Some Arrhenius acids.
\r\n\tThorough research and analyses of most upfront neuroimaging techniques and various in vivo applications of specific mapping of normal function and under diseases are the purpose of this book. This book would hopefully capture the interests of colleagues interested in neuroimaging principles and applications, research and developments, as well as disease diagnosis and treatment, and could help convey the methodological and developmental perspectives of brain function in the medical application and research field.
\r\n\t
The concept of acids and bases have been defined many times in different ways. Several scientists put various definitions to characterize the acids and bases in which some of the concepts are quite narrow and some are comprehensive. Acids and bases are existing everywhere in our daily life. Every liquid except water, that we used having acid and basic properties, for example, vinegar (contains acetic acid), soft drinks (contains carbonic acid), buttermilk (contains lactic acid), soap (contains base). The earliest definitions were made on the basis of their taste and their effect on other substances.
Acid are those substances which have sour in taste, sharp odor, corrosive, having pH < 7 and turn blue litmus red. The neutralization reaction occurs when acid reacts with alkali, forms salt and water. The products are less acidic or basic than reactants. It reacts with metals, produces H2. For example, the reaction between sodium hydroxide (base) and hydrochloric acid, forms sodium chloride (salt) and water.
The strength of acids and bases depends on following factors:
Polarity of the molecule and strength of H▬A bond
Electro negativity
Size
As the polarity of the molecule increases, the electron density will get away from hydrogen atom and it becomes H+ (proton). The greater is the positive charge on the hydrogen atom, H▬A bond will become weaker, lesser is the energy required to break it. Then, the proton will easily dissociate in the solution. Hence, it will be the strong acid [1].
The priority should be given to the polarity of H▬A bond, when we compare the acidic strength of elements in the same row. But when we compare the acidic strength of elements of same group of periodic table, then priority is given to strength of H▬A bond.
The hydrogen is attach to the more electronegative atom is more acidic. For example - the hydrogen is attached to the oxygen (E.N = 3.5) is more acidic than the hydrogen attached to nitrogen (E.N = 3.0, which is less electronegative than oxygen).
The size of “A” atom affects the acidity of acidic strength. As the size of the atom increases, the bond becomes weaker and acidic strength increases [2].
Hybridization plays an important role in determining the acidic strength. As the hybridization moves from sp3 to sp, the “s” character increases, so acidic strength increases.
Bases are those substances which have bitter taste, odorless, turn red litmus blue, having pH more than 7 and becomes less alkaline when react with acid. These are violent and less reactive than acids. For example, NaOH (Sodium hydroxide), LiOH (Lithium hydroxide), KOH (potassium hydroxide), etc.
These are the general properties of acids or bases, but not true for every single acid or base. There are some important concepts:
Arrhenius acid-base theory
Lewis acid-base concept
Bronsted-Lowry concept
Lux-flood concept
Solvent-system concept
The Arrhenius acid-base theory was proposed by Swedish Svante Arrhenius. It was the first modern approach to acid-base concept. This theory is quite simple and useful. According to Arrhenius theory, acids are the compound that increases the concentration of H+ or proton in aqueous solution. The released H+ ion or proton is not free-floating proton, it exists in combined state with the water molecule and forms hydronium ion (H3O+). The common examples of Arrhenius acid includes HCl (hydrochloric acid), H2SO4 (sulphuric acid), HNO3 (nitric acid), etc. as shown in Table 1.
Arrhenius acid formula | Name |
---|---|
HClO3 | Chloric acid |
HNO3 | Nitric acid |
HClO4 | Perchloric acid |
H3PO4 | Phosphoric acid |
H2SO4 | Sulphuric acid |
H2SO3 | Sulfurous acid |
HCl | Hydrochloric acid |
CH3COOH | Acetic acid |
HBr | Hydrobromic acid |
Some Arrhenius acids.
When it is dissolved in water, then:
The acids like HNO3, HCl, etc. gives one proton on dissociation, called monoprotic acids. The acids like H2SO4, H3PO4, etc. which having more than one hydrogen atoms and gives more than 1 H+ ions on dissociation, called polyprotic acids. It is not necessary that polyprotic acids are stronger than monoprotic acids.
Similarly, Arrhenius bases are compounds that increase the concentration of OH− or hydroxide ion in aqueous solution or having at least one OH− ion in formula. The common examples of Arrhenius base includes NaOH (sodium hydroxide), KOH (potassium hydroxide), Ca(OH)2 (calcium hydroxide), Mg(OH)2 (magnesium hydroxide), NH4OH (ammonium hydroxide), etc. as shown in Table 2.
Arrhenius base | Name |
---|---|
NaOH | Sodium hydroxide |
NH4OH | Ammonium hydroxide |
KOH | Potassium hydroxide |
Mg(OH)2 | Magnesium hydroxide |
Ca(OH)2 | Calcium hydroxide |
Al(OH)3 | Aluminum hydroxide |
Some Arrhenius bases.
When sodium hydroxide dissolved in water, it fully dissociates into ions Na+ and OH−, this dissociation increases the concentration of hydroxide ions in the solution.
When Arrhenius acid and Arrhenius base reacts, salt and water is formed as product, the reaction is known as neutralization reaction. For example:
The acids which are completely ionized in aqueous solution, is termed as strong acids such as HCl, HNO3, H2SO4, etc.
Hydrochloric acid is a strong acid. When it dissociates into water, hydronium ion and chloride ions are formed as product. Chloride ions are weak base, but its basicity does not make the solution basic because acidity is overpowering the basicity of chloride ions. The H+ ions combine with water molecule and form hydronium ion. In case of strong acid, the concentration of hydronium ion formed is equal to the concentration of the acid whereas in case of weak acids, the concentration of hydronium ions in solution is always less than the concentration of hydrogen ions.
Whereas the acids which are weakly ionized in aqueous solution, is termed as weak acids such as acetic acid (CH3COOH).
In case of weak acids, the concentration of hydronium ion is always less than the concentration of acid.
Similarly, bases which are completely ionized in aqueous solution, are termed as strong bases such as NaOH, KOH, etc. whereas the bases which are weakly ionized in aqueous solution, is known as weak bases such as ammonium hydroxide (NH4OH), calcium hydroxide (Ca(OH)2), etc.
Note: It is not necessary that strong acids/bases are concentrated and weak acids/bases are dilute. Because, the dissociation of a substance does not depend on its concentration.
This theory explains many phenomena like strength of acids and bases, salt hydrolysis and neutralization.
When electron is removing from hydrogen atom, hydrogen ion H+ is formed which is very reactive. But this H+ ion does not exist in aqueous solution. Since in aqueous medium, it reacts with water molecule and forms hydronium ion (H3O+). Water is a polar molecule; it has the ability to attract the hydrogen ion (H+). The water contains hydrogen and oxygen in which oxygen (EN = 3.5) is more electronegative that pulls the electron density towards it and causing the partial negative charge on the molecule. Due to partial negative charge, it has ability to attract the positively charged hydrogen ion (H+) and form hydronium ion (H3O+). Hydronium ions are more stable than hydrogen ions.
The hydronium ion is very important factor in chemical reaction that occurs in aqueous solutions [3]. It is formed by the protonation of water.
The pH of solution can be determined by the concentration of hydronium ion.
pH = −log (H3O+)
From this equation, we can find the pH of pure water. The pH of pure water comes to be 7 that is considered to be neutral. The solution is either acidic or basic depending on the change in the concentration of hydronium ion.
According to Figure 1:
If the concentration of the hydronium ion in the solution increases means more than 10−7 mol/l, pH increases that makes the solution more acidic.
If the concentration of the hydronium ion in the solution decreases means <10−7 mol/l, pH decreases that makes the solution more basic.
pH scale.
The word amphoteric is derived from Greek word “amphi” that means both (acid and base). Amphoteric substances are those that has potential to act either as an acid or base. For example: H2O (water) [3].
On dissociation, it ionizes into H+ and OH− (hydroxide) ion. The presence of H+ indicates an acid and the presence of OH− ion indicates a base. Since, water is a neutral molecule. So, it dissociates equally into H+ and OH− ion.
According to Arrhenius acid-base theory:
The amphoteric nature of water is very important because most of the acid-base chemical reactions takes place in the presence of water. Water is important amphoteric compound that can act as both an Arrhenius acid or Arrhenius base.
Auto-ionization of water [4];
The H+ ion (a bare proton) does not exist in the solution, it forms hydronium ions by hydrogen bonding with nearest water molecule. Many books refers the “concentration of hydrogen ions” which is not correct. Because there are no H+ ions, only hydronium ions in the solution. Technically, the number of hydronium ions formed is equal to the number of hydrogen ion. So, both can be used.
This theory is used to explains:
Strength of acid and bases
The strength of Arrhenius acid and Arrhenius base can be determined by the extent to which it dissociate to give H+ ion or hydroxide ion [5].
The properties of acids and bases in aqueous medium.
Neutralization of acid by reaction with base
This theory is very limited, out of three theories. According to this theory, the solution medium should be aqueous and acid should produce hydrogen ion (H+) or base should produce hydroxide ion (OH−) on dissociation with water. Hence, the substance is regarded as Arrhenius acid or Arrhenius base when it is dissolved in water. For example, HNO3 is regarded as Arrhenius acid when it is dissolved in aqueous solution. But when it is dissolved in any other solvent like benzene, no dissociation occurs. This is against the Arrhenius theory.
Arrhenius theory is not applicable on the non-aqueous or gaseous reactions because it explained the acid-base behavior in terms of aqueous solutions.
In Arrhenius theory, salts are produce in the product which are neither acidic nor basic. So, this theory cannot explain the neutralization reaction without the presence of ions. For example, when acetic acid (weak acid) and sodium hydroxide (strong base) reacts, then the resulting solution basic. But this concept is not explained by Arrhenius.
Arrhenius theory is only applicable to those compounds which having formula HA or BOH for acids and bases. There are some acids like AlCl3, CuSO4, CO2, SO2 which cannot be represented by HA formula, this theory is unable to explain their acidic behavior. Similarly, there are some bases like Na2CO3, NH3, etc. which do not represented by BOH formula, this theory is unable to explain their basic behavior.
We have been previously learned an Arrhenius acid-base theory which provided a good start towards the acid-base chemistry but it has certain limitations and problems. After this theory, a Danish chemist, named Johannes Nicolaus Bronsted and British scientist, Thomas Martin Lowry proposed a different definition of acid-base that based on the abilities of compound to either donate or accept the protons. This theory is known as Bronsted-Lowry theory, also called Proton theory of acid and base. This theory gives a more general and useful acid-base definition and applies to wide range of chemical reactions. In this theory, we usually consider a hydrogen atom as a proton that has lost its electrons and becomes a positively charged hydrogen ion (represented by symbol, H+).
According to Bronsted-Lowry concept, an acid is considered to be Bronsted-Lowry acid which is capable to donate a proton to someone else. A base is considered to be Bronsted-Lowry base which is capable to accept a proton from someone else. From here, it can note that when an acid reacts with a base, the proton is transferred from one chemical species to another.
Bronsted-Lowry acid-Hydrogen ion (Proton) donor.
Bronsted-Lowry base-Hydrogen ion (Proton) acceptor.
Conjugate acid: It forms when a base accepts proton.
Conjugate base: It forms when an acid donates proton.
Note: If an acid is strong, the conjugate base will be weaker and if the base is strong, the conjugate acid will be weak.
Consider the following chemical reaction:
In this reaction, HCl is an acid because it is donating proton to NH3. Therefore, HCl is act as Bronsted-Lowry acid whereas NH3 has a lone pair of electrons which is used to accept the protons. Therefore, NH3 is act as Bronsted-Lowry base. This reaction is reversible also. In reversible case, the ammonium ion reacts with chloride ion and again converts into ammonia (NH3) and hydrogen chloride (HCl). In this case, the ammonium ion is donating a proton, called conjugate acid. The chloride ion (Cl−) ion is accepting a proton, called conjugate base.
There are two conjugate pairs—conjugate pair 1 and conjugate pair 2.
Conjugate pair 1: HCl and Cl−
Conjugate pair 2: NH3 and NH4+
From that equation, the ammonium ion (NH4+) is a conjugate acid of base ammonia and chloride ion (Cl−) is a conjugate base of acid hydrogen chloride.
Note: According to the theory of Arrhenius, the reaction between HCl and NH3 is not considered as acid-base reaction because none of these species gives H+ and OH− ions in water.
In this reaction, the nitric acid donates a proton to the water, therefore it act as a Bronsted-Lowry acid. Since, water accepts a proton from nitric acid, so it is act as Bronsted-Lowry base. In this reaction, the arrow is drawn only to the right side which means that reaction highly favours the formation of products.
In this reaction, the water is losing its proton, becomes hydroxide (OH−) and donates its proton to the ammonia. Therefore, water is act as Bronsted-Lowry acid. Ammonia is accepting a proton from the water, forms ammonium ion (NH4+). Therefore, ammonia is act as Bronsted-Lowry base.
From the above two reactions, we can conclude that the water is Amphoteric in nature which means that it can act as both: Bronsted-Lowry acid and Bronsted-Lowry base.
This theory is able to explain the acid-base behavior in aqueous and non-aqueous medium.
It explains the basic character of substances like NH3, CaO, Na2CO3, that is, which do not contain −OH group but according to Arrhenius theory, they are not considered as bases.
It explains the acidic character of substances like CO2, SO2, etc. which do not contain hydrogen ion group but according to Arrhenius theory, they are not considered as acids.
This theory also explains the acid-base behavior of ionic species.
According to Bronsted-Lowry theory, same compound is act as acid in one reaction and act as base in other reaction. So, sometimes it is very difficult to predict the exact acid or base in a reaction.
This theory is not able to explain the acidic, basic as well as Amphoteric gaseous molecule.
This theory does not explain the behavior of acids like BF3, AlCl3, BCl3, etc. which do not protons to loose or donate.
This theory does not explain reactions between acidic oxides (CO2, SO2, SO3) and basic oxides (CaO, MgO, BrO) which takes place in the absence of solvent.
These two theories are not against to each other in any way, in fact Bronsted-Lowry theory is advance to the Arrhenius theory.
According to the Arrhenius theory, a substance which produces hydrogen ion in water, called acid. A substance which produces hydroxide ion in water, called base.
According to Bronsted-Lowry theory, an acid is proton donor and base is proton acceptor.
According to Arrhenius theory, hydrochloric acid is an acid which gives hydrogen ions in water but according to Bronsted-Lowry theory, hydrochloric acid is an acid because it donates a proton to the water molecule. By observing both concepts, water is acting as a base. So, we can see here that both theories are very similar to each other.
Actually, Arrhenius theory is limited only to the aqueous solution. It does not explain the acid behavior in gaseous form.
The Bronsted-Lowry theory which we have been previously studied was a good startup for acid-base chemistry. The Bronsted-Lowry concept was based on the transfer of proton from one chemical species to another. But this theory has certain limitations. UC Berkeley scientist, G.N. Lewis, in 1923 proposed a new acid-base theory which is based on their transfer of electrons. This theory is more advanced and flexible than Bronsted-Lowry because it explains the acid-base behavior in that molecules which do not contain hydrogen ions or in non-aqueous medium.
According to this theory, an acid is a substance which has capability to accept the non-bonding pair of electrons, called Lewis acid. They are sometimes referred as electron deficient species or electrophile.
Lewis acid-electron-pair acceptor.
Lewis acid should have a vacant or empty orbital.
All cations (Na+, Cu2+, Fe3+) are Lewis acids because they have capability to accept a pair of electrons but all Lewis acids are not cations.
More is the positive charge on the metal, more is the acidic character. Fe3+ is good Lewis acid than Na+.
The ion, molecule or an atom which has incomplete octet of electrons are also Lewis acids.
For example: BF3.
Here, you can see that the central atom boron has six electrons in its outermost shell. So, it has ability to accept more electrons due to the presence of an empty orbital and hence, act as Lewis acid.
The molecule in which the central atom has more than eight electrons (SiF4, SiBr4), are also considered as Lewis acids.
The molecule like CO2, SO2, etc. are also considered as Lewis acid. These types of molecules form multiple bond between the atoms of different electronegativity. In case of transition metal ions, the metal having more electronegativity makes stronger Lewis acids.
Electron poor п: system is also considered as Lewis acids, for example, [CH2=CH]+, etc.
A base is a substance which has capability to donate the electrons, called Lewis base. They are sometimes referred as electron rich species or Nucleophile.
Lewis base-electron-pair donor
All metal anions (F−, Cl−, Br−, I−) are Lewis base because they have ability to donate the electron but all Lewis bases are not anions.
The ion, molecule or an atom which having a lone pair of electrons, are also considered as Lewis base.
The electron-rich п system is also considered as Lewis bases, for example, benzene, ethene, etc.
The strength of the Lewis base can be increased by increasing the electron density.
Note: When a Lewis acid reacts with Lewis base, then Lewis acid uses its lowest unoccupied molecular orbital (LUMO) and base uses its highest occupied molecular orbital (HUMO) to create a bonded molecular orbital. Actually, Lewis acid and Lewis base both have LUMO and HUMO but HUMO is always considered as base and LUMO is always considered as acid.
A simplest example of Lewis acid-base is shown by a chemical reaction:
In this reaction, chloride ion acts as Lewis base because it has lone pairs of electrons and sodium ion has positive charge, so it acts as Lewis acid.
When a Lewis acid reacts with a Lewis base, then a Lewis acid-base reaction occurs in which the molecule which act as Lewis base donate its electron pair into the empty orbital of an acid, forms Lewis acid-base adduct as shown in Figure 2. The adduct formed contains a covalent coordinate bond between Lewis acid and Lewis base. The above explanation implies that the Lewis acid is a low electron density centre and Lewis base is a high electron density centre [6].
Acid-base neutralization.
In this reaction, the two ammonia molecules reacts with silver ion. The ammonia has lone pair of electrons, so it has the ability to donate the lone pairs of electrons and acts as Lewis base. The positive charge on silver denotes its electrophilic nature that means it has an ability to accept the pairs of electrons and act as Lewis acid (by Lewis definition).
Here, it can also be noted that when a Lewis acid reacts with a Lewis base, there is no change in the oxidation number of any of these atoms.
This theory is not able to explain that why all acid-base reactions do not involve the covalent coordination bond.
This theory is also unable to explain the behavior of some acids like hydrogen chloride (HCl) and sulfuric acid (H2SO4) because they do not form the covalent coordination bond with bases. Hence, they are not considered as Lewis acids.
This theory cannot explain the concept that why the formation of coordination bond is a slow process and acid-base reactions is a fast process.
This theory cannot explain the concept of relative strength of acids and bases.
This theory fails to explain the catalytic activity of some Lewis acids.
All Arrhenius acids and Bronsted Lowry acids are Lewis acids but reverse is not true.
Acids and bases are very important for modern society and in our daily lives. They exist everywhere in our body and in our surroundings. The theory that has been described in this chapter has given us all the basic information of acids and bases. In this chapter, we have discussed all the three basic theory of acid-base chemistry-Arrhenius theory, Bronsted-Lowry theory and Lewis acid-base theory. Acids and bases have vital role in the area of medicine. From this concept, it is now easy to treat the diseases with the improved medicines by complex understanding of acids and bases. For example, If the concentration of hydrogen ion increases in the human blood, acidity increases that results weakness in body. In that condition, the body should keep alkaline by digesting food that produces alkali in the body, to neutralize the acidity.
Definitely, without acids or bases information, our lives would look different to how it looks now. Many products we are using today would have no use without this knowledge.
I am eternally grateful and beholden to my family. My mother Mrs. Suman Munjal, Father Mr. Bhim Sain Munjal and sister Mrs. Shweta Java for strengthening me with the opportunities and experiences which enabled me in reaching these heights. The reason behind this success is their selfless encouragement that helped me explore new dimensions in my life.
I especially acknowledge the contribution of my confidence Dr. Himanshu Mathur and brother Mr. Chirag Munjal for his continuous and consistent support, efficient efforts of proof reading my works, kind words of motivation, and providing me with helpful tips. I would like to show my appreciation for sharing his expertise and experiences for organizing required resources.
None.
I Shikha Munjal undersigned solemnly declare that all the information submitted by me in this chapter is correct, true and valid.
During cell division, proper chromosome segregation must be achieved to avoid unequal distribution of chromosomes to daughter cells. Spindle microtubules must attach to a single region of each chromosome, termed the “centromere,” in most eukaryotes. The kinetochore is a complex of proteins that are located at the centromere. Defects in the centromere-kinetochore and spindle check point functions lead to aneuploidy and cancer and are often associated with a poor prognosis. Therefore, it is highly important to study the spatiotemporal regulation and the structures of centromere and kinetochore proteins to understand chromosome instability (CIN) during development and cancer progression. The key question is how the chromosomal location and function of a centromere (i.e., centromere identity) are determined and thus participate in accurate chromosome segregation. In most species with regional centromeres (see the previous chapter for an exception of the budding yeast
The structure of CENP-A-containing nucleosomes is more compact than H3-containing nucleosomes [2, 3, 4]. Although it is commonly reported that CENP-A-containing nucleosomes are formed with the canonical histones H2A, H2B, and H4 at the active centromeres, their structure remains controversial among different research groups [5]. CENP-A is at the top of a hierarchy of the pathway that determines the assembly of kinetochore components [6], and how CENP-A defines the position of the centromere in humans is the fundamental question. While the function of CENP-A protein is highly conserved among most eukaryotes, its protein sequence has apparently undergone both convergent and divergent evolution [7], and the centromere DNA repeats with which the CENPA-containing nucleosome interacts are also highly diverged. The architectures of CENP-A chromatin with quantified numbers of CENP-A (CenH3) molecules (e.g., ~400 molecules of human CENP-A/kinetochore) have been reported using fluorescence microscope assays among different species [8, 9, 10, 11]. CENP-A is also called CenH3 (centromere-specific histone H3). Its homologs in different species are summarized in Table 1.
Species | CENP-A homolog | E3 ligase (ubiquitylation or sumoylation) | Function | Preceding PTMs before ubiquitylation or sumoylation | Another proposed factor relevant to the E3 function |
---|---|---|---|---|---|
Cnp1/SpCENP-A | N.D. | Proteasomal degradation to remove non-centromeric Cnp1 | N.D. | N-terminal domain of Cnp1, Overexpression of H3/H4 | |
CID/Cid | CUL3/RDX (ubiquitylation) | Interacts with CAL3 and promotes CAL3 function, loading and stabilizing (maintenance) of CID protein at centromeres (proteasomal independent mechanism) | N.D. | N.D. | |
SCFPpa (ubiquitylation) | Prevents the promiscuous incorporation of CID across chromatin during replication, (targeting CID that is not in complex with CAL1) | S20 phosphorylation | S20 phosphorylation | ||
APC/CCdh1 (ubiquitylation) | Degradation of the CAL1-CID complex (likely regulates centromeric CID deposition) | N.D. | N.D. | ||
CENP-A | CUL4A/RBX1/COPS8 | Facilitate interaction of CENP-A with HJURP through CENP-A ubiquitylation, CENP-A deposition at the centromere (proteasomal independent mechanism) | N.D. | COPS8 as an adaptor, heterodimerization of CENP-A, SUGT1-HSP90 | |
AtCENH3 | N.D. (VHHGFP4-human SPOP as synthetic E3 ligase expressed in | Proteasomal degradation of AtCENH3 | N.D. | N.D. |
E3 ligases for CENP-A in species with regional centromeres.
Note: E3s of some species (e.g.,
CENP-A contains a short centromere targeting domain (CATD) within the histone fold region [2] in the C-terminus. Replacement of the corresponding region of histone H3 with the CATD is sufficient to direct histone H3 to the centromere [2], and this chimeric histone can rescue the viability of CENP-A-depleted cells [2, 12]. The CENP-A C-terminus contains another tail domain that recruits CENP-C to promote centromere and kinetochore assembly [13, 14]. CENP-N was also identified as the first protein to selectively bind CENP-A nucleosomes but not H3 nucleosomes during centromere assembly [15].
Meanwhile, the functions of the N-terminal CENP-A are also reported for some species [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] (see also previous chapter, Sections 2.1, 2.2.2, 2.4.1, 2.9 and this chapter, Sections 2.1, 2.3, 2.4, 3.1, 4.1, 4.6, and 5.1). Loading of CENP-A at centromeres and its incorporation/deposition and maintenance in centromeric chromatin is cell cycle-regulated. In cells overexpressing CENP-A, the ectopic protein incorporates throughout the chromatin in interphase [28]. By the next G1, however, mis-incorporated CENP-A seems to have been cleared from chromatin by a mechanism that likely involves ubiquitin-mediated proteolysis, as suggested by experiments in yeast and
Mechanistic scheme for
Mechanistic scheme for human CENP-A pathways. (Right) In normal conditions, CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A mono- or di-ubiquitylation on lysine 124 (K124) and CENP-A centromere localization [
Models of epigenetic inheritance of CENP-A ubiquitylation through heterodimerization. In the octamer model, two CENP-A dimers in one nucleosome are split/diluted between the two daughter centromere-DNA sequences, and one CENP-A molecule replaces with one H3 molecule or leaves a molecule-free space during the replication/S phase. HJURP (Holliday junction recognition protein) predominantly interacts with ubiquitylated, preassembled “old” CENP-A, which resides mostly in nucleosomes. A non-ubiquitylated newly synthesized (“new”) CENP-A monomer targets ubiquitylated centromeric CENP-A through preassembled HJURP. Note that histone H4 is omitted for simplicity. (a) New CENP-A is appropriately ubiquitylated in a heterodimerization-dependent manner (i.e., dimers of old CENP-A with new CENP-A). In this way, both ubiquitylation and the location of the centromere are inherited epigenetically. (b) If K124 ubiquitylation does not occur on new CENP-A, the non-ubiquitylated CENP-A nucleosome distributed during the S phase does not recruit HJURP to the centromere because the affinity of non-ubiquitylated new CENP-A to HJURP is low. Subsequently, this loss of localization of HJURP at the centromere leads to the lack of new CENP-A targeting to ubiquitylated centromeric CENP-A through HJURP, and eventually to the lack of new CENP-A deposition. This figure is partly adapted from Niikura et al. [
Recently, many post-translational modifications of CENP-A and their functions have been reported [45]. They revealed the importance of these changes in CENP-A deposition at centromeres, proteolysis/protein stability, and recruitment of the CCAN (constitutive centromere-associated network) proteins [45]. Thus, here we focus on E3 ligase activities (i.e., on ubiquitylation and sumoylation) of CENP-A and summarize these functions for each species with regional centromeres in the following sections.
Fission yeast (
In fission yeast, the recruitment of the CENP-A-specific chaperone to the centromere is an essential step in epigenetic inheritance. The fission yeast Scm3 could be functionally homologous to HJURP. It interacts with CENP-A, localizes to centromeres during most of the cell cycle (except in mitosis), and is required for CENP-A deposition [48, 49]. Sequence analysis revealed a shared common domain in Scm3 and HJURP proteins [29]. Dunleavy et al. identified another chaperone known as Sim3 (start independent of mitosis 3) in fission yeast [50, 51]. Sim3 is homologous to known histone binding proteins NASP (human) and N1/N2 (xenopus) and aligns with Hif1 (
Mis16 (human homologs of Mis16 are RbAp46 and RbAp48) and Mis18 (human homologs of Mis18 are Mis18α and Mis18β) are required for loading of newly synthesized Cnp1/CENP-A into centromeric chromatin [54, 55], but are absent from organisms with point centromeres [44] (see also previous chapter, Section 2.3.3 and this chapter, Sections 3.1 and 4.1). Mis16 and Mis18 are also required for the maintenance of the hypoacetylation of histone H4 specifically within the central domain of the centromere [55], and Mis16 homologs are components of several histone chaperon complexes [56]. Moreover, acetylation of histone H4 lysine 5 and 12 (H4K5ac and H4K12ac) within the pre-nucleosomal CENP-A-H4-HJURP complex mediated by the RbAp46/48-Hat1 complex is required for CENP-A deposition into centromeres in chicken and humans [57], consistent with Hat1’s role in
In
Domain-specific function, such as the N-terminal function, of fission yeast Cnp1/CENP-A is also reported as budding yeast Cse4 [24, 25] (see also previous chapter, Section 2.4). Folco et al. demonstrated that alteration of the Cnp1 N-tail does not affect Cnp1 loading at centromeres, outer kinetochore recruitment, or spindle checkpoint signaling but significantly increases chromosome loss [17]. On the other hand, their N-tail mutants exhibit centromere inactivation enhanced by an altered centromere. The N-tail mutants specifically reduced localization of the CCAN proteins CENP-TCnp20 and CENP-IMis6, but not CENP-CCnp3. Therefore, these authors suggest that the Cnp1 N-tail maintains the epigenetic stability of centromeres in fission yeast, at least in part via assembly of the CENP-T branch of the CCAN. Tan et al. identified a proline-rich “GRANT” (Genomic stability Regulating site within CENP-A N-Terminus) motif that is essential for Cnp1 centromeric targeting [24]. They showed that especially GRANT proline-15 (P15) undergoes cis-trans isomerization to drive proper chromosome segregation. This cis-trans isomerization appears to be carried out by two FK506-binding protein (FKBP) family prolyl cis-trans isomerases. In addition, they identified Sim3 as a Cnp1 NTD interacting protein that is dependent on GRANT proline residues. Together, they suggest cis-trans proline isomerization of Cnp1 is required for precise propagation of centromeric integrity in fission yeast, presumably via targeting Cnp1 to the centromere. Thus, the requirement of cis-trans proline isomerization of CenH3Cnp1 in fission yeast studies appears to be consistent with the one of CenH3Cse4 proposed in budding yeast studies [63] (see also previous chapter, Section 2.2.3). However, they suggest that the GRANT-prolines of Cnp1 do not coordinate proteolysis of the SpCENP-A protein as do proline residues in the budding yeast Cse4 NTD. In addition, Tan et al. showed that sequential truncation of the NTD did not improve the stability of the protein, suggesting that the NTD of Cnp1 does not regulate the turnover of the protein [25]. Instead, they proposed that heterochromatin integrity may contribute to Cnp1 stability and promote its chromatin incorporation.
Compared to the studies of budding yeast and some of the other species, currently, there are few studies on post-translational modifications and domain-specific functions of fission yeast CenH3/Cnp1. Further research is required on the relationships among Cnp1 post-translational modifications, structural change, interaction with its chaperones (e.g., Scm3 and Sim3), and surrounding heterochromatin regulation.
In
Li et al. reported that the DNA polymerase (Pol) epsilon catalytic subunit A (pol2), Cdc20, interacts with the Dos1-Dos2 silencing complex to facilitate heterochromatin assembly and inheritance of H3K9 methylation during the S phase [67]. We note that fission yeast
It is important to clarify how exactly the Dos1-Dos2-Cdc20 complex contributes to the inheritance of preexisting Cnp1 during centromere replication [66]. Interestingly, Rik1 is a component of silencing factors. The heterochromatic methylation of histone H3-K9 by Clr4 is promoted by silencing factors: Dos1-Dos2-Rik1-Lid2 [67]. Horn et al. reported that subunits of a cullin-dependent E3 ubiquitin ligase interact with Rik1 and Clr4, and Rik1-TAP preparations exhibit robust E3 ubiquitin ligase activity [68]. They also demonstrated that the expression of a dominant-negative allele of the Pcu4 cullin subunit (the human Cullin-4 homolog) disrupts the regulation of K4 methylation within heterochromatin. Hong et al. also reported a novel complex that associates with the Clr4 methyltransferase, termed the CLRC (CLr4-Rik1-Cul4) complex using affinity purification of Rik1, and found that Rik1 interacts with the fission yeast Cullin4 (Cul4, encoded by
Consistent with the results in budding yeast Cse4 [23, 70, 71] (see also the previous chapter, Section 2.1), Gonzalez et al. reported that the overexpression of fission yeast Cnp1 results in the assembly of Cnp1 at non-centromeric chromatin during mitosis and meiosis [18]. The non-centromeric Cnp1 is preferentially recruited near heterochromatin and is able to recruit kinetochore components, and Cnp1 overexpression leads to severe chromosome missegregation and spindle microtubule disorganization. Moreover, ectopic Cnp1-containing chromatin is inherited over multiple generations using pulse induction of Cnp1 overexpression. Interestingly, ectopic assembly of Cnp1 is suppressed by overexpression of histone H3 or H4 (Table 1), as other groups suggest that the balance between histones H3 and H4 and CENP-A is important for centromeric chromatin assembly [72, 73]. Further, Gonzalez et al. demonstrated that deletion of the N-terminal domain of Cnp1 results in an increase in the number of ectopic CENP-A sites, suggesting that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis [18].
However, it is not yet clear by which E3 ligase the exogenous Cse4 expressed in the fission yeast
In most eukaryotes, the centromere is flanked and bordered by the epigenetically distinct heterochromatin domain. The establishment of centromeric heterochromatin profoundly correlates to centromere function, but the precise role of heterochromatin in centromere specification and activation is not yet clear. The transition between point centromeres (e.g., budding yeast
Yang et al. demonstrated that budding yeast Cse4 can localize to centromeres in fission yeast and partially substitute fission yeast Cnp1, however, overexpressed Cse4 localizes to heterochromatin regions [26]. Cse4 undergoes efficient ubiquitin-dependent degradation in
However, E3 ligase targets endogenous Cnp1 is still unclear, and its degradation mechanism through heterochromatin and RNAi machinery in fission yeast is still elusive. Further study is required to elucidate how E3 ligase activity is involved in RNAi-dependent heterochromatin formation and maintenance in fission yeast.
Fruit fly (
The mechanism of heterochromatin silencing in fruit flies has been reported [81], including the position-effect variegation [82], histone modification [83], and the RNAi machinery [84]. Recently, a PIWI-interacting RNAs (piRNAs) system has been implicated in heterochromatin formation [85, 86, 87, 88], and the mechanism of heterochromatic piRNA production is being elucidated in
The timing of CID incorporation occurs during metaphase/anaphase in
In
Recently, there have been more reports published on the mechanism of how these three proteins (CID, CAL1, and CENP-C) work in CID incorporation. Chen et al. showed that the constitutive centromere protein CENP-C is required for recruitment of the
CENP-A is maintained to mark paternal centromeres, whereas most histones are removed from mature sperm. In
Studies of the neocentromere have also been performed in
In
In humans, ectopic localization of CID depends on the H3.3 chaperone DAXX rather than the centromeric CENP-A specific chaperone HJURP [34] (Figure 2, left). This human CENP-A-containing ectopic nucleosome involves a heterotypic tetramer that contains CENP-A-H4 with H3.3-H4 [34] (Figure 2, left). Cells overexpressing human CENP-A are more tolerant of DNA damage induced by camptothecin or ionizing radiation, and both the survival advantage and CTCF occlusion by the aberrant nucleosome of heterotypic tetramer in these human cells are dependent on DAXX [34] (Figure 2, left). Although
Moreno-Moreno et al. reported that the F box protein partner of paired (Ppa), which is a variable component of an SCF E3-ubiquitin ligase complex, controls CenH3CID stability in
Huang et al. showed that CID is phosphorylated at serine 20 (S20) by casein kinase II (CK2) and that the phosphorylated form is enriched on chromatin during mitosis [33] (Figure 1c and g; Table 1). Their results revealed that S20 phosphorylation regulates the turnover of prenucleosomal CID through the SCFPpa-proteasome pathway (Figure 1c; Table 1) and that phosphorylation facilitates removal of CID from ectopic but not from centromeric sites in chromatin (Figure 1g and h; Table 1). They provided multiple lines of evidence for an essential role of S20 phosphorylation in regulating restricted incorporation of CID into centromeric chromatin, suggesting that modulation of the phosphorylation state of S20 may lead to fine-tuned control of CID levels to prevent malignant incorporation into non-centromeric chromatin.
On the other hand, factors/components that stabilize ectopically incorporated CID and are required for neocentromere formation and its maintenance are not clear in
In most eukaryotes, including humans, the centromere has no defined DNA sequence but is associated with large arrays of repetitive DNA; in humans, this sequence is a 171-bp alpha-satellite DNA, although several other sequence types are found in this region. CENP-A-containing nucleosomes are formed with canonical histones H2A, H2B, and H4 at the active centromeres [5]. CENP-A nucleosomes localize to the inner plate of mammalian kinetochores [119] and bind to the 171-bp alpha-satellite DNA. Recently, the importance of centromeric cis-element, transcription, and centromeric long noncoding RNA (cenRNA) for centromere integrity has been suggested in various species, including humans [77, 78, 79] (see also Sections 3 and 5). Interestingly, when the CENP-B box DNA sequence is located proximal to the CENP-A nucleosome, CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A [120]. In humans, a centromeric long noncoding RNA (cenRNA) is required for targeting CENP-A to the centromere [80].
Currently, it is commonly reported that CENP-A-containing nucleosomes are formed with canonical histones H2A, H2B, and H4 at the active centromeres, however, their structure remains controversial among different research groups [5]. Bui et al. suggest that CENP-A nucleosomes alter from tetramers to octamers before replication and revert to tetramers after replication, using combinatory methods, including atomic force microscopy [38]. It is noteworthy that reversible chaperone binding, chromatin fiber folding changes, and CENP-A K124 acetylation (K124ac) and H4 K79 acetylation (K79ac) are concurrent with these structural transitions. Further computational modeling suggests that acetylation of K124 causes tightening of the histone core and hampers accessibility to its C-terminus, which in turn reduces CENP-C interaction [39] (see also the following paragraph about the function of histone H4 acetylation). Further study, including the solution of real-time post-translational modifications or the 3D structure of free Cse4 complexes, is required to determine how different chaperons recognize Cse4/CENP-A-H4 for incorporation into different locations of chromatin.
CENP-A contains a short centromere targeting domain (CATD) within the histone fold region [2]. Replacement of the corresponding region of H3 with the CATD is sufficient to direct H3 to the centromere [2], and this chimeric histone can rescue the viability of CENP-A-depleted cells [2, 12]. On the other hand, Logsdon et al. found contributions from small portions of the N-terminal tail and the CATD in the initial recruitment of CENP-C and CENP-T, using a LacO/LacI ectopic centromeric chromatin assembly system [20]. Jing et al. reported that deletion of the first 53 but not the first 29 residues of CENP-A from the N-terminus, resulted in its cytoplasmic localization [121]. They identified two motifs for CENP-A nuclear accumulation and one motif involved in the centromeric accumulation of CENP-A, as well as the interaction of CENP-A with core histone H4 and CENP-B.
Early studies in human cells showed that CENP-A mRNA and protein start to accumulate in the mid-S phase and peak in G2 [122, 123], however, further cell type-specific regulation of human CENP-A mRNA and protein remains to be studied.
In human cells, the incorporation of newly synthesized CENP-A occurs in telophase/early G1 [94, 95]. The incorporation of newly synthesized CENP-A into centromeric nucleosomes depends on the HJURP, which is a CENP-A-specific chromatin assembly factor [41, 42, 43]. Like CENP-A, HJURP is also assembled during early G1 to centromeres [42, 43, 94, 96]. The primary structural analysis demonstrated that human HJURP is a distant counterpart of Scm3, which is required to deposit centromeric nucleosomes in yeast [29]. CENP-A interacts with HJURP as a soluble pre-nucleosomal complex, and the unique structural dynamics of HJURP together with CENP-A/H4 heterodimer/tetramer (pre-nucleosomal CENP-A-H4-HJURP complex) have been reported [3, 124, 125, 126, 127, 128, 129, 130, 131, 132]. HJURP recruitment to centromeres depends on the activity of the Mis18 complex [41, 104], which affects the histone modification and DNA methylation status of centromeres [54, 59]. The human proteins hMis18 and M18BP1/KNL2 are recruited to the centromere at telophase/G1, suggesting that the hMis18 complex and RbAp46/48 (homologs of Mis16) prime the centromere for CENP-A localization [54, 133]. Moreover, acetylation of histone H4 lysine 5 and 12 (H4K5ac and H4K12ac) within pre-nucleosomal CENP-A-H4-HJURP complex mediated by the RbAp46/48-Hat1 complex is required for CENP-A deposition into centromeres in chickens and humans [57], consistent with the role of Hat1 shown in
Currently, the proteolysis mechanism for mis-incorporated human CENP-A and its E3 ligase is not yet clear (Figure 2d), and there are no reports to date on proteasome-mediated degradation of human CENP-A [138]. We reported that mono- or di-ubiquitylation of CENP-A K124 is required for CENP-A deposition at the centromere [35] (Figure 2, right). However, the stability of endogenous CENP-A is not affected by CUL4A or RBX1 depletion, and the stability of exogenous CENP-A K124R is the same as in wild-type cells. Rather, overexpression of a monoubiquitin-fused CENP-A mutant induces neocentromere formation, suggesting that signaling CENP-A mono- or di-ubiquitylation determines centromere location and activity [115] (see also Sections 4.2 and 4.3). Future studies are required to reveal how ectopic CENP-A is degraded and removed from the non-centromeric chromosome, and/or how the neocentromere established through CENP-A ubiquitylation is deactivated in humans (Figure 2c and d). This proteolysis could be initiated on chromatin and the machinery involved could be specifically excluded from centromeric regions. Alternatively, mis-incorporated CENP-A nucleosomes may dissociate more easily than those properly localized and be subsequently degraded in the nucleoplasm [139]. Obuse et al. performed chromatin immunoprecipitation with an anti-CENP-A monoclonal antibody using HeLa interphase nuclei and systematic identification of its interactors by mass spectrometric analyses [140]. They identified UV-damaged DNA binding protein 1 (DDB1) as a component of the CEN complex and BMI-1 that is transiently co-localized with the centromeric region in interphase.
RbAp46 forms a complex with the CRL4 ubiquitin ligase and DDB1 protein (where DDB1 mediates the association of CUL4 with its substrate-specific receptor—RbAP46) [141, 142]. RbAp46 is required for stabilizing CENP-A protein levels and the CRL4-RbAp46 complex activity promotes efficient new CENP-A deposition in humans [142]. This is in contrast to studies in yeast and fruit flies, where the association of CENP-A with the SCF E3-ubiquitin ligase complex leads to CENP-A degradation. However, our group showed that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A mono- or di-ubiquitylation on lysine 124 (K124) and CENP-A centromere localization, although our results suggest that DDB1 is not required for CENP-A recruitment to centromeres [35] (Figure 2, right; see also Sections 4.2–4.5). In humans, soluble CENP-A is associated with the centromeric CENP-A specific chaperone HJURP (see also Introduction). Depletion of HJURP leads to a significant decrease in CENP-A levels, suggesting that HJURP protects the fraction of CENP-A that will be incorporated at the centromere in G1 while remaining “free” CENP-A will be degraded to prevent its incorporation into non-centromeric chromatin [42, 43]. Our results also support this model, because CENP-A ubiquitylation enhances the affinity between HJURP with ubiquitylated CENP-A [35] (see also Sections 4.2–4.5).
One question is also generated about the function of H3.3 histone chaperone proteins, HIRA and DAXX, which were previously reported to promote ectopic CENP-A deposition in human cancer cells [34, 143]. Lacoste et al. found that CENP-A overexpression in human cells leads to ectopic enrichment at sites of active histone turnover involving a heterotypic tetramer that contains CENP-A-H4 with H3.3-H4 [34] (Figure 2, left). Ectopic localization of this particle (aberrant nucleosome) depends on the H3.3 chaperone DAXX rather than the centromeric CENP-A specific chaperone HJURP (Figure 2, left). Cells overexpressing CENP-A are more tolerant of DNA damage induced by camptothecin or ionizing radiation, and both the survival advantage and CTCF occlusion by the aberrant nucleosome of heterotypic tetramer in these cells are dependent on DAXX (Figure 2, left). However, post-translational modifications of human CENP-A, especially before recognition by DAXX and after incorporation into the ectopic nucleosome, must be elucidated (Figure 2a), and specific DAXX localization on these CTCF sites under CENP-A overexpression has to be confirmed experimentally (Figure 2b).
Shrestha et al. showed that mislocalization of CENP-A to chromosome arms is one of the major contributors to CIN, as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A-overexpressing cells [144]. Nye et al. reported that in human colon cancer cells, the H3.3 chaperones HIRA and DAXX promote ectopic CENP-A incorporation [143]. They found that a correct balance between levels of the centromeric chaperone HJURP and CENP-A is required to prevent ectopic assembly by H3.3 chaperones. Their results also suggest that CENP-A occupancy at the 8q24 locus is significantly correlated with amplification and overexpression of the MYC gene within that locus. Together, CENP-A mislocalization into non-centromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability [145]. Overexpression of CENP-A is a feature of many cancers and is likely associated with malignant progression and poor outcomes [146, 147, 148]. CENP-A overexpression is often accompanied by overexpression of its chaperone HJURP, leading to “epigenetic addiction” in which increased levels of HJURP and CENP-A become necessary to support rapidly dividing p53-deficient cancer cells [149]. In addition, the functional roles of DAXX and HIRA in the development of cancer and other diseases have been described [150, 151, 152, 153]. Elucidation of the proper mechanism of H3.3 incorporation into chromatin through DAXX and HIRA may also lead to proper CENP-A incorporation at centromeres as well as an effective disease (e.g., cancer) therapy.
Recently, the importance of the site-specific posttranslational modifications of human CENP-A and their biological functions has been reported [44, 45]. The functional roles of phosphorylation at CENP-A-Ser68 are still under active investigation [124, 125, 154, 155, 156]. How the defects of CENP-A PTMs and the dysfunction of centromere contribute to the generation and the development of cancer is an unsolved question. Takada et al. demonstrated that CENP-A Ser18 hyperphosphorylation by cyclin E1/CDK2 occurred upon loss of FBW7, a tumor suppressor whose inactivation leads to CIN [157]. This CENP-A Ser18 hyperphosphorylation reduced the CENP-A centromeric localization, increased CIN, and promoted anchorage-independent growth and xenograft tumor formation. Defects of CENP-A PTMs are significantly associated with chromosome segregation errors and CIN [149].
In budding yeast, Scm3 and Psh1 might compete for binding to Cse4. Cse4 that is not associated with Scm3 may be targeted by Psh1 for proteolysis, but Cse4 in a complex with Scm3 may be protected [71] (see also previous chapter, Section 2.1). On the other hand, in
In humans, our group found that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A mono- or di-ubiquitylation on lysine 124 (K124) and CENP-A centromere localization [35] (Figure 2, right). CUL4A complex targets CENP-A through the adaptor COPS8/CSN8 that has WD40 motifs in non-canonical CRL4 machinery (Figure 2, right). A mutation of CENP-A, K124R, reduces interaction with HJURP and abrogates localization of CENP-A to the centromere. The addition of monoubiquitin is sufficient to restore CENP-A K124R to centromeres and the interaction with HJURP, indicating that “signaling” ubiquitylation is required for CENP-A loading at centromeres (Figure 2, right).
However, one question remains—how does such mono- or di-ubiquitylation of CENP-A facilitate the interaction of CENP-A with HJURP? The CENP-A K124 site and its proximal residues might not directly affect CENP-A-HJURP interaction in the crystal structure of the HJURP-CENP-A-histone H4 complex, since we did not detect defects in CENP-A dimerization of K124R mutant (Figure 3; see also Section 4.3) or any ubiquitin interacting motif in HJURP. Therefore, we speculate that CENP-A mono- or di-ubiquitylation might sterically affect the overall conformational change, L112 residue (the closest CENP-A’s residue to K124 out of the seven residues reported to be important for appropriate interaction with HJURP), or C-terminal portion of the CATD on which HJURP recognition is mainly dependent. In addition, acetylated lysine 124 (K124) was previously reported by Bui et al. [38], but the functional role of K124 acetylation and its relationship with K124 ubiquitylation remains to be studied (Figure 2, right). Moreover, currently, the proteolysis mechanism for mis-incorporated human CENP-A and its E3 ligase is not clear, and there are no reports to date regarding proteasome-mediated degradation of human CENP-A [138] (Figure 2d). Future studies are required to reveal how ectopic CENP-A is degraded and removed from the non-centromeric chromosome (Figure 2c and d).
The mechanism by which centromere inheritance occurs is largely unknown. Gassmann et al. suggested that in
Our group showed that pre-existing ubiquitylated CENP-A is necessary for the recruitment of newly synthesized CENP-A to the centromere and that CENP-A ubiquitylation is inherited between cell divisions (Figure 3).
Numerous studies have found that CENP-A can be experimentally mistargeted to non-centromeric regions of chromatin and that this mistargeting leads to the formation of ectopic centromeres in model organisms [160]. Chromosome engineering has allowed the efficient isolation of neocentromeres on a wide range of both transcriptionally active and inactive sequences in chicken DT40 cells [57]. More than 100 neocentromeres in human clinical samples have been described [161]. They form on diverse DNA sequences and are associated with CENP-A localization, but not with alpha-satellite arrays; thus, these findings provide strong evidence that human centromeres result from sequence-independent epigenetic mechanisms. However, neocentromeres have not yet been created experimentally in humans; overexpression of CENP-A induces mislocalization of CENP-A, but not the formation of functional neocentromeres [162].
Our group demonstrated that overexpression of a monoubiquitin-fused CENP-A mutant induces neocentromeres at non-centromeric regions of chromosomes, and this result further supports our model in which CENP-A ubiquitylation is inherited and determines centromere location through dimerization (Figure 3). Our assay using the LacO/LacI ectopic centromeric chromatin assembly system clearly revealed that CENP-A ubiquitylation contributes to the recruitment of CENP-A chaperones (HJURP and DAXX) and outer kinetochore components (HEC1 and SKA1). It is possible that ubiquitylation of CENP-A contributes to maintain and stabilize ectopic neocentromeres in humans (Figure 2c).
However, it remains unclear how the neocentromere established through CENP-A ubiquitylation is deactivated. Future studies are required to reveal the mechanism of site-specific (centromeric and/or non-centromeric) deubiquitylation CENP-A and subsequent proteolysis in humans (Figure 2c and d). In this context, it would be interesting to test if the Ubp8-driven deubiquitylation mechanism in budding yeast [163] (see also previous chapter, Section 2.7) is conserved in humans.
The mechanism that controls the E3 ligase activity of the CUL4A-RBX1-COPS8 complex remains obscure. Our group found that the SGT1-HSP90 complex is required for recognition of CENP-A by COPS8 [164] (Figure 2, right). SGT1/SUGT1, a co-chaperone of HSP90, is involved in multiple cellular activities, including cullin E3 ubiquitin ligase activity [165]. The
Our group initially applied RNA interference (RNAi)-mediated SGT1 and/or HSP90 depletion in HeLa cells and found that the SGT1-HSP90 complex is required for CENP-A ubiquitylation
In our study, SKP1 siRNA treatment did not lead to any signal reduction of CENP-A at centromeres [164]. Therefore, we proposed that the SGT1-HSP90 complex is involved in CENP-A deposition at centromeres in an SKP1-independent and/or SCF-independent manner. This conclusion is consistent with our previous report that the CUL4A-RBX1 complex, which does not require SKP1 to function, contributes to CENP-A deposition at centromeres [35]. Because our results suggest that SKP1 is not required for the recruitment of CENP-A to centromeres, it is unlikely that SKP1 activity affects the CENP-A loading pathway. Because CENP-A is at the top of a hierarchy of the pathway that determines the assembly of kinetochore components [6], destabilization of the MIS12 complex at the kinetochore was observed by Davies et al. [173] could be partially due to the defect in CENP-A recruitment. This idea is supported by our results demonstrating that SGT1 siRNA treatment did not significantly change the recruitment of endogenous MIS12, HEC1, and SKA1 proteins in LacO arrays after ectopic loci were determined through LacO-LacI-CENP-A interactions. Collectively, these data suggest that the losses of immunofluorescence signals of the central-outer kinetochore proteins at the kinetochore caused by SGT1 siRNA defects, including ones reported previously [174], are explained by CENP-A mislocalization caused by SGT1 siRNA defects.
Our group reported that CENP-A K124 ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere [35] (Figure 2, right; see also Section 4.2). On the other hand, Fachinetti et al. reported that CENP-A K124R mutants show no defects in centromere localization and cell viability [156]. However, there are substantive problems with their experiments that yielded these results. We reported our response describing potential issues with the results and their conclusions [117]. A major caveat is that they used a fusion protein much larger molecular size than CENP-A. In their RPE-1 CENP-A−/F knockout system, the enhanced yellow fluorescent protein (EYFP) is approximately 30 kDa, and endogenous CENP-A is about 16 kDa. Fachinetti et al. also used SNAP-tags, and they found that SNAP-CENP-A K124R showed no defects in centromere deposition. Because the SNAP-tag (20 kDa) is also a larger tag than CENP-A (approximately 16 kDa) and has 10 lysines, SNAP-CENP-A K124R, presumably, is ubiquitylated at a site different than K124. One possibility is that the tagging of a large protein may endogenously lead to ubiquitylation at an amino acid other than K124 in the CENP-A K124R mutant protein, and this ubiquitylation at another site could suppress the mutant phenotype as a compensatory mechanism. Therefore, our group hypothesized that the presence of a large fusion protein promotes ubiquitylation at a different lysine in the CENP-A K124R mutant protein.
Indeed, our group found that EYFP tagging induces additional ubiquitylation of EYFP-CENP-A K124R, which allows the mutant protein to bind to HJURP [116]. Our immunoprecipitation mass spectrometry analysis showed that lysine 306 (K306) in the EYFP-CENP-A K124R mutant is ubiquitylated
In budding yeast, CENP-ACse4 is sumoylated on its N-terminal tail by Siz1/Siz2 SUMO E3 ligases [22] (previous chapter, Figure 1a and b) (see also previous chapter, Section 2.4.1). Cse4 is poly-sumoylated at K65 in its N-terminal domain, which recruits the yeast SUMO-targeted ubiquitin ligase (STUbl) Slx5, leading to the polyubiquitination of poly-sumoylated Cse4 and its subsequent degradation [21]. Cse4 K215/216 sumoylation in C-terminus also controls its interaction with the histone chaperones Scm3 and CAF-1, facilitating the deposition of overexpressed Cse4 into CEN and non-CEN regions, respectively [175] (previous chapter, Figure 1) (see also previous chapter, Section 2.4.2).
In humans, depletion of the human Slx5 homolog ring finger protein 4 (RNF4) contributes to SUMOylation-dependent degradation of the CCAN protein CENP-I, while SENP6 stabilizes CENP-I by antagonizing RNF4 [176]. SENP6 is a desumoylation enzyme as well as a member of a large family of Sentrin-specific protease enzymes (SENP1–7) [138, 177]. In budding yeast, two SUMO proteases are known, ubiquitin-like protease 1 and 2 (Ulp1 and 2); in mammalian cells, these have diverged into the SENP family. SENP1–5 is evolutionarily conserved to Ulp1, while the more divergent SENP6 and SENP7 belong to the Ulp2 group. Depletion of SENP6 in HeLa cells leads to the loss of the CENP-H/I/K complex from the centromeres, but not an apparent reduction in centromeric CENP-A/B/C levels recognized by CREST sera [176].
Liebelt et al. identified a protein group de-modification by SENP6, including the constitutive centromere-associated network (CCAN), the CENP-A loading factors Mis18BP1 and Mis18A, and DNA damage response factors [178]. SENP6-deficient cells are severely compromised for proliferation, accumulate in the G2/M phases, and frequently form micronuclei. Centromeric assembly of CENP-T, CENP-W, and CENP-A is impaired in the absence of SENP6. However, the increase of SUMO chains is not required for ubiquitin-dependent proteasomal degradation of the CCAN subunits. Therefore, their results indicated that SUMO polymers can act in a proteolysis-independent manner and consequently, have a more diverse signaling function than previously expected. On the other hand, Mitra et al. identified the SUMO-protease SENP6 as a key factor, not only controlling CENP-A stability but virtually the entire centromere and kinetochore using a genetic screen coupled to pulse-chase labeling [179]. Loss of SENP6 results in hyper-sumoylation of CENP-C and CENP-I, but not CENP-A itself. SENP6 activity is required throughout the cell cycle, suggesting that a dynamic SUMO cycle underlies continuous surveillance of the centromere complex that in turn ensures stable transmission of CENP-A chromatin. Mitra et al. and other groups did not detect sumoylation of CENP-A, suggesting that CENP-A is not a direct substrate of SENP6 [138, 179]. However, the effect of SENP6 depletion on CENP-A stability is much greater than observed on depletion of CENP-C or -B alone [179]. This result suggests that there may be other components required for the SENP6-mediated stabilization of centromeric chromatin [138].
Studies of E3 ligases at plant centromeres-kinetochores are not as advanced as those in model animal species. The structure and organization of plant centromeric DNA have been described, and satellite repeats associated with centromeres have been reported in many plant species [76]. Plant centromeres also have mega-base-sized arrays of tandem repetitive DNA sequences, as in centromeres of humans and other mammals, and transposable elements are abundant in centromeric and paracentromeric regions [76, 180]. In early studies, Jiang et al. suggest that the retention of active transcriptional machinery within the long terminal repeat may promote demarcation of an active centromere [76]. A Ty3/gypsy class of centromere-specific retrotransposons, the centromeric retrotransposon (CR) family, was discovered in the grass species. Highly conserved motifs were found in the long terminal repeat of the CR elements from rice, maize, and barley [181]. The CR elements are highly enriched in chromatin domains associated with CENH3/CENP-A, the centromere-specific histone H3 variant. CR elements as well as their flanking centromeric satellite DNA are actively transcribed in maize. These data suggest that the deposition of centromeric histones might be a transcription-coupled event. The importance of centromeric transcription and centromeric long noncoding RNA (cenRNA) for centromere integrity has been suggested in various species, including plants [77, 78, 79] (see also Sections 3 and 4). Moreover, in maize, CENP-C binding to centromeric DNA is associated with small RNA [182], whereas in humans CENP-A loading is linked to lncRNAs [80]. It is not yet known whether the same transcript can recruit and stabilize both CENP-A and CENP-C at centromeric chromatin [77].
Plant CENH3/CENP-A and other centromere-kinetochore proteins have been reported showing high conservation among species. On the other hand, DNA sequences of plant centromeres, of which loci are determined epigenetically by centromeric histone 3 (CENH3), have revealed high structural diversity, ranging from the canonical monocentric form seen in vertebrates, to polycentric and holocentric forms [183, 184]. Plant centromeres can change position over evolutionary time or upon genomic stress, such as in McClintock’s genome shock [185] or physically damaged or broken chromosomes [183]. Jiang et al. suggested that the centromeric state is reinforced and maintained by the tension applied during spindle attachment [76]. The chromatin damaged by such mechano-force could then be marked for repair by the replication-independent mechanism similar to the one originally incorporated in CENH3. Indeed, human centromere-kinetochore proteins, including CENP-A, are involved in DNA damage/repair [186], and the incorporation of newly synthesized CENP-A occurs “right after mitosis” (i.e., telophase/early G1) [94, 95]. However, the model of CenH3 (CENP-A) incorporation upon mechano-force-induced DNA damage/repair is not yet experimentally demonstrated, and its precise mechanism needs to be elucidated. Meanwhile, there is evidence of divergent evolution originating in CenH3 in plants [187, 188] and
Plant studies of dicentric centromeres and neocentromeres have been described along with those of other eukaryotes [180, 183]. The active state of one of the two centromeres on the wheat dicentric chromosome can be epigenetically silenced [180], as in the human dicentric chromosome [191]. Neocentromeres have been described extensively in human and fruit fly chromosomes as well as in some plant species, such as barley, maize, and rice [114, 184, 192]. In
Plant studies of minichromosomes and artificial chromosomes also have been reported, as in other eukaryotes [180, 183]. The main issues of these studies are what are the size and factors required for the maintenance and stability of such special chromosomes during cell division. Harrington et al. constructed human artificial minichromosomes [197], and Ananiev et al. artificially generated minichromosomes in maize by introducing the DNA molecule containing native centromere segment, ori, and telomere repeats [198]. These studies suggested that repetitive DNA may play an important but unknown role in centromere function. The repetitive centromeric DNA may be still important, although it is not essential for centromeric function, since plant centromeric DNA does not generate functional centromeres when reintroduced into plant cells [199] and new centromeres are functional even if located in loci with non-centromeric DNA [161].
In terms of the plant CENH3 recruitment mechanism to centromeres, most CENP-A is loaded in G2 by a replication-independent mechanism in
Currently, an endogenous E3 ligase for plant CENP-A (CENH3) is not yet identified. Sorge et al. developed a synthetic biology approach to degrade plant CENP-A using E3-ligase adapter protein SPOP (Speckle-type POZ adapter protein) with a specific anti-GFP nanobody (VHHGFP4) [201] (Table 1). To determine the function of proteins, CRISPR/Cas9-based methods and antisense/RNAi strategies are commonly used to remove the selected protein from all organs in a cell- and tissue-specific manner. However, CRISPR/Cas9 and antisense/RNAi strategies are still error-prone and can show off-target effects [202]. Classical genetic strategies to knock out/down protein function in plants still have problems, such as the time-consuming process of generating homozygous transgenic lines or the risk of lethal phenotypes at early developmental stages.
Sorge et al. attempted to solve these problems by utilizing the synthetic E3 ligase activity in protein ubiquitylation and degradation pathway. They successfully recruited the 26S proteasome pathway to directly degrade CENP-A of
Each species reviewed in our articles, including the previous chapter has advantages and disadvantages for research. For example, the centromere sequence size of the budding yeast is small and the sequences can be easily mutated to identify the important functional regions [203]. Techniques such as ChIP are also possible, which cannot be easily performed on highly repetitive centromeres in other organisms. Moreover, the centromere can be shifted to other genomic regions, allowing the construction of artificial chromosomes and plasmids as well as tools, such as conditional centromeres. Fission yeast and fruit fly models have progressed more than others in studies of heterochromatin regulation and gene silencing. Plant models have advanced more in evolutionary studies of centromeric DNA structures, including CR family comparisons among different plant species.
On the other hand, in fission yeast and plant species, the E3 ligase of CENP-A (CenH3) and its specific regulation and/or function are not yet identified. The E3 ligase of CENP-A is unknown in multiple species (e.g.,
Studying the mechanisms of formation and maintenance of neocentromeres will deepen our understanding of the centromere-kinetochore formation and promote the building and establishment of artificial chromosomes. Such studies will lead to the construction of artificial cells and tissues that can be controlled by DNA levels through chromosome dynamics. As a result, the function of E3 ligase can be artificially adjusted, which will increase the effectiveness of future gene therapies. Minichromosomes generated to date suggest that the repetitive centromeric DNA may be still important, although perhaps, it is not essential for centromeric function. In addition, it is unclear whether there is causality or feedback between cenRNA transcription and overall transcriptional change after chromosome missegregation and CIN. As of now, we have little understanding of the effects of these cenRNAs on the E3 ligase of CENP-A, including how these transcriptional changes and regulation are related to the function of E3 ligase.
Although our group showed that ubiquitylation occurs at a different site than CENP-A K124 as endogenous compensatory machinery, the compensatory machinery of post-translational modifications in endogenous conditions is poorly understood. This machinery can be incorporated in a process of disease progress or development. For example, suppose a post-translational modification is required for host cancer cell development but its activity can be blocked by cancer drugs. However, another site’s post-translational modification could compensate for that change, so that host cancer cells can survive, proliferate, and eventually metastasize. For cell proliferation and differentiation in general, such compensatory machinery could be a versatile backup system. However, such backup systems may not have been detected experimentally due to our limited technology or brief experimental periods. Thus, many E3 ligases may work in similar signal pathways (see also the previous chapter, Conclusion), or the function of a post-translational modification in one site may be compensated for or complemented by another site, but it is currently unknown how likely such complementary machineries would be. Research to predict such compensatory systems and resilience could be expected as future directions to study the spatiotemporal regulation of E3 ligase of CENP-A.
Ultimately, studies of E3 ligase in CENP-A in higher mammals or humans are essential for translational research and informing future therapy. Overexpression and mislocalization of human CENP-A are presumably features of cancer development, however, the detailed mechanisms for cancer development and possible therapies still remain unclear. In addition to cancer, translational studies of CENP-A and its E3 ligase could be beneficial for CREST autoimmune diseases and other diseases. Centromere proteins, including CENP-A, have been identified as antigens from CREST patients [204, 205], but the mechanism that causes CREST syndrome and how CENP-A and other centromere-kinetochore proteins are involved is unknown. Observations of neocentromeres were also reported in patients with other developmental diseases [206], but research has been limited, in part because of the relatively smaller number of patients.
Defects in ubiquitin E3 ligases promote the pathogenesis of several human diseases, including cancer, and CRL4 [207], a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in cancers [208]. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. In humans, proteolysis activity of CRL4 ubiquitin ligase targeting CENP-A has not been observed so far, and other E3 ligases that function in CENP-A proteolysis are unidentified (Figure 2d). It is also important to determine if ubiquitylation or sumoylation-related enzymes, including E3 ligases, can be druggable targets.
Tumors develop in complex tissue microenvironments, where they depend on for sustained growth, invasion, and metastasis [209]. We could be at a turning point to fill the gap between the detailed intracellular mechanisms of CENP-A function studied in the past and its mechanism in complex tissue microenvironments. Thus, cell type and/or tissue-specific CENP-A function involved in different types of cancer in different organs is a likely focus for future research. There are many unknowns about whether the function of E3 ligase of CENP-A represents a cell or tissue-specific difference, or whether the cell or tissue completely replaces E3 ligase itself. The utilization and application of organoid, spheroid, and coculture systems may reduce the effort, time, and cost that is required to answer these questions and ultimately yield better therapies.
We thank past and current researchers at Model Animal Research Center, School of Medicine, Nanjing University, Greehey Children’s Cancer Research Institute at UT Health Science Center San Antonio, the Research Institute at Nationwide Children’s Hospital, and St. Jude Children’s Research Hospital for their helpful discussions. Y.N. was supported by Jiangsu Province “Double-First-Class” Construction Fund, Jiangsu Province Natural Science Fund (BK20191252), Jiangsu Province 16th Six Big Talent Peaks Fund (TD-SWYY-001), Jiangsu Province “Foreign Expert Hundred Talents Program” Fund (BX2019082), and National Natural Science Foundation in China (31970665). KK was supported by the National Science Foundation under Grant No.1949653 (KK) and a Mays Cancer Center Pilot Award CCSG P30 CA054174.
The authors declare no conflict of interest.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12059",title:"Hydraulic Structures - Impact on River Flow and Sediment Transport-Dimensioning",subtitle:null,isOpenForSubmission:!0,hash:"8e41aab8223c29ce69c00e8c8f6f560d",slug:null,bookSignature:"Prof. Vlassios Hrissanthou",coverURL:"https://cdn.intechopen.com/books/images_new/12059.jpg",editedByType:null,editors:[{id:"37707",title:"Prof.",name:"Vlassios",surname:"Hrissanthou",slug:"vlassios-hrissanthou",fullName:"Vlassios Hrissanthou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12061",title:"Masonry for Sustainable Construction",subtitle:null,isOpenForSubmission:!0,hash:"85ef86d046d15e7d4b1988f1ec5dd750",slug:null,bookSignature:"Prof. Amjad Almusaed and Prof. Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/12061.jpg",editedByType:null,editors:[{id:"446856",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11817",title:"Next Generation Fiber-Reinforced Composites - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"bdff63f3c5e98fc95d76217516cb1420",slug:null,bookSignature:"Dr. Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/11817.jpg",editedByType:null,editors:[{id:"260011",title:"Dr.",name:"Longbiao",surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12078",title:"Schiff Base in Organic, Inorganic and Physical Chemistry",subtitle:null,isOpenForSubmission:!0,hash:"ce51efbe2cae97ca3199350ef6c498ec",slug:null,bookSignature:"Dr. Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/12078.jpg",editedByType:null,editors:[{id:"147861",title:"Dr.",name:"Takashiro",surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11556",title:"Numerical Simulation",subtitle:null,isOpenForSubmission:!0,hash:"0a68fbeb303684344bda285aa06769af",slug:null,bookSignature:"Dr. Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/11556.jpg",editedByType:null,editors:[{id:"257455",title:"Dr.",name:"Ali",surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12107",title:"Contemporary Topics in Patient Safety - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"3fe674b93710773f0db746ca96d6e048",slug:null,bookSignature:"Dr. Philip Salen and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/12107.jpg",editedByType:null,editors:[{id:"217603",title:"Dr.",name:"Philip",surname:"Salen",slug:"philip-salen",fullName:"Philip Salen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11784",title:"Bryophytes - The State of Knowledge in a World Under Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"80743b2add35e11b09c10e6895a45831",slug:null,bookSignature:"Prof. Jair Putzke",coverURL:"https://cdn.intechopen.com/books/images_new/11784.jpg",editedByType:null,editors:[{id:"324930",title:"Prof.",name:"Jair",surname:"Putzke",slug:"jair-putzke",fullName:"Jair Putzke"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11992",title:"New Advances in Carbon Fibers",subtitle:null,isOpenForSubmission:!0,hash:"f4c2d09100983c6404dba2981b93b0cb",slug:null,bookSignature:"Prof. Guanming Yuan",coverURL:"https://cdn.intechopen.com/books/images_new/11992.jpg",editedByType:null,editors:[{id:"308403",title:"Prof.",name:"Guanming",surname:"Yuan",slug:"guanming-yuan",fullName:"Guanming Yuan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:423},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1094",title:"Ophthalmic Pathology",slug:"ophthalmic-pathology",parent:{id:"191",title:"Ophthalmology",slug:"medicine-ophthalmology"},numberOfBooks:25,numberOfSeries:0,numberOfAuthorsAndEditors:781,numberOfWosCitations:385,numberOfCrossrefCitations:227,numberOfDimensionsCitations:544,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1094",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,isOpenForSubmission:!1,hash:"da2c90e8db647ead30504defce3fb5d3",slug:"novel-diagnostic-methods-in-ophthalmology",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7446",title:"Frontiers in Ophthalmology and Ocular Imaging",subtitle:null,isOpenForSubmission:!1,hash:"d4df56dcf926403ffd771798a94289ea",slug:"frontiers-in-ophthalmology-and-ocular-imaging",bookSignature:"Alireza Ziaei",coverURL:"https://cdn.intechopen.com/books/images_new/7446.jpg",editedByType:"Edited by",editors:[{id:"271630",title:"Dr.",name:"Alireza",middleName:null,surname:"Ziaei",slug:"alireza-ziaei",fullName:"Alireza Ziaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7094",title:"Advances in the Diagnosis and Management of Uveitis",subtitle:null,isOpenForSubmission:!1,hash:"a81511ced9080932669447918c9b5f72",slug:"advances-in-the-diagnosis-and-management-of-uveitis",bookSignature:"Alejandro Rodriguez-Garcia and C. Stephen Foster",coverURL:"https://cdn.intechopen.com/books/images_new/7094.jpg",editedByType:"Edited by",editors:[{id:"209514",title:"Dr.",name:"Alejandro",middleName:null,surname:"Rodriguez-Garcia",slug:"alejandro-rodriguez-garcia",fullName:"Alejandro Rodriguez-Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",isOpenForSubmission:!1,hash:"e3a3430cdfd6999caccac933e4613885",slug:"oct-applications-in-ophthalmology",bookSignature:"Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",editedByType:"Edited by",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5397",title:"Glaucoma",subtitle:"Intraocular Pressure and Aqueous Dynamics",isOpenForSubmission:!1,hash:"8d26b6bdcc6ff36340803fe74ab449e4",slug:"glaucoma-intraocular-pressure-and-aqueous-dynamics",bookSignature:"Parul Ichhpujani",coverURL:"https://cdn.intechopen.com/books/images_new/5397.jpg",editedByType:"Edited by",editors:[{id:"52530",title:"Dr.",name:"Parul",middleName:null,surname:"Ichhpujani",slug:"parul-ichhpujani",fullName:"Parul Ichhpujani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4586",title:"Advances in Eye Surgery",subtitle:null,isOpenForSubmission:!1,hash:"385b6cce57ee76d7d036564ba3303f3c",slug:"advances-in-eye-surgery",bookSignature:"Patricio A. Pacheco",coverURL:"https://cdn.intechopen.com/books/images_new/4586.jpg",editedByType:"Edited by",editors:[{id:"170323",title:"Dr.",name:"Patricio",middleName:null,surname:"Pacheco",slug:"patricio-pacheco",fullName:"Patricio Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3848",title:"Ophthalmology",subtitle:"Current Clinical and Research Updates",isOpenForSubmission:!1,hash:"70059d2798cc7b8948dafbc06fff54e1",slug:"ophthalmology-current-clinical-and-research-updates",bookSignature:"Pinakin Davey",coverURL:"https://cdn.intechopen.com/books/images_new/3848.jpg",editedByType:"Edited by",editors:[{id:"220127",title:"Dr.",name:"Pinakin",middleName:null,surname:"Davey",slug:"pinakin-davey",fullName:"Pinakin Davey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3388",title:"Age-Related Macular Degeneration",subtitle:"Etiology, Diagnosis and Management - A Glance at the Future",isOpenForSubmission:!1,hash:"c93f7f824d35cebde6987fe5da36f6ff",slug:"age-related-macular-degeneration-etiology-diagnosis-and-management-a-glance-at-the-future",bookSignature:"Giuseppe Lo Giudice",coverURL:"https://cdn.intechopen.com/books/images_new/3388.jpg",editedByType:"Edited by",editors:[{id:"87607",title:"M.D.",name:"Giuseppe",middleName:null,surname:"Lo Giudice",slug:"giuseppe-lo-giudice",fullName:"Giuseppe Lo Giudice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3284",title:"Common Eye Infections",subtitle:null,isOpenForSubmission:!1,hash:"9a5082fd3b6bc4e2ec2a166809b58399",slug:"common-eye-infections",bookSignature:"Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/3284.jpg",editedByType:"Edited by",editors:[{id:"66603",title:"Dr.",name:"Imtiaz",middleName:"A.",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3261",title:"Glaucoma",subtitle:"Basic and Clinical Aspects",isOpenForSubmission:!1,hash:"75a36fb78ed74e1a5de53d6d5371a9db",slug:"glaucoma-basic-and-clinical-aspects",bookSignature:"Shimon Rumelt",coverURL:"https://cdn.intechopen.com/books/images_new/3261.jpg",editedByType:"Edited by",editors:[{id:"54335",title:"Dr.",name:"Shimon",middleName:null,surname:"Rumelt",slug:"shimon-rumelt",fullName:"Shimon Rumelt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"239",title:"Cataract Surgery",subtitle:null,isOpenForSubmission:!1,hash:"05878d4ad22dc7c34544617bfc822398",slug:"cataract-surgery",bookSignature:"Farhan Husain Zaidi",coverURL:"https://cdn.intechopen.com/books/images_new/239.jpg",editedByType:"Edited by",editors:[{id:"30326",title:"Dr.",name:"Farhan",middleName:null,surname:"Zaidi",slug:"farhan-zaidi",fullName:"Farhan Zaidi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1203",title:"Ocular Diseases",subtitle:null,isOpenForSubmission:!1,hash:"9b689c614692d77cfec2b92eea85c9d7",slug:"ocular-diseases",bookSignature:"Adedayo Adio",coverURL:"https://cdn.intechopen.com/books/images_new/1203.jpg",editedByType:"Edited by",editors:[{id:"139912",title:"Dr.",name:"Adedayo",middleName:"Omobolanle",surname:"Adio",slug:"adedayo-adio",fullName:"Adedayo Adio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:25,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23828",doi:"10.5772/18498",title:"Glaucoma Animal Models",slug:"glaucoma-animal-models",totalDownloads:2879,totalCrossrefCites:10,totalDimensionsCites:18,abstract:null,book:{id:"268",slug:"glaucoma-basic-and-clinical-concepts",title:"Glaucoma",fullTitle:"Glaucoma - Basic and Clinical Concepts"},signatures:"Elena Vecino and Sansar C. Sharma",authors:[{id:"31685",title:"Prof.",name:"Elena",middleName:null,surname:"Vecino",slug:"elena-vecino",fullName:"Elena Vecino"},{id:"36188",title:"Prof.",name:"Sansar",middleName:null,surname:"Sharma",slug:"sansar-sharma",fullName:"Sansar Sharma"}]},{id:"39271",doi:"10.5772/48436",title:"Hydrogel Contact Lenses Surface Roughness and Bacterial Adhesion",slug:"hydrogel-contact-lenses-surface-roughness-and-bacterial-adhesion",totalDownloads:3875,totalCrossrefCites:2,totalDimensionsCites:13,abstract:null,book:{id:"1203",slug:"ocular-diseases",title:"Ocular Diseases",fullTitle:"Ocular Diseases"},signatures:"Maria Jesus Giraldez and Eva Yebra-Pimentel",authors:[{id:"143929",title:"PhD.",name:"Maria Jesus",middleName:null,surname:"Giraldez",slug:"maria-jesus-giraldez",fullName:"Maria Jesus Giraldez"},{id:"145699",title:"Prof.",name:"Eva",middleName:null,surname:"Yebra-Pimentel",slug:"eva-yebra-pimentel",fullName:"Eva Yebra-Pimentel"}]},{id:"17273",doi:"10.5772/21747",title:"ERG in Drosophila",slug:"erg-in-drosophila",totalDownloads:4888,totalCrossrefCites:8,totalDimensionsCites:13,abstract:null,book:{id:"360",slug:"electroretinograms",title:"Electroretinograms",fullTitle:"Electroretinograms"},signatures:"Gregor Belusic",authors:[{id:"44595",title:"Dr.",name:"Gregor",middleName:null,surname:"Belusic",slug:"gregor-belusic",fullName:"Gregor Belusic"}]},{id:"29195",doi:"10.5772/30302",title:"Optical Coherence Tomography Findings in Diabetic Macular Edema",slug:"optical-coherence-tomography-findings-in-diabetic-macular-edema",totalDownloads:7234,totalCrossrefCites:6,totalDimensionsCites:12,abstract:null,book:{id:"666",slug:"diabetic-retinopathy",title:"Diabetic Retinopathy",fullTitle:"Diabetic Retinopathy"},signatures:"Desislava Koleva-Georgieva",authors:[{id:"81842",title:"Dr.",name:"Desislava",middleName:null,surname:"Koleva-Georgieva",slug:"desislava-koleva-georgieva",fullName:"Desislava Koleva-Georgieva"}]},{id:"23814",doi:"10.5772/26559",title:"Mechanism of Aqueous Humor Secretion, Its Regulation and Relevance to Glaucoma",slug:"mechanism-of-aqueous-humor-secretion-its-regulation-and-relevance-to-glaucoma",totalDownloads:13482,totalCrossrefCites:9,totalDimensionsCites:12,abstract:null,book:{id:"268",slug:"glaucoma-basic-and-clinical-concepts",title:"Glaucoma",fullTitle:"Glaucoma - Basic and Clinical Concepts"},signatures:"Mohammad Shahidullah, Waleed Hassan Al-Malki and Nicholas A. Delamere",authors:[{id:"67082",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shahidullah",slug:"mohammad-shahidullah",fullName:"Mohammad Shahidullah"},{id:"140321",title:"Prof.",name:"Waleed Hassan",middleName:null,surname:"Al-Malki",slug:"waleed-hassan-al-malki",fullName:"Waleed Hassan Al-Malki"},{id:"140322",title:"Prof.",name:"Nicholas",middleName:null,surname:"Delamere",slug:"nicholas-delamere",fullName:"Nicholas Delamere"}]}],mostDownloadedChaptersLast30Days:[{id:"18955",title:"The Optic Nerve in Glaucoma",slug:"the-optic-nerve-in-glaucoma",totalDownloads:17781,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"517",slug:"the-mystery-of-glaucoma",title:"The Mystery of Glaucoma",fullTitle:"The Mystery of Glaucoma"},signatures:"Ivan Marjanovic",authors:[{id:"36284",title:"Ph.D.",name:"Ivan",middleName:null,surname:"Marjanovic",slug:"ivan-marjanovic",fullName:"Ivan Marjanovic"}]},{id:"46503",title:"Disorders of Optic Nerve and Visual Pathways",slug:"disorders-of-optic-nerve-and-visual-pathways",totalDownloads:3867,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3848",slug:"ophthalmology-current-clinical-and-research-updates",title:"Ophthalmology",fullTitle:"Ophthalmology - Current Clinical and Research Updates"},signatures:"Ipek Midi",authors:[{id:"169657",title:"Dr.",name:"Ipek",middleName:null,surname:"Midi",slug:"ipek-midi",fullName:"Ipek Midi"}]},{id:"18960",title:"Measurement of Anterior Chamber Angle with Optical Coherence Tomography",slug:"measurement-of-anterior-chamber-angle-with-optical-coherence-tomography",totalDownloads:6192,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"517",slug:"the-mystery-of-glaucoma",title:"The Mystery of Glaucoma",fullTitle:"The Mystery of Glaucoma"},signatures:"De Orta-Arellano F, Muñoz-Rodriguez P and Salinas-Gallegos JL",authors:[{id:"31619",title:"Dr.",name:"Fabiola",middleName:null,surname:"de Orta Arellano",slug:"fabiola-de-orta-arellano",fullName:"Fabiola de Orta Arellano"},{id:"35207",title:"Dr.",name:"Pablo",middleName:null,surname:"Muñoz Rodriguez",slug:"pablo-munoz-rodriguez",fullName:"Pablo Muñoz Rodriguez"},{id:"35208",title:"Dr.",name:"José Luis",middleName:null,surname:"Salinas Gallegos",slug:"jose-luis-salinas-gallegos",fullName:"José Luis Salinas Gallegos"}]},{id:"42721",title:"Intracameral Mydriatics in Cataract Surgery",slug:"intracameral-mydriatics-in-cataract-surgery",totalDownloads:8492,totalCrossrefCites:0,totalDimensionsCites:3,abstract:null,book:{id:"239",slug:"cataract-surgery",title:"Cataract Surgery",fullTitle:"Cataract Surgery"},signatures:"Anders Behndig, Björn Lundberg and Gunnie Bäckström",authors:[{id:"47264",title:"Prof.",name:"Anders",middleName:null,surname:"Behndig",slug:"anders-behndig",fullName:"Anders Behndig"},{id:"53862",title:"Mr.",name:"Björn",middleName:null,surname:"Lundberg",slug:"bjorn-lundberg",fullName:"Björn Lundberg"},{id:"53863",title:"Mrs.",name:"Gunni",middleName:null,surname:"Bäckström",slug:"gunni-backstrom",fullName:"Gunni Bäckström"}]},{id:"46615",title:"Imaging in Ophthalmology",slug:"imaging-in-ophthalmology",totalDownloads:3737,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"3848",slug:"ophthalmology-current-clinical-and-research-updates",title:"Ophthalmology",fullTitle:"Ophthalmology - Current Clinical and Research Updates"},signatures:"Umit Yolcu, Omer Faruk Sahin and Fatih C. Gundogan",authors:[{id:"44376",title:"Dr.",name:"Fatih",middleName:"Cakir",surname:"Gundogan",slug:"fatih-gundogan",fullName:"Fatih Gundogan"},{id:"169659",title:"Dr.",name:"Umit",middleName:null,surname:"Yolcu",slug:"umit-yolcu",fullName:"Umit Yolcu"},{id:"169893",title:"Dr.",name:"Omer Faruk",middleName:null,surname:"Sahin",slug:"omer-faruk-sahin",fullName:"Omer Faruk Sahin"}]}],onlineFirstChaptersFilter:{topicId:"1094",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:null,scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution