Different Colletotrichum species associated with the disease anthracnose of chilli in different countries.
\r\n\t
",isbn:"978-1-83969-561-2",printIsbn:"978-1-83969-560-5",pdfIsbn:"978-1-83969-562-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",bookSignature:"Dr. Luis Loures",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",keywords:"Urban Processes, Urban Patterns, Redevelopment Strategies, Landscape, Land Transformation, Urban Models, Urban Evolution, Urban Organisation, Legislation, Sustainable Development, Green Infrastructure, Regional Planning",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 22nd 2021",dateEndThirdStepPublish:"May 21st 2021",dateEndFourthStepPublish:"August 9th 2021",dateEndFifthStepPublish:"October 8th 2021",remainingDaysToSecondStep:"21 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Loures has worked on pioneering research on circular planning applied to post-industrial landscape redevelopment. Since he graduated he has published several peer-reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA) and at the University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures",profilePictureURL:"https://mts.intechopen.com/storage/users/108118/images/system/108118.png",biography:"Luís Loures is a Landscape Architect and Agronomic Engineer, Vice-President of the Polytechnic Institute of Portalegre, who holds a Ph.D. in Planning and a Post-Doc in Agronomy. Since he graduated, he has published several peer reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA), and at University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).\nDuring his academic career he had taught in several courses in different Universities around the world, mainly regarding the fields of landscape architecture, urban and environmental planning and sustainability. Currently, he is a researcher both at VALORIZA - Research Centre for Endogenous Resource Valorization – Polytechnic Institute of Portalegre, and the CinTurs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve where he is a researcher on several financed research projects focusing several different investigation domains such as urban planning, landscape reclamation and urban redevelopment, and the use of urban planning as a tool for achieving sustainable development.",institutionString:"Polytechnic Institute of Portalegre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Polytechnic Institute of Portalegre",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73319",title:"Anthracnose of Chilli: Status, Diagnosis, and Management",doi:"10.5772/intechopen.93614",slug:"anthracnose-of-chilli-status-diagnosis-and-management",body:'\nThe genus Capsicum includes many cultivated species, of which Capsicum annuum L. is one of the most widely cultivated one; besides this, other domesticated species are C. baccatum, C. chinensis, C. frutescens, and C. pubescens [1]. C. annuum comprises of both sweet (bell pepper) and pungent (chilli) fruits of numerous shapes and sizes. It is a good source of Vitamin A and C, potassium, and folic acid [2]. Fresh green chilli has more vitamin C than a citrus fruit, whereas red chilli has more vitamin A than in carrots [3, 4]. Besides its wide use as vegetable, spice, and condiments, it is also used in medicines and beverages. Capsaicinoid and caretenoids are the active ingredients of the chilli; the capsaicinoids are nonvolatile alkaloids that make chilli pungent [5], and caretenoids have nutritional value that also provides color to the chilli fruit [6]. In tropical and subtropical countries, chilli is considered the most important constituent of different cuisines. As the native home of chillies are considered to be tropical America, where it is still found growing in the wild state [7]. Its introduction to India is credited to voyage of Columbus who brought seeds from Spain, introducing it to Europe, which subsequently spread to Africa and Asia [8].
\nIndia is the world’s largest producer of dried chillies and in 2018 India produced 1.8 million tons, out of 4.1 million tons produced worldwide [9]. There are two important commercial qualities that makes Indian chilli world famous are color and pungency levels. Chilli crop is attacked with different pests and pathogens in field and during post-harvest, contamination with mycotoxins are major constraints in chilli production. Worldwide, Capsicum is vulnerable to various pests, weeds, fungal, bacterial, and viral pathogens; among the fungal diseases, anthracnose/die-back/fruit-rot of chillies is an important disease causing serious losses in field, transit, transport, and storage [10, 11].
\nThe word anthracnose derived from Greek language meaning ‘coal’ it is the common name of plant disease with very dark, sunken lesions and containing fungal spores [12]. Typical symptoms (Figure 1) of anthracnose on chilli fruit include dark spots, sunken necrotic tissue with concentric rings of acervuli. Besides fruit rot, it also causes leaf spots, dieback on stem, seedling blight, or damping off. This disease not only affects the quality of fruit by appearance of anthracnose lesion but also reduces dry weight of fruit, and quantity of capsaicin and oleoresin [13, 14].
\n(a) Healthy chilli plant, (b) chilli plant affected with anthracnose disease, and (c) chilli fruits showing anthracnose symptom.
Losses are caused by this disease worldwide; it is reported that in Vietnam it causes 20–80% yield loss [15], 10% yield loss in Korea [16], 50% yield loss in Malaysia [17] and as high as 80% yield loss (during severe epidemics) in Thailand [18]. In India, a calculated loss of 10–54% has been reported in yield due to this disease [19, 20], and this disease is reported throughout India but it found to be more common and aggressive form in Assam, Bihar, Andhra Pradesh and Uttar Pradesh [10]. The anthracnose pathogen has been intercepted in seed and it has been reported that there is occurrence of pathogen in seed samples, upto 5% infection index indicates its wide spread occurrence in India [21].
\nThis disease is caused by the species of genus Colletotrichum, which belongs to Ascomycetes. Worldwide, different species of Colletotrichum are reported to cause chilli anthracnose disease (Table 1), In India, among different species known to cause this disease, there are primarily three important species Colletotrichum capsici Syd. Butler and Bisby (Synonym C. truncatum), C. acutatum and C. gloeosporioides have been reported to be associated with the disease, however C. truncatum causing major damage at the ripe fruit stage of the plant [35, 52, 53, 54, 55].
\nCountry | \nPathogen | \nReferences | \n
---|---|---|
Australia | \n\nC. acutatum, C. atramentarium, C. dematium, C. gloeosporioides var. minor and C. gloeosporioides var. gloeosporioides and C. brisbanense\n | \n[22, 23] | \n
Brazil | \n\nC. boninense\n | \n[24] | \n
India | \n\nC. capsici/ C. dematium/ C. truncatum, C. gloeosporioides, C. graminicola, C. acutatum, C. piperatum, C. atramentaum, C. fructicola and C. siamense, C. cliviae, C. coccodes and C. karstii\n | \n[20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] | \n
Indonesia | \n\nC. gloeosporioides, C. truncatum and C. acutatum\n | \n[36] | \n
South Korea | \n\nC. acutatum, C. gloeosporioides, C. coccodes and C. dematium\n | \n[37] | \n
Mexico | \n\nC. truncatum\n | \n[23] | \n
Malaysia | \n\nC. truncatum\n | \n[17, 38] | \n
New Zealand | \n\nC. coccodes, C. kartsii, C. novae-zelandiae and C. nigrum\n | \n[39, 40] | \n
Papua New Guinea | \n\nC. truncatum and C. gloeosporioides\n | \n[41] | \n
Philippines | \n\nC. gloeosporioides, C. truncatum and C. scovillei\n | \n[42, 43] | \n
Sri Lankla | \n\nC. truncatum\n | \n[44, 45] | \n
Taiwan | \n\nC. acutatum, C. truncatum and C. gloeosporioides\n | \n[46] | \n
Thailand | \n\nC. acutatum, C. truncatum and C. gloeosporioides\n | \n[47, 48] | \n
USA | \n\nC. gloeosporioides, C. acutatum, C. truncatum and C. coccodes\n | \n[49, 50] | \n
UK | \n\nC. acutatum and Glomerella cingulata\n | \n[51] | \n
Vietnam | \n\nC. acutatum, C. truncatum, C. gloeosporioides and C. nigrum\n | \n[15] | \n
Zimbabwe | \n\nC. nymphaeae\n | \n[23] | \n
Different Colletotrichum species associated with the disease anthracnose of chilli in different countries.
Identification of Colletotrichum species based on morphological characteristics (size and shape of conidia; presence of setae) and colony characteristics is generally used by several workers [56, 57, 58, 59]; it is widely used in seed health testing labs for detection of C. capsici in germplasm for pest free conservation of chilli seeds [21]. As the pathogen is seed-borne, there is threat of introduction of this pathogen along with import of germplasm (including Chilli) from different countries; therefore, while importing from any other country, there is a need to examine the samples very critically including sensitive molecular diagnostic tools to prevent entry of this pathogen associated with germplasm [60]. Moreover, for the accurate identification of the pathogen at species level molecular methods are widely adapted. Loop-mediated isothermal amplification (LAMP) assay was used for the accurate and sensitive detection of C. capsici LAMP primers (β-tubulin gene sequences based) were designed and it was reported that it could detect as little as 10 fg/μl of C. capsici pathogen in comparison with only upto 1 ng/μl of C. capsici detection using polymerase chain reaction [61]. A sequence characterized amplified region (SCAR) marker was developed for specific and sensitive detection of C. capsici in chilli seeds and fruits. This markers did the amplification of an expected 250-bp fragment from genomic DNA and these markers were very much sensitive as it was reported that the marker could detect purified C. capsici DNA template up to 1 pg and DNA from C. apsici infected chilli fruits up to 25 ng [59]. As these two markers are very sensitive, these may be very useful in detection of the pathogen in imported germplasm in plant quarantine laboratories.
\nCOL1/COL2 primers were used for amplification of the specific internal transcribed spacer region of tested Colletotrichum species (C. acutatum, C. truncatum and C. gloeosporioides) with a specific band of 460 base pairs. C. gloeosporioides was detected at a low level of 1000 conidia on chilli leaf and fruit by this primer [62]. Another, primer set based on the sequences of the ribosomal internal transcribed spacer (ITS1and ITS2) regions of C. truncatum was designed and standardized for the detection of C. truncatum in infected plant tissues using PCR assay. The sensitivity was 10 pg of genomic DNA from the pathogen [63]. Machenahalli et al. [64] detected pathogens from different parts of plant like seeds, fruits, infected twig/stem by PCR-based method by using specific primers. C. truncatum was amplified by species specific primer (C.cap-f and C.cap-r) as single band at 450 bp. C. gloeosporioides was amplified by species specific primers CgInt at 450 and C. acutatum by CaInt at 490 bp respectively. The accurate identification is very important for choosing the correct management strategy for this disease.
\nFor the management of anthracnose disease of chilli, different strategies are adapted. These are use of cultural practices, chemical control, eco-friendly measures like use of biocontrol agents, plant extracts and use of resistant cultivars. Generally, use of different strategies in combination has been recommended for managing the disease [65]. The summarized information is given from across the world for the management of this disease.
\nSeveral cultural practices have been reported to manage chilli anthracnose due to the special etiology of the pathogen. These precautionary measures are implemented to reduce the rate of infection and minimize the inoculum pressure even before fruits are mature and harvested. Than et al. [47] and Ali et al. [66] in their review reported that different cultural practices like disease free seeds, weeding, crop rotation, proper drainage, removal of crop residue are being followed for the chilli cultivation. It was suggested that disease free chilli seeds should be planted and elimination of weeds should be done in chilli field and rotation of chilli crop with other crops which are not alternative hosts to Colletotrichum spp. after every 2–3 years is very effective for controlling this disease. Good drainage systems on the field to channel out waste water during irrigation regimes, on-farm fruit disinfection such as fruit washing at packing houses and finally removal of plant debris which may serve as source of inoculum are some other clean crop and sanitation practices [47]. If there was history of disease in a particular field, then other crops should be rotated in isolation from other solanaceous plant for at least alternate years [50]. Deep plow is recommended to completely cover diseases plants or removing infected plant debris from the field at the end of growing season [67]. Early planting of chilli or planting cultivars that bear fruit within a short ripening period to allow the fruit to escape fungal infection is also recommended. Other alternative sanitation practices such as weeding, removal of infected or wounded fruits should be carried out regularly to prevent the pathogens from using such wounds as sites of infection.
\nDifferent strategies for managing the disease are recommended and chemical control is found most effective and practical method [68]. As time required for controlling the disease with chemical method is much lesser as compared to the time required for the development of resistant cultivar. Use of protective fungicide like manganese ethylene bisdithiocarbamate (Maneb) is widely recommended for managing this disease. Other dithiocarbamate fungicides like Mancozeb (0.2%), ziram (0.1%), copper oxychloride fungicide (Blitox 50), and Bordeaux mixture (0.5 or 1%) of a copper sulphate fungicide were found effective in managing this disease. Seed dressing with benzimidazole fungicides (Benlate, delsene M) and strobilurin fungicide (azoxystrobin) are recommended [69] and soaking of chilli seeds for 12 h in 0.2% Thiram, a dithiocarbamate fungicide was also found effective for better control of the disease [70].
\nAmong different systemic fungicides recommended Bavistin (carbendazin 50%WP) 0.1%, Plantvax (oxycarboxin) and vitavax (carboxin) were found effective as use of Bavistin resulted in 80.84% disease reduction [71] and Plantvax and Vitavax were reported to reduce the disease by checking the spore germination of C. truncatum [72]. Additionally other systemic fungicides from triazole group propiconazole [73], difenoconazole, benzimidazole fungicide (Benomyl) [74] have been used in both pre and post-harvest management of chilli anthracnose, as propiconazole, exhibited the highest level of inhibition of in vitro mycelial growth, biomass production, sporulation and spore germination at concentrations as low as 0.1 mg/ml. Other workers also reported that Tilt (propiconazole) is highly effective in controlling Colletrotrichum spp. [75, 76] concentration of Tilt at 150 ppm was found effective in inhibiting the pathogen as it caused 50% inhibition (ED 50) of C. acutatum growth in culture media [77]. It is to be noted that Benomyl and its associated fungicides Carbendazim and thiophanate methyl (both of which registered) has raised major health concerns and these are proved unacceptable and dangerous [78]. Different strobilurin fungicides azoxystrobin (Quadris), trifloxystrobin (Flint) and pyraclostrobin (Cabrio) have also been recommended for effective management of the disease [47, 79].
\nMoreover, dependence on only single chemical resulted in the emergence of resistant strains of C. truncatum isolates from chilli fruit against different chemicals benomyl, which were cross-resistant to thiophanate methyl and carbendazim [80], resistance of C. truncatum to benomyl and strobilurin-fungicides (azoxystrobin and kresoxim-methyl) is also reported [81, 82, 83]. Under such circumstances, combined application of Bioagents with chemicals are recommended, Pseudomonas fluorescens along with half of the recommended dose of azoxystrobin fungicide has been found effective and viable option to control fruit rot [79]. As use of chemicals are not eco-friendly and it leaves chemical residue in chilli fruits, which hinders the export, and there are numerous reports describing negative effects of using chemicals on farmer’s health in developing countries [36]. To overcome the undesirable effects of chemical usage alternate methods such as use of bioagents, plant extracts or use of chemicals in combination with these are recommended to control the infection.
\n\nTrichoderma species is the fungal antagonist which is widely applied to control Colletotrichum species in chilli [84, 85]. It is also believed that Trichoderma species are able to effectively compete for surface area, thereby reducing pathogen infection success [86, 87, 88]. Chloroform extracts of nonvolatile antibiotics (NVAC) of T. virideadded to the culture media inoculated with C. truncatum, showed reduction in biomass and synthesis of RNA, DNA and protein [89]. It has been reported that antifungal metabolites (100 mg/L) secreted from Trichoderma harzianum Rifai strain number T-156co5 significantly controlled C. truncatum isolated from C. annuum [90]. In vitro studies indicated that T. viride and P. fluorescens are very effective in inhibiting mycelial growth of the pathogen [91]. It is suggested that the use of T. viride and P. fluorescens individually or in combination known to significantly lower the anthracnose disease incidence and should be used as an alternative to chemical control [92].
\nOther bioagents like Bacillus subtilis and Candida oleophila (a yeast species) have been tested for efficacy against C. acutatum [93]. Pichia guilliermondii Wick strain R13 is another yeast species which is reported to reduce the disease incidence on C. truncatum infected chilli fruit as low as 6.5%. It has also been proposed that this fungal strain with other yeasts suppressed Colletotrichum spp. through multiple modes of action (nutrient competition, competition for space between antagonist and the pathogen, toxin production, induction of plant resistance and hydrolytic enzyme production) [94, 95, 96]. Intanoo and Chamswarng [97] reported that DGg13 and BB133 were antagonistic bacterial strains found very effective in controlling C. truncatum. Pseudomonas aeruginosa FP6 also found effective against C. acutatum [98].
\nRhizosphere and rhizoplane fungal isolates (Chaetomium globosum, T. harzianum and F. oxysporum) from perennial grasses has been reported to decreased disease incidence and severity in seedlings and mature plants, and promoted plant growth and increased yield in the greenhouse and field [99]. In an experiment crude extracts from Chaetomium cupreum CC, C. globosum CG, T. harzianum PC01, T. hamatum PC02, Penicillium chrysogenum KMITL44 and antibiotic substances Rotiorinol, Chaetoglobosin-C and Trichotoxin A50 was used against C. gloeosporioides isolate WMF01 (the most virulent on all tested varieties of grape). The results revealed that application of all bioproducts significantly reduced the disease incidence on leaves, twigs and fruits of grape in all varieties as compared to the chemical control [100]. Cordyceps sobolifera an entomopathogenic fungi have also been reported for use as a biocontrol agent against C. gloeosporioides [101, 102].
\nAntimicrobial plant secondary metabolites compounds are one of the best options to controlling plant diseases. In chilli, several workers have shown the efficacy of plant extracts against Colletotrichum spp. [103, 104, 105, 106, 107, 108]. Among the plant extracts, Allium sativum (10%) and Azadirachta indica (10%) demonstrated the highest inhibition of mycelial growth of C. gloeosporioides [91]. A. indica, Datura stramonium, Ocimum sanctum, Polyalthia longifolia and Vinca rosea were used against C. truncatum. Among the five fermented leaf extracts tested against C. truncatum, A. indica extract at 20% concentration highly inhibited the growth of C. truncatum in vitro condition. And in vivo the application of fermented leaf extract of A. indica alone reduced the fruit rot incidence (@3%) and increased plant height, number of fruits and yield significantly [109]. In an experiment the botanicals or plant extracts from Catharanthus roseus, Coleus aromaticus, Manilka razapota and A. indica used against fungi, it was concluded that these botanicals confer antifungal effects on the radial mycelial growth of C. truncatum [107]. The organic pesticides were prepared from the extract of neem leaves, soursop leaves, lemongrass extract, tuba root extract, and kenikir/Cosmos caudate extract [110]. The result indicates that neem leaves are the most effective organic pesticides to control the chilli pepper disease especially in Indonesia.
\nNine plants extracts viz., Lawsonia inermis, A. indica, Bougainvillea spectabilis, Withania sominifera, Ocimum tenuiflorum, Aegle marmelos L., Justicia adhatoda and Calotropis gigantean were tested under in vitro condition through poisoned food technique against chilli fruit rot pathogen Colletotrichum sp., among them W. sominifera (10%) was found to highly inhibit the mycelial growth of the anthracnose pathogen up to 84.88% [111]. Further, Singh and Khirbat [112] reported the efficacy of aqueous extract of three wild plants viz., Albizza lebbeck, Acacia arabica and Clerodendrum infortunatum to control chilli fruit rot. Alves et al. [113] reported the efficacy of 1% aqueous or 20% ethanol plant extracts to control bell pepper anthracnose caused by C. acutatum. In this study, 6% aqueous garlic, mallow and ginger extracts reduced disease severity by more than 97%. Even though recent research suggests the use of these plant extracts as bio-fungicides, but still more studies on their efficacy in the controlling of chilli anthracnose need to be performed under field conditions.
\nAs use of resistant or tolerant cultivar is the most cost-effective management strategy. Due to the lack of resistance in the C. annuum gene pool, no commercial resistant varieties have been developed in C. annuum [114]. The introgression of the resistance gene from C. baccatum to C. annuum is difficult. There are some studies on introgression of anthracnose resistance into C. annuum to develop a new variety [115, 116]. Five lines of C. annuum from AVRDC, Taiwan, namely AVPP1102-B, AVPP0513, AVPP0719, AVPP0207 and AVPP1004-B, as the promising lines with good fruit yield and tolerance to anthracnose [117]. Two chilli varieties, Lembang-1 and Tanjung-2, have been reported as moderately resistant from IVEGRI, Indonesia, [118].
\nIn India, some anthracnose-resistant lines listed are LLS, PBC932 (VI047018), Breck-2, PBC80 (VI046804), Breck-1, Jaun, and PBC81 (VI046805) [119]. Other nine resistant varieties (BS-35, BS-20, BS-28, Punjab Lal, Bhut Jolokia, Taiwan-2, IC-383072, Pant C-1 and Lankamura Collection) were identified which could be employed for developing successful resistant cultivars through breeding programs [120]. The information on the resistance varieties against Colletotrichum spp. may also be utilized for studying the inheritance of the resistance and also to locate and study the quantitative trait loci (QTLs) maps for resistance [121]. Further studies need to be undertaken to investigate the importance of these distinct genes in the management of chilli anthracnose. Nevertheless, the genetic mechanism associated with chilli resistance to anthracnose is still poorly understood mainly due to lack of information on the defense signaling modules governing the resistance mechanism.
\nAnthracnose of chilli is main constraint for its production in the India as well as worldwide. Detection this pathogen in the seed by the morphological features and with the developed molecular markers are very important especially in quarantine laboratories. The accurate detection of pathogen also helps in choosing the best management strategy for the control of this disease. Involvement of many Colletotrichum species in the disease and absence of resistance gene in C. annum makes breeding for resistance is more challenging. Moreover, injudicious use of chemicals for the control of this disease leaves residue in the chilli fruit poses threat to the export. Combining the use of resistance cultivars with other disease control measures would enhance the efficiency in integrated management of chilli anthracnose. Moreover, more research is required to find better alternative methods to control chilli anthracnose by involving vigorous evaluation and identification of resistant cultivars of chilli against this disease.
\nSolid materials exist when the atoms find a configuration in which their potential energy has at least a local minimum, around which a stability region exists. Irrespective of the high number of degrees of freedom, and with rare exceptions, in the neighborhood of any minimum a more or less narrow interval exists, in which the potential energy is well represented by quadratic terms, higher order terms becoming negligible. A quadratic potential energy means an elastic restoring force, meaning that, when considering free motion around a stable equilibrium configuration, vibrational excitations are expected, which have a time periodicity. Periodicity can be represented by a frequency, or an angular frequency ω, which is obviously determined by the properties of the physical system, namely in terms of stiffness and inertia. This general consideration applies from the atomic scale up to the full macroscopic scale, at which continuum models are appropriate.
When looking at the atomic motions, stiffness and inertia are given by the interatomic forces and the atomic masses. A distinction can be proposed among vibrational excitations, based on the phase difference between the motions of different atoms. Excitations exist in which when considering atoms at progressively decreasing distances, down to first neighbors, the phase difference between their displacements does not tend to zero. Examples are the vibrations of molecules, or the optical phonons in a crystalline structure. In this case the average displacement evaluated over a group of neighboring atoms does not have a relevant meaning, since the displacement of single atoms can be significantly different from the average one, and since the average can be null (as in the case of isolated molecules) or close to zero even in presence of atomic motions of significant amplitude. Excitations instead exist in which the phase difference between displacements of atoms located at smaller and smaller distances, down to nearest neighbors spacing, are smaller and smaller. Examples are the acoustic phonons in a crystalline structure. In this case the average displacement evaluated over a group of neighboring atoms becomes fully representative of the displacement of single atoms, and is the natural bridge towards a description of the continuum type, with a displacement vector field
The description by the continuous vector field of displacement, and consequently by the tensor fields of strain and stress, is appropriate at scales which go from the supramolecular one, of the order of the nanometer or slightly more, at which the above-mentioned average begins to be meaningful, up to the fully macroscopic one. In the elastic continuum model [1, 2, 3] the potential energy is a quadratic function of strains, the coefficients of the expansion being the elements of the tensor of the elastic constants
It has been recognized, since long ago, that the measurement of the vibrational excitations gives access to these properties [4]. In particular, if the inertial properties (atomic masses or mass densities) are known, the stiffness properties can be measured. In both the atomic and the continuum case, they represent the curvature of the potential energy in the neighborhood of its minimum, and therefore they contain information, respectively, about the interatomic bonding and about the stiffness of solids, in its usual meaning. A whole wealth of experimental techniques has therefore been developed, which exploit vibrational excitations to measure material properties [4]. A general advantage of all the measurement techniques based on vibrational excitations is that they can exploit displacements of small amplitude, confined in the neighborhood of the equilibrium position, in which the representation of the potential energy by only the quadratic terms is an excellent approximation. In other words, higher order terms of the potential do not interfere, and, in the case of continua, non-elastic deformation mechanisms, other than the simple, reversible, stretching of interatomic bonds, are not activated.
Vibrational excitations of non-acoustic type, which cannot be described by a continuous field of displacements, are not treated by mechanics, but rather by solid state physics, which measures them by techniques like Raman spectroscopy, to obtain various information at atomic level, including that concerning the interatomic forces. They are not considered here.
Vibrational excitations of the acoustic type, instead, have the same properties from the supramolecular, or nanometric, scale, up to the kilometric scale and above. Accordingly, techniques based on acoustic excitations are exploited to measure the stiffness properties of objects of various sizes, up to dams, and are exploited for geological investigations. These methods measure the dynamic, or adiabatic, elastic moduli; these moduli do not coincide with the isothermal moduli which are measured in monotonic tests (if strain rate is not too high), but in elastic solids the difference between adiabatic and isothermal moduli seldom exceeds 1% [2].
At the other extreme of the size scale, some techniques can be pushed to measure microscopic objects, down to carbon nanotubes. Nanomechanics precisely addresses the behavior of microscopic objects; in this chapter we consider measurement techniques based on vibrational excitations of the acoustic type, which are pushed to measure small objects, towards the size at which the same concept of ‘acoustic excitations’ begins to lose significance, as well as that of the strain field. Techniques based on vibrational excitations, and in particular optical techniques, which avoid mechanical contact, are particularly prone to be applied to small objects, for which the contact with actuators or sensors becomes critical. In many cases, the mechanical properties of materials at this scale are of interest for the design and production of microsystems which operate dynamically; in these cases, the dynamic, adiabatic, moduli, are precisely those of interest.
The next section summarizes some basic concepts about free acoustic excitations in finite objects. The following two sections give an overview of several measurement techniques, which are grouped in two categories. First, those that exploit the oscillations of purpose-built testing structures, which are mechanically actuated, often by piezoelectric means. Secondly, the techniques which measure the properties of ultrasonic waves, that are typically excited and/or detected by optical means. These techniques can be further subdivided among those which operate in the time domain and those which operate in the frequency domain.
Displacements and strains in the elastic continuum model in the absence of body forces, obey the elastodynamic equations; for homogeneous media they are [1, 2, 3]
The invariance to any translation in time is the root of the harmonic time dependence of the fundamental solutions, characterized by the circular frequency ω, which allows to transform the equations into the Helmholtz equations. The invariance to any translation in position, in practically infinite media, is the root of the harmonic space dependence of the fundamental solutions, which are traveling monochromatic harmonic waves, characterized by the wave vector
The elastic continuum model has no intrinsic length scales; as mentioned above it loses significance at the nanometric scale, while in an infinite medium, which also from the geometrical point of view has no intrinsic length scale, it does not have an upper limit of size. The wavelengths span in a continuous way this whole infinite interval, and the corresponding angular frequencies go, in continuity, from null frequencies for
thermodynamic stability requiring that
Rupture of the unconditional translational symmetry by some kind of boundary condition, which introduces some kind of confinement, induces the appearance of further acoustic modes, namely standing waves. The consequences of confinement can be appreciated also without abandoning the relative simplicity of the isotropic model. They are already present, in a paradigmatic way, in the case which is probably the simplest rupture of the infinite translational symmetry: the plane external surface of a semi-infinite medium. The invariance to any translation in time is not altered, and correspondingly the acoustic modes remain periodic in time, associated to a circular frequency ω. In the same way, the invariance of the medium to any translation in the plane of the surface is not modified, and correspondingly the acoustic modes remain periodic, and traveling, in this plane. This periodicity is conveniently represented by a wave vector
In the direction perpendicular to the planar external surface (the direction of depth), two types of space dependence are instead found. A set of modes takes advantage of the (semi) infiniteness of the medium, and maintains a space periodicity, conveniently represented by a wave vector
However, in the presence of this boundary, the elastodynamic equations admit another set of solutions, which are not periodic in the direction perpendicular to the external surface. They are the surface acoustic waves (SAWs), of which the Rayleigh wave, the only one existing at the free surface of a semi-infinite homogeneous medium, is the prototype. The Rayleigh wave has a displacement field which decays exponentially with depth, with a decay length which is uniquely determined by the elastodynamic equations, and turns out to be very close to
In the semi-infinite case the medium still has no intrinsic length scale. Both periods,
Instead, in media that are finite in at least one dimension, with a size
Objects having a high aspect ratio, like thin layers or beams, or nanorods, are often of interest: in one or two dimensions their size is
Again, the Rayleigh waves paradigmatically indicate the consequences of a finite size. We can consider a slab, whose thickness is the characteristic size
In the case of a film supported by a substrate, which can be generalized to stratified media, the layer thickness sets the characteristic size
A wide slab, of thickness
The dispersion relation
Finally, for objects whose aspect ratio is not far from unity, and therefore in which confinement is along all the three directions to a size of the same order
Two main geometries are of interest, both for fundamental studies and for technological applications. Firstly, the planar geometry of thin films, in which confinement is in only one direction, the critical size
Ultrasonic waves of wavelength comparable to
Instead, for acoustic excitations at the scale of
The two ranges of wavelength identify two classes of measurements. A first class exploits purpose-built testing structures, which determine the value of
As repeatedly underlined, the elastic continuum model is meaningful down to almost the molecular scale. Techniques based on acoustic excitations are therefore, in principle, applicable to objects down to the nanometric scale. Their effective application depends on the availability of appropriate transducers to excite and to detect the relevant acoustic excitations. In the case of macroscopic objects, the typical techniques are based on piezoelectric transducers, which can be exploited for both excitation and detection. Specific devices are available, and specific instruments, like acoustic microscopes. An alternative, for what concerns detection, is offered by laser Doppler vibrometry. It has the advantages of the optical techniques: light is a massless probe, contactless, which does not load the measured object, is free from own resonances, has a bandwidth that is essentially determined by electronics (the light sensor and the amplification). Furthermore, it can measure small objects, and can measure surfaces which are difficultly accessible, or on which the application of a detector is not possible, e.g. because of their temperature.
In the case of small objects, down to micrometric or sub-micrometric scale, the exploitation of a separate measurement device in mechanical contact becomes impossible. Mechanical actuation by piezoelectric means is still possible either in the case of resonators, by an external actuator which shakes the whole assembly containing the resonant structure, or by inclusion, by nanofabrication techniques, of a piezoelectric (nano)layer as an integral part of the structure being tested. MEMS/NEMS of this type can also be actuated by electrostatic means. In some cases, the test system can have a structure analogous to that of a complete device, and comprehend, beside the possibility of excitation by piezoelectric or electrostatic means, the ability of measurement, e.g. by capacitive detection or by an interdigitated transducer (IDT). Except for these cases, optical detection is mandatory. Laser Doppler vibrometry is the measurement technique of choice, if the measured system has a flat surface of sufficient size. Otherwise, interferometric techniques have been exploited.
A specific case is that of resonators: a significant effort is under way to produce high quality resonators, mainly because of their great potential for applications in sensing, signal processing, and quantum physics. The properties of a resonator can be measured in a static way, by measuring the deflection of a cantilever, or a membrane, or by measuring its resonant frequency. When a resonator is reduced to a small size, typically in the shape of a cantilever, a bridge, or a clamped membrane, its surface to volume ratio increases. Therefore phenomena, which otherwise are minor or negligible, and are not accounted for by q. (1), become non negligible; namely anelastic effects, possibly connected to internal friction phenomena, and surface phenomena, like surface tension or environmental effects [20, 21]. In particular, interaction with the environment, typically by adsorption of molecules, including water, made available by relative humidity, is the physico-chemical basis for the development of sensors. The development of high performance sensors based on nanoresonators [22, 23] is not considered here. We merely note that research in this direction has led to doubly clamped resonators of thickness down to 22 nm and aspect ratio up to 5000; the measurement of their deflection requires an interferometric technique, and their motion due to Brownian thermomechanical techniques becomes detectable [24].
However, resonant structures can built specifically to the purpose of a precise measurement of the properties of the materials which constitute them. In order to measure the properties of tetrahedral amorphous carbon (also known as diamond-like carbon), Czaplewski et al. built, by standard techniques for the production of MEMS, several resonators, with critical dimension down to 75 nm [25]. Excitation was in some cases electrostatic, and in other cases by shaking by an external piezoelectric actuator. Detection was, depending on the in-plane or out-of-plane deflection, by a laser deflection technique similar to that used by AFMs, or by an interferometric technique. Their results allowed them to analyze dissipation and to discuss various possible mechanisms. Exploiting flexural and torsional oscillators, and the same interferometric measurement technique, they also determined the elastic moduli as function of temperature [26]. In order to measure the properties of an assembly of only carbon nanotubes (called ‘forest of nanotubes’), self-sustained only by their entwining and internal interactions, Hassan et al. built by this material cantilevers, of 1 mm length, which were electrostatically excited, and whose motion was detected by laser Doppler vibrometry [27].
The advantages of miniaturization led to explore also the sizes at which the elastic continuum approach is no longer adequate, and a Molecular Dynamics approach is more appropriate [28]. Interestingly, for membranes which become nanometric but have significantly larger lateral extension, the continuum approach remains useful, both for the theoretical analysis and the measurement technique. Membranes of nanocrystalline diamond and of piezoelectric aluminum nitride, and bilayer membranes, with thicknesses down to 220 nm and diameters up to 1 mm, have been investigated by Knoebber et al. [29] by both a static and a vibrational technique. The static technique, of more macroscopic character, was the bulge test, in which the deflection of the circular clamped membrane under gas pressure is measured; the implementation was optical, the deflection being optically measured by white light interferometry. The vibrational technique involved excitation by an external piezoelectric stack, and detection by laser Doppler vibrometry. The analysis shows that the results from the dynamical technique are less sensitive to the geometrical inaccuracies of the tested membrane. Similarly, the properties of bilayers obtained by growing nanocrystalline diamond on aluminum nitride thin films, of about 200 + 200 nm thickness, were measured producing microresonators, either cantilevers or bridges, of length up to 50 μm, piezoelectrically actuated and measured by laser Doppler vibrometry [30]. Similar nanocrystalline diamond/aluminum nitride membranes, of thicknesses of the order of hundreds of nanometers, were still characterized by the bulge test on circular clamped membranes, of radii up to 1 mm [31].
Also in the analysis of a typical 2-D material, MoS2, resonators have been built in the form of clamped membranes, of radii of 2 and 3 μm, ranging from a single layer, i.e. a truly atomic thickness, up to over 90 layers. The membranes were obtained over pre-patterned circular holes in a Si substrate, and acted as ‘drums’. Their motion was measured exploiting the vibrating drum membrane and the bottom of circular hole as the two mirrors of an interferometer. The continuum mechanics approach turned out to be useful in the interpretation of the experimental results, which showed the transition from the membrane regime, in which the restoring force in the oscillation is supplied by the membrane tension, to the plate regime, in which the restoring force is supplied by the bending stiffness of the plate [32].
A whole class of devices exploits the intergiditated transducers (IDTs) to launch and resonantly detect surface acoustic waves. A piezoelectric layer is a crucial component of these devices. When the lithographic techniques to produce IDTs is available, devices have been produced specifically for the aim of measuring the properties of the material which constitute them. Measurements have been performed on various forms of artificial diamond (nanocrystalline diamond, nitrogenated diamond-like carbon), of particular interest for devices exploiting surface waves and IDTs because of their high acoustic velocity [33, 34, 35].
Various measurement techniques based on vibrations and acoustic waves rely on impulsive mechanical excitation of vibrational modes or of waves. Mechanical excitation by an impact has been analyzed in detail [36, 37], and standards have been issued concerning it [38]. When extending these techniques towards nanomechanics, and in particular to thin films, wave excitation by laser pulses is their natural evolution. Absorption of a laser pulse, of duration τ, induces, by thermal expansion, a sudden expansion: a strain pulse, which propagates away at the speed
In the case of a thin supported film, of thickness
With optical pulses of less than the picosecond, instead, heating and thermal expansion occur only until the strain pulse has traveled a distance of the order of the nm, i.e. less than the absorption length. The pulse displacement during excitation is thus negligible, and heating, and thermal expansion, occur only in a thin surface skin, of depth ζ, i.e.few nm. This is the regime of the so-called picosecond ultrasonics, in which the laser is focused by a spherical lens to a spot whose width is of several micrometers, i.e. orders of magnitude wider that the depth within which thermal expansion occurs. In the case of a film of thickness
The technique has also been exploited for nanostructures which do not have a planar surface extending over the several micrometers of the focused spot; nanorods are an example. In this case the geometry of the strain pulse is not the simple planar one outlined above, and is rather dictated by the specific geometry of the illuminated object(s). The detected signal contains however relevant information, whose interpretation typically requires the modeling of the specific dynamic structure of the investigated objects.
In both the above techniques a transient is induced by a pulse which is short, i.e. strongly localized in time, and also strongly localized in space, resulting in a broadband and localized pulse, whose transit is easily detected. In a different technique a similar short pulse is exploited, which produces a transient, but illuminates a wider segment of the surface with a periodic pattern, and has therefore a narrow band. Periodicity is obtained splitting the pump laser pulse in two beams, and recombining them at the surface of the sample, forming an interference pattern. The same impulsive thermal expansion thus occurs with a periodic space modulation. The periodicity, which here is called
The time evolution of the reflectivity (or, possibly, of the transmittance) is measured in one point, either by a continuous measurement by a fast detector, or, more frequently, by the pump-and-probe technique. The measured signal typically has a slowly declining component, corresponding to the total energy deposited by the pulse, which eventually diffuses towards the adjacent parts of the sample, and a periodic component. The periodic component is due to the SAWs which are launched in the directions of
In all the above techniques a ‘pump’ laser pulse induces a transient, whose time evolution is measured, with a time resolution down to the picosecond scale. The transient grating technique deserves the ‘spectroscopy’ name because it relies on the successive spectral analysis of the measured time signal. Instead, the vibrational spectroscopies investigate the steady state excitation of vibrational modes, due to thermal motion. They exploit continuous, not pulsed, lasers, and detect the component of the scattered light which has undergone a frequency shift, because it was inelastically scattered by the excitations present in the sample. Obviously, inelastic scattering involves some energy exchange between the optical and the acoustic fields, but, due to the smallness of the scattering cross section, this is minor, in comparison to the thermal energy. Only in special cases, namely highly confined nanostructures, the exchange can become significant. The most widespread vibrational spectroscopies, namely Raman spectroscopy and infrared spectroscopy, are not considered here because they measure vibrational excitations of non acoustic type.
Instead, Brillouin scattering is precisely the inelastic light scattering by the vibrational excitations of the acoustic type, and Brillouin spectroscopy measures it. In a manner analogous to that of Raman spectroscopy, the sample is illuminated by a laser beam, and the scattered light is collected; the spectral analysis singles out the minor fraction which has undergone inelastic scattering by the excitations in the sample. The scattering geometry selects an exchanged wavevector
The dispersion relations
The laser ultrasonics technique exploits SAWs, mainly the Rayleigh wave, possibly modified by the presence of a supported film, to measure the properties of samples having a planar surface of sufficient lateral extension. The focus often is the measurement of the properties of the supported film. Waves are launched by a laser pulse, typically of nanosecond duration; visible or near UV light is typically used, often from a N2 laser at 337 nm. As mentioned above, the laser is focused by a cylindrical lens on the surface of the sample, resulting in a sudden expansion of a line-shaped region, which launches a broadband surface wave, which propagates perpendicularly to the focusing line, with a limited divergence. The surface wave is detected by the displacement it induces perpendicularly to the surface, after a propagation path, typically of millimeters.
Detection can be done by optical interferometry [41, 42], or, in a simpler way, by piezoelectric sensing: either a piezoelectric polymer foil pressed on the sample by a blade [43, 44, 45, 46, 47], or a piezoceramic stripe [48]. A ready-to-use commercial apparatus is also available.
Yang et al. implemented both the optical and the piezoelectric detection. They performed a systematic comparison exploiting a 320 nm SiO2 thermal oxide layer over the pristine Si substrate. The optical detection obtains lower intensity signal but also a lower background noise, and wider bandwidth: in their implementation the bandwidth of the piezoelectric detection is limited to about 120 MHz, mainly by the piezoelectric foil exploited for transduction, while the optical detection shows substantial signal components up to almost 300 MHz [49]. The same authors then integrated the two techniques in a single apparatus.
The recorded displacement can be frequency analyzed, yielding the dispersion relation
The technique has been extensively adopted to characterize diamond-like carbon films. It has been pushed to the measurement of films having thickness down to 5 nm, deposited on a Si substrate [41]. The stretch of the observed propagation path to 20 mm allowed to measure variation of the Rayleigh wave velocity below 0.25 m/s, over a velocity of about 5000 m/s for the bare Si substrate. The small variation due to the nanometric film is thus detected. Ultra nanocrystalline diamond films of micrometric thickness were more easily characterized [47]. Also the commercially available apparatus proved to be able to measure the properties of alumina films produced by the atomic layer deposition (ALD) technique, of thickness down to about ten nanometers [50].
Since femtosecond laser pulses became available, the so-called ‘picosecond ultrasonics technique’ exploits them; nevertheless, it is still called ‘picosecond ultrasonics’ from the picosecond, or sub-picoseconds, pulses which were available at the time in which it was first demonstrated, by the seminal work of Thomsen et al. [51, 52] and by Wright [53, 54]. It is a technique which belongs to the wide family of the optical pump-and-probe scheme, whose performances, namely resolution, crucially depend on the short duration of pulses.. As previously outlined, two length scales contribute to determine the shape of the ultrasonic field generated by the pump pulse: the absorption length ζ of the optical pulse, i.e. the depth within which the pulse energy is deposited, and the displacement
Lasers in the near infrared are typically adopted, to avoid possible spurious effects, which were attributed to electronic interband transitions [55], which might be induced at shorter wavelengths. Typical metals properties correspond to absorption lengths of nanometers; aluminum is among the metals which have the shortest absorption lengths, and well absorbs at 810 nm wavelength [56]. With the typical acoustic velocities and the typical thermal diffusivities of metals, with pulse lengths below the picosecond the fraction of the pulse energy which is not reflected is deposited before both the strain pulse and the temperature rise leave the absorption length. Therefore, the (over)simplified picture can be given, according to which at the end of the pump pulse no significant motion has occurred yet, and a significant temperature rise and dilatational strain are present within an outer skin whose thickness is of the order of the absorption length ζ. The laser being focused on a spot whose width is of several, up to few tens, micrometers, if the outer surface of the sample is planar the strain and the temperature fields are essentially uniform across the spot, and a plane wave is launched in direction perpendicular to the surface. The pulse is localized within a depth interval of the order of 2ζ; it crosses the layer, is reflected (only partially if the film is not free standing), and returns to the surface, where it is detected. Further round trips can also be detectable.
Detection is performed by the probe pulse, much weaker than the pump pulse, which follows it with a variable delay, controlled by a delay line. As it is typical for pump-and-probe techniques, several details of the experimental procedure are tuned to single out the reflection of the probe beam, like different polarizations of the pump and probe beams, or frequency doubling of the probe beam, and to detect small variations of the reflectivity, like differential or interferometric detection [56]. The reflectivity is modified by the strain pulse, via the elasto-optic effect: the strain modulates the optical properties of the film, both the real part and the imaginary part of the refractive index. The measured reflectivity has a slowly varying background, due to the diffusion of the heat deposited by the laser pulse towards the depth of the sample. Superposed to this background, short modulations of the reflectivity denote the arrival of the echoes at the outer surface.
The arrival of the echo(es) at the surface is thus detected, the delay providing a measure of the velocity of the longitudinal acoustic wave, for propagation in the direction normal to the surface. Some details of the detected pulse can, at least in principle, supply further information about the film and the mismatch of properties between the film and the substrate [56]. Among them, the so-called Brillouin oscillations, which are due to the interference between the fraction of the probe pulse reflected at the outer surface, and the fraction which is reflected by the traveling strain pulse. In fact, the strain pulse, which extends over a depth interval of the order of 2ζ, is a localized modulation of the refractive index, which can reflect a fraction of the probe beam [57]. The measurement of the velocity obviously depends on the knowledge of the film thickness, often obtained by X-ray reflectivity; the uncertainty about thickness is one of the leading terms in the uncertainty to be associated to the final results.
Another factor affecting the precision of results is the resolution by which the arrival times of the pulses are detected. The modulation of the reflectivity has a finite width, which is determined by the space width of the strain pulse. In turn, this space width is determined by the absorption length ζ. Aluminum has one of the shortest absorption lengths, at least for the 800 nm wavelength, other metals, like copper, have longer absorption lengths. In order to limit the absorption length, and thus increase the resolution of the measurement, the deposition of a thin aluminum layer (tens of nanometers) on the sample is a common practice [58]. If this interaction layer is adopted, its presence cannot be neglected in the analysis of results: the additional layer contributes to the vibrational behavior of the structure being investigated. However, operation also in semiconductors, in which the absorption length is significantly longer, has been demonstrated [59].
In several cases, for film thicknesses below ∼100 nm, resolution of single echos turns out to be difficult, or impossible [60, 61, 62]. However, by a detailed analysis of the reflectivity signal, and taking into account features like the Brillouin oscillations, it has been possible to measure Pt and Fe films of thickness down to 5 nm, deposited on Si or on borosilicate glass substrates [60], and a buried TaN layer of thickness of 20 nm [58]. Layers down to very few nanometers, stacked in a periodic Mo/Si superlattice, were also investigated, exploring different periodicities within a same total thickness. The superposition of two different signals was found. One signal corresponds at the multilayer which act as a single homogeneous effective layer. The other signal corresponds to the multilayer which acts as a Bragg reflector, and confines, in the neighborhood of the outer surface, a mode, which has been called ‘localized surface mode’. This mode is sensitive to fine details of the superlattice structure, namely on the outermost layer being the one with the higher or the lower acoustic impedance (in this case Si), and on the presence of the native, nanometric, oxide layer on the Si surface. These details are consistent with the X-ray reflectivity measurements, and allowed to correctly predict the acoustic behavior [63].
The picoseconds ultrasonics technique applied to laterally homogeneous specimens measures the elastic constants involved in the propagation of plane waves traveling perpendicular to the surface: only the out-of-plane elastic characterization of the film is achieved. To overcome this limitation, non homogeneous interaction layers interaction layers have been exploited, namely cut by lithographic techniques to obtain periodic structures [64, 65, 66]. It was thus possible to excite vibrational modes of different types [64]: modes of single specific structures, either nanopillars [64, 65] or nanowires [66], collective modes of these nanostructures, coupled via their substrate, and modes of the substrate layer, traveling not only in the direction perpendicular to the surface. The deposition of a metallic grating on a transparent sample allowed to diffract the pump pulse in different orders, obtaining what has been called time-domain Brillouin scattering, and measuring a whole range of acoustic frequencies in a single optical configuration [67].
The acousto-optic (or photoelastic) coupling mechanism was elucidated long ago for bulk samples and for supported films. In the case of free standing films, or membranes, it is increasingly understood that the geometric modulation of the external surfaces by the acoustic modes has a significant role. The denomination of ‘moving interface effect’ has been proposed [68], which can be seen as a generalization of the ripple effect, which active at the surface of a semi-infinite medium, either homogeneous or layered.
Detailed analyses have been performed for free standing membranes [8], experimentally confirmed with non-constrained, single crystal, Si nanomembranes (thickness 260 nm), for nanoscale structures like cavities and waveguides [68], and for integrated photonic waveguides in on-chip systems [69].
With a sub-wavelength confinement, surface effects play a significant role, and the confinement induced modifications must be taken into account for both the electromagnetic and the acoustic fields. The interaction between these fields turns out to be orders of magnitude more intense than in bulky samples. In volumetric samples the laser beam is only a probe that senses the thermally excited vibrational states, while in strongly confined media the ‘stimulated Brillouin scattering’ is achievable, in which the electromagnetic beam excites some acoustic mode, and then interacts with it. The strong energy exchange between the trapped light and the acoustic modes, for which the name ‘Brillouin optomechanics’ has been proposed [70], is exploited in a whole new breed of chip based devices, which include lasers, amplifiers, filters, delay lines and isolators [70, 71]. Here, we do not address this rapidly growing ‘optomechanics’ field, since we are here focused on the measurement techniques, rather than the device development.
The picosecond ultrasonics technique has proven to be useful also in the measurements of nanorods. In the case of nanorods, the effects of confinement manifest themselves to a high degree. The dispersion relations of both photons and phonons are modified in the nanowires, enhancing interactions and generating peculiar phenomena like stimulated Brillouin scattering, induced transparency, ‘slow light’ and ‘fast light’ [72]. The concept of parallel wavevector
Some experiments have been on single suspended nanowires. Copper nanorods (diameter 200 nm, length up 5 μm) suspended across a lithographically obtained trench have been teste by standard techniques for picosecond ultrasonics (100 fs pulses, at the wavelength of 800 nm) [73]. The breathing modes at
However, most experiments have been performed on ‘forests’ of nanowires, either grown on particle seeds, regularly or irregularly positioned, or obtained by etching techniques. In the case of regular positions they form a photonic crystal, in which electromagnetic modes specific of single nanowires, and therefore sensitive to the nanowire diameter, can be detected, but also, depending on the period, also collective electromagnetic modes, sensitive to the photonic crystal period, can be observed. Nanorods with a diameter of the order of 100 nm, heights of several hundred nanometers, and periods ranging from few hundred nanometers to few micrometers have been produced and investigated.
One of the first observation of the vibrational modes of nanorods was obtained by the standard set up for cw Brillouin spectroscopy. Scattering was observed from monocrystalline GaN nanowires, of wurtzite structure, several micrometers long, spontaneously nucleated at the irregular surface of a GaN matrix layer over a Si substrate. Measurements were compared to a finite elements simulation; the analysis had to take into account the dispersion of the diameters, with an average value of 190 nm and a variance of 40 nm. Several branches of the dispersion relation could however be identified [74].
Successive investigations were performed by the picosecond ultrasonics technique, with focused beam spots of tens of micrometers, illuminating a high number of nanorods. GaAs nanorods were fabricated by a standard etching process from a pristine GaAs substrate, covered by a thin gold layer, such that each nanorod had at its tip a gold disk, which acted as transducer, absorbing the pump pulse and launching the acoustic pulse along the nanorod [75].
A square lattice was produced, with nanorods 720 nm long, exploring intervals of diameter (130–270 nm) and of period (300–350 nm). Square lattices of InP nanowires, grown over gold seed particles in regular pattern, with 180 nm diameter and period of 400 nm, were measured by a pump and probe technique. Measurements were compared to a detailed computation of the complicated dispersion relation [76]. This measurement allowed to validate the whole technique, which was then applied to GaAs nanorods, grown over gold seeds in an irregular pattern. Nanorods with the normal zincblende structure, as well as with the wurtzite structure, which in the bulk form is metastable, and was not previously measured, have been investigated; Diameters respectively of 100 nm and 70 nm, with lengths above 1.5 μm. The elastic constants were derived with a resolution sufficient to appreciate the difference between the two structures [77]. Hexagonal lattices of hexagonal GaAs pillars were also produced, of diameters between 103 and 135 nm, exploring lengths up to several micrometers, and pitches from 700 nm to 3 μm [78]. Also this measurement was accompanied by a detailed modeling, allowing to detect up to 10 branches.
The picosecond ultrasonics technique can also investigate nanoobjects, whose aspect ratio is not too far from unity, and in which confinement occurs at its maximum degree. The same concept of parallel wavevector
The Transient grating spectroscopy (TGS) technique, which is also called Impulse Stimulated Thermal Scattering (ISTS) or Impulsive Stimulated Scattering (ISS) is an evolution of the Laser ultrasonics technique. As its ‘parent’ technique, it is appropriate for samples having an external planar surface of sufficient width, and is perfectly suited for the measurement of films. In the conventional laser ultrasonics technique the excitation is impulsive in time, and localized in space (the laser pulse is typically focused into a line by a cylindrical lens), resulting in a broadband pulse which is launched, and detected at some distance. The transit time is thus measured. The possibility of excitation over a more extended region, with a periodic pattern, resulting in a narrowband pulse, was considered in order to increase the efficiency in the generation of the strain pulse. A periodic pattern, of periodicity
The ‘pump’ pulse can range from the ns to the ps; wavelengths around 500 nm are typically adopted, but both longer (1064 nm) or shorter wavelengths have been adopted. The strain transient is measured by a probe laser, either a cw laser, or a pulsed laser, in a pump-and-probe scheme. The temperature relaxation is observed by the modulation of the reflectivity of the surface. The surface corrugation due to SAWs can be detected by either the deflection of the strongly focused probe laser [87], or superposing the reflected probe beam with a reference beam, in a heterodyne amplification scheme.
A boxcar configuration has become the standard one for this technique: a volumetric diffraction grating, a ‘phase mask’ splits the pump pulse into diffraction orders, the +1 and − 1 orders are isolated and overlapped at the sample surface, using a 4f imaging system. In this configuration the heterodyne detection is adopted, with the pump and the probe beams which share the same optics, achieving a good phase stability [88, 89, 90, 91, 92]. While in principle the explored periodicities
The experimental techniques are undergoing further developments. Among them, further refinements of the heterodyne detection [93, 94] and a technique which allows a continuous tuning of the periodicity
Among recent applications of the technique, the characterization of nanocrystalline diamond coatings [99], and the exploitation of the optical character of the technique to perform measurements at different temperatures [100], and in situ measurements [101]. As previously mentioned, the possibility of tuning the periodicity
Brillouin spectroscopy investigates the inelastic scattering of light by vibrational excitations of the acoustic type [105, 106]. It is therefore in principle able to investigate both traveling waves and standing waves, from bulky samples to films and to nanorods, and the name ‘Brillouin optomechanics’ has been proposed for the interaction between the electromagnetic field and the acoustic field in nanoobjects. The ability of Brillouin spectroscopy to single out a wavevector,
Brillouin spectroscopy is performed illuminating the sample by a focused laser beam, of wavevector
Scattering by bulk waves occurs by the elasto-optic effect, the modulation of the refractive index by the strain: a periodic modulation, of periodicity represented by
The scattering process can also be described as follows. The spontaneous, chaotic, thermal motion can be thought as being three-dimensionally Fourier transformed into an incoherent superposition of harmonic waves, whose wavevectors have all the possible values. The scattering process probes the component of this decomposition which has precisely the wavevector
Brillouin spectroscopy has been used to characterize bulk materials, and surface Brillouin spectroscopy is particularly suited for the characterization of thin films, which are of our concern here. Although Brillouin spectroscopy can, in principle, be performed in various geometries [105, 108, 109], possibly scanning a wide interval of
For SAWs, the above relations give
Brillouin spectroscopy was extensively exploited to characterize tetrahedral amorphous carbon films of thicknesses of hundreds of nanometers [110], tens of nanometers [111], down to a few nanometers [112]. In the case of thicker tetrahedral amorphous carbon films [3 micrometers] a detailed characterization was achieved by combining Brillouin spectroscopy and laser ultrasonics. The combination of the techniques gave access to a wide range of frequencies, allowing detailed determination of the elastic properties of the film [113]. Brillouin spectroscopy turned out to be a useful characterization tool also for other types of films of interest in materials science, like boron films [114] and amorphous and nanocrystalline tungsten films [115].
Since picosecond ultrasonics characterizes the out-of-plane properties by waves traveling normal to the surface, while Brillouin spectroscopy characterizes the in-plane properties by waves traveling along the surface, the two techniques have also been exploited in a combined way, achieving a more complete characterization [62, 116, 117, 118].
Brillouin spectroscopy also lends itself to the characterization of structures other than films or layers. In particular, single-walled carbon nanotubes were characterized, measuring Brillouin scattering by a free-standing film of pure, partially aligned, single-walled nanotubes, and analyzing the results in terms of continuum models [119]. The dependence of the measured spectra on the angle between the exchanged wavevector and the preferential direction of the tubes shows that the tube-tube interactions are weak: the tubes are vibrationally almost independent. The tubes are modeled as continuous membranes; taking into account that AFM images suggest that the tube segments contributing to scattering are not in the infinite tube length approximation, it was possible to derive the 2D Young modulus for the tube wall, achieving the first dynamic estimation of the stiffness of the tube wall. Scattering from carbon nanotubes was observed also in a different geometry, with an ordered array of tubes, clamped at one end [120]. Brillouin spectroscopy also allowed one of the first observations of the vibrational modes of nanorods [74].
Nanotechnology, and nanodevices, identify a rapidly growing technological field. For the development of nanodevices a precise knowledge of the elastic properties of materials is of utmost importance, also because materials obtained at the nanoscale have properties which do not coincide with those of their bulk counterpart. Accordingly, a variety of techniques have been developed, which have proven able to investigate the material properties at the nanoscale. Most of these techniques rely on the interaction between optical electromagnetic fields, and mechanical acoustic fields. An overview has been given of these various techniques, offering elements for the evaluation of their appropriateness for different characterization needs.
This work was supported by the project ‘SpaceSolarShield’, funded by Cariplo Foundation, Milano, Italy, project 2018-1780.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"267",title:"Ethics",slug:"ethics",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:2,numberOfAuthorsAndEditors:38,numberOfWosCitations:15,numberOfCrossrefCitations:14,numberOfDimensionsCitations:22,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"ethics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6003",title:"Robotics",subtitle:"Legal, Ethical and Socioeconomic Impacts",isOpenForSubmission:!1,hash:"15ab11f5bb5aac89956dd8b42f261011",slug:"robotics-legal-ethical-and-socioeconomic-impacts",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6003.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5418",title:"Bioethics",subtitle:"Medical, Ethical and Legal Perspectives",isOpenForSubmission:!1,hash:"767abdeb559d66387ad2a75b5d26e078",slug:"bioethics-medical-ethical-and-legal-perspectives",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/5418.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"56025",doi:"10.5772/intechopen.69796",title:"Cybersecurity of Robotics and Autonomous Systems: Privacy and Safety",slug:"cybersecurity-of-robotics-and-autonomous-systems-privacy-and-safety",totalDownloads:1538,totalCrossrefCites:6,totalDimensionsCites:6,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Francisco J. Rodríguez Lera, Camino Fernández Llamas, Ángel\nManuel Guerrero and Vicente Matellán Olivera",authors:[{id:"124522",title:"Dr.",name:"Vicente",middleName:null,surname:"Matellan",slug:"vicente-matellan",fullName:"Vicente Matellan"},{id:"211294",title:"Prof.",name:"Camino",middleName:null,surname:"Fernández-Llamas",slug:"camino-fernandez-llamas",fullName:"Camino Fernández-Llamas"},{id:"211295",title:"MSc.",name:"Ángel Manuel",middleName:null,surname:"Guerrero-Higueras",slug:"angel-manuel-guerrero-higueras",fullName:"Ángel Manuel Guerrero-Higueras"},{id:"211296",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Rodríguez-Lera",slug:"francisco-javier-rodriguez-lera",fullName:"Francisco Javier Rodríguez-Lera"}]},{id:"52301",doi:"10.5772/65128",title:"Pharmacy Ethics and the Spirit of Capitalism: A Review of the Literature",slug:"pharmacy-ethics-and-the-spirit-of-capitalism-a-review-of-the-literature",totalDownloads:1585,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Robert Ancuceanu and Ioana-Laura Bogdan",authors:[{id:"189717",title:"Associate Prof.",name:"Robert",middleName:null,surname:"Ancuceanu",slug:"robert-ancuceanu",fullName:"Robert Ancuceanu"}]},{id:"53439",doi:"10.5772/65765",title:"Rethinking Autonomy and Consent in Healthcare Ethics",slug:"rethinking-autonomy-and-consent-in-healthcare-ethics",totalDownloads:1771,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Eleanor Milligan and Jennifer Jones",authors:[{id:"187831",title:"Prof.",name:"Eleanor",middleName:null,surname:"Milligan",slug:"eleanor-milligan",fullName:"Eleanor Milligan"}]}],mostDownloadedChaptersLast30Days:[{id:"52101",title:"Ethical Issues in Organ Procurement and Transplantation",slug:"ethical-issues-in-organ-procurement-and-transplantation",totalDownloads:3977,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Richard J. Howard and Danielle L. Cornell",authors:[{id:"188201",title:"M.D.",name:"Richard",middleName:null,surname:"Howard",slug:"richard-howard",fullName:"Richard Howard"},{id:"194143",title:"Ms.",name:"Danielle",middleName:null,surname:"Cornell",slug:"danielle-cornell",fullName:"Danielle Cornell"}]},{id:"56025",title:"Cybersecurity of Robotics and Autonomous Systems: Privacy and Safety",slug:"cybersecurity-of-robotics-and-autonomous-systems-privacy-and-safety",totalDownloads:1537,totalCrossrefCites:6,totalDimensionsCites:6,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Francisco J. Rodríguez Lera, Camino Fernández Llamas, Ángel\nManuel Guerrero and Vicente Matellán Olivera",authors:[{id:"124522",title:"Dr.",name:"Vicente",middleName:null,surname:"Matellan",slug:"vicente-matellan",fullName:"Vicente Matellan"},{id:"211294",title:"Prof.",name:"Camino",middleName:null,surname:"Fernández-Llamas",slug:"camino-fernandez-llamas",fullName:"Camino Fernández-Llamas"},{id:"211295",title:"MSc.",name:"Ángel Manuel",middleName:null,surname:"Guerrero-Higueras",slug:"angel-manuel-guerrero-higueras",fullName:"Ángel Manuel Guerrero-Higueras"},{id:"211296",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Rodríguez-Lera",slug:"francisco-javier-rodriguez-lera",fullName:"Francisco Javier Rodríguez-Lera"}]},{id:"52301",title:"Pharmacy Ethics and the Spirit of Capitalism: A Review of the Literature",slug:"pharmacy-ethics-and-the-spirit-of-capitalism-a-review-of-the-literature",totalDownloads:1584,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Robert Ancuceanu and Ioana-Laura Bogdan",authors:[{id:"189717",title:"Associate Prof.",name:"Robert",middleName:null,surname:"Ancuceanu",slug:"robert-ancuceanu",fullName:"Robert Ancuceanu"}]},{id:"53154",title:"Bioethics and the Experiences of Hansen’s Disease Survivors",slug:"bioethics-and-the-experiences-of-hansen-s-disease-survivors",totalDownloads:963,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Makiko Kondo, Kazuo Mori, Hiroshi Nomura, Hanako Kadowaki,\nMakiko Watanabe, Akemi Doi and Sayaka Shima",authors:[{id:"188019",title:"Dr.",name:"Makiko",middleName:null,surname:"Kondo",slug:"makiko-kondo",fullName:"Makiko Kondo"}]},{id:"56345",title:"Electronic Prescribing and Robotic Dispensing: The Impact of Integrating Together on Practice and Professionalism",slug:"electronic-prescribing-and-robotic-dispensing-the-impact-of-integrating-together-on-practice-and-pro",totalDownloads:1052,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Roderick J. Beard",authors:[{id:"203288",title:"Dr.",name:"Roderick",middleName:null,surname:"Beard",slug:"roderick-beard",fullName:"Roderick Beard"}]},{id:"52563",title:"Medical Ethics and Bedside Rationing in Low‐Income Countries: Challenges and Opportunities",slug:"medical-ethics-and-bedside-rationing-in-low-income-countries-challenges-and-opportunities",totalDownloads:1434,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Lydia Kapiriri",authors:[{id:"189068",title:"Associate Prof.",name:"Lydia",middleName:null,surname:"Kapiriri",slug:"lydia-kapiriri",fullName:"Lydia Kapiriri"}]},{id:"53239",title:"Rethinking the Postwar Period in Relation to Lives Not Worth Living",slug:"rethinking-the-postwar-period-in-relation-to-lives-not-worth-living",totalDownloads:1474,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"José-Antonio Santos",authors:[{id:"188020",title:"Dr.",name:"José-Antonio",middleName:null,surname:"Santos",slug:"jose-antonio-santos",fullName:"José-Antonio Santos"}]},{id:"53393",title:"In Whose Best Interests? Critiquing the “Family-as-Unit” Myth in Pediatric Ethics",slug:"in-whose-best-interests-critiquing-the-family-as-unit-myth-in-pediatric-ethics",totalDownloads:1434,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Joseph A. Raho",authors:[{id:"188268",title:"Dr.",name:"Joseph",middleName:null,surname:"Raho",slug:"joseph-raho",fullName:"Joseph Raho"}]},{id:"56170",title:"Ethic Reflections about Service Robotics, from Human Protection to Enhancement: Case Study on Cultural Heritage",slug:"ethic-reflections-about-service-robotics-from-human-protection-to-enhancement-case-study-on-cultural",totalDownloads:952,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Luca Giuliano, Maria Luce Lupetti, Sara Khan and Claudio Germak",authors:[{id:"203858",title:"Dr.",name:"Claudio",middleName:null,surname:"Germak",slug:"claudio-germak",fullName:"Claudio Germak"},{id:"203861",title:"Dr.",name:"Luca",middleName:null,surname:"Giuliano",slug:"luca-giuliano",fullName:"Luca Giuliano"},{id:"203862",title:"Dr.",name:"Maria Luce",middleName:null,surname:"Lupetti",slug:"maria-luce-lupetti",fullName:"Maria Luce Lupetti"},{id:"211018",title:"Dr.",name:"Sara",middleName:null,surname:"Khan",slug:"sara-khan",fullName:"Sara Khan"}]},{id:"56250",title:"Robots Liability: A Use Case and a Potential Solution",slug:"robots-liability-a-use-case-and-a-potential-solution",totalDownloads:1158,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Alejandro Zornoza, José C. Moreno, José L. Guzmán, Francisco\nRodríguez and Julián Sánchez-Hermosilla",authors:[{id:"5859",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Guzman",slug:"jose-luis-guzman",fullName:"Jose Luis Guzman"},{id:"22920",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Moreno",slug:"jose-carlos-moreno",fullName:"Jose Carlos Moreno"},{id:"22922",title:"Dr.",name:"Francisco",middleName:null,surname:"Rodriguez",slug:"francisco-rodriguez",fullName:"Francisco Rodriguez"},{id:"22923",title:"Dr.",name:"Julian",middleName:null,surname:"Sanchez-Hermosilla",slug:"julian-sanchez-hermosilla",fullName:"Julian Sanchez-Hermosilla"},{id:"204035",title:"Ph.D.",name:"Alejandro",middleName:null,surname:"Zornoza",slug:"alejandro-zornoza",fullName:"Alejandro Zornoza"}]}],onlineFirstChaptersFilter:{topicSlug:"ethics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/ultrasonic-and-spectroscopic-techniques-for-the-measurement-of-the-elastic-properties-of-nanoscale-m",hash:"",query:{},params:{chapter:"ultrasonic-and-spectroscopic-techniques-for-the-measurement-of-the-elastic-properties-of-nanoscale-m"},fullPath:"/online-first/ultrasonic-and-spectroscopic-techniques-for-the-measurement-of-the-elastic-properties-of-nanoscale-m",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()