Comparison of effective mass in group-IV semiconductor.
\r\n\tThe main cause of failure in TKA remains malaignment so preoperative planning and understanding of the principles are crucial in TKA.
\r\n\tThe aim of this book is to discuss preoperative planning, surgical principles, strategies and particular situations in total knee arthroplasty. This book is intended to contribute to the achievement of better results and functional scores in TKA.
The use of nanoparticles (NPs) has increased in the past few years in various fields, including textile, sport, defense, aerospace, electronics, biology, medicine, etc. There is also a growing interest to use NPs in different applications, including diagnostic technology, bioimaging, and drug/gene delivery. Therefore, voluntary or nonvoluntary human exposure to NPs and nanomaterials is unavoidable and will certainly expand in the near future. This has led to a growing interest in nanotoxicology, the study of toxicity of nanomaterials. Especially, a number of studies reported the effects of NPs on pulmonary inflammation by investigating in vitro activation of pulmonary cells with NPs and in vivo in a variety of models in which neutrophils appear to be the predominant leukocyte cell type in the lungs and in bronchoalveolar lavages following inhalation or intratracheal instillation of NPs. It is reasonable that the first studies focussed on pulmonary effects of NPs since inhalation is one of the major routes of human exposure to NPs. However, even if several studies reported an increased number of neutrophils, the literature dealing with the direct effects of given NP with neutrophils is poorly documented and has been neglected until the last few years. In addition, since NPs are used in a variety of sectors and are already included in several consumable products, NPs could reach the blood stream and interact with immune cells. This review will summarize the current literature dealing on the direct interaction of NPs with human neutrophils as well as recent data indicating that the murine air pouch model of inflammation is suitable for evaluating the ability of NPs to attract neutrophils in vivo.
Polymorphonuclear neutrophil cells (PMNs) are important cells of the immune system involved in host defense. In particular, they are primordial players of innate immunity and provide a very effective defense against bacterial and fungal infections. Other than erythrocytes and platelets, PMNs are the most abundant cell type in circulation, representing more than 65 % of total leukocytes. They are terminally mature nondividing cells which develop in the bone marrow from CD34+ stem cells, resulting from a series of cell divisions and stages as myeloblasts, promyelocytes, myelocytes, metamyelocytes, band neutrophils, and finally, mature neutrophils. The mechanism is still not well understood; however, this occurs under the influence of regulatory cytokines [1-3]. It takes about 14 days to obtain fully mature neutrophils from the CD34+ precursor cells. Of note, more than 50 % of the bone marrow is dedicated to the generation of PMNs. A huge number of neutrophils are released from the bone marrow. Indeed, this has been estimated at ∼5 x 1010 cells on a daily basis in a normal adult. This represents one of the fastest cell turnovers in the human body [2, 3]. Therefore, cell turnover must be under strict control in order to prevent diseases. The number of PMNs remains relatively constant in healthy individuals, and this is due to the limited life span (half-life of ∼12 h in circulation) of these cells. In addition, PMNs are known to undergo constitutive or spontaneous apoptosis, an important step for regulating cell number. Apoptosis renders PMNs unresponsive to extracellular stimuli and leads to expression of “eat-me” signals, some molecules involved in the elimination of apoptotic PMNs by professional phagocyte, a process called efferocytosis, largely responsible for the resolution of inflammation [4-7]. Because of this, identification of proapoptotic or antiapoptotic agents is therefore of major importance. When the rate of PMN apoptosis is accelerated, this results in an increase in bacterial susceptibility. In contrast, when apoptosis is delayed or suppressed, this can aggravate inflammation and lead to autoimmune disorders [4, 7].
Although different biochemical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and internucleosomal DNA degradation, appearance of pyknotic nuclei, caspase activation, flip–flop of phosphatidylserines to the extracellular (outer) surface of the cell, etc., are observable in neutrophils [4, 6, 8], these cells are different from several other cell types. In this respect, the common caspase substrates such as poly(ADP-ribose) polymerase, the catalytic subunit of DNA-dependent protein kinase, the small ribonucleoprotein U1-70 kDa, and the nuclear/mitotic apparatus proteins are not detected in PMNs [9, 10]. In addition, human neutrophils do not express caspase-2 as well as the antiapoptotic Bcl-2 (B-cell lymphoma 2) proteins [11]. In contrast, a predominant expression of the antiapoptotic protein myeloid cell leukemia-1 (Mcl-1) is observed in these cells. Also, it is important to mention that PMNs possess a very low number of mitochondria that may have a role restricted to apoptosis rather than for energy generation [12]. During apoptosis, mature neutrophils can release proteases from azurophilic granules, including cathepsin D, which may contribute to caspase-3 activation through processing of caspase-8 [13]. Finally, unusual roles for nuclear proteins have been reported in PMNs [14]. For example, unlike other cells, proliferating cell nuclear antigen (PCNA) is expressed in the cytoplasm of mature neutrophils where it could bind to pro-caspases, affecting their apoptotic rates.
Interestingly, both intrinsic and extrinsic pathways of cell apoptosis appear to be activated during spontaneous human neutrophil apoptosis as evidenced, for example, by caspase-9 (intrinsic) and caspase-8 (extrinsic) activation [15-17]. More recently, increasing evidences indicate that the endoplasmic reticulum (ER) stress-induced cell apoptotic pathway is also operational in human PMNs [18, 19]. These cells were found to express inositol-requiring protein-1 (IRE1), activating transcription factor-6 (ATF6), and protein kinase RNA (PKR)-like ER kinase (PERK), the three major sensors of protein folding status in the ER [20, 21].
During acute inflammation, PMNs are the first type of leukocytes to migrate to an inflammatory site, where they will produce several proinflammatory mediators including chemokines that first attract other PMNs and then other cell types like monocytes–macrophages and lymphocytes, corresponding to chronic inflammation. PMNs are phagocytes well recognized for their ability to eliminate invading pathogens via two important mechanisms: i) the respiratory burst, which is an oxygen-dependent process leading to the generation of reactive oxygen species (ROS), and ii) degranulation, an oxygen-independent mechanism by which PMNs release potent toxic degradative products stored in granules. In addition to reactive oxygen metabolites and granule enzymes, PMNs are known to be an important source of products implicated in tissue damage and inflammation such as leukotriene B4, platelet-activating factor, and various cytokines (IL-1α, IL-8, IL-12, TNF-α, TGF-β, GRO-α), to name a few [1]. The importance of PMNs in inflammation is further supported by the observation that various PMN priming and activating agents such as IL-1β, IL-8, IL-15, GM-CSF, TGF-β, C5a, C9, etc., are present, for example, in the synovial fluids of rheumatic patients [22-24]. PMNs are also known to adhere onto cell substratum (e.g., endothelial cells) [25] or onto extracellular matrix proteins, including fibronectin [26]. Finally, PMNs can move toward a chemotactic gradient (chemotaxis) and exert phagocytosis, two important functions involved in killing and eliminating pathogens. About ten years ago, an important new discovery was made concerning the biology of neutrophils; upon activation, these cells were found to release neutrophil extracellular traps (NETs) composed of decondensed chromatin DNA in association with histones, granular proteins, and a few cytoplasmic proteins [27]. NETosis, a sort of PMNs suicide-generating NETs, was identified as a novel antimicrobial mechanism able to kill extracellular bacteria, fungi, and parasites.
It is important to mention that the same arsenal and biological responses of PMNs discussed above that are involved in host defense can also be deleterious for an organism when deregulation occurs. This phenomenon is known as the neutrophil paradox. Because of this, and knowing the role of PMNs during inflammation (PMNs are seen as conductors of inflammation), it is very important to carefully understand the mode of action of PMN agonists as well as to identify new ones, including the new actors, NPs. Because how NPs interact with PMNs is an area of research that is still in infancy and that a lot of work needs to be done, it is important to determine how a given NP will alter or not several PMN functions in order to obtain a general picture rather than investigating only one or two functions. Also, even if an agent is not a direct PMN agonist by itself, it can be indirectly proinflammatory by attracting these cells in vivo, as is the case with the cytokine IL-21 [28]. This aspect needs also to be studied with NPs. For this reason, the following sections will describe how several PMN functions can be studied in vitro. Of note, several techniques and methods can be used to determine a given PMN function; but for clarity and simplicity, I will describe those that are used by several laboratories, especially the assays that are routinely used in mine. In addition to this in vitro aspect, I will described how we performed the murine air pouch model, a model recently proposed by a consortium of 18 researchers from six different countries, as a future standard assay for testing NPs in vivo [29].
The first step for investigating neutrophil cell biology is to have access to a PMN source. Although some researchers, including ourselves, used immature human cell lines such as HL-60 and PLB-9895, these cells are not primary neutrophils and may respond differently [30]. Others used rodent PMNs for investigating the role of different agents on neutrophil biology. However, it is important to remember that unlike humans where more than 65–70 % of circulating leukocytes are neutrophils, this proportion do not exceed ∼25 % in rodents [31]. In addition, although methods for human neutrophil isolation are now standardized, similar procedures for isolating PMNs from nonhuman species are not as well developed. Because PMNs are very reactive cells, the method of isolation is extremely important to avoid cell activation during the isolation process. In respect with this, different techniques have been proposed [32] for isolating highly purified PMNs from large animals (bovine, equine, ovine), small animals (rodents, rabbit), and nonhuman primates (macaques). In my laboratory, we are using human blood as a source of neutrophils and we freshly isolate them in order to perform several studies, including the role of chemicals of environmental concern [30, 33-35], plant lectins and extracts [36, 37], cytokines [28, 38-46], myeloid-related proteins [47-49], different other compounds [19, 50-55], and, more recently, NPs [56-59]. Blood is obtained from healthy consenting individuals according to institutionally approved procedures, but it is also possible to isolate PMNs from blood of patients suffering from a given disease for comparison with age- and sex-matched healthy individuals.
It is important to evaluate cell viability immediately after PMN cell isolation. We propose to determine this by the trypan blue exclusion assay since, during this method, it is also possible to simultaneously evaluate if cells are activated (irregular cell shape) or not (round or spherical shape) following the isolation procedure. In addition, it is mandatory to evaluate cell viability over time, especially after 24 h of incubation, since the rate of apoptotic PMNs is normally in the range of 30–50 % without addition of any exogenous agents. Moreover, apoptotic PMNs are known to exclude trypan blue and are thus considered “viable” and not necrotic. In parallel, we strongly suggest to evaluate neutrophil purity that could be verified by cytology from cytocentrifuged preparations colored with Hema-3 stain set, a procedure allowing a differential count. We never performed experiments with samples having ≥ 3 % eosinophils, the most contaminant cell type observed in our preparations. Other methods can also be used to evaluate cell viability, such as the determination of the release of lactate dehydrogenase (LDH) measured by a colorimetric assay and the dimethylthiazolyl-diphenyltetrazolium (MTT) reduction assay. Several commercially available kits exist; however, it is mandatory to first verify if a given NP could interfere with the assay to avoid false assessment of toxicity [60-62].
Naive non-activated neutrophils possess a round or spherical shape [41]. To study the effect of a given agent on neutrophil activation, cells have simply to be incubated in the presence of the molecule of interest, and morphological examination is monitored over time by optical microscopy [41, 58].
Actin is a cytoskeletal protein involved in several (if not all) PMN functions. It is possible to study its polymerization as a marker of neutrophil activation [63] where actin monomer (G-actin) will be reorganized to form, for example, filaments or F-actin. To do so, PMNs are incubated for short periods of time (normally from 0 to 30 min) at 37 oC with buffer (control) or with a molecule of interest in a final volume of 100 μL. Synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) is used as a positive control for the assay [36]. After incubation, digitonin and paraformaldehyde are used for permeabilization and cell fixation, respectively, and then PMNs are washed twice by centrifugation and incubated with phalloidin-FITC (binds to filamentous of actin) for 20 min at 4 oC (light protected) prior to FACS analysis.
Another manner to determine rapid PMN activation by a given agent is to determine its potential induction of phosphorylation events, especially tyrosine phosphorylation [44, 48]. This consists of incubating PMNs with a given agent for several short periods of time (typically, 30–60 s and 5, 15, and 30 min), and then the reaction is stopped by adding Laemmli’s sample buffer, as described previously [30, 48]. Aliquots corresponding to a desire number of cells (we are using normally 1 x 106 cells) are then loaded onto 10 % SDS–PAGE and transferred from gel to a nitrocellulose or polyvinylidene difluoride membrane and nonspecific sites are treated with a blocking solution [48]; the membrane is then washed and incubated with monoclonal anti-phosphotyrosine antibody. The membrane is washed and incubated with a horseradish peroxidase-conjugated anti-mouse IgG + IgM antibodies for about 1 h, and, after washing, phosphorylated bands are revealed with ECL Western blotting detection system. In our hands, protein loading is verified by probing the membrane (after stripping) with an anti-β-actin or anti-GAPDH antibody and/or by staining the membranes with Coomassie blue at the end of each experiment.
Adhesion of PMNs is an important biological response involved during inflammation. This response could be studied by several ways. In my laboratory, we determine the capacity of PMNs to adhere onto a cell substratum using the well-characterized human epithelial A549 cells [64]. Briefly, after obtaining the desired confluence of A549 cells grown onto coverslips, PMNs (pretreated or not with a given agent for a desire period of time) are stained for 30 min with calcein AM and incubated with A549 cells. The number of adherent PMNs are then calculated by counting the number of fluorescent cells from five randomly selected high-power fields, as previously published [43, 64].
Chemotaxis of human PMNs could be easily studied using a Boyden chamber assay. The bottom wells are loaded with buffer or agonists to be tested (typically in a final volume of 25 μl), the membrane is then placed over the wells, and the top layer of the chamber is added over the membrane. Cells (in 50 μl) are added to the top chamber wells, and the chamber is incubated at 37 °C for a given period of time (normally 0–60 min) in a humidified incubator in the presence of 5 % CO2. After the incubation, the top of the chamber is removed and the upper side of the membrane is wiped carefully with the rubber scraper furnished by the manufacturer. Then, the membrane is fixed in methanol, colored with Hema-3 stain kit, mounted on a glass slide, and examined under oil immersion at 400 x. The details of the procedure have been previously published [65, 66]. In this assay, the potent neutrophil chemokine CXCL8 (IL-8) is used as a positive control [67].
Several assays can be used to evaluate ROS generation by human PMNs. Since the major source of ROS in PMNs occurred after NADPH oxidase activation leading to superoxide production (O2-), we routinely used the colorimetric assay based on reduction of cytochrome c, as previously published [48, 51]. Briefly, PMNs (1 x 106 cells/ml) are suspended in buffer supplemented with 1.6 mM CaCl2 with or without 10 µg/ml superoxide dismutase (SOD) with 130 µM ferrocytochrome c for 5–90 min at 37 °C in the presence of various concentrations of the agonists to be tested or phorbol 12-myristate 13-acetate (PMA) at 10-7 M, used as a positive control. The reduction of cytochrome c is then monitored at 550 nm, and the concentration of O2- anions produced is calculated by the difference between corresponding wells with or without SOD using an extinction coefficient of 21.1.
Flow cytometry is frequently used to measure ROS production. Using different probes, we can evaluate the production of ROS mainly originating from the mitochondria or endoplasmic reticulum, depending on the probe used. We routinely used the CM-H2DCFDA probe and measured the fluorescence with a FACScan. ROS production is expressed as mean fluorescence intensity (MFI) [48].
Degranulation is one of the most important functions exerted by PMNs for the defense of an organism. Following activation, PMNs will rapidly release potent degradative enzymes and several receptors involved in the recognition and ingestion of pathogens. These products are localized in different kinds of granules: azurophil, specific/gelatinase, and secretory granules [68, 69].Because granules will fuse with the cytoplasmic membranes and release some products on the cell surface and then in the external milieu, it is possible to study in the laboratory the cell surface expression of markers of the different types of granules [70]. Therefore, we routinely determine the cell surface expression of CD35, CD63a, andCD66b by flow cytometry, since these molecules are specific markers of azurophil, specific/gelatinase, and secretory granules, respectively [47, 53, 56]. Excellent antibodies to these markers are commercially available.
Although the expression of the above markers could be increased (or not) at the PMN cell surface after stimulation, it is also important to determine if a protein known to be expressed in a given type of granule is released into the external milieu. To do so, we harvested the extracellular milieu after several periods of time following stimulation and performed Western blot experiments using antibodies specific for myeloperoxidase (azurophil), matrix metalloproteinase-9 or MMP-9 (specific/gelatinase), or albumin (secretory). The details of the protocol have been previously described [47, 53].
Even if a given granule product is released by activated PMNs into the external milieu, it is interesting to know also if an enzymatic activity could be preserved in the fluids. To test this, we performed zymography assay. After stimulation of human PMNs, cells are centrifuged at 13,000 rpm for 10 min at 4 °C and the pellets are discarded. The supernatants (10–50 μl, corresponding to 50,000 cells) are then mixed with a nonreducing buffer (40 % glycerol, Tris-HCl 1 M, pH 6.8, SDS 8 %) and separated on 10 % acrylamide gels containing 0.2 % gelatin. Gels are washed twice for 30 min with 2.5 % Triton X-100 and incubated overnight in digestion buffer (Tris-HCl 50 mM, pH 7.4, NaCl 150 mM, CaCl2 5 mM). The gels are stained with Coomassie blue 0.1 % and then destained. Densitometric analysis is performed to quantify the intensity of the white zones corresponding to gelatinase activity digesting gelatin incorporated into the gel [47, 53, 71].
Our preferred technique for evaluating PMN phagocytosis consists of the ingestion of opsonized sheep red blood cells (SRBCs). In this assay, PMNs are treated with a given agent or the corresponding buffer for a given period of time and cells are incubated with SRBCs pretreated with a final 1/200 dilution of commercially available rabbit IgG anti-SRBCs for 30–45 min at 37 °C in a 1:5 ratio. The samples are centrifuged 200 x g at 4 °C for 10 min. Supernatants are discarded and, to eliminate noningested SRBCs, the pellets are treated with 300 μl of H2O for 20 s followed immediately by the addition of 4.5 ml ice-cold PBS [45, 48, 54, 72]. After washing, the final pellets are suspended to a final concentration of 10 x 106 cells/ml. Duplicate cytocentrifuged preparations are then stained with Hema-3 stain kit, and the phagocytosis rate is determined by counting the number of PMNs ingesting at least one opsonized SRBC.
Apoptosis can be evaluated by several different methods. We routinely determine the apoptotic rate of human PMNs by two assays in parallel, by cytology and flow cytometry [37, 38, 40, 44, 51, 73]. For both assays, freshly isolated human PMNs are incubated (10 x 106 cells/ml in RPMI-1640 supplemented with 10 % autologous serum) at 37 °C in 5 % CO2 in 96-well plates for 24 h with a given agonist and its corresponding buffer/vehicle. Cells are then harvested to perform the assays as follows.
For cytology, cells are cytocentrifuged on microscope slides, stained with the Hema-3 staining kit and examined by light microscopy at 400x final magnification. Apoptotic neutrophils are defined as cells containing one or more characteristic darkly stained pyknotic nuclei. Results are expressed as the percentage of PMNs in apoptosis.
For the flow cytometric procedures, PMNs are stained with FITC annexin-v or an FITC antihuman CD16 antibody. During apoptosis, the flip–flop of phosphatidylserines occurred, leading to their expression at the cell surface. Since annexin-v possesses a very high affinity to bind to phosphatidylserines, apoptotic cells will be positive to FITC annexin-v. In this assay, propidium iodide can also be used to measure cell necrosis in parallel. In contrast, cell surface expression of CD16 (that is very high in normal PMNs) is lost during PMN apoptosis resulting from CD16 shedding.
PMNs are known to produce several cytokines [74]. There are several different approaches that can be used to measure the production of cytokine. We prefer to study production of cytokine at the protein level. We used an antibody array assay for screening purpose and then quantified a given cytokine by ELISA. For both assays, supernatants of activated PMNs are harvested and used for the detection of cytokines. When fluids are frozen, we normally use them within three weeks after the experiments to eliminate possible cytokine/chemokine degradation occurring over time.
We used a commercially available human cytokine array panel for the screening purpose. All the steps for the detection of different analytes are performed following the manufacturer recommendation and as previously described [50, 75]. To detect the different analytes (cytokines/chemokines), we used pooled supernatants harvested from neutrophils (10 x 106 cells/ml in RPMI1640-HEPES p/s supplemented with 10 % autologous serum) treated for different periods of time with buffer (negative control) and LPS (positive control) or with the tested agents to probe the membranes. The chemiluminescent signal from the bound analytes present in the supernatants is then detected on Kodak X-OMAT-RA film. The signal intensity of each analyte (in duplicate) is normalized to the membrane’s positive controls. Protein array membranes are scanned and densitometric analysis is performed using the AlphaEaseFC (FluorChem HD2) software.
The measurement of a given cytokine/chemokine (such as IL-6/IL-8) is determined with commercially available specific enzyme-linked immunosorbent assay (ELISA) kits. Neutrophils are incubated as above in a 96-well plate, and the supernatants are harvested, centrifuged, and stored at -80 °C for no more than three weeks before performing ELISA. Unlike the antibody array assay described above, each supernatant (normally at least from five different blood donors) is used to quantify the amount of the tested analyte.
Cells (10 x 106 cells/ml in RPMI-1640 medium supplemented with 10 % autologous serum) are metabolically labeled with 4.625 MBq of the Redivue Pro-Mix L-[35S] in vitro cell labeling mix in the presence or absence of a given agonist or with 1–10 µg/ml cyclohexymide (CHX), an inhibitor of protein synthesis, or a mixture of both the agonist and CHX for 24 h [38, 41, 51, 76]. Cells are then harvested, and cell lysate is prepared for SDS–PAGE as previously described. After electrophoresis, gels are stained with Coomassie blue (to verify equivalent loading), dried, and exposed with Kodak X-OMAT-RA film at -80 °C for 1–3 days. Absence of new polypeptides is observed in the lanes where the cells were treated with CHX.
Several animal models of inflammation have been developed over the years. Some are suitable for understanding the mechanisms involved in the development of inflammatory diseases. The collagen-induced arthritis model is a good example [77-79]. Other models focus on pulmonary inflammation, including mouse models of allergic asthma. Typically, in this latter model, animals are sensitized to a foreign antigen by intraperitoneal injection in the presence or absence of an adjuvant. After the sensitization period, mice are challenged with the antigen directly in the lungs or the nose, and airway inflammation is then elicited. Although PMNs are known to exert some pathological effects during arthritis and in some cases during asthma, the observed cells in these models are not necessarily PMNs, but rather mainly some lymphocytes and eosinophils in collagen-induced arthritis and asthma models, respectively. However, in several other inflammatory models where a given agent is administered by inhalation, intratracheally or directly into lungs, PMNs will be easily observed in the bronchoalveolar lavages or lungs. However, these models are time consuming, are not the cheapest, and, in addition, necessitate a certain degree of technical skills. The rodent air pouch model of acute inflammation is probably the best, simple, not time-consuming, and cheapest model for monitoring leukocyte influx, including PMNs. This model has been used for investigating the inflammatory activity of a large number of compounds, including cytokines [28, 43, 80], plant extracts and lectins [81-83], different drugs [84-86], etc.
Several kinds of mice can be used to perform this model. For screening purpose, we recommended to use outbred CD-1 mice since they are less expensive than other inbred mice. Normally, we use female mice (6−8 weeks of age). A period of acclimation of about one week is allowed to animals prior to initiation of the experiments. On days zero and three, mice are anesthetized with isoflurane, and 3 cc of sterile air was injected subcutaneously, in the back, with a 26-gauge needle to form an air pouch as published previously. On day six, 1 mL of buffer control (HBSS or PBS) or an increasing concentration of a given compound is injected directly into the air pouch. Mice are then killed by CO2 asphyxiation 3, 9, 12, or 24 h after the treatment, and the pouches are washed once with 1 ml and then twice with 2 ml of buffer containing 10 mM EDTA. Exudates are centrifuged at 100 X g for 10 min at room temperature, and supernatants are collected and stored at -80 °C for further analysis. Cells are resuspended at 0.5 x 106 cells/ml, spread onto microscope slides, and stained with Hema-3 stain kit for identification/quantification of leukocyte cell subpopulations. The details of the model have been previously discussed [28, 35, 50, 87, 88]. Interestingly, several kinetics could be done with this model as well as several different experiments using the exudates such as the determination and quantification of different soluble factors including cytokines and chemokines. Moreover, the exudates could be used to perform zymography experiments to determine, for example, gelatinase activity. After centrifugation of the collected exudates, cells can also be incubated in vitro for studying the different PMN functions, especially in an experimental condition such as LPS-induced murine air pouches, where more than 85 % of cells are PMNs. It is also possible to purify a given type of leukocyte before performing in vitro assays. In brief, this model allows a panoply of different experiments. For example, we have used this model to demonstrate that an intraperitoneal administration of curcumin, prior to LPS-induced air pouch, was able to inhibit the proinflammatory effect induced by LPS [50].
While NPs have great potential for human needs, there are increasing concerns that the same features that make them so attractive and interesting also represent potential risks to human health [89]. Consequently, a new branch of toxicology, nanotoxicology, has recently emerged. Nanotoxicology could be defined simply as a discipline evaluating the role and safety of NPs on health. Exposure to NPs has increased dramatically in the past few years due to anthropogenic sources given that NPs can be formed via a wide variety of processes/methods. These sources are numerous and include internal combustion engines, power plants, and many other sources of thermodegradation [90]. Furthermore, intense research and development by the industry and academia multiply the number of individuals potentially exposed to NPs. Nanotoxicology is, therefore, a very complex discipline, and the diversity and complexity of NPs makes chemical characterization not only more important but also more difficult [91].
One of the most adverse effects of NPs reported in the literature is certainly inflammation. A variety of NPs were found to possess proinflammatory activities, principally based on their ability to increase the production of different proinflammatory cytokines [92-95] and on the observations that NPs can exacerbate airway inflammation in vivo [96-99]. However, as previously mentioned, inflammation is a normal biological response of the body to various assaults, including microorganisms, injuries, dusts, drugs, and other chemicals. Under normal circumstances, inflammation will subside and resolve itself in a healthy individual through a series of tightly regulated responses. However, when deregulation occurs, inflammation can lead to inflammatory disorders and diseases including asthma and several pulmonary lung diseases, dermatitis, arthritis, inflammatory bowel diseases, etc. [1, 100]. Curiously, despite the importance of PMNs in inflammation and since several studies reported an increased number of PMNs in NP-induced pulmonary inflammation, there are few studies investigating the direct effects of NPs and their mode of action in PMNs. The following sections will cover different studies that have been done regarding the effects of some NPs on PMN cell physiology.
Probably the first study reporting a direct effect of NPs with human neutrophils was done more than 25 years ago where Hedenborg published in 1988 that titanium dioxide (TiO2) dust induced the production of ROS by human neutrophils as measured by a chemiluminescence assay [101]. Different dust particles (ranging in size from 345 to 1,000 nm) were tested, and none of them were cytotoxic, as assessed by lysozyme release or trypan blue exclusion [101]. It was concluded that TiO2 stimulated the chemiluminescence activity of PMNs in a concentration-dependent manner and that particle size and surface structure of the dust were important for determining the intensity of the response. Although the nanomaterial used for this study was not-typical NPs based on the definition that the three dimensions need to be smaller than 100 nM, the size was still in the nanometer range. In fact, the definition of an NP is complex, and according to the 2011 Commission of the European Union, the definition of an NP is: “a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1-100 nm.” Therefore, according to such a definition, a “nano” object needs only one of its dimensions, <100 nm, to be classified as an NP, even if its other dimensions are not in that range. Strictly based on the nanometer terminology, one can define any objects in the nm range as a nanoparticle or at least as a “nano” object as was the case with this study investigating the effect of TiO2 dust.
The next section will cover studies investigating the direct interaction between NPs and human neutrophils. Before describing works performed by others, I would like to mention that if some studies have been forgotten, this is completely unintentional on my part. Also, it is important to specify that few studies reported the effects of NPs on nonhuman neutrophils, including fish [102, 103] and rat [104] PMNs that are not part of this present review. Nevertheless, in brief, the results indicate that TiO2 NPs stimulated oxidative burst and NET release in fathead minnow PMNs [102], whereas fullerenes were found to inhibit oxidative burst and suppressed the release of NETs and degranulation of primary granules [103]. In rats, poly(lactide acid) or PLA nanoparticles were reported to be more efficiently phagocytosed than PLA/poly(ethylene glycol) or PEG blends [104].
In one study, human PMNs incubated with increasing concentrations of polymethylmethacrylate (PMMA) NPs (50–60 nm) in vitro were found to release lactate dehydrogenase, lysosome, and beta-glucuronidase in a dose-dependent fashion [105]. In contrast, PMMA NPs diminished migration of PMNs in a dose-dependent manner, as assessed by measuring the distance attained by the leading front of cells in Boyden chambers. Interestingly, polystyrene beads (50 nm in diameter) were employed as a physical control throughout the study, and they were also found to affect the same PMN functions as compared with cells incubated with the buffer alone, but the intensity of the response was inferior to that of PMMA NPs.
In 1996, using solid lipid NPs (SLN) produced by high-pressure homogenization of melted lipids (glycerolbehenate, cetylpalmitate), Müller and colleagues modified the surface of these NPs with hydrophilic poloxamine 908 and poloxamer 407 block copolymers and found slightly different results regarding the phagocytic uptake and cell viability of human PMNs [106]. Interestingly, cell viability was ≥ 80 % for all studied NPs with a diameter ranging from 123 to 246 nm, as assessed by the colorimetric MTT assay. Modification of the solid lipid NPs with poloxamine 908 and poloxamer 407 reduced phagocytic uptake to 8–15 % of hydrophobic polystyrene particles. The same team also reported, in another study, the in vitro cytotoxicity of SLN as a function of lipid matrix and stabilizing surfactant not only in mature PMNs but also in human promyelocyte HL-60 cells. These latter cells, which can be differentiated in laboratory toward neutrophil-like cells with dimethyl sulfoxide, were used for comparison with fully mature PMNs isolated from the blood of healthy volunteers. The aim was to use this cell line to replace the daily PMN isolation that is costly and time consuming. They reported that the nature of the lipid had no effect on PMN and HL-60 cell viability. However, some distinct differences were found for the surfactants. For example, binding of poloxamer 184 to the SLN surface reduced the cytotoxicity of the surfactant by a factor of ~65. They concluded that HL-60 cells represented a potentially good model for replacement of primary PMNs. In addition to HL-60, PLB-985 cells can also be driven by chemical treatment into “neutrophil-like cells but, as we previously documented, both cell lines can respond differently than PMNs [30, 107]. Therefore, I believe that results obtained from “real” human mature PMNs are more easily interpretable for the evaluation of human risk.
The cytotoxicity of injectable cyclodextrin nanoparticles/nanocapsules (specifically, β-CDC6) in mouse L929 fibroblasts and human PMNs has been determined in one study [108]. The cytotoxicity was evaluated in the presence or absence of PF68, the most commonly used surfactant in NP formulations and designed to be potentially utilized as an injectable nanosized drug carrier. Depending on the formulation, the particle size distribution was between ~110 and 350 nm. Using MTT assay, it was concluded that β-CDC6 NPs do not exert a significant cytotoxicity against both types of cells. Of note, although the experimental conditions were appropriate for fibroblasts (three days before performing the assay), this is not necessarily the same for human PMNs known to spontaneously undergo apoptosis when incubated in vitro; about 50 % of PMNs are already in apoptosis after only 24 h [4, 37]. In 2006, the effects of cholesteryl butyrate (chol-but) solid lipid NPs and PMNs were investigated [109]. In vitro incubation of PMNs with 10-8-10-4 M cholesteryl butyrate solid lipid nanoparticles (chol-but SLNs, mean diameter of 130–160 nm) for 10–240 min did not lead to cytotoxic effects as determined by the trypan blue exclusion assay [109]. Chol-but SLNs were found to inhibit adhesion of PMNs onto fetal calf serum-coated plastic wells as well as onto human umbilical vein endothelial cells. Also, in this study, the ability of FMLP-induced O2- production and FLMP-induced MPO release by PMNs was inhibited by chol-but SLN. More recently, the capacity of human immune cells to internalize rod-shaped and spherical gold NPs (AuNPs), with diameters of 15–50 nm and a variety of surface chemistries, has been determined. Interestingly, in contrast to monocytes–macrophages that were found to ingest AuNPs [110], PMNs rather “trap” them in NETs [111]. The cell-gold networks, already observed after 15 min of treatment of immune cells with the AuNPs, were predominantly observed in PMNs and, to a lesser extent, in monocytes and macrophages. This indicates that NETs act as a physical barrier for NPs. In addition, in this study, the authors demonstrated that the particle shape is not very important for particle trapping, whereas the positive charges significantly enhance this phenomenon [111]. Influence of AuNPs on activation of human PMNs was also investigated in another study where AuNPs with a size of 60 nm were found to induce generation of free radicals as assessed by a chemiluminescence assay [112]. The authors proposed that the influence of AuNPs on the membrane surface potential of PMNs was most likely the mechanism involved.
Interaction between silver nanoparticles-polyvinyl-alcohol (AgNPs-PVA) and human PMNs was recently investigated. In this study, PMNs were incubated in the presence of 10 μM of AgNPs-PVA, and the increased ROS production was determined by flow cytometry using the DCFH-DA probe [113]. Curiously, in this study, the authors determined necrosis and apoptosis by flow cytometry after staining with PI and annexin-v in human hepatocellular carcinoma (HepG2) and in peripheral blood mononuclear cells (PBMCs), but not in PMNs. Both cell necrosis and apoptosis were significantly increased after treatment with the NPs. Further, they investigated cellular uptake in HepG2 and PBMCs based on increased SSC fluorescence intensity recorded by flow cytometry, but, again, not in human PMNs.
Several PMN functions, including viability, chemotaxis, phagocytosis, oxidative burst, and cytokine production (IL-1β, IL-6, and IL-8), were investigated in response to an immunosuppressive agent sirolimus (SRL) alone, SRL-loaded poly(d,l-lactide) nanoparticles (SRL-PLA-NPs), and plain PLA-NPs [114]. While phagocytic activity was markedly reduced, but recovered within 3 h, the other tested PMN functions were not affected.
In their study, Haase et al. (2014) compared the effects of AgNPs and ionic silver (Ag+) on cells of the innate immune system, in particular on PMNs and macrophages [115]. They generated five kinds of AgNPs (diameters ranging from 2 to 35 nm) and did not observe any impact on phagocytosis, oxidative burst, as well as activation of the TNF-α promoter. In contrast, AgNPs and Ag+ were found to induce NET release and to inhibit the formation of nitric monoxide. Also, both AgNPs and Ag+ were found to increase intracellular ROS levels as well as the second messenger Zn2+. Therefore, based on these data, the effect of AgNPs on human PMNs is not specific to the particles since they are also observed with Ag+.
Our laboratory has been interested in investigating the role of NPs on the biology of human PMN because one of the most reported adverse effects of NPs after administration in animals or when incubated in vitro in different type of cells is inflammation, our main expertise. Of note, we voluntary use unloaded, naked, or plain engineered NPs in our present studies based on the fact that several kinds of NPs are commercially available and since we believe that it is important to first establish how human PMNs will react with a given NP before trying to use this latter as potential carrier for drug delivery, for example. In addition, since these NPs are relatively easy to obtain and that several of them are probably already used by workers in different kinds of industries, it is warranted to understand their mode of action as they are handled and/or used by individuals. The first study was published in 2010, indicating that our involvement in this area of research is recent [57]. We investigated how human PMNs respond to TiO2 NPs since these NPs were (and are still) the most studied NPs reported in the literature. We used a commercially available preparation of TiO2 NPs (anatase crystals) of 1–10 nm in size, as determined by transmission electronic microscopy (mentioned in the technical data sheet and also confirmed by us). We first incubated freshly isolated human PMNs with increasing concentrations of TiO2 NPs (0–800 μg/ml) over time and determined their potential cytotoxicity. As assessed by trypan blue exclusion assay, the NPs did not decrease cell viability and only a small portion ≤ 3 % of cells were in necrosis after 24 h of incubation at the highest concentration tested. We next determined if TiO2 NPs could induce morphological cell shape changes in PMNs, an indicator of cell activation. After 24 h, the optimal concentration inducing cell shape changes was 100 μg/ml, a concentration used by others with human lymphocytes [116]. Others reported the use of TiO2 NPs up to 4,000 μg/ml for in vitro studies, but in U937 human monoblastoid cell line [117]. Interestingly, we demonstrated that TiO2 NPs were able to induce rapid tyrosine phosphorylation events in PMNs as quickly as 15 s, with a maximal effect at 1 min of treatment. More specifically, we identified Erk-1/2 and p38 MAP kinases, the two major enzymes involved in different PMNs functions, as targets of TiO2 NPs [57]. Concordant with our data indicating TiO2 NPs were not cytotoxic, we reported and demonstrated that they significantly inhibited PMN apoptosis. Using an antibody array assay allowing the simultaneous detection of different cytokines/chemokines, TiO2 NPs were found to increase the production of 13 analytes, including IL-8 and Gro-α, two potent neutrophil activators. They exhibited the greatest increase (~16 times and ~4 times more vs control cells, respectively). Because antibody assay is a semiquantitative assay, we next confirmed that TiO2 NPs increased IL-8 production by quantitative ELISA. Taken together, these results clearly indicate that TiO2 NPs are neutrophil activators.
In another study, we focused our attention on the human PMN degranulation process not only in response to TiO2 NPs but also after treatment with two other metal oxide NPs, zinc oxide (ZnO) and cerium dioxide (CeO2) [56]. This was probably the first study investigating the effect of NPs on degranulation. Because TiO2 was previously found to activate PMNs, we first determine whether or not ZnO and CeO2 NPs could be neutrophil modulators. We found that all NPs (having the size of 1–10 nm) were able to activate PMNs, based on induction of actin polymerization. As assessed by flow cytometry, the three types of NPs slightly downregulated cell surface expression of the granule marker CD35 but increased CD66b and CD63 expression. In addition, the protein expression of myeloperoxidase, MMP-9 and albumin stored in azurophil, specific/gelatinase, and secretory granules, respectively, was significantly increased in the supernatants of NP-induced PMNs vs supernatant from untreated cells. Also, both TiO2 and CeO2 were found to markedly increase the enzymatic activity of MMP-9 released into the supernatants, as determined by gelatin zymography. ZnO NPs were found to only exert a modest effect in these experiments. Therefore, the three NPs can differentially affect all steps involved during neutrophil degranulation, namely, cell surface expression of granule markers, liberation of proteins in the supernatants, and enzymatic activity [56].
We next examined the role of AgNPs with a starting size of 20 nm (AgNP20) on human PMN apoptosis. Treatment of PMNs with AgNP20 results in increased cell size, and TEM experiments revealed that AgNP20 can rapidly interact with the cell membrane, penetrate inside neutrophils, localize in vacuole-like structures, and be randomly distributed in the cytosol after 24 h [59]. Treatment with 100 µg/ ml AgNP20 for 24 h (but not 10 µg/ml) increased the PMN apoptotic rate as determined by cytology and by flow cytometry after staining with FITC annexin-v. Also, AgNP20 was found to inhibit de novo protein synthesis as demonstrated by gel electrophoresis of metabolically [35S]-labeled cells as strong as the potent protein inhibitor cycloheximide. Therefore, AgNP20 was identified as potent PMN proapoptotic agents. Preliminary experiments indicate that AgNP70 (70 nm), in contrast to AgNP20, delays human PMN apoptosis (our unpublished data) in agreement with the fact that an NP with a different size (here 20 vs 70 nm) can act completely different.
Based on these results, we were interested in investigating more in depth how ZnO NPs can alter human PMN biology. We demonstrated that ZnO increased the cell size, induced cell shape changes, activated phosphorylation events, and enhanced cell spreading onto glass, but did not induce the generation ROS [58]. In contrast to AgNP20, treatment of PMNs with ZnO markedly and significantly inhibited apoptosis and increased de novo protein synthesis. Utilization of cycloheximide reversed not only the ability to increase de novo protein synthesis but also the antiapoptotic effect of ZnO NPs. It was concluded that ZnO NPs are activators of several human PMN functions and that they inhibit apoptosis by a de novo protein synthesis-dependent and ROS-independent mechanism. In the future, it will be of interest to identify the nature of proteins that are neo-synthesized in response to ZnO NPs.
The effect of different sets of nanoparticles were tested by Vandooren et al. [29] using the murine air pouch model. The tested NPs were CANs maghemite, type I PEI-CAN-maghemite, type II PEI-CAN-maghemite, PDMAEMA-SCPNs, PMAAc-SCPNs, PLGA-COOH, PLGA-b-PEG-COOH, Magh@PNPs, LNP LII, and CAN CIII. All details regarding their characterization (size, zeta potential, PDI, etc.) are described in their study. When compared with the negative control (phosphate-buffered saline or PBS), the number of attracted leukocytes were increased with all NPs, but PMAAc-SCPNs and CAN CIII. The highest count they observed was ∼2.8 x 106 cells/pouch, after treatment with type II PEI-CAN-maghemite NPs vs ∼0.8 x 106 cells/pouch. Interestingly, for almost all tested NPs, the majority of leukocytes recruited into air pouch were PMNs (sometime up to ∼90 %). From this study, it was proposed to use the air pouch leukocytosis model as a future standard assay for an in vivo test for nanoparticles. Although I am in favor, it is important to mention that the leukocyte infiltration was only determined after 24 h of treatment, a time point that is probably not the optimal one. As previously proposed [118], it is better to perform kinetic experiments with the murine air pouch model, especially between 3 and 12 h, as we previously documented for determining the effect of different kinds of agents on inflammation [28, 35, 43, 50, 87, 88, 119]. This is particularly true for NPs, since their mode of action is still not fully understood. Moreover, time points after 24 h should also be investigated because of lack of knowledge with proinflammatory activity of NPs in such a model.
The potential proinflammatory activity of iron oxide-containing magnetic nanoparticles (MNPs) was investigated using the murine air pouch model. Administration of 1,000-MNPs and 2,000-MNPs (1,000 and 2,000 referring to 1,000 μg or 2,000 μg of iron in terms of CAN maghemite particles) in C57BL/6 mice induced a prominent influx of leukocytes, mainly PMNs as determined by differential count and by flow cytometry using anti-CD11b + anti-/Gr-1 antibodies. The neutrophilia was similar to the effect obtained with the positive control chlorite-oxidized oxyamylose [120]. Since several authors of this study were also authors in the original work describing the use of the murine air pouch as a standard assay for in vivo testing of NPs, they did not evaluate the effects of the NPs before the 24 h time point.
Although we have been using the murine air pouch model in our laboratory for ∼13 years for testing potential effects of different agents on inflammation, it is only recently in 2011 that we used it to demonstrate for the first time that a given NP, namely, titanium dioxide (TiO2), was proinflammatory. Indeed, administration of a single dose of TiO2 NPs into the air pouch attracted leukocytes after 3–9 h, where more than 80 % of cells were PMNs [75]. In addition, in this study, we reported that TiO2 NPs induced the production of several chemokines locally present in the air pouch exudates. This model is a simple model that allows investigation of an acute inflammatory response, the first step leading to chronic inflammation when deregulation occurs, such as the many studies reporting an increased number of PMNs in the lung/BALS [98, 99, 121-125]. On the other hand, the fact that an NP possesses some proinflammatory properties could be of help for the design of drug delivery by NPs for clinical purposes. In this regard, one can imagine attracting leukocytes such as PMNs into an inflammatory site by a NP delivering (or coated with) a neutrophil proapoptotic molecule. Although this is speculative at the moment, this remains an interesting avenue of research that needs to be explored in the future.
Kinetic and dose-dependent experiments performed with the murine air pouch model of acute inflammation revealed that, unlike TiO2 used as a positive control in this model, C60(OH)n (fullerenols) NPs were not proinflammatory in CD-1 mice [126]. To further confirm this negative result and since, yet, no genetic susceptibility has been reported regarding the biological activity of NPs, we performed other sets of experiments using C57BL/6 and BALB/c mice. Again, no significant leukocyte attraction was observed into air pouch. However, after 3 h of treatment, C60(OH)n NPs were found to amplify the effect of lipopolysaccharides (LPS) causing a rapid leukocyte influx in which the major cells observed were PMNs. Using an antibody array assay to detect different analytes present in the exudate led us to conclude that the amplification effect is explained, at least partially, by an increased local production of several cytokines/chemokines in the exudates, including the proinflammatory cytokines IL-1β and IL-6. In fact, the profile of analytes was different in response to LPS alone, C60(OH)n alone, and the mixture of both. Using an ELISA to quantify the amount of IL-6, we demonstrated that C60(OH)n increases the LPS-induced local production of this cytokine. Therefore, although C60(OH)n NPs alone do not exert proinflammatory activity under certain conditions, they can act in concert with other agents to cause inflammation, a situation that is likely to occur in vivo. These results further reinforce that the murine air pouch model is to be performed at different periods of time (kinetic experiments) as discussed above.
Most of the in vitro studies discussed above evaluated the cytotoxicity and/or only one or few PMN response(s). Yet, no study other than our own has determined the effects of NPs on the PMN apoptotic rate, a very important process for regulating the number of PMNs. However, more recent reports have investigated the interaction between NPs and PMNs by studying different functions/responses, an approach that we encourage. The fact that TiO2 NPs induced the production of several analytes, including two potent chemokines (IL-8 and Gro-α) is a good example demonstrating that NPs can indeed target PMNs that, in turn, could attract/activate other cells [57]. It is highly probable that, in the forthcoming years, several aspects regarding the effects of different NPs on the biology of human PMNs will be studied. Although there is a growing interest in developing in vitro assays in nanotoxicology [127], it is also strongly encouraged to use primary human cells as a source of in vitro cells for testing NPs, since cancerous cell lines of different origins will complicate data interpretation for the evaluation of human risk. In addition, determining how a given NP alters inflammation in vivo in other models than those exclusively targeting the lungs, such as the murine air pouch model, will help us to better evaluate the potential toxic mechanisms of NPs, especially how they alter the inflammatory process.
This study was supported by the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST).
Diamond has been an attractive semiconductor in the fields of power electronics [1], valleytronics [2], optoelectronics [3, 4], and quantum information technology [5, 6] in recent years. Such application-oriented studies have been arising from the outstanding values of breakdown voltage, thermal conductivity, carrier mobility, and spin relaxation time in a diamond. This direction is accelerated due to the progress of crystal growth technique by the chemical vapor deposition (CVD) in these decades [7], by which a highly pure diamond becomes commercially available.
To design diamond-based devices, the knowledge of transport parameters, such as effective mass, scattering time, and drift mobility, is necessary. The effective mass is an important parameter in the band theory of a semiconductor, governing the transport properties, density of states, and the phase boundary of high-density carriers. The drift mobility involving the values of the effective mass and scattering time is a direct index of carrier transport. However, in the past when only natural crystals or impurity-rich synthesized crystals were available, limited information about intrinsic carrier properties had been reported [8, 9, 10, 11, 12, 13, 14]. This historical situation is in contrast to the current materials, silicon, and germanium. In silicon or germanium, a cyclotron resonance method played a significant importance to determine the effective masses for doped crystals under activation by light at low temperature in the 1950s [15, 16]. Such accurate measurements at low temperature had been impossible in diamond due to deep dopant states in the wide energy bandgap. Therefore, most of previous measurements were performed at temperatures higher than 80 K, where a carrier transport was limited by phonon scatterings. A part of anisotropic hole masses were obtained from unresolved spectra at higher temperature than 300 K [11, 12]. Information on the electron was much less, because most of the semiconducting diamond was of p-type.
Recently, measurements of time-of-flight (TOF) transport [2, 10, 17, 18] and optical transient grating [19, 20] have been performed with the highly pure crystals. However, the measured carrier mobility varied from sample to sample depending on the surface termination condition, the crystal supplier, and experimental conditions. A high-density injection under high electric field, the space charge-limited transport condition under higher dopant concentration, and non-Ohmic contact caused extrinsic effects on transport behaviors. To clarify intrinsic carrier properties in a diamond, a measurement should be achieved at low temperature under a low carrier density.
In this chapter, our recent experimental contributions to clarify the basic and intrinsic carrier parameters in a diamond will be introduced [21, 22, 23, 24, 25, 26, 27]. The measurement has been performed by a time-resolved cyclotron resonance method under optical carrier injection in pure diamond crystals. The concept of our measurement is shown in Figure 1: carriers are injected optically with ultra-violet laser pulses through the band-to-band transition or exciton creation with an assistance of phonon emission/absorption in the indirect band structure (Figure 1a). Although the created exciton is an electrically neutral binding state of electron and hole, free charge carriers are dissociated from excitons via two-body collision of excitons or thermal dissociation as described in Section 3.2. During the long lifetime of the free carriers in the indirect band structure, we can observe the cyclotron resonance under the external magnetic field (Figure 1b). Keys to realize our measurements in an intrinsic semiconductor diamond are the optical carrier injection technique and using of highly pure diamond. As in the case of pure silicon [28], which had been applied to a light-triggered thyristor as a successful power device, optical carrier injection is a promising technique to control a carrier density by a sophisticated way. The spectroscopic way of the optical carrier injection in a diamond at device-operating temperature as well as at low temperature will also be introduced.
Schematic experimental concept. (a) Energy diagrams of valence and conduction bands for indirect semiconductor diamond and exciton band and (b) cyclotron motion of optically injected free carriers converted from excitons.
The time-resolved cyclotron resonance (TRCR) method was performed for optically injected transient carriers in high-purity diamond crystals in X band (microwave frequency at
Highly pure diamond crystals of type-IIIa grown by the CVD method were used. A typical concentration of nitrogen and boron atoms was less than 5 and 1 ppb, respectively ([N] < 9 × 1014 cm−3, [B] < 2 × 1014 cm−3). For crystals of higher impurity concentration, it was difficult to obtain the TRCR spectrum at 10 K because of the broader spectral width due to the higher carrier scattering rate. A typical crystal dimensions were of 3 × 2 × 0.5 mm3 with the largest plane of the crystalline (001). A crystal was attached on a 2 × 8 mm2 face of a right-angle prism by a small amount of vacuum grease for better coupling with the optical excitation (see Figure 2a). The sample was mounted in a dielectric microwave cavity (Bruker, MD5W1, TE011) that is developed for the pulsed electron paramagnetic resonance (EPR) in X band with a high filling factor, in which a microwave’s electric field packed in a round mode resonates with the cyclotron motion of free carriers under an external magnetic field.
Schematic drawings of experimental method: (a) the equipment and inside of a microwave cavity, (b) a temporal response of continuously applied microwave to transiently generated carrier by laser pulse at an external magnetic field, and (c) an example of a CR peak in spectrum at a delay time.
The sample was irradiated by 5-ns pulses at wavelength selected in the range from 219.4 to 226.4 nm at low temperatures or from 219.4 to 235.6 nm at room temperature from an optical parametric oscillator (Spectra Physics, MOPO with frequency doubler option) pumped by THG of a Nd:YAG laser. Temporal responses of continuous microwave power were measured in a quadrature detection using microwave mixers and a two-channel oscilloscope of a system (Bruker, ELEXSYS E580) (Figure 2b). Inphase and out-of-phase signals to the input microwave were obtained as real and imaginary parts. The cavity’s quality factor
Important carrier parameters were extracted from a resonance peak in the CR spectrum (Figure 2c): the effective mass
In addition to the abovementioned parameters, although we will not describe details here, important properties of carrier generation and decay can be unveiled from the time-resolved cyclotron resonance method: analysis of the rise time of the temporal curve and the signal intensity depending on excitation laser intensity can reveal a carrier generation mechanism [22, 29]. A lifetime of the carrier in a rotating motion is extracted from the decay time of a temporal curve. Temporal variation of carrier density is also estimated based on the plasma shift analysis [16, 30, 31]. Here, to study the basic properties of carriers, we paid careful attention to minimize plasma shifts of the resonance peaks, with the incident pulse energy less than 5.8 μJ which ensures the carrier density at the delay times later than 600 ns is less than 1011 cm−3.
Figure 3a shows a colored contour map of a real part of TRCR signal measured at 7.3 K excited by laser pulses at photon energy of 5.50 eV. Temporal profiles at the magnetic fields of 0.089, 0.122, 0.162, and 0.230 T are shown in Figure 3b. CR spectra at the delay times of 60, 200, and 600 ns are shown in Figure 3c, by slicing the data set at the delay times. The magnetic field was applied to an angle of 40° from the crystal axis of [001] in the (1–10) plane. In this orientation, four carrier species, light hole, heavy hole, and two electrons in inequivalent conduction valleys, indicated by lh, hh, e1, and e2, respectively, were distinguishable as shown in Figure 3a and c.
(a) A colored contour map of a real part of TRCR signal at 7.3 K excited by laser pulses of photon energy at 5.50 eV; (b) temporal profiles at 0.089, 0.122, 0.162, and 0.230 T denoted by vertical lines in (a); (c) CR spectra at the delay times of 60, 200, and 600 ns denoted by horizontal lines in (a).
Optical carrier injection is a key technique in our nanosecond TRCR method. As a diamond has an indirect band structure as shown in Figure 1a, the optical carrier injection at the lowest photon energy is established with the assistance of phonon emission/absorption to satisfy the energy and momentum conservations. The lowest excited state is an exciton band located below the indirect band edge by a binding energy larger than 80 meV [32, 33], whose fine structures were recently clarified [34]. To clarify the spectroscopic way of carrier injection, an excitation spectrum of TRCR signal at the fixed resonant magnetic field was measured with a thin CVD crystal of 70-μm in thickness to suppress the saturation by exciton absorption.
Figure 4 shows the TRCR excitation spectra obtained at 10, 80, and 300 K. The signals were averaged at the time windows, (a) 80–280 ns at 10 K, (b) 352–552 ns at 80 K, and (c) 156–356 ns at 300 K, after the signal decayed to the 1/e of the peak intensity [26]. For such late times, we observed that carriers were dominantly generated by dissociation of excitons [27]. The onset energy of the excitation spectra (a, b) at 5.493 eV coincides with the exciton generation edge assisted by emission of a transverse acoustic (TA) phonon (
CR excitation spectra at (a) 10 K, (b) 80 K, and (c) 300 K. Vertical broken lines indicate the energy positions of Eex±ℏωTA, Eex±ℏωTO, and Eex. The inset shows schematic of phonon-assisted transitions to the exciton band. This figure was taken from [26] with a slight modification.
On the other hand, the signal at 300 K arose at the lower energy side with the onset at 5.265 eV. The onset energy coincides with the threshold for exciton generation assisted by absorption of a TO phonon (
Under the excitation in the range from 5.265 to 5.493 eV, where only the phonon absorption assists the process, the carrier number should increase with rising of the temperature according to the activation of phonons. The lower panel of Figure 5 shows temperature dependence of the temporal response intensity excited by laser pulse at 5.335 eV. Solid curves in the upper panel are the temperature dependence of the quantum statistical numbers
Temperature dependence of the temporal response signal intensity at 0.16 mT due to free carriers generated by laser pulse at 5.335 eV via phonon absorption. A broken curve in the lower panel is a guide to eyes. Solid curves in the upper panel show the temperature dependence of the quantum statistical number 〈n〉 of TA or TO phonon.
In the subsequent Sections 3.3–3.5, we focus on the carrier properties at temperatures below 50 K. This temperature range is uniquely reached by our method owing to the optical carrier injection without the need of thermal activation of carriers from deep levels. For an efficient carrier generation at these temperatures, the excitation wavelength was chosen in the range of 219.4–226.4 nm. Furthermore, we discuss the CR spectra at the later delay times after 600 ns (see Figure 3) by eliminating the plasma shift effect at the earlier delay times depending on experimental conditions [16, 31].
Both CR spectra of real and imaginary parts were well fitted by the formula for the complex conductivity [15]:
where
Angular dependence of effective masses, taken from Ref. [21].
The effective masses of electrons were simulated according to the following equation [15]:
where
On the other hand, the effective masses of holes were simulated according to the equation for light (−) and heavy (+) holes [15]:
where
with a transformation by
As we report in detail in Ref. [21], it is experimentally figured out that the electrons are in highly asymmetric valleys along the <001> directions, that is, at the △ points, with the transverse effective mass (
(eV) | ( | |||||||
---|---|---|---|---|---|---|---|---|
Gea | 0.80 | 0.082 | 1.58 | 0.043 | 0.336 | 0.095 | 0.220 | 0.378 |
Sia | 3.4 | 0.19 | 0.97 | 0.16 | 0.52 | 0.23 | 0.327 | 0.670 |
Diamond | 7.3 | 0.280 | 1.56 | 0.260 | 0.667 | 0.375 | 0.496 | 0.947 |
Comparison of effective mass in group-IV semiconductor.
Values of germanium and silicon were taken from Ref. [15].
Sample | Growth | Boron | Nitrogen | Dislocation |
---|---|---|---|---|
A | CVD (001)-sector | <1 ppb | <5 ppb | – |
B | CVD (001)-sector | <50 ppb | <100 ppb | – |
C | HPHT+neutron irrad. | – | 51 ppm | – |
D | HPHT (001)-sector | <0.8 ppb | <45 ppb | Free |
E | HPHT (111)-sector | <0.8 ppb | <45 ppb | Free |
Specification of used samples.
“-” means unknown.
Figure 7 compares the angular dependence of effective masses of diamond with those of silicon and germanium [15] with the same angular definition as in Figure 6. The conduction-band minimum in silicon is located at the △ points as in a diamond, while that in germanium is located at the L points. It is easily recognized that the effective masses in diamond are largest among group-IV semiconductors, reflecting the largest direct bandgap energy at the Γ point which causes relatively larger contribution of the first perturbation term in the k·p theory to the effective mass of an energy band.
Comparison of effective mass in group-IV semiconductor: angular dependence of effective masses simulated with the experimentally obtained parameters, in (a) diamond [21], (b) silicon [15], and (c) germanium [15]. Three electrons (blue lines) and light and heavy holes (red lines) are plotted for two rotation planes; the negative angles mean the magnetic field in the (100) plane for the rotation axis along [100], whereas the positive angles mean the magnetic field in the (1–10) plane for the rotation axis along [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
A well-resolved spectrum of TRCR at the lower temperatures allows extracting the effective masses in good accuracy as described in Section 3.3. We compared the TRCR signals in different samples as reported in Refs. [24, 25]. The sample showed the narrower spectral width as presented in Figure 3 possesses the smaller concentration of donor and acceptor, that is, nitrogen and boron. Figure 8 shows temporal profiles of five different samples. The sample displayed a slow rise and decay in a couple of hundred nanoseconds (sample A) which is identical to that in Figure 3. The narrow spectral width is caused by the long carrier scattering time. From the comparison of CR spectra of CVD diamonds to those of dislocation-free HPHT diamonds, we found the fact that the TRCR detection is rather insensitive to crystalline dislocations [24]. It is known that a typical dislocation density in CVD diamond is lower than 104 cm−2 [36], corresponding to dislocation periods larger than 100 μm. On the other hand, the cyclotron radii in the measurement with X band microwave were 86 and 55 nm for light and heavy holes, respectively. As the carriers rotate in the much smaller spatial extension than the typical dislocation period in CVD samples, the CR detection is rather insensitive to dislocations. Instead, impurity scattering by neutral nitrogen atoms is found to be dominant at low temperatures (as described in Section 3.5), because their average separations are comparable to the cyclotron radii in the present case.
Temporal profiles at the resonance of light hole in different five samples listed in Table 2, taken from Ref. [25].
From these facts, we emphasize that the accurate determination of effective masses as described in Section 3.3 became possible, since we could use a highly pure diamond produced by the CVD method under the optical carrier injection.
The rise time and decay time in the temporal profile of TRCR in Figures 3b and 8 reveal carrier generation and trapping mechanism. The finite rise time reflects the time required for carrier creation by exciton collision. A detailed formula giving an approximate rise time in connection with the lifetime is described in Refs. [22, 29]. The shorter decay time is probably caused by the higher density of impurity concentrations (in comparison among samples A–C) and by the higher density of stacking faults and substitutional impurities (in comparison samples E–D). It has been known that incorporation of defects occurs more easily in a (111)-oriented diamond than in an (001)-oriented diamond.
The temperature dependence of TRCR spectrum provides the aspect of carrier scattering mechanisms. Figure 9a shows the normalized temporal curves measured at 0.16 mT at various temperatures. The rise time and the decay time of the signal increased as the temperature is rising. The longer rise and decay times at higher temperatures indicate elongating of the carrier lifetime [22]. This is probably caused by trapping of carriers into impurity states at lower temperatures. Similar shortening of the exciton lifetime at low temperatures was clarified in Ref. [37] by comparing exciton lifetimes in samples containing different concentrations of impurities.
Temperature variation of temporal curves at 0.16 mT (a) and spectrum at the delay time 1 μs averaged for ±40 ns (b), adapted from Ref. [23].
Figure 9b shows the CR spectra at 7.3, 10, 20, 30, and 40 K taken at a delay time of 1 μs after the laser pulse with averaging window for ±40 ns [23]. The four peaks were separately observed up to 20 K and the width broadened with increasing temperature. These spectra were analyzed by the abovementioned spectrum fitting. The carrier scattering times
The spectral width
Now as the parameters of the effective mass
Temperature dependences of carrier scattering time (a) and drift mobility (b), taken from Ref. [23].
We evaluated the mobility up to 300 K by extrapolating the
Recently developed experimental method, the nanosecond time-resolved cyclotron resonance, was introduced to clarify the basic carrier transport parameters in an intrinsic diamond. A sophisticated optical carrier injection technique in a highly pure diamond crystal realized the measurement at low temperature. The extracted effective masses, carrier scattering times, and mobilities unveiled the supreme carrier transport properties of a highly pure diamond, which indicate a large application-oriented advantage especially in power electronics and optoelectronics fields. The introduced optical carrier injection is a promising technique to control a carrier density in future devices.
The authors thank J.H. Kaneko (Hokkaido University) for providing the diamond sample grown by the CVD method and Ms. S. Hamabata (Wakayama University) for the experiments described in Section 3.2. This work was supported by JSPS KAKENHI (Grant Nos. 15 K05129 and 17H02910) and the Murata Science Foundation.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5318},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108346},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"8706",title:"Self-Healing Materials",subtitle:null,isOpenForSubmission:!0,hash:"2110a9a696febf059fd7a17a6bdd4958",slug:null,bookSignature:"Dr. Paul Sunday Nnamchi",coverURL:"https://cdn.intechopen.com/books/images_new/8706.jpg",editedByType:null,editors:[{id:"248411",title:"Dr.",name:"Paul Sunday",surname:"Nnamchi",slug:"paul-sunday-nnamchi",fullName:"Paul Sunday Nnamchi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8711",title:"Gigantism and Acromegaly",subtitle:null,isOpenForSubmission:!0,hash:"3d1e96f678e35f3f8799bab67a66a0a9",slug:null,bookSignature:"Associate Prof. Ahmet Uçar",coverURL:"https://cdn.intechopen.com/books/images_new/8711.jpg",editedByType:null,editors:[{id:"205106",title:"Associate Prof.",name:"Ahmet",surname:"Uçar",slug:"ahmet-ucar",fullName:"Ahmet Uçar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7689",title:"Semimetals",subtitle:null,isOpenForSubmission:!0,hash:"0d917e8350b0c0c911bfa2361c6c1d3b",slug:null,bookSignature:"Prof. Vitalyi Igorevich Talanin",coverURL:"https://cdn.intechopen.com/books/images_new/7689.jpg",editedByType:null,editors:[{id:"103029",title:"Prof.",name:"Vitalyi Igorevich",surname:"Talanin",slug:"vitalyi-igorevich-talanin",fullName:"Vitalyi Igorevich Talanin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9490",title:"Inherited Hemoglobin Disorders",subtitle:null,isOpenForSubmission:!0,hash:"9d5180ee8f07143d1e050b79a46ca6ca",slug:null,bookSignature:"Dr. Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9490.jpg",editedByType:null,editors:[{id:"97021",title:"Dr.",name:"Anjana",surname:"Munshi",slug:"anjana-munshi",fullName:"Anjana Munshi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7702",title:"Electrolysis of Water",subtitle:null,isOpenForSubmission:!0,hash:"7532579d8c6881554d1812b55d0e8d4d",slug:null,bookSignature:"Prof. Fumio Okada",coverURL:"https://cdn.intechopen.com/books/images_new/7702.jpg",editedByType:null,editors:[{id:"147954",title:"Prof.",name:"Fumio",surname:"Okada",slug:"fumio-okada",fullName:"Fumio Okada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7964",title:"Edge Computing Architecture",subtitle:null,isOpenForSubmission:!0,hash:"0b6cead5379c67dba010597396481adc",slug:null,bookSignature:"Dr. Komati Thirupathi Rao and Dr. Thummuru Gunasekhar",coverURL:"https://cdn.intechopen.com/books/images_new/7964.jpg",editedByType:null,editors:[{id:"309728",title:"Dr.",name:"Komati",surname:"Thirupathi Rao",slug:"komati-thirupathi-rao",fullName:"Komati Thirupathi Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9522",title:"Tibia",subtitle:null,isOpenForSubmission:!0,hash:"a458a39d8281ed7fda0548fbb75927a2",slug:null,bookSignature:"Dr. Dimitrios Nikolopoulos, Dr. Ioannis Michos and Dr. George Safos",coverURL:"https://cdn.intechopen.com/books/images_new/9522.jpg",editedByType:null,editors:[{id:"228477",title:"Dr.",name:"Dimitrios",surname:"Nikolopoulos",slug:"dimitrios-nikolopoulos",fullName:"Dimitrios Nikolopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9778",title:"Migraine",subtitle:null,isOpenForSubmission:!0,hash:"ba52761e098431d3113b538e9f6427f6",slug:null,bookSignature:"Prof. Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/9778.jpg",editedByType:null,editors:[{id:"83372",title:"Prof.",name:"Wojciech",surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9302",title:"Control Charts",subtitle:null,isOpenForSubmission:!0,hash:"c8ae03a43b1c4e2ba16aae7d26db890c",slug:null,bookSignature:"Dr. Paulo António Rodrigues Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/9302.jpg",editedByType:null,editors:[{id:"178637",title:"Dr.",name:"Paulo António Rodrigues",surname:"Pereira",slug:"paulo-antonio-rodrigues-pereira",fullName:"Paulo António Rodrigues Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9311",title:"Nuclear Materials",subtitle:null,isOpenForSubmission:!0,hash:"507d2a1c1acae004beafc6d550d84b3c",slug:null,bookSignature:"Dr. Pavel V. Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/9311.jpg",editedByType:null,editors:[{id:"10023",title:"Dr.",name:"Pavel",surname:"Tsvetkov",slug:"pavel-tsvetkov",fullName:"Pavel Tsvetkov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9062",title:"Preventive Healthcare and Injury Prevention",subtitle:null,isOpenForSubmission:!0,hash:"300a38e22e6c11cda0e89f2b5ff5eee7",slug:null,bookSignature:"Dr. Ozgur Karcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/9062.jpg",editedByType:null,editors:[{id:"221195",title:"Dr.",name:"Ozgur",surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10099",title:"Herbicides - Current Research and Case Studies in Use",subtitle:null,isOpenForSubmission:!0,hash:"c8263b3ad8487b9616c3ed30316a0c2d",slug:null,bookSignature:"Dr. Kassio Ferreira Mendes",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:[{id:"308883",title:"Dr.",name:"Kassio Ferreira",surname:"Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:13},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:12},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:35},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:132},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Insectology",value:39,count:1},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:484},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4406},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"203",title:"Telemedicine",slug:"telemedicine",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:6,numberOfAuthorsAndEditors:197,numberOfWosCitations:66,numberOfCrossrefCitations:73,numberOfDimensionsCitations:145,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"telemedicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8332",title:"Telehealth",subtitle:null,isOpenForSubmission:!1,hash:"dd9601c901f7fe3803ae69dbd571feba",slug:"telehealth",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/8332.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3269",title:"Telemedicine",subtitle:null,isOpenForSubmission:!1,hash:"16571516432b37129c1a7ef56c4cf3aa",slug:"telemedicine",bookSignature:"Ramesh Madhavan and Shahram Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/3269.jpg",editedByType:"Edited by",editors:[{id:"158803",title:"Dr.",name:"Ramesh",middleName:null,surname:"Madhavan",slug:"ramesh-madhavan",fullName:"Ramesh Madhavan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2824",title:"eHealth and Remote Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"fee1441d7fee8b6585fb3b4e43452da0",slug:"ehealth-and-remote-monitoring",bookSignature:"Amir Hajjam El Hassani",coverURL:"https://cdn.intechopen.com/books/images_new/2824.jpg",editedByType:"Edited by",editors:[{id:"17524",title:"Dr.",name:"Amir",middleName:null,surname:"Hajjam El Hassani",slug:"amir-hajjam-el-hassani",fullName:"Amir Hajjam El Hassani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"199",title:"Telemedicine",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"0f4c17e1a24003fb78612525315af711",slug:"telemedicine-techniques-and-applications",bookSignature:"Georgi Graschew and Stefan Rakowsky",coverURL:"https://cdn.intechopen.com/books/images_new/199.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1403",title:"Advances in Telemedicine",subtitle:"Applications in Various Medical Disciplines and Geographical Regions",isOpenForSubmission:!1,hash:"a8e4b1e59964db023e14fe11b26a232d",slug:"advances-in-telemedicine-applications-in-various-medical-disciplines-and-geographical-regions",bookSignature:"Georgi Graschew and Theo A. Roelofs",coverURL:"https://cdn.intechopen.com/books/images_new/1403.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"43",title:"Advances in Telemedicine",subtitle:"Technologies, Enabling Factors and Scenarios",isOpenForSubmission:!1,hash:"45f56e0955035bdce490c5383a06792f",slug:"advances-in-telemedicine-technologies-enabling-factors-and-scenarios",bookSignature:"Georgi Graschew and Theo A. Roelofs",coverURL:"https://cdn.intechopen.com/books/images_new/43.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"16882",doi:"10.5772/16362",title:"A 2.4GHz Non-Contact Biosensor System for Continuous Monitoring of Vital-Signs",slug:"a-2-4ghz-non-contact-biosensor-system-for-continuous-monitoring-of-vital-signs",totalDownloads:3578,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Donald Lie, Ravi Ichapurapu, Suyash Jain, Jerry Lopez, Ronald Banister, Tam Nguyen and John Griswold",authors:[{id:"24852",title:"Prof.",name:"Donald",middleName:null,surname:"Lie",slug:"donald-lie",fullName:"Donald Lie"},{id:"119104",title:"Dr.",name:"Ravi",middleName:null,surname:"Ichapurapu",slug:"ravi-ichapurapu",fullName:"Ravi Ichapurapu"},{id:"119105",title:"Dr.",name:"Suyash",middleName:null,surname:"Jain",slug:"suyash-jain",fullName:"Suyash Jain"},{id:"119106",title:"Dr.",name:"Jerry",middleName:null,surname:"Lopez",slug:"jerry-lopez",fullName:"Jerry Lopez"},{id:"119107",title:"Dr.",name:"Ronald",middleName:null,surname:"Banister",slug:"ronald-banister",fullName:"Ronald Banister"},{id:"119108",title:"Dr.",name:"Tam",middleName:null,surname:"Nguyen",slug:"tam-nguyen",fullName:"Tam Nguyen"},{id:"119109",title:"Dr.",name:"John",middleName:null,surname:"Griswold",slug:"john-griswold",fullName:"John Griswold"}]},{id:"14328",doi:"10.5772/14352",title:"Telemedicine in Dentistry (Teledentistry)",slug:"telemedicine-in-dentistry-teledentistry-",totalDownloads:4976,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"advances-in-telemedicine-applications-in-various-medical-disciplines-and-geographical-regions",title:"Advances in Telemedicine",fullTitle:"Advances in Telemedicine: Applications in Various Medical Disciplines and Geographical Regions"},signatures:"Branko Mihailovic, Milan Miladinovic and Biljana Vujicic",authors:[{id:"17551",title:"Dr.",name:"Milan",middleName:null,surname:"Miladinovic",slug:"milan-miladinovic",fullName:"Milan Miladinovic"},{id:"17555",title:"Dr.",name:"Branko",middleName:null,surname:"Mihailovic",slug:"branko-mihailovic",fullName:"Branko Mihailovic"},{id:"17556",title:"Dr.",name:"Biljana",middleName:null,surname:"Vujicic",slug:"biljana-vujicic",fullName:"Biljana Vujicic"}]},{id:"14275",doi:"10.5772/14399",title:"Lossless Compression Techniques for Medical Images In Telemedicine",slug:"lossless-compression-techniques-for-medical-images-in-telemedicine",totalDownloads:4200,totalCrossrefCites:6,totalDimensionsCites:8,book:{slug:"advances-in-telemedicine-technologies-enabling-factors-and-scenarios",title:"Advances in Telemedicine",fullTitle:"Advances in Telemedicine: Technologies, Enabling Factors and Scenarios"},signatures:"J.Janet, Divya Mohandass and S.Meenalosini",authors:[{id:"16643",title:"Dr.",name:"Jude",middleName:null,surname:"Janet",slug:"jude-janet",fullName:"Jude Janet"},{id:"18855",title:"Prof.",name:"Divya",middleName:null,surname:"Mohandass",slug:"divya-mohandass",fullName:"Divya Mohandass"},{id:"27851",title:"Dr.",name:"Meenalosini",middleName:null,surname:"Vimal Cruz",slug:"meenalosini-vimal-cruz",fullName:"Meenalosini Vimal Cruz"}]}],mostDownloadedChaptersLast30Days:[{id:"16881",title:"Clinical Decision Support Systems",slug:"clinical-decision-support-systems",totalDownloads:8596,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Dejan Dinevski, Uroš Bele, Tomislav Šarenac, Uroš Rajkovič and Olga Šušteršic",authors:[{id:"15129",title:"Prof.",name:"Dejan",middleName:null,surname:"Dinevski",slug:"dejan-dinevski",fullName:"Dejan Dinevski"},{id:"63337",title:"Dr.",name:"Uroš",middleName:null,surname:"Bele",slug:"uros-bele",fullName:"Uroš Bele"},{id:"63338",title:"MSc",name:"Tomislav",middleName:null,surname:"Sarenac",slug:"tomislav-sarenac",fullName:"Tomislav Sarenac"},{id:"63339",title:"Dr.",name:"Uroš",middleName:null,surname:"Rajkovi?",slug:"uros-rajkovi",fullName:"Uroš Rajkovi?"},{id:"63340",title:"Dr.",name:"Olga",middleName:null,surname:"Šušterši?",slug:"olga-sustersi",fullName:"Olga Šušterši?"}]},{id:"64650",title:"Barriers to Development of Telemedicine in Developing Countries",slug:"barriers-to-development-of-telemedicine-in-developing-countries",totalDownloads:640,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telehealth",title:"Telehealth",fullTitle:"Telehealth"},signatures:"Surya Bali",authors:null},{id:"65236",title:"An Analysis of Telemedicine Experiences and Services in Chile",slug:"an-analysis-of-telemedicine-experiences-and-services-in-chile",totalDownloads:357,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telehealth",title:"Telehealth",fullTitle:"Telehealth"},signatures:"Antonio Rienzo Renato",authors:null},{id:"38846",title:"Advances and Perspectives in the Field of Auscultation, with a Special Focus on the Contribution of New Intelligent Communicating Stethoscope Systems in Clinical Practice, in Teaching and Telemedicine",slug:"advances-and-perspectives-in-the-field-of-auscultation-with-a-special-focus-on-the-contribution-of-n",totalDownloads:3041,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"ehealth-and-remote-monitoring",title:"eHealth and Remote Monitoring",fullTitle:"eHealth and Remote Monitoring"},signatures:"Emmanuel Andrès",authors:[{id:"143493",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Andrès",slug:"emmanuel-andres",fullName:"Emmanuel Andrès"}]},{id:"16877",title:"Design Criteria for Large eHealth Infrastructure System",slug:"design-criteria-for-large-ehealth-infrastructure-system",totalDownloads:1700,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Thomas Grechenig, Barbara Avana, René Baranyi, Wolfgang Schramm and Anna Wujcow",authors:[{id:"33565",title:"Dr.",name:"Barbara",middleName:null,surname:"Avana",slug:"barbara-avana",fullName:"Barbara Avana"},{id:"33570",title:"Dr.",name:"Thomas",middleName:null,surname:"Grechenig",slug:"thomas-grechenig",fullName:"Thomas Grechenig"},{id:"97111",title:"M.Sc.",name:"René",middleName:null,surname:"Baranyi",slug:"rene-baranyi",fullName:"René Baranyi"},{id:"97112",title:"Dr.",name:"Anna",middleName:null,surname:"Wujcow",slug:"anna-wujcow",fullName:"Anna Wujcow"},{id:"97113",title:"Dr.",name:"Wolfgang",middleName:null,surname:"Schramm",slug:"wolfgang-schramm",fullName:"Wolfgang Schramm"}]},{id:"16888",title:"Telemedicine For Managing Patients on Oral Anticoagulant Therapy",slug:"telemedicine-for-managing-patients-on-oral-anticoagulant-therapy",totalDownloads:2236,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Sophie Testa, Oriana Paoletti, Anke Zimmermann, Laura Bassi and Emilia Cancellieri",authors:[{id:"33927",title:"Dr.",name:"Sophie",middleName:null,surname:"Testa",slug:"sophie-testa",fullName:"Sophie Testa"},{id:"43780",title:"Dr.",name:"Oriana",middleName:null,surname:"Paoletti",slug:"oriana-paoletti",fullName:"Oriana Paoletti"},{id:"43781",title:"Dr.",name:"Emilia",middleName:null,surname:"Cancellieri",slug:"emilia-cancellieri",fullName:"Emilia Cancellieri"},{id:"43782",title:"Dr.",name:"Anke",middleName:null,surname:"Zimmermann",slug:"anke-zimmermann",fullName:"Anke Zimmermann"},{id:"119022",title:"Dr.",name:"Laura",middleName:null,surname:"Bassi",slug:"laura-bassi",fullName:"Laura Bassi"}]},{id:"45502",title:"Update on the Most Rural American Telemedicine Program — The Present and Future",slug:"update-on-the-most-rural-american-telemedicine-program-the-present-and-future",totalDownloads:1683,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telemedicine",title:"Telemedicine",fullTitle:"Telemedicine"},signatures:"Edward T. Zawada Jr, Dana Buus, Don Kosiak, Pat Herr and Michael\nHeisler",authors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}]},{id:"63541",title:"The Advent of Application Specific Integrated Circuits (ASIC)-MEMS within the Medical System",slug:"the-advent-of-application-specific-integrated-circuits-asic-mems-within-the-medical-system",totalDownloads:325,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telehealth",title:"Telehealth",fullTitle:"Telehealth"},signatures:"Jian-Chiun Liou",authors:[{id:"222901",title:"Prof.",name:"Jian-Chiun",middleName:null,surname:"Liou",slug:"jian-chiun-liou",fullName:"Jian-Chiun Liou"}]},{id:"14328",title:"Telemedicine in Dentistry (Teledentistry)",slug:"telemedicine-in-dentistry-teledentistry-",totalDownloads:4976,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"advances-in-telemedicine-applications-in-various-medical-disciplines-and-geographical-regions",title:"Advances in Telemedicine",fullTitle:"Advances in Telemedicine: Applications in Various Medical Disciplines and Geographical Regions"},signatures:"Branko Mihailovic, Milan Miladinovic and Biljana Vujicic",authors:[{id:"17551",title:"Dr.",name:"Milan",middleName:null,surname:"Miladinovic",slug:"milan-miladinovic",fullName:"Milan Miladinovic"},{id:"17555",title:"Dr.",name:"Branko",middleName:null,surname:"Mihailovic",slug:"branko-mihailovic",fullName:"Branko Mihailovic"},{id:"17556",title:"Dr.",name:"Biljana",middleName:null,surname:"Vujicic",slug:"biljana-vujicic",fullName:"Biljana Vujicic"}]},{id:"45211",title:"The Telemedicine Service Maturity Model: A Framework for the Measurement and Improvement of Telemedicine Services",slug:"the-telemedicine-service-maturity-model-a-framework-for-the-measurement-and-improvement-of-telemedic",totalDownloads:1924,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telemedicine",title:"Telemedicine",fullTitle:"Telemedicine"},signatures:"Liezl van Dyk and Cornelius S.L. Schutte",authors:[{id:"27481",title:"Ms",name:"Liezl",middleName:null,surname:"Van Dyk",slug:"liezl-van-dyk",fullName:"Liezl Van Dyk"},{id:"166270",title:"Prof.",name:"Corne",middleName:null,surname:"Schutte",slug:"corne-schutte",fullName:"Corne Schutte"}]}],onlineFirstChaptersFilter:{topicSlug:"telemedicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"onlineFirst.detail",path:"/online-first/intrinsic-carrier-parameters-and-optical-carrier-injection-method-in-high-purity-diamonds",hash:"",query:{},params:{chapter:"intrinsic-carrier-parameters-and-optical-carrier-injection-method-in-high-purity-diamonds"},fullPath:"/online-first/intrinsic-carrier-parameters-and-optical-carrier-injection-method-in-high-purity-diamonds",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()