material the one that dominates the production costs of the PEM technology. In fact, the metallic parts such bipolar plates and porous transport layers are the most expensive components of a PEM electrolyzer stack. The main part of a PEM electrolyzer system is the stack consisting of several cells. Each cell consists of an anode (oxygen evolution reaction, OER) and a cathode (hydrogen evolution reaction, HER) separated by an acidic proton conductive membrane. Figure 1 presents a scheme illustrating the working principle of PEM electrolyzers as well as the internal components. In most cell designs, the electrodes are attached directly to the proton exchange membrane. This membrane electrode assembly (MEA) is the core component of a PEM cell. Current collectors, also called porous transport layers (PTL), on both sides of the MEA are permeable to water and the product gases, allowing electric current to flow to and from the electrodes. The two half-cells are surrounded by bipolar plates (BPP), which have usually flow fields. Their function is to transport the reactant water to the membrane-electrode interface and remove the product gases.
Figure 1.
Scheme of a PEM electrolyzer cell. The anode side is filled with water, which diffuses through the PTL to the iridium electrode. The liquid is subsequently spitted into O2, 4e− and 4H+ by theoretical potentials >1.23 V. The protons are transported to the cathode side by the PEM and combine at the cathode with the electrons from the external circuit forming hydrogen gas.
Depending on design, the stack accounts for up to 60% of the overall system cost [11]. The PTL and BPP can be defined as interconnectors and correspond to 50–70% of the stack costs [7, 11]. These require stable metals mainly on the anode side of the electrolyzer, which is the electrode that splits water into protons, electrons and oxygen. Titanium is the state of the art material for manufacturing BPPs and PTLs. A thin layer of TiOx passivates the metal protecting it from further degradation and corrosion. However, the material is costly and difficult to manufacture. Furthermore, the semi-conductive behavior of titanium oxides decreases the efficiency requiring often the use of a protective coating to decrease the contact resistance and prevent the oxidation of titanium.
In this chapter, we introduce the reader into the possibility of reducing the predominant asset of the investment cost for PEM electrolyzer by using protective and easily up-scalable coating technologies. Vacuum plasma spraying, a versatile applicable technology to apply various types of coatings to a wide range of surfaces, is used to produce highly stable and multifunctional coatings for cost-effective interconnectors of PEM electrolyzers.
2. Protective and multifunctional coatings for PEM electrolysis
2.1. Vacuum plasma spraying (VPS)
The Swiss engineer Max Ulrich Schoop can be considered as the inventor of the thermal spaying technology which he patented in 1909. Compared to electro/electroless plating, chemical vapor deposition (CVD) or physical vapor deposition (PVD) coating techniques, the “thermal spray” family enables the production of thick layers of several tens of microns with controlled porosity at scalable production rates. Several metallic and ceramic powders between some nanometers and several hundreds of micrometers can be used as spraying material. Interestingly, the plasma spraying technology is very suitable for the production of low-cost BPPs based on stainless steel substrate and PTLs due to the mechanical stability and relevant thickness of the produced layer [12].
The main part of this technology is the torch, where the gas flows through the annular gap of a finger like cathode and a concentrically surrounding anode. The gas consists of a mixture of Ar, N2, H2 and He, and it becomes ionized by electric arcs between the electrodes of several hundred amperes and heats it up to at least 10,000°C. The heat enables the complete or semi melting of the powder and accelerates it in to direction of the substrate [14]. The plasma enthalpy, the powder injection technology and particle size of the material affect this process. A completely melted particle is ideal for producing dense and protective layers. Conversely, partly melted particles can be used for manufacturing porous coatings for multiple purposes. Figure 2a and b shows a scheme of VPS spraying technology and photo of the plasma torch, respectively.
Figure 2.
(a) Scheme of VPS spraying technology and (b) photo of the plasma torch [13].
Aerospace application dominates the use of thermal spry technology, but other industries and especially the automotive sector show an increased interest. An extended overview of all kind of thermal spray technologies and their applications can be found in “Thermal Spray Fundamentals” from Powder to Parts [13]. For PEM electrolyzers, the thermal sprayed coatings need to be highly conductive and thus required the absence of oxygen during the spraying process in order to prevent the formation of semi conductive titanium oxides. In this context, the use of a vacuum chamber is necessary for producing high purity titanium coatings.
2.2. Coated low-cost bipolar plates
In conventional PEM water electrolysis systems, the bipolar plates are often one of the most expensive components accounting for 51% of the stack cost [11, 15–17]. This is due to the high amount of expansive materials such as titanium and the complicated production of this component [18]. The bipolar plates need to meet the following requirements [15, 19–21]:
Separation of the gases on the anode and the cathode side
Current transfer from the positively charged anode to the negatively charged cathode side
Optimal water distribution over the active area toward the anode-side electrode structure
Transport of the produced gases
Given these specifications, the materials used for manufacturing conventional bipolar plates must have the following properties [15, 20]:
Good electrical and thermal conductivity for very high currents and small contact resistances
Optimized flow field for the distribution and inflow of water to the electrochemically active surface of the electrodes and at the same time optimized removal of the produced gases
Cathode side: resistance to hydrogen embrittlement and oxidation
Anode side: corrosion resistance against oxygen in acidic media and voltages up to 2 V
Rarely, the anode and cathode sides of the bipolar plates are physically two separate plates. That is why the corrosive operating conditions of the anode side and the contact to the acidic membrane determine the material selection [16, 21]. In fact, bipolar plates consist almost exclusively of titanium. The material price of pure titanium (grades 1–2) [6] is comparatively high and the processing is difficult due to its brittleness [18, 22]. Often, a flow field must be chemically etched, resulting in an increase of production cost. Under the aforementioned conditions, the formation of a passive and poorly electrically conductive oxidation layer on titanium is undesirable [23, 24]. Furthermore, the formation of unstable hydroxides at the cathode should be prevented. Both phenomena lead to ohmic losses due to increase of contact resistance and drop in efficiency [25]. These negative effects can be prevented by an additional coating or surface modifications with noble metals [18–28]. Platinum is for this purpose the state of the art material.
In commercial PEM electrolyzers, the anode side requires an anticorrosive layer when using alternative bulk materials such as stainless steel, copper or aluminum to substitute titanium. The corrosion of non-noble metals would release dissolved ions, which poison the MEA, resulting into a strong degradation [28, 29]. On the other hand, these are easy-to-process materials can be coated with corrosion resistant materials through various coating processes. Thin film coatings of Au [30], TiN [31], TiN/C [32], TaN [33] and SnO2: F [34] have already been investigated for protecting metallic bipolar plates for PEM fuel cells. All these materials and coatings can hardly withstand the strongly oxidative conditions of the cathode side of the fuel cells and would do so even less under PEM electrolysis conditions. In this regard, a thick film coating is necessary and vacuum plasma spraying technology (VPS, 50 mbar) was chosen to produce protective coatings of Ti for stainless steel (ss, 316 L) BPPs. Titanium particles of 45 µm were completely melted by achieving a plasma enthalpy of 21.3 MJ kg−1 and deposited on preheated stainless steel BPPs. The number of sweeps of the torch over the substrate defines the thickness of the coating. Post-treatment of capillary sealing with an epoxy resin allows for closing possible holes end imperfections and guarantees the complete separation of the stainless steel from the acidic environment of the electrolyzer.
Figure 3a shows a scanning electron microscopy (SEM) image of the Ti coating produced by VPS on a stainless steel BPP (92 E Stack, Hydrogenics). The coating covers the whole surface of the flow field channels as well as the edges and contact area. Figure 3b presents a magnified image to the coating where the small holes and imperfections are observable. The rough surface of the coating is polished after the sealing process to provide a conductive and uniform contact area to the porous transport layer. Nevertheless, an additional thin film coating is necessary to prevent the oxidation of the titanium coating and reduce the contact resistance for lower overpotentials, resulting in higher efficiencies.
Figure 3.
(a) SEM image of coated stainless steel BPP (92E Stack, Hydrogenics) with flow field channels and (b) cutaway of the Ti coating.
Platinum is a common material used in the industry as anti-passivation coating for titanium. It has an outstanding conductive behavior but is highly expensive and rare and the substitution of this material by cheaper ones is a pressing challenge. The alternative material for Pt as a surface modification needs to fulfill all the previously mentioned requirements, having better electric properties than TiO2 but lower cost than Pt. Different valve metals, such as Nb, V, Zr, W, Ti, Ta, Hf, etc. can be considered for this purpose while Nb is the most promising one given its low cost (almost three orders of magnitude lower price) and abundance on the earth crust. Thin films of Pt and Nb were deposited on the thermal sprayed coatings of Ti by magnetron sputtering physical vapor deposition (PVD). The measurement of the interfacial contact resistance (ICR) of Nb/Ti and Pt/Ti coatings on stainless steel (Figure 4), Nb/Ti/ss and Pt/Ti/ss, depicts the significantly improved electric behavior of Nb/Ti compared to uncoated Ti, yet not comparable to Pt/Ti. The results suggest that Nb coatings by thermal spraying can be sprayed directly on stainless steel to function as both, corrosion protective layer and surface modification for better conductivity.
Figure 4.
Interfacial contact resistance (ICR) of Nb-coated titanium, Ti-coated stainless steel without surface modification as well as with surface modification by Pt and Nb respectively [35, 36].
Cross-section images of Ti-coated samples with surface modifications of Nb can be seen in Figure 5a and b. Figure 5c presents a stainless steel sample coated Nb coating without the intermediate layer of Ti. The image highlights the marked differences between the two substrates for the Nb film which influence the morphology and the adherence properties. The Nb coating has preferred orientated crystals in (110) with the size between 10 and 20 nm. While some peaks for Ti can be observed in the X-ray diffraction (XRD) presented in Figure 5d, no reflections of stainless steel components can be detected.
Figure 5.
(a) and (b) SEM images of stainless steel samples with Nb/Ti coating. (c) Nb film directly deposited on stainless steel and (d) the XRD spectra of Nb/Ti/ss [35].
Corrosion tests in simulated PEM electrolysis environment account for the high stability of the coatings. Initially, potentiodynamic measurements were performed at low potential sweep rates to determine the corrosion current (icorr) and potential (Ecorr) of the pristine samples. Afterwards an accelerated stress test (AST) for 6 h at 2 V vs. Reversible Hydrogen Electrode (RHE) in O2-saturated 0.5 M H2SO4 was performed, and the resulting current transient represents the stability against corrosion and dissolution of the substrate. Finally, a second potentiodynamic measurement records the material changes. As can be seen in Figure 6a, all Ti-coated samples show almost exactly the same behavior than bulk titanium foil (blue curve). However, one can see that the thin coating of Nb by magnetron sputtering PVD is not sufficient to protect the stainless steel against corrosion (inset Figure 6a) and the sample experiences pitting corrosions. The current transient for Nb on stainless steel is constantly increasing at a current density level of almost three orders of magnitude higher than the other samples which passivate after approx. 1 h.
Figure 6.
Galvanostatic measurements (AST) of the samples Ti/ss, Nb/Ti/ss, Nb/Ti and insert for Nb/ss with adjusted scale in (a) as well as potentiodynamic material characterization before (b) and after (c) the AST [35].
The potentiodynamic characterization of the materials is able to provide a detailed overview of the corrosion processes. Before the AST (Figure 6a), the Ecorr for all samples is approx. 0 V in which the cathodic reaction of hydrogen evolution takes place. While all protected samples show a wide passivation region up to 2 V vs. RHE, the Nb/ss specimen displays a trans-passive region at potentials higher than 1.2 V vs. RHE where Fe and Cr oxides dissolve. These oxides as well as molecular O2 are reduced during the second characterization protocol (Figure 6c) in a cathodic reaction, shifting the corrosion potential of Nb/ss to 0.7 V vs. RHE. From these results, one can conclude that the layer of Ti is able to protect the stainless steel substrates against corrosion, while a much thinner PVD coating is not sufficient for this purpose.
The use of stainless steel as bulk material of BPPs can reduce the material cost. Additional cost reduction can be achieved since stainless steel is easier to machine than titanium. The price of the Ti coatings can be estimated to 30.8 USD m−2 if industrial production rates can be achieved. This is in sum less than the half for coated stainless steel BPPs than for massive Ti BPPs. The use of Nb instead of Pt as surface modification can additionally reduce the material costs for BPPs. However, the superior electrical properties of Nb vs. Ti observed for the ICR measurements need to be demonstrated in real conditions of PEM electrolyzers. A rainbow stack was assembled to investigate the impact of surface material on anode and cathode side. The coatings were tested and compared to commercially coated-titanium BPPs. The cells are separated in two categories: category 1 corresponds to cells with precious metal surface modification and category 2 to cells with valve metals (Ti or Nb) on the surface on the cathode side, see Table 1.
Cell
BPP anode
BPP cathode
Category
1
Commercially coated Ti
Commercially coated Ti
1
2
Commercially coated Ti
Commercially coated Ti
1
3
Ti/ss
Commercially coated Ti
1
4
Ti/ss
Ti/ss
2
5
Pt/Ti/ss
Ti/ss
2
6
Pt/Ti/ss
Pt/Ti/ss
1
7
Nb/Ti/ss
Pt/Ti/ss
1
8
Nb/Ti/ss
Nb/Ti/ss
2
Table 1.
Rainbow stack configuration: stainless steel BPPs (92E Stack, Hydrogenics) with the corrosion resistant Ti coating: Ti/ss. BPPs with additional surface modification of Pt and Nb, Pt/Ti/ss and Nb/Ti/ss, respectively. E300 and E400 MEAs (Greenerity) were used [35, 36].
The stainless steel BPPs were coated on both sides with titanium to avoid any possible galvanic corrosion of the cathode surface when in contact with the MEA during standby periods. However, titanium, in contrast to stainless steel, is not susceptible against hydrogen embrittlement. Therefore, a protective coating or surface treatment on the cathode side for the massive titanium BPPs, as well as for Ti-coated stainless steel ones, is required. This assumption is supported with the results presented in Figure 7, which correspond to a long-term performance of the rainbow stack. The lower the cell potential (Ecell) is, the higher the efficiency of the PEM electrolyzers. Cells 4, 5 and 8, which have either Ti or Nb/Ti coatings on the cathode side, show from the very beginning of the test, significantly worse performance compared with those having Pt. The high Ecell can be explained by hydrogen embrittlement of the valve metals. After 500 h, the electrolyzer was switched off for several hours, and oxygen was able to diffuse to the cathode side passivating even further the material. The consequence is a rapid potential increase in the next 500 h of the test. The commercial cells and those coated with Pt on the cathode side show in general a much higher performance. Here, it is also possible to distinguish the positive impact of the Pt and Nb surface modification for the anode side. Cell 3 has higher performance as cell 6 and 7 which have surface modifications. Those cells show also a stable behavior during the entire testing protocol.
Figure 7.
Durability test for 1000 h at constant current density of 1 A cm−2.
The post-mortem analysis of the BPPs proves the protective behavior of the thick film coating of Ti even after 1000 h in real PEM electrolysis conditions. The SEM images of the BPPs show in every case the protective effect of the Ti coating. Differences can be seen for the thin film surface modification. For the anode side, Pt and Nb are still in well adhered to the titanium coating (Figure 8b) and d), but for the cathode side, only Pt is still in contact to Ti. Figure 8c shows clearly that the Nb thin film coating is delaminated allowing for the oxidation of the titanium beneath the Nb.
Figure 8.
Post-mortem SEM analysis after 1000 h in use as electrolyzer BPP. (a) overview, (b) Nb/Ti/ss anode, (c) Nb/Ti/ss cathode, (d) Pt/Ti/ss anode, (e) Pt/Ti/ss cathode [35].
Summarizing, Ti coating produced by VPS is able to protect the stainless steel BPPs which decrease significantly the material and fabrication cost of these components. In principle, it should be enough to coat the anode side since stainless steel is highly resistant to hydrogen embrittlement. Surface modifications with Nb for reducing the interfacial contact resistance can substitute the expensive Pt without compromising performance and durability. Finally, Nb could be sprayed by VPS directly on the stainless steel substrate thus avoiding the use of PVD techniques, which are expensive and have low deposition rates.
2.3. Production of porous transport layer via VPS
The porous transport layer (PTL), current collector (CC) or gas diffusion layer (GDL) is another key component of commercially available PEM electrolyzers. It assumes the following tasks:
Transport of electrons from the catalytic layer to the bipolar plate
Transport of the gases produced at the electrode
Distributes of the water toward the electrode
Thus, an optimum of the electrical conductivity and the contact resistance as well as the mass transport of the gases and water in the, respectively, opposite direction needs to be met. In addition, the PTL on the anode side requires a large number of additional properties similar to the BPPs:
Mechanical stability especially against hydrogen embrittlement from cathode crossover
Sufficiently low thickness for an optimized removal of the resulting gases
Low contact resistance to the adjacent components: Anode catalyst layer and BPP
Possibility of up-scaling for industrial production of PEM electrolyzers in the MW to GW range
On the cathode side, the state of the art is carbon paper, which is predominantly used in PEM fuel cell technology. Fine stainless steel fibers, sintered plates and meshes can also be used. Given the moderate conditions on the cathode side, the research concentrates currently to the anode side current collector [38]. On the oxygen side, the environment is more corrosive for these interconnectors because of the pure oxygen atmosphere, low pH and voltages of up to 2 V. For these reasons, corrosion resistant meshes, fibers, foams to sintered structures of titanium or platinum are used [37–44], Figure 9.
Figure 9.
Samples of porous transport layers: a) sintered titanium and below carbon GDL; SEM images of b) sintered titanium, c) titanium felt, d) carbon GDL and e) mesh. Images courtesy of Fraunhofer ISE.
The electrical resistance of the current collector depends on the porosity and the contact resistance of the bipolar plate with the current collector and electrode. With decreasing pore size and porosity, the electrical resistance of the current collector decreases [37, 40]. Optimum porosity of 20–50% and pore sizes between 10 and 13 μm are determined with regard to electrical resistance vs. mass transport issues [37]. With the use of sintered materials, the porosity and pore size can be adjusted by the appropriate choice of the titanium particles, but the possibilities for upscaling are very limited [45]. On the one hand, meshes, fibers and foams are less limited in terms of thickness and shape [46], and they are also cheaper to manufacture [18], but the control of the pore size and porosity is more complex.
The interfacial contact resistance (ICR) from the current collector to the electrode is a decisive factor for the reduction of the ohmic resistance and thus for the efficiency of a PEM cell [40]. The ICR can be greatly reduced by the use of precious metal coatings such as platinum [24, 36, 47, 48]. In PEM fuel cell technology, the problem of water management and contact resistance has been solved by the use of a microporous layer (MPL) [49] which is applied to the gas diffusion layer. The use of micrometer-sized, conductive and hydrophobic particles improves both the contact resistance [49] and the water transport [50]. More than 149 refereed publications have been published since 2002 on this topic in connection with the fuel cell but just one for PEM electrolysis (ISI Web of Knowledge) [45].
Thereby it is possible to produce coatings with similar properties as the MPLs by VPS out of titanium or other stable valve metals such as Nb. The benefit is to have a controlled contact layer to the electrode, optimized contact surface, pore sizes, porosity, etc. The performance of electrolyzer is typically characterized by a polarization curve. The potential is recorded at different current densities. Figure 10 displays the performance of an electrolysis cell with and without MPL. The inset shows a cross section SEM image of the MPL deposited on the sintered Ti current collector. It can be seen that the polarization curve of the cell with MPL has a lower slope than the one without MPL. The slope of the current potential curve is related to a ohmic drop caused by a decrease of contact resistance. At high current densities and consequently high gas production rates, the cell with MPL shows no mass transport limitation meaning an optimized mass transport behavior, while the cell with standard PTL increases rapidly the potential and a significant loss in efficiency is produced.
Figure 10.
Polarization curves up to 6 A cm−2 of PEM electrolyzer cells with and without MPL. The inset shows an SEM image of the MPL deposited on the sintered Ti current collector [44].
The mass transport properties of the MPL can be further improved by VPS coating technology, and it can be applied on Ti meshes and all other mechanical stable structures. Furthermore, by adjusting the spraying parameters, it is possible to produce such porous transport layer without limitation of surface area by reducing the plasma enthalpy one is able to control the state of particle melting and produce highly porous structures. Figure 11 shows some examples of different porous structures produced with different Ti particle sizes, sweep numbers and plasma enthalpies. Figure 11a depicts the production of a free-standing thin, highly porous structure similar to the commercial sintered titanium. By use of smaller particles, a mixture of sintered titanium and MPL can be produced which is mechanically stable and able to stand alone as an independent porous transport layer (Figure 11b) or can be sprayed directly on the BPP (Figure 11c). With VPS technology, thickness, porosity, pore size of the current collectors can be finely tuned to determine important parameters such as capillary pressure, bubble point and tortuosity.
Figure 11.
SEM cross-section images of (a) free-standing porous layer of 125 µm particles, (b) free-standing porous layer of 45 µm particles, (c) porous layer of 45 µm particles on BPP and (d) multi-functional layer of different particle sizes.
3. Summary
Proton exchange membrane (PEM) electrolysis is a very promising technology for a sustainable hydrogen production and a comprehensive use of renewable energy. PEM electrolyzers are efficient, have high energy densities, and are flexible enough to play an important role for the integration of fluctuating renewables by power grid stabilizing effects. For a large-scale commercialization, the technology needs to become more economically by production cost reduction. Vacuum plasma spraying (VPS) technology is a promising tool to solve pressing question about material substitution. By controlling the spraying parameters, as well highly dense and protective layer can be produced as well porous structures for use as porous transport layers. It handles thereby with the most expensive components and allows the use of stainless steel as basis material for BPPs, which can be protected by VPS coatings. This saves material and fabrication costs. By the use of Nb, it is potentially possible to produce a protective but simultaneously highly conductive coating which may reduce the BPPs cost significantly. By reducing the plasma enthalpy, the powder material can be just partly melted to produce low cost and highly efficient components for use as porous transport layer or any other function such as filter material. The possibilities are endless, and VPS is therefore a promising technology, which can dominate the future PEM electrolysis landscape.
\n',keywords:"coatings, PEM electrolysis, PEM electrolyzers, bipolar plates, cost, current collectors, gas diffusion layer, GDL, hydrogen production",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/55381.pdf",chapterXML:"https://mts.intechopen.com/source/xml/55381.xml",downloadPdfUrl:"/chapter/pdf-download/55381",previewPdfUrl:"/chapter/pdf-preview/55381",totalDownloads:2148,totalViews:605,totalCrossrefCites:1,totalDimensionsCites:5,totalAltmetricsMentions:1,impactScore:2,impactScorePercentile:79,impactScoreQuartile:4,hasAltmetrics:1,dateSubmitted:"October 26th 2016",dateReviewed:"March 14th 2017",datePrePublished:null,datePublished:"September 6th 2017",dateFinished:"May 16th 2017",readingETA:"0",abstract:"Hydrogen produced by proton exchange membrane (PEM) electrolysis technology is a promising solution for energy storage, integration of renewables, and power grid stabilization for a cross-sectoral green energy chain. The most expensive components of the PEM electrolyzer stack are the bipolar plates (BPPs) and porous transport layers (PTLs), depending on the design. The high cost is due to the fact that the employed materials need to withstand corrosion at 2 V in acidic environment. Currently, only titanium is the material of choice for the anode side. We use vacuum plasma spraying (VPS) technology to apply highly stable coatings of titanium and niobium to protect stainless steel BPPs from the oxidative conditions on the anode side. The latter is able to decrease the interfacial contact resistance and improves the long-term stability of the electrolyzer. Furthermore, porous transport layers (PTL) can be realized by VPS as well. These coatings can be produced on existing titanium current collectors acting as macro porous layers (MPL). Lastly, free standing multifunctional structures with optimized tortuosity, capillary pressure and gradient porosity are used as current collectors. The coatings and porous structures developed by VPS enable the reduction of the required material and costs without performance losses.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/55381",risUrl:"/chapter/ris/55381",book:{id:"5827",slug:"new-technologies-in-protective-coatings"},signatures:"Philipp Lettenmeier, Aldo S. Gago and K. Andreas Friedrich",authors:[{id:"199559",title:"Mr.",name:"Philipp",middleName:null,surname:"Lettenmeier",fullName:"Philipp Lettenmeier",slug:"philipp-lettenmeier",email:"Philipp.Lettenmeier@dlr.de",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"German Aerospace Center",institutionURL:null,country:{name:"Germany"}}},{id:"199561",title:"Prof.",name:"Andreas",middleName:null,surname:"Friedrich",fullName:"Andreas Friedrich",slug:"andreas-friedrich",email:"Andreas.Friedrich@dlr.de",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"199565",title:"Dr.",name:"Aldo",middleName:null,surname:"Gago",fullName:"Aldo Gago",slug:"aldo-gago",email:"aldo.gago@outlook.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"German Aerospace Center",institutionURL:null,country:{name:"Germany"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Protective and multifunctional coatings for PEM electrolysis",level:"1"},{id:"sec_2_2",title:"2.1. Vacuum plasma spraying (VPS)",level:"2"},{id:"sec_3_2",title:"2.2. Coated low-cost bipolar plates",level:"2"},{id:"sec_4_2",title:"2.3. Production of porous transport layer via VPS",level:"2"},{id:"sec_6",title:"3. Summary",level:"1"}],chapterReferences:[{id:"B1",body:'United Nations, Adoption of the Paris Agreement, 2015. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf'},{id:"B2",body:'United Nations, Paris Agreement—Entry into Force, 2016. http://unfccc.int/paris_agreement/items/9444.php'},{id:"B3",body:'Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M, Krey V, et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nature Climate Change. 2015;5:519-527. DOI: 10.1038/nclimate2572'},{id:"B4",body:'Royal Society of Chemistry, Enterprise and Electrolysis. 2003. http://www.rsc.org/chemistryworld/Issues/2003/August/electrolysis.asp [Accessed 10-March-2016]'},{id:"B5",body:'Russell JH, Nuttall LJ, Fickett AP. Hydrogen generation by solid polymer electrolyte water electrolysis. American Chemical Society, Division of Fuel Chemistry Preprints of Papers. 1973;18:pp. 24-33'},{id:"B6",body:'Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International journal of Hydrogen Energy. 2013;38:4901-4934. DOI: 10.1016/j.ijhydene.2013.01.151'},{id:"B7",body:'Friedrich KA. PlanDelyKad: Study on Large Scale Water Electrolysis and Hydrogen Storage (in German). Berlin: German Federal Ministry for Economic Affairs and Energy (BMWi); 2015, (n.d.)'},{id:"B8",body:'Eichman J, Harrison KW, Peters M. Novel Electrolyzer Applications: Providing more than just Hydrogen, National Renewable Energy Laboratory, 2014. https://books.google.com/books?id=X3q3rQEACAAJ&pgis=1 [Accessed 17-December-2015]'},{id:"B9",body:'Sutherland E, II. 4 Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage, 2013. pp. 22-25. https://www.hydrogen.energy.gov/pdfs/progress13/ii_a_4_ayers_2013.pdf'},{id:"B10",body:'Lettenmeier P, Wang R, Abouatallah R, Helmly S, Morawietz T, Hiesgen R, et al. Durable membrane electrode assemblies for proton Exchange membrane electrolyzer systems operating at high current densities, Electrochimica Acta. 2016;210:502-511 DOI: 10.1016/j.electacta.2016.04.164'},{id:"B11",body:'Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Eleanor Standen: Fuel cells and hydrogen joint undertaking development of water electrolysis in the European Union. 2014. http://www.fch.europa.eu/sites/default/files/study%20electrolyser_0-Logos_0_0.pdf'},{id:"B12",body:'Pasumarthi V, Chen Y, Bakshi SR, Agarwal A. Reaction synthesis of Ti3SiC2 phase in plasma sprayed coating. Journal of Alloys and Compounds. 2009;484:113-117. DOI: 10.1016/j.jallcom.2009.04.079'},{id:"B13",body:'Fauchais PL, Heberlein JVR, Boulos M. Thermal Spray Fundamentals—From Powder to Part, (n.d.). http://www.springer.com/de/book/9780387283197 [Accessed 24-October-2016]'},{id:"B14",body:'Fauchais P. Understanding plasma spraying. Journal of Physics D: Applied Physics. 2004;37:R86-R108. DOI: 10.1088/0022-3727/37/9/R02'},{id:"B15",body:'Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy. 2005;30:1297-1302. DOI: 10.1016/j.ijhydene.2005.04.016'},{id:"B16",body:'Antunes RA, Oliveira MCL, Ett G, Ett V. Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy. 2010;35:3632-3647. DOI: 10.1016/j.ijhydene.2010.01.059'},{id:"B17",body:'Ayers KE, Capuano C, Anderson EB. Recent advances in cell cost and efficiency for PEM-based water electrolysis. ECS Transactions. 2012;41:15-22. DOI: 10.1149/1.3684798'},{id:"B18",body:'Kim HG, Kwa LK, Han W, Kwac LK, Han W. The performance and stability of a PEM electrolyzer using 3-D mesh hong. In: International Conference on Electrical Power and Energy Systems. Lecture Notes Information Technology; Vol.13, 2012. pp. 373-379'},{id:"B19",body:'Wang JT, Wang WW, Wang C, Mao ZQ. Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. International Journal of Hydrogen Energy. 2012;37:12069-12073. DOI: 10.1016/j.ijhydene.2012.04.146'},{id:"B20",body:'Lee SJ, Huang CH, Chen YP. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. Journal of Materials Processing Technology. 2003;140:688-693. DOI: 10.1016/S0924-0136(03)00743-X'},{id:"B21",body:'André J, Antoni L, Petit JP. Corrosion resistance of stainless steel bipolar plates in a PEFC environment: A comprehensive study. International Journal of Hydrogen Energy. 2010;35:3684-3697. DOI: 10.1016/j.ijhydene.2010.01.062'},{id:"B22",body:'Jin CK, Jeong MG, Kang CG. Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates. International Journal of Hydrogen Energy. 2014;39:21480-21488. DOI: 10.1016/j.ijhydene.2014.03.013'},{id:"B23",body:'Jung HY, Huang SY, Ganesan P, Popov BN. Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. Journal of Power Sources. 2009;194:972-975. DOI: 10.1016/j.jpowsour.2009.06.030'},{id:"B24",body:'Jung HY, Huang SY, Popov BN. High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC). Journal of Power Sources. 2010;195:1950-1956. DOI: 10.1016/j.jpowsour.2009.10.002'},{id:"B25",body:'Wang SH, Peng J, Lui WB. Surface modification and development of titanium bipolar plates for PEM fuel cells. Journal of Power Sources. 2006;160:485-489. DOI: 10.1016/j.jpowsour.2006.01.020'},{id:"B26",body:'Dihrab SS, Sopian K, Alghoul MA, Sulaiman MY. Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable and Sustainable Energy. 2009;13:1663-1668'},{id:"B27",body:'Hodgson DR, May B, Adcock PL, Davies DP. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells. Journal of Power Sources. 2001;96:233-235'},{id:"B28",body:'Wang X, Zhang L, Li G, Zhang G, Shao Z, Yi B. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance. Electrochimica Acta. 2015;158:253-257'},{id:"B29",body:'Sun S, Shao Z, Yu H, Li G, Yi B. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack. Journal of Power Sources. 2014;267:515-520. DOi: 10.1016/j.jpowsour.2014.05.117'},{id:"B30",body:'Kumar A, Ricketts M, Hirano S. Ex situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate. Journal of Power Sources. 2010;195:1401-1407. DOI: 10.1016/j.jpowsour.2009.09.022'},{id:"B31",body:'Wang Y, Northwood DO. Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cells. Journal of Power Sources. 2009;191:483-488. DOI: 10.1016/j.jpowsour.2009.02.029'},{id:"B32",body:'Sun H, Cooke K, Eitzinger G, Hamilton P, Pollet B. Development of PVD coatings for PEMFC metallic bipolar plates. Thin Solid Films. 2013;528:199-204. DOI: 10.1016/j.tsf.2012.10.094'},{id:"B33",body:'Choe C, Choi H, Hong W, Lee JJ. Tantalum nitride coated AISI 316L as bipolar plate for polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy. 2012;37:405-411. DOI: 10.1016/j.ijhydene.2011.09.060'},{id:"B34",body:'Wang H, Turner JA, SnO2: F coated ferritic stainless steels for PEM fuel cell bipolar plates. Journal of Power Sources. 2007;170:387-394. DOI: 10.1016/j.jpowsour.2007.04.028'},{id:"B35",body:'Lettenmeier P, Wang R, Abouatallah R, Saruhan B, Freitag O, Gazdzicki P, Gago AS, Friedrich KA. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers. Scientific Reports. 2017;7:44035; DOI: 10.1038/srep44035. in press'},{id:"B36",body:'Lettenmeier P, Wang R, Abouatallah R, Burggraf F, Gago AS, Friedrich KA. Coated stainless steel bipolar plates for proton exchange membrane electrolyzers. Journal of the Electrochemical Society. 2016;163:F3119-F3124. DOI: 10.1149/2.0141611jes'},{id:"B37",body:'Grigoriev SA, Millet P, Volobuev SA, Fateev VN. Optimization of porous current collectors for PEM water electrolysers. International Journal of Hydrogen Energy. 2009;34:4968-4973. DOI: 10.1016/j.ijhydene.2008.11.056'},{id:"B38",body:'Ito H, Maeda T, Nakano A, Hwang CM, Ishida M, Kato A, et al. Experimental study on porous current collectors of PEM electrolyzers. International Journal of Hydrogen Energy. 2012;37:7418-7428. DOI: 10.1016/j.ijhydene.2012.01.095'},{id:"B39",body:'Selamet OF, Pasaogullari U, Spernjak D, Hussey DS, Jacobson DL, Mat MD. Two-phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging. International Journal of Hydrogen Energy. 2013;38:5823-5835. DOI: 10.1016/j.ijhydene.2013.02.087'},{id:"B40",body:'Ito H, Maeda T, Nakano A, Kato A, Yoshida T. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochimica Acta. 2013;100:242-248. DOI: 10.1016/j.electacta.2012.05.068'},{id:"B41",body:'Arbabi F, Kalantarian A, Abouatallah R, Wang R, Wallace JS. Bazylak A. Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers. Journal of Power Sources. 2014;258:142-149. DOI: 10.1016/j.jpowsour.2014.02.042'},{id:"B42",body:'Siracusano S, Di Blasi A, Baglio V, Brunaccini G, Briguglio N, Stassi A, et al. Optimization of components and assembling in a PEM electrolyzer stack, International journal of Hydrogen Energy. 2011;36:3333-3339. DOI: 10.1016/j.ijhydene.2010.12.044'},{id:"B43",body:'Grigoriev SA, Dzhus KA, Bessarabov DG, Millet P. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning, International journal of Hydrogen Energy. 2014;39:20440-20446. DOI: 10.1016/j.ijhydene.2014.05.043'},{id:"B44",body:'Lettenmeier P, Kolb S, Burggraf F, Gago AS, Friedrich KA. Towards developing a backing layer for proton exchange membrane electrolyzers, Journal of Power Sources. 2016;311:153-158. DOI: 10.1016/j.jpowsour.2016.01.100'},{id:"B45",body:'Grigoriev SA, Dzhus KA, Bessarabov DG, Millet P. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning, International Journal of Hydrogen Energy. 2014;39:20440-20446. http://dx.doi.org/10.1016/j.ijhydene.2014.05.043'},{id:"B46",body:'Hwang CM, Ishida M, Ito H, Maeda T, Nakano A, Kato A, et al. Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell, Journal of Power Sources. 2012;202:108-113. DOI: 10.1016/j.jpowsour.2011.11.041'},{id:"B47",body:'Gago AS, Ansar SA, Saruhan B, Schulz U, Lettenmeier P, Cañas NA, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers. Journal of Power Sources. 2016;307:815-825. DOI: 10.1016/j.jpowsour.2015.12.071'},{id:"B48",body:'Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. Journal of Power Sources. 2016;326:120-128. DOI: 10.1016/j.jpowsour.2016.06.082'},{id:"B49",body:'Park S, Lee JW, Popov BN. Effect of carbon loading in microporous layer on PEM fuel cell performance. Journal of Power Sources. 2006;163:357-363. DOI: 10.1016/j.jpowsour.2006.09.020'},{id:"B50",body:'Weber AZ, Newman J. Effects of Microporous Layers in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 2005;152:A677. DOI: 10.1149/1.1861194'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Philipp Lettenmeier",address:null,affiliation:'
Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring, Stuttgart, Germany
'},{corresp:"yes",contributorFullName:"Aldo S. Gago",address:"aldo.gago@dlr.de",affiliation:'
Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring, Stuttgart, Germany
'},{corresp:null,contributorFullName:"K. Andreas Friedrich",address:null,affiliation:'
Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring, Stuttgart, Germany
Institute for Energy Storage, University of Stuttgart, Keplerstraße, Stuttgart, Germany
'}],corrections:null},book:{id:"5827",type:"book",title:"New Technologies in Protective Coatings",subtitle:null,fullTitle:"New Technologies in Protective Coatings",slug:"new-technologies-in-protective-coatings",publishedDate:"September 6th 2017",bookSignature:"Carlos Giudice and Guadalupe Canosa",coverURL:"https://cdn.intechopen.com/books/images_new/5827.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-3492-3",printIsbn:"978-953-51-3491-6",pdfIsbn:"978-953-51-4668-1",reviewType:"peer-reviewed",numberOfWosCitations:18,isAvailableForWebshopOrdering:!0,editors:[{id:"100127",title:"Dr.",name:"Carlos",middleName:"Alberto",surname:"Giudice",slug:"carlos-giudice",fullName:"Carlos Giudice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"194158",title:"Dr.",name:"Guadalupe",middleName:null,surname:"Canosa",slug:"guadalupe-canosa",fullName:"Guadalupe Canosa"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"924"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"56467",type:"chapter",title:"Introductory Chapter: Protection of Materials",slug:"introductory-chapter-protection-of-materials",totalDownloads:1117,totalCrossrefCites:0,signatures:"Guadalupe Canosa and Carlos Alberto Giudice",reviewType:"peer-reviewed",authors:[{id:"100127",title:"Dr.",name:"Carlos",middleName:"Alberto",surname:"Giudice",fullName:"Carlos Giudice",slug:"carlos-giudice"}]},{id:"54658",type:"chapter",title:"Organic-Inorganic Hybrid Coatings for Corrosion Protection of Metallic Surfaces",slug:"organic-inorganic-hybrid-coatings-for-corrosion-protection-of-metallic-surfaces",totalDownloads:2807,totalCrossrefCites:6,signatures:"Samarah V. Harb, Andressa Trentin, Ruben F. O. Torrico, Sandra H.\nPulcinelli, Celso V. Santilli and Peter Hammer",reviewType:"peer-reviewed",authors:[{id:"96950",title:"Dr.",name:"Peter",middleName:null,surname:"Hammer",fullName:"Peter Hammer",slug:"peter-hammer"}]},{id:"54417",type:"chapter",title:"Co-deposited Ni-Cr-B Nanocomposite Coatings for Protection Against Corrosion-Erosion",slug:"co-deposited-ni-cr-b-nanocomposite-coatings-for-protection-against-corrosion-erosion",totalDownloads:1473,totalCrossrefCites:0,signatures:"Jorge Morales Hernández, María de Lourdes Montoya García,\nHéctor Javier Dorantes Rosales and Joel Moreno Palmerin",reviewType:"peer-reviewed",authors:[{id:"107864",title:"Dr.",name:"Hector",middleName:null,surname:"Dorantes-Rosales",fullName:"Hector Dorantes-Rosales",slug:"hector-dorantes-rosales"},{id:"114381",title:"Dr.",name:"Jorge",middleName:null,surname:"Morales-Hernandez",fullName:"Jorge Morales-Hernandez",slug:"jorge-morales-hernandez"},{id:"204900",title:"Prof.",name:"Joel",middleName:null,surname:"Moreno",fullName:"Joel Moreno",slug:"joel-moreno"},{id:"204901",title:"Ms.",name:"Ma. Lourdes",middleName:null,surname:"Montoya",fullName:"Ma. Lourdes Montoya",slug:"ma.-lourdes-montoya"}]},{id:"55381",type:"chapter",title:"Protective Coatings for Low-Cost Bipolar Plates and Current Collectors of Proton Exchange Membrane Electrolyzers for Large Scale Energy Storage from Renewables",slug:"protective-coatings-for-low-cost-bipolar-plates-and-current-collectors-of-proton-exchange-membrane-e",totalDownloads:2148,totalCrossrefCites:1,signatures:"Philipp Lettenmeier, Aldo S. Gago and K. Andreas Friedrich",reviewType:"peer-reviewed",authors:[{id:"199559",title:"Mr.",name:"Philipp",middleName:null,surname:"Lettenmeier",fullName:"Philipp Lettenmeier",slug:"philipp-lettenmeier"},{id:"199561",title:"Prof.",name:"Andreas",middleName:null,surname:"Friedrich",fullName:"Andreas Friedrich",slug:"andreas-friedrich"},{id:"199565",title:"Dr.",name:"Aldo",middleName:null,surname:"Gago",fullName:"Aldo Gago",slug:"aldo-gago"}]},{id:"54346",type:"chapter",title:"Hydrophobic Coatings for Corrosion Control of Aluminum Heat Exchangers",slug:"hydrophobic-coatings-for-corrosion-control-of-aluminum-heat-exchangers",totalDownloads:1506,totalCrossrefCites:1,signatures:"Alba Covelo, Carmina Menchaca, Miriam Flores, Pilar Rodríguez‐\nRojas, Miguel Hernandez‐Gallegos, Esteban Martinez Meza,\nRebecca Jaimes‐Ramírez and Jorge Uruchurtu",reviewType:"peer-reviewed",authors:[{id:"38866",title:"Dr.",name:"Esteban",middleName:null,surname:"Martinez-Meza",fullName:"Esteban Martinez-Meza",slug:"esteban-martinez-meza"},{id:"48594",title:"Dr.",name:"Jorge",middleName:null,surname:"Uruchurtu",fullName:"Jorge Uruchurtu",slug:"jorge-uruchurtu"},{id:"204976",title:"Dr.",name:"Alba",middleName:null,surname:"Covelo",fullName:"Alba Covelo",slug:"alba-covelo"},{id:"204977",title:"Dr.",name:"Carmina",middleName:null,surname:"Menchaca",fullName:"Carmina Menchaca",slug:"carmina-menchaca"},{id:"204978",title:"Dr.",name:"Miriam",middleName:null,surname:"Flores",fullName:"Miriam Flores",slug:"miriam-flores"},{id:"204979",title:"Ms.",name:"Pilar",middleName:null,surname:"Rodríguez-Rojas",fullName:"Pilar Rodríguez-Rojas",slug:"pilar-rodriguez-rojas"},{id:"204980",title:"Dr.",name:"Miguel",middleName:null,surname:"Hernandez-Gallegos",fullName:"Miguel Hernandez-Gallegos",slug:"miguel-hernandez-gallegos"},{id:"204981",title:"Dr.",name:"Rebeca",middleName:null,surname:"Jaimes-Ramirez",fullName:"Rebeca Jaimes-Ramirez",slug:"rebeca-jaimes-ramirez"}]},{id:"54867",type:"chapter",title:"Fire Retardant Coatings",slug:"fire-retardant-coatings",totalDownloads:3978,totalCrossrefCites:8,signatures:"Thirumal Mariappan",reviewType:"peer-reviewed",authors:[{id:"198114",title:"Dr.",name:"Thirumal",middleName:null,surname:"Mariappan",fullName:"Thirumal Mariappan",slug:"thirumal-mariappan"}]}]},relatedBooks:[{type:"book",id:"588",title:"Ceramic Coatings",subtitle:"Applications in Engineering",isOpenForSubmission:!1,hash:"87d35270dc765ca2c5fa7fd7063c7f60",slug:"ceramic-coatings-applications-in-engineering",bookSignature:"Feng Shi",coverURL:"https://cdn.intechopen.com/books/images_new/588.jpg",editedByType:"Edited by",editors:[{id:"24821",title:"Dr.",name:"Feng",surname:"Shi",slug:"feng-shi",fullName:"Feng Shi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"29750",title:"Ti-O Film Cathodically-Electrodeposited on the Surface of TiNi SMA and Its Bioactivity and Blood Compatibility",slug:"ti-o-film-cathodically-electrodeposited-on-the-surface-of-tini-sma-and-its-bioactivity-and-blood-com",signatures:"Zhu Weidong",authors:[{id:"87260",title:"Prof.",name:"Zhu",middleName:null,surname:"Weidong",fullName:"Zhu Weidong",slug:"zhu-weidong"}]},{id:"29751",title:"Ceramic Coatings Obtained by Electrophoretic Deposition: Fundamentals, Models, Post-Deposition Processes and Applications",slug:"ceramic-coatings-obtained-by-electrophoretic-deposition",signatures:"M. Federica De Riccardis",authors:[{id:"77857",title:"Dr.",name:"M. Federica",middleName:null,surname:"De Riccardis",fullName:"M. Federica De Riccardis",slug:"m.-federica-de-riccardis"}]},{id:"29752",title:"Magnetron Sputtered BG Thin Films: An Alternative Biofunctionalization Approach – Peculiarities of Bioglass Sputtering and Bioactivity Behaviour",slug:"magnetron-sputtered-bg-thin-films-an-alternative-biofunctionalization-approach-peculiarities-of-biog",signatures:"George E. Stan and José M.F. Ferreira",authors:[{id:"34618",title:"Prof.",name:"José",middleName:null,surname:"Fonte Ferreira",fullName:"José Fonte Ferreira",slug:"jose-fonte-ferreira"},{id:"81572",title:"Dr.",name:"George",middleName:null,surname:"Stan",fullName:"George Stan",slug:"george-stan"}]},{id:"29753",title:"Erosion Behavior of Plasma Sprayed Alumina and Calcia-Stabilized Zirconia Coatings on Cast Iron Substrate",slug:"erosion-wear-behaviour-of-plasma-sprayed-alumina-and-calcia-stabilized-zirconia-coatings-on-cast-iro",signatures:"N. Krishnamurthy, M.S. Murali, B. Venkataraman and P.G. Mukunda",authors:[{id:"84732",title:"Dr.",name:"Narayanappa",middleName:null,surname:"Krishnamurthy",fullName:"Narayanappa Krishnamurthy",slug:"narayanappa-krishnamurthy"}]},{id:"29754",title:"Investigations of Thermal Barrier Coatings for Turbine Parts",slug:"investigations-of-thermal-barrier-coatings-for-turbine-parts",signatures:"Alexandr Lepeshkin",authors:[{id:"86719",title:"Dr.",name:"Alexandr",middleName:"Roaldovich",surname:"Lepeshkin",fullName:"Alexandr Lepeshkin",slug:"alexandr-lepeshkin"}]},{id:"29755",title:"Thermal Spraying of Oxide Ceramic and Ceramic Metallic Coatings",slug:"thermal-spraying-of-oxide-ceramic-and-ceramic-metallic-coatings",signatures:"Martin Erne and Daniel Kolar",authors:[{id:"79126",title:"Mr.",name:"Martin",middleName:null,surname:"Erne",fullName:"Martin Erne",slug:"martin-erne"},{id:"132452",title:"Mr.",name:"Daniel",middleName:null,surname:"Kolar",fullName:"Daniel Kolar",slug:"daniel-kolar"}]},{id:"29756",title:"Ceramic Coating Applications and Research Fields for Internal Combustion Engines",slug:"ceramic-coating-applications-and-research-fields-for-internal-combustion-engines",signatures:"Murat Ciniviz, Mustafa Sahir Salman, Eyüb Canlı, Hüseyin Köse and Özgür Solmaz",authors:[{id:"80282",title:"Dr.",name:"Murat",middleName:null,surname:"Ciniviz",fullName:"Murat Ciniviz",slug:"murat-ciniviz"},{id:"86782",title:"MSc.",name:"Eyüb",middleName:null,surname:"Canlı",fullName:"Eyüb Canlı",slug:"eyub-canli"},{id:"95463",title:"MSc.",name:"Hüseyin",middleName:null,surname:"Köse",fullName:"Hüseyin Köse",slug:"huseyin-kose"},{id:"95464",title:"MSc.",name:"Özgür",middleName:null,surname:"Solmaz",fullName:"Özgür Solmaz",slug:"ozgur-solmaz"},{id:"136904",title:"Prof.",name:"Mustafa Sahir",middleName:null,surname:"Salman",fullName:"Mustafa Sahir Salman",slug:"mustafa-sahir-salman"}]},{id:"29757",title:"Ceramic Coatings for Pigments",slug:"ceramic-coatings-for-pigments",signatures:"A.R. Mirhabibi",authors:[{id:"80383",title:"Prof.",name:"Ali Reza",middleName:null,surname:"Mirhabibi",fullName:"Ali Reza Mirhabibi",slug:"ali-reza-mirhabibi"}]},{id:"29758",title:"Ceramic Coating for Cast House Application",slug:"ceramic-coatings-for-application-in-foundry",signatures:"Zagorka Aćimović-Pavlović, Aurel Prstić, Ljubiša Andrić, Vladan Milošević and Sonja Milićević",authors:[{id:"86328",title:"MSc.",name:"Sonja",middleName:null,surname:"Milicevic",fullName:"Sonja Milicevic",slug:"sonja-milicevic"},{id:"86345",title:"Prof.",name:"Zagorka",middleName:null,surname:"Aćimović Pavlović",fullName:"Zagorka Aćimović Pavlović",slug:"zagorka-acimovic-pavlovic"},{id:"86347",title:"Prof.",name:"Ljubiša",middleName:null,surname:"Andrić",fullName:"Ljubiša Andrić",slug:"ljubisa-andric"},{id:"86348",title:"Dr.",name:"Vladan",middleName:null,surname:"Milošević",fullName:"Vladan Milošević",slug:"vladan-milosevic"},{id:"86351",title:"MSc.",name:"Aurel",middleName:null,surname:"Prstic",fullName:"Aurel Prstic",slug:"aurel-prstic"}]}]}],publishedBooks:[{type:"book",id:"588",title:"Ceramic Coatings",subtitle:"Applications in Engineering",isOpenForSubmission:!1,hash:"87d35270dc765ca2c5fa7fd7063c7f60",slug:"ceramic-coatings-applications-in-engineering",bookSignature:"Feng Shi",coverURL:"https://cdn.intechopen.com/books/images_new/588.jpg",editedByType:"Edited by",editors:[{id:"24821",title:"Dr.",name:"Feng",surname:"Shi",slug:"feng-shi",fullName:"Feng Shi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5827",title:"New Technologies in Protective Coatings",subtitle:null,isOpenForSubmission:!1,hash:"b569584985468cd3d20b12d8098a3a9c",slug:"new-technologies-in-protective-coatings",bookSignature:"Carlos Giudice and Guadalupe Canosa",coverURL:"https://cdn.intechopen.com/books/images_new/5827.jpg",editedByType:"Edited by",editors:[{id:"100127",title:"Dr.",name:"Carlos",surname:"Giudice",slug:"carlos-giudice",fullName:"Carlos Giudice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6084",title:"Recent Advances in Porous Ceramics",subtitle:null,isOpenForSubmission:!1,hash:"c6749abbf887821d1030727f7eee1d6f",slug:"recent-advances-in-porous-ceramics",bookSignature:"Uday M. Basheer Al-Naib",coverURL:"https://cdn.intechopen.com/books/images_new/6084.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7449",title:"Ceramic Materials",subtitle:"Synthesis, Characterization, Applications and Recycling",isOpenForSubmission:!1,hash:"ec6a7353676eab0c75ad96e44512952f",slug:"ceramic-materials-synthesis-characterization-applications-and-recycling",bookSignature:"Dolores Eliche Quesada, Luis Perez Villarejo and Pedro Sánchez Soto",coverURL:"https://cdn.intechopen.com/books/images_new/7449.jpg",editedByType:"Edited by",editors:[{id:"225122",title:"Prof.",name:"Dolores",surname:"Eliche Quesada",slug:"dolores-eliche-quesada",fullName:"Dolores Eliche Quesada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7519",title:"Sol-Gel Method",subtitle:"Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties",isOpenForSubmission:!1,hash:"cf094d22ebcb3083749e5f96e47f7769",slug:"sol-gel-method-design-and-synthesis-of-new-materials-with-interesting-physical-chemical-and-biological-properties",bookSignature:"Guadalupe Valverde Aguilar",coverURL:"https://cdn.intechopen.com/books/images_new/7519.jpg",editedByType:"Edited by",editors:[{id:"186652",title:"Dr.",name:"Guadalupe",surname:"Valverde Aguilar",slug:"guadalupe-valverde-aguilar",fullName:"Guadalupe Valverde Aguilar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"5827",title:"New Technologies in Protective Coatings",subtitle:null,isOpenForSubmission:!1,hash:"b569584985468cd3d20b12d8098a3a9c",slug:"new-technologies-in-protective-coatings",bookSignature:"Carlos Giudice and Guadalupe Canosa",coverURL:"https://cdn.intechopen.com/books/images_new/5827.jpg",editedByType:"Edited by",editors:[{id:"100127",title:"Dr.",name:"Carlos",surname:"Giudice",slug:"carlos-giudice",fullName:"Carlos Giudice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"76276",title:"Bacterial Diseases of Goat and Its Preventive Measures",doi:"10.5772/intechopen.97434",slug:"bacterial-diseases-of-goat-and-its-preventive-measures",body:'\n
\n
1. Introduction
\n
Due to intensification of small ruminant farming, there is increase in the number of disease outbreaks in the recent years. Among the various infectious diseases, diseases caused by bacterial pathogens contribute to severe economic loss to the goat farmers. Various factors like increase in herd size, reduced ventilation in farm and poor husbandry practices can predispose to diseases. Bacterial diseases like anthrax, enterotoxaemia, tetanus, gas gangrene, caseous lymphadenitis, listeriosis, tuberculosis, Johne’s disease, dermatophilosis, pasteurellosis/mannheimiosis, brucellosis, foot rot, contagious caprine pleuropneumonia, colibacillosis, salmonellosis, etc., affect goats and can cause various ailments and some diseases can cause heavy mortality leading to huge economic loss to the farmer [1]. Different bacterial pathogens affect different organs of goat thereby eliciting various clinical signs based on which a tentative diagnosis can be made (Figure 1).
\n
Figure 1.
Different bacterial diseases of goat and the organ/ tissues affected. Brucellosis affects reproductive tract, dermatophilosis affect the skin, johne’s disease causes corrugation of intestine, pasteurellosis/ mannheimiosis, tuberculosis, contagious caprine pleuropneumonia affects the respiratory system, caseous lymphadenitis affects the lymph nodes and tetanus affects the nervous system. This figure is propriety of the authors.
\n
Antibacterial agents can be used to treat various bacterial diseases but these drugs should be used judiciously due to the risk of development of antimicrobial resistance. Vaccination is the best way to prevent infectious diseases and based on the pattern of the disease annual vaccination should be practiced to prevent disease outbreaks. Diseases like anthrax, brucellosis and tuberculosis pose threat to human since these diseases can be transmitted to human through direct or indirect route of transmission [2]. Due care should be taken while handling infected goats or dead goats in farm as the zoonotic diseases can cause severe aliments in human.
\n
\n
\n
2. Methods
\n
This chapter is a comprehensive summary of important bacterial diseases of goats and this can be a guide to veterinary students, field veterinarians and goat farmers regarding the impact of these bacterial diseases. This chapter also highlights the preventive measures and zoonotic potential associated with the bacterial diseases of goats. Important bacterial diseases that are zoonotic and economically important like anthrax, brucellosis, tetanus, enterotoxaemia, Johne’s disease, Pasteurellosis/ Mannheimiosis, caseous lymphadenitis, contagious caprine pleuropneumonia, dermatophilosis and foot rot are discussed. Each disease is delt with various subsections like definition of the diseases, etiology, epizootiology, transmission clinical signs, diagnosis, treatment, preventive measures and public health significance, if any.
\n
\n
\n
3. Anthrax
\n
Anthrax is a peracute, acute or subacute, often fatal disease of animals including goats. In goats the disease is mainly characterized by septicaemia, splenomegaly and gelatinous infiltration of subcutaneous or subserosal tissues. The disease is commonly known as woolsorter’s disease, splenic fever, charbon, and milzbrand.
\n
\n
3.1 Etiology
\n
The disease is caused by Bacillus anthracis, a gram positive, capsulated, non-motile, aerobic, spore-forming, rod shaped bacterium [3].
\n
\n
\n
3.2 Epizootiology
\n
The disease is worldwide in distribution and is endemic in some countries, while occurs in defined regions of other countries. It was reported to be associated with heavy mortalities in goats and sheep of sub-saharan region in 1960–70s and in other countries. In recent days, through strict vaccination procedures the incidence reduced in most countries, however, sporadic cases are still being reported. B. anthracis is widely distributed in the environment, as they produce highly resistant endospores. They can tolerate extremely adverse conditions such as desiccation, high temperatures and chemical disinfectants. When the vegetative bacteria are exposed to atmospheric oxygen under favorable temperature (20–40°C) and relative humidity (>60%), the spores are formed. Further, the calcium plays a role in spore formation and in combination with dipicolinic acid, enhances the spore survival. Hence, its survival is more in alkaline soil that is rich in calcium and nitrogen and with high moisture content, the endospores can survive for more than 50 years. Further, recurrent cycles of flooding and evaporation may concentrate spores in particular low-lying regions [3].
\n
\n
\n
3.3 Transmission
\n
Goats are infected by ingestion of food, water or soil contaminated with spores. The infection can also occur through inhalation or abraded skin and oral mucosa. Mechanical transmission by biting insects is also reported. Wild animals acting as carriers makes the control programme challenging as it is least possible to vaccinate all wild animals.
\n
\n
\n
3.4 Clinical signs
\n
The incubation period ranges from hours to days. The disease is usually fatal, especially in sheep and goats, after 1–3 days. The peracute case is characterized by sudden death without any premonitory signs. However, there may be fever, dysponea, congestion of mucous membranes, muscular tremors and terminal convulsions in few animals. In acute cases, fever, anorexia, labored breathing, increased heart rate, ruminal stasis and reduce milk production may be observed. There may be bloody discharges from orifices like mouth, nostrils, anus and/or vulva. Diarrhea or dysentery and oedema and swelling of the tongue, throat, flank and perineum (anus, vulva) may be seen. Pregnant animal abort and blood-tinged milk is produced. Animals then collapse with terminal convulsions and die [4].
\n
Necropsy of suspected carcass is not recommended, as the vegetative bacteria may get transformed into spore and hence contaminate the environment. The pathological features such as absence of rigor mortis and rapid putrefaction and bloating of the carcass are common clinical features. Oozing of unclotted dark, tarry colored blood from orifices, soft and enlarged spleen, blood-stained fluid in body cavities and widespread ecchymotic hemorrhages are frequently observed post mortem findings.
\n
\n
\n
3.5 Diagnosis
\n
Though clinical signs are highly suggestive, the diagnosis based on clinical signs alone is difficult. Thin smears of blood from ear tip can be stained with polychrome methylene blue stain to reveal short chains of truncated blue color rods, surrounded by pink capsules (McFadyean reaction). The organism can be cultured on Sheep or Ox blood agar which shows flat, dry grayish colonies with ‘ground glass’ appearance after 24–48 hours of incubation (Figure 2). The selective media for the organism is PLET (Polymyxin-lysozyme-EDTA thallous acetate) medium. The Ascoli’s thermo-precipitation test is also commonly used test to detect antigens of B. anthracis. Agar gel immunodiffusion, complement fixation test, ELISA and immunofluorescence tests though available are insensitive and not routinely used [4]. The PCR test can be used for direct detection of the organism from decomposed samples and can also be employed for targeting the pXO1 and pXO2 plasmids to confirm the virulence of isolates from the culture.
\n
Figure 2.
Ground glass appearance Bacillus anthracis colonies on sheep blood agar. This figure is propriety of the authors.
\n
\n
\n
3.6 Treatment
\n
Ailing animals in early stages of infection can be treated with penicillin or oxytetracycline or other long-acting antibiotics. An anthrax antiserum may result in recovery if used in early stages. Vaccination should follow 7–10 days after the conclusion of antibiotic therapy [4].
\n
\n
\n
3.7 Preventive measures
\n
In endemic areas, annual vaccination is advisable. The goat should be vaccinated with ‘Sterne strain’ live spore vaccine one month before the anticipated outbreaks. In non-endemic areas, movement of animals and their products should be restricted; feed and bedding materials etc., should not be transferred from affected herds. Disinfection of the premises with 5% formalin, 5% sodium hydroxide or 3% peracetic acid and placing foot-baths containing these sporicidal disinfectants at the entrances of the affected farms will help to control the spread of infection. Contaminated building should be fumigated with formaldehyde before removing the bedding materials [5]. Proper disposal of carcasses and the infected materials should be done either by deep burial or incineration.
\n
\n
\n
3.8 Public health significance
\n
\nB. anthracis is considered a bioterrorism agent. Three forms of disease occur in human beings. When endospores enter through abraded skin, the cutaneous form of anthrax (malignant pustule) develops. While, the pulmonary form (woolsorters’ disease) follows inhalation route and intestinal form results from ingestion of infective material. The disease usually fatal if not treated early [6].
\n
\n
\n
\n
4. Brucellosis
\n
Caprine brucellosis is an infectious zoonotic disease having substantial economic impact on both livestock and human. Caprine brucellosis is reported since ancient days; Hippocrates II first described the human brucellosis in 400 B.C. which was most likely to be associated with consumption of raw milk or derivatives of infected sheep or goats.
\n
\n
4.1 Etiology
\n
The causative agent is Brucella species mainly B. melitensis that are small, non-motile, non-spore forming, gram-negative coccobacilli. Goats are also susceptible to infection by B. abortus, particularly when housed in close proximity with infected cattle; however, they do not sustain the infection in the herd [7].
\n
\n
\n
4.2 Epizootiology
\n
The disease is prevalent worldwide and it remains a major burden in parts of Mediterranean region, the Middle East, Central and Southeast Asia (including India and China), sub-Saharan Africa, and parts of Latin America [8]. Goat herds from USA, Canada, Colombia, Chile, and Uruguay are reported to be free from B. melitensis infection.
\n
\n
\n
4.3 Transmission
\n
Infection occurs primarily through ingestion of the organisms. Goats acquire infection by licking the aborted fetuses, placentas, newborn kids, vaginal discharges, or by consumption of feed contaminated with these infectious materials [9]. Milkers can also spread the infection through unsanitary milking practices.
\n
\n
\n
4.4 Clinical signs
\n
The disease is more severe in goats and is protracted than in sheep. Clinical manifestations include high abortion rates particularly during the fourth month of pregnancy and retained placentas, orchitis in bucks, arthritis and hygromas. In goats, mastitis and lameness may also be seen. The abortion rate can be high when this bacterium first enters a naive flock or herd [10]. The abortion rates are usually much lower once B. melitensis has become established in a herd and only a few animals abort repeatedly but affected animals shed bacteria during parturition. Healthy asymptomatic carriers become a potential source of infection. Other clinical signs include death of weak offspring, low weaning weight, decreased milk production, and epididymitis, and reduced fertility which is more common in sheep. In case of abortions, fetus might reveal excess of blood-stained fluids in the body cavities, with enlarged spleen and liver. Moreover, infected foetal membranes can show thickened and dull-gray color necrotic cotyledons [11].
\n
\n
\n
4.5 Diagnosis
\n
Diagnosis is made based on clinical signs, direct examination of MZN-stained smears of fluids or tissues, isolation and identification of B. melitensis from milk or an aborted fetus or by serum agglutination tests. The Rose-Bengal agglutination test and the complement fixation test are the most widely used methods for detecting B. melitensis infection and are approved for international trade. Indirect enzyme-linked immunosorbent assays (ELISA) have been developed and are also approved tests for the purposes of international trade [12]. Isolation and identification of B. melitensis from aborted foetal stomach contents, placenta and uterine fluids can be attempted and isolation is the gold standard technique for confirmation of brucellosis (Figure 3). Isolation should be carried out in biosafety cabinet class III as the organism is zoonotic.
\n
Figure 3.
\nBrucella melitensis colonies on sheep blood agar. This figure is propriety of the authors.
\n
\n
\n
4.6 Preventive measures
\n
Test and slaughter policy of the infected herd is generally implemented in countries where the disease is considered exotic. This can also reduce the prevalence of disease in endemic areas. In most countries where B. melitensis is endemic, vaccination with the Rev. 1 strain is commonly employed [13]. It is a live attenuated strain of B. melitensis; administered by the subcutaneous or conjunctival routes and is used for vaccination of kids and lambs up to 6 months of age.
\n
\n
\n
4.7 Public health significance
\n
\nB. melitensis is highly pathogenic than other species of Brucella for human beings. The infection in human is characterized by fever, chills, headache, malaise, back pain, myalgia and lymphadenopathy, which may be accompanied by splenomegaly and/ or hepatomegaly. The patients may experience drenching sweats at night and nonspecific gastrointestinal signs such as vomition, diarrhea and/or constipation [14]. Localized manifestations such as arthritis, spondylitis, sacroiliitis, osteomyelitis, bursitis and tenosynovitis may be observed. Epididymo-orchitis, prostatitis and seminal vesiculitis can be seen in males, whereas abortion or premature births are seen in pregnant women. Deaths are usually uncommon except in infants caused by endocarditis or infections of the brain.
\n
\n
\n
\n
5. Tetanus
\n
Tetanus (Lockjaw) is an acute, highly fatal intoxication of all domestic animals and humans caused by neurotoxin produced by the bacteria Clostridium tetani [15]. Though all species of livestock are susceptible, sheep and goats are more susceptible than cattle and horses being the most susceptible. It is characterized by hyperasethesia, tetany and convulsions.
\n
\n
5.1 Etiology
\n
The etiological agent, Clostridium tetani is a strictly anaerobic, motile, slender, straight, spore forming (‘drumstick appearance’), Gram-positive rod. Based on flagellar antigens, so far 10 serotypes of C. tetani have been described and all produce antigenically a similar neurotoxin called tetanospasmin. Though endospores are resistant to chemicals and boiling, they are destroyed by autoclaving.
\n
\n
\n
5.2 Epizootiology
\n
Tetanus is worldwide in distribution and occurs sporadically. The organism is normal inhabitant of intestinal tract of animals and persists as resistant spores in soil, manure [16].
\n
\n
\n
5.3 Transmission
\n
The toxemia in tetanus is caused by a specific neurotoxin produced by C. tetani in necrotic tissue. Spores are introduced into the tissue through wounds, specifically deep puncture wounds that provide the favorable anaerobic environment. Most outbreaks occur following mass contamination of animals during castration, vaccination, ear tagging, docking and other surgical procedures [17]. Grazing on rough and spiky pastures may injure the oral mucosa and hence may facilitate the invasion of the bacteria. The spores remain dormant in tissues and proliferate to liberate toxins under favorable conditions.
\n
\n
\n
5.4 Clinical signs
\n
The incubation period is usually of 4 days to 3 weeks. The initial signs include muscle stiffness, tremors and prolapse of the third eyelid. This is followed by rigidity and extension of the limbs leading to a stiff gait and abnormal flexion of the joints. Tetany of masseter muscles causes drooling of saliva (lock jaw) and regurgitation through nostrils [17]. The animals may exhibit bloat, an inability to chew, and hyperthermia. Retracted lips, hypersensitivity to external stimuli, and a ‘saw-horse’ stance are frequent signs. The spasms of alimentary and urinary tract muscle may cause constipation and retention of urine [17]. The abnormal muscular contracture may result in opisthotonus, curvature of the spine and bending of the tail. The disease is highly fatal and death occurs within 3–10 days with mortality nearing 100%, primarily as a result of respiratory failure. Necropsy features usually are nonspecific except for the inflammatory reaction associated with the wound.
\n
\n
\n
5.5 Diagnosis
\n
Diagnosis can be made based on clinical features such as muscular spasms, prolapse of third eyelid and based on history of trauma or surgery. The Gram-positive rods with terminal spores can be demonstrated in the smears prepared from necrotic tissue or wound [18]. Anaerobic culture of the bacteria from necrotic tissue may be attempted but is often unsuccessful. PCR and real-time PCR techniques can be employed for the detection of neurotoxin genes of the organism. Mouse inoculation test can be performed to demonstrate circulating neurotoxin from the serum of affected animals.
\n
\n
\n
5.6 Treatment
\n
Treatment mainly aimed at wound management, antibiotic therapy, antitoxin administration and vaccination. Wound management consists of surgical debridement of infected wounds and removal of debris, flushing with hydrogen peroxide to produce aerobic condition that helps to inhibit replication of the bacteria at the site of infection. The antibiotics (large doses of Penicillin) can be given both parenterally and flushed into the cleaned wound to prevent further replication of the bacteria and production of toxin [19]. Affected animals must be kept in a quiet and dark environment. Fluid replacement therapy, sedatives and muscle relaxants can minimize clinical discomfort and maintain vital functions. To neutralize unbound toxin, the tetanus antitoxin must be administered on time, either intravenously or into the subarachnoid space for three consecutive days. Vaccination with tetanus toxoid may be given subcutaneously to promote an active immune response even in those animals that are treated with antitoxin.
\n
\n
\n
5.7 Preventive measures
\n
Tetanus can be controlled by following good sanitation measures, aseptic surgical and management procedures and vaccination. Goats in a herd must be vaccinated routinely with tetanus toxoid which is very effective for stimulating long-term immunity. They can be vaccinated 2–3 times during the first year of life followed by booster vaccination before parturition to ensure colostral antibodies [20]. Further, a booster dose may be advisable if a vaccinated animal sustains a deep wound.
\n
\n
\n
\n
6. Enterotoxemia
\n
\n
6.1 Etiology
\n
Enterotoxaemia in goats is caused by Clostridium perfringens, a gram-positive, non-motile, spore-forming bacilli that grows well in anaerobic or micro-aerophilic conditions. This disease condition tends to be associated mainly with sheep and is of less importance in goats and cattle. C. perfringens Type D primarily produce enterotoxamia and Type C sometimes causes sudden death in goats. Grain-fed kids (3–12 weeks old) on a high-concentrate diet are most susceptible, but adult goats may also be affected. Goats are commonly affected with a hemorrhagic form of enterotoxemia.
\n
\n
\n
6.2 Epizootiology
\n
\nC. perfringens is worldwide in distribution and is found in soil, feces, and in the intestinal tracts of animals and humans. C. perfringens types B, C and D may survive in soil as spores for several months. C. perfringens type A constitutes a part of the normal intestinal flora and is widely dispersed in soil. Overcrowding and prolonged confinement may increase the spread and severity of the condition.
\n
\n
\n
6.3 Transmission
\n
The C. perfringens type D is found as obligate parasite in the intestinal tract of animals [21]. The animals on a high grain diet or on succulent pasture are predisposed to this condition (hence described as ‘over-eating disease’). Thus, the disease is more common in well-fed animals in intensive feedlots.
\n
\n
\n
6.4 Clinical signs
\n
The peracute condition is characterized by sudden death of younger and healthy kids. This is occasionally preceded by other signs such as loss of appetite, lack of rumen activity and rumination, bloat, depression and a drunken appearance; the animals may show neurological signs such as incoordination, inability to stand, and convulsions. There may be watery diarrhea and glucosuria. In goat’s acute disease is mainly characterized by dysentery, abdominal discomfort and convulsions.
\n
In acute cases of goats, the necropsy findings include pulmonary edema, necrosis of intestinal walls and scattered hyperaemic areas of intestine. Intestinal contents may be green, blood-stained or mucoid, and fibrinous casts may be present in the lumen of the large intestine [22]. Mesentric lymph nodes may be edematous. Fluid accumulation in the pericardial sac, extremely necrotic, soft kidneys (‘pulpy kidneys’), focal encephalomalacia, and petechiae of serosa of the brain, diaphragm, gastrointestinal tract and heart are common findings.
\n
\n
\n
6.5 Diagnosis
\n
Diagnosis of enterotoxaemia depends on epidemiological features, type of diet, clinical and pathological features. Gram positive rods can be demonstrated in the smears of intestinal contents or in the lesions of intestine. The culture of bacteria from fecal samples in cooked meat media may be suggestive of the disease (Figure 4). Organism on blood agar plates show double zone of hemolysis which is suggestive of C. perfringens. Demonstration of the epsilon toxin in the intestinal content is highly reliable method. Protection of mice injected with infiltrates of toxin from intestinal contents against specific antisera is diagnostic. Genotyping by PCR can be used to type isolates of C. perfringens as an alternative to in vivo toxin neutralization tests. Though ELISA tests can be performed, misdiagnosis may occxur as this test detects low levels of toxin in the intestinal contents of normal animals [23].
\n
Figure 4.
Double zone hemolytic colonies of Clostridium perfringens on sheep blood agar. This figure is propriety of the authors.
\n
\n
\n
6.6 Treatment
\n
Treatment generally is ineffective as most cases are acute in nature. A hyperimmune serum, if available, can be used and a combination of hyperimmune serum along with sulphadimidine has been found useful in goats. Chelating agents can be used to neutralize toxins [21].
\n
\n
\n
6.7 Preventive measures
\n
Vaccination before the anticipated outbreaks is the primary method of control. Alum precipitated formalin killed whole culture toxoid vaccines are commercially available. In ruminants, maternal antibodies last about 5–6 weeks postpartum and hence, the young animals must be vaccinated at this time. Kids are usually vaccinated twice at 4 weeks interval and then re-vaccinated at once in 6 months. However, several anaphylactic reactions have been reported in Sannen kids re-vaccinated with toxoids [24]. Sudden dietary changes and other predisposing factors to enterotoxaemias must be managed. Feeding regimens and feeding of concentrates even to adult goats should be monitored carefully.
\n
\n
\n
\n
7. Johne’s disease (JD)
\n
A chronic, contagious, granulomatous disease affecting small intestine of adult ruminants and the affected animals show weight loss and intermittent diarrhea [25].
\n
\n
7.1 Etiology
\n
JD is caused by Mycobacterium avium subspecies paratuberculosis, a fastidious, acid-fast, gram-positive rod [25].
\n
\n
\n
7.2 Transmission
\n
The organism is present in the environment and animals at young are affected either through ingestion of contaminated milk or direct contact. Infected goats may excrete the bacteria in the feces thereby contaminating the environment [26].
\n
\n
\n
7.3 Clinical signs
\n
The incubation period is usually months to years. Chronic wasting is a characteristic sign in goat and at times pasty feces or diarrhea (in advanced cases) can be witnessed. In advanced cases the animals may lose weight rapidly and will have a hide and bone condition. During PM examination intestine of the affected animals have a corrugated appearance [27].
\n
\n
\n
7.4 Diagnosis
\n
Affected animals can be identified in the herd by intradermal skin testing using Johnin purified protein derivative (PPD). Alternatively, Interferon gamma assay (IGRA) can also be used to assess the cellular immunity. Lymph nodes (Ileal and ileocecal) aspirates, intestinal scrapping can show acid fast bacilli in staining (Figure 5). Organism my shed intermittently in feces and hence, bacilli can be found by acid fast staining [27]. Organism can be detected intestinal tissues, lymph node and feces by culture and PCR. Detection of antibody in the later or final stages of the disease can also be attempted for diagnosis.
\n
Figure 5.
Acid fast bacilli in intestinal scrapping. This figure is propriety of the authors.
\n
\n
\n
7.5 Treatment
\n
Treating animals with antimycobacterial agents are not fruitful.
\n
\n
\n
7.6 Preventive measures
\n
Due to its chronic nature, it is difficult to identify the disease early hence, it is advised to test a newly purchased animal before letting into the farm. Test and cull policy is better to break the chain of infection. Suspected animals should be separated from the herd and affected animals milk should not be fed to neonates [25]. The organism may survive longer in the pasture hence, once an animal is found positive it is best to change the pasture land.
\n
\n
\n
7.7 Public health significance
\n
A similar condition in human named as Crohn’s disease has been suspected to be caused by Mycobacterium avium subspecies paratuberculosis still there is no clear evidence for zoonotic transmission of the pathogen [28].
\n
\n
\n
\n
8. Pasteurellosis and Mannheimiosis
\n
Pasteurellosis and Mannheimiosis is an acute fatal disease characterized by pneumonia and septicemia.
\n
\n
8.1 Etiology
\n
\nPasteurella multocida and Mannheimia haemolytica are aerobic, bipolar, nonmotile, non-spore forming gram-negative rods [29].
\n
\n
\n
8.2 Epizootiology and transmission
\n
\nP. multocida and M. haemolytica are ubiquitous and even present in respiratory tract of healthy animals. Young animals are prone to infection than adults. Stress including weaning, transportation (hence termed as shipping fever), change in diet/weather and overcrowding are the predisposing factors for the condition. Viral diseases can also predispose Pasteurellosis and Mannheimiosis and the organism can be transmitted directly or indirectly through inhalation or ingestion [30].
\n
\n
\n
8.3 Clinical signs
\n
Acute rhinitis or pharyngitis is the common sign noticed in animals. Animals may have high fever, anorexia, and rapid breathing along with profuse mucopurulent nasal/ ocular discharges. Kids are more susceptible than adult goats and death may occur without any clinical signs [30]. PM changes include marbling of lungs, pleural adhesion, sero-fibrinous fluid in the thorax, frothy exudate in trachea and also in bronchi.
\n
\n
\n
8.4 Diagnosis
\n
Bipolar organisms of P. multocida can be noticed in the impression smears from dead animals (Figure 6). Isolation of the organism on selective media and biochemical confirmation is the standard diagnostic procedure. M. haemolytica produces hemolytic colonies on blood agar and it can grow on MacConkey agar which are the differentiating features from P. multocida. Molecular diagnosis can be carried out by PCR [31].
\n
Figure 6.
Bipolar organism in lung impression smear. This figure is propriety of the authors.
\n
\n
\n
8.5 Treatment
\n
Use of antibiotics based on antimicrobial susceptibility testing can be used to control the bacterial propagation and anti-inflammatory agents can be used to control fever [30].
\n
\n
\n
8.6 Preventive measures
\n
\nM. haemolytica and P. multocida bacterins can be used as vaccines to prevent the occurrence of the disease [32]. Other measures like reducing overcrowding thereby improving the ventilation in enclosures and also reducing the stress during transportation can prevent the occurrence of the disease.
\n
\n
\n
\n
9. Caseous lymphadenitis
\n
Caseous lymphadenitis (CLA) is contagious, subclinical and chronic suppurative condition of sheep and goats, occasionally in cattle and is characterized by the formation of abscesses in lymph nodes and visceral organs [33].
\n
\n
9.1 Etiology
\n
CLA is caused by Corynebacterium pseudotuberculosis, small, non-motile, non-spore forming, pleomorphic, Gram-positive bacteria which may occur in curved, coccoid, club and rod forms (coryneform morphology) [33]. Two biotypes of C. pseudotuberculosis are recognized; ovine/caprine biotypes that lack nitrate-reducing capacity mainly affect sheep and goats, causing superficial and visceral abscesses. The second equine/bovine biotype usually reduce nitrate and mainly affects horses and cattle, causing ulcerative lymphangitis.
\n
\n
\n
9.2 Epizootiology
\n
CLA is worldwide in distribution and the probable dissemination of the disease throughout the world occurred through importation of infected animal [34]. This disease is found in parts of North and South America, Australia, New Zealand, the Middle East, Asia and Africa and is being reported more often in Britain and other European countries.
\n
\n
\n
9.3 Transmission
\n
The bacteria can survive in the environment for about 6 months or more. Transmission can occur either through direct or indirect contact or through wounds contaminated with pus from the abscesses of infected animals. The organism enters through contamination of skin wounds arising from castration, ear tagging or tattooing, docking or shearing operations. Arthropod bites or contaminated dips can also be the source of infection [34]. Goats having traumatized buccal mucosa have more chances of taking the bacterium from contaminated feed. The organism has also been isolated from the milk of affected goats.
\n
\n
\n
9.4 Clinical signs
\n
The incubation period varies from weeks to months; usually is about 3 months. CLA may be manifested in two forms: in its superficial form it is characterized by infection of peripheral lymph nodes, such as the submandibular, parotid, pre-scapular and supramammary lymph nodes (Figure 7). These peripheral lymph nodes enlarge, may erode and eventually leads to formation of abscess in chronic cases. Visceral form is characterized by abscessation of internal organs, such as lungs, liver, kidneys, uterus, spleen and internal lymph nodes (mainly mediastinal and bronchial lymph nodes) that may not be detectable antemortem [35]. These two forms can co-exist; however, the visceral form is more common among sheep, while superficial form is more frequent among goats with external abscesses in the lymph nodes particularly of the head and neck regions.
\n
Figure 7.
Lymph node enlargement in goats noted in caseous lymphadenitis. This figure is propriety of the authors.
\n
Eventually, the affected animal become exercise-intolerant, anorectic, ill-thrift and debilitated (often known as thin-ewe syndrome in sheep). Fever, increased respiratory rates, and pneumonia may also be noticed. Morbidity up to 15% is common, and morbid animals will often eventually succumb to the disease. The infection can also lead to abortion in doe and orchitis and/or epididymitis in bucks. Though less common, orchitis can be acute in which the buck develops fever, reduced appetite, lack of walking ability and loss of libido. The infected testes appear swollen, hot and painful to touch.
\n
\n
\n
9.5 Diagnosis
\n
Diagnosis is based on clinical signs and lesions and abscessation of both superficial and visceral lymph nodes is typical. Radiographs may be useful in identifying affected central nodes which also must be confirmed by culture of tracheal washings. Gram and Giemsa staining can be used for identification of the bacteria. Isolation of organism from purulent material from abscessed lymph nodes in case of live animals and /or from abscesses of internal organs from dead animals. ELISA tests which detect antibodies directed against either cell wall antigens or the exotoxin (Phospholipase D - PLD) are available [34]. Further, the detection of INF-γ by ELISA, an indicator of cell-mediated immunity, has also been potentially used for demonstration of CLA in eradication programs. Molecular techniques such as PCRs targeting 16S rDNA, rpo and pld genes have also been used in the recent years for the diagnosis of caseous lymphadenitis.
\n
\n
\n
9.6 Treatment
\n
Though C. pseudotuberculosis, in vitro is susceptible to antibiotics, the antibiotic therapy is usually not much effective in animals. The chronic nature of infection, the intracellular location of the bacteria and the formation of biofilm in natural infections reduce the antibiotic efficacy, making them useless. Draining of abscesses, followed by cleansing and chemical cauterization with 10% iodine may be helpful or the localized abscesses may be removed entirely from valuable animals [34].
\n
\n
\n
9.7 Preventive measures
\n
As CLA is contagious in nature, the animals with draining and punctured lesions should be kept isolated until healed. Reducing the environmental contamination, proper sanitation and biosecurity of facilities and instruments and safety measures to prevent injuries are all important in control. The causative agent is sensitive to common disinfectants such as hypochlorite, formalin and cresol; however, the surfaces should be cleaned before disinfection, as organic matter usually interferes with the action of these agents. The control measures vary with the prevalence of infection. In countries with a high incidence, rigorous sanitary procedures must be implemented, along with vaccination. Disease eradication can be achieved in endemically-infected herds by test and disposal policy [36].
\n
Most of the commercially available vaccines contain inactivated PLD of either C. pseudotuberculosis or of other pathogens, such as Clostridium species. Glanvac vaccine (Vetrepharm, Inc. London) is licensed for use in sheep and goats in Canada, Australia and New Zealand. However, the use of PLD toxoid in goats may result in some adverse consequences such as reduction in milk, fever, ventral edema, ataxia and convulsions; therefore, its use is restricted [34]. On the other hand, live vaccines targeting the attenuation of PLD gene, confers the best and longest-lasting immune response, due to its similarity to natural infection.
\n
\n
\n
9.8 Public health significance
\n
Human beings are rarely affected, some cases of human infections have been documented as occupational infection in veterinary doctors and assistant as well as farm experts.
\n
\n
\n
\n
10. Contagious caprine pleuropneumonia
\n
Contagious caprine pleuropneumonia (CCPP) is a highly contagious and rapidly spreading mycoplasmal disease of goat, occasionally sheep and wild ruminants. CCPP is characterized by severe sero-fibrinous pleuropneumonia, very high morbidity (100%), and mortality (80–100%) and results in heavy economic losses.
\n
\n
10.1 Etiology
\n
CCPP is caused by Mycoplasma capricolum subspecies capripneumoniae (Mccp), which was earlier known as Mycoplasma biotype F38. It belongs to the class Mollicutes that lack cell wall. M. ovipneumoniae, M. mycoides subspecies capri, and M. mycoides subspecies mycoides (Large Colony Type) are also considered as etiological agents of caprine pneumonia in the United States [1].
\n
\n
\n
10.2 Epizootiology
\n
CCPP is becoming a novel emerging and rapidly spreading disease in most parts of the world and at present, goat populations in more than 40 countries are affected with CCPP and sporadic cases of CCPP are also being reported from many more countries [37]. It mostly occurs in countries of Africa, Middle East and Asia.
\n
\n
\n
10.3 Transmission
\n
The disease is highly contagious and main mode of transmission is through inhalation of infected aerosols. The direct contact with affected animals is the main source of transmission. Airborne transmission can result in distant spread of about 50 m distance. However, the shorter survival time (3–14 days) of the organisms in external environment limits transmission of Mccp [38]. Yet under cold, moist and overcrowded environment these bacteria can persists for longer durations and may lead to severe outbreaks mostly in winter.
\n
\n
\n
10.4 Clinical signs
\n
CCPP is strictly a respiratory illness and is characterized by severe dyspnea, nasal discharge, cough, and fever. This can occur in peracute, acute and/or chronic forms in endemic areas. In peracute form, affected goats may die within 1–3 days without premonitory clinical signs. In acute infection, the initial signs are high fever (41–43°C), lethargy and anorexia, followed within 2–3 days by coughing and laboured breathing. The cough is frequent, violent and productive. In the final stages of infection, the goat may not be able to move and stands with its front legs wide apart and its neck stiff and extended [37]. Saliva can drip continuously from the mouth, and the animal may exhibit grunt or bleat in pain. Frothy nasal discharge and stringy saliva may be seen terminally. Pregnant goats may abort. Acutely affected goats generally die within seven to 10 days. In the chronic cases, there is chronic cough, nasal discharge and debilitation. These forms with resembling clinical signs in goats were also reported from captive wild goats.
\n
Pathological features during necropsy are also limited to respiratory system. Acute form is characterized by unilateral pneumonia and sero-fibrinous pleuritis with straw colored fluid in the thorax. The lung is granular with copious straw-colored exudates oozing out on cut section. Pea-sized, yellow-colored nodules may be noticed in lungs and these nodules are surrounded by areas of congestion. Varying degrees of lung consolidation or necrosis may also be noticed [37]. The regional lymph nodes mainly bronchial lymph nodes are enlarged. Some long-term survivors reveal chronic pleuropneumoniae or chronic pleuritis, with encapsulation of acute lesions and numerous adhesions to the chest wall. The interlobular septa are not usually thickened in domesticated goats.
\n
\n
\n
10.5 Diagnosis
\n
CCPP can be diagnosed based on cultural, biochemical, serological, and molecular methods following a tentative clinical diagnosis. Ultrasonography and X-rays may help in diagnosis and CCPP-associated changes may be evident in lungs, pleura, thorax, and associated structures. Cultural isolation and identification (‘fried egg-like appearance’ of the colonies under microscope), though is conventional but is still considered as standard method for detection of Mccp from lung tissue and/or pleural fluid at necropsy. Due to the difficulty in isolation, PCR is the technique of choice for the diagnosis of CCPP. The agglutination tests, ELISA, FAT, CFT (most widely used), passive or indirect haemagglutination tests (IHT) are the immunological methods employed for diagnosis of CCPP [38]. Latex agglutination test is being increasingly used in diagnostic laboratories as a pen side test. It can used to test whole blood as well as serum.
\n
\n
\n
10.6 Treatment
\n
Tylosin is considered the drug of choice against Mccp. Further, oxytetracycline is also found effective when administered in early stages of infection. However, some infections are slow to resolve.
\n
\n
\n
10.7 Preventive measures
\n
In endemic areas, proper care should be taken while introducing new goats into the flock. Flock testing, slaughter, and on-site quarantine may be helpful in controlling the spread of disease. Vaccines available in some areas may help in prevention of the disease. The commercially available CCPP vaccine containing inactivated Mccp suspended in saponin provides protection for over 1 year [37].
\n
\n
\n
\n
11. Dermatophilosis
\n
Dermatophilosis is a chronic, exudative and sometimes proliferative dermatitis occurs in domestic ruminants, wild animals and occasionally in human beings. Also known as Cutaneous streptothricosis, Strawberry foot rot or Lumpy wool.
\n
\n
11.1 Etiology
\n
Dermatophilosis is caused by Dermatophilus congolensis, which is a gram positive, nonacid-fast, facultative anaerobic actinomycete that produces motile zoospores.
\n
\n
\n
11.2 Epizootiology
\n
The disease occurs worldwide and is more common in tropics and subtropics. The organism is believed to be a saprophyte of soil and persists in dry scabs and crusts, to survive for up to 42 months. It has been reported from many countries, but occurs particularly in humid climates and areas where ticks of the genus Amblyomma are endemic [39].
\n
\n
\n
11.3 Transmission
\n
Transmission occurs by direct contact with infected animals. The infection can be transmitted indirectly by mechanical vectors (ectoparasites) and also through intradermal inoculation by contaminated thorny bushes. The pathogenesis may be influenced by factors such as mechanical injury to the skin, rainfall, tick infestation, concurrent diseases and/or stresses that compromise the host’s immune system.
\n
\n
\n
11.4 Clinical signs
\n
The disease is painful but non-pruritic, and is characterized by exudative, proliferative or hyperkeratotic dermatitis, accompanied by the production of crusts and folliculitis. In sheep, it may be seen in two forms: mycotic dermatitis (lumpy wool) and strawberry foot rot. While in goats and cattle, similar signs of crusty, suppurative dermatitis are seen and are often referred as cutaneous streptothricoses. The skin lesions appear raised, thick, yellow-brown colored discrete or confluents crusts containing matted hair. Sometimes may be seen in nodular form also with discrete encrustation of scab. The whole body may be affected but less hairy parts such as ears, axilla, scrotum, prepuce, ventral abdomen, limbs etc., show severe lesions [40]. Lesions in younger goats are mostly seen along the tips of the ears and under the tail. Most affected animals will recover within 3–4 weeks and lesions have little effect on overall health. In severe generalized infections, the animals often loose condition. If there are lesions at the feet, lips and muzzle, the movement of animals and eating become difficult.
\n
\n
\n
11.5 Diagnosis
\n
Diagnosis of dermatophilosis is mainly based clinical signs particularly based on the appearance of the characteristic skin lesions. The same can be confirmed by the demonstration of the organism from the lesions beneath the scabs. The softened scab materials stained by the Giemsa method, reveal the characteristic branching filaments containing zoospores. The organism can be cultured on blood agar at 37°C under 2.5–10% CO2 for up to 5 days and Haalstra technique based on chemotaxis of the zoospores to CO2 can be employed for efficient recovery of the organism.
\n
\n
\n
11.6 Treatment
\n
Animals can be treated with antibiotics such as high doses of penicillin or long acting tetracyclines. Topical applications alone are ineffective. Antibiotic therapy is augmented by topical treatment with lime sulfur as well as control of ectoparasites and biting flies. Povidone iodine shampoos or chlorhexidine solutions also help in clearing the disease.
\n
\n
\n
11.7 Preventive measures
\n
Control measures are based on minimizing the effects of predisposing factors and prompt treatment of affected goats. Animals with skin lesions must be isolated and treated at the earliest. Minimizing moist conditions (such as providing shelter during rainfall) is helpful in control and prevention. Grazing management especially removal of thorny bushes in pasture land that damages skin will also help. Prophylactic antibiotic therapy can also be given.
\n
\n
\n
11.8 Public health significance
\n
\nD. congolensis is a zoonotic organism and rare human infections have occurred from handling diseased animals.
\n
\n
\n
\n
12. Foot rot
\n
A contagious, either acute or chronic dermatitis of the hoof and its underlying tissues leading to lameness [41].
\n
\n
12.1 Etiology
\n
Foot rot is caused by Dichelobacter nodosus and Fusobacterium necrophorum, anaerobic, non-spore forming, gram negative rods.
\n
\n
\n
12.2 Epizootiology
\n
The organism F. necrophorum is ubiquitous in nature while D. nodosus is obligate pathogen, can be present in skin and hoof of animals and cannot survive much longer in environment. Moist environment, humid condition, wet grounds and overcrowding are the predisposing factors for foot rot [42].
\n
\n
\n
12.3 Clinical signs
\n
Interdigital region will be moist and will have a foul odor due to necrosis (Figure 8). Lameness is the common sign of foot rot. Based on the severity of the infection animals may lose weight due to anorexia and there will be decrease in production [43].
\n
Figure 8.
Moist, necrotic interdigital region seen in foot rot condition. This figure is propriety of the authors.
\n
\n
\n
12.4 Diagnosis
\n
Diagnosis is based on clinical signs and isolation of organism from the foot lesions. Since the organisms are anaerobic isolation is tricky and hence molecular diagnosis like PCR can be used for diagnosis.
\n
\n
\n
12.5 Treatment
\n
Hooves of the animals should be trimmed so as to remove the necrotic material thereby eliminating the anaerobic environment. Local antibiotics may be applied to the affected hoof after trimming. 10% zinc or copper sulfate or 10% formalin can be used for footbath [44].
\n
\n
\n
12.6 Preventive measures
\n
\nD. nodosus, though present in epidermal tissues of the hoof, survives for less than 7 days in the environment and hence, affected animals should be separated from the herd to prevent spread to other animals. Regular hoof trimming and cleaning should be practiced. Bacterins can be used as vaccines to prevent the infection.
\n
\n
\n
\n
13. Conclusions
\n
Goat is called as poor man’s cow but there are various bacterial diseases that cause economic loss to the goat farmers. Serval bacterial diseases cause acute infection hence there will be sudden onset of infection leading to huge mortality. Measures like use of vaccines before onset of disease, good management practices, etc., are essential to prevent the disease outbreaks. Animals with infection or clinical signs should be separated from rest of the animals so that infectious pathogens do not transmit to naïve animals and it is also recommended to quarantine newly purchased animals before admitting them into the farm. These practices can curtail the spread of infectious agents. It is also advisable to screen for diseases before purchasing the animals to the farm. Diseases like TB, JD and brucellosis should be screened before the purchase since these diseases are chronic in nature hence can remain undiagnosed. Animals infected with diseases that can affect human like anthrax, brucellosis, etc., should be handled carefully and better bio-security measures should be followed to prevent spread of disease within herd and also to human beings. Most of the bacterial infection can be treated with antimicrobial agents but these agents should be used judiciously because in the recent times antimicrobial resistance is a major problem.
\n
\n
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"Goat, Bacterial disease, Brucella, Anthrax, Preventive measures",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76276.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76276.xml",downloadPdfUrl:"/chapter/pdf-download/76276",previewPdfUrl:"/chapter/pdf-preview/76276",totalDownloads:594,totalViews:0,totalCrossrefCites:0,dateSubmitted:"November 9th 2020",dateReviewed:"March 26th 2021",datePrePublished:"April 13th 2021",datePublished:null,dateFinished:"April 13th 2021",readingETA:"0",abstract:"Bacterial diseases of goats can cause huge economical loss to the farmers. Due to intensification of goat farming and poor hygienic practices there is increase in the number of bacterial diseases that affect the goats. Diseases like tuberculosis, Johne’s disease and Brucellosis are chronic diseases that may be identified in the initial stages of infection during which they spread to other animals. Similarly, brucellosis, tuberculosis and also anthrax are zoonotic diseases hence due consideration has to be provided while handling animals suspected for these diseases. Use of vaccine before onset of the disease in endemic areas can prevent the disease outbreak and spread to other naïve population. Good hygienic practices and biosecurity measures at farm are essential to prevent disease spread. The present chapter deals with various bacterial diseases affecting goats and its preventive measures. This chapter can be a guide to field veterinarians, students and farmers as it highlights the important bacterial diseases of goats.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76276",risUrl:"/chapter/ris/76276",signatures:"Kumaragurubaran Karthik and Manimuthu Prabhu",book:{id:"9706",type:"book",title:"Goat Science - Environment, Health and Economy",subtitle:null,fullTitle:"Goat Science - Environment, Health and Economy",slug:null,publishedDate:null,bookSignature:"Prof. Sándor Kukovics",coverURL:"https://cdn.intechopen.com/books/images_new/9706.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-78984-709-3",printIsbn:"978-1-78984-708-6",pdfIsbn:"978-1-78985-193-9",isAvailableForWebshopOrdering:!0,editors:[{id:"25894",title:"Prof.",name:"Sándor",middleName:null,surname:"Kukovics",slug:"sandor-kukovics",fullName:"Sándor Kukovics"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Methods",level:"1"},{id:"sec_3",title:"3. Anthrax",level:"1"},{id:"sec_3_2",title:"3.1 Etiology",level:"2"},{id:"sec_4_2",title:"3.2 Epizootiology",level:"2"},{id:"sec_5_2",title:"3.3 Transmission",level:"2"},{id:"sec_6_2",title:"3.4 Clinical signs",level:"2"},{id:"sec_7_2",title:"3.5 Diagnosis",level:"2"},{id:"sec_8_2",title:"3.6 Treatment",level:"2"},{id:"sec_9_2",title:"3.7 Preventive measures",level:"2"},{id:"sec_10_2",title:"3.8 Public health significance",level:"2"},{id:"sec_12",title:"4. Brucellosis",level:"1"},{id:"sec_12_2",title:"4.1 Etiology",level:"2"},{id:"sec_13_2",title:"4.2 Epizootiology",level:"2"},{id:"sec_14_2",title:"4.3 Transmission",level:"2"},{id:"sec_15_2",title:"4.4 Clinical signs",level:"2"},{id:"sec_16_2",title:"4.5 Diagnosis",level:"2"},{id:"sec_17_2",title:"4.6 Preventive measures",level:"2"},{id:"sec_18_2",title:"4.7 Public health significance",level:"2"},{id:"sec_20",title:"5. Tetanus",level:"1"},{id:"sec_20_2",title:"5.1 Etiology",level:"2"},{id:"sec_21_2",title:"5.2 Epizootiology",level:"2"},{id:"sec_22_2",title:"5.3 Transmission",level:"2"},{id:"sec_23_2",title:"5.4 Clinical signs",level:"2"},{id:"sec_24_2",title:"5.5 Diagnosis",level:"2"},{id:"sec_25_2",title:"5.6 Treatment",level:"2"},{id:"sec_26_2",title:"5.7 Preventive measures",level:"2"},{id:"sec_28",title:"6. Enterotoxemia",level:"1"},{id:"sec_28_2",title:"6.1 Etiology",level:"2"},{id:"sec_29_2",title:"6.2 Epizootiology",level:"2"},{id:"sec_30_2",title:"6.3 Transmission",level:"2"},{id:"sec_31_2",title:"6.4 Clinical signs",level:"2"},{id:"sec_32_2",title:"6.5 Diagnosis",level:"2"},{id:"sec_33_2",title:"6.6 Treatment",level:"2"},{id:"sec_34_2",title:"6.7 Preventive measures",level:"2"},{id:"sec_36",title:"7. Johne’s disease (JD)",level:"1"},{id:"sec_36_2",title:"7.1 Etiology",level:"2"},{id:"sec_37_2",title:"7.2 Transmission",level:"2"},{id:"sec_38_2",title:"7.3 Clinical signs",level:"2"},{id:"sec_39_2",title:"7.4 Diagnosis",level:"2"},{id:"sec_40_2",title:"7.5 Treatment",level:"2"},{id:"sec_41_2",title:"7.6 Preventive measures",level:"2"},{id:"sec_42_2",title:"7.7 Public health significance",level:"2"},{id:"sec_44",title:"8. Pasteurellosis and Mannheimiosis",level:"1"},{id:"sec_44_2",title:"8.1 Etiology",level:"2"},{id:"sec_45_2",title:"8.2 Epizootiology and transmission",level:"2"},{id:"sec_46_2",title:"8.3 Clinical signs",level:"2"},{id:"sec_47_2",title:"8.4 Diagnosis",level:"2"},{id:"sec_48_2",title:"8.5 Treatment",level:"2"},{id:"sec_49_2",title:"8.6 Preventive measures",level:"2"},{id:"sec_51",title:"9. Caseous lymphadenitis",level:"1"},{id:"sec_51_2",title:"9.1 Etiology",level:"2"},{id:"sec_52_2",title:"9.2 Epizootiology",level:"2"},{id:"sec_53_2",title:"9.3 Transmission",level:"2"},{id:"sec_54_2",title:"9.4 Clinical signs",level:"2"},{id:"sec_55_2",title:"9.5 Diagnosis",level:"2"},{id:"sec_56_2",title:"9.6 Treatment",level:"2"},{id:"sec_57_2",title:"9.7 Preventive measures",level:"2"},{id:"sec_58_2",title:"9.8 Public health significance",level:"2"},{id:"sec_60",title:"10. Contagious caprine pleuropneumonia",level:"1"},{id:"sec_60_2",title:"10.1 Etiology",level:"2"},{id:"sec_61_2",title:"10.2 Epizootiology",level:"2"},{id:"sec_62_2",title:"10.3 Transmission",level:"2"},{id:"sec_63_2",title:"10.4 Clinical signs",level:"2"},{id:"sec_64_2",title:"10.5 Diagnosis",level:"2"},{id:"sec_65_2",title:"10.6 Treatment",level:"2"},{id:"sec_66_2",title:"10.7 Preventive measures",level:"2"},{id:"sec_68",title:"11. Dermatophilosis",level:"1"},{id:"sec_68_2",title:"11.1 Etiology",level:"2"},{id:"sec_69_2",title:"11.2 Epizootiology",level:"2"},{id:"sec_70_2",title:"11.3 Transmission",level:"2"},{id:"sec_71_2",title:"11.4 Clinical signs",level:"2"},{id:"sec_72_2",title:"11.5 Diagnosis",level:"2"},{id:"sec_73_2",title:"11.6 Treatment",level:"2"},{id:"sec_74_2",title:"11.7 Preventive measures",level:"2"},{id:"sec_75_2",title:"11.8 Public health significance",level:"2"},{id:"sec_77",title:"12. Foot rot",level:"1"},{id:"sec_77_2",title:"12.1 Etiology",level:"2"},{id:"sec_78_2",title:"12.2 Epizootiology",level:"2"},{id:"sec_79_2",title:"12.3 Clinical signs",level:"2"},{id:"sec_80_2",title:"12.4 Diagnosis",level:"2"},{id:"sec_81_2",title:"12.5 Treatment",level:"2"},{id:"sec_82_2",title:"12.6 Preventive measures",level:"2"},{id:"sec_84",title:"13. Conclusions",level:"1"},{id:"sec_88",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'\nUnderwood WJ, Blauwiekel R, Delano ML, Gillesby R, Scott A, Mischler SA, Schoell, A. Biology and Diseases of Ruminants (Sheep, Goats, and Cattle). Editor(s): Fox JG, Anderson LC, Otto GM, Pritchett-Corning KR, Whary MT, In American College of Laboratory Animal Medicine, Laboratory Animal Medicine (Third Edition): Academic Press; 2015. p. 623-694, https://doi.org/10.1016/B978-0-12-409527-4.00015-8.\n'},{id:"B2",body:'\nRahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ, El Zowalaty ME, Rahman AT, Ashour HM. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms. 2020;8(9):1405.\n'},{id:"B3",body:'\nShafazand S, Doyle R, Ruoss S, Weinacker A, Raffin TA. Inhalational Anthrax: Epidemiology, Diagnosis and Management. Chest. 2001; 116: 1369-1376.\n'},{id:"B4",body:'\nMisgie F, Atnaf A, Surafel K. A Review on Anthrax and its Public Health and Economic Importance. Academic Journal of Animal Diseases. 2015; 4(3): 196-204, 2015\n'},{id:"B5",body:'\nSekar N, Shah NK, Abbas SS, Kakkar M. Research options for controlling zoonotic disease in India, 2010-2015. PLoS ONE 2011: 6.\n'},{id:"B6",body:'\nSiddiqui, MA, Khan MAH, Ahmed SS, Anwar KS, Akhtaruzzaman SM, Salam MA. Recent outbreak of cutaneous anthrax in Bangladesh: Clinico-demographic profile and treatment outcome of cases attended at Rajshahi Medical College Hospital. BMC Res. Notes 2012; 5: 464.\n'},{id:"B7",body:'\nAlton GG. Brucellamelitensis. In: “Animal brucellosis”, editors Nielsen K, Duncan JR. CRC Press. Boston; 1990.p. 383-409.\n'},{id:"B8",body:'\nCorbel MJ. Brucellosis: an overview. Emerg. Infect. Dis. 1997; 3: 213-221.\n'},{id:"B9",body:'\nAlton GG, Jones LM, Angus RD, Verger JM. Techniques for the brucellosis laboratory. INRA, Paris, France; 1988. p. 192\n'},{id:"B10",body:'\nDurán-Ferrer M. Comparación entre métodos inmunológicos de diagnóstico de la brucelosis ovina por Brucellamelitensis y eficacia de la inmunización de ovejas adultas con la vacuna Rev.1 por vía conjuntival. PhDThesis, University of Murcia, Spain; 1988.\n'},{id:"B11",body:'\nNeta AVC, Mol JPS, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. The Veterinary Journal. 2010; 184(2): 146-155.\n'},{id:"B12",body:'\nBiancifiori F, Nannini D, Di Matteo A, Belfiore P. Assessment of an indirect ELISA in milk for the diagnosis of ovine brucellosis. Comp. Immunol. Microb. Infec. Dis. 1996; 19: 17-24.\n'},{id:"B13",body:'\nGonzález D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Álvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE. 2008; 3(7): e2760. doi:10.1371/journal.pone.0002760.\n'},{id:"B14",body:'\nKochar DK, Gupta BK, Gupta A, Kalla A, Nayak KC, Purohit SK. Hospital-based case series of 175 cases of serologically confirmed brucellosis in Bikaner. J Assoc Physicians India. 2007; 55:271-275.\n'},{id:"B15",body:'\nMuralidharan J, Ramesh V, Saravanan S. Tetanus in sheep of an organized livestock farm- a case report. Indian Journal of Field Veterinarians 2010; 5:43-44.\n'},{id:"B16",body:'\nHarish BR, Chandranaik BM, Bhanuprakash RA, Jayakumar SR, Renukaprasad C, Krishnappa G. Clostridium tetani infection in goats. Intas Polivet. 2006; 7: 72-74.\n'},{id:"B17",body:'\nPugh DG, Baird AN. Sheep and Goat Medicine,2nd edn. Saunders, an imprint of Elsevier Inc:Philadel-phia, PA; 2012. p. 621\n'},{id:"B18",body:'\nPopoff MR. Tetanus in animals. J Vet Diagn Invest. 2020;32(2):184-191. doi: 10.1177/1040638720906814.\n'},{id:"B19",body:'\nLotfollahzadeh S, Heydari M, Mohebbi MR, Hashemian M. Tetanus outbreak in a sheep flock due to ear tagging. Vet Med Sci. 2019;5(2):146-150. doi: 10.1002/vms3.139. Epub 2018 Dec 13. PMID: 30549234; PMCID: PMC6498517.\n'},{id:"B20",body:'\nCenters for Disease Control and Prevention. Epidemiology and Prevention of Vaccine Preventable Diseases. Hamborsky J, Kroger A, Wolfe S, eds. 13th ed. Washington DC: 348 Public Health Foundation, 2015.\n'},{id:"B21",body:'\nBlackwell TE, Butler DG. Clinical signs, treatment, and postmortem lesions in dairy goats with enterotoxemia: 13 cases (1979-1982). J Am Vet Med Assoc. 1992;200(2):214-217. PMID: 1559880.\n'},{id:"B22",body:'\nKarthik K, Manimaran K, Bharathi R, Shoba K. Report of enterotoxaemia in goat kids. Adv. Anim. Vet. Sci. 2017; 5(7): 289-292.\n'},{id:"B23",body:'\nUzal FA, Songer JG. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation. 2008; 20: 253-265.\n'},{id:"B24",body:'\nKusiluka L, Kambarage D. Diseases of small ruminants in Sub-Saharan Africa - A handbook. 1996. p. 25-62\n'},{id:"B25",body:'\nSweeney RW, Collins MT, Koets AP, McGuirk SM, Roussel AJ. Paratuberculosis (Johne\'s disease) in cattle and other susceptible species. J Vet Intern Med. 2012;26(6):1239-1250. doi: 10.1111/j.1939-1676.2012.01019.x. Epub 2012 Oct 28. PMID: 23106497.\n'},{id:"B26",body:'\nMcGregor H, Dhand NK, Dhungyel OP, Whittington RJ. Transmission of Mycobacterium avium subsp. paratuberculosis: dose–response and age-based susceptibility in a sheep model. Prev Vet Med. 2012;107(1-2):76-84.\n'},{id:"B27",body:'\nWhittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS, Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone K, Paolicchi F, Gavey L, Rahman MT, de Marchin E, Van Praet W, Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J, Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S, Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN, Piaggio J, Suanes A, de Waard JH. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res. 2019;15(1):198. doi: 10.1186/s12917-019-1943-4. PMID: 31196162; PMCID: PMC6567393.\n'},{id:"B28",body:'\nMcNees AL, Markesich D, Zayyani NR, Graham DY. Mycobacterium paratuberculosis as a cause of Crohn\'s disease. Expert Rev Gastroenterol Hepatol. 2015;9(12):1523-1534. doi:10.1586/17474124.2015.1093931.\n'},{id:"B29",body:'\nMohamed RA, Abdelsalam EB. A review on pneumonic pasteurellosis (respiratory mannheimiosis) with emphasis on pathogenesis, virulence mechanism and predisposing factors. Bulg. J. Vet. Med. 2008;11(3):139-160.\n'},{id:"B30",body:'\nLaishevtsev AI. IOP Conf. Ser. Earth Environ. Sci. 2020: 548 072038.\n'},{id:"B31",body:'\nHussain R, Mahmood F, Ali HM, Siddique AB. Bacterial, PCR and clinico-pathological diagnosis of naturally occurring pneumonic pasturellosis (mannheimiosis) during subtropical climate in sheep. Microb Pathog. 2017;112:176-181. doi: 10.1016/j.micpath.2017.09.061. Epub 2017 Sep 29. PMID: 28970175.\n'},{id:"B32",body:'\nSrinand S, Hsuan SL, Yoo HS, Maheswaran SK, Ames TR, Werdin RE. Comparative evaluation of antibodies induced by commercial Pasteurella haemolytica vaccines using solid phase immunoassays Veterinary Microbiology. 1996; 49:181-195.\n'},{id:"B33",body:'\nKuria JK, Mbuthia PG, Kang\'ethe EK, Wahome RG. Caseous lymphadenitis in goats: the pathogenesis, incubation period and serological response after experimental infection. Vet Res Commun. 2001; 25(2):89-97. doi: 10.1023/a:1006400617235. PMID: 11243659.\n'},{id:"B34",body:'\nOsman AY, Nordin ML, Kadir AA, Saharee AA. The Epidemiology and Pathophysiology of Caseous Lymphadenitis: A Review. J. Vet. Med. Res. 2018; 5: 1129.\n'},{id:"B35",body:'\nFontaine MC, Baird GJ. Caseous lymphadenitis. Small Rumin. Res. 2008; 76: 42-48.\n'},{id:"B36",body:'\nGuimarães AS, Carmo FB, Heinemann MB, Portela RWD, Meyer R, Lage AP, Seyffert N, Miyoshi A. Azevedo V, Gouveia AM. High sero-prevalence of caseous lymphadenitis identified in slaughterhouse samples as a consequence of deficiencies in sheep farm management in the state of Minas Gerais, Brazil. BMC Vet Res. 2011; 7:68. doi: 10.1186/1746-6148-7-68.\n'},{id:"B37",body:'\nYatoo MI, Parraya OR, Bashir ST, Muheet RA, Bhat, Gopalakrishnan A, Karthik K, Dhama, K, Singh SV. Contagious caprine pleuropneumonia – a comprehensive review. Veterinary Quarterly, 2019; 39 (1): 1-25\n'},{id:"B38",body:'\nOIE. World Organisation for Animal Health – contagious caprine pleuropneumonia. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 2.7.5. Paris; 2014.\n'},{id:"B39",body:'\nLoria GR, La Barbera E, Monteverde V, Sparagano OAE, Caracappa S. Dermatophilosis in goats in Sicily. Veterinary Record. 2005; 156: 120-121\n'},{id:"B40",body:'\nMsami HM, Khaschabi D, Schöpf K, Kapaga AM, Shibahara T. Dermatophilus congolensis infection in goats in Tanzania. Trop Anim Health Prod. 2001 Oct;33(5):367-377. doi: 10.1023/a:1010587621843. PMID: 11556616.\n'},{id:"B41",body:'\nKaler J, Green LE. Naming and recognition of six foot lesions of sheep using written and pictorial information: A study of 809 English sheep farmers. Prev. Vet. Med. 2008; 83(1):52-64.\n'},{id:"B42",body:'\nGreen LE, George TRN. Assessment of current knowledge of foot rot in sheep with particular reference to Dichelobacter nodosus and implications for elimination or control estrategies for sheep in Great Britain. Vet. Journal 2008; 175:173-180.\n'},{id:"B43",body:'\nBennett G, Hickford J, Sedcole R, Zhou H. Dichelobacter nodosus, Fusobacterium necrophorum and the epidemiology of footrot. Anaerobe. 2009; 15: 173-176\n'},{id:"B44",body:'\nAbbott KA, Lewis CJ. Current approaches to the management of ovine footrot. The Veterinary Journal. 2005; 169: 28-41\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Kumaragurubaran Karthik",address:"karthik_2bvsc@yahoo.co.in",affiliation:'
Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
'}],corrections:null},book:{id:"9706",type:"book",title:"Goat Science - Environment, Health and Economy",subtitle:null,fullTitle:"Goat Science - Environment, Health and Economy",slug:null,publishedDate:null,bookSignature:"Prof. Sándor Kukovics",coverURL:"https://cdn.intechopen.com/books/images_new/9706.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-78984-709-3",printIsbn:"978-1-78984-708-6",pdfIsbn:"978-1-78985-193-9",isAvailableForWebshopOrdering:!0,editors:[{id:"25894",title:"Prof.",name:"Sándor",middleName:null,surname:"Kukovics",slug:"sandor-kukovics",fullName:"Sándor Kukovics"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"100170",title:"Dr.",name:"Wagdy",middleName:"Anis",surname:"Aziz",email:"WAnis@Mobinil.com",fullName:"Wagdy Aziz",slug:"wagdy-aziz",position:"Manager,Core Network Support",biography:"Graduated 1996, obtained MSc. Degree 2006 from the faculty of Engineering, Ain Shams University, Egypt. The MSc thesis was in the Design of Telephony Network using VoIP Technology.Got the PhD in 2011 , the PhD thesis was Design and Analysis of IP Multimedia Subsystem IMS.My research interests include VoIP, NGN, IMS and LTE. Currently is Manager, Core Network Support, Technology Department, The Egyptian Company for Mobile Services, Mobinil. And also work as Adjunct Doctor – Faculty of Engineering - Ain Shams University for Post Graduate studies.",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/100170/images/2786_n.png",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"36581",title:"Design and Analysis of IP-Multimedia Subsystem (IMS)",slug:"design-and-analysis-of-ip-multimedia-subsystem-ims",abstract:null,signatures:"Wagdy Anis Aziz and Dorgham Sisalem",authors:[{id:"100170",title:"Dr.",name:"Wagdy",surname:"Aziz",fullName:"Wagdy Aziz",slug:"wagdy-aziz",email:"WAnis@Mobinil.com"},{id:"155922",title:"Dr.",name:"Dorgham",surname:"Sisalem",fullName:"Dorgham Sisalem",slug:"dorgham-sisalem",email:"dorgham.sisalem@tekelec.com"}],book:{id:"1902",title:"Mobile Networks",slug:"mobile-networks",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"13533",title:"Prof.",name:"Wen-Hwa",surname:"Liao",slug:"wen-hwa-liao",fullName:"Wen-Hwa Liao",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tatung University",institutionURL:null,country:{name:"Taiwan"}}},{id:"15345",title:"Dr.",name:"Jinsung",surname:"Cho",slug:"jinsung-cho",fullName:"Jinsung Cho",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kyung Hee University",institutionURL:null,country:{name:"Korea, South"}}},{id:"97414",title:"Prof.",name:"Jesus Hamilton",surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesus Hamilton Ortiz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Castile-La Mancha",institutionURL:null,country:{name:"Spain"}}},{id:"100015",title:"Mr.",name:"Choongyong",surname:"Shin",slug:"choongyong-shin",fullName:"Choongyong Shin",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kyung Hee University",institutionURL:null,country:{name:"Korea, South"}}},{id:"105841",title:"Dr.",name:"Seokhoon",surname:"Kim",slug:"seokhoon-kim",fullName:"Seokhoon Kim",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kyung Hee University",institutionURL:null,country:{name:"Korea, South"}}},{id:"106182",title:"Prof.",name:"Manfred",surname:"Schneps-SChneppe",slug:"manfred-schneps-schneppe",fullName:"Manfred Schneps-SChneppe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ventspils University College",institutionURL:null,country:{name:"Latvia"}}},{id:"106185",title:"Dr.",name:"Janis",surname:"Sedols",slug:"janis-sedols",fullName:"Janis Sedols",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Latvia",institutionURL:null,country:{name:"Latvia"}}},{id:"107018",title:"Dr.",name:"Juan José",surname:"Alcaraz-Espín",slug:"juan-jose-alcaraz-espin",fullName:"Juan José Alcaraz-Espín",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",institutionURL:null,country:{name:"Spain"}}},{id:"118571",title:"Mr.",name:"Hadi",surname:"Hariyanto",slug:"hadi-hariyanto",fullName:"Hadi Hariyanto",position:"Senior Researcher",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"155922",title:"Dr.",name:"Dorgham",surname:"Sisalem",slug:"dorgham-sisalem",fullName:"Dorgham Sisalem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"waiver-policy",title:"Waiver Policy",intro:"
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"
Paying the OAPF
\\n\\n
At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\n
The first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\n
However, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\n
Please consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\n
IntechOpen Waivers in Action
\\n\\n
For Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\n
Our mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\n
While providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\n
How to Apply for a Waiver
\\n\\n
The application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
Feel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\n
Note: All data represented above was collected by IntechOpen from 2013 to 2017.
At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\n
The first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\n
However, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\n
Please consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\n
IntechOpen Waivers in Action
\n\n
For Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\n
Our mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\n
While providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\n
How to Apply for a Waiver
\n\n
The application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
Feel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\n
Note: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"13"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11633",title:"Pseudomonas aeruginosa - New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a7cd19791397a27a80526be0dc54bd8a",slug:null,bookSignature:"Associate Prof. Osama Darwesh and Dr. Ibrahim Matter",coverURL:"https://cdn.intechopen.com/books/images_new/11633.jpg",editedByType:null,editors:[{id:"298076",title:"Associate Prof.",name:"Osama",surname:"Darwesh",slug:"osama-darwesh",fullName:"Osama Darwesh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11634",title:"Mycobacterium - Epidemiology, Prevention, Diagnostic, and Management",subtitle:null,isOpenForSubmission:!0,hash:"aa972af90c14eb4ef39b6dc71911f623",slug:null,bookSignature:"Dr. Awelani Mutshembele",coverURL:"https://cdn.intechopen.com/books/images_new/11634.jpg",editedByType:null,editors:[{id:"468847",title:"Dr.",name:"Awelani",surname:"Mutshembele",slug:"awelani-mutshembele",fullName:"Awelani Mutshembele"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11796",title:"Cytomegalovirus - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"4e442adc2808f68ccc1aeac17e6ae746",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11796.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11799",title:"Salmonella - Past, Present and Future",subtitle:null,isOpenForSubmission:!0,hash:"6ddb13c31fb19c6f79d19f11ceeb860e",slug:null,bookSignature:"Ph.D. Hongsheng Huang and Dr. Sohail Naushad",coverURL:"https://cdn.intechopen.com/books/images_new/11799.jpg",editedByType:null,editors:[{id:"342722",title:"Ph.D.",name:"Hongsheng",surname:"Huang",slug:"hongsheng-huang",fullName:"Hongsheng Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11801",title:"Roundworms - A Survey From Past to Present",subtitle:null,isOpenForSubmission:!0,hash:"5edc96349630be8bb4e67170be677d8c",slug:null,bookSignature:"Dr. Nihal Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/11801.jpg",editedByType:null,editors:[{id:"169552",title:"Dr.",name:"Nihal",surname:"Dogan",slug:"nihal-dogan",fullName:"Nihal Dogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"2",title:"Life Sciences",slug:"life-sciences",parent:null,numberOfBooks:1081,numberOfSeries:3,numberOfAuthorsAndEditors:29045,numberOfWosCitations:42663,numberOfCrossrefCitations:25771,numberOfDimensionsCitations:62721,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"2",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:"Edited by",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11354",title:"Pseudocereals",subtitle:null,isOpenForSubmission:!1,hash:"3cc4fe8120cec1dd33a3cbf656231b96",slug:"pseudocereals",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11175",title:"Nearly Zero Energy Building (NZEB)",subtitle:"Materials, Design and New Approaches",isOpenForSubmission:!1,hash:"7e4718f36725ff9ce60b349b7681d7cc",slug:"nearly-zero-energy-building-nzeb-materials-design-and-new-approaches",bookSignature:"David Bienvenido-Huertas",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg",editedByType:"Edited by",editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido Huertas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11360",title:"Milk Protein",subtitle:"New Research Approaches",isOpenForSubmission:!1,hash:"f40a6194bc1f209dff3846fe6e34f45b",slug:"milk-protein-new-research-approaches",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",middleName:null,surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10682",title:"Pathways and Challenges for Efficient Desalination",subtitle:null,isOpenForSubmission:!1,hash:"ca25e9eca70d54deb503d2663f75218c",slug:"pathways-and-challenges-for-efficient-desalination",bookSignature:"Muhammad Wakil Shahzad, Mike Dixon, Giancarlo Barassi, Ben Bin Xu and Yinzhu Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10682.jpg",editedByType:"Edited by",editors:[{id:"174208",title:"Dr.",name:"Muhammad Wakil",middleName:null,surname:"Shahzad",slug:"muhammad-wakil-shahzad",fullName:"Muhammad Wakil Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1081,seriesByTopicCollection:[{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0},{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0}],seriesByTopicTotal:3,mostCitedChapters:[{id:"29369",doi:"10.5772/32373",title:"Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview",slug:"textile-organic-dyes-characteristics-polluting-effects-and-separation-elimination-procedures-from-in",totalDownloads:29434,totalCrossrefCites:125,totalDimensionsCites:312,abstract:null,book:{id:"872",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",title:"Organic Pollutants Ten Years After the Stockholm Convention",fullTitle:"Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update"},signatures:"Zaharia Carmen and Suteu Daniela",authors:[{id:"91196",title:"Prof.",name:"Carmen",middleName:null,surname:"Zaharia",slug:"carmen-zaharia",fullName:"Carmen Zaharia"},{id:"92084",title:"Dr.",name:"Daniela",middleName:null,surname:"Suteu",slug:"daniela-suteu",fullName:"Daniela Suteu"}]},{id:"35141",doi:"10.5772/28157",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:19288,totalCrossrefCites:136,totalDimensionsCites:288,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"38477",doi:"10.5772/45943",title:"Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination",slug:"lipid-peroxidation-chemical-mechanism-biological-implications-and-analytical-determination",totalDownloads:13442,totalCrossrefCites:79,totalDimensionsCites:217,abstract:null,book:{id:"2553",slug:"lipid-peroxidation",title:"Lipid Peroxidation",fullTitle:"Lipid Peroxidation"},signatures:"Marisa Repetto, Jimena Semprine and Alberto Boveris",authors:[{id:"36452",title:"Dr.",name:"Marisa",middleName:"Gabriela",surname:"Repetto",slug:"marisa-repetto",fullName:"Marisa Repetto"}]},{id:"42059",doi:"10.5772/54048",title:"Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater",slug:"adsorption-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater",totalDownloads:29962,totalCrossrefCites:51,totalDimensionsCites:210,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Mohamed Nageeb Rashed",authors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}]},{id:"41116",doi:"10.5772/51572",title:"Algal Polysaccharides, Novel Applications and Outlook",slug:"algal-polysaccharides-novel-applications-and-outlook",totalDownloads:14037,totalCrossrefCites:70,totalDimensionsCites:184,abstract:null,book:{id:"2323",slug:"carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology",title:"Carbohydrates",fullTitle:"Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology"},signatures:"Stefan Kraan",authors:[{id:"142720",title:"Dr.",name:"Stefan",middleName:null,surname:"Kraan",slug:"stefan-kraan",fullName:"Stefan Kraan"}]}],mostDownloadedChaptersLast30Days:[{id:"64570",title:"Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications",slug:"banana-pseudo-stem-fiber-preparation-characteristics-and-applications",totalDownloads:9428,totalCrossrefCites:15,totalDimensionsCites:18,abstract:"Banana is one of the most well-known and useful plants in the world. Almost all the parts of this plant, that are, fruit, leaves, flower bud, trunk, and pseudo-stem, can be utilized. This chapter deals with the fiber extracted from the pseudo-stem of the banana plant. It discusses the production of banana pseudo-stem fiber, which includes plantation and harvesting; extraction of banana pseudo-stem fiber; retting; and degumming of the fiber. It also deals with the characteristics of the banana pseudo-stem fiber, such as morphological, physical and mechanical, durability, degradability, thermal, chemical, and antibacterial properties. Several potential applications of this fiber are also mentioned, such as the use of this fiber to fabricate rope, place mats, paper cardboard, string thread, tea bags, high-quality textile materials, absorbent, polymer/fiber composites, etc.",book:{id:"7544",slug:"banana-nutrition-function-and-processing-kinetics",title:"Banana Nutrition",fullTitle:"Banana Nutrition - Function and Processing Kinetics"},signatures:"Asmanto Subagyo and Achmad Chafidz",authors:[{id:"257742",title:"M.Sc.",name:"Achmad",middleName:null,surname:"Chafidz",slug:"achmad-chafidz",fullName:"Achmad Chafidz"},{id:"268400",title:"Mr.",name:"Asmanto",middleName:null,surname:"Subagyo",slug:"asmanto-subagyo",fullName:"Asmanto Subagyo"}]},{id:"69568",title:"Water Quality Parameters",slug:"water-quality-parameters",totalDownloads:9909,totalCrossrefCites:12,totalDimensionsCites:32,abstract:"Since the industrial revolution in the late eighteenth century, the world has discovered new sources of pollution nearly every day. So, air and water can potentially become polluted everywhere. Little is known about changes in pollution rates. The increase in water-related diseases provides a real assessment of the degree of pollution in the environment. This chapter summarizes water quality parameters from an ecological perspective not only for humans but also for other living things. According to its quality, water can be classified into four types. Those four water quality types are discussed through an extensive review of their important common attributes including physical, chemical, and biological parameters. These water quality parameters are reviewed in terms of definition, sources, impacts, effects, and measuring methods.",book:{id:"7718",slug:"water-quality-science-assessments-and-policy",title:"Water Quality",fullTitle:"Water Quality - Science, Assessments and Policy"},signatures:"Nayla Hassan Omer",authors:null},{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66452,totalCrossrefCites:43,totalDimensionsCites:89,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"66996",title:"Ethiopian Common Medicinal Plants: Their Parts and Uses in Traditional Medicine - Ecology and Quality Control",slug:"ethiopian-common-medicinal-plants-their-parts-and-uses-in-traditional-medicine-ecology-and-quality-c",totalDownloads:4059,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"The main purpose of this review is to document medicinal plants used for traditional treatments with their parts, use, ecology, and quality control. Accordingly, 80 medicinal plant species were reviewed; leaves and roots are the main parts of the plants used for preparation of traditional medicines. The local practitioners provided various traditional medications to their patients’ diseases such as stomachaches, asthma, dysentery, malaria, evil eyes, cancer, skin diseases, and headaches. The uses of medicinal plants for human and animal treatments are practiced from time immemorial. Stream/riverbanks, cultivated lands, disturbed sites, bushlands, forested areas and their margins, woodlands, grasslands, and home gardens are major habitats of medicinal plants. Generally, medicinal plants used for traditional medicine play a significant role in the healthcare of the majority of the people in Ethiopia. The major threats to medicinal plants are habitat destruction, urbanization, agricultural expansion, investment, road construction, and deforestation. Because of these, medicinal plants are being declined and lost with their habitats. Community- and research-based conservation mechanisms could be an appropriate approach for mitigating the problems pertinent to the loss of medicinal plants and their habitats and for documenting medicinal plants. Chromatography; electrophoretic, macroscopic, and microscopic techniques; and pharmaceutical practice are mainly used for quality control of herbal medicines.",book:{id:"8502",slug:"plant-science-structure-anatomy-and-physiology-in-plants-cultured-in-vivo-and-in-vitro",title:"Plant Science",fullTitle:"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro"},signatures:"Admasu Moges and Yohannes Moges",authors:[{id:"249746",title:"Ph.D.",name:"Admasu",middleName:null,surname:"Moges",slug:"admasu-moges",fullName:"Admasu Moges"},{id:"297761",title:"MSc.",name:"Yohannes",middleName:null,surname:"Moges",slug:"yohannes-moges",fullName:"Yohannes Moges"}]},{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192987,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]}],onlineFirstChaptersFilter:{topicId:"2",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82370",title:"Heat Shock Proteins (HSP70) Gene: Plant Transcriptomic Oven in the Hot Desert",slug:"heat-shock-proteins-hsp70-gene-plant-transcriptomic-oven-in-the-hot-desert",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.105391",abstract:"Heat stress is considered to induce a wide range of physiological and biochemical changes that cause severe damage to plant cell membrane, disrupt protein synthesis, and affect the efficiency of photosynthetic system by reducing the transpiration due to stomata closure. A brief and mild heat shock is known to induce acquired thermo tolerance in plants that is associated with concomitant production of heat shock proteins’ (HSPs) gene family including HSP70. The findings from different studies by use of technologies have thrown light on the importance of HSP70 to heat, other abiotic stresses and environmental challenges in desserts. There is clear evidence that under heat stress, HSP70 gene stabilized the membrane structure, chlorophyll and water breakdown. It was also found that under heat stress, HSP70 decreased the malondialdehyde (MDA) content and increased the production of superoxide dismutase (SOD) and peroxidase (POD) in transgenic plants as compared to non-transgenic plants. Some reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are also synthesized and accumulated when plants are stressed by heat. Hence HSP70 can confidently be used for transforming a number of heat tolerant crop species.",book:{id:"11330",title:"Plant Response Mechanisms to Abiotic Stresses",coverURL:"https://cdn.intechopen.com/books/images_new/11330.jpg"},signatures:"Batool Fatima, Anicet Agossa Batcho, Zainab Y. Sandhu, Muhammad Bilal Sarwar, Sameera Hassan and Bushra Rashid"},{id:"82403",title:"Use of Plant Secondary Metabolites to Reduce Crop Biotic and Abiotic Stresses: A Review",slug:"use-of-plant-secondary-metabolites-to-reduce-crop-biotic-and-abiotic-stresses-a-review",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.104553",abstract:"Plant secondary metabolites (PSM) are small molecules of organic compounds produced in plant metabolism that have various ecological functions, such as defense against pathogens, herbivores, and neighboring plants. They can also help to reduce abiotic stresses, such as drought, salinity, temperature, and UV. This chapter reviewed the ecological functions of the PSM and how people utilize these metabolites to reduce crop biotic and abiotic stresses in agriculture. Specific topics covered in this review are (1) extraction of PSM from plant parts and its application on crops; (2) screening of crop/cover crop germplasms for high PSM content and with resistance to pathogens, herbivores, and/or neighboring plants; (3) regulation of PSM biosynthesis (including plant hormones and defense activators) to increase plant readiness for defense; (4) transcriptome and genome technology improvements in the last decade leading to valuable tools to characterize differential gene expression and gene composition in a genome, and lineage-specific gene family expansion and contraction. In addition, there is a critical need to understand how the biosynthesis and release of allelochemicals occur. Filling this knowledge gap will help us to improve and encourage sustainable weed control practices in agriculture.",book:{id:"11331",title:"Secondary Metabolites - Trends and Reviews",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg"},signatures:"Ziming Yue, Varsha Singh, Josiane Argenta, Worlanyo Segbefia, Alyssa Miller and Te Ming Tseng"},{id:"82404",title:"Nutrition of Corals and Their Trophic Plasticity under Future Environmental Conditions",slug:"nutrition-of-corals-and-their-trophic-plasticity-under-future-environmental-conditions",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.104612",abstract:"Scleractinian corals obtain metabolic energy from their endosymbiotic autotrophic microalgae, and from remineralization of organic matter by bacteria and viruses, along with the heterotrophic food sources. The mutualistic symbiosis is generally stable but can be disrupted when environmental conditions surrounding the corals, such as increasing seawater temperature, become unfavorable to sustain each component of the holobiont. In this connection, the effects of global stressors such as climate change, and local stressors such as pollution, and their combination, are posing serious threats to the metabolic resistance of corals. However, some more resilient coral species have developed specific mechanisms to cope with fluctuating environmental conditions according to the trophic strategy (autotrophy, heterotrophy, or mixotrophy), and by modulating their energy expenditure. In this chapter, the role of nutrition in the coral symbiosis as the energetic budget for metabolic performance will be discussed, with a focus on the role of acquisition of nutrients through feeding, regulation of energy reserves (lipids, proteins, and carbohydrates), and adaptation capability in the natural environment, including the expression of heat-shock proteins (Hsps). Future environmental conditions under a combination of global changes and local impacts will also be discussed, with the aim of identifying the trophic niches of corals and geographical areas as possible refugia.",book:{id:"11342",title:"Corals - Habitat Formers From the Shallow to the Deep",coverURL:"https://cdn.intechopen.com/books/images_new/11342.jpg"},signatures:"Walter Dellisanti, Davide Seveso and James Kar-Hei Fang"},{id:"82397",title:"Gut Microbiota Potential in Type 2 Diabetes",slug:"gut-microbiota-potential-in-type-2-diabetes",totalDownloads:2,totalDimensionsCites:null,doi:"10.5772/intechopen.105616",abstract:"Appropriate metabolic regulation is vital for health. Multiple factors play important roles in maintaining the metabolic system in different physiological conditions. These factors range from intestinal metabolism of food and absorption of nutrients, pancreatic hormones and their interplay under feeding and fasting, hepatic regulation of macronutrient formation and metabolism storage of macronutrients in skeletal muscles. Intestinal metabolism of ingested food and subsequent nutrient absorption depends on the symbiotic microbial community residing in the gut. The specific ratio of different microbial phyla in the gut has proved to be extremely important for the beneficial role of the gut microbiome. The importance of gut microbiome in the regulation of metabolism has been highlighted with reports of the abnormal ratio of gut microbial community resulting in different metabolic disturbances ranging from obesity to the development of diabetes mellitus. The physiological impact of insulin on the metabolic regulation of macronutrients has recently been shown to be augmented by the secondary metabolites produced by anaerobic fermentation. The current chapter aims to highlight recent findings in the regulation of extraintestinal metabolism by gut microbiome with a specific emphasis on the physiology and pathophysiology of the pancreas in health and disease.",book:{id:"11631",title:"Gut Microbiota - Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11631.jpg"},signatures:"Shahzad Irfan, Humaira Muzaffar, Haseeb Anwar and Farhat Jabeen"},{id:"81668",title:"Biological and Molecular Effects of Pesticides on Human Health",slug:"biological-and-molecular-effects-of-pesticides-on-human-health",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104811",abstract:"Pesticides are widely used in agriculture and are practical and economical to improve the quality of food safety for the permanent population around the world. Even though insecticides are beneficial to cropping views, their extensive use may result in severe consequences due to their biocompatible and permanent nature. Various pesticides can cause serious health risks of direct or indirectly contaminated air, water, soil, and the general ecosystem. The effect of pesticides on blood in the mammalian cell is significant because blood can act as a target and carrier for pesticides. However, the mechanism by which they bind to biopolymers, particularly blood proteins, is not clearly understood yet. This chapter investigates the molecular effects of pesticides on biomacromolecules, especially hemoglobin.",book:{id:"11318",title:"Pesticides",coverURL:"https://cdn.intechopen.com/books/images_new/11318.jpg"},signatures:"Aida Doroudian, Mahdieh Emadi, Reza Hosseinzadeh and Parvaneh Maghami"},{id:"81209",title:"Phylogeny and Population Genetic Structure of Minke Whales Worldwide: A Review of Recent Studies",slug:"phylogeny-and-population-genetic-structure-of-minke-whales-worldwide-a-review-of-recent-studies",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.102675",abstract:"In 1998, two species of minke whales were recognized based on the review of the morphological and genetic information available at that time: the Antarctic minke whale (Balaenoptera bonaerensis), which is restricted to the Southern Hemisphere, and the cosmopolitan common minke whale (Balaenoptera acutorostrata). Furthermore, three sub-species of the common minke whale were recognized: the North Atlantic (B. a. acutorostrata), North Pacific (B. a. scammoni) and Southern Hemisphere (B. a. subsp.). This chapter reviews the genetic studies on minke whales conducted after 1998. The review is organized by topic, e.g., those studies focused on phylogeny and other matters most relevant for taxonomy, and those focused on population genetic structure within oceanic basins most relevant for conservation and management. On the former topic, the new genetic information, whilst strongly supporting the minke whale taxonomic classification recognized in 1998, also reveals substantial genetic differentiation within the Southern Hemisphere common minke whales, with subsequent taxonomic implications. On the latter topic, results from different analytical procedures have provided information on population identification and structure in the Indo-Pacific sector of the Antarctic and western North Pacific, but they have failed to identify unequivocally any population within the North Atlantic common minke whales.",book:{id:"11335",title:"Marine Mammals",coverURL:"https://cdn.intechopen.com/books/images_new/11335.jpg"},signatures:"Luis A. Pastene, Mutsuo Goto, Mioko Taguchi and Yoshihiro Fujise"}],onlineFirstChaptersTotal:552},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:31,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"
\r\n\tThis topic is dedicated to the efforts and promotion of UNESCO SDG4, the UNESCO initiative on the future of education, and the need for a new social contract for education. It aims to disseminate knowledge on policies, strategies, methods, and technologies that increase the resilience and sustainability of the development of the future of education and the new social contract for education. It will also consider the global challenges such as globalization, demographic change, digital transformation, climate change, environment and the social pillars of sustainable development.
\r\n
\r\n\tResponses to the pandemic and the widespread discontent that preceded it must be based on a new social contract and a New Global Deal for education that ensures equal opportunities for all and respects all people’s rights and freedoms (UNESCO; 2021). Such a new social contract, as proposed by UNESCO, must be based on the general principles underlying human rights - inclusion and equality, cooperation and solidarity, and collective responsibility and interconnectedness - and be guided by the following fundamental principle: Ensure that everyone has access to quality education throughout their lives.
\r\n
\r\n\tWe face the dual challenge of delivering on the unfulfilled promise of ensuring the right to quality education for every child, youth, and adult, as well as fully realizing the transformative potential of education as a pathway to a more sustainable collective future. To achieve this, we need a new social contract for education that eliminates inequities while transforming the future. This new social contract must be based on human rights and the principles of non-discrimination, social justice, respect for life, human dignity, and cultural diversity. It must include an ethic of care, reciprocity and solidarity. The new social contract builds on inclusiveness, equity, lifelong learning, SDG, collaboration and personal learning in a global context for democracy.
\r\n
\r\n\tAt an international level, the adoption of the Open Educational Resources recommendation and the Open Science recommendation represents an important step towards building more open and inclusive knowledge societies as well as the achievement of the UN 2030 Agenda. Indeed, implementing the recommendations will help to achieve at least five more Sustainable Development Goals (SDGs) that are intertwined with the topic of this book series, namely SDG 5 (Gender equality), SDG 9 (Industry, innovation and infrastructure), SDG 10 (Reduced inequalities within and across countries), SDG 16 (Peace, justice and strong institutions) and SDG 17 (Partnerships for the goals).
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"320585",title:"Ph.D.",name:"Deborah",middleName:null,surname:"Young",slug:"deborah-young",fullName:"Deborah Young",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002vZLcTQAW/Profile_Picture_2022-05-10T08:30:47.jpg",institutionString:"Empowering Communities Globally",institution:null},{id:"348038",title:"Associate Prof.",name:"Feyza",middleName:null,surname:"Bhatti",slug:"feyza-bhatti",fullName:"Feyza Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/348038/images/system/348038.jpg",institutionString:"Girne American University",institution:{name:"Girne American University",institutionURL:null,country:{name:"Cyprus"}}},{id:"302382",title:"Dr.",name:"Gina",middleName:null,surname:"Alvarado",slug:"gina-alvarado",fullName:"Gina Alvarado",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002mZoL9QAK/Profile_Picture_2022-05-26T08:14:10.jpg",institutionString:"Landesa, Seattle",institution:null},{id:"128665",title:"Prof.",name:"Man-Chung",middleName:null,surname:"Chiu",slug:"man-chung-chiu",fullName:"Man-Chung Chiu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bR9OrQAK/Profile_Picture_2022-03-09T08:36:59.JPG",institutionString:null,institution:{name:"Beijing Normal University",institutionURL:null,country:{name:"China"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"
\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n
\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n
\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n
\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n
\r\n\tThe following are the main causes of biodiversity loss:
\r\n
\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n
\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n
\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n
\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation"},{id:"39",title:"Environmental Resilience and Management",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n
\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/100170",hash:"",query:{},params:{id:"100170"},fullPath:"/profiles/100170",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()