The Euler angles to rotate the object coordinates of an hcp crystal in such a way that the plane of interest coincide with the (0001) of the reference hcp crystal, whose [0001] and \n
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10110",leadTitle:null,fullTitle:"Advances and Technologies in Building Construction and Structural Analysis",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,reviewType:"peer-reviewed",abstract:"This Edited Volume “Advances and Technologies in Building Construction and Structural Analysis” is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of advances and technologies in building construction and structural analysis. The book comprises single chapters authored by various researchers and edited by an expert active in the alternative medicine research area. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on advances and technologies in building construction and structural analysis and opening new possible research paths for further novel developments.",isbn:"978-1-83881-141-9",printIsbn:"978-1-83881-140-2",pdfIsbn:"978-1-83881-142-6",doi:"10.5772/intechopen.88410",price:119,priceEur:129,priceUsd:155,slug:"advances-and-technologies-in-building-construction-and-structural-analysis",numberOfPages:226,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",bookSignature:"Alireza Kaboli and Sara Shirowzhan",publishedDate:"December 22nd 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",numberOfDownloads:1280,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 5th 2019",dateEndSecondStepPublish:"November 28th 2019",dateEndThirdStepPublish:"February 1st 2020",dateEndFourthStepPublish:"May 13th 2020",dateEndFifthStepPublish:"July 11th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!0,featuredMarkup:null,editors:[{id:"313050",title:"Mr.",name:"Alireza",middleName:null,surname:"Kaboli",slug:"alireza-kaboli",fullName:"Alireza Kaboli",profilePictureURL:"https://mts.intechopen.com/storage/users/313050/images/system/313050.png",biography:"Dr. Alireza Kaboli obtained an MEng in Structural Engineering from Semnan University, Iran, in 2007, and a Ph.D. in Construction Engineering and Management from the University of New South Wales (UNSW) Sydney, Australia, in 2014. He previously served as a lecturer at Azad University, Iran, and a guest lecturer at UNSW. Dr. Kaboli has published more than twenty conference and journal papers.",institutionString:"UNSW Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"273838",title:"Dr.",name:"Sara",middleName:null,surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan",profilePictureURL:"https://mts.intechopen.com/storage/users/273838/images/system/273838.png",biography:"Dr. Sara Shirowzhan is a lecturer at the School of Built Environment (BE), University of New South Wales (UNSW), Sydney, Australia, where she teaches the City Analytics and Construction programs. She also serves as the co-chair of BE\\'s Smart Cities and Infrastructure Cluster. Dr. Shirowzhan works as tomorrow\\'s leading champion for the Chartered Institute of Building (CIOB). Her research interests include sensing technologies, enhanced GIS, BIM, digital twins, and artificial intelligence in technologies pertinent to BE informatics. She teaches and supervises students at UNSW in the areas of GIS, BIM, digital twins, AI, machine learning, city analytics, urban informatics, smart cities, infrastructure, construction informatics, and other relevant topics. She now serves on the editorial boards of the journals MDPI and Advances in Civil Engineering. She is also a topic board member of the ISPRS International Journal of Geo-Information as well as Buildings. Dr. Shirowzhan received her Ph.D. in Geomatics Engineering from the School of Civil and Environmental Engineering, UNSW.",institutionString:"UNSW Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"705",title:"Construction Engineering",slug:"construction-engineering"}],chapters:[{id:"75155",title:"Treatise on Sustainable Infrastructure Construction: Green Composites, Cross Laminated/Mass Timber, Wood Truss Connectors, Nondestructive Technologies, Health Assessment and Monitoring: Utility Poles and Geofoam",doi:"10.5772/intechopen.95850",slug:"treatise-on-sustainable-infrastructure-construction-green-composites-cross-laminated-mass-timber-woo",totalDownloads:140,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The understanding of the engineering performance of green laminated composites is necessary to the design of load bearing components in building and infrastructure construction, and packaging applications. These components are made of outer thin laminae called skins or faces and a thick inner layer called core. The use of bonding is unavoidable in the assembling of these composite products. Like all materials, the bonding materials have finite mechanical properties, e.g. stiffness, but when used in the literature, they are assumed perfectly rigid. That is an unrealistic assumption. Our analytical solutions change this assumption by using the real properties of bonding. In general, the analytical formulations are based on the equilibrium equations of forces, the compatibility of interlaminar stresses and deformation, and the geometrical conditions of the panels. Once solutions are obtained, the next step is to evaluate them. The numerical evaluations proved that perfect rigid bonding in laminated composites greatly underestimates the true performance. At low values of adhesive stiffness, the serviceability is multiple orders of magnitude of that at high values. The logical question is thus: what constitutes perfect bonding? The answer to this question lies in the core-to-adhesive stiffness. The lower the ration is the higher the error in using the rigid-bond theories. It is worth noting that green-composites in this chapter refer to components made of traditional materials such as wood, in addition to newly developed bio-based and bio-degradable and bio-based composites, made of renewable resources. In addition, bonding and adhesive are used interchangeably.",signatures:"Rafaat Hussein",downloadPdfUrl:"/chapter/pdf-download/75155",previewPdfUrl:"/chapter/pdf-preview/75155",authors:[{id:"330641",title:"Prof.",name:"Rafaat",surname:"Hussein",slug:"rafaat-hussein",fullName:"Rafaat Hussein"}],corrections:null},{id:"70023",title:"Construction Technology of Precast Pier Foundation Filled with Demolished Concrete Lumps",doi:"10.5772/intechopen.90091",slug:"construction-technology-of-precast-pier-foundation-filled-with-demolished-concrete-lumps",totalDownloads:147,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Applying of demolished concrete lumps (DCLs) in the pier foundation is an effective way to improve the efficiency of construction waste resource utilization. Fifty-two cylindrical specimens with the size of ∅ 250 mm × 500 mm were fabricated by mixing of DCLs with the fresh concrete (FC) and used to investigate the influence of two key factors, the gradation of the DCLs and the height setting of layered “steel mesh,” on the uniaxial compression and flexural strength properties of the compound concrete specimens. Results indicate that the layered “steel mesh” in the specimens can restrain the settlement and segregation of the DCLs and improve the compressive and flexural strength of the specimens significantly. Normally, there are two types of failure damage mode of the test pieces, the failure of the interface between DCLs and the FC and the fracture failure of the DCLs. When the stress level is below 0.5, the test piece is in the elastic stage. Crack development occurs when stress level further increase to 0.7–0.9. The pieces with the layered pouring height of H2 and the DCLs of R3 present the optimum compressive strength and flexural strength and also best construction effect.",signatures:"Wengui Li, Bin Lei, Zhiyu Luo and Fuzhi Yang",downloadPdfUrl:"/chapter/pdf-download/70023",previewPdfUrl:"/chapter/pdf-preview/70023",authors:[{id:"292556",title:"Mr.",name:"Zhiyu",surname:"Luo",slug:"zhiyu-luo",fullName:"Zhiyu Luo"},{id:"307760",title:"Dr.",name:"Wengui",surname:"Li",slug:"wengui-li",fullName:"Wengui Li"},{id:"307839",title:"Dr.",name:"Bin",surname:"Lei",slug:"bin-lei",fullName:"Bin Lei"},{id:"308667",title:"Dr.",name:"Fuzhi",surname:"Yang",slug:"fuzhi-yang",fullName:"Fuzhi Yang"}],corrections:null},{id:"71085",title:"Vertical Bearing Capacity of Precast Pier Foundation Filled with Demolished Concrete Lumps",doi:"10.5772/intechopen.91205",slug:"vertical-bearing-capacity-of-precast-pier-foundation-filled-with-demolished-concrete-lumps",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The application of recycled compound concrete made of demolished concrete lumps (DCLs) and fresh normal concrete in pier foundation can effectively improve the utilization efficiency of construction waste resources. In this study, two prefabricated pier foundations based on recycled compound concrete (dimension of Ø800 × 2500 mm and Ø1000 × 2500 mm) and two cast-in-place pier foundations based on ordinary concrete (dimension of Ø800 × 2500 mm and Ø1000 × 2500 mm) were tested. Special attention was devoted to the load-settlement curve characteristics of the precast pier foundation of compound concrete, the load transfer law of the pier-soil system, the soil pressure distribution at the bottom of the pier, and the failure mode. The results showed that the Q-S curve of precast concrete pier foundation made of recycled compound concrete is slow deformation at loading, which is consistent with that of cast-in-place concrete pier foundation. The load transfer theory of pier-soil system is established, and its accuracy is verified by experimental analysis. The precast foundation of recycled compound concrete is the same as the cast-in-place foundation of ordinary concrete. The failure form of prefabricated pier foundation made of recycled compound concrete was a local shear failure, while the failure form of ordinary concrete cast-in-place pier foundation was piercing-type shear failure. The feasibility of relevant theoretical methods for calculating the vertical ultimate bearing capacity is examined.",signatures:"Bin Lei, Wengui Li, Zhuo Tang and Fuzhi Yang",downloadPdfUrl:"/chapter/pdf-download/71085",previewPdfUrl:"/chapter/pdf-preview/71085",authors:[{id:"307760",title:"Dr.",name:"Wengui",surname:"Li",slug:"wengui-li",fullName:"Wengui Li"},{id:"307839",title:"Dr.",name:"Bin",surname:"Lei",slug:"bin-lei",fullName:"Bin Lei"},{id:"302700",title:"Mr.",name:"Zhuo",surname:"Tang",slug:"zhuo-tang",fullName:"Zhuo Tang"},{id:"309307",title:"Dr.",name:"Fuzhi",surname:"Yang",slug:"fuzhi-yang",fullName:"Fuzhi Yang"}],corrections:null},{id:"79537",title:"Structural Health Monitoring of Existing Reinforced Cement Concrete Buildings and Bridge Using Nondestructive Evaluation with Repair Methodology",doi:"10.5772/intechopen.101473",slug:"structural-health-monitoring-of-existing-reinforced-cement-concrete-buildings-and-bridge-using-nonde",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Sustainable development means the utilization of resources at a rate less than the rate at which they are renewing. In India infrastructure industry is growing rapidly due to globalization and raising awareness. In the present study, challenges faced by countries like India are to sustain the existing expectations with limited resources available. Reinforced Concrete (RC) structure may suffer several types of defects that may jeopardize their service life. This chapter deals with condition assessment and repair of RCC (G+3) building situated at Northern part of the country. There are various techniques available for repair and rehabilitation of reinforced concrete structures. From a maintenance point of view, it is essential to take up the strength assessment of an existing structure. So, to find out the reason behind the deterioration of the concrete structures some of the NDT and partially destructive technique are used. The NDT tests conducted during this study are Rebound Hammer, Ultra-sonic Pulse Velocity, Concrete resistivity Meter, Ferro-scanning and Carbonation, etc. This chapter helps to explains, how identified the different parameters of distress building like strength, density, level of corrosion and amount of reinforcement. On basis of these results, apply a repair methodology to revert back the strength parameters of the buildings.",signatures:"Aman Kumar, Jasvir Singh Rattan, Nishant Raj Kapoor, Ajay Kumar and Rahul Kumar",downloadPdfUrl:"/chapter/pdf-download/79537",previewPdfUrl:"/chapter/pdf-preview/79537",authors:[{id:"310944",title:"Ph.D. Student",name:"Aman",surname:"Kumar",slug:"aman-kumar",fullName:"Aman Kumar"},{id:"311377",title:"Mr.",name:"Jasvir Singh",surname:"Rattan",slug:"jasvir-singh-rattan",fullName:"Jasvir Singh Rattan"},{id:"319511",title:"Mr.",name:"Ajay",surname:"Kumar",slug:"ajay-kumar",fullName:"Ajay Kumar"},{id:"346031",title:"Mr.",name:"Rahul",surname:"Kumar",slug:"rahul-kumar",fullName:"Rahul Kumar"},{id:"348687",title:"Ph.D. Student",name:"Nishant Raj",surname:"Kapoor",slug:"nishant-raj-kapoor",fullName:"Nishant Raj Kapoor"}],corrections:null},{id:"73396",title:"Behavior and Design of Transfer Slabs Subjected to Shear Wall Loads",doi:"10.5772/intechopen.93682",slug:"behavior-and-design-of-transfer-slabs-subjected-to-shear-wall-loads",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This paper investigates the behavior of a transfer slab system used in medium rise building. For this purpose, two slab-wall full-scale specimens were designed, built, and tested to cyclic loads. The two slab-wall prototypes were exposed to three load stages: (a) vertical load, (b) horizontal load, and (c) vertical and horizontal combined load. The first specimen, SP1, includes a masonry wall situated on top of a squared two-way slab of 4.25 m by side, thickness of 12 cm, on four reinforced concrete girders, while the second specimen, SP2, consists of an identical slab but was constructed with a reinforced concrete wall. Some numerical finite element slab-wall models were built using linear and nonlinear models. The most important results presented herein are the change on lateral stiffness and resistance capacity of the load-bearing wall supported on a slab versus the wall supported on a fixed base and the effects that these walls cause on the slabs. During the experimental test process of horizontal loading, we detected that the stiffness of the two slab-wall systems decreased significantly compared to the one on the fixed base wall, a result supported by the numerical models. The models indicated suitable correlation and were used to conduct a detailed parametric study on various design configurations.",signatures:"Alonso Gómez-Bernal, Eduardo Arellano Méndez, Luis Ángel Quiroz-Guzmán, Hugón Juárez-García and Oscar González Cuevas",downloadPdfUrl:"/chapter/pdf-download/73396",previewPdfUrl:"/chapter/pdf-preview/73396",authors:[{id:"296277",title:"Dr.",name:"Alonso",surname:"Gomez-Bernal",slug:"alonso-gomez-bernal",fullName:"Alonso Gomez-Bernal"},{id:"296279",title:"Dr.",name:"Eduardo",surname:"Arellano-Mendez",slug:"eduardo-arellano-mendez",fullName:"Eduardo Arellano-Mendez"},{id:"296281",title:"Dr.",name:"Hugon",surname:"Juarez-García",slug:"hugon-juarez-garcia",fullName:"Hugon Juarez-García"},{id:"296282",title:"Dr.",name:"Angel",surname:"Quiroz",slug:"angel-quiroz",fullName:"Angel Quiroz"},{id:"304686",title:"Dr.",name:"Oscar",surname:"González-Cuevas",slug:"oscar-gonzalez-cuevas",fullName:"Oscar González-Cuevas"}],corrections:null},{id:"79508",title:"Computational Workflow for Three-Dimension Printing in Construction: Digital Tools and Methodological Limitations",doi:"10.5772/intechopen.101474",slug:"computational-workflow-for-three-dimension-printing-in-construction-digital-tools-and-methodological",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Three-dimensional printing in construction (3DPiC) is known as a trending technology in the construction industry. While scholars and practitioners seek to learn more about the applications of 3DPiC, there are no efficient workflows and open data sets available for further investigations. This paper intends to present the data produced in a laboratory for creating new models. The paper first presents the experimentation data collected from 60 models, and selected thermal digital images can be used for further sustainability analysis. The recorded data includes the time of crafting each layer of the model, the total time of creating a model and thermal measures. Based on the 60 experimentations and an intensive literature review, the paper presents a proposed computational workflow, including the use of Revit, Dynamo, Fusion 360, Navisworks and a selected 3D printer, which can be utilised for further data collection and analysis in the field. This model will assist in automating the cost estimation as an upgrade for 3DPiC. This paper is helpful for scholars and practitioners since it shows how laboratory data can be helpful for construction operation design.",signatures:"Anqi Shi, Sara Shirowzhan and Samad M.E. Sepasgozar",downloadPdfUrl:"/chapter/pdf-download/79508",previewPdfUrl:"/chapter/pdf-preview/79508",authors:[{id:"273838",title:"Dr.",name:"Sara",surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan"},{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"312318",title:"Ms.",name:"Anqi",surname:"Shi",slug:"anqi-shi",fullName:"Anqi Shi"}],corrections:null},{id:"72187",title:"Transparent Vacuum Insulation Panels",doi:"10.5772/intechopen.92422",slug:"transparent-vacuum-insulation-panels",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"New, low-cost transparent vacuum insulation panels (TVIPs) using structured cores for the windows of existing buildings are proposed. The TVIP is produced by inserting the structured core, the low-emissivity film, and the adsorbent into the transparent gas barrier envelopes. In this chapter, the authors introduce the outlines, the design and thermal analysis method, the performance evaluation (test) method. Firstly, five spacers, namely peek, modified peek, mesh, silica aerogel, and frame, are selected as the structured core. The effective thermal conductivity of TVIPs with five different spacers is evaluated at different pressure levels by applying numerical calculation. The result indicated that TVIPs with frame and mesh spacers accomplish better insulation performance, with a center-of-panel apparent thermal conductivity of 7.0 × 10−3 W/m K at a pressure of 1 Pa. The apparent thermal conductivity is the same as the value obtained by the simultaneous evacuation thermal conductivity measurement applying the heat flux meter method. Furthermore, using a frame-type TVIP with a total thickness of 3 mm attached to an existing window as a curtain decreases the space heat loss by approximately 69.5%, whereas the light transparency decreases to 75%.",signatures:"Takao Katsura",downloadPdfUrl:"/chapter/pdf-download/72187",previewPdfUrl:"/chapter/pdf-preview/72187",authors:[{id:"315200",title:"Ph.D.",name:"Takao",surname:"Katsura",slug:"takao-katsura",fullName:"Takao Katsura"}],corrections:null},{id:"74934",title:"Smart Built Environment Including Smart Home, Smart Building and Smart City: Definitions and Applied Technologies",doi:"10.5772/intechopen.95104",slug:"smart-built-environment-including-smart-home-smart-building-and-smart-city-definitions-and-applied-t",totalDownloads:260,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Technology, particularly over the past decades, has affected the cities and their components, such as building sectors. Consequently, smart building that has currently utilized various technologies which is incorporated into buildings is the core of the present chapter. It provides a comprehensive overview on smart cities, smart buildings and smart home to address what systems and technologies have been incorporated so far. The aim is to review the smart concepts in built environment with the main focus on smart cities, smart buildings, and smart homes. State-of-the-art and current practices in smart buildings were also reviewed to enlighten a set of directions for future studies. The Chapter is primarily focuses on 51 articles in smart buildings/homes, as per collected from various datasets. It represents a summary of systems utilized and incorporared into smart buildings and homes over the past decade (2010–2020). Additional to different features of smart buildings and homes, is the discussion around various fields and system performances currently utilized in smart buildings/homes. Limitations and future trends and directions is also discussed. In total, such building/home systems were categorized into 6 groups, including: security systems, healthcare systems, energy management systems, building/home management systems, automation systems, and activity/movement recognition systems. Furthermore, there are a number of surveys which investigated the user’s acceptance and adoption of the new smart systems in homes and buildings, as presented and summarized thereafter in Tables. The present Chapter is a contribution to a better understanding of the functions and performances of such buildings/homes for further implementation and enhancement so that varying demands of smart citizens are fulfilled and eventually contribute to the development of smart cities.",signatures:"Reyhaneh Karimi, Leila Farahzadi, Samad M.E. Sepasgozar, Sharifeh Sargolzaei, Sanee M. Ebrahimzadeh Sepasgozar, Mohsen Zareian and Akram Nasrolahi",downloadPdfUrl:"/chapter/pdf-download/74934",previewPdfUrl:"/chapter/pdf-preview/74934",authors:[{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"320263",title:"M.Sc.",name:"Reyhaneh",surname:"Karimi",slug:"reyhaneh-karimi",fullName:"Reyhaneh Karimi"},{id:"320264",title:"MSc.",name:"Leila",surname:"Farahzadi",slug:"leila-farahzadi",fullName:"Leila Farahzadi"},{id:"320979",title:"Associate Prof.",name:"Sharifeh",surname:"Sargolzaei",slug:"sharifeh-sargolzaei",fullName:"Sharifeh Sargolzaei"},{id:"320980",title:"Ms.",name:"Akram",surname:"Nasrolahi",slug:"akram-nasrolahi",fullName:"Akram Nasrolahi"},{id:"329782",title:"Dr.",name:"Sanee M. Ebrahimzadeh",surname:"Sepasgozar",slug:"sanee-m.-ebrahimzadeh-sepasgozar",fullName:"Sanee M. Ebrahimzadeh Sepasgozar"},{id:"329783",title:"Dr.",name:"Mohsen",surname:"Zareian",slug:"mohsen-zareian",fullName:"Mohsen Zareian"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3631",title:"Smart Home Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-home-systems",bookSignature:"Mahmoud A. Al-Qutayri",coverURL:"https://cdn.intechopen.com/books/images_new/3631.jpg",editedByType:"Edited by",editors:[{id:"7571",title:"Dr.",name:"Mahmoud",surname:"Al-Qutayri",slug:"mahmoud-al-qutayri",fullName:"Mahmoud Al-Qutayri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7205",title:"Housing",subtitle:null,isOpenForSubmission:!1,hash:"efb431be41bf8bf41facd7b4a183225e",slug:"housing",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/7205.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5422",title:"Risk Management Treatise for Engineering Practitioners",subtitle:null,isOpenForSubmission:!1,hash:"4d70d3197f1b4dea5285a83550a79ade",slug:"risk-management-treatise-for-engineering-practitioners",bookSignature:"Chike F Oduoza",coverURL:"https://cdn.intechopen.com/books/images_new/5422.jpg",editedByType:"Edited by",editors:[{id:"5932",title:"Dr.",name:"Chike",surname:"Oduoza",slug:"chike-oduoza",fullName:"Chike Oduoza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6378",title:"Sustainable Buildings",subtitle:"Interaction Between a Holistic Conceptual Act and Materials Properties",isOpenForSubmission:!1,hash:"1bc977aee58593c6aeecb1941cae1a0e",slug:"sustainable-buildings-interaction-between-a-holistic-conceptual-act-and-materials-properties",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6378.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8808",title:"Risk Management in Construction Projects",subtitle:null,isOpenForSubmission:!1,hash:"f8f1673caa5c51349ef131c89d02f873",slug:"risk-management-in-construction-projects",bookSignature:"Nthatisi Khatleli",coverURL:"https://cdn.intechopen.com/books/images_new/8808.jpg",editedByType:"Edited by",editors:[{id:"247856",title:"Associate Prof.",name:"Nthatisi",surname:"Khatleli",slug:"nthatisi-khatleli",fullName:"Nthatisi Khatleli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7473",title:"Indoor Environmental Quality",subtitle:null,isOpenForSubmission:!1,hash:"fb35168f3d84a1a6ee93cb3797ecda97",slug:"indoor-environmental-quality",bookSignature:"Muhammad Abdul Mujeebu",coverURL:"https://cdn.intechopen.com/books/images_new/7473.jpg",editedByType:"Edited by",editors:[{id:"289697",title:"Dr.",name:"Muhammad Abdul",surname:"Mujeebu",slug:"muhammad-abdul-mujeebu",fullName:"Muhammad Abdul Mujeebu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6395",title:"Bridge Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1d5fcf0ef5708024ef95eb8b3d7310be",slug:"bridge-engineering",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/6395.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2005",title:"Effective Thermal Insulation",subtitle:"The Operative Factor of a Passive Building Model",isOpenForSubmission:!1,hash:"c7c6c5a9dfad00a32efaa72b9f163e71",slug:"effective-thermal-insulation-the-operative-factor-of-a-passive-building-model",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/2005.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editedByType:"Edited by",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9431",leadTitle:null,title:"Smart Cities and Construction Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"This book includes nine chapters presenting the outcome of research projects relevant to building, cities, and construction. A description of a smart city and the journey from conventional to smart cities is discussed at the beginning of the book. Innovative case studies of underground cities and floating city bridges are presented in this book. BIM and GIS applications on different projects, and the concept of intelligent contract and virtual reality are discussed. Two concepts relevant to conventional buildings including private open spaces and place attachments are also included, and these topics can be upgraded in the future by smart technologies.",isbn:"978-1-83880-200-4",printIsbn:"978-1-83880-199-1",pdfIsbn:"978-1-83880-398-8",doi:"10.5772/intechopen.86103",price:119,priceEur:129,priceUsd:155,slug:"smart-cities-and-construction-technologies",numberOfPages:204,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"37ca01618d7f291efb11a4d115b9cb63",bookSignature:"Sara Shirowzhan and Kefeng Zhang",publishedDate:"May 13th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9431.jpg",keywords:null,numberOfDownloads:7587,numberOfWosCitations:11,numberOfCrossrefCitations:12,numberOfDimensionsCitations:23,numberOfTotalCitations:46,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 28th 2019",dateEndSecondStepPublish:"May 15th 2019",dateEndThirdStepPublish:"September 15th 2019",dateEndFourthStepPublish:"November 4th 2019",dateEndFifthStepPublish:"December 30th 2019",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!0,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"273838",title:"Dr.",name:"Sara",middleName:null,surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan",profilePictureURL:"https://mts.intechopen.com/storage/users/273838/images/system/273838.png",biography:"Dr. Sara Shirowzhan is a lecturer at the School of Built Environment (BE), University of New South Wales (UNSW), Sydney, Australia, where she teaches the City Analytics and Construction programs. She also serves as the co-chair of BE\\'s Smart Cities and Infrastructure Cluster. Dr. Shirowzhan works as tomorrow\\'s leading champion for the Chartered Institute of Building (CIOB). Her research interests include sensing technologies, enhanced GIS, BIM, digital twins, and artificial intelligence in technologies pertinent to BE informatics. She teaches and supervises students at UNSW in the areas of GIS, BIM, digital twins, AI, machine learning, city analytics, urban informatics, smart cities, infrastructure, construction informatics, and other relevant topics. She now serves on the editorial boards of the journals MDPI and Advances in Civil Engineering. She is also a topic board member of the ISPRS International Journal of Geo-Information as well as Buildings. Dr. Shirowzhan received her Ph.D. in Geomatics Engineering from the School of Civil and Environmental Engineering, UNSW.",institutionString:"UNSW Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:{id:"300088",title:"Dr.",name:"Kefeng",middleName:null,surname:"Zhang",slug:"kefeng-zhang",fullName:"Kefeng Zhang",profilePictureURL:"https://mts.intechopen.com/storage/users/300088/images/system/300088.jpeg",biography:"Dr. Zhang graduated from PhD in Civil Engineering at Monash University. His research areas include stormwater quality monitoring and modelling, Water Sensitive Urban Design (WSUD) green technologies (e.g. green walls and biofilters) for stormwater/greywater management, WSUD treatment validation, advanced stormwater treatment methods and integrated urban water modelling. He is the research manager of the Sino-Australia Centre on Sponge City, a large international research centre that involves partnerships between UNSW, Monash University and Dajiang Environmental Corporation, working on research areas of green technology development, urban water modelling and novel technologies for stormwater management. He is also experienced with development of integrated urban water models, e.g. UrbanBEATS (a WSUD planning support tool) and Water Sensitive Cities Toolkit (a tool to quantify the multiple benefits associated with WSUD implementations based on multidisciplinary research).",institutionString:"University of New South Wales",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"714",title:"Urban Engineering",slug:"engineering-civil-engineering-urban-engineering"}],chapters:[{id:"71661",title:"A Journey from Conventional Cities to Smart Cities",slug:"a-journey-from-conventional-cities-to-smart-cities",totalDownloads:837,totalCrossrefCites:2,authors:[{id:"310944",title:"Ph.D. Student",name:"Aman",surname:"Kumar",slug:"aman-kumar",fullName:"Aman Kumar"},{id:"311377",title:"Mr.",name:"Jasvir Singh",surname:"Rattan",slug:"jasvir-singh-rattan",fullName:"Jasvir Singh Rattan"}]},{id:"69497",title:"Earthscraper: A Smart Solution for Developing Future Underground Cities",slug:"earthscraper-a-smart-solution-for-developing-future-underground-cities",totalDownloads:694,totalCrossrefCites:0,authors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}]},{id:"68105",title:"Floating Cities Bridge in 2050",slug:"floating-cities-bridge-in-2050",totalDownloads:589,totalCrossrefCites:0,authors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}]},{id:"70039",title:"A GIS-Based Risk and Safety Analysis of Entrance Areas in Educational Buildings Based on Students’ Experience",slug:"a-gis-based-risk-and-safety-analysis-of-entrance-areas-in-educational-buildings-based-on-students-ex",totalDownloads:689,totalCrossrefCites:1,authors:[{id:"273838",title:"Dr.",name:"Sara",surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan"},{id:"193947",title:"Dr.",name:"Mohammad",surname:"Mojtahedi",slug:"mohammad-mojtahedi",fullName:"Mohammad Mojtahedi"},{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"306365",title:"Dr.",name:"Laurence",surname:"Kimmel",slug:"laurence-kimmel",fullName:"Laurence Kimmel"},{id:"306367",title:"Mr.",name:"Jack",surname:"Peacock",slug:"jack-peacock",fullName:"Jack Peacock"}]},{id:"70269",title:"The Effect of Place Attachment on Educational Efficiency in Elementary Schools",slug:"the-effect-of-place-attachment-on-educational-efficiency-in-elementary-schools",totalDownloads:696,totalCrossrefCites:0,authors:[{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"308025",title:"Mrs.",name:"Reyhaneh",surname:"Karimi",slug:"reyhaneh-karimi",fullName:"Reyhaneh Karimi"},{id:"310530",title:"Ms.",name:"Behnaz",surname:"Avazpour",slug:"behnaz-avazpour",fullName:"Behnaz Avazpour"},{id:"311199",title:"Mr.",name:"Farhad",surname:"Soheili",slug:"farhad-soheili",fullName:"Farhad Soheili"}]},{id:"69251",title:"Effective Factors on Desirability of Private Open Spaces: A Case Study of Kuye Nasr Residential Buildings, Tehran",slug:"effective-factors-on-desirability-of-private-open-spaces-a-case-study-of-kuye-nasr-residential-build",totalDownloads:911,totalCrossrefCites:0,authors:[{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"308025",title:"Mrs.",name:"Reyhaneh",surname:"Karimi",slug:"reyhaneh-karimi",fullName:"Reyhaneh Karimi"},{id:"310530",title:"Ms.",name:"Behnaz",surname:"Avazpour",slug:"behnaz-avazpour",fullName:"Behnaz Avazpour"}]},{id:"70742",title:"Automating the Chaos: Intelligent Construction Contracts",slug:"automating-the-chaos-intelligent-construction-contracts",totalDownloads:850,totalCrossrefCites:1,authors:[{id:"309432",title:"Ph.D. Student",name:"Alan",surname:"McNamara",slug:"alan-mcnamara",fullName:"Alan McNamara"}]},{id:"71143",title:"5D BIM Applications in Quantity Surveying: Dynamo and 3D Printing Technologies",slug:"5d-bim-applications-in-quantity-surveying-dynamo-and-3d-printing-technologies",totalDownloads:1139,totalCrossrefCites:3,authors:[{id:"273838",title:"Dr.",name:"Sara",surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan"},{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"303523",title:"Ms.",name:"Anqi",surname:"Shi",slug:"anqi-shi",fullName:"Anqi Shi"},{id:"313050",title:"Mr.",name:"Alireza",surname:"Kaboli",slug:"alireza-kaboli",fullName:"Alireza Kaboli"}]},{id:"71203",title:"An Investigation of Virtual Reality Technology Adoption in the Construction Industry",slug:"an-investigation-of-virtual-reality-technology-adoption-in-the-construction-industry",totalDownloads:1185,totalCrossrefCites:5,authors:[{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"},{id:"317270",title:"Dr.",name:"Mohsen",surname:"Ghobadi",slug:"mohsen-ghobadi",fullName:"Mohsen Ghobadi"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9971",title:"Data Science, Data Visualization, and Digital Twins",subtitle:null,isOpenForSubmission:!1,hash:"353b70c06c03295318688a64535d6d85",slug:"data-science-data-visualization-and-digital-twins",bookSignature:"Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/9971.jpg",editedByType:"Edited by",editors:[{id:"273838",title:"Dr.",name:"Sara",surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1666",title:"Advances in Spatial Planning",subtitle:null,isOpenForSubmission:!1,hash:"295f576e7f0d365cbe04096113fae16c",slug:"advances-in-spatial-planning",bookSignature:"Jaroslav Burian",coverURL:"https://cdn.intechopen.com/books/images_new/1666.jpg",editedByType:"Edited by",editors:[{id:"95041",title:"Dr.",name:"Jaroslav",surname:"Burian",slug:"jaroslav-burian",fullName:"Jaroslav Burian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"669",title:"Drainage Systems",subtitle:null,isOpenForSubmission:!1,hash:"e5941b901bd76fb3633a9a20d5ec0c8a",slug:"drainage-systems",bookSignature:"Muhammad Salik Javaid",coverURL:"https://cdn.intechopen.com/books/images_new/669.jpg",editedByType:"Edited by",editors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",surname:"Javaid",slug:"muhammad-salik-javaid",fullName:"Muhammad Salik Javaid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5502",title:"Current Perspective on Irrigation and Drainage",subtitle:null,isOpenForSubmission:!1,hash:"f84b58948ba0347cba6ad7d2f1e65fe2",slug:"current-perspective-on-irrigation-and-drainage",bookSignature:"Suren Kulshreshtha and Amin Elshorbagy",coverURL:"https://cdn.intechopen.com/books/images_new/5502.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3655",title:"Urban Transport and Hybrid Vehicles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"urban-transport-and-hybrid-vehicles",bookSignature:"Seref Soylu",coverURL:"https://cdn.intechopen.com/books/images_new/3655.jpg",editedByType:"Edited by",editors:[{id:"12153",title:"Dr.",name:"Seref",surname:"Soylu",slug:"seref-soylu",fullName:"Seref Soylu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3653",title:"Methods and Techniques in Urban Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"methods-and-techniques-in-urban-engineering",bookSignature:"Armando Carlos de Pina Filho and Aloisio Carlos de Pina",coverURL:"https://cdn.intechopen.com/books/images_new/3653.jpg",editedByType:"Edited by",editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6882",title:"Sustainable Cities",subtitle:"Authenticity, Ambition and Dream",isOpenForSubmission:!1,hash:"ba808740ddb346ea58d759f6570c8c6d",slug:"sustainable-cities-authenticity-ambition-and-dream",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6882.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9897",title:"Smart Cities",subtitle:"Their Framework and Applications",isOpenForSubmission:!1,hash:"b2d80d8d6f3f51e772159d8dd5ded37b",slug:"smart-cities-their-framework-and-applications",bookSignature:"Anuar Mohamed Kassim and Lutfi Al-Sharif",coverURL:"https://cdn.intechopen.com/books/images_new/9897.jpg",editedByType:"Edited by",editors:[{id:"116084",title:"Mr.",name:"Anuar",surname:"Mohamed Kassim",slug:"anuar-mohamed-kassim",fullName:"Anuar Mohamed Kassim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65749",title:"Crystallography of Precipitates in Metals and Alloys: (1) Analysis of Crystallography",doi:"10.5772/intechopen.82693",slug:"crystallography-of-precipitates-in-metals-and-alloys-1-analysis-of-crystallography",body:'\n
This chapter and the following chapters review recent progress of our knowledge about crystallography of precipitate particles in metals and alloys [1, 2, 3]. The main focus is placed on the following three subjects:
Evolution of crystal structure during nucleation
Crystal orientation relationship with the matrix
Effect of crystallography of precipitates on mechanical properties
These subjects are closely related to the following three basic theories, each of which has a long history greater than a half century:
The theory of crystal nucleation (since 1876) [4]
From an engineering viewpoint, the knowledge provided here is primarily useful for developing stronger materials. Dispersing fine precipitate particles over the matrix at high density is a common engineering technique for improving the strength of metals and alloys. By introducing a minor amount of second-phase precipitate particles, such as 2% in volume fraction, the material strength is increased by several times greater. In the traditional theory of precipitation hardening (a.k.a. dispersion strengthening) established in the 1950s–1960s, the primary factor controlling the magnitude of strengthening effect is assumed to be the shear modulus [10, 11], whether or not precipitates are harder than the matrix. This concept has been partly revised in the past few years. Recent experimental studies using state-of-the-art material characterization techniques demonstrated that crystallography of precipitate particles is another factor dominating their obstacle strength [1, 2]. When the slip plane of dislocations in precipitates is not parallel to that in the matrix, dislocations are unable to cut through the precipitates, resulting in large hardening, regardless of the shear modulus. This subject is extensively discussed in the next chapter.
\nThis chapter may also be of interest for the audience outside of the research community of materials science and solid-state physics. Nucleation is one of the areas of basic science related to a wide variety of research subjects including chemical reactions in liquid and gas. In fact, the first theory was originally developed for the nucleation of droplets from gas. Nucleation of crystals in solid is more complicated than the situation assumed in liquid and gas, in a sense that the formation of a new crystal is highly constrained by the surrounding matrix, in terms of the strain energy associated with the precipitate/matrix interface and the diffusivity of atoms for their agglomeration. A long-standing open question is the critical condition for nucleation regarding size and composition of nucleus. Precipitates are in many cases compounds consisting of multiple elements such as carbides and oxides. Unlike in gas and in liquid, the diffusivity of each element is not the same in solids [12]. For instance, the diffusivity of light elements like carbon and oxygen is several orders of magnitude greater than that of metallic elements. Although the classical nucleation theory assumes that the crystal structure and composition of precipitates are the same as those of the final product from the beginning of embryo growth (Figure 1), the diffusivity difference indicates a possibility that the composition of precipitates fluctuates during the nucleation process. The classical nucleation theory also assumes that nucleation occurs when the embryos have grown up to a critical size. In many cases the critical size of precipitates for nucleation is 2–3 nm [3]. Assessing the composition of such small precipitates has been technically impossible until recently. The highlights of recent studies are discoveries that, in the early stage of precipitation, the crystal structure and composition of precipitates are different from those of the final product and that the precipitates structurally transform into the final product at a critical size with a critical composition (Figure 1). Precipitates are clusters of solute elements when they start spontaneous growth, which is defined as the state of “nucleation” in the classical nucleation theory. An implication of this finding is that the obstacle strength of precipitates in precipitation hardening may change during precipitation. They are weak obstacles in the early stage of precipitation regardless of the crystal structure of the final product. They can become strong obstacles due to a change in the shear modulus or the crystal structure. In some cases, precipitates become brittle by the structural change, while they are ductile in the state of solute clusters. Brittle precipitates are considered to serve as the nucleation site of cracks via particle cracking. Hence, from the viewpoint of fracture mechanics, the ductile-brittle transition of precipitates during precipitation considered a factor controlling the engineering lifetime of materials.
\nNucleation of precipitates in metals and alloys: classical nucleation and two-step nucleation [
As a result of the constraints from the surrounding matrix, precipitation of the second phase often occurs with a specific crystal orientation relationship with the matrix. Precipitates and matrix share a specific atomic plane in such a way to minimize the mismatch between them. The orientation relationship is dependent on their crystal structure. For instance, in the Burgers orientation relationship, bcc precipitates in hcp matrix share atomic planes as follows (Figure 2) [13]: (0001)hcp//(110)bcc ˄ \n
The Burgers orientation relationship for bcc and hcp crystals [
Example of EBSD analysis of precipitates: bcc Zr precipitates containing Nb and hcp Zr matrix in a Zr–2.5Nb alloy [
EBSD analysis results of atomic planes of precipitate particles parallel to the slip plane of matrix: bcc Nb precipitates and hcp Zr matrix in a Zr–2.5Nb alloy [
Recent updates of these theories have been achieved by progress in material characterization methods for determining the crystal structure and composition of nano-sized precipitates. Before going into the details of these theories, we briefly review the technological breakthrough in experimental methods. This chapter is addressed to not only the specialists of precipitates but also nonspecialists including students. For better understanding, traditional methods of material characterization are also briefly reviewed at the beginning.
\nCrystal structure is determined based on the concept of diffraction, discovered in 1912. It appears that X-ray diffraction (XRD) became common in the 1920s; a great many structures of alloys were determined. Early works determined simple structures having a high symmetry with which peaks in the XRD spectrum are clearly resolved free from overlapping. Precipitates are, however, in many cases compounds having a low symmetry. XRD became applicable to such complicated structures by the invention of the Rietveld method in 1966 [16]. Precipitates involved in bulk metallic samples are detectable only when their volume fraction is higher than ∼1% [17], though that is highly dependent on their crystal orientation relationship with the matrix. In bulk samples the crystal orientation of precipitates is not necessarily random, and the matrix grains also not. Metallic bulk samples cannot be crushed into powders due to their high ductility. They can be mechanically grinded into powders by using a hand grinder; however, the XRD peaks of such grinded metallic powders are broadened due to introduction of dislocations, resulting in hindering the peaks of precipitates by the background noise. These issues are avoided by the use of residue extracted from the matrix via chemical dissolution using an acid [18]. This extraction residue analysis is, however, applicable to only nonmetallic compound precipitates embedded in metallic matrix.
\nTransmission electron microscope (TEM) is a multifunctional characterization tool capable of determining not only crystal structure but also composition and size of precipitates on the image of microstructure, free from the constraint due to volume fraction. The first prototype was produced by Ruska et al. in 1932, and the first commercial model was released by Siemens in 1939. It appears that TEM became common in the 1950s; for example, the number of commercial products released in Japan was greater than 250. The resolution (point resolution) was 50 nm for Ruska’s first TEM, 1 nm for the Siemens Elmiskap I released in 1956, and 0.2 nm for the JEOL JEM100B released in 1968. Precipitates are visualized using diffraction contrasts; those satisfying the Bragg condition exhibit dark contrast in the so-called bright-field image (bright contrast in the dark-field image), whereas the others are indistinguishable from the matrix. The number density of precipitates determined by diffraction contrast images represents the true number density only in the case where precipitates are all aligned to the same crystal orientation. This condition is achievable only when precipitation occurs with a specific crystal orientation relationship with the matrix such as the cube-on-cube orientation relationship, where the unit cells of the precipitate and the matrix completely overlap each other. In the other orientation relationships, some crystallographic variants are often invisible. This is a potential error in the evaluation of the number density of precipitate particles but often out of consideration. In many cases, the magnitude of error bars is determined solely by a statistical analysis: either the standard error or standard deviation.
\nHigh-resolution (HR)-TEM is another mode capable of visualizing precipitates using phase contrasts, i.e., lattice fringes generated by interference of transmitted and diffracted electron waves. This imaging mode became common in the 1970s–1980s [19]. In those days, however, alignment of electron beam axis was technically difficult for entry-level users. This technical issue was resolved in the 1990s by an introduction of the field-emission gun, which provides a hundred times brighter illumination, a digital camera system, a real-time image processing software (fast Fourier transformation for the alignment minimizing the objective lens stigmatism), etc. However, even though the issue of beam alignment has been resolved, HR-TEM analysis of nano-precipitates is still extremely time-consuming due to alignment of crystal orientation. The HR-TEM image (crystal lattice image) is obtained only when the direction of incident electron beam is aligned with the crystal’s zone axis having a low index, e.g. [001] and [110]. The beam-crystal alignment, achieved by using Kikuchi lines or bend counters, is easy for large precipitates greater than several hundred nm but technically almost impossible for nano-precipitates. So for this reason, in practice, the operator searches particles which already exhibit the crystal lattice image without tilting the sample. Unless otherwise precipitates have a specific orientation relationship with the matrix, the operator can find only a few but not many such particles, whereas the minimum requirement of the number of precipitates for drawing a smooth histogram of the size distribution is ~500 in the author’s experience [3].
\nTEM is capable of determining the crystal orientation relationship between precipitates and matrix, though this analysis is also extremely time-consuming. In order to determine the orientation relationship, one needs to find out a sample-tilting angle, where the beam direction is aligned with a zone axis. Three such tilting angles need to be found for both precipitates and matrix in order to determine their (hkl) indices. In some cases precipitates may not have any specific orientation relationship with the matrix; however, proving such a random orientation relationship is practically impossible for one-to-one analysis using a TEM. The random orientation issue can be assessed only if the number density of precipitates is sufficiently high enough for obtaining the Debye ring patterns in selected-area electron diffraction. A more appropriate method rather than TEM to investigate this research subject is EBSD equipped on a scanning electron microscope (SEM). EBSD determines the orientation of crystals based on the Kikuchi pattern, whose theoretical accuracy is ∼0.1° [20, 21], whereas the accuracy of orientation analysis using diffraction spots is ∼3° [22, 23].
\nThe first report introducing the principle of EBSD was published in 1973, within 10 years after the release of the first commercial SEM, the Stereoscan series 1, by the Cambridge Instrument Company in 1965. EBSD became a practically useful tool in 1993, by full automation of mapping (detecting, indexing, and recording the Kikuchi bands based on the Hough transformation). The spatial resolution of EBSD is dependent on probe size, step size of scanning, accelerating voltage of electrons, sample geometry (bulk or thin foil), etc. According to the author’s experience, precipitates of ∼500 nm in diameter can be identified but ∼50 nm not. The spatial resolution is improved by using an advanced technique called transmission Kikuchi diffraction (TKD), a.k.a. transmission EBSD, proposed in 2012 [24]. This new technique works on conventional EBSD system and software. The difference is that TKD uses forward-scattered electrons, whereas EBSD uses backscatter electrons. In other words, TKD uses transmitted electrons as well as TEM; hence, the samples must be thin foils. Sample preparation is not difficult for TEM users; TEM samples can be directly subjected to this analysis. The high spatial resolution of TKD owes not only to the use of thin foil specimens, which minimize unfavorable lateral beam spreading inside the specimens, but also to a greater signal intensity of forward-scattered electrons than backscattered electrons [25]. Since the Kikuchi pattern is generated from elastic scattering (diffraction) of inelastically scattered electrons [26], there exists a lower limit in both specimen thickness and precipitate size below which the Kikuchi patterns are not obtained. When the thickness of thin foil specimens is largely greater than the size of precipitates, the signal from the precipitates is hindered by that from the matrix. In other words, there exists an upper limit of measurable foil thickness depending on the size of precipitates. Only a limited range of thickness is applicable to this method in a wedged-shaped TEM thin foil specimens. The practical spatial resolution limit of TKD is dependent on many factors such as the position of detector (florescent screen); according to the author’s experience using a conventional EBSD system, precipitates of ∼50 nm in diameter can be identified but ∼10 nm not. The resolution will be improved if the detector is placed just beneath of the sample; this is an ideal setting that minimizes the loss of forward-scattered electrons.
\nTraditionally, TEM has been a primary analysis tool for composition analysis of precipitates: energy-dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). In these TEM-based composition analyses, samples having a 3D geometry are projected on 2D space via electron transmission. Precipitates often overlap the matrix in the thickness direction, whereas their TEM image is constructed based on integrated information over thickness. These analyses are unable to determine the composition of overlapped portion. It is practically impossible to judge from the projected 2D image if the precipitates are free from overlapping. In terms of composition analysis of precipitates, the most innovative breakthrough in the past two decades is probably the invention of atom probe tomography (APT). Although its concept was first proposed in 1967, it has become a practically useful tool since the commercial release of local-electrode atom probe (LEAP) in 2003. APT is capable of visualizing atoms in 3D space, which is a critical advantage over the TEM-based composition analyses. APT is a quantitative mass analysis, whereas EDS and EELS are semiquantitative analyses that require a standard sample for calibration. Furthermore, EDS is inherently lack of quantitative accuracy in detection of light elements; emission of Auger electrons is dominant over characteristic X-ray and is dominant for low-Z elements like oxygen. Although APT is superior to TEM-based analyses in many aspects, determination of precipitates’ composition is a challenging subject even for APT. The quantitative precision of the APT composition analysis is often limited by artifacts partly due to the so-called trajectory aberration [27, 28, 29]. For precipitates darkly imaged in FIM (i.e., low evaporate field regions) compared to the surrounding matrix, defocused high-field iron ions coming from the surrounding matrix fall into the precipitate image on the detector [30]. Conversely, for precipitates brightly imaged in FIM, image overlapping occurs outside the precipitate image. In both cases, mixing with the matrix elements inevitably occurs at the interface. Hence, matrix elements are often detected in nano-precipitates [31, 32].
\nThe classical nucleation theory is based on the so-called capillarity approximation, which assumes that the properties of nuclei are the same as those of the final product from the beginning of embryo growth. In other words, all parameters that characterize the new crystal phase to be distinct from the matrix phase, such as density, composition, and structure, are assumed to be unchanged throughout the nucleation stage. Under this assumption, nucleation event is expected to be solely controlled by the size of embryos. Spontaneous growth (nucleation) of precipitates is expected to occur at a critical composition where the hierarchy of the bulk free energy of the precipitate phase and the surface free energy of precipitate/matrix interface is reversed. In the past two decades, a modern concept called the two-step nucleation has been established by the research community of crystal nucleation from liquid (Figure 5) [33]. This concept is nonclassical in that embryos become distinct from the matrix liquid in terms of density prior to the structural change. Here, fluctuation of composition is generally out of consideration, as in liquid diffusivity of solute elements is equally very high; composition fluctuation is expected to be negligibly small. On the other hand, in the nucleation of compound precipitates in crystalline solids, fluctuation of density is relatively small (compared to the nucleation of solid from liquid), but instead, composition may be a variable parameter. In solids, diffusion coefficients of solute elements are merely the same; stoichiometric composition of the compound may not be fulfilled in the early stage of embryo growth. In this case, although the parameter being in focus is different from the conventional two-step nucleation in liquid, this is also nonclassical in the sense that multiple parameters required for nucleation evolve in parallel during nucleation. In 2014, Peng et al. demonstrated that a solid-solid phase transition occurs in a two-step process [34]. In their experiments using a model crystal consisting of microgel colloidal spheres, the two-step represents a two-step change in structure. The first step is a transition from a two-dimensional square lattice structure to a liquid-like structure, and the second step is a transition from the liquid-like structure to a two-dimensional triangular lattice structure. Fluctuation of composition is not associated with their two-step process. Within the framework of the classical nucleation theory, in 1937 Borelius assumed that composition is a variable parameter in the nucleation of precipitates in solids [35]. Absolute value of the bulk free energy of precipitates becomes the greatest with the compound’s stoichiometric composition; nucleation is expected to occur at this critical composition. Borelius did not discuss the effect of compositional fluctuation on the critical size. In 1949, Hobstetter attempted to handle both size and composition as variable parameters [36]. He demonstrated that in this two-variable analysis there is a pathway (in terms of evolution of size and composition) energetically more favorable than the pathway fixed by the previous one-variable analyses. However, the meaning of the energetically most favorable pathway remained unclear in the context of critical size and composition.
\nTwo-step nucleation of crystals from liquid [
The final product described in the classical nucleation theory is not necessarily the most stable, equilibrium phase. In many cases, the first nucleating phase is a metastable phase, formation of which occurs with the lowest energy barrier; the equilibrium phase is produced through multiple transitions from a metastable phase to another metastable phase step-by-step. This is an empirical rule known as Ostwald’s rule of stages, proposed in the 1890s [37, 38]. One of such examples is precipitation of Al2Cu at Guinier-Preston (GP) zone in Al-Cu alloys [39, 40]. The precipitation of Al2Cu, which is the stable phase in this system, is known to occur via multiple intermediate configurations such as GP zone → coherent θ” phase → semi-coherent θ’ phase → incoherent θ phase (Al2Cu). Those intermediate phases are distinct from the Al2Cu in both crystal structure and composition. Another example is precipitation of fcc Cu in bcc Fe matrix. Precipitation of Cu is known to occur via multiple intermediate configurations such as bcc Cu → a twinned 9R Cu → fcc Cu [41]. The bcc Cu precipitates are crystallographically indistinct from the matrix; in other words, they are solute clusters in the bcc solid solution. The critical composition for their structural changes remains unclear. It is technically rather difficult to determine the composition of precipitates in the early stage of precipitation due to their small sizes.
\nTraditionally, experimental studies on the nucleation in solids have focused on determining the critical size. For example, Othen et al. [41] reported that the bcc Cu precipitates grow with the twinned 9R structure in a size range from 6 to 15 nm. Their conclusion is based on the results of HR-TEM observation. This methodology is, however, insufficient for statistical argument as mentioned in the previous section.
\nEven today, experimental studies on the critical composition for nucleation are still limited. As mentioned earlier, even in atom probe tomography, mixing with matrix elements inevitably occurs at the precipitate/matrix interface due to trajectory aberration. Hence, it is practically impossible to judge if the abovementioned Cu precipitates embedded in Fe matrix is 100% pure Cu. When the precipitate of interest is a compound consisting of multiple elements, the ratio of its constituent elements can be discussed. However, when one of those elements is the element of matrix, such as the Al–Cu precipitates in Al alloys, interpretation of their concentration ratio is not straightforward.
\nIn order to determine the critical composition for the structural change, the crystal structure of precipitates must be examined together with composition. In TEM observation of diffraction contrasts, precipitates are indistinguishable from the matrix while they are solute clusters, and they become visible after structural change. By using this unique feature in visibility, recently, Matsukawa et al. performed a systematic analysis on the precipitation of the G-phase in a duplex stainless steel subjected to thermal aging [3]. The crystal structure of the G-phase is cF116 (a variant of fcc structure), and the lattice parameter is exactly fourfold of the matrix ferrite (Figure 6). Precipitation occurs with the cube-on-cube orientation relationship [42]. The stoichiometric composition is Ni16Si7Mn6; its constituent elements are different from the matrix elements (Fe and Cr). So for these reasons, this intermetallic compound is ideal for the fundamental study of nucleation. Precipitation of G-phase in duplex stainless steels is known to occur only in a very narrow temperature range, 673–773 K [43]. In their study, thermal aging was performed at 673 K for up to 10,000 h.
\nCrystal structure and TEM electron pattern of the G-phase precipitates in the ferrite portion of a duplex stainless steel subjected to thermal annealing at 673 K [
Their analysis revealed that precipitation of Ni–Si–Mn clusters started at 500 h (Figure 7), whereas their structural change transforming into the G-phase started at 10,000 h (Figure 8). The number density of G-phase particles detected by TEM was only ∼26% of the number of Ni–Si–Mn precipitates detected by APT. In other words, three quarters of the Ni–Si–Mn precipitates were solute clusters yet without structural change. The number of particles examined by TEM was ∼750. A potential error factor that could cause a misevaluation of the precipitate number density is the method used to evaluate the thickness of the TEM foil. Their method was to use thickness fringes obtained at an exact Bragg condition, where the deviation parameter was s=0. In this case, thickness is determined by the number of thickness fringes multiplied by the extinction distance of the electron beam. Since the precipitate number density was counted in portions where the number of thickness fringes was 4, the magnitude of the error in the foil-thickness evaluation was ±25%. In other words, the number of Ni–Si–Mn clusters that exhibited the crystal structure change was at most 50% of the total.
\nAPT results on the steel [
TEM results on the steel [
Their APT analysis also revealed that the Ni–Si–Mn clusters contained not only the G-phase elements (Ni, Si, and Mn) but also the matrix elements (Fe and Cr) and that enrichment of the G-phase elements occurred during thermal aging. Unlike the size growth, the solute enrichment continued even after 5,000 h. In the composition analysis of the clusters (Figure 9), those clusters were divided into three groups by size, i.e., small (<2 nm in diameter), medium (2–3 nm), and large (>3 nm), in order to minimize the artifacts that occur at the cluster/matrix interface; a comparison of cluster composition should be made for those having the same size. The concentration ratio of the G-phase elements (Si/Ni and Mn/Ni) did not change during the isothermal aging. The Mn/Ni ratio was in good agreement with that of stoichiometric composition, whereas the Si/Ni ratio was roughly a half of the stoichiometric ratio.
\nAPT results on the steel [
Their analysis indicates that the nucleation of the G-phase occurred via a two-step process: the first step is the spontaneous growth of solute clusters (i.e., nucleation as solute clusters), and the second step is the nucleation as compounds (i.e., the G-phase) (Figure 1). There was a time lag between the end of size growth (5,000 h) and the start of structural change (10,000 h). It appears that the incubation period was controlled by solute enrichment inside the clusters. In other words, the structural change occurred via another two-step process: the first step is size fluctuation to become a critical size, and the second step is composition fluctuation to become a critical composition (Figure 1).
\nThe G-phase is currently of particular interest in nuclear materials research, as this compound precipitates also in the steel constituting the main body of reactor pressure vessels (RPVs) at the operation temperature of light water reactors (∼573 K) under neutron irradiation. It has long been well known that precipitation of impurity Cu causes embrittlement of the RPV steels. In the late 1990s, Odette et al. pointed out that, in the case of RPV steels containing a low amount of Cu such as those manufactured after 1973, precipitation of Cu occurs in the first few years of reactor operation, but near the end of the plants’ initial operational license lifetime (typically 40 years), precipitation of Ni, Mn, and occasionally Si becomes dominant over Cu [44]. The Ni–Mn(–Si), precipitates have been called the late-blooming phase [45, 46, 47] since their structural and compositional features were unclear at that time. It was very recently that the late-blooming phase is in many cases found to be characterized as the G-phase [48, 49]. The composition of the late-blooming phase detected by APT is not always the same [31, 32]. The composition range of Ni–Si–Mn clusters to become brittle G-phase is a subject to be investigated further.
\nCrystal orientation relationship between precipitates and matrix is a potential factor controlling the mechanical properties of metals and alloys. Dislocations can glide on specific atomic planes, the choice of which is specific to crystal structure and material. For instance, the slip plane is the {111} plane for fcc metals, the {0001} plane for hcp magnesium, and the {10-10} plane for hcp titanium and hcp zirconium [9]. When the slip plane of precipitates is not parallel to that of the matrix, dislocations are in theory unable to cut through the precipitates. Although the orientation relationship has been extensively studied in the past [50], only a few studies have been reported on the effect of the crystal mismatch on the plasticity [1, 2]. The absence of such studies is partly due to a technical difficulty in determination of crystal orientation of fine precipitate particles as mentioned in the Section 2. Recently, Matsukawa et al. performed a systematic analysis on the parallelism of atomic planes between precipitates and matrix in a Zr–2.5Nb alloy: the precipitates are bcc Nb containing Zr ∼10% and the matrix is hcp Zr. Based on the analysis results obtained from 100 precipitate particles (∼50 nm in diameter) by means of TKD, they demonstrated that the orientation is practically random. Only 1 out of 100 precipitates had a slip plane parallel to that of the matrix. Their experimental result is inconsistent with a preceding theoretical prediction by Zhang and Kelly [51, 52]. Judging from the mismatch of inter-planar spacings, the most favorable crystal orientation relationship for the Nb-rich bcc precipitates in the hcp Zr matrix is (\n
The Zr–Nb binary alloy phase diagram [
In the study of the Zr–2.5Nb alloy, the parallelism of slip planes between precipitates and matrix was analyzed as follows. This analysis is achieved by using the Euler angles obtained from EBSD/TKD measurements, though so far not automated. The analysis procedure is slightly different depending on the analysis software due to the different definition of the Euler angles. In the case of the TSL-OIM software based on Bunge’s description [53], the Euler angles (φ1, Φ, φ2) are given by three rotations along z1-x-z2 axes in accordance with passive rotation (intrinsic rotation), where the axes are rotated instead of the vectors of object, while the object is fixed in space (Figure 11). In this case, the rotation matrix (R) relative to the space coordinates is given as follows [54]:
\nPassive rotations of a cubic crystal with Euler angles (the Bunge Euler angles).
In the reference crystal, the z- and the x-axes of space coordinates are parallel to the [001] and to the [100] directions of cubic crystals. Here, we consider the orientation relationship between two cubic crystals, A and B, whose rotation matrices relative to the reference crystal are RA and RB. The rotation matrix between these two crystals (RC) is given as follows:
\nAn atomic plane of crystal B, \n
RA and RB are directly determined by EBSD measurements of crystals A and B. The Euler angles of the RD are determined by using a simulation equipped on the TSL-OIM data collection software. This simulation module is capable of (1) calculating how the index of a crystal (in the ND and the RD directions) changes in accordance with rotations along the three axes and (2) visualizing where the index (of the ND direction) is located on the Kikuchi map (the inverse pole figure). By using these functions, the index \n
Determination of theoretical accuracy of this analysis method is not straightforward, since errors are introduced by various factors such as (1) the conversion of the Euler angles (φ1, Φ, φ2) to direction cosines, (2) the conversion of direction cosines denoted in fractional values to the Millar indices (h k l) denoted in integer ratio, and (3) the noise of EBSD data. In order to estimate the practical accuracy of this analysis method, they first analyzed a standard sample in which the atomic-plane parallelism between grains is already known. Their standard sample was a type-316 austenitic stainless steel containing annealing twins (Figure 12). The twin boundary of fcc metals is one of the four crystallographically equivalent {111} planes. The Euler angles of these {111} planes for the RD rotation are, e.g., (φ1, Φ, φ2) = (0°, 55°, 45°), (0°, 55°, 135°), (0°, 55°, 225°), and (0°, 55°, 315°). They performed this analysis on 50 twin couples and found that the largest offset from the exact {111} was 3.3°. This is the magnitude of practical error of this analysis method.
\nEvaluation of the magnitude of error of the EBSD analysis method on the atomic plane parallelism described in this chapter, using annealing twins in a type-316 stainless steel [
To date, several orientation relationships have been reported on bcc precipitates in hcp matrix (Figure 13). The parallelism of slip planes in those orientation relationships is as follows: (1) the Burgers orientation relationship [13]: (0001)hcp//(110)bcc ˄ (\n
Examples of crystal orientation relationships between bcc and hcp crystals [
The magnitude of error of the abovementioned analysis of atomic-plane parallelism is greater than the orientation difference between the Potter and the Burgers orientation relationships, 1.5°. It follows that these two orientation relationships are practically indistinguishable from each other in this analysis. On the other hand, the orientation difference between the Pitsch-Schrader and the Burgers orientation relationships is 5.3°; in theory, they are distinguishable. In both the Burgers and the Pitsch-Schrader orientation relationships, the basal plane of the hcp crystal is parallel to a {110} plane of the bcc crystal. In other words, when any one of {110} planes of a precipitate is not parallel to the (0001) plane of the matrix, it follows that the precipitate is in neither one of these two orientation relationships. The criterion for the judgment of whether the Burgers or the Pitsch-Schrader is given by another atomic-plane parallelism, which is whether \n
In the study of the Zr–2.5Nb alloy, Matsukawa et al. fixed the plane of hcp matrix and plotted its corresponding atomic planes of bcc precipitates on an inverse pole figure (Figure 4). In the TSL-OIM software, the Euler angles of hcp crystals are given in the orthogonal coordinate system. In the reference crystal, the z- and the x-axes of space coordinates are parallel to the [0001]hcp and the \n
\n | Index | \nEuler angle (φ1, Φ, φ2) [°] | \n
---|---|---|
Basal | \n\n\n | \n0, 0, 0 | \n
Prismatic (type 1) | \n\n\n | \n0, 90, 0 | \n
\n | \n\n | \n0, 90, 60 | \n
\n | \n\n | \n0, 90, 120 | \n
Prismatic (type 2) | \n\n\n | \n0, 90, 90 | \n
\n | \n\n | \n0, 90, 150 | \n
\n | \n\n | \n0, 90, 210 | \n
The Euler angles to rotate the object coordinates of an hcp crystal in such a way that the plane of interest coincide with the (0001) of the reference hcp crystal, whose [0001] and \n
Recent progresses in our understanding of the crystallography of precipitates in metals and alloys have been briefly reviewed. The major highlights are the following three: (1) crystal structure of precipitates changes during nucleation. This concept in itself has been known since the 1930s. Recent new findings concern the critical conditions for the structural change in terms of fluctuations in size and composition, discovered by mean of combining transmission electron microscopy crystallographic analysis with atom probe tomography compositional analysis. It appears that the structural change occurs at a critical size with a critical composition. There is a long incubation period (in some cases a year long) before the structural change after the growth to be the critical size. During the incubation period, enrichment of solute elements occurs inside the precipitates without further size growth. It still remains unclear if these features are universal for any types of precipitates. This research field is expected to advance drastically in the years ahead. (2) In the past years, it has also become technically possible to examine the crystal orientation relationship of fine precipitate particles such as ∼50 nm in diameter with the matrix, on numbers of samples numerically sufficient for statistical arguments. Transmission Kikuchi diffraction, which is an advanced technique of electron backscatter diffraction equipped with a scanning electron microscope, revealed that the crystal orientation of precipitates can be random even when they are in theory favorable to have a specific orientation relationship with the matrix from the viewpoint of lattice mismatch. It appears that such a situation is realized when the matrix exhibits recrystallization after precipitation. (3) Crystal orientation relationship between precipitates and matrix was found to be a factor controlling the magnitude of precipitation hardening. This is a new concept beyond the scope of the traditional theory of precipitation hardening, which assumes that the hardening is controlled solely by the shear modulus, whether or not the precipitates are harder than the matrix. In cases where the slip plane of precipitates is not parallel to the slip plane of the matrix, dislocations gliding in the matrix are unable to cut through them, resulting in strong obstacles regardless of the shear modulus. Further information on this issue is provided in the next chapter.
\nThe author was supported by the MEXT Grant-in-Aid for Young Scientists (A) (22686058), by the Japan Society for the Promotion of Science (JSPS) KAKENHI (#16K06767), and by the Iron and Steel Institute of Japan (ISIJ) in the 23rd and the 26th Research Promotion Grants. This review article is based on the author’s previous researches partly sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under the Strategic Promotion Program for Basic Nuclear Researches entitled “Study on hydrogenation and radiation effects in advanced nuclear fuel cladding materials” and “Study of degradation mechanism of stainless steel weld-overlay cladding of nuclear reactor pressure vessels” and a program entitled “R&D of nuclear fuel cladding materials and their environmental degradations for the development of safety standards” entrusted to Tohoku University by the MEXT. Those researches were also supported in part by the Collaborative Research Programs of “the Oarai Center” and “the Cooperative Research & Development Center for Advanced Materials” of the Institute for Materials Research, Tohoku University, and of the Research Institute for Applied Mechanics, Kyushu University; by Advanced Characterization Nanotechnology Platform, Nanotechnology Platform Program of the MEXT, Japan, at the Research Center for Ultra-High Voltage Electron Microscopy in Osaka University and at the Ultramicroscopy Research Center in Kyushu University; and by the Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University (ZE27C-07, ZE28C-09, ZE29C-11, and ZE30C-01).
\nThe author declares no conflicts of interest directly relevant to the content of this chapter.
Safe navigation through fluid mud is increasingly important because enhancing the navigability with less dredging can help lower transportation costs and benefit biodiversity. The areas with fluid-mud layers need to be routinely surveyed to provide navigation charts used by the vessels. Fluid mud is described as a highly concentrated non-Newtonian suspension of sediment consisting mainly of water, organic matter, silt and clay minerals [1]. Fluid mud is a crucial factor when determining the nautical depth (nautical bottom). It is typically defined by a density value [2]. For example, the Port of Rotterdam uses the density of 1.2 kg/L as a nautical-depth criterium. Other parameters are though also used – for example, the Port of Emden adopts the yield stress of 100 Pa to define the nautical depth [2, 3]. Thus, it is important to have an accurate parameter that description of the fluid mud and could be used in the same way in different ports.
Full-scale and scaled experiments for safe ship navigation in the ports and waterways have been performed already for several decades [3, 4, 5]. Traditional ways of characterizing fluid mud involve its sampling, which inevitably disturbs the mud. Other methods, for instance radioactive probes, such as X- and γ-ray tube, can be used to measure the density of the fluid mud, where the density calculation is based on the Lambert–Beer Law [6]. The density profiler based on X-rays – DensX, and the Graviprobe, which measures the cone-penetration resistance and pressures when sinking freely in the water-mud column, can be used to estimate the density and undrained shear strength, respectively [7, 8]. Although these tools can provide a quantitative information about the densities and strength of mud, non-intrusive characterization and monitoring of fluid mud in ports and waterways is preferable. Currently, echo-sounding measurements are used as non-intrusive techniques for assessment of the nautical depth, for which the relationship between the acoustic impedance and densities of the fluid mud are investigated [9]. Multi-beam echo-sounders are deployed to detect fluid-mud layers. Utilization of signals at a higher frequency (200–215 kHz) and at a lower frequency (15–40 kHz) provides an estimate of the approximate thickness of the fluid-mud layer [7]. The higher-frequency measurements are used to map the lutocline, while the lower-frequency measurements provide an estimate of the sea-floor depth. Schrottke and Becker deployed a high-resolution side-scan sonar with a frequency of 330 kHz and a parametric sub-bottom profiler with frequencies of about 100 kHz for detecting the fluid mud with high vertical resolution [10]. The velocimeter, especially the acoustic Doppler velocimeter, was developed on the basis of ultrasonic waves to measure turbulency velocities in the fluid-mud sediments [11]. The mentioned techniques, though, rely on longitudinal (P-) waves, which are related to the bulk properties of the materials.
The propagation velocity and amplitude of transverse (S-) waves strongly depend on the geotechnical properties of the sediment, such as fluid mud [12]. Thus, S-waves could be used to characterize the fluid mud more precisely than when using P-waves and thus bulk properties. However, in seismic exploration in marine environments, the sources and receivers are usually deployed in the water column, more often relatively close to the water surface. Thus, the sources, such as airgun arrays, give rise to P-waves, and the receivers, usually towed by a vessel as streamers, record P-waves as well. This limits the utilization of S-waves because extracting the S-wave information is rather more involving and time-consuming [12]. Still, strong P-to-S-converted waves could be generated at the water bottom, and their utilization for characterization of the fluid mud is possible. A technique that could allow direct extraction of the S-wave velocities is seismic interferometry (SI) for retrieval of non-physical reflections. SI is a method that retrieves new recordings from existing recordings most often by cross-correlation [13, 14, 15] of the existing recordings. When the required assumptions for the practical application of SI are not met, non-physical arrivals are also retrieved. Some of the non-physical arrivals arise from internal reflections between layer boundaries [16, 17, 18]. SI can thus be applied for targeted retrieval specifically of non-physical (ghost) reflections to estimate the layer-specific velocities for layers in the subsurface [17, 18].
Ultrasonic transmission measurements of marine sediments have been performed, and it was reported that the P-wave attenuation coefficients indicate changes in the sediment composition more distinctly than the velocity of the P-waves [19]. Additionally, relationships between the porosity and P- and S-waves velocities were examined [19]. [20] carried out pulse-transmission measurements with a center frequency of 50 kHz and reported that in a foraminiferal mud the P-wave velocities range between 1840 m/s and 2462 m/s. Using a center frequency of 100 kHz under different effective pressures, it was also found that the S-wave velocities range between 450 m/s and 975 m/s [20]. Other studies showed that the S-wave velocity in mud samples can be as low as 7 m/s when using signals with a center frequency of 200 Hz [21, 22]. These different values for the P- and S-wave velocities show that it is necessary to perform seismic (ultrasonic) measurements for characterization of the fluid mud for each specific location, i.e., for each port or waterway. This would favor utilization of reflection measurements like in seismic exploration as they can be performed more easily. Additionally, seismic reflection experiments can be conducted with the aid of synthetic seismogram analysis to investigate the shear-wave velocity structure of the shallow-water sediments [23].
Seismic measurements for characterization and monitoring of the subsurface targets are also performed by means of distributed acoustic sensing (DAS) and with distributed temperature sensing (DTS). DAS has already been successfully used in the field of earthquake seismology [24, 25, 26, 27, 28], vertical seismic profiling [29, 30], and ambient noise velocity inversions [31]. DTS measurements have been used for monitoring of subsea structures [32] and of carbon capture, utilization and storage [33]. Thus, DAS and DTS could also be very useful in for characterization of fluid mud.
Utilization of DAS and DTS to measure seismic waves in the water and fluid mud offers advantages over the conventional electrical sensors such as electric isolation, immunity to electromagnetic interference, but also that they are non-conductive and non-corrosive, making them well-suited with regard to safety and durability for utilization in liquid-level sensing [34, 35, 36, 37]. Such practical advantages are complemented by economical ones. There has been a rapid development in the optical fibers due to their wide usage by the communication industry. This has led to a substantial decrease in price, as well as an increase in performance. For instance, a single-mode optical fiber that used to cost $ 20$/m in 1979 costed just 0.1$/m in 2008 [38]. Given that the optical fibers are relatively cheap and require little to no maintenance, they could be very useful, from an economical point of view, as receivers for monitoring the nautical depth in ports and waterways. With the experiments we describe below, we investigate the utilization of optical fibers as receivers for fluid-mud level detection and characterization.
In the following, we use laboratory ultrasonic experiments to investigate how P- and S-wave measurements can be used for fluid-mud characterization. We discuss the latest results of seismic (ultrasonic) measurements of P- and S-waves propagation through fluid mud. In Section 2, we first describe the materials, sample preparation, and the rheological experiments for measuring the yield stress. We then introduce the ultrasonic measurements systems we use for transmission and reflection measurements. Subsequently, we describe the DAS and DTS measurement setups.
In Section 3, we present the results from the transmission measurements for monitoring possible changes of the P- and S-wave velocities when the ultrasonic signals propagate through fluid mud at different stages of consolidation. We link the observed transmission velocity changes to the measured yield stress during the same consolidation stages of the fluid mud. Further, we describe results from the reflection setup for estimating the layer-specific P- and S-wave velocities of the fluid mud. Finally, we validate the utilization of DAS and DTS as seismic and temperature receivers in laboratory experiments for detecting the fluid-mud/water interface.
In Section 4, we discuss the accuracy of our results and their applicability to other ports, while in Section 5 we draw conclusions.
We develop laboratory ultrasonic measurement systems for transmission and reflection seismic measurements for characterization and monitoring of fluid mud while it is consolidating. The transmission seismic-measurements systems are designed for direct, fast, point-to-point measurements in the fluid mud using ultrasonic transducers or DAS as receivers. The reflection seismic-measurements system uses ultrasonic transducers to record waves that have reflected or refracted at different layer boundaries including the bottom of the water layer and the bottom of the fluid-mud layer. The reflection measurements can be used to record common-source gathers, which can subsequently be utilized to characterize velocity changes in the fluid mud during the consolidation using seismic-exploration techniques. We also describe the laboratory setup for rheological measurements of the fluid mud and the setup for DTS measurements.
For the transmission and reflection measurements, we use fluid-mud samples extracted from the Calandkanaal (Port of Rotterdam) at the location indicated in Figure 1a. Before conducting the measurements, we stir a sample using a mechanical mixer in order to obtain a homogeneous volume of fluid mud with a uniform density. The density of the homogenized sample is 1197 kg/m3. After the homogenization, the fluid-mud sample appears like a mud slurry (Figure 1b). The samples are consecutively left to consolidate through a self-weight process. We perform ultrasonic measurements while the fluid mud is consolidating. Synchronously with the ultrasonic measurements, we also perform rheological measurements to investigate the yield stress. We investigate the fluidic yield stress using a recently developed protocol for the fluid mud [39, 40]. We use a HAAKE MARS I rheometer (Thermo Scientific) with two measuring geometries (Couette and vane) and apply stress ramp-up tests to measure the yield stress. The stress ramp-up tests are performed using a stress increase from 0 to 500 Pa at a rate of 1 Pa/s, until the shear rate reaches 300 s−1, under a stress-control mode.
(a) Map of the port of Rotterdam illustrating the location of the site from where the fluid-mud samples had been collected (source: Google maps). (b) The process of homogenizing fluid mud with a mechanical mixer.
The transmission seismic laboratory setup is equipped with two pairs of piezoelectric ultrasonic transducers (Figure 2b and c). Each pair consists of a source and receiver transducer, with one of the pairs using P-wave transducers and the other pair – S-wave transducers. The direct transmission measurement represents a point-to-point measurement with both transducer pairs placed along the horizontal direction. Because of this source-receiver geometry, the estimated velocities of the P- and S- waves correspond to transmissions along horizontal layers inside the fluid mud, if such layers are developed.
(a) Sketch of the transmission seismic laboratory setup with the fluid-mud box viewed from above and showing the horizontal arrangement of the two transducer pairs. (b) Side view of the fluid-mud box showing the vertical alignment of the ultrasonic transducers. (c) Photo of the fluid-mud box showing also the two source transducers.
As shown in Figure 2a, the laboratory setup includes a fluid-mud tank, a signal-control part, and the two pairs of ultrasound transducers. The signal-control part in turn consists of a source-control part and a receiver-control part. In the source-control part, a function generator produces a desired signal, which signal is subsequently passed to a power amplifier to be finally passed to the source transducer, which sends it through the fluid mud. The fluid-mud tank is a plastic box that has opening for the installation of the transducer end-caps. The receiver-control part of the setup consists of the receiver transducers, attached to the fluid-mud tank using end-caps, an oscilloscope for digitalization and displaying, and a computer, connected to the oscilloscope, to record the sensed signals. The generated source signal is also visualized on the oscilloscope for quality control.
For the transmission measurements, we use as a source signal a gated sine-wave pulse with a center frequency of 1 MHz. A measurement is performed using a pulse-time delay. To increase the signal-to-noise ratio, especially needed for the S-wave velocity estimations, a measurement at each stage of consolidation consists of 1024 repeated recordings summed together to obtain a final transmission recording. This is done for both the P- and S-wave pair.
For each stage of the measurements, the first step in estimating the propagation velocities is to pick the first arrivals of the P- and S-waves. The second step is to calculate the P- and S-wave velocities by dividing the travel distance of waves, which is the distance from the source to the receiver transducer within each pair (equal for both pairs), by the travel times estimated from the picked first arrivals.
Similar to the transmission seismic laboratory setup, the reflection system consists of a signal-control part, a fluid-mud tank, and ultrasound transducers, but further to that also includes a transducer-placement part (Figure 3). While the signal-control part is the same as for the transmission measurements (Figure 3b), the fluid-mud tank is different and only one pair of ultrasonic transducers is used (Figure 3c). The transducer-placement part allows changing the positions of the transducers by moving them along horizontal and vertical bars (Figure 3a and c). This facilitates recording of reflections at multiple horizontal positions to obtain reflection common-source gathers, if desired with sources and receivers at different depths.
Reflection seismic-measurements system. (a) Cartoon of the fluid-mud tank with the transducer-placement part and the signal-control part (identical to the one in the transmission measurements). Red star indicates the source and black probe indicates the receiver. The transducer-placement part allows vertical (blue arrows) and horizontal (white arrows) displacement of the source and receiver. (b) Photo of the signal-control part. (c) Photo of the fluid-mud tank and the transducer-placement part with a source and receiver ultrasonic transducers.
In the measurements we perform, the transducers are placed a certain distance above the top of the fluid-mud layer to better mimic a geometry of a marine seismic-exploration survey. While placing sources and receivers during a field measurement campaign directly at the top of the fluid mud would allow direct recording of S-waves, a recording geometry with seismic sources and receivers towed at a certain height above the bed in the navigational channel is more practical – the surface of the sediments is seldomly flat, and hard object protruding from the sediments could damage the sources and/or receivers. On the other hand, towing the sources and receivers at a distance above the top of the fluid-mud layer inevitably brings uncertainty in the estimated seismic velocities caused by the salinity and temperature of the water. It is possible to monitor the changes in the salinity and temperature at specific locations, but the uncertainty still remains when using such point measurements for larger-area surveys due to the dynamics of the marine environments.
In order to eliminate these uncertainties, we apply SI for retrieval of ghost reflections from inside the fluid-mud layer and eliminate the travel-paths of the waves in the water layer. For pressure measurements in water, like in our laboratory setup, a general representation of SI by cross-correlation is [41].
where
where
where the summation is now over receiver positions and we retrieve a pressure recording at a virtual receiver at the position of source
Illustration of the geometry needed for retrieval of ghost reflections from inside the fluid-mud layer. See text for explanation of the symbols.
(a) Illustration of the travel-paths of the expected arrivals from S1 to a receiver in the reflection measurements. (b) Wiggle plot of the recorded CSG from S1. (c) Wiggle plot of the recorded CSG from S2. (d) Sketch of the travel-paths of the primary reflections of the mud top in the CSG from S2. (e) Sketch of the travel-paths of the primary reflection of the mud bottom (PPPP) in the CSG from S1. The ghost reflection is retrieved by summing the individual arrivals highlighted in green in (e) obtained from cross-correlating the primary reflection from the fluid-mud top in the CSG from S2 with the primary reflection PPPP in the CSG from S1.
The source signal we use is similar to the one for the transmission measurements but with a center frequency of 100 kHz.
Also with these measurements, to increase the signal-to-noise ratio of the recorded signals, a measurement at each receiver position from each source is repeated 1024 times and the 1024 measurements are summed together to obtain a final trace for that source and receiver positions.
Using the travel-path sketches in Figure 5a, we explain several arrivals of interest in the CSGs. Figure 5b and c present wiggle plots of the recorded CSGs from S1 and S2, respectively. We calculate expected arrival times based on the source/receiver offsets and the thicknesses of the water and fluid-mud layers, each of which we can directly measure. For propagation through the water layer, we use P-wave velocity of 1500 m/s. For the waves propagating through the fluid mud, we use values estimated from the transmission measurements – 1570 m/s for the P-wave velocity and 958 m/s for the S-wave velocity. The calculated reference times are illustrated by dashed lines superimposed on the CSGs to assist in interpretation of the arrivals. In Figure 5b and c, the reflection arrivals of interest in this study are the primary reflection from the fluid-mud top (magenta) and the three primary reflections from the fluid-mud bottom that are labeled as PPPP (blue), PPSP (red), and PSSP (orange). The S-waves in the experiment appear as waves converted from P to S at the top or the bottom of the fluid-mud layer. For example, the P-to-S converted wave in PPSP is generated when the P-wave impinging on the fluid-mud bottom is reflected as an S-wave; the P-to-S converted wave in PSSP is generated when the P-wave impinging on the fluid-mud top in transmitted to the fluid mud as an S-wave (Figure 5a) and continues to propagate as an S-wave until reaching the fluid-mud top again.
To retrieve ghost reflections, one can use relation (3) and correlate the CSGs. Such an approach could result in other retrieved arrivals interfering with the desired ghost reflections. To avoid that, we follow [17] and correlate only specific arrivals. To retrieve a P-wave ghost reflection from inside the fluid mud, we cross-correlate the primary reflection from the fluid-mud top in the CSG from S2 (Figure 5d) with the primary reflection PPPP in the CSG from S1 (Figure 5e). In a similar way, the P-to-S converted ghost reflection and S-wave ghost reflection are retrieved using the reflections PPSP and PSSP in the CSG from S1, respectively.
We use a standard single-mode communication fiber for both the DAS and DTS measurements. This means that we can combine the two methods and compare the difference in their performance With DAS, such fibers can act as seismic receivers that measure the dynamics of a strain field acting on a fiber [42]. With DTS, such fibers can act as strain and temperature sensors (and thus also labeled DT(S)S), which measure the static strain and temperature along the fiber [43].
To verify that these fibers can serve as receivers for fluid-mud level detection and characterization, we conduct seismic and temperature laboratory experiments using commercially available interrogators. These interrogators are the iDAS from Silixa and DITEST STA-R from Omnisens for measuring the acoustic impedance and temperature, respectively. For a more detailed explanation of the iDAS system, the reader is referred to [42].
Our fiber is coiled around a PVC pipe with a diameter of 0.125 m, which allows us to use more fiber and, hence, have more measuring points than when using a straight fiber. In addition, the coining increases the vertical resolution by compressing the gauge length of 10 m of the cable (the length over which the back-scattered signal is averaged to increase the signal-to-noise ratio of the detected dynamic deformation) only over a few vertical centimeters. Due to the coiling, we also change the directional sensitivity [44], making the cable more sensitive to horizontal waves, with respect to the column. The PVC pipe with the fiber coiled on it is placed inside a transparent column. We first perform experiments with two types of synthetic clay, namely kaolinite and bentonite, and subsequently with two types of fluid mud – one from the Port of Rotterdam, which is the same sample mud as described above, and the other from the Port of Hamburg. For the experiments with the synthetic clays, we fill the lowest part of the column, without coiled optical fiber, with sand. Above the sand, we put one of the clays, and then we fill the remainder with water. For the fluid-mud experiments, we instrument also the lowest part of the column with fiber and start filling the column with one of the fluid muds starting already at the bottom, while we again fill the remainder of the column with water. A schematic overview and pictures of the setup are shown in Figure 6. Note that for the measurements with kaolinite and bentonite, we have 0.5 m in depth, which is 123 m in fiber length, acting as sensors. For the measurements in the muds, we added 0.2 m in depth, giving us a total of 171 m of fiber length, acting as sensors. For both setups, we have 10 m of fiber outside of our column to use as a reference.
(a) Schematic overview of the setup for DAS and DTS measurements. A photo of the column with the optical fiber wound around the PVC pipe when using mud from the (b) port of Rotterdam and (c) port of Hamburg.
With DAS, we try to capture the water/mud interface and measure the shear strength build-up. We test various sources for these purposes. Our sources include a small transducer with a center frequency of 500 kHz, a larger transducer with a center frequency of 200 kHz (Figure 6b and c) and a common duo echo-sounder with a center frequency of 38 kHz and 200 kHz, which is also used by marine vessels to measure depth. We connect these sources to the same source-side signal-control part as described above. We use a frequency range from 25 kHz to 45 kHz, since preliminary results indicated that this range should give the best results. The sampling frequency of the DAS system is set at the maximum of the system, which is 100 kHz.
For the DTS measurements, we use two standard heating rods, which we place 5 cm away from the fiber, to heat the column and measure the difference with respect to time along the column. This we only do for the kaolinite sample, since a very similar result is expected for the other clay and two mud samples.
We describe the results of the ultrasonic transmission measurements with ultrasonic transducers and correlate them to the results from the rheological measurements. We further report the results from the reflection measurements and how they were used to retrieve ghost reflections. We then show the results from the DAS and DTS measurements.
We examine the first arrivals of transmitted P- and S-waves and estimate their velocity variations during the consolidation of the fluid mud. We do not observe a detectable change in the P-wave velocity – the P-wave first arrivals appear to be constant throughout the consolidation process (Figure 7a). This finding agrees with previous results reporting that the S-wave velocity is more sensitive to changes in lithology and mechanical properties than the P-wave velocity [45]. The traveltime of the direct arrivals of the P-wave is 0.074 ms (Figure 7a), and thus the corresponding velocity is 1570 m/s. By examining the change in arrival time of the first S-wave arrival (Figure 7a), we find that the S-wave traveltime decreases with consolidation time, indicating that the S-wave velocity increases with the consolidation progress (Figure 7b).
(a) Transmission recordings of the direct P- and S-wave arrivals as a function of consolidation time. (b) Estimated S-wave velocity as a function of the consolidation time.
We can see from Figure 7, that during the first three days the S-wave velocity is nearly stable exhibiting very little fluctuations. Starting from Day 3, the S-wave velocity shows a strong increase from 959 to 995 m/s during the next two days. In the second week, the S-wave velocity only experiences a small increase and eventually reaches 998 m/s. By comparing the velocity variations of the P-wave and S-waves, we can summarize that the relative increase in the S-wave velocity is much stronger than in P-wave velocities, validating the statement that the S-waves are much more sensitive to the consolidation of the fluid mud than the P-waves. This finding agrees with a previous in-situ seismic exploration results using pulse-transmission techniques [45].
By drawing the estimated S-wave velocities from Figure 7b as a function of the concurrently estimated fluidic yield stresses (Figure 8), we see a positive correlation during the consolidation of the fluid mud. The correlation appears to indicate that the S-wave velocity starts increasing after the fluidic yield stress exceeds some critical value (for each of the Couette and vane geometry). Once the critical value is surpassed, the S-wave velocity increases with the increasing fluidic yield stress caused by the consolidation.
Relationship between the estimated S-wave velocities (
The recorded primary reflections from the fluid-mud top and bottom are identified and shown in Figure 9. We apply SI using the reflection from the mud top in the CSG from S2 and the primary reflections PPPP, PPSP, and PSSP from the mud bottom in the CSG from S1 (Figure 9). As explained in Section 2.2, the ghost reflections are retrieved by eliminating the P-wave travel-paths inside the water. The ghost reflections in Figure 10, retrieved using the primary reflections PPPP, PPSP, and PSSP, are labeled PP, PS, and SS, respectively. In Figure 10, we also show the length of each of the legs of the reflection travel-paths of the retrieved ghost reflections. We use these lengths to estimate the wave velocities using the arrival times of the retrieved ghost reflections.
Identified primary reflections in the common-source gather from (a) source 1 and (b) source 2. We apply seismic interferometry (SI) by correlating (the
The travel distances of the travel-paths of the ghost reflections PP, SS, and PS when the fluid-mud thickness is 86 mm, which is the thickness on day 11 of the consolidation.
As explained, the retrieved result is obtained by stacking the correlated traces. When the receiver array is sufficiently long, the stacking would have resulted in the retrieved ghost reflections only, with the contribution to the retrieved signal coming from summation inside the so-called stationary-phase region [46], i.e., the region where a curve appears nearly horizontal. In Figures 11a–13a, we indicate the stationary-phase regions with green dashed rectangles. Because our receiver array is of a limited length and is further only on one side of the sources, summation of all traces produces more or less erroneous results (Figures 11b–13b). Because of this, to retrieve the ghost reflections we use for the summation only traces in the stationary-phase region (Figures 11c–13c). We then pick from those results the two-way traveltimes to estimate the velocities inside the fluid-mud layer.
Two-way traveltime pick of the ghost reflection PP. (a) Correlation result of the reflection from the fluid-mud top from
Dividing the travel distance of 179.2 mm, which ghost reflection PP has traversed inside the fluid-mud layer (Figure 10) by the picked two-way traveltime from Figure 11c, we estimate the P-wave velocity to be 1592 m/s. To estimate directly the S-wave velocity inside the fluid-mud layer, we divide the travel distance the ghost reflection SS has traversed inside the fluid-mud layer, again 179.2 mm (Figure 10), by the picked two-way traveltime from Figure 13c, and obtain 995 m/s. Comparing this value with the estimated value from the transmission measurements on day 11 of 998 m/s (Figure 7b), we see that the difference is only 0.3%, which is negligible. Comparison of the estimated P-wave velocity to the value from the transmission measurements of 1570 m/s, we see that the difference is 1.4%, which is a bit higher but still acceptable.
Figure 14 shows DAS measurements of the arrivals recorded along the fiber as a function of arrival time when using the fluid mud from the Port of Hamburg and the large transducer as a source (Figure 6c). We perform the measurements after the mud has consolidated for 9 days. To improve the signal-to-noise ratio, we repeat the recordings 10 times and then stack them. Using the first arrivals, i.e., the direct P-wave, we estimate the P-wave velocity in water to be around 1450–1500 m/s, while in the fluid mud to be 1490–1570 m/s. The reason for the uncertainty is likely related to the relatively low rate of time sampling of 100 kHz for the source frequency we use of 25–45 kHz. For this sampling rate, the Nyquist frequency is 50 kHz, which is very close to the source frequencies and, thus, makes the velocity analysis more ambiguous. The small difference in the P-wave velocity of the water and the fluid mud combined with the uncertainties make the detection of the water/mud interface rather challenging if the first arrival as used.
The recordings in Figure 14 show that a more accurate and robust criterion to detect the water/mud interface is to look at the multiple reflections and their amplitude attenuation. Looking at the figure, we can see that later arrivals appear to faint, i.e., are more attenuated after the water/mud interface, with the latter indicated by the blue line. Taking a closer look at the multiple reflections, we see that these later arrivals have completely fainted after 93.7 m fiber length, with the water/mud interface at 90.7 m fiber length. This difference of 3 m of fiber might be related to the gauge length of the fiber, i.e., the length over which the DAS system averages the observations, which in our case is 10 m. Another reason could be the uncertainty in the exact position of the fiber.
The measurements with the fluid mud from the Port of Rotterdam and the two clays show similar results.
We also look at the signal attenuation due to the consolidation of the mud, and thus the increase of its shear strength. Figure 15a and b show the DAS recordings in bentonite clay performed on the first and second day of the consolidation, respectively. We see a clear difference in signal penetration through the bentonite clay – on the first day, there is little to no signal penetration, opposed to the second day, when the waves propagate all the way through the column. This difference is purely related to the buildup of shear strength in the bentonite, since bentonite does not settle but builds up shear strength with time.
From the tests we perform with different types of sources (small and large transducer and duo echo sounder) we observe that the small transducer with resonant frequency of 500 kHz does not generate enough energy when we use it for emitting a P-wave at 25 kHz – 45 kHz. For that reason, it is outperformed by the big transducer whose resonant frequency of 200 kHz is closer to our target source-signal frequency of 25 kHz – 45 kHz. The duo echo sounder generated by far the strongest signal; however, because it was mounted on the transparent outer column and was situated right above our PVC pipe, a lot of tube waves and refracted waves are generated, which are undesired in our tests. These strong interfering events could potentially be suppressed applying further signal processing, as we suggest above – for example using a frequency-wavenumber filter.
Besides using the optical fiber as a receiver for seismic waves, we also use it as DTS recorder to measure temperature. Due to the difference in the heat capacity and heat conductivity between water and mud, a difference in heating occurs when we start heating up the column using heating rods in the water and kaolinite. This difference can be observed in Figure 16, where we show the measured Brillouin frequency when we heat up the water and kaolinite. The brown curves show a reference measurement before the heating, while the other colored curves show the measurements after increasing the temperature of the water each time by 1°C. Inside the water layer (Figure 16a), we observe a linear increase in the Brillouin frequency per oC. Inside the mud layer, however, we see a non-linear trend due to the lower heat capacity and lower heat conductivity. This is especially visible along the red curve, which characterizes the first measurement after we start heating up the column: we see that in the lower part, starting at 99 m, the red curve overlaps the brown curve meaning that the heat from the heating rods has not yet reached the fiber at that level and deeper.
The DTS measurements show that interpretation of the water/mud interface can be achieved with a likely accuracy of around 4 cm.
The direct transmission measurements of the P- and S-wave velocities inside the fluid-mud layer showed that the P-wave velocity is nearly independent of the consolidation process while the S-wave velocity significantly increases during the consolidation. This can be attributed to the property changes of the fluid mud due to the compaction effect of the consolidation and potentially the production of gas in the mud. The S-wave velocity is principally determined by the grain structure and shear modulus of the frame of the solid phase (minerals). The P-wave velocities on the other hand depend on the elastic moduli of the grains, sediment frame, and bulk modulus of the fluid. Thus, for marine sediments with high porosity, such as the fluid mud, the S-wave rather than the P-wave is strongly affected by the consolidation, and, thus, can be potentially used to characterize the consolidation process.
Using SI for retrieval of ghost reflections inside the fluid-mud layer, we removed the kinematic influence of the water layer above the mud. The estimated velocities of the P- and S-waves using the ghost reflections PP and SS, respectively, were very close to the ones estimated from the direct transmission measurements inside the fluid-mud layer. Because we also had the ghost reflection PS (Figure 12), we could estimate the S-wave velocity inside the fluid mud also from this arrival. We did this making use of the already estimated P-wave velocity for the propagation along the P-wave path of 91.6 mm in Figure 10. The value we then obtained was 991 m/s, which is quite close to the value of the S-wave velocity obtained from the ghost reflection SS, but is of course inheriting errors from the estimation of the P-wave velocity. Nevertheless, all three values can be used as quality control of each other or as substitutes when one of the three ghost reflections cannot be reliably retrieved due to, for example, interference from other arrivals.
As in
As in
DAS recordings using the setup from
DAS recordings when synthetic clay (bentonite) is used as fluid mud. The recordings were done after (a) half an hour and (b) 24 hours of consolidation of the bentonite.
Brillouin frequency changes in (a) water and (b) mud after increasing the temperature of the water in the column by 1°C. the red line indicates the water/mud interface. The brown curve represents a reference measurement without heating. The curves with colors other than brown represent measurements after heating up the water several times by 1°C.
Observing the multiple reflections in the DAS recordings, we estimated an error of 3 m along the coiled fiber in detecting the depth of the water/mud interface. Since we coiled the fiber around a PVC pipe with a diameter of 0.125 m and because the fiber’s thickness is 1.6 mm, the 3-meter error of fiber length translates to 1.2 cm of vertical error in the depth of the water/mud interface. With such an error, to the best of our knowledge, our approach is the most accurate non-intrusive method for determining the depth of the water/mud interface. Note that to achieve this accurate result, the only processing we applied was to increase the signal-to-noise ratio by the summation of the 10 separate recordings. More signal processing could further improve the determination of the water/mud interface. We expect that a similar high accuracy is achievable in the field as well since the upper end of the optical fiber is placed at the very bottom of the water layer, which limits errors caused by differences in, for instance, the water temperature.
The direct transmission measurements with DAS, on the other hand, allowed estimation of the P-wave velocity in the fluid mud in the range 1490–1570 m/s. Comparing these values to the value of 1570 m/s from the direct transmission measurements horizontally inside the fluid mud means an uncertainty of about 5.1%, which is not negligible. This confirms the difficulty when using a source in the water and receivers in the fluid mud, and clearly underlines the advantage of using SI with ghost reflections from reflection measurements. Thus, we argue that another very useful application of DAS could be with direct transmission measurements inside the fluid-mud layer, and thus also for transmission tomography between a vertical array of sources inside the mud and a vertical DAS pole with coiled fiber.
For our laboratory measurements, we used fluid-mud samples from the Port of Rotterdam and the Port of Hamburg. Nevertheless, our results and conclusions can be generalized to fluid-mud samples from other ports. Because the estimated P- and S-wave velocities using the ghost reflections do not depend kinematically on the water layer, this technique could easily be applied to any port or waterway. Of course, the P- and S-wave velocities of the fluid mud will differ from place to place, so those will need to be estimated for each place, for example for correlation with the yield stress. The DAS and DTS techniques for estimating the water/mud boundary can likewise be used at any other port or waterway, as they depend only on the strong contrast in the observed parameters between the layer and fluid-mud layer.
We presented recent results for non-intrusive characterization and monitoring of fluid mud in ports and waterways using ultrasonic measurements in transmission and reflection geometry, including measurements with Distributed Acoustic Sensing (DAS), and using temperature measurements with Distributed Temperature Sensing (DTS). We performed the measurements in a laboratory on samples from the Port of Rotterdam, Port of Hamburg, and two synthetic clays.
Using ultrasonic transmission measurements with transducers directly inside fluid mud, we investigated the changes in the velocities of longitudinal (P-) and transverse (S-) waves and their possible relation to the yield stress during the consolidation. We observed no detectable change of the P-wave velocities during the consolidation of the fluid mud. We observed that the S-wave velocities exhibited a relatively strong increase after the fluid mud settles for a certain amount of time, in our study after 3 days. Comparing the estimated S-wave velocities to the concurrently estimated fluidic yield stress, we showed a positive correlation between the two. Our findings verify that the S-wave velocities increase with increasing yield stress caused by the fluid-mud consolidation and can thus be potentially used for indirect in-situ assessment of the yield stress.
Using ultrasonic reflection measurements with transducers, we investigated the direct estimation of the P- and S-wave velocities inside the fluid-mud layer. The source and receiver transducers were placed inside the water layer, but we showed that the kinematic influence of the water layer can be completely eliminated by retrieval of non-physical (ghost) reflections inside the fluid mud by application of seismic interferometry. Using the retrieved ghost reflections to estimate the layer-specific P- and S-waves velocities of the mud, we eliminated possible uncertainty due to salinity and temperature gradients of the water, which affect the velocity estimates using the usual seismic-reflection processing techniques. We show that the reflection-estimated velocities differ from the transmission-calculated values only by 1.4% and 0.3% for the P- and S-waves, respectively.
We also showed that DAS and DTS can be very effective in estimating the depth of the water/mud interface. We showed that a standard communication fiber is sufficient to achieve an accuracy in the estimated depth of the water/mud interface of 1.2 cm. This accuracy, to the best of our knowledge, is higher than what is achievable with any the currently used non-intrusive methods. Furthermore, we showed that the strength of the signal recorded with DAS is linked to changes in the shear strength of clays.
The research of X.M. is supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO) with grant no. ALWTW.2016.029. The research of M.B. is supported by the Port of Rotterdam, Hamburg Port Authority, Rijkswaterstaat and SmartPort. The project is carried out also within the framework of the MUDNET academic network https://www.tudelft.nl/mudnet/.
The authors declare no conflict of interest.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"16"},books:[{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11871",title:"Aortic Surgery",subtitle:null,isOpenForSubmission:!0,hash:"6559d38b53bc671745ac8bf9ef2bd1f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11871.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12092",title:"Pancreatic Cancer",subtitle:null,isOpenForSubmission:!0,hash:"934ff1479446e52efd8d675a113fca63",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12092.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12093",title:"Germ Cell Tumors",subtitle:null,isOpenForSubmission:!0,hash:"a86ceba1cc2eddfb98df1f0bdd7970f3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12093.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12114",title:"Bone Fractures",subtitle:null,isOpenForSubmission:!0,hash:"78d9847691b6f1a8454480e7c0dbaef4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12114.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12095",title:"Radiation Therapy",subtitle:null,isOpenForSubmission:!0,hash:"a4c8ee34ddd31ad65f143459a8f5300b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12095.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:145},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"434",title:"E-Commerce",slug:"e-commerce",parent:{id:"63",title:"Business Administration",slug:"business-management-and-economics-business-administration"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:13,numberOfWosCitations:31,numberOfCrossrefCitations:43,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"434",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5456",title:"E-Business",subtitle:"State of the Art of ICT Based Challenges and Solutions",isOpenForSubmission:!1,hash:"f24674bb31f96703b5d2f207e834f420",slug:"e-business-state-of-the-art-of-ict-based-challenges-and-solutions",bookSignature:"Dragan Perakovic",coverURL:"https://cdn.intechopen.com/books/images_new/5456.jpg",editedByType:"Edited by",editors:[{id:"13092",title:"Associate Prof.",name:"Dragan",middleName:null,surname:"Perakovic",slug:"dragan-perakovic",fullName:"Dragan Perakovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3718",title:"E-commerce",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"e-commerce",bookSignature:"Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/3718.jpg",editedByType:"Edited by",editors:[{id:"2114",title:"Dr.",name:"Kyeong",middleName:null,surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"10158",doi:"10.5772/8905",title:"Can a Recommender System Induce Serendipitous Encounters?",slug:"can-a-recommender-system-induce-serendipitous-encounters-",totalDownloads:2769,totalCrossrefCites:17,totalDimensionsCites:21,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Leo Iaquinta, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro and Piero Molino",authors:null},{id:"10160",doi:"10.5772/8907",title:"TECTAM: An Approach to Study Technology Acceptance Model (TAM) in Gaining Knowledge on the Adoption and Use of E-Commerce/E-Business Technology among Small and Medium Enterprises in Thailand",slug:"tectam-an-approach-to-study-technology-acceptance-model-tam-in-gaining-knowledge-on-the-adoption-and",totalDownloads:3639,totalCrossrefCites:8,totalDimensionsCites:10,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Vasin Chooprayoon and Chun Che Fung",authors:null},{id:"10148",doi:"10.5772/8895",title:"Electronic Commerce Readiness in Developing Countries: The Case of the Chinese Grocery Industry",slug:"electronic-commerce-readiness-in-developing-countries-the-case-of-the-chinese-grocery-industry",totalDownloads:3666,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Sherah Kurnia and Fei Peng",authors:null},{id:"10150",doi:"10.5772/8897",title:"Consumer Responses to Colors of E-Commerce Websites: an Empirical Investigation",slug:"consumer-responses-to-colors-of-e-commerce-websites-an-empirical-investigation",totalDownloads:3879,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Jean-Eric Pelet and Panagiota Papadopoulou",authors:null},{id:"10153",doi:"10.5772/8900",title:"Considering Culture in Designing Web Based E-commerce",slug:"considering-culture-in-designing-web-based-e-commerce",totalDownloads:3929,totalCrossrefCites:4,totalDimensionsCites:4,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Kyeong Kang",authors:null}],mostDownloadedChaptersLast30Days:[{id:"10150",title:"Consumer Responses to Colors of E-Commerce Websites: an Empirical Investigation",slug:"consumer-responses-to-colors-of-e-commerce-websites-an-empirical-investigation",totalDownloads:3878,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Jean-Eric Pelet and Panagiota Papadopoulou",authors:null},{id:"10148",title:"Electronic Commerce Readiness in Developing Countries: The Case of the Chinese Grocery Industry",slug:"electronic-commerce-readiness-in-developing-countries-the-case-of-the-chinese-grocery-industry",totalDownloads:3666,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Sherah Kurnia and Fei Peng",authors:null},{id:"10159",title:"A Mobile Commerce Model for Automobile Rescue Services",slug:"a-mobile-commerce-model-for-automobile-rescue-services",totalDownloads:2297,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Liyi Zhang and Qihua Liu",authors:null},{id:"10155",title:"E-Commerce Assessment in Fuzzy Situation",slug:"e-commerce-assessment-in-fuzzy-situation",totalDownloads:2260,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Mehdi Fasanghari",authors:null},{id:"10151",title:"Ranking Companies Based on Multiple Social Networks Mined from the Web",slug:"ranking-companies-based-on-multiple-social-networks-mined-from-the-web",totalDownloads:2163,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"3718",slug:"e-commerce",title:"E-commerce",fullTitle:"E-commerce"},signatures:"Yingzi Jin, Yutaka Matsuo and Mitsuru Ishizuka",authors:null}],onlineFirstChaptersFilter:{topicId:"434",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"1",title:"Oral Health",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",isOpenForSubmission:!0,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"2",title:"Prosthodontics and Implant Dentistry",coverUrl:"https://cdn.intechopen.com/series_topics/covers/2.jpg",isOpenForSubmission:!0,editor:{id:"179568",title:"Associate Prof.",name:"Wen Lin",middleName:null,surname:"Chai",slug:"wen-lin-chai",fullName:"Wen Lin Chai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHGAQA4/Profile_Picture_2022-05-23T14:31:12.png",biography:"Professor Dr. Chai Wen Lin is currently a lecturer at the Department of Restorative Dentistry, Faculty of Dentistry of the University of Malaya. She obtained a Master of Dental Science in 2006 and a Ph.D. in 2011. Her Ph.D. research work on the soft tissue-implant interface at the University of Sheffield has yielded several important publications in the key implant journals. She was awarded an Excellent Exchange Award by the University of Sheffield which gave her the opportunity to work at the famous Faculty of Dentistry of the University of Gothenburg, Sweden, under the tutelage of Prof. Peter Thomsen. In 2016, she was appointed as a visiting scholar at UCLA, USA, with attachment in Hospital Dentistry, and involvement in research work related to zirconia implant. In 2016, her contribution to dentistry was recognized by the Royal College of Surgeon of Edinburgh with her being awarded a Fellowship in Dental Surgery. She has authored numerous papers published both in local and international journals. She was the Editor of the Malaysian Dental Journal for several years. Her main research interests are implant-soft tissue interface, zirconia implant, photofunctionalization, 3D-oral mucosal model and pulpal regeneration.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorTwo:{id:"479686",title:"Dr.",name:"Ghee Seong",middleName:null,surname:"Lim",slug:"ghee-seong-lim",fullName:"Ghee Seong Lim",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003ScjLZQAZ/Profile_Picture_2022-06-08T14:17:06.png",biography:"Assoc. Prof Dr. Lim Ghee Seong graduated with a Bachelor of Dental Surgery from University of Malaya, Kuala Lumpur in 2008. He then pursued his Master in Clinical Dentistry, specializing in Restorative Dentistry at Newcastle University, Newcastle, UK, where he graduated with distinction. He has also been awarded the International Training Fellowship (Restorative Dentistry) from the Royal College of Surgeons. His passion for teaching then led him to join the faculty of dentistry at University Malaya and he has since became a valuable lecturer and clinical specialist in the Department of Restorative Dentistry. He is currently the removable prosthodontic undergraduate year 3 coordinator, head of the undergraduate module on occlusion and a member of the multidisciplinary team for the TMD clinic. He has previous membership in the British Society for Restorative Dentistry, the Malaysian Association of Aesthetic Dentistry and he is currently a lifetime member of the Malaysian Association for Prosthodontics. Currently, he is also the examiner for the Restorative Specialty Membership Examinations, Royal College of Surgeons, England. He has authored and co-authored handful of both local and international journal articles. His main interest is in prosthodontics, dental material, TMD and regenerative dentistry.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83073",title:"Dental and Orofacial Trauma Impacts on Oral-Health-Related—Quality of Life in Children: Low- and Middle-Income Countries",doi:"10.5772/intechopen.105845",signatures:"Yolanda Malele-Kolisa, Nazia Khan, Mpho P. Molete, Maphefo D. Thekiso and Mzubanzi Mabongo",slug:"dental-and-orofacial-trauma-impacts-on-oral-health-related-quality-of-life-in-children-low-and-middl",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}]},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain.Dr. Satué is accredited as a Private University Doctor Professor, Doctor Assistant, and Contracted Doctor by AVAP (Agència Valenciana d'Avaluació i Prospectiva) and currently, as a full professor by ANECA (since January 2022). To date, Katy has taught 22 years in the Department of Animal Medicine and Surgery at the CEU-Cardenal Herrera University in undergraduate courses in Veterinary Medicine (General Pathology, integrated into the Applied Basis of Veterinary Medicine module of the 2nd year, Clinical Equine I of 3rd year, and Equine Clinic II of 4th year). Dr. Satué research activity is in the field of Endocrinology, Hematology, Biochemistry, and Immunology in the Spanish Purebred mare. She has directed 5 Doctoral Theses and 5 Diplomas of Advanced Studies, and participated in 11 research projects as a collaborating researcher. She has written 2 books and 14 book chapters in international publishers related to the area, and 68 scientific publications in international journals. Dr. Satué has attended 63 congresses, participating with 132 communications in international congresses and 19 in national congresses related to the area. Dr. Satué is a scientific reviewer for various prestigious international journals such as Animals, American Journal of Obstetrics and Gynecology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology, among others. Since 2014 she has been responsible for the Clinical Analysis Laboratory of the CEU-Cardenal Herrera University Veterinary Clinical Hospital.",institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular Economy, Contingency Planning and Response to Disasters, Ecosystem Services, Integrated Urban Water Management, Nature-based Solutions, Sustainable Urban Development, Urban Green Spaces",scope:"