Open access peer-reviewed chapter - ONLINE FIRST

Phylotypes and Pathotypes of Diarrheagenic Escherichia coli of Gastroenteritis

Written By

Hadi Sajid Abdulabbas, Noor Al-Khafaji, Suhad Y. Abed, Hussein Al-Dahmoshi and Huda Najh Al-Baroody

Submitted: 04 January 2023 Reviewed: 05 January 2023 Published: 17 February 2023

DOI: 10.5772/intechopen.109860

Antimicrobial Stewardship - New Insights IntechOpen
Antimicrobial Stewardship - New Insights Edited by Ghulam Mustafa

From the Edited Volume

Antimicrobial Stewardship - New Insights [Working Title]

Dr. Ghulam Mustafa

Chapter metrics overview

92 Chapter Downloads

View Full Metrics

Abstract

Escherichia coli responsible for wide range of common bacterial infections, the frequent one is gastroenteritis. Bacterial gastroenteritis mainly attributed to diarrheagenic E. coli and accompanied by diarrhea and vomiting. Actually pathogenic E. coli can be classified according to the site of infection whether it be within intestine (called intestinal pathogenic E. coli InPEC) or cause infection outside intestine (called extraintestinal pathogenic E. coli ExPEC). They are assigned to 4 main phylogenetic groups: InPEC include A and B1 while ExPEC have B2 and D groups. Seven Pathotypes have been assigned: Enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic (Shiga-toxin producing E. coli (EHEC/STEC), enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enteroinvasive E. coli (EIEC) and adherent invasive E. coli (AIEC). The patho-phylotyping of diarrheagenic E. coli interaction along with antibiotic resistance and biofilm formation capacity may be valuable insight to know real threat of this pathogen and this is tried to be covered with this chapter. The results revealed that the among DEC, EPEC and ETEC were assigned in high rate to B1 followed by A, B2, D, E, C and F while EAEC show different assignment: D followed by B2, A, B1, C, E and F. The other DEC pathotypes showed different styles.

Keywords

  • Pathotypes
  • phylotypes
  • E. coli
  • antibiotic resistance
  • biofilm
  • InPEC
  • ExPEC

1. Introduction

Escherichia coli is commensal enterobacteial member emerging as opportunistic pathogen causing numerous of intestinal and extraintestinal infections. Concern Pathotypes of E. coli, they divided in to two main groups: Extraintestinal pathogenic E. coli (ExPEC) and intestinal pathogenic E. coli (InPEC). ExPEC cause range of infections for Human being outside intestine like meningitides as in neonatal meningitis E. coli (NMEC), urinary tract infection as in uropathogenic E. coli (UPEC) and sepsis-associated E. coli (SEPEC) [1, 2, 3]. InPEC includes 8 Pathotypes of diarrheagenic E. coli (DEC) including: enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli (EHEC) (also known as Shiga-toxin-producing E. coli (STEC) or, verotoxin-producing E. coli (VTEC), necrotoxic E. coli (NTEC) and adherent-invasive E. coli (AIEC) [4, 5, 6]. Two systems named as Clermont triplex and quadruplex PCR were used to assign the E. coli isolates to seven phylogroups (A, B1, B2, C, D, E and F) and five clades (clade I, II, III, IV and V) according to presence/absence of six genes: chuA, yjaA, TspE4.C2, arpA, arpAgpEh and trpA(trpAgpC) as mentioned in Table 1 [7, 8, 9].

arpAchuAyjaATspE4.C2arpAgpEtrpAgpCPhylogroups and Clade
+A (subgroup A0)
++A (subgroup A1)
++B1
++B2(subgroup B22)
+++B2(subgroup B23)
+++C
++D (subgroup D1)
+++D (subgroup D2)
++++E
++++E
+F

Table 1.

Genotypic profile for 6 phylogenetic groups and 5 clades of E. coli.

Advertisement

2. Diarrheagenic E. coli (DEC) phylotypes

Diarrheagenic E. coli (DEC) is a term referring to 8 or 9 pathotypes of E. coli causing diarrhea in travelers. It accounting for up to 40% of infantile and children diarrhea worldwide [10] and responsible for most of diarrheal outbreaks globally [11]. All DEC Pathotypes categorized according to molecular contents of some virulence genes: eae and bfpA for EPEC [12]; st1a, st1b and ltb1 for ETEC; aggR for EAEC; stx1 and stx2 for EHEC/STEC; ipaH for EIEC; daaD for DAEC [13]. Many studies revealed that, the most prevalent diarrheagenic E. coli were ETEC, EPEC, EAEC, AIEC, EHEC/STEC and DAEC [14, 15, 16, 17]. Concern phylogroups of EPEC, the results gathered from 18 studies for 433 EPEC isolates revealed that: B1 compile (39.3%), A(23.3%), B2(18.2%), D(8.5%), (6.2%, 3.5% and 0.9%) for E, C and F phylogroups respectively (Table 2) [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. ETEC phylogroups includes: B1(43.3%), A(28.2%), D(14%), B2(13.4%), C(0.6%), E(0.6%) and F(0.0%) (Table 3) [18, 23, 24, 25, 27, 28, 30, 31, 33, 35, 36, 37]. Concern EAEC phylogroups the results showed that, among 399 EAEC isolates they assigned for D(32.8%), B2(30.5%)A(19.2), B1(16.2%), C(0.8%), E(0.5%) and F(0.0%) (Table 4) [18, 24, 25, 27, 28, 30, 31, 32, 35, 37, 38, 39, 40]. Table 5 showed the phylogroups of EIEC, EHEC/STEC, AIEC and DAEC pathotypes. EIEC phylogroups were A, B1, E, D, B2 and C compile (37.6%, 21.2%, 17.7%, 12.9%, 8.2% and 2.4% respectively). EHEC/STEC phylogroups were C, B1, B2, A, E, D and Fcompile (21.5%, 20.1, 18.7%, 16.2%, 13.4%, 7.7% and 2.4% respectively). AIEC phylogroups were B2, D, A and B1 compile (51.3%, 25.2%, 18.3% and 5.2% respectively) while DAEC phylogroups were A (5/11), B2(3/11) and B1(3/11) [18, 24, 25, 26, 27, 28, 33, 36, 37, 39, 40, 41, 43, 44, 45, 46, 47].

Total isolate no.ExPEC groupInPEC groupCountryRef.
B2DAB1CEF
51011110South Africa[18]
5322938002Mexico[19]
562541112211India[20]
51922138170Iran[21]
4226232000Iran[22]
2614813000Iran[23]
106031000Iran[24]
31020000Iran[25]
40004000Iran[26]
97020000Iran[27]
40004000Bangladesh[28]
3130617050Brazil[29]
2510186000Brazil[30]
2133123000Brazil[31]
30125130000Egypt[32]
3261062431Egypt[33]
2601520000Italy[34]
50014000Switzerland[35]
Total(433)793710117015274
%18.28.523.339.33.56.20.9

Table 2.

ExPEC and InPEC phylogroups of EPEC isolates.

Total isolate no.ExPEC groupInPEC groupCountryRef.
B2DAB1CEF
184118220South Africa[18]
3277117000Iran[36]
1311101000Iran[23]
63030000Iran[24]
8312163421000Iran[25]
52772216000Iran[27]
9439082000Bangladesh[28]
90432000Brazil[30]
195194000Brazil[31]
93204000Egypt[33]
50014000Switzerland[35]
41030000Mexico[37]
Total(344)464897149220
%13.41428.243.30.60.60

Table 3.

ExPEC and InPEC phylogroups of ETEC isolates.

Total isolate no.ExPEC groupInPEC groupCountryRef.
B2DAB1CEF
3194310320South Africa[18]
3516866000Iran[24]
2736117000Iran[25]
2371420000Iran[27]
10001000Bangladesh[28]
143065000Brazil[30]
31171130000Egypt[32]
2709171000Brazil[31]
54311940000Brazil[38]
80431000Switzerland[35]
11000000Mexico[37]
93600000Tunisia[39]
13832601234000India[40]
Total(399)1221317765320
%30.532.819.216.20.80.50

Table 4.

ExPEC and InPEC phylogroups of EAEC isolates.

EIEC
Total isolate no.ExPEC groupInPEC groupCountryRef.
B2DAB1CEF
60312000Iran[36]
51102591150Brazil[41]
61131000Iran[24]
133415000Iran[25]
20200000Iran[27]
72121100Egypt[33]
Total (42)71132182150
%8.212.937.621.22.417.70
EHEC/STEC
53000110South Africa[18]
2124015000Iran[26]
101108000Bangladesh[28]
225423701Egypt[33]
60060000Mexico[37]
52300000Tunisia[39]
135264211637274Iran[43]
50050000Brazil[44]
Total(209)3916344245285
%18.77.716.220.121.513.42.4
AIEC
26141020000Spain[45]
3022440000Spain[46]
592315156000Korea[47]
Total(115)5929216000
%51.325.218.35.2000
DAEC
113053000Iran[25]

Table 5.

ExPEC and InPEC phylogroups of EIEC, EHEC/STEC AIEC and DAEC isolates.

Advertisement

3. Uropathogenic E. coli (UPEC) phylotypes

Uropathogenic E. coli (UPEC) is the most common ExPEC causing UTI, one of the most frequent bacterial infections with significant morbidity worldwide, which may convey a sets of virulence factors and belonging to diverse phylogenetic groups [48]. UPEC as ExPEC must be belong to either B2 or D phylogroups. The B2 include 2 phylosubgroups: B22 (chuA+, yjaA+, TspE4.C2-, arpA-, arpAgpE-, TrpAgpC-) and B23 (chuA+, yjaA+, TspE4.C2+, arpA-, arpAgpE-, TrpAgpC-) while D have 2 phylosubgroups: D1 (chuA+, yjaA-, TspE4.C2-, arpA+, arpAgpE-, TrpAgpC-) and D2 (chuA+, yjaA-, TspE4.C2-, arpA+, arpAgpE-, TrpAgpC+) [49, 50].

Many Iraqi studies studied the assignment of UPEC to phylogroups. Since 2017–2022 only 11 Iraqi studies with valuable no. of UPEC isolates analyze 1119 isolates and assigning them to 7 phylogroups and they are found that: 566(50.6%) for B2, 241(21.5%) for D, 208(18.6%) for A, 60(5.4%) for B1, 23(2.1%) for C, 11(1%) for E and 10(0.8%) for F (Table 6) [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. Concern Iranian studies, 19 study were conducted including 2313 UPEC isolates assigned to phylogroups as follow: 1190(51.4%) for B2, 481(20.8%) for D, 399(17.3%) for A, 190(8.2%) for B1, 26(1.1%) for C, 23(1%) for E and 4(0.2%) for F (Table 7) [25, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Ten studies from Egypt deal with 892 UPEC isolates stated that, B2 compile (38.1%), D (15.2%), A (23.2%), B1 (14.3%), C (3.4%), E (2.8%) and F (2.9%) as mentioned in Table 8 [25, 42, 49, 54, 76, 80, 81, 82, 83, 84]. Nine Turkish studies showed that, among 901 isolated of UPEC, (39.3%) were B2, (31.5%) for D, (2.4%) for A, (6.4%) for B1, (0.1%) for C, (2.1%) for E and (0.1%) for F phylogroups (Table 9) [85, 86, 87, 88, 89, 90, 91, 92, 93].

Total isolate no.ExPEC groupInPEC groupRef.
B2DAB1CEF
5738367102[51]
8846711013110[52]
501814414000[53]
42181581000[54]
50182190000[55]
3951721139614000[56]
1033820279504[57]
10091612000[58]
5643445000[59]
722616202404[60]
1055722224000[61]
Total(1119)56624120860231110
%50.621.518.65.42.110.8

Table 6.

Distribution of phylogenetic groups among UPEC isolates in Iraq.

Total isolate no.ExPEC groupInPEC groupRef.
B2DAB1CEF
93554179134[62]
1005228146000[63]
232135423718000[64]
1135035235000[65]
25192794040000[66]
77552200000[67]
9047124017100[68]
16075482512000[69]
502410151000[70]
10426203226000[25]
1005522176000[71]
6050631000[72]
261144286128000[73]
932629299000[74]
1441062378000[75]
902511468000[76]
1005522176000[77]
905318136000[78]
1056522153000[79]
Total(2313)119048139919026234
%51.420.817.38.21.110.2

Table 7.

Distribution of phylogenetic groups among UPEC isolates in Iran.

Total isolate no.ExPEC groupInPEC groupRef.
B2DAB1CEF
175113331910000[80]
42181581000[54]
59420000017[49]
1032417566000[81]
227942000[82]
1444012153815177[42]
10532172630000[83]
10426203226000[25]
902511468000[76]
48132171582[84]
Total(892)340163207128302526
%38.115.223.214.33.42.82.9

Table 8.

Distribution of phylogenetic groups among UPEC isolates in Egypt.

Total isolate no.ExPEC groupInPEC groupRef.
B2DAB1CEF
9720372911000[85]
502213114000[86]
1535848416000[87]
45194101191[88]
14652433615000[89]
691631157000[90]
43182230000[91]
156954885000[92]
14254582010000[93]
Total(901)354284184581191
%39.331.52.46.40.12.10.1

Table 9.

Distribution of phylogenetic groups among UPEC isolates in Turkey.

Advertisement

4. Conclusion

Data analysis of current study revealed that the among DEC, EPEC and ETEC were assigned in high rate to B1 followed by A, B2, D, E, C and F while EAEC show different assignment: D followed by B2, A, B1, C, E and F. The other DEC pathotypes showed different styles.

Advertisement

Conflict of interest

There is no ‘conflict of interest’ for this work.

References

  1. 1. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nature Reviews. Microbiology. 2021;19(1):37-54. DOI: 10.1038/s41579-020-0416-x
  2. 2. Connolly JPR, Turner NCA, Hallam JC, Rimbi PT, Flett T, McCormack MJ, et al. d-serine induces distinct transcriptomes in diverse Escherichia coli pathotypes. Microbiology (Reading). 2021;167(10):1-13. DOI: 10.1099/mic.0.001093
  3. 3. Becker S, Saidenberg A, AHM v V, Stegger M, Johannesen TB, Semmler T, et al. Genomic analysis of the zoonotic ST73 lineage containing avian and human extraintestinal pathogenic Escherichia coli (ExPEC). Veterinary Microbiology. 2022;267:109372. DOI: 10.1016/j.vetmic.2022.109372
  4. 4. Martinez-Medina M. Special issue: Pathogenic Escherichia coli: Infections and therapies. Antibiotics. 2021;10(2):112. DOI: 10.3390/antibiotics10020112
  5. 5. Angulo-Zamudio UA, Gutiérrez-Jiménez J, Monroy-Higuera L, Flores-Villaseñor H, Leon-Sicairos N, Velazquez-Roman J, et al. Non-diarrheagenic and diarrheagenic E. coli carrying supplementary virulence genes (SVG) are associated with diarrhea in children from Mexico. Microbial Pathogenesis. 2021;157:104994. DOI: 10.1016/j.micpath.2021.104994
  6. 6. Suleiman K, Kolo I, Mohammed SSD, Magaji YG. Bacterial diarrhea among infants in developing countries: An overview of diarrheagenic Escherichia coli (DEC). Gadau Journal of Pure and Allied Science. 2022;1(1):73-81. DOI: 10.54117/gjpas.v1i1.10
  7. 7. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports. 2013;5(1):58-65. DOI: 10.1111/1758-2229.12019
  8. 8. Clermont O, Gordon D, Denamur E. Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology (Reading). 2015;161(5):980-988. DOI: 10.1099/mic.0.000063
  9. 9. Bujňáková D, Karahutová L, Kmeť V. Escherichia coli specific virulence-gene markers analysis for quality control of ovine cheese in Slovakia. Microorganisms. 2021;9(9):1808. DOI: 10.3390/microorganisms9091808
  10. 10. Miliwebsky E, Schelotto F, Varela G, Luz D, Chinen I, Piazza RM. Human diarrheal infections: Diagnosis of diarrheagenic Escherichia coli pathotypes. In: Escherichia coli in the Americas. Berlin: Springer; 2016. pp. 343-369
  11. 11. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews. 2013;26(4):822-880. DOI: 10.1128/CMR.00022-13
  12. 12. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): A prospective, case-control study. Lancet. 2013;382(9888):209-222. DOI: 10.1016/S0140-6736(13)60844-2
  13. 13. Guion CE, Ochoa TJ, Walker CM, Barletta F, Cleary TG. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR. Journal of Clinical Microbiology. 2008;46(5):1752-1757
  14. 14. Asadi Z, Ghanbarpour R, Kalantar-Neyestanaki D, Alizade H. Determination of extended-spectrum β-lactamase producing and hybrid pathotypes of Escherichia coli isolates from diarrheic samples. Gene Reports. 2022;27:101583. DOI: 10.1016/j.genrep.2022.101583
  15. 15. Moyo SJ, Maselle SY, Matee MI, Langeland N, Mylvaganam H. Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania. BMC Infectious Diseases. 2007;7(1):92. DOI: 10.1186/1471-2334-7-92
  16. 16. Franzolin MR, Alves RC, Keller R, Gomes TA, Beutin L, Barreto ML, et al. Prevalence of diarrheagenic Escherichia coli in children with diarrhea in Salvador, Bahia, Brazil. Memórias do Instituto Oswaldo Cruz. 2005;100(4):359-363. DOI: 10.1590/s0074-02762005000400004
  17. 17. Abdlla YA, Al-Sanjary RA. The molecular identification of diarrheagenic Escherichia coli (DEC) isolated from meat and meat products. Iraqi Journal of Veterinary Sciences. 2022;37(1):9-15. DOI: 10.33899/ijvs.2022.133244.2192
  18. 18. Alfinete NW, Bolukaoto JY, Heine L, Potgieter N, Barnard TG. Virulence and phylogenetic analysis of enteric pathogenic Escherichia coli isolated from children with diarrhoea in South Africa. International Journal of Infectious Diseases. 2022;114:226-232. DOI: 10.1016/j.ijid.2021.11.017
  19. 19. Otero-García A, Pérez-Vargas AK, Eslava-Campos C, Licona-Moreno D, León LA, Pérez-Soto G, et al. Molecular genotyping of Escherichia coli o111 isolated from children with diarrhea in rural and urban areas. Europub Journal of Health Research. 2022;3(3):421-435. DOI: 10.54747/ejhrv3n3-009
  20. 20. Singh T, Das S, Ramachandran VG, Wani S, Shah D, Maroof KA, et al. Distribution of Integrons and phylogenetic groups among Enteropathogenic Escherichia coli isolates from children <5 years of age in Delhi, India. Frontiers in Microbiology. 2017;8:561. DOI: 10.3389/fmicb.2017.00561
  21. 21. Jafari E, Mostaan S, Bouzari S. Characterization of antimicrobial susceptibility, extended-spectrum β-lactamase genes and phylogenetic groups of enteropathogenic Escherichia coli isolated from patients with diarrhea. Osong Public Health and Research Perspectives. 2020;11(5):327-333. DOI: 10.24171/j.phrp.2020.11.5.09
  22. 22. Memariani M, Najar-Peerayeh S, Zahraei Salehi TZ. Multi locus vntR (MLVA) typing and detection of the OI-122 pathogenicity island in typical and atypical enteropathogenic Escherichia coli isolated from children with acute diarrhea. Archives of Clinical Infectious Diseases. 2019;14(3):1-7. DOI: 10.5812/archcid.65855
  23. 23. Taghadosi R, Shakibaie MR, Hosseini-Nave H. Antibiotic resistance, ESBL genes, integrons, phylogenetic groups and MLVA profiles of Escherichia coli pathotypes isolated from patients with diarrhea and farm animals in south-east of Iran. Comparative Immunology, Microbiology and Infectious Diseases. 2019;63:117-126. DOI: 10.1016/j.cimid.2019.01.004
  24. 24. Mahdavi Broujerdi S, Roayaei Ardakani M, Rezatofighi SE. Characterization of diarrheagenic Escherichia coli strains associated with diarrhea in children, Khouzestan, Iran. Journal of Infectious Development Ctries. 2018;12(8):649-656. DOI: 10.3855/jidc.9538
  25. 25. Salmani H, Azarnezhad A, Fayazi MR, Hosseini A. Pathotypic and phylogenetic study of diarrheagenic Escherichia coli and uropathogenic E. coli using multiplex polymerase chain reaction. Jundishapur. Journal of Microbiology. 2016;9(2):e28331. DOI: 10.5812/jjm.28331
  26. 26. Staji H, Badagliacca P, Salehi TZ, Lopes F, Iorio M, Tonelli A, et al. Pathotyping of diarrhoeagenic cattle Escherichia coli strains isolated in the province of Tehran, Iran. Veterinaria Italiana. 2017;53(4):345-356
  27. 27. Alizade H, Ghanbarpour R, Aflatoonian MR. Molecular study on diarrheagenic Escherichia coli pathotypes isolated from under 5 years old children in southeast of Iran. Asian Pacific Journal of Tropical Disease. 2014;4:S813-S817. DOI: 10.1016/S2222-1808(14)60733-7
  28. 28. Ferdous J, Rashid RB, Sultana R, Saima S, Jahan Prima M, Begum A, et al. Is it human or animal? The origin of pathogenic E. coli in the drinking water of a low-income Urban Community in Bangladesh. Trop med. Infectious Diseases. 2021;6(4):181. DOI: 10.3390/tropicalmed6040181
  29. 29. Martins FH, Nepomuceno R, Piazza RMF, Elias WP. Phylogenetic distribution of tir-cytoskeleton coupling protein (tccP and tccP2) genes in atypical enteropathogenic Escherichia coli. FEMS Microbiology Letters. 2017;364(11):1-7. DOI: 10.1093/femsle/fnx101
  30. 30. Coelho CVL, Gomes TAT, Vieira MAM, Rosa ACP, Marinho DP, Söhsten BLV, et al. Brazilian indigenous children as carriers of Diarrheagenic Escherichia coli Pathotypes. Advances in Infectious Disease. 2018;08(4):200-216. DOI: 10.4236/aid.2018.84017
  31. 31. Regua-Mangia AH, Irino K, da Silva PR, Pimentel Bezerra RM, Santos Périssé AR, Teixeira LM. Molecular characterization of uropathogenic and diarrheagenic Escherichia coli pathotypes. Journal of Basic Microbiology. 2010;50(Suppl 1):S107-S115. DOI: 10.1002/jobm.200900364
  32. 32. Khairy RMM, Fathy ZA, Mahrous DM, Mohamed ES, Abdelrahim SS. Prevalence, phylogeny, and antimicrobial resistance of Escherichia coli pathotypes isolated from children less than 5 years old with community acquired- diarrhea in upper Egypt. BMC Infectious Diseases. 2020;20(1):908. DOI: 10.1186/s12879-020-05664-6
  33. 33. El-Shaer S, Abdel-Rhman SH, Barwa R, Hassan R. Virulence characteristics, serotyping and phylogenetic typing of clinical and environmental Escherichia coli isolates. Jundishapur Journal of Microbiology. 2018;11(12):1-12. DOI: 10.5812/jjm.82835
  34. 34. Badagliacca P, Agnoletti F, Drigo I, Merildi V, Lopes F, Pompilii C, et al. Virulence gene profiles of rabbit enteropathogenic Escherichia coli strains isolated in northern Italy. Veterinaria Italiana. 2018;54(3):189-196. DOI: 10.12834/VetIt.859.4260.2
  35. 35. Müller A, Stephan R, Nüesch-Inderbinen M. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Science of the Total Environment. 2016;541:667-672. DOI: 10.1016/j.scitotenv.2015.09.135
  36. 36. Hoseinzadeh T, Ghanbarpour R, Rokhbakhsh-Zamin F. Phylogenetic background of enterotoxigenic and enteroinvasive Escherichia coli from patients with diarrhea in Sirjan, Iran. Iran Journal of Microbiology. 2016;8(3):187-192
  37. 37. Bautista-Trujillo GU, Gutiérrez-Miceli FA, Mandujano-García L, Oliva-Llaven MA, Ibarra-Martínez C, Mendoza-Nazar P, et al. Captive green iguana carries diarrheagenic Escherichia coli pathotypes. Frontiers in Veterinary Science. 2020;7:99. DOI: 10.3389/fvets.2020.00099
  38. 38. AMARAL MSMG. Genes relacionados à virulência, resistência aos antimicrobianos, filogrupos genéticos e resposta imunoinflamatória associadas com cepas de Escherichia coli enteroagregativa isoladas de crianças nutridas e desnutridas em Fortaleza-Ce, Brasil [dissertação] (Mestrado em Microbiologia Médica) - Faculdade de Medicina. Fortaleza: Universidade Federal do Ceará; 2018. p. 98 f
  39. 39. Kilani H, Abbassi MS, Ferjani S, Ben Salem R, Mansouri R, Ben Chehida N, et al. Diverse Escherichia coli pathovars of phylogroups B2 and D isolated from animals in Tunisia. Journal of Infection in Developing Countries. 2017;11(7):549-556. DOI: 10.3855/jidc.8579
  40. 40. Modgil V, Mahindroo J, Narayan C, Kalia M, Yousuf M, Shahi V, et al. Comparative analysis of virulence determinants, phylogroups, and antibiotic susceptibility patterns of typical versus atypical enteroaggregative E. coli in India. PLoS Neglected Tropical Diseases. 2020;14(11):e0008769. DOI: 10.1371/journal.pntd.0008769
  41. 41. da Silva LC, de Mello Santos AC, Silva RM. Uropathogenic Escherichia coli pathogenicity islands and other ExPEC virulence genes may contribute to the genome variability of enteroinvasive E. coli. BMC Microbiology. 2017;17(1):68. DOI: 10.1186/s12866-017-0979-5
  42. 42. El-Baz R, Said HS, Abdelmegeed ES, Barwa R. Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt. Applied Microbiology and Biotechnology. 2022;106(3):1279-1298. DOI: 10.1007/s00253-021-11740-x
  43. 43. Jafari E, Oloomi M, Bouzari S. Characterization of antimicrobial susceptibility, extended-spectrum β-lactamase genes and phylogenetic groups of shigatoxin producing Escherichia coli isolated from patients with diarrhea in Iran. Annals of Clinical Microbiology and Antimicrobials. 2021;20(1):24. DOI: 10.1186/s12941-021-00430-1
  44. 44. Rebello RC, Regua-Mangia AH. Potential enterovirulence and antimicrobial resistance in Escherichia coli isolates from aquatic environments in Rio de Janeiro, Brazil. Science of the Total Environment. 2014;490:19-27. DOI: 10.1016/j.scitotenv.2014.04.040
  45. 45. Céspedes S, Saitz W, Del Canto F, De la Fuente M, Quera R, Hermoso M, et al. Genetic diversity and virulence determinants of Escherichia coli strains isolated from patients with Crohn’s disease in Spain and Chile. Frontiers in Microbiology. 2017;8:639. DOI: 10.3389/fmicb.2017.00639
  46. 46. Camprubí-Font C, Lopez-Siles M, Ferrer-Guixeras M, Niubó-Carulla L, Abellà-Ametller C, Garcia-Gil LJ, et al. Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli. Scientific Reports. 2018;8(1):2695. DOI: 10.1038/s41598-018-20843-x
  47. 47. Lee JG, Han DS, Jo SV, Lee AR, Park CH, Eun CS, et al. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS One. 2019;14(4):e0216165. DOI: 10.1371/journal.pone.0216165
  48. 48. Rezatofighi SE, Mirzarazi M, Salehi M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: A case-control study. BMC Infectious Diseases. 2021;21(1):361. DOI: 10.1186/s12879-021-06036-4
  49. 49. Hassuna NA, Khairalla AS, Farahat EM, Hammad AM, Abdel-Fattah M. Molecular characterization of extended-spectrum β lactamase- producing E. coli recovered from community-acquired urinary tract infections in upper Egypt. Scientific Reports. 2020;10(1):2772. DOI: 10.1038/s41598-020-59772-z
  50. 50. Haghighatpanah M, Zeighami H, Mozaffari Nejad AS, Hajipour N. Phylogenetic groups and antimicrobial resistance characteristics of Escherichia coli strains isolated from clinical samples in North Iran. Arab J Gastroenterology. 2022;23(2):102-107. DOI: 10.1016/j.ajg.2022.02.003
  51. 51. Al-Guranie DR, Al-Mayahie SM. Prevalence of E. coli ST131 among uropathogenic E. coli isolates from Iraqi patients in Wasit Province, Iraq. International Journal of Microbiology. 2020;2020:8840561. DOI: 10.1155/2020/8840561
  52. 52. Allami M, Bahreini M, Sharifmoghadam MR. Antibiotic resistance, phylogenetic typing, and virulence genes profile analysis of uropathogenic Escherichia coli isolated from patients in southern Iraq. Journal of Applied Genetics. 2022;63(2):401-412. DOI: 10.1007/s13353-022-00683-2
  53. 53. Ahmed NA, Mahmood SS, Abbas AH. A comparative study of some virulence factors and phylogenetic characterization of Escherichia coli isolates causing urinary tract infection and the commensal gut. Iraqi Journal of Agriculture Science. 2019;50(3):1193-1198
  54. 54. Mahmoud AT, Salim MT, Ibrahem RA, Gabr A, Halby HM. Multiple drug resistance patterns in various phylogenetic groups of hospital-acquired uropathogenic E. coli isolated from cancer patients. Antibiotics (Basel). 2020;9(3):108. DOI: 10.3390/antibiotics9030108
  55. 55. Hama-Soor TA, Salih SS, Muhamad SJ. The β-lactamase profile of Escherichia coli isolates from patients with urinary tract infections in teaching Hospital in Sulaimani, Iraq. Annals Parasitology. 2021;67(4):659-670. DOI: 10.17420/ap6704.382
  56. 56. Pirko EY, Ali MRN. The relationship between phylogenic typing and antimicrobial susceptibility patterns for Escherichia coli isolated from UTIs atMany hospitals in Baghdad city. Nursing National Iraqi Specialties. 2017;30(2):1-2
  57. 57. Gatya Al-Mayahie SM, Al-Guranie DRT, Hussein AA, Bachai ZA. Prevalence of common carbapenemase genes and multidrug resistance among uropathogenic Escherichia coli phylogroup B2 isolates from outpatients in Wasit Province/ Iraq. PLoS One. 2022;17(1):e0262984. DOI: 10.1371/journal.pone.0262984
  58. 58. Hussein FA, Alwash MS. Molecular detection of extended spectrum β-lactamase genes in Escherichia coli isolates from urinary tract infected patients. Journal of Applied National Sciences. 2022;14(4):1485-1492
  59. 59. Al-Zuhairy AM, Al-Dahmoshi HO. CTX-M genotyping among cystitis associated cefotaxime-resistant uropathogenic Escherichia coli (CRUPEC). Journal of Pure and Applied Microbiology. 2018;12(3):1515-1523. DOI: 10.22207/JPAM.12.3.56
  60. 60. Bachai ZA, Al-Mayahie SM. Molecular comparison of adhesins of uropathogenic Escherichia coli isolates from patients with first episode and recurrent urinary tract infections. Indian Journal of National Science. 2019;9(52):16529-16535
  61. 61. Merza NS. Prevalence and molecular characterization of Fim H gene in Escherichia coli isolates recovered from patients with utis. Medicine Journal of Babylon. 2017;14(3):470-477
  62. 62. Iranpour D, Hassanpour M, Ansari H, Tajbakhsh S, Khamisipour G, Najafi A. Phylogenetic groups of Escherichia coli strains from patients with urinary tract infection in Iran based on the new Clermont phylotyping method. BioMed Research International. 2015;2015:846219. DOI: 10.1155/2015/846219
  63. 63. Salehzadeh A, Zamani H. Characterization of (uropathogenic) E. coli isolated from urinary tract infections: Phylogenetic typing and distribution of virulence-associated traits. British Journal of Biomedical Science. 2018;75(1):40-42. DOI: 10.1080/09674845.2017.1336834
  64. 64. Farajzadah Sheikh AF, Goodarzi H, Yadyad MJ, Aslani S, Amin M, Jomehzadeh N, et al. Virulence-associated genes and drug susceptibility patterns of uropathogenic Escherichia coli isolated from patients with urinary tract infection. Infection and Drug Resistance. 2019;12:2039-2047. DOI: 10.2147/IDR.S199764
  65. 65. Bakhtiari S, Mahmoudi H, Seftjani SK, Amirzargar MA, Ghiasvand S, Ghaffari ME, et al. Antibiotic resistance pattern and phylogenetic groups of the uropathogenic Escherichia coli isolates from urinary tract infections in Hamedan, west of Iran. Iran Journal of Microbiology. 2020;12(5):388-394. DOI: 10.18502/ijm.v12i5.4598
  66. 66. Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Association between virulence profile, biofilm formation and phylogenetic groups of Escherichia coli causing urinary tract infection and the commensal gut microbiota: A comparative analysis. Microbial Pathogenesis. 2017;110:540-545. DOI: 10.1016/j.micpath.2017.07.046
  67. 67. Abdi HA, Rashki A. Comparison of virulence factors distribution in uropathogenic E. coli isolates from phylogenetic groups B2 and D. International. Journal of Enteric Pathogens. 2016;2(4):21725, 6
  68. 68. Boroumand M, Naghmachi M, Ghatee MA. Detection of phylogenetic groups and drug resistance genes of Escherichia coli causing urinary tract infection in Southwest Iran. Jundishapur Journal of Microbiology. 2021;14(2):1-9. DOI: 10.5812/jjm.112547
  69. 69. Staji H, Rassouli M, Jourablou S. Comparative virulotyping and phylogenomics of Escherichia coli isolates from urine samples of men and women suffering urinary tract infections. Iranian Journal of Basic Medical Sciences. 2019;22(2):211-214. DOI: 10.22038/ijbms.2018.28360.6880
  70. 70. Javed S, Mirani ZA, Pirzada ZA. Phylogenetic group B2 expressed significant biofilm formation among drug resistant Uropathogenic Escherichia coli. Libyan Journal of Medicine. 2021;16(1):1845444. DOI: 10.1080/19932820.2020.1845444
  71. 71. Rahdar M, Rashki A, Miri HR, Rashki Ghalehnoo MR. Detection of pap, sfa, afa, foc, and fim adhesin-encoding operons in uropathogenic Escherichia coli isolates collected from patients with urinary tract infection. Jundishapur Journal of Microbiology. 2015;8(8):e22647. DOI: 10.5812/jjm.22647
  72. 72. Ranjbar R, Nazari S, Farahani O. Phylogenetic analysis and antimicrobial resistance profiles of Escherichia coli strains isolated from UTI-suspected patients. Iranian Journal of Public Health. 2020;49(9):1743-1749. DOI: 10.18502/ijph.v49i9.4094
  73. 73. Norouzian H, Katouli M, Shahrokhi N, Sabeti S, Pooya M, Bouzari S. The relationship between phylogenetic groups and antibiotic susceptibility patterns of Escherichia coli strains isolated from feces and urine of patients with acute or recurrent urinary tract infection. Iran Journal of Microbiology. 2019;11(6):478-487. DOI: 10.18502/ijm.v11i6.2219
  74. 74. Staji H, Khoshgoftar J, Javaheri Vayeghan A, Salimi Bejestani MR. Phylogenetic grouping and assessment of virulence genotypes, with antibiotic resistance patterns, of Escherichia coli strains implicated in female urinary tract infections. The International Journal of Enteric Pathogens. 2016;4(1):4. DOI: 10.17795/ijep31609
  75. 75. Boroumand M, Sharifi A, Ghatei MA, Sadrinasab M. Evaluation of biofilm formation and virulence genes and association with antibiotic resistance patterns of uropathogenic Escherichia coli strains in southwestern Iran. Jundishapur Journal of Microbiology. 2021;14(9):1-10. DOI: 10.5812/jjm.117785
  76. 76. El-Mahdy R, Mahmoud R, Shrief R. Characterization of E. coli phylogroups causing catheter-associated urinary tract infection. Infection and Drug Resistance. 2021;14:3183-3193. DOI: 10.2147/IDR.S325770
  77. 77. Abdi HA, Rashki A. Relationship between phylogenetic group and distribution of virulence genes of Escherichia coli isolated from patients with urinary tract infection. Journal of Gorgan University of Medical Sciences. 2015;17(2):92-97
  78. 78. Bahadori M, Motamedifar M, Derakhshandeh A, Firouzi R, Motamedi Boroojeni A, Alinejad M, et al. Genetic relatedness of the Escherichia coli fecal population and strains causing urinary tract infection in the same host. MicrobiologyOpen. 2019;8(6):e00759. DOI: 10.1002/mbo3.759
  79. 79. Eghbalpour F, Vahdat S, Shahbazi R, Mohebi S, Kholdi S, Hadadi M, et al. Pathogenic features of urinary Escherichia coli strains causing asymptomatic bacteriuria during pregnancy. Gene Reports. 2022;27:101559. DOI: 10.1016/j.genrep.2022.101559
  80. 80. Gawad WE, Helmy OM, Tawakkol WM, Hashem AM. Antimicrobial resistance, biofilm formation, and phylogenetic grouping of uropathogenic Escherichia coli isolates in Egypt: The role of efflux pump-mediated resistance. Jundishapur Journal of Microbiology. 2018;11(2):e14444. DOI: 10.5812/jjm.14444
  81. 81. Khairy RM, Mohamed ES, Abdel Ghany HM, Abdelrahim SS. Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS One. 2019;14(9):e0222441. DOI: 10.1371/journal.pone.0222441
  82. 82. Tharwat N, El-Sherif R, Elnagdy S, Marzaban R, Amer S. Virulent Escherichia coli strains among Egyptian patients with acute diarrhoea versus urinary tract infection, and their antibiotic susceptibility. Arabian Journal of Gastroenterology. 2019;20(2):74-80. DOI: 10.1016/j.ajg.2019.01.003
  83. 83. Abdelrahim SS, Fouad M, Abdallah N, Ahmed RF, Zaki S. Comparative study of CTX-M-15 producing Escherichia coli ST131 clone isolated from urinary tract infections and acute diarrhoea. Infection and Drug Resistance. 2021;14:4027-4038. DOI: 10.2147/IDR.S325669
  84. 84. Ramadan HH, Jackson CR, Taha SA, Moawad AA, Barrett JB, Woodley TA. Contribution of healthy chickens to antimicrobial-resistant Escherichia coli associated with human extraintestinal infections in Egypt. Vector Borne and Zoonotic Diseases. 2018;18(8):408-416. DOI: 10.1089/vbz.2017.2237
  85. 85. Bozcal E, Eldem V, Aydemir S, Skurnik M. The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic Escherichia coli in İzmir province, Turkey. PeerJ. 2018;6:e5470. DOI: 10.7717/peerj.5470
  86. 86. Oktay Gultekin E, Tezcan Ulger S, Delialioğlu N. Distribution of pathogenicity island markers and virulence factors genes of extraintestinal pathogenic Escherichia coli isolates. Jundishapur Journal of Microbiology. 2022;15(4):1-8. DOI: 10.5812/jjm-121044
  87. 87. Yılmaz EŞ, Aslantaş Ö. Phylogenetic group/subgroups distributions, virulence factors, and antimicrobial susceptibility of Escherichia coli strains from urinary tract infections in Hatay. Revista da Sociedade Brasileira de Medicina Tropical. 2020;53:e20190429. DOI: 10.1590/0037-8682-0429-2019
  88. 88. Gümüş D, Kalaycı Yüksek F, Camadan FD, Oral M, Macunluoğlu AC, Küçüker M. High prevalence of class I and class II integrons in uropathogenic E. coli strains (UPECS) and their relationship with antibiotic resistance, phylogeny and virulence. jmed. 2022;85(1):77-85. DOI: 10.26650/IUITFD.984487
  89. 89. Er DK, Dundar D, Uzuner H, Osmani A. Relationship between phylogenetic groups, antibiotic resistance and patient characteristics in terms of adhesin genes in cystitis and pyelonephritis isolates of Escherichia coli. Microbial Pathogenesis. 2015;89:188-194. DOI: 10.1016/j.micpath.2015.10.014
  90. 90. Giray B, Uçar FB, Aydemir SŞ. Genotypic analysis of Escherichia coli strains that cause urosepsis in the Aegean region. Turkish Journal of Medical Science. 2016;46(5):1518-1527. DOI: 10.3906/sag-1507-114
  91. 91. Müştak HK, Günaydin E, Kaya İB, Salar MÖ, Babacan O, Önat K, et al. Phylo-typing of clinical Escherichia coli isolates originating from bovine mastitis and canine pyometra and urinary tract infection by means of quadruplex PCR. The Veterinary Quarterly. 2015;35(4):194-199. DOI: 10.1080/01652176.2015.1068963
  92. 92. Onlen Guneri CO, Koksal F, Kizilyildirim S, Bedir B, Nagiyev T. The distribution of cytotoxic necrotizing factors (CNF-1, CNF-2, CNF-3) and cytolethal distending toxins (CDT-1, CDT-2, CDT-3, CDT-4) in Escherichia coli isolates isolated from extraintestinal infections and the determination of their phylogenetic relationship by PFGE. International Journal of Clinical Practice. 2022;2022:7200635. DOI: 10.1155/2022/7200635
  93. 93. Gundogdu A, Bolkvadze D, Kilic H. In vitro effectiveness of commercial bacteriophage cocktails on diverse extended-spectrum beta-lactamase producing Escherichia coli strains. Frontiers in Microbiology. 2016;7:1761. DOI: 10.3389/fmicb.2016.01761

Written By

Hadi Sajid Abdulabbas, Noor Al-Khafaji, Suhad Y. Abed, Hussein Al-Dahmoshi and Huda Najh Al-Baroody

Submitted: 04 January 2023 Reviewed: 05 January 2023 Published: 17 February 2023