Location of Mach stem.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"155",leadTitle:null,fullTitle:"Sensor Fusion - Foundation and Applications",title:"Sensor Fusion",subtitle:"Foundation and Applications",reviewType:"peer-reviewed",abstract:"Sensor Fusion - Foundation and Applications comprehensively covers the foundation and applications of sensor fusion. This book provides some novel ideas, theories, and solutions related to the research areas in the field of sensor fusion. The book explores some of the latest practices and research works in the area of sensor fusion. The book contains chapters with different methods of sensor fusion for different engineering as well as non-engineering applications. Advanced applications of sensor fusion in the areas of mobile robots, automatic vehicles, airborne threats, agriculture, medical field and intrusion detection are covered in this book. Sufficient evidences and analyses have been provided in the chapter to show the effectiveness of sensor fusion in various applications. This book would serve as an invaluable reference for professionals involved in various applications of sensor fusion.",isbn:null,printIsbn:"978-953-307-446-7",pdfIsbn:"978-953-51-5533-1",doi:"10.5772/680",price:119,priceEur:129,priceUsd:155,slug:"sensor-fusion-foundation-and-applications",numberOfPages:240,isOpenForSubmission:!1,isInWos:1,hash:"4e394b8458dc49549ccf603ef6e376b8",bookSignature:"Ciza Thomas",publishedDate:"June 13th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/155.jpg",numberOfDownloads:26478,numberOfWosCitations:45,numberOfCrossrefCitations:31,numberOfDimensionsCitations:73,hasAltmetrics:1,numberOfTotalCitations:149,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 7th 2010",dateEndSecondStepPublish:"November 4th 2010",dateEndThirdStepPublish:"February 9th 2011",dateEndFourthStepPublish:"April 10th 2011",dateEndFifthStepPublish:"June 24th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",biography:"Dr. Ciza Thomas is currently working as the Senior Joint Director at the Directorate of Technical Education, Government of Kerala, India. Her area of expertise is network security with research interest in the fields of information security, data mining, sensor fusion, pattern recognition, information retrieval, digital signal processing, and image processing. She has published in more than 60 international journals and international conference proceedings, as well as 50 national conference publications. She has edited six books and published fifteen book chapters. She is a reviewer of more than ten reputed international journals including IEEE transactions on Signal Processing, IEEE transactions on Neural Networks, International Journal of Network Security, International Journal of Network Management, and IEEE-John Wiley International Journal on Security and Communications Network. She is a recipient of an achievement award in 2010 and the e-learning IT award in 2014 from Government of Kerala.",institutionString:"Government of Kerala",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"548",title:"Wireless Sensor Network",slug:"wireless-sensor-network"}],chapters:[{id:"15909",title:"A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-Based Care",doi:"10.5772/17684",slug:"a-dynamic-context-reasoning-based-on-evidential-fusion-networks-in-home-based-care",totalDownloads:1451,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Hyun Lee, Jae Sung Choi and Ramez Elmasri",downloadPdfUrl:"/chapter/pdf-download/15909",previewPdfUrl:"/chapter/pdf-preview/15909",authors:[{id:"29125",title:"Dr",name:"Hyun",surname:"Lee",slug:"hyun-lee",fullName:"Hyun Lee"},{id:"35117",title:"Dr.",name:"Jae Sung",surname:"Choi",slug:"jae-sung-choi",fullName:"Jae Sung Choi"},{id:"35118",title:"Dr.",name:"Ramez",surname:"Elmasri",slug:"ramez-elmasri",fullName:"Ramez Elmasri"}],corrections:null},{id:"15910",title:"Sensor Fusion for Precision Agriculture",doi:"10.5772/19983",slug:"sensor-fusion-for-precision-agriculture",totalDownloads:4310,totalCrossrefCites:2,totalDimensionsCites:21,signatures:"Viacheslav I. Adamchuk, Raphael A. Viscarra Rossel, Kenneth A. Sudduth and Peter Schulze Lammers",downloadPdfUrl:"/chapter/pdf-download/15910",previewPdfUrl:"/chapter/pdf-preview/15910",authors:[{id:"37024",title:"Dr.",name:"Viacheslav",surname:"Adamchuk",slug:"viacheslav-adamchuk",fullName:"Viacheslav Adamchuk"},{id:"37029",title:"Dr.",name:"Raphael",surname:"Viscarra Rossel",slug:"raphael-viscarra-rossel",fullName:"Raphael Viscarra Rossel"}],corrections:null},{id:"15911",title:"Localization and Tracking Using Camera-Based Wireless Sensor Networks",doi:"10.5772/19357",slug:"localization-and-tracking-using-camera-based-wireless-sensor-networks",totalDownloads:2119,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"J.R. Martinez-de Dios, A. Jimenez-Gonzalez and A. Ollero",downloadPdfUrl:"/chapter/pdf-download/15911",previewPdfUrl:"/chapter/pdf-preview/15911",authors:[{id:"34663",title:"Prof.",name:"Ramiro",surname:"Martinez",slug:"ramiro-martinez",fullName:"Ramiro Martinez"},{id:"36232",title:"MSc",name:"Adrian",surname:"Jimenez-Gonzalez",slug:"adrian-jimenez-gonzalez",fullName:"Adrian Jimenez-Gonzalez"},{id:"36233",title:"Prof.",name:"Anibal",surname:"Ollero",slug:"anibal-ollero",fullName:"Anibal Ollero"}],corrections:null},{id:"14977",title:"Sensor Fusion for Enhancement in Intrusion Detection",doi:"10.5772/21550",slug:"sensor-fusion-for-enhancement-in-intrusion-detection",totalDownloads:1751,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Ciza Thomas and Balakrishnan Narayanaswamy",downloadPdfUrl:"/chapter/pdf-download/14977",previewPdfUrl:"/chapter/pdf-preview/14977",authors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"},{id:"43682",title:"Dr.",name:"Narayanaswamy",surname:"Balakrishnan",slug:"narayanaswamy-balakrishnan",fullName:"Narayanaswamy Balakrishnan"}],corrections:null},{id:"15912",title:"Data Association Techniques for Non-Gaussian Measurements",doi:"10.5772/16730",slug:"data-association-techniques-for-non-gaussian-measurements",totalDownloads:1585,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Stephen C. Stubberud and Kathleen A. Kramer",downloadPdfUrl:"/chapter/pdf-download/15912",previewPdfUrl:"/chapter/pdf-preview/15912",authors:[{id:"20608",title:"Prof.",name:"Kathleen A.",surname:"Kramer",slug:"kathleen-a.-kramer",fullName:"Kathleen A. Kramer"},{id:"22661",title:"Dr.",name:"Stephen C.",surname:"Stubberud",slug:"stephen-c.-stubberud",fullName:"Stephen C. Stubberud"}],corrections:null},{id:"15913",title:"Sensor Fusion Techniques in Navigation Application for Mobile Robot",doi:"10.5772/16444",slug:"sensor-fusion-techniques-in-navigation-application-for-mobile-robot",totalDownloads:3930,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Surachai Panich and Nitin Afzulpurkar",downloadPdfUrl:"/chapter/pdf-download/15913",previewPdfUrl:"/chapter/pdf-preview/15913",authors:[{id:"5704",title:"Dr.",name:"Surachai",surname:"Panich",slug:"surachai-panich",fullName:"Surachai Panich"},{id:"39453",title:"Prof.",name:"Nitin",surname:"Afzulpurkar",slug:"nitin-afzulpurkar",fullName:"Nitin Afzulpurkar"}],corrections:null},{id:"15914",title:"Real-Time Fusion of Visual Images and Laser Data Images for Safe Navigation in Outdoor Environments",doi:"10.5772/16690",slug:"real-time-fusion-of-visual-images-and-laser-data-images-for-safe-navigation-in-outdoor-environments",totalDownloads:2253,totalCrossrefCites:2,totalDimensionsCites:5,signatures:"Maria C. Garcia-Alegre, David Martin, D. Miguel Guinea and Domingo Guinea",downloadPdfUrl:"/chapter/pdf-download/15914",previewPdfUrl:"/chapter/pdf-preview/15914",authors:[{id:"26035",title:"Dr.",name:"Maria C.",surname:"Garcia-Alegre",slug:"maria-c.-garcia-alegre",fullName:"Maria C. Garcia-Alegre"},{id:"44132",title:"Dr.",name:"David",surname:"Martin Gomez",slug:"david-martin-gomez",fullName:"David Martin Gomez"},{id:"45329",title:"Dr.",name:"D. Miguel",surname:"Guinea",slug:"d.-miguel-guinea",fullName:"D. Miguel Guinea"},{id:"45330",title:"Dr.",name:"Domingo",surname:"Guinea",slug:"domingo-guinea",fullName:"Domingo Guinea"}],corrections:null},{id:"15915",title:"Detecting, Tracking, and Identifying Airborne Threats with Netted Sensor Fence",doi:"10.5772/17666",slug:"detecting-tracking-and-identifying-airborne-threats-with-netted-sensor-fence",totalDownloads:3334,totalCrossrefCites:5,totalDimensionsCites:8,signatures:"Weiqun Shi, Gus Arabadjis, Brett Bishop, Peter Hill, Rich Plasse and John Yoder",downloadPdfUrl:"/chapter/pdf-download/15915",previewPdfUrl:"/chapter/pdf-preview/15915",authors:[{id:"29050",title:"Dr.",name:"Weiqun",surname:"Shi",slug:"weiqun-shi",fullName:"Weiqun Shi"}],corrections:null},{id:"15916",title:"Design, Implementation and Evaluation of a Multimodal Sensor System Integrated Into an Airplane Seat",doi:"10.5772/18237",slug:"design-implementation-and-evaluation-of-a-multimodal-sensor-system-integrated-into-an-airplane-seat",totalDownloads:1791,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Bert Arnrich, Cornelia Kappeler-Setz, Johannes Schumm and Gerhard Trooster",downloadPdfUrl:"/chapter/pdf-download/15916",previewPdfUrl:"/chapter/pdf-preview/15916",authors:[{id:"30827",title:"Dr.",name:"Bert",surname:"Arnrich",slug:"bert-arnrich",fullName:"Bert Arnrich"},{id:"36085",title:"MSc.",name:"Cornelia",surname:"Kappeler-Setz",slug:"cornelia-kappeler-setz",fullName:"Cornelia Kappeler-Setz"},{id:"36086",title:"Dr.",name:"Johannes",surname:"Schumm",slug:"johannes-schumm",fullName:"Johannes Schumm"},{id:"36087",title:"Prof.",name:"Gerhard",surname:"Tröster",slug:"gerhard-troster",fullName:"Gerhard Tröster"}],corrections:null},{id:"15917",title:"Sensor Fusion-Based Activity Recognition for Parkinson Patients",doi:"10.5772/16646",slug:"sensor-fusion-based-activity-recognition-for-parkinson-patients",totalDownloads:2249,totalCrossrefCites:7,totalDimensionsCites:13,signatures:"Majid Bahrepour, Nirvana Meratnia, Zahra Taghikhaki, and Paul J. M. Havinga",downloadPdfUrl:"/chapter/pdf-download/15917",previewPdfUrl:"/chapter/pdf-preview/15917",authors:[{id:"25900",title:"Prof.",name:"Majid",surname:"Bahrepour",slug:"majid-bahrepour",fullName:"Majid Bahrepour"},{id:"35368",title:"Dr.",name:"Nirvana",surname:"Meratnia",slug:"nirvana-meratnia",fullName:"Nirvana Meratnia"},{id:"35369",title:"Prof.",name:"Paul",surname:"Havinga",slug:"paul-havinga",fullName:"Paul Havinga"},{id:"67114",title:"MSc.",name:"Zahra",surname:"Taghikhaki",slug:"zahra-taghikhaki",fullName:"Zahra Taghikhaki"}],corrections:null},{id:"14978",title:"A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability",doi:"10.5772/17384",slug:"a-possibilistic-framework-for-sensor-fusion-with-monitoring-of-sensor-reliability",totalDownloads:1714,totalCrossrefCites:5,totalDimensionsCites:9,signatures:"Volker Lohweg, Karl Voth and Stefan Glock",downloadPdfUrl:"/chapter/pdf-download/14978",previewPdfUrl:"/chapter/pdf-preview/14978",authors:[{id:"10388",title:"Prof.",name:"Volker",surname:"Lohweg",slug:"volker-lohweg",fullName:"Volker Lohweg"},{id:"28864",title:"MSc.",name:"Karl",surname:"Voth",slug:"karl-voth",fullName:"Karl Voth"},{id:"32061",title:"Dr.",name:"Stefan",surname:"Glock",slug:"stefan-glock",fullName:"Stefan Glock"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5844",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!1,hash:"922bcfea0d27e7e004542ce3adca6d20",slug:"ontology-in-information-science",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/5844.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6578",title:"Data Mining",subtitle:null,isOpenForSubmission:!1,hash:"4f09e58a93ed74f9d1d5600f6d6e518c",slug:"data-mining",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/6578.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5386",title:"Complex Systems, Sustainability and Innovation",subtitle:null,isOpenForSubmission:!1,hash:"38584277d8d21713ab23b920761f35e4",slug:"complex-systems-sustainability-and-innovation",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/5386.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9234",title:"Computer Security Threats",subtitle:null,isOpenForSubmission:!1,hash:"23d6de178880e547c39ec4e503777dcd",slug:"computer-security-threats",bookSignature:"Ciza Thomas, Paula Fraga-Lamas and Tiago M. Fernández-Caramés",coverURL:"https://cdn.intechopen.com/books/images_new/9234.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"9708",leadTitle:null,title:"Banana Farming",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"48f956276db593f31c6f1b6ccf8b27f7",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9708.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 6th 2019",dateEndSecondStepPublish:"June 27th 2019",dateEndThirdStepPublish:"August 26th 2019",dateEndFourthStepPublish:"November 14th 2019",dateEndFifthStepPublish:"January 13th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67877",title:"Propagation of Shock Waves in Two Rooms Communicating through an Opening",doi:"10.5772/intechopen.87190",slug:"propagation-of-shock-waves-in-two-rooms-communicating-through-an-opening",body:'\n
Nowadays, safety in public, industrial, or military areas is a major concern. In spite of constant improvements in rules and standards, the risks linked to accidental or intentional explosions in industry are still significant. The numerous explosions reported demonstrate the importance of increasing the protection of people and structures in open, semi-confined, and full confined environments. Recent examples are the explosion in 2000 of a firework workshop (Enschede, the Netherlands) [1], in 2013 at the West Fertilizer Company (Texas, USA) [2], in 2015 a harbor warehouse (Tianjin, China) [3], and in 2016 the explosion in a manufacture of basic chemicals, fertilizers and nitrogen compounds, plastics, and synthetic rubber in primary forms (Coatzacoalcos, Mexico) [4]. A long list of terrorist attacks can be added to these industrial accidents. The most recent bombing attacks occurred on 13 May 2018, when a series of bombs exploded in three churches in Surabaya (Indonesia); on 1 July 2018, when a suicide bomber detonated a bomb in Jalalabad (Afghanistan); and
Numerous studies have been carried out in recent years to analyze the behavior of shock waves in the air [5, 6, 7, 8]. While analytical, empirical, and numerical studies have been conducted to predict the overpressure generated by the detonation of a solid or gaseous mixture in air, few studies have been done in closed environments, and most of the tools and models developed in air cannot be used in closed spaces because of the complex phenomenology of a confined detonation. Nevertheless, one can find in the literature several studies on semi-confined [9] or urban [10] configurations. Confined explosions present a serious safety hazard as significant damage to humans and structures is observed, unlike in free-field explosions.
\nRecent studies in a full confined environment are sparse, however, due to several limitations. In numerical studies the modeling of a full confined environment can become extremely costly in terms of computational resources. Researchers have therefore developed 1D/3D hybrid models to achieve a good balance between the accuracy of the results and the time required [11]. Experimentally, it is complex and costly to set up a full-scale experiment to study the propagation of the shock wave inside a building. As a result, studies on confined detonations are made at small scale. Reichenbach et al. [12] pointed out the interest of scaled experiments.
\nThe advantages of small-scale experiments are their good flexibility and low cost. Thanks to the Hopkinson similarity law and the studies by Baker [13], the results recorded at small scale can be extrapolated to full scale if the charges are the same type between the two scales. Ohrt et al. [14] studied the propagation of a shock wave in a 1/12 small-scale model built from the full-scale model. The detonation of pressed TNT and a Composition A5 (98.5% RDX and 1.5% stearic acid) was studied and visualized in the small-scale model. A good correlation was found between the results at small scale and full scale.
\nRam et al. [15] considered a single-story building at a 1:100 scale. Different configurations inside the building were investigated, all with an opening on the front face and inside. The shock wave was produced outside, impacted the front face, and propagated inside. The authors compared the internal geometry to a stiff porous building and depicted the pressure profile by a low-pass filter. They demonstrated that the simulation of full-scale experiments reproduced the scaled-up experiments.
\nThe afterburning consequences on the shock wave reflection in confined spaces have also been investigated. The additional energy released by the secondary mechanism of combustion increases the energy in the whole flow field and increases the pressure. Therefore, the reflections interact with the post-combustion products. A quasi-static pressure is recorded in the case of a pyrotechnic explosive. Experimental and numerical studies have focused on the afterburning effect, for example, the work of Togashi et al. [16] and Milne et al. [17].
\nHazard zones in confined rooms have been identified with a dual approach (experimental and numerical). Massoni et al. [18] investigated a three-level building at small scale and carried out numerical simulations. In this work the shock wave was generated by a shock tube placed in the vicinity of the model. Miura’s team [19, 20] evaluated safety in nuclear fuel cycle facilities. The model comprised three rooms at ground level and two rooms on the second floor. Strong pressures were recorded on the corners and after diffraction around doors and windows. These studies showed that the corners of rooms are a critical zone.
\nAnother relevant area of application for confined explosion studies is tunnels. For example, the experiments carried out by Binggeli et al. [21] and the simulations presented by Rigas et al. [22] and Benselama et al. [11] showed that the velocity and pressure of the blast wave are reinforced in long narrow geometries. The presence of an orthogonal pipe reduces the overpressure and is a good solution to ensure human safety.
\nIn addition to their flexibility, small-scale experiments can reliably predict the behavior of shock waves in a confined area. When the building geometries are complex, it is difficult to study and predict the behavior of the waves. Sauvan et al. [23] conducted an experimental characterization of the reflections coming from the detonation of a gaseous charge inside a cubic model. To obtain the most accurate characterization, the authors started with the free field and built the model wall by wall, making it possible to identify the first four reflected shocks.
\nThe small-scale experiments conducted by Julien et al. [24, 25] on the behavior of shock waves coming from the detonation of a gaseous charge inside a small-scale warehouse led to the creation of predictive laws for the main characteristics of the shock wave. They also showed that critical zones exist in complex confined buildings.
\nAlthough confined explosions have been researched, the effects of the size of the opening between two rooms have not been fully established.
\nThe present work concerns the volume and open area effect on the shock wave propagation inside a single-story building with an inner movable wall. The research is based on a small-scale experiment. The study focuses on the impact of the open area and of the room volume on the shock wave main pressure profiles and maximum overpressure.
\nThis chapter describes the results obtained from these experiments. Pressure distribution is discussed and potential damage is highlighted.
\nThe experimental setup is a small-scale closed one-story building with a movable wall that can divide the building into two rooms: a transmitter room (TR) where the explosion (CE) takes place and a receptor room (RR). The walls are made of medium-density fiberboard (Figure 1). The internal dimensions of the building are length (L) 1.23 m, width (Lw) 0.51 m, and height (h) 0.24 m. All the walls have the same thickness e = 0.04 m. It means that the exterior dimensions are 1.31 m for the length, 0.59 m for the width, and 0.28 m for the height.
\nTest facility.
The dimensions of the movable walls are Lw = 0.51 m and h = 0.24 m. Two types of movable wall were considered: a full wall (WF) and walls with an open area.
\nThe openings are centered on the face. The wall with the smallest opening is denoted WSO, and the dimensions of its opening are 0.128 × 0.06 m, i.e., an area of 0.00768 m2. The wall with the largest opening is denoted WLO, and the opening has an area of 0.0305 m2 (0.254 × 0.12 m). The movable wall can be fixed at different locations inside the building to vary the volumes of the transmitter and receptor rooms.
\nFour configurations were examined (Figure 2). Configuration 1 is without the movable wall, configuration 2 has a movable wall located 0.275 m from the south wall, and configurations 3 and 4 have a movable wall located 0.594 m and 0.909 from the south wall, respectively. In the text, we use the terms configurations 2, 3, and 4 or walls 2, 3, and 4.
\nSchematic experimental configurations with pressure gauges and explosive charge (CE) positioning: (a) configuration 1, (b) configuration 2, (c) configuration 3, and (d) configuration 4.
The explosive charge is a stoichiometric propane oxygen (C3H8 + 5O2) mixture confined in a hemispherical soap bubble with a radius of 0.07 m. The experiments were conducted at ambient temperature and pressure. The density of the gaseous mixture is 1.41 kg m−3, so the mass of explosive charge is 1.0129 × 10−3 kg.
\nThe detonation of the gaseous mixture is generated by an exploding wire fixed between two electrodes linked to a high-voltage supply. The exploding wire is transformed into a plasma and delivers severe conditions to initiate the detonation (all details can be found in [26]). The center of the explosive charge (CE) is fixed (Figure 2) for all the configurations studied. In C1 the distance between the south wall and the center of explosion is 0.459 and 0.771 m from the north wall. The distance between the movable wall and the center of explosion is 0.144 m in C2, 0.135 m in C3, and 0.450 m in C4. The volume of the transmitter room (TR) in C2 is VTR-C2 = 0.1120 m3, in C3 is VTR-C3 = 0.0727 m3, and in C4 is VTR-C4 = 0.1113 m3. So, the volume of receptor room (RR) is VRR-C2 = 0.0337 m3, in C3 is VRR-C3 = 0.0729 m3, and in C4 is VRR-C4 = 0.0344 m3.
\nPressure histories were recorded over a 6 ms period with nine pressure transducers (Kistler 603B) at an acquisition frequency of 1 MHz. Five transducers (L, J, I, G, F) were distributed on the ground and four (O, B, C, D) on the east wall at half height (0.12 m). A layout of the sensor distribution with the different configurations (depending on the position of the movable wall) can be found in Figure 2. A sensor is considered protected when the shock wave cannot hit it directly.
\nThe pressure profile analysis requires knowing the type of reflection produced inside the single-story building. A preliminary study was carried out in order to identify whether there was a transition from regular reflection to Mach reflection and, if so, the height of the Mach stem. This transition between the two types of reflection is defined by a maximum angle βmax of oblique reflection which allows the formation of a Mach stem. For an incident shock at Mach 2.8, the limit angle βmax is 39.23°, and for a more intense incident shock, this angle reaches 39.97° [7].
\nThe transition distance of formation Ri0 is defined by [7]:
\nand the height of the Mach stem hM by:
\nwhere HOB represents the height of burst, i.e., the distance of the explosive charge center to the wall, and Ri is the distance from the wall (Figure 3).
\nScheme of Mach stem formation.
On this basis, the distance Ri0 and Mach stem height were calculated for each configuration by considering \n
Configuration | \nWall reflection (WR) | \nRi0 (m) | \nInterest point | \nhM at interest point (IP) (m) | \nComments | \n
---|---|---|---|---|---|
1 | \nEast | \n0.245 | \nL | \n3 × 10−3\n | \nhM < dWR-IP\n | \n
\n | I | \n2 × 10−3\n | \nhM < dWR-IP\n | \n||
G | \n0.054 | \nhM < dWR-IP\n | \n|||
West | \n0.171 | \nL | \n0.010 | \nhM < dWR-IP\n | \n|
I | \n0.010 | \nhM < dWR-IP\n | \n|||
G | \n0.110 | \nhM < dWR-IP\n | \n|||
F | \n0.160 | \nhM > dWR-IP\n | \n|||
2 | \nEast | \n0.245 | \nI | \n2 × 10−3\n | \nhM < dWR-IP\n | \n
G | \n0.054 | \nhM < dWR-IP\n | \n|||
F | \n0.086 | \nhM < dWR-IP\n | \n|||
West | \n0.171 | \nI | \n0.011 | \nhM < dWR-IP\n | \n|
G | \n0.109 | \nhM < dWR-IP\n | \n|||
F | \n0.162 | \nhM > dWR-IP\n | \n|||
South | \n0.117 | \nEast wall | \n0.024 | \nImpact on wall | \n|
West wall | \n6 × 10−3\n | \nImpact on wall | \n|||
3 | \nEast | \n0.245 | \nL | \n3 × 10−3\n | \nhM < dWR-IP\n | \n
South wall | \n0.016 | \nImpact on wall | \n|||
West | \n0.171 | \nL | \n0.013 | \nhM < dWR-IP\n | \n|
South wall | \n0.041 | \nImpact on wall | \n|||
North | \n0.110 | \nEast wall | \n0.028 | \nImpact on wall | \n|
West wall | \n8 × 10−3\n | \nImpact on wall | \n|||
4 | \nEast | \n0.245 | \nL | \n3 × 10−3\n | \nhM < dWR-IP\n | \n
I | \n2 × 10−3\n | \nhM < dWR-IP\n | \n|||
South wall | \n0.016 | \nImpact on wall | \n|||
North wall | \n0.015 | \nImpact on wall | \n|||
West | \n0.171 | \nL | \n0.013 | \nhM < dWR-IP\n | \n|
I | \n0.011 | \nhM < dWR-IP\n | \n|||
South wall | \n0.041 | \nImpact on wall | \n|||
North wall | \n0.039 | \nImpact on wall | \n
Location of Mach stem.
There can be no Mach reflection on the south and north walls in configuration 1, as the walls are not wide enough to reach a transition of reflection. The transition appears on the east and west walls. On the east wall, the transition is at y = 0.25 m (south-north) from the CE. The height of the Mach stem is <1 cm at y = 0.322 m and reaches 0.05 m for y = yG = 0.639 m. These heights are lower than the distance of the east wall to gauges I and G. However, the study of the reflection on the west wall leads to a transition distance of 0.17 m and a Mach stem height of 0.01 m for y = yI = 0.322 m, 0.1 m for y = yG = 0.639 m, and 0.16 m for y = yF = 0.741 m. This implies that only gauge F is impacted by the Mach reflection.
\nIn most cases, the results of the calculations reported in Table 1 show that the height of the Mach stem does not exceed 0.1 m. Only gauge F can be impacted by the Mach stem in configurations 1 and 2 after reflection on the west wall. Table 1 highlights that if a reflection is produced on a wall with a transition, then the Mach stem can reach a lateral wall. This is the case, for example, in configuration 3 with the reflection of the west wall. The Mach stem arrives on the south wall with a height of 0.04 m and a height of 0.028 on the east wall. This is also the case for configuration 4 if we consider the reflection on the west wall: the Mach stem impacts the south and north walls with a height of 0.04 m.
\nThe pressure profiles recorded in a confined building are complex due to the multiple reflections. In this part, the pressure signals are analyzed by considering the free field and C1 and the presence of the movable wall in C3 without and with an opening.
\nIn free field (Figure 4a), the secondary shock is detached from the incident peak at 0.297 ms with ΔP+ = 0.098 bar. This secondary shock is amplified by the confinement and reaches 0.264 bar. After detonation of the explosive charge, a first shock wave propagates into the surrounding air, and a rarefaction wave propagates toward the center of charge. Once the rarefaction wave decreases the inside pressure, a new shock appears and propagates to the origin and reflects [27]. The effect of confinement in configuration 1 produces small reflection waves and consequently a small overpressure. The overpressure is limited to 0.2 bar with a peak at 0.5 bar.
\nPressure and impulse histories. Gauge J: (a) comparison of free field and C1 and (b) configurations 1 and 3.
The mobile wall P3 creates several reflections (Figure 4b) which are represented by the pressure peaks. Wall 3 is only 0.031 m away, so the second peak arrives immediately after the incident shock. The overpressure is increased to 3.6 bar due to the direct reflection.
\nThe most severe peak appears later at 2 ms and reaches 4.7 bar. This peak decreases and arrives later with the presence of an opening in wall 3. The energy of the incident shock is not confined in the transmitter room but is partially transmitted to the receptor room. The smaller peak at 0.55 ms is stronger with the larger opening. This can be explained by the diffraction of the shock on the corner of the opening in the direction of gauge J. The corner of the larger opening is closer to gauge J than that of the smaller opening.
\nIn the single confinement (C1), gauge L is closer to the south wall (0.124 m). In this configuration, the second peak is the maximum overpressure (Figure 5a) and comes from the south wall with a reflection coefficient on the order of 2. This is verified by applying the classical normal reflection equation [7]:
\nPressure and impulse histories. Gauge L: (a) comparison of free field and C1 and (b) configurations 1 and 3.
where Pr and Pi are the absolute reflected and incident pressure and P0 is the ambient pressure. In this case Pi = ΔPi + P0 = 1.794 bar.
\nAfter that, the reflected shock interacts with the reflected wave from the west wall and the east wall. Strong negative pressures (−0.35 bar) are observed during an expanded time (1–5 ms) and provide an average impulse around 0.3 bar ms which reaches the value 0.44 ms.
\nThe peak at 2.6 ms is not induced by the north wall because it is present in configuration 3 (Figure 5b). Wall 3 leads to new peaks at 2 and 4 ms. They correspond to a decreasing phase for configuration 1. They can emerge from the presence of a small Mach stem on the south wall coming from reflection on the west wall and another small Mach stem on the east wall coming from the north wall (Table 1). The pressure profiles versus the size of opening are very similar with a decrease in the overpressure with the increase in event size. A time offset appears after 3 ms with the presence of wall 3. A negative phase appears at 1.9 ms for the large opening and at 4.8 ms with the two openings. This is due to diffraction at the angles of the vent and consequently the generation of rarefaction waves. These rarefaction waves catch up the reflected waves and decrease them, as observed by Rose [28]. This phenomenon increases the impulse with the opening.
\nA strong overpressure is recorded at the same time (1.09 ms) and with an amplitude similar to the pressure profile from gauge L (Figure 6a). The overpressure is 1.595 bar for gauge I and 1.578 bar for gauge L. The peak cannot be explained by a unique reflection on the nearest wall (east wall) but by the cumulative effect of the reflected waves from the west and east walls. The reflection by the ceiling can be found at 1.25 ms.
\nPressure and impulse histories. Gauge I: (a) comparison of free field and C1 and (b) configurations 1 and 3.
After a negative phase, an increase in pressure up to 1.2 bar at 2.6 ms is observed and comparable to the peak recorded on gauge L. Three wave trains can be distinguished, corresponding to three time ranges: (1) 1.38–1.77 ms, (2) 3.5–4.12 ms, and (3) 4.8–5.56 ms.
\nWall 3 (Figure 6b) mitigates the level of overpressure with a delay that increases when the size of the opening decreases. The larger opening decreases the overpressure at 2 ms from 4.7 bar to 2.54 bar (ratio of 1.85) with a time delay of 0.055 ms. Of course, the full wall 3 totally obstructs the propagation of the shock wave in the receptor room. The impulses are comparable in terms of evolution and magnitude between configuration 1 and configuration 3 with the larger opening.
\nGauge G is located near the north wall. Figure 7a shows several peaks with an amplitude higher than 0.3 bar in the range of 6 ms. The ratio of the maximum overpressure between the first reflected wave and the incident wave is on the order of 2. However, on gauge G, the second peak is not the maximum overpressure reached. The maximum appears at 3.9 ms and is equal to 0.787 bar.
\nPressure and impulse histories. Gauge G: (a) comparison of free field and C1 and (b) configurations 1 and 3.
The negative phase is lower than that observed on gauge I. The wave train identified on gauge I can be recognized on gauge G. The wave train is more extended in time and amplified compared to the first reflection and the peak at 2.6 ms on gauge I.
\nAs expected, the greater the obstruction by wall 3, the later the wave arrives in the receptor room and the more the overpressure decreases (Figure 7b). The negative phases resulting in configuration 1 disappear with the presence of wall 3 and correspond to a positive phase. Nevertheless, negative phases are still observed in the case of wall 3 with the smaller opening. The impulses increase linearly and are higher on this gauge than on gauge I: 0.4–0.5 bar ms against 0.35 bar ms for gauge I.
\nGauge F is the closest gauge to the north wall. A wave train arrives almost simultaneously with the incident shock wave (Figure 8a).
\nPressure and impulse histories. Gauge F: (a) comparison of free field and C1 and (b) configurations 1 and 3.
The three wave trains identified on gauges I and G are still present on gauge F. On gauge F, there is an amplification of the overpressure during the first wave train (1.54–2.6 ms), whereas the last one is mitigated compared to gauge G. This amplification can be explained by the presence of a Mach reflection identified previously (Table 1). The aggregation of the waves represents the interaction of the reflected waves coming from reflection on the four walls and the ceiling.
\nWith wall 3 (Figure 8b), there is no negative phase. All the overpressures are strongly mitigated with the reduction in the opening size and totally mitigated with the full wall 3. However, a global view of the pressure profile shows that the same peaks can be identified without or with wall 3 with opening. This means that the reflected waves are produced in the second part of the building, i.e., in the receptor part. The impulses obtained on gauge F are similar to those recorded on gauge G in terms of evolution and magnitude.
\nGauge B is directly impacted by the explosion (Figure 9a). This gauge undergoes the most severe overpressure (2.4 bar) but the lowest impulse compared to the other gauges. Negative phases recorded on gauge B correspond to positive phases on gauge O (Figure 9b) and vice versa. The time delay of arrival on gauge O is not enough to explain the alternating phases.
\nPressure and impulse histories. Configurations 1 and 3: (a) gauge B; (b) gauge O; (c) gauge C and (d) gauge D.
The first two peaks until 1.3 ms observed on gauges C (Figure 9c) and O are superimposed. This is due to the almost identical distances of gauges O and C from the center of the explosive charge (0.489 and 0.456 m, respectively). Strong overpressure appears (0.9 bar, 1.5 ms) on gauge O due to the proximity of the south wall. On gauge C, a wave train with an overpressure above 0.3 bar is maintained between 2.8 and 3.7 ms, leading to a higher impulse level.
\nGauge D receives the first wave later (1.4 ms), and the maximum of overpressure (1.2 bar) is reached at 3.5 ms (Figure 9d).
\nA similar evolution of pressure profiles is obtained on gauges I (Figure 6b) and C (Figure 9c) even if the waves arrive early. The same behavior is noted between gauges G and D (Figure 7b and d).
\nWall 3 has little effect on the pressure profile of gauge O, except for a new peak with an overpressure of 0.37 bar at 2.95 ms. The overpressure decreases as the size of the opening increases. On gauges C and D, the overpressure increases with the size of the opening of the movable wall in configuration 3.
\nIn this section, the analysis concerns the effect of the volume in the transmitter room, i.e., the position of the movable wall inside the building. Here, we focus on gauges J and F and configurations with a full wall and with the larger opening of the wall.
\nIn each configuration, gauge J is in the transmitter zone (Figure 2). Unfortunately, it is only possible to check the incident overpressure of the shock wave in configuration 4 due to a thermal drift (Figure 10a). However, the pressure profiles obtained in configurations 1 and 2 with the full wall are similar and different from configuration 3 examined in the previous section.
\nPressure histories. Gauge J, configurations 1–4: (a) with full wall and (b) with large opening for C2, C3, and C4.
The presence of an opening in the mobile wall (Figure 10b) does not affect the response of gauge J in configurations 1, 2, and 4.
\nGauge F is located near the north wall. So, this gauge is totally protected in configurations 3 and 4 with a full movable wall.
\nThe effect of the location of the movable wall is only perceptible above 2.2 ms. The wall deletes the negative phase existing before 3 ms in configuration 1 (Figure 11a). So, the overpressure is high in configuration 2. However, a series of three negative phases is recorded between 3.5 and 5.2 ms.
\nPressure histories. Gauge F configurations 1–4: (a) with full wall and (b) with large opening for C2, C3, and C4.
In the case of configurations with an opening in the mobile wall (Figure 11b), gauge F is not protected. The opening in configuration 2 mitigates all the pressure by filtering the peaks at 3.3 ms and 3.94 ms. In configurations 3 and 4, the negative phase is almost nonexistent. The more the volume of the receptor zone decreases, the more the overpressure signals are absorbed, falling to below 0.3 bar in configuration 4.
\nHere we analyze the global pressure field and its effects inside the building. The data are expressed as a function of the scaled distance Z (\n
For confined geometries, the shortest path leading from the charge to the gauge position can be predicted by studying the reflections and diffractions encountered by the shock wave to reach the studied interest point (Figure 12).
\nExample of shorter path through the opening.
Using this path, as illustrated in Figure 12, a set of confined scaled distances Zconf is calculated by the following methodology. The shortest path gives a new set of radial distances between the center of the explosion and the sensor (Rconf). The distance Rconf is correlated with the cubic root of the mass of gaseous mixture (M). Hence, the confined scaled distance is calculated by \n
To compare the overpressure measured in a confined environment with the corresponding one in free field at the same distance, the scaled distance Zconf is used in Eq. (4).
\nAt ground level, for all the configurations with no opening (Figure 13a), the overpressure is always higher than the overpressure in free field (without confinement). Examination of the case with no opening means that the transmitter room is of course the only room studied. No amplification is obtained on gauge J in configurations 1, 2, and 4. The effect of the mobile wall close to gauge J in configuration 3 leads to a stronger overpressure. Configuration 2 leads to a ratio of 4 at position F, which is higher than the corresponding ratio in configuration 1. For gauges I and L, the ratio varies on average between 1.3 and 2.0.
\nRatio of the maximum overpressure at ground level to the overpressure in free field versus the scaled distance in confined room. Pressure histories: (a) with full wall; (b) with small opening for C2, C3, and C4; and (c) with large opening for C2, C3, and C4.
The presence of an opening in the mobile wall means that two rooms need to be considered: a transmitter room and a receptor room (Figure 13).
\nIn the receptor room, the small opening efficiently decreases the overpressure. A ratio of ΔP/ΔPFF below unity is reached on gauges I and L for configurations 2 and 3 and near 1 on gauge G for configuration 3. For configuration C4, the maximum overpressure is higher than the corresponding free field. Gauge G is directly exposed to the propagation of the shock wave, whereas gauge F is located at the limit of direct view. Hence, the overpressure on gauge G is higher than for gauge F. The mitigation decreases with the opening size. So, for gauge L the ratio varies from 0.55 to 0.7 for the small and large opening. The other positions in the receptor room show an overpressure higher than in free field, particularly on gauge G: the ratio on gauge G is 1.16 in C3 and 3.7 in C4.
\nIn the transmitter room and configuration 2, the overpressure decreases on gauge F with the increase in the opening size. The large opening reduces the maximum overpressure on gauge G and the overpressure remains unchanged with the small opening compared to the same configuration with the full wall. The larger opening generates an increase in the overpressure on gauge L in configurations 4 and 3 and on gauge I in configuration 2.
\nThe overpressures were measured on the east wall with gauges located at half height of the wall. As expected, the overpressures are higher on the wall than on the ground. With the full wall (Figure 14a), gauge D is in the unprotected zone for configurations 1 and 2.
\nRatio of the maximum overpressure on the walls to the overpressure in free field versus the scaled distance in confined room. Pressure histories: (a) with full wall; (b) with small opening for C2, C3, and C4; and (c) with large opening for C2, C3, and C4.
The ratio ΔP/ΔPFF is in the range 2 and 3 for all the other gauges and configurations. This level is higher than the overpressure level recorded on the ground for the same configurations and for a reduced distance \n
For gauges C and O, the ratio is lower than unity, which is consistent with the measurement recorded on the ground for the same configurations with, respectively, gauges I and L. The large opening (Figure 14c) does not mitigate the overpressure lower than in the free field, but it decreases the overpressure at location D with respect to configuration 1. Consequently, on the wall, the overpressure ratios are in the same order as on the ground. The large opening is efficient and limits the ratio to 3 with respect to the free field. Gauge D presents a dangerous location for configuration 1 as it is obtained with gauge F on the ground.
\nAs defined in the French pyrotechnic legislation and the ministerial order No. DEVP0753277A on 20 April 2007 and DEVP0540371A on 29 September 2005 and the applicable version on 6 May 2019 [29], all explosives may result in five effect zones classified according to the damage caused to persons and property (Table 2).
\nZone designation | \nOverpressure (bar) | \nHuman casualties | \nProperty damage | \n
---|---|---|---|
Z1 | \n\n\n | \nExtreme (death 50%) | \nExtreme | \n
Z2 | \n\n\n | \nVery serious | \nHigh domino effect | \n
Z3 | \n\n\n | \nSerious | \nSerious | \n
Z4 | \n\n\n | \nSignificant | \nLight | \n
Z5 | \n\n\n | \nIndirect injuries by breaking glass | \nDestruction of window | \n
Effect zones for overpressure [29].
\nTable 3 gives all the maximum overpressures obtained for all configurations and all gauges.
\nΔPmax (bar) | \nC1 | \nC2 | \nC2-WSO | \nC2-WLO | \nC3 | \nC3-WSO | \nC3-WLO | \nC4 | \nC4-WSO | \nC4-WLO | \n
---|---|---|---|---|---|---|---|---|---|---|
Gauge L | \n1.6 | \n/ | \n0.3 r | \n0.5 r | \n1.4 | \n1.5 t | \n1.6 t | \n1.5 | \n1.5 t | \n1.9 t | \n
Gauge J | \n3.5 | \n3.5 | \n3.3 t | \n3.4 t | \n4.7 | \n3.8 t | \n2.5 t | \n3.5 | \n3.5 t | \n3.3 t | \n
Gauge I | \n1.6 | \n1.1 | \n1.3 t | \n1.6 t | \n/ | \n0.4 r | \n0.8 r | \n1.4 | \n1.3 t | \n1.5 t | \n
Gauge G | \n0.8 | \n0.8 | \n0.8 t | \n0.7 t | \n/ | \n0.2 r | \n0.3 r | \n/ | \n0.4 r | \n1 r | \n
Gauge F | \n0.7 | \n0.8 | \n0.8 t | \n0.8 t | \n/ | \n0.3 r | \n0.5 r | \n/ | \n0.2 r | \n0.3 r | \n
Gauge O | \n1.1 | \n/ | \n0.4 r | \n0.6 r | \n1.2 | \n1.2 t | \n1.1 t | \n1.1 | \n1.1 t | \n1.1 t | \n
Gauge B | \n2.4 | \n2.3 | \n2.5 t | \n2.3 t | \n2.4 | \n2.4 t | \n2.0 t | \n2.4 | \n2.4 t | \n2.4 t | \n
Gauge C | \n1.1 | \n1.1 | \n1.1 t | \n1.1 t | \n/ | \n0.4 r | \n0.6 r | \n1.1 | \n1.1 t | \n1.1 t | \n
Gauge D | \n1.2 | \n0.8 | \n0.9 t | \n0.7 t | \n/ | \n0.4 r | \n0.5 r | \n/ | \n0.4 r | \n0.4 r | \n
Maximum overpressure in bar for all configurations.
Notations: r, receptor zone; t, transmitter zone; /, isolated zone; in bold, ΔPmax < 0.43 bar.
The table clearly highlights that the pressure field is mainly higher than 0.43 bar, which means that damage zone Z1 is dominant. Cases with ΔPmax < 0.43 bar are indicated in green and correspond to the receptor zone with small opening in the mobile wall except for three cases in configuration 3 (gauge G) and configuration 4 (gauges F and D). Outside the zones isolated by a full movable wall, the maximum overpressure is never below 0.2 bar. This means that in these domains the damage zone is classified in Z2.
\nThe investigation proposed here can be applied to a TNT charge. The comparison of the pressure effect between the gaseous mixture (C3H8 + 5O2) and the TNT charge is shown in Figure 15. The evolution for the TNT charge was extracted from the Unified Facilities Criteria [30]. In Figure 15, the incident experimental overpressure at ground level (gauges L, J, I, and G) is reported.
\nComparison of overpressure versus scaled distance for TNT and gaseous charge.
The comparison between the two explosive charges is expressed by the TNT equivalency, as detailed in [26]. This pressure-based concept is only considered for the object of this investigation. The equivalent mass of an explosive pressure is given by the mass ratio of TNT (MTNT) to the considered explosive (M) that produces the same peak overpressure at the same radial distance of each load, hence:
\nwhere Z is the scaled distance.
\nA TNT mass in the range of 0.49–0.96 g is deduced by applying Eq. (5).
\nThe comparison of reflected overpressure was performed on the basis of abacus reporting in UFC-3-340-02 [30] and converted here into SI units (Figure 16).
\nReflection coefficient angle of incidence and incident overpressure Pso (extracted from [30]).
For each gauge on the wall, the incident overpressure ΔPi corresponding to the scaled radial distance is calculated from Eq. (4).
\nThe reflection coefficient is interpolated on the TNT abacus, and the reflected overpressure is deduced from \n
Gauge | \nZ (m kg1/3) | \nΔPi calculated (bar) | \nCr abacus | \nΔPr (bar) | \nΔPr exp. (bar) | \nDeviation (%) | \n
---|---|---|---|---|---|---|
O | \n4.869 | \n0.435 | \n2.28 | \n0.991 | \n1.106 | \n10.5 | \n
B | \n3.217 | \n0.866 | \n2.60 | \n2.249 | \n2.415 | \n6.9 | \n
C | \n4.542 | \n0.487 | \n2.32 | \n1.131 | \n1.099 | \n2.9 | \n
D | \n7.130 | \n0.238 | \n2.15 | \n0.511 | \n0.523 | \n2.4 | \n
Comparison of reflected overpressures deduced from TNT abacus and measured.
The results presented here can be extrapolated by applying the Hopkinson law [31]. At scale 1, a shock wave results from the detonation of a mass of explosive M and impacts a point at a distance R from the center of the explosive charge. The shock wave arrives at a time Ta and is characterized by an overpressure ΔP+, a positive and a negative impulse I+ and I−. The test is reproduced at scale k. Considering a mass of explosive kM, at a distance kR, the pressure profile presents the same overpressure ΔP, and the arrival time is multiplied by the scale factor k and hence the impulse kI+ and kI− too. Consequently, with this similitude law, the radial distance does not change with the scale:
\nThe geometry of the target is also adapted by the scale factor k.
\nAn experimental study of a pressure blast wave in a confined room facility was performed. The experiments were conducted at small scale with a gaseous charge. The facility simulated a single-story building with two rooms. The wall separating the two rooms was full or with an opening area. The effect of the location of this wall and the size of the opening were investigated. The pressure profile and the maximum overpressure were analyzed.
\nThe pressure profiles are very complex to analyze. As expected, the overpressure increases with the confinement, and the protective effect of the wall decreases with the increasing size of the opening area. The most dangerous locations in terms of overpressure are at gauges J (ground level) and B (east wall) for all configurations due to their proximity to the explosive charge. In contrast, the least exposed zone corresponds to gauges G and F, which are the farthest from the charge but near a corner (for F) and near a wall (north) for G. Hence, the damage effects are severe since the maximum overpressure is never lower than 0.2 bar. The impulses were also examined, and values of 0.9 bar ms can be reached. The range of impulse level for the whole set of gauges and configurations is 0.3–0.6 bar ms. Severe damage results for high pressure and impulse.
\nAlthough this study is limited to a small scale and gaseous detonation charge, it is shown how the results can be applied at large scale and for a TNT charge. Numerical simulations would be interesting to complete this work.
\nThe authors gratefully acknowledge the financial support of the Direction Générale de l’Armement Techniques Navales (DGATN) under the project 2016-058852 TN/SDT/PFN.
\ncenter of explosion (of explosive charge)
\nconfiguration i (1, 2, 3 or 4)
\nreflection coefficient
\nTNT equivalency in terms of pressure
\nheight
\nheight of Mach stem
\nheight of burst
\nscale factor
\nlength
\nwidth
\nmass of the gaseous mixture
\nambient pressure
\nabsolute reflected pressure
\nradial distance
\nconfined radial distance
\ndistance from the wall
\ntransition distance of formation
\nreceptor room
\ntransmitter room
\nvolume of receptor room in configuration i
\nvolume of transmitter room in configuration i
\nfull wall
\nwall with largest opening
\nwall with smallest opening
\nscaled distance
\nconfined scaled distance
\nzone designation
\nmaximum angle of oblique reflection
\npositive overpressure
\npositive overpressure in free field
\nincident overpressure
\nmaximum overpressure
\nPars plana vitrectomy is a surgical technique that allows a successful treatment of many diseases of the posterior segment of the eye, such as retinal detachment, proliferative diabetic retinopathy, vitreous hemorrhage, epiretinal membrane, or macular hole, among others. The increase in vitreoretinal surgery procedures has led to a predictable and consequent increase in cataract surgery in these eyes. Therefore, the ophthalmologist must be aware of the special characteristics of this type of patient and the impact of a vitrectomized eye on cataract surgery.
Cataract formation or progression is one of the most frequent complications we can find after vitreoretinal surgery. According to several studies, up to 65–80% of the eyes develop a cataract in the 24 months following vitrectomy. [1, 2, 3, 4, 5, 6]
Although posterior subcapsular and cortical cataracts can be formed after surgery especially in young patients, nuclear cataracts are much more frequent. Transient subcapsular opacification in the early postoperative period is not unusual. The time interval between vitrectomy and phacoemulsification can vary between 9 and 29 months. [1, 2, 3, 7, 8, 9, 10, 11, 12]
Even though the exact etiology of cataracts formed after vitrectomy is not known, there are several elements that seem to have a role in it as predisposing or precipitating factors:
Age: patients over 50 years of age show a significant increase in cataract incidence after retinal surgery when compared to younger ones. They usually develop a nuclear sclerosis, whereas posterior subcapsular opacification is more usual at earlier ages. Whenever there is a previous cataract, vitrectomy favors its progression. [1, 2, 8, 13, 14, 15]
Composition of fluid infusion into the vitreous cavity: the high concentration of 150 mmHg of oxygen in the irrigating solutions used during vitrectomy, much higher than the 17 mmHg of the anterior vitreous or the 30 mmHg of the aqueous, may contribute to the oxidation of the proteins of the lens, thus accelerating the formation of cataracts. However, it remains to be demonstrated that this exposure to high levels of oxygen is maintained in the postoperative period. [2, 15, 16, 17]
Diabetes: there seems to be a lower rate of cataract progression in vitrectomized diabetics (especially in cases of ischemic retinopathy) compared to patients without diabetes, given that the oxygen level in their vitreous is lower (Figure 1). [18, 19]
Direct surgical damage: iatrogenic cataracts can be generated by direct trauma to the posterior lens capsule from the instruments used during pars plana vitrectomy, causing its rupture and producing a very rapid lens opacification. Trauma is more likely to be suffered in long difficult surgeries, such as retinal detachment with vitreoretinal proliferation. If a cataract is formed in the four months following retinal surgery, traumatic etiology should be suspected. [1, 20]
Light toxicity: intense exposure to surgical microscope light or the fiber optic probe can be a factor that facilitates the oxidative damage of lens proteins. However, light sources currently incorporate Xenon light filter systems that eliminate the phototoxic fraction of the blue-ultraviolet wavelength, reducing the phototoxicity caused in the lens or in the retina. [2]
Vitreous gel removal: the elimination of the vitreous seems to increase the level of retrolental oxygen, generating oxidation of the lens proteins. The incidence of cataracts is much higher after an extensive removal of the vitreous gel and it drops significantly when a limited vitrectomy or a nonvitrectomizing technique is performed. In other surgical procedures that do not include vitrectomy, such a scleral buckling or pneumatic retinopexy, the risk of inducing cataracts is also lower. [1, 2, 6, 17, 21, 22]
Vitreous substitutes: the presence of gas bubble (SF6 or C3F8) or silicone oil in the vitreous chamber raise the incidence of lens opacification when compared with eyes without any tamponade after surgery. Long lasting substances increase even more the cataract progression. Lens opacity in patients with silicone oil is associated with epithelial cell metaplasia due to inhibition of lens metabolism (anaerobic glycolysis). Secondary gas-related lens opacities can appear as posterior subcapsular vacuoles, which sometimes can be transient and disappear if a layer of liquid is maintained between the gas bubble and the posterior surface of the lens. It is important for the patient to keep the head in a prone position, to prevent the meniscus of the gas bubble from contacting the posterior surface of the lens, and to avoid metabolic disruption of the lens cells. [1, 2, 8]
Small gauge vitrectomy: although theoretically one of the advantages of the minimally invasive vitreo retinal surgery (23, 25 or 27 gauge) was the lower incidence of cataracts following the operation, there are no studies that demonstrate this relationship. No significant differences have been found between the different systems in the rate of cataract development. It seems that the progression of the lens opacification depends more on the amount of vitreous gel removed rather than the size of the instruments that are used. [1, 23, 24, 25]
Development of a nuclear cataract in a diabetic patient after six months of vitrectomy.
The surgical criteria should be early, avoiding advanced cataracts requiring higher ultrasound power or poor posterior pole exploration. The final visual acuity after retinal surgery and the underlying retinal pathology for which vitrectomy was required to predict the visual prognosis of the patient should be identified through the anamnesis: retinal detachment with or without macular involvement, proliferative diabetic retinopathy with or without macular edema, history of ocular trauma or high myopia, among others. At times, it is difficult to determine whether the degree of visual impairment in the patient is due to underlying retinal pathology or to cataract progression. In patients operated on for macular disease who present metamorphopsia or central scotoma, these symptoms will persist after cataract surgery. Likewise, it is important to identify the time interval between vitrectomy and cataract, since when opacity occurs at intervals of less than 4 months, iatrogenic lens touch in the posterior capsule must be ruled out. [20]
In the ophthalmological examination, pupillary dilation should be evaluated, as in uveitic or diabetic eyes, and the state of the zonular fibers, since there may be phacoiridodonesis due to alteration of the zonule in vitrectomized eyes. It is important to perform a fundus examination to rule out retinal pathology and, occasionally, to perform an optical coherence tomography (OCT) to assess the status of the macula. In patients with macular edema, the need to treat it with an intravitreal injection before surgery or during the procedure itself will be assessed. In the case of not being able to visualize the fundus, an ocular ultrasound should be performed to assess the state of the retina and be able to rule out complications such as vitreous hemorrhage or retinal detachment that require combined surgery.
Intraocular lens power calculation is based on the measurement of anatomical eye parameters. Regardless of the formula we apply, to calculate the intraocular lens (IOL) in our patients we must know precisely the axial length (AL), keratometry and anterior chamber depth (ACD). Prediction of IOL power in eyes undergoing retinal surgery can sometimes be challenging and certain considerations should be taken into account.
AL in our patients can be quantified using optical or ultrasonic methods. Optical methods are more comfortable because they do not require contact with the patient and are more examiner-independent. However, there are cases where we will turn to ultrasonic methods, especially because of media opacity.
Measuring AL requires proper foveal fixation, this could be an important source and error in patients with retinal pathologies. [26, 27] Newly developed equipment such as the IOL master 700, incorporates an OCT system to ensure a correct measurement aligned with the patient’s fovea [27] this is especially important in cases of macular pathology and staphyloma. [28]
In vitrectomized patients with no fluid exchange the vitreous is replaced by aqueous humor. This is not a problem with ultrasonic biometry because of the transmission rate of aqueous and vitreous humors are practically the same (1532 m/sec ultrasound velocity). In the same way, the vitreous has an optical refractive index of 1.3346 and the aqueous of 1.3336. This small difference generates a myopic shift of −0.13 diopters (D) in vitrectomized eyes that has little clinical relevance. [29, 30]
Ultrasound biometry measures AL from corneal vortex to internal limiting membrane along the optical axis. Optical systems quantify AL from corneal vortex to retinal pigment epithelium along visual axis. [31] So, macular status as macular edema or submacular fluid can affect the measurement of axial length in ultrasonic biometry. The difference in measurement with respect to the axis confers superiority to the optical biometer, which achieves more accurate measurements as long as the visual fixation of the patient is preserved to look at the laser target. [32]
Elevated myopia or staphyloma are more common in vitrectomized patients. [33] These factors along with poor visual binding are frequent cause of erroneous AL measurements. It is likely that one of the most complex situations to determine AL is the case of high retinal detachment with macula-off, where the patient cannot fix and foveal detachment generates an underestimation of AL. [34]
Phacoemulsification and silicone oil (SO) removal in a single act could avoid surgical risks and is optimal for patients with cataract formation in a short time after vitrectomy with SO tamponade. Obtaining accurate AL measurements in silicone oil-filled eyes can be difficult.
Whenever possible, we should quantify the AL in oil-filled eyes with optical biometers (optical interferometry or reflectance) because of the optical laser is not appreciably affected by SO, by its molecular weight or by the interfaces that remain between aqueous humor and silicone in eyes with incomplete filling. [35, 36] In the main menu of our optical biometer we will select the option “vitreous cavity filled with oil” and the refractive index of light will change from 1.33 in vitreous to 1.4 in silicone oil (Figure 2). [37]
Optical biometry and topography (Aladdin Topcon®). Select silicone oil in biometer before measuring AL.
However, cataracts generated by silicone oil are often dense and do not allow optical biometrics to be performed. It is estimated that in 4.7–17% of AL measurements, interferometry cannot be performed due to poor visual acuity, corneal opacity or dense cataract among others. [38, 39] Low coherence reflectometry and optical coherence tomography use longer wavelength than interferometry, so we can assume that the proportion of eyes measured with these techniques should be greater. [40] In cases where measurement with optical systems cannot be performed AL measurement becomes a biometric challenge.
The replacement of vitreous with silicone oil implies that the propagation of acoustic waves is modified. The speed of sound in a medium is inversely related to the refractive index of the medium. Because silicone has a higher rate than vitreous, it reduces the speed of sound a 36% approximately. The sound velocity declines from 1532 m/sec in the vitreous to 980 m/sec in 1000 centistokes molecular weight silicone oil. [41] This reduction in speed generates a higher axial length measurement. If we do not calibrate our ultrasonic biometer, we will generate a hypermetropic refractive defect.
If we use higher molecular weight silicone oil the speed variation would be different [42, 43, 44, 45].
If our ultrasonic biometer does not have a speed adjustment for eyes with silicone oil, we can multiply a corrective factor of 0.64 to the vitreous cavity length obtained with a speed of 1532 m/sec. [46] To calculate the axial length we will have to add the rest of the structures (anterior chamber depth, lens thickness and retrosilicone space) to the value obtained from vitreous cavity with the corrective factor. [37]
Another source of error appears when the vitreous cavity is not completely filled with SO. An aqueous space is generated between the oil and the retina, the “retrosilicone space”. It is maximum in supine position, decreases when the patient is erect and is minimized in the prone position. [47] And as we have seen before, it should be taken into account for IOL calculation. If we do not consider it, leads to a shorter and erroneous measurement of the AL in A-mode biometry.
Abu El Einen et al. [43] found better refractive results in oil-filled eyes explored by inmersion B-guided than in contact A-mode biometry. Although both are echographic techniques, immersion ultrasound prevents us from possible compression of the scanning probe on the cornea and mode B helps us to locate fovea, specially in patients with staphyloma or fluid interfaces. [48]
In addition to slower sound speed, SO absorbs sound, leading to poor penetration with low-quality echoes. [49] This significant sound attenuation generates poor identification of the retinal spike by contact A-mode biometry. [50] In these cases biometry may be unsatisfactory and other methods as we mention below have been proposed. Vitreoretinal surgeons should know that the appearance of cataract occurs after 3 months in 100% of the eyes with SO. [51, 52] Therefore, a useful strategy would be to perform a pre-vitrectomy biometry in all cases with macula on in which there is a possibility of fluid exchange by SO. [53] In these cases, we should take into account that the placement of a scleral buckle during surgery will also modify the axial length of the patient. [54, 55]
Another option is the two-step surgery with the removal of cataract and silicone oil in a first step and the placement of an implant in a second time if the retina remains stable. [56, 57]
El-Baha et al. perform more complex techniques with intraoperative biometry after remove SO with a sterilized ultrasonic biometer probe. [58] Elbendary et al. make an intraoperative calculation with a portable retinoscope. [59] These techniques consume more intraoperative time and require more specific devices that are not available in all centers, including a large stock of IOL powers.
In some patients, SO is not removed and is left inside the eye indefinitely. This is the case of eyes with recurrent bleeding or multiple retinal re-detachments among others. In this situation, if we want to extract the cataract we must take into account the refractive effect of SO when calculating IOL. SO acts as a negative lens because of its lower refractive index compared to vitreous. We must add +2 to +3 D to the calculated IOL to compensate for this effect, always in flat-convex lenses with the flat face toward the vitreous cavity. [60]
The anterior segment morphology has a crucial role for the refractive results after surgery. Moreover, calculation of effective lens position (ELP) in vitrectomized eyes is influenced by factors inherent to vitreous surgery.
The most uncertain factor in biometry after phaco-vitrectomy is postoperative ACD. Modification of ACD is controversial and there is no consensus on whether it increases or decreases. Mijnsbrugge et al. [61] reported a more posterior position of the IOL in the phacovitrectomy group compared to single phacoemulsification group, attributed to loss of vitreous support. Gülkilik, Neudorfer and Li [62, 63, 64] described no significant change in ACD postoperatively in phacovitrectomy group. And Hamoudi and Huang [65, 66] found an earlier position of IOL secondary to capsular fibrosis.
The influence of gas tamponade on refractive outcomes has also been studied, a myopic shift appears related to anterior lens displacement and shallower aqueous depth due to buoyancy and surface tension of the gas. [67] Even when the gas has already completely disappeared, it seems that the IOL could be fixed in a more anterior position. [67]
In recent years, the development of new biometric formulas to calculate the power of IOL to be implanted to our patients has allowed the minimization of post-surgical refractive surprises. New biometric calculation formulas use a variety of strategies, such as the inclusion of more predictive ELP values, the use of ray tracing, or artificial intelligence to achieve optimal post-surgical results.
There is currently no consensus on the most accurate method for biometric calculation in vitrectomized patients.
Lamson et al. [26] observed in a retrospective study that refractive outcomes using eight biometric formulas (Holladay 1, SRK/T, Barrett, Hill-radial basis function, Ladas and Holladay 2) were more variable and more hyperopic than in non-vitrectomized populations. The Holladay 2 formula obtained the highest percentages of postoperative refraction with predicted errors between ±0.50 D and ± 1 D. However, we should point out that the study was retrospective and analyzed a reduced sample of patients. In addition, there were important uncontrolled variables such as the implanted IOL model, which was not the same in all participants of the study. This hyperopic shift in vitrectomized eyes also was reported by Lee et al. [68]
Recently, another retrospective study published by Tan et al. [69] evaluated the refractive results obtained in cataract surgery in vitrectomized eyes by applying next-generation formulas (Barett Universal II, EVO, Kane, and Ladas super formula) against traditional formulas (Haigis, Hoffer Q, Holladay 1, and SRK/T) with Wang-Koch axial length adjustment if required. Before the lens constants were optimized, hyperopic outcomes were noted for all formulas, except for the Kane formula, which revealed no statistically significant bias. However, lens constant optimization enabled optimal and comparable results for all formulas.
As general recommendations to calculate IOL in vitrectomized eyes we suggest.
The optimization of the constant in clinical practice or, if not possible, choose a slightly myopic refractive target for the IOL to be implanted (−0.5 D).
Traditional formulas in miopic patients with axial length more than 26 mm should be used with Wang-Koch’s correction.
The presence of silicone oil in the vitreous cavity does not change the choice of the biometric formula.
Phaco-vitrectomy is mandatory in cases of retinal surgery with prior cataract. In addition, a large proportion of patients undergoing vitrectomy will develop cataract in the following years. Therefore, phaco-vitrectomy is a common procedure even without prior cataract as it saves costs and risks of a second intervention.
Unlike surgery in previously vitrectomized patients, where the tendency was to a hypocorrection after phacoemulsification (see “LENS CALCULATION FORMULAS IN VITRECTOMIZED EYES”). Phacoemulsification performed concurrently with vitrectomy seems to be associated with myopic shift in the refractive outcome [26, 34, 61, 70] Tranos et al. [70] found that postoperative refractive deviation greater than 0.5 D was associated with shallower ACD and increased macular thickness. Shiraki and Schweitzer [71, 72] related the myopic shift in combined phaco-vitrectomy with the gas tamponade commonly used in cases of retinal detachment. On the other hand, Vandergeest et al. [73] found no tendency toward a myopic shift and they got an elevated percentage of refractive accuracy in combined procedures.
Different from phacoemulsification in previously vitrectomized cases and faced with the variability of published results, our recommendation in cases of phaco-vitrectomy combined surgery would be to calculate the intraocular lens with a refractive target of zero.
It has been reported that cataract extraction in eyes with previous vitrectomy is often more complicated because of various anatomic changes in the eye. In the vitrectomized eye, whose vitreous cavity was filled with air, gas or liquid solutions, the aqueous humor is the one that ends up occupying said space, so the lens does not have the counter pressure of the vitreous, which is a semi-solid and viscous substance, and during cataract surgery can occur significant variations in the depth of the anterior chamber that make the procedure difficult. Potential complications that may arise from this situation include bad pupil dilatation, zonule damage, posterior synechia, posterior capsule tears, increase mobility of complex lens-iris and altered intraocular fluid dynamics as a result of the absence of the anterior hyaloid face. Thus, cataract surgery (phacoemulsification) in vitrectomized eyes has been reported to be associated with an increased rate of complications. [74, 75, 76, 77]
Cataract surgery in the vitrectomized eye can be performed under topical anesthesia, or in complex cases local anesthesia. When surgery was performed under topical anesthesia, the anterior chamber was irrigated with lidocaine 0.5% before it was filled with an ophthalmic viscosurgical device. There are ophthalmologists who prefer peri- or retrobulbar anesthesia, since when the anterior chamber is deepened, oscillations of the irido-crystalline diaphragm occur with variation in pupillary diameter that generates discomfort to the patient. If the surgery is performed using local anesthesia (retrobulbar), it is necessary to be cautious with the pressure exerted by the Honan balloon. Excessive pressure exerted by this balloon could damage or increase damage to a compromised zonule, increasing the risk of intraoperative drop of the nucleus into the vitreous cavity. For this reason, the use of topical anesthesia is preferable for cataract surgery in previously vitrectomized eyes. Finally, general anesthesia will be reserved for children, neurological and psychiatric patients and bad collaborators.
Biro et al. reported posterior capsule tears and dropped nucleus in 7,3% in 41 vitrectomized patiens. [78]
Nevertheless, others authors suggest that eyes with and without prior pars plana vitrectomy (PPV) have a similar likelihood of having intraoperative complications. These authors reported that recognize the differences in the physiologic state of the vitrectomized eye compared with that of non-vitrectomized eyes reduced the frequency of intraoperative complications. [79]
A clear corneal incision for performing the phacoemulsification was recommended, avoiding the conjuntival-scleral scarring from previous retinal surgery. [80]
No intraoperative wound-related problems have been described using this clear corneal approach, with a 3-step wound construction with a 50% vertical groove.
In patients with inadequate dilation of the pupil, the use of intracamerular phenylephrine or the insertion of iris retractors or pupillary elongation maneuvers will be evaluated, and if there are posterior synechiae, synechiolysis will be performed with the help of viscoelastics.
In the case of severe crystalline opacities that do not allow the visualization of the background orange reflex, the use of trypan blue in the staining of the anterior capsule, facilitating capsulorhexis, will be considered. In vitrectomized eyes, trypan blue must be introduced into the anterior chamber slowly to avoid its diffusion to the vitreous chamber through zonular dehiscences. If this happens, phacoemulsification can be very complicated by the loss of the foveal reflex, increasing the risk of rupture of the posterior capsule.
If possible, very small capsulorhexis should be avoided to avoid capsular phimosis that later hinders the evaluation of the retinal periphery. Both cohesive viscoelastics that have expansive property allowing the management of mydriasis, and dispersives that protect the corneal endothelium can be used.
Phacoemulsification with a constant pressure minimizes complications in the event of significant ocular collapse. [81]
Fluctuations in the anterior chamber, such as the antero and retropulsion phenomenon, can be minimized by keeping the infusion bottle low, although sometimes there are unavoidable intraoperative mioses that make surgery difficult.
Accurately sized wounds, including the clear corneal incision for the phaco tip and the side port for the nucleus manipulator, help to maintain a relatively sealed chamber during surgery and minimize fluctuation of the anterior chamber depth.
In the case of having a reverse pupillary blockage, produced when the iris contacts the anterior capsule, preventing the flow from reaching the posterior chamber, it can be solved either by lifting the iris with a second instrument from the paracentesis or using the phaco tip lifting the iris and put the foot pedal in the irrigation level before any phaco manipulation.
In a study of 75 vitrectomized eyes, this blockage was observed in 53.3% of the cases during cataract surgery, especially in younger patients, with greater axial length and greater anterior chamber depth. [82]
Infusion deviation syndrome occurs when fluid migrates backward through the zonule and it increases the volume of the vitreous and causes flattening of the anterior chamber. Titiyal et al. [83] presented this complication in 12.3% of the 89 vitrectomized eyes during cataract surgery. To prevent this, it is recommended to carry out the hydration maneuvers carefully, reduce the flow of fluid within the anterior chamber (lowering the height of the bottles if possible or reducing the flow/aspiration rate). Once this complication appears, it is very useful to place in the pars plana a vitrectomy trocar without a valve to allow the pressure to escape from the posterior chamber and to be able to continue performing phacoemulsification.
Maneuvers that push the lens during phacoemulsification and cause zonular tension should be avoided. Thorough careful hydrodissection, confirmation of adequate lens rotation before phacoemulsification and gentle nucleus manipulation help to avoid unnecessary zonular damage and posterior capsule tears. If there is a fall of the nucleus or fragments to the vitreous cavity after the rupture of the posterior capsule, aggressive maneuvers should not be carried out when trying to recover them since they can generate ruptures in the retina and subsequent retinal detachment. The appropriate management in these cases is to perform a posterior approach to the complication through pars plana vitrectomy. In general, it is recommended to complete the vitrectomy if necessary, ensure by direct visualization that retinal tears have not been generated, removal of all fragments (either using the vitreotome or using the posterior chamber phacoemulsifier). In these cases, exploration of the peripheral retina to detect tears by indentation is highly recommended (Figures 3 and 4).
Posterior capsule tear (yellow arrow) in a post-vitrectomized cataract surgery.
Subluxated fragments of the lens (yellow arrow) to the retina in a complicated post-vitrectomized cataract surgery.
If there is good capsular support, a lens can be placed in the capsular bag remnants or in the sulcus if the anterior capsule remains intact. In the latter case, it is highly recommended to perform the Gimbel maneuver, which consists of dislocating the optic of the intraocular lens through the opening of the anterior capsule, keeping the haptics of the lens in sulcus. With this maneuver great stability in the implanted intraocular lens is obtained. The technique provides stability and long-term centration of the IOL and prevents vitreous from extending anterior to the IOL. [84]
If there is no capsular support, other alternatives must be chosen to place the intraocular lens, such as the sulcus-sutured lens or the iris fixation lenses.
The use of multifocal lenses in eyes with retinal pathology remains controversial, so it is generally preferred to implant single vision lenses.
Vitrectomized patients after cataract surgery have a higher risk of postoperative complications. In patients with previous macular surgery and diabetic eyes, a higher incidence of cystic macular edema has been observed. It was reported after a mean time of 42 days after cataract surgery. [85] Nevertheles, there are other studies which have not found CME however, OCT was not routinely used. Therefore, it is important to monitor these patients with fundus and OCT postoperatively since some are refractory cases and require subtenon or intravitreal treatment (Figure 5). [86, 87]
Asymptomatic cystic macular edema four weeks after cataract surgery in a vitrecomized patient (A). Resolution of macular cystics after topical non-steroidal anti-inflammatory treatment (B).
Patients with a history of retinal detachment or high myopia surgery may have a higher incidence of retinal detachment, so the peripheral retina should be evaluated throughout the postoperative period. The incidence of RD has been reported between 2% and 8% in different studies [88, 89, 90]. Cataract surgery in these patients can no have intra-operative complication which may predispose to RD. Therefore, this complication was a consequence of the previous posterior segment pathology in these eyes.
The incidence of posterior capsular opacification (PCO) was higher in vitrectomized eyes compared with nonvitrectomized eyes. [91, 92] It is ranging between 2.2% and 19.9% [15, 16, 17] within the first year after surgery. [88, 89, 90].
Finally, another complication in vitrectomized patients undergoing cataract surgery may be long-term subluxations or dislocations of the lens to the vitreous cavity. High myopia was the most frequent predisposing factor in 18.1% of the 83 eyes with this complication. [93]
In summary, cataract development and progression are known as frequent complications of PPV. Because of the application of vitreoretinal surgical techniques to a broader range of posterior segment diseases and because cataract surgery is frequently performed in postvitrectomy eyes, cataract surgeons should be familiar with the challenges of cataract extraction in vitrectomized eyes.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"938",title:"Coordination Chemistry",slug:"coordination-chemistry",parent:{title:"Metals and Nonmetals",slug:"metals-and-nonmetals"},numberOfBooks:2,numberOfAuthorsAndEditors:15,numberOfWosCitations:28,numberOfCrossrefCitations:13,numberOfDimensionsCitations:33,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"coordination-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9190",title:"Stability and Applications of Coordination Compounds",subtitle:null,isOpenForSubmission:!1,hash:"3f07c532e478beb8fcd2fe53b8c9bcfd",slug:"stability-and-applications-of-coordination-compounds",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9190.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",middleName:"Nanda",surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5291",title:"Metal-Organic Frameworks",subtitle:null,isOpenForSubmission:!1,hash:"11a4acb20c880870e43c6f9dcf71e31e",slug:"metal-organic-frameworks",bookSignature:"Fahmina Zafar and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/5291.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"52190",doi:"10.5772/64797",title:"Introductory Chapter: Metal Organic Frameworks (MOFs)",slug:"introductory-chapter-metal-organic-frameworks-mofs-",totalDownloads:3643,totalCrossrefCites:3,totalDimensionsCites:16,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Eram Sharmin and Fahmina Zafar",authors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}]},{id:"51337",doi:"10.5772/64027",title:"Bio-Inspired Metal-Organic Frameworks in the Pharmaceutical World: A Brief Review",slug:"bio-inspired-metal-organic-frameworks-in-the-pharmaceutical-world-a-brief-review",totalDownloads:2412,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Vânia André and Sílvia Quaresma",authors:[{id:"183115",title:"Dr.",name:"Vania",middleName:null,surname:"Andre",slug:"vania-andre",fullName:"Vania Andre"},{id:"187001",title:"MSc.",name:"Sílvia",middleName:null,surname:"Quaresma",slug:"silvia-quaresma",fullName:"Sílvia Quaresma"}]},{id:"51319",doi:"10.5772/64134",title:"Looking into Metal-Organic Frameworks with Solid-State NMR Spectroscopy",slug:"looking-into-metal-organic-frameworks-with-solid-state-nmr-spectroscopy",totalDownloads:1717,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Gregor Mali",authors:[{id:"183097",title:"Prof.",name:"Gregor",middleName:null,surname:"Mali",slug:"gregor-mali",fullName:"Gregor Mali"}]}],mostDownloadedChaptersLast30Days:[{id:"71326",title:"Stability of Metal Complexes",slug:"stability-of-metal-complexes",totalDownloads:817,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stability-and-applications-of-coordination-compounds",title:"Stability and Applications of Coordination Compounds",fullTitle:"Stability and Applications of Coordination Compounds"},signatures:"Senthilkumar Muthaiah, Anita Bhatia and Muthukumar Kannan",authors:null},{id:"52190",title:"Introductory Chapter: Metal Organic Frameworks (MOFs)",slug:"introductory-chapter-metal-organic-frameworks-mofs-",totalDownloads:3643,totalCrossrefCites:3,totalDimensionsCites:16,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Eram Sharmin and Fahmina Zafar",authors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}]},{id:"70192",title:"Stability Constants of Metal Complexes in Solution",slug:"stability-constants-of-metal-complexes-in-solution",totalDownloads:1324,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"stability-and-applications-of-coordination-compounds",title:"Stability and Applications of Coordination Compounds",fullTitle:"Stability and Applications of Coordination Compounds"},signatures:"Jagvir Singh, Abhay Nanda Srivastav, Netrapal Singh and Anuradha Singh",authors:null},{id:"51425",title:"Molecular Simulations for Adsorption-Based CO2 Separation Using Metal Organic Frameworks",slug:"molecular-simulations-for-adsorption-based-co2-separation-using-metal-organic-frameworks",totalDownloads:1624,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Seda Keskin",authors:[{id:"106387",title:"Prof.",name:"Seda",middleName:null,surname:"Keskin",slug:"seda-keskin",fullName:"Seda Keskin"}]},{id:"51337",title:"Bio-Inspired Metal-Organic Frameworks in the Pharmaceutical World: A Brief Review",slug:"bio-inspired-metal-organic-frameworks-in-the-pharmaceutical-world-a-brief-review",totalDownloads:2412,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Vânia André and Sílvia Quaresma",authors:[{id:"183115",title:"Dr.",name:"Vania",middleName:null,surname:"Andre",slug:"vania-andre",fullName:"Vania Andre"},{id:"187001",title:"MSc.",name:"Sílvia",middleName:null,surname:"Quaresma",slug:"silvia-quaresma",fullName:"Sílvia Quaresma"}]},{id:"51319",title:"Looking into Metal-Organic Frameworks with Solid-State NMR Spectroscopy",slug:"looking-into-metal-organic-frameworks-with-solid-state-nmr-spectroscopy",totalDownloads:1717,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Gregor Mali",authors:[{id:"183097",title:"Prof.",name:"Gregor",middleName:null,surname:"Mali",slug:"gregor-mali",fullName:"Gregor Mali"}]},{id:"63485",title:"Chiral Mono- and α-Diimines and Their Pd(II) Complexes with Anticancer Activity",slug:"chiral-mono-and-diimines-and-their-pd-ii-complexes-with-anticancer-activity",totalDownloads:298,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stability-and-applications-of-coordination-compounds",title:"Stability and Applications of Coordination Compounds",fullTitle:"Stability and Applications of Coordination Compounds"},signatures:"Guadalupe Hernández, Daniela Gutiérrez, Gloria E. Moreno, Oscar Portillo, René Gutiérrez and Eduardo Brambila",authors:null},{id:"63620",title:"Schiff Bases and Their Metallic Derivatives: Highly Versatile Molecules with Biological and Abiological Perspective",slug:"schiff-bases-and-their-metallic-derivatives-highly-versatile-molecules-with-biological-and-abiologic",totalDownloads:506,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"stability-and-applications-of-coordination-compounds",title:"Stability and Applications of Coordination Compounds",fullTitle:"Stability and Applications of Coordination Compounds"},signatures:"Muhammad I. Khan, Saima Gul and Murad Ali Khan",authors:null},{id:"52076",title:"Interaction of Small Molecules within Metal Organic Frameworks Studied by In Situ Vibrational Spectroscopy",slug:"interaction-of-small-molecules-within-metal-organic-frameworks-studied-by-in-situ-vibrational-spectr",totalDownloads:1622,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"metal-organic-frameworks",title:"Metal-Organic Frameworks",fullTitle:"Metal-Organic Frameworks"},signatures:"Kui Tan and Yves Jean Chabal",authors:[{id:"182024",title:"Dr.",name:"Kui",middleName:null,surname:"Tan",slug:"kui-tan",fullName:"Kui Tan"},{id:"183655",title:"Prof.",name:"Yves",middleName:null,surname:"Chabal",slug:"yves-chabal",fullName:"Yves Chabal"}]},{id:"68756",title:"Salen and Related Ligands",slug:"salen-and-related-ligands",totalDownloads:350,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"stability-and-applications-of-coordination-compounds",title:"Stability and Applications of Coordination Compounds",fullTitle:"Stability and Applications of Coordination Compounds"},signatures:"Ashish K. Asatkar, Mamta Tripathi and Deepali Asatkar",authors:null}],onlineFirstChaptersFilter:{topicSlug:"coordination-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/cataract-surgery-in-post-vitrectomized-eyes",hash:"",query:{},params:{chapter:"cataract-surgery-in-post-vitrectomized-eyes"},fullPath:"/online-first/cataract-surgery-in-post-vitrectomized-eyes",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()