Radiation particle types, their flux, and energies on the lunar surface [72, 73, 74, 75, 76, 77, 78].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9727",leadTitle:null,fullTitle:"Silviculture",title:"Silviculture",subtitle:null,reviewType:"peer-reviewed",abstract:"Silviculture is integral for the perpetuity and sustainability of forest stands and their yields. It encompasses several methods and techniques that make the bridge between individual trees and the stand. This book focuses on sustainable forest management with chapters on such topics as afforestation, thinning, pest control, and mitigation of climate change, among others.",isbn:"978-1-83968-449-4",printIsbn:"978-1-83968-448-7",pdfIsbn:"978-1-83968-450-0",doi:"10.5772/intechopen.87532",price:119,priceEur:129,priceUsd:155,slug:"silviculture",numberOfPages:158,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"22ee60f177a2963821d834c66c466115",bookSignature:"Ana Cristina Gonçalves",publishedDate:"March 10th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9727.jpg",numberOfDownloads:3389,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 29th 2019",dateEndSecondStepPublish:"March 17th 2020",dateEndThirdStepPublish:"May 16th 2020",dateEndFourthStepPublish:"August 4th 2020",dateEndFifthStepPublish:"October 3rd 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves",profilePictureURL:"https://mts.intechopen.com/storage/users/194484/images/system/194484.jpg",biography:"Ana Cristina Gonçalves is an Assistant Professor with Habilitation in the Department of Rural Engineering, University of Évora, Portugal, and a researcher at the Mediterranean Institute for Agriculture, Environment and Development (MED). She holds a Ph.D. in Forestry. Dr. Gonçalves has authored more than 100 publications and participated in 20 research projects. Her research is focused on silviculture and modelling in pure, mixed, and even-aged and uneven-aged stands, and forest management and planning integrated into a GIS environment.",institutionString:"University of Évora",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"11",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"331",title:"Forestry Science",slug:"agricultural-and-biological-sciences-ecology-forestry-science"}],chapters:[{id:"72851",title:"Silvicultural Practices in Venezuelan Natural Forests: An Historical Perspective and Prospects of Sustainable Forest Management",doi:"10.5772/intechopen.93279",slug:"silvicultural-practices-in-venezuelan-natural-forests-an-historical-perspective-and-prospects-of-sus",totalDownloads:725,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"More than four decades of cumulative silvicultural experience in Venezuelan forests represents a significant progress towards sustainable forest management in the tropics. Here, based on an extensive literature review, expert opinions and discussions with forestry stakeholders in the country, we offer a broad overview of the history and current state of silvicultural practices in Venezuela’s natural production forests. Despite important research advances, several factors including institutional and policy limitations, along with the lack of sound technical guidelines have hampered a more positive influence of silvicultural research for sustainable forest management across the country’s managed forests. On an industrial scale, after an often poorly planned selective logging, and despite increasing evidences against for, a strong prominence of assisted natural regeneration (i.e., enrichment planting) characterized the post-logging management compared to other approaches. With very few exceptions, using artificial regeneration did not produced the expected outcomes in terms of tree growth, expected timber yield and survival. Finally, amidst the current political and economic upheaval in Venezuela, a broad range of lessons and policy recommendations is proposed including the strengthening of research on silvicultural options for multiple use of forests and for climate change mitigation and adaptation.",signatures:"Emilio Vilanova",downloadPdfUrl:"/chapter/pdf-download/72851",previewPdfUrl:"/chapter/pdf-preview/72851",authors:[{id:"319558",title:"Ph.D.",name:"Emilio",surname:"Vilanova",slug:"emilio-vilanova",fullName:"Emilio Vilanova"}],corrections:null},{id:"74270",title:"Mixed Forest Plantations with Native Species for Ecological Restoration in Cloud Forests of the Venezuelan Andes",doi:"10.5772/intechopen.95006",slug:"mixed-forest-plantations-with-native-species-for-ecological-restoration-in-cloud-forests-of-the-vene",totalDownloads:415,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Tropical cloud forests play a fundamental role in the hydrological cycle of mountain watersheds having the largest biodiversity per unit area. In Venezuela, cloud forests are subject to intense deforestation and fragmentation by farming and cattle-ranching causing soil erosion, water cycle alteration, and biodiversity loss. Reforestation projects used exotic species as Pines and Eucalyptus, native species were rarely planted by lacking knowledge on species requirements and management. We report the performance of 25 native cloud forest species differing in shade-tolerance, planted in mixed assemblies on degraded areas. Tree survival and the individual tree variables: total height, root-collar diameter, tree-slenderness, and crown-ratio were evaluated at 1, 2, 4.5 and 7 years-old. Data was analyzed with a repeated measures analysis of variance mixed model considering species shade-tolerance, light intensity at planting and age as explanatory factors. Survival was over 80%. Shade-intolerant species displayed faster height and root-collar diameter growth. Shade-tolerant species had larger crown ratios due to persistence of lower branches; whereas, shade-intolerant showed signs of crown recession at age 7. Slenderness values from age 4.5 were indicative of good trees stability and health across treatments. The positive results have motivated landowners to establish native species plantations in critical areas with our support.",signatures:"Ana Quevedo-Rojas and Mauricio Jerez-Rico",downloadPdfUrl:"/chapter/pdf-download/74270",previewPdfUrl:"/chapter/pdf-preview/74270",authors:[{id:"327833",title:"Dr.",name:"Ana",surname:"Quevedo",slug:"ana-quevedo",fullName:"Ana Quevedo"},{id:"330222",title:"Dr.",name:"Mauricio",surname:"Jerez-Rico",slug:"mauricio-jerez-rico",fullName:"Mauricio Jerez-Rico"}],corrections:null},{id:"73015",title:"Thinning: An Overview",doi:"10.5772/intechopen.93436",slug:"thinning-an-overview",totalDownloads:463,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Thinning is one of the primordial silvicultural practices. It has been analysed by its methods and intensities, associated to the tree selection criteria. Yet, while some methods are of generalised use, others were developed for specific purposes. The goal of this review is to compile the existing information regarding tree selection, thinning methods and intensity as well as their effects on trees and stands. The effects of thinning indicate a reduction of density and a trend towards an increase of growth rates at tree level for a short time after thinning. Biomass and volume show similar or smaller values when compared to unthinned stands. Mortality and growth stagnation, especially in stands with low stability or vigour, can also occur. The modifications in stand structure can enhance its role as an adaptive measure.",signatures:"Ana Cristina Gonçalves",downloadPdfUrl:"/chapter/pdf-download/73015",previewPdfUrl:"/chapter/pdf-preview/73015",authors:[{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],corrections:null},{id:"72975",title:"Differentiation of the Forest Structure as the Mitigation Action of Adverse Effects of Climate Change",doi:"10.5772/intechopen.93327",slug:"differentiation-of-the-forest-structure-as-the-mitigation-action-of-adverse-effects-of-climate-chang",totalDownloads:375,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"For several decades, the attention of societies has been focused on potential environmental changes due to climate change. Although climate change is not a new phenomenon, in the recent two decades, there has been a growing interest of scientists trying to determine scenarios of trends and their potential impact on forest ecosystems and forestry. Despite the uncertainties of climate change and the response of forest ecosystem to change, the forest management must deal with these uncertainties. There is no single prescription on how to manage forest resources under climate change in order to fulfill all demands from society. Various strategies in forest management are developed to counteract the adverse effects of climate change on forests and forestry. The future forest management should implement the following three main strategies: create forests which are resistant to change, promote their greater resilience to change, and enable forests to respond to change. It is expected that the more the structured forest, the higher the adaptive capacity is expected. Experiment focused on the influence of different silvicultural procedures on the structure of Scots pine in Poland is presented. Achieved results indicated that the process of stand structure conversion is a long-term process and different structural elements can be modified to different extents.",signatures:"Janusz Szmyt",downloadPdfUrl:"/chapter/pdf-download/72975",previewPdfUrl:"/chapter/pdf-preview/72975",authors:[{id:"319945",title:"Dr.",name:"Janusz",surname:"Szmyt",slug:"janusz-szmyt",fullName:"Janusz Szmyt"}],corrections:null},{id:"75222",title:"Basic Theory and Methods of Afforestation",doi:"10.5772/intechopen.96164",slug:"basic-theory-and-methods-of-afforestation",totalDownloads:681,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Afforestation is an important practice in silviculture. This chapter outlines the forest site, site preparation, selection of afforestation materials in the process of afforestation. The life cycle of forests is very long, and it is difficult to change them once afforested. Therefore, the forest site must be analyzed in depth before afforestation to maintain the success of afforestation and the healthy growth of forests later. Forest sites are mainly affected by environmental and human activities. To facilitate afforestation, it is necessary to evaluate and classify the forest site factors and achieve a suitable species planted on the right site. Site preparation is also based on site classification. It is usually carried out after determining the type of afforestation land, divided into mechanical land preparation and chemical methods. An essential task of site preparation is to maintain soil moisture and promote seedlings’ survival and growth. Afforestation materials are mainly divided into three categories: seed, seedling, and cutting. The choice of these three types of afforestation materials and methods is related to site conditions, tree species, and age.",signatures:"Jie Duan and Dilnur Abduwali",downloadPdfUrl:"/chapter/pdf-download/75222",previewPdfUrl:"/chapter/pdf-preview/75222",authors:[{id:"327334",title:"Associate Prof.",name:"Jie",surname:"Duan",slug:"jie-duan",fullName:"Jie Duan"},{id:"340243",title:"MSc.",name:"Dilnur",surname:"Abduwali",slug:"dilnur-abduwali",fullName:"Dilnur Abduwali"}],corrections:null},{id:"74741",title:"Afforestation in Karst Area",doi:"10.5772/intechopen.95294",slug:"afforestation-in-karst-area",totalDownloads:382,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In order to study the afforestation technology in rocky desertification area and provide guidance for the cultivation and management of artificial forest in the later stage, an experimental study was carried out on the artificial forest in National long term scientific research base for comprehensive control of rocky desertification in Wuling Mountain, Western Hunan Province. The experiences of afforestation, land preparation and forest management in this area were summarized. The result show that: 1. Through appropriate afforestation land preparation and forest management measures, the forest in rocky desertification area can be successfully restored. 2. Vegetation restoration in rocky desertification area has formed relatively healthy and stable multi tree species and multi-level forest communities. 3. The biological yield of each afforestation tree species was significantly different with different tree species. 4. The diversity index and evenness index of undergrowth plants in different stands were significantly different. 5. Young trees of dominant species dominated the undergrowth vegetation of different stands, and the natural regeneration of each stand has been stabilized. 6. There are some differences in soil chemical properties under different stands. There were significant differences in SOM, TN, NO3-N, NH4-N and AP contents in the soil of the eight stands.",signatures:"Ninghua Zhu, Hai Shang, Liling Liu, Xiaowei Yang, Fei Liu and Shuangshuang Chen",downloadPdfUrl:"/chapter/pdf-download/74741",previewPdfUrl:"/chapter/pdf-preview/74741",authors:[{id:"327745",title:"Prof.",name:"Ninghua",surname:"Zhu",slug:"ninghua-zhu",fullName:"Ninghua Zhu"},{id:"333485",title:"BSc.",name:"Hai",surname:"Shang",slug:"hai-shang",fullName:"Hai Shang"},{id:"333517",title:"Dr.",name:"Liling",surname:"Liu",slug:"liling-liu",fullName:"Liling Liu"},{id:"333518",title:"Dr.",name:"Xiaowei",surname:"Yang",slug:"xiaowei-yang",fullName:"Xiaowei Yang"},{id:"333519",title:"Dr.",name:"Fei",surname:"Liu",slug:"fei-liu",fullName:"Fei Liu"},{id:"343571",title:"BSc.",name:"Shuangshuang",surname:"Chen",slug:"shuangshuang-chen",fullName:"Shuangshuang Chen"}],corrections:null},{id:"74577",title:"Legal and Administrative Aspects of Forest Pest and Disease Control in Japan",doi:"10.5772/intechopen.95005",slug:"legal-and-administrative-aspects-of-forest-pest-and-disease-control-in-japan",totalDownloads:348,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Approximately 40% of Japanese forests are softwood plantations consisting of trees such as Japanese cedar (Cryptomeria japonica), Japanese cypress (Chamaecyparis obtusa), and several varieties of pine (Pinus spp.). Policies and programs related to forest pests and diseases are important for growing forest plantations. Damage caused by the pine bark beetle (Monochamus alternatus) has been a long-standing problem in Japan. Forest damage caused by the pine bark beetle was first found in Nagasaki Prefecture in 1905. Since then, the area of damage has expanded gradually to all prefectures. Damage caused by pine bark beetles became serious during and just after the end of the Second World War. In 1950, the Natural Resource Section of the General Headquarters of the Allied Forces, Supreme Commander for the Allied Powers (GHQ/SCAP) made recommendations for how to control forest pests and diseases. The first act was enacted in 1950, although the control of forest pests was initially addressed as part of the first Forest Act of 1897. Several important reasons for why the Japanese government has failed to stop the expansion of the damaged area can be found in GHQ recommendations: the lack of coordinated programs, underutilization of damaged trees, and shortcomings of forest-management plans.",signatures:"Koji Matsushita",downloadPdfUrl:"/chapter/pdf-download/74577",previewPdfUrl:"/chapter/pdf-preview/74577",authors:[{id:"80129",title:"Dr.",name:"Koji",surname:"Matsushita",slug:"koji-matsushita",fullName:"Koji Matsushita"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6894",title:"Conifers",subtitle:null,isOpenForSubmission:!1,hash:"08346de6b4e92146db7819ccbefd4130",slug:"conifers",bookSignature:"Ana Cristina Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/6894.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10167",title:"Forest Biomass",subtitle:"From Trees to Energy",isOpenForSubmission:!1,hash:"44e2683e29770ccb1462894a48e2afb5",slug:"forest-biomass-from-trees-to-energy",bookSignature:"Ana Cristina Gonçalves, Adélia Sousa and Isabel Malico",coverURL:"https://cdn.intechopen.com/books/images_new/10167.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2246",title:"Global Perspectives on Sustainable Forest Management",subtitle:null,isOpenForSubmission:!1,hash:"b633fc6fc6a3a8f24dd4c4373fb14cb7",slug:"global-perspectives-on-sustainable-forest-management",bookSignature:"Okia Clement Akais",coverURL:"https://cdn.intechopen.com/books/images_new/2246.jpg",editedByType:"Edited by",editors:[{id:"119660",title:"Dr.",name:"Dr. Clement A.",surname:"Okia",slug:"dr.-clement-a.-okia",fullName:"Dr. Clement A. Okia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"616",title:"Forest Ecosystems",subtitle:"More than Just Trees",isOpenForSubmission:!1,hash:"00ecaa84de1aa2d7116ab5871b353b82",slug:"forest-ecosystems-more-than-just-trees",bookSignature:"Juan A. Blanco and Yueh-Hsin Lo",coverURL:"https://cdn.intechopen.com/books/images_new/616.jpg",editedByType:"Edited by",editors:[{id:"51995",title:"Dr.",name:"Juan",surname:"Blanco",slug:"juan-blanco",fullName:"Juan Blanco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"617",title:"Sustainable Forest Management",subtitle:"Current Research",isOpenForSubmission:!1,hash:"a8d91cf4745e90f7510e056fd508dc46",slug:"sustainable-forest-management-current-research",bookSignature:"Jorge Martin Garcia and Julio Javier Diez Casero",coverURL:"https://cdn.intechopen.com/books/images_new/617.jpg",editedByType:"Edited by",editors:[{id:"88987",title:"Dr.",name:"Julio J.",surname:"Diez",slug:"julio-j.-diez",fullName:"Julio J. Diez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1511",title:"Deforestation Around the World",subtitle:null,isOpenForSubmission:!1,hash:"9eeb50fd58ff5ebb4151b5368105e9ef",slug:"deforestation-around-the-world",bookSignature:"Paulo Moutinho",coverURL:"https://cdn.intechopen.com/books/images_new/1511.jpg",editedByType:"Edited by",editors:[{id:"115144",title:"Dr.",name:"Paulo",surname:"Moutinho",slug:"paulo-moutinho",fullName:"Paulo Moutinho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2073",title:"Sustainable Forest Management",subtitle:"Case Studies",isOpenForSubmission:!1,hash:"656069330afd66b7a27ca8963a544092",slug:"sustainable-forest-management-case-studies",bookSignature:"Jorge Martin-Garcia and Julio Javier Diez",coverURL:"https://cdn.intechopen.com/books/images_new/2073.jpg",editedByType:"Edited by",editors:[{id:"88987",title:"Dr.",name:"Julio J.",surname:"Diez",slug:"julio-j.-diez",fullName:"Julio J. Diez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1815",title:"New Advances and Contributions to Forestry Research",subtitle:null,isOpenForSubmission:!1,hash:"fb2caa8ab3683ea8aeba1810e7903a4a",slug:"new-advances-and-contributions-to-forestry-research",bookSignature:"Andrew Akwasi Oteng-Amoako",coverURL:"https://cdn.intechopen.com/books/images_new/1815.jpg",editedByType:"Edited by",editors:[{id:"119148",title:"Dr.",name:"Dr. Andrew A.",surname:"Oteng-Amoako",slug:"dr.-andrew-a.-oteng-amoako",fullName:"Dr. Andrew A. Oteng-Amoako"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4757",title:"Precious Forests",subtitle:"Precious Earth",isOpenForSubmission:!1,hash:"6bd8329fb8128da2fc08c1c6d8a22613",slug:"precious-forests-precious-earth",bookSignature:"Miodrag Zlatic",coverURL:"https://cdn.intechopen.com/books/images_new/4757.jpg",editedByType:"Edited by",editors:[{id:"174414",title:"Dr.",name:"Miodrag",surname:"Zlatic",slug:"miodrag-zlatic",fullName:"Miodrag Zlatic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5877",title:"Plant Ecology",subtitle:"Traditional Approaches to Recent Trends",isOpenForSubmission:!1,hash:"788a981ecedf0d9c0205869788524a80",slug:"plant-ecology-traditional-approaches-to-recent-trends",bookSignature:"Zubaida Yousaf",coverURL:"https://cdn.intechopen.com/books/images_new/5877.jpg",editedByType:"Edited by",editors:[{id:"196003",title:"Dr.",name:"Zubaida",surname:"Yousaf",slug:"zubaida-yousaf",fullName:"Zubaida Yousaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73132",slug:"corrigendum-to-soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-ch",title:"Corrigendum to: Soil Erosion Influencing Factors in the Semiarid Area of Northern Shaanxi Province, China",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73132.pdf",downloadPdfUrl:"/chapter/pdf-download/73132",previewPdfUrl:"/chapter/pdf-preview/73132",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73132",risUrl:"/chapter/ris/73132",chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]}},chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]},book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11945",leadTitle:null,title:"Display Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tDisplay technology is well known as an effective way of information communication. Nowadays, display technology is evolving at an exponential level. Consequently, an exciting future for generations of new displays can be guaranteed by the rapid-fire improvements in display technology. Major display technologies are well known as liquid crystal displays, organic light-emitting diodes, digital light processing technology, plasma displays, field emission displays, and electronic paper. Over the last decades, the human-machine interface (HMI) was improved by the achievement of display development. For example, it was demonstrated that OLED displays could replace LED-backlit displays in the not-too-distant future. The performance of this kind of display is equal to or better than LED or LCD screens. Or in the future, we expect new kinds of displays such as 3-D screens and holographic displays to be developed. In this book, we tried to review and introduce the received advances in display technology for readers.
",isbn:"978-1-83969-855-2",printIsbn:"978-1-83969-854-5",pdfIsbn:"978-1-83969-856-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"6b51a957a839ed3350b0785031c6343a",bookSignature:"Prof. Morteza Sasani Ghamsari",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11945.jpg",keywords:"Materials, Devices, Technology, Mini-LEDs, OLEDs, OD-OLEDs, Micro-LEDs, LCD, Passive and Active Technologies, Thin Film Transistor LCD, Phosphors, Large-Screen HDTV",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 29th 2022",dateEndSecondStepPublish:"June 30th 2022",dateEndThirdStepPublish:"August 29th 2022",dateEndFourthStepPublish:"November 17th 2022",dateEndFifthStepPublish:"January 16th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"13 hours",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in monophonic and quantum material, appointed head of the quantum technologies research group, and holder of two registered patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari",profilePictureURL:"https://mts.intechopen.com/storage/users/64949/images/system/64949.jpg",biography:"Dr. Morteza Sasani Ghamsari is a senior researcher in the Photonics and Quantum Technologies Research School of Iranian Nuclear Science and Technology Research Institute. His research focuses on photonic materials including metamaterials, quantum\ndots, and plasmonic nanomaterials that can be used in a wide range of nanophotonics applications. His recent interests also include nano-bioimaging, 3D printing, nanostructures for tissue engineering (ZnO, TiO2, etc.) and biomaterials including carbon, graphene, and\ndiamond quantum dots. He is an editorial board member and reviewer for different\ninternational journals and has collaborated with local and international academics/\nresearchers on post-graduate research projects. He has edited four books and published four chapters and more than 105 articles in scientific journals and reviewed\nconference proceedings. His papers have been cited more than 2100 times with\nh-index 26 and i-10 index 46 (Google Scholar).",institutionString:"Photonics and Quantum Technologies Research School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"9481",title:"Intelligent WiMax Vertical Handovers",doi:"10.5772/8278",slug:"intelligent-wimax-vertical-handovers",body:'\n\t\tIn next generation networks, tending to integrate different access technologies, the evolving WiMax 802.16 will play an important role in this integration for the purpose of offering the user the best possible service. WiMax will provide high bandwidth and high coverage, as opposed to current cellular systems providing high coverage and low bandwidth, and WiFi networks with limited coverage and high bandwidth. Hence, the vision of next generation networks is an all-IP network supporting heterogeneous access technologies such as WLAN, UMTS and WiMax. To enable inter- network access mobility known as vertical handover (VHO), a special mobility management is proposed in order for the handover to be performed with service continuity and minimum QoS degradation. The proposed intelligent vertical handover management consists of "guiding" the HO request to the best network capable of providing the required QoS and context parameters. The processing of the HO is based on an anticipated scenario where the HO decision parameters are compared to a pre-defined threshold in order for the HO to be guided accordingly. The handover could be guided to WiMax to benefit from high data rate and network availability to satisfy QoS requirements. The proposed handover management offers mobile users, roaming in next generation networks, service continuity by deciding on whether the handover is to be performed vertically or horizontally thus deciding on the destination network. In the context of the integration architecture, an Inter-Domain Management module IDM is introduced which is responsible of guiding the user to the next access network capable of offering the required QoS and context parameters. The mobility management is based on a "make-before-break" approach for a pre-network selection coupled with the Context Transfer Protocol CTP. In addition, when the horizontal handover could not be performed, it will be guided vertically. In this case, the user is guided to a different access technology, resulting in a vertical handover. This handover management will decrease the handover dropping probability and increase the HO performance in terms of less QoS degradation and best mapping of the HO requirements leading to "best" access network selection.
\n\t\tIn the context of next generation networks enabling seamless handover for inter-technology access, a lot of work was conducted for wireless network integration architecture, mobility management and seamless handover. In [Wei, 2005], an overview of issues related to horizontal and vertical handoffs were addressed with the architecture of integrating WLAN and WAAN networks based on Mobile IPv6. Bandwidth measurements of WLAN were used as the decision parameter taking into account QoS and user service requirement. In [Les, 2008], IEEE802.21 was proposed to provide the seamless handovers between two radio systems supporting the challenging decision and pre-execution phases of inter-technology handovers. In what we propose, WiMax will be the destination network that will be used to provide not only seamless handover, based on the specified decision parameters, but also the stand-by network for horizontal handovers that could not be performed and should be guided vertically. The evolving WiMax 802.16 will play a key role in next generation networks integrating different access technologies. Worldwide Interoperability for Microwave Access, or WiMax, intended mainly for the exchange of data at home or in the office, has the potential to provide a significant improvement in cost and performance compared to existing wireless broadband access systems. IEEE 802.16e will enable a new set of high-speed nomadic and mobile data services over a wide metropolitan area with lower- cost solutions, higher performance and reliability. Coverage will be based on large cells interconnected to provide the user with high data rate. The ability to maintain connection while moving across cell borders is a prerequisite for mobility and will be included as a requirement in 802.16e system profile [Finneran, 2004]. WiMax will be considered as the destination access network capable of providing higher data rates and higher network coverage hence providing seamless handover with the required QoS. Instead of dropping the handover call in case WLAN/UMTS handover or degrading its performance, the handover is guided with respect to the context of the application, the user profile as well as the current network parameters.
\n\t\tIn order to manage the mobility of the mobile nodes moving from one access technology to another, known as vertical handover, a special mobility and domain management are needed in order for the session to be resumed on the new data path with minimum delay, packet loss, and QoS degradation. This is why FMIPv6 is adopted in our proposition as the mobility protocol to take advantage of the "Make-before-break" scheme through the proposed IDM. The mobile node could be connected to the New access router (NAR) due to a prior a stateless auto-configuration of the address Care-of-Address (COA) before the handover is established through the
WiMax Handovers Architecture.
The Inter-Domain Management module IDM is responsible of mapping the mobile profile and the current context of a session to the Next IDM (NIDM) providing the necessary resources for the requested handover parameters. Each IDM keeps a table of the possible IDM\'s in the neighbored access network with their corresponding traffic load, network context and QoS parameters. The IDM will search accordingly for the available access routers: Each home-IDM scans its table to find the next IDM capable of providing the new data path with the required context parameters processing the handover based on FMIPv6, context transfer functionalities and the WiMax vertical handover algorithm. IDM will perform the following tasks:
\n\t\t\t\tStores the QoS attributes of a current session based on the context feature sent in the context data message.
Stores the profile of the neighbored IDM and their corresponding traffic parameters (data rate, traffic load, resource availability…).
Selects the next access network based on the previously collected data.
Treats and accepts (accordingly) the handover request based on the "WHO\'S NEXT" phase.
To support this handover management strategy, three types of IDM are proposed: Vertical IDM (VIDM), Horizontal IDM (HIDM), and Stand-by IDM (SIDM). VIDM role is to accomplish successfully vertical handovers between heterogeneous access network UMTS to WLAN, for example. HIDM is concerned with the inter handovers or the mobility belonging to the same access technologies. SIDM is to guide the handover to another network with high capacity and capable of satisfying the users QoS requirements from WLAN to WiMax, for example.
\n\t\t\tThe mobile node can perform handover from WLAN to WiMax or from UMTS to WiMax since WiMax will enable higher throughput and higher coverage compared to UMTS and WLAN. In the WiMax Vertical Handover Algorithm, the handover is considered for both network-initiated handover and user initiated-handover. These two cases will be managed by the vertical handover based on the proposed scenario:
\n\t\t\t\t\n\t\t\t\t\t
In the case of
WiMax Vertical Handovers.
The main operations involved in the vertical handover from WLAN to WiMax are shown in figures 3 and 4. The context transfer messages used in the proposed scenario are similar to that described in [Kempf, 2002]. The transport of these messages is based on ICMPv6 protocol where the type and code are set to the specific type of CTP messages and the context data transfer is added in the data option field [Politis, 2004]. Contexts are identified by FPT (Feature Profile Type), which is a 16-bit unsigned integer. The context type numbers are assigned by IANA, and handled according to the message specifications [Politis, 2004]. FPT are transferred by data blocks used for transferring the actual feature context. Context Transfer Data (CTD) Message is sent from previous IDM (PIDM) to Previous Access Network (PAR) and includes feature data (CTP data). Once the required context parameters are mapped into the new IDM (NIDM) in the new network, the mobile user can perform handover without QoS degradation due to the appropriate selection of NIDM and accordingly the new access router in the new access network. The WiMax is composed of the Mobile Control Point (MCP) which provides the control and mobility anchor point for a mobile station (MS) as it moves between base stations (BSs) in the access network. Network Operations and Support Services (NOSS) includes functions required to operate and maintain the wireless access network such as authentication, authorization, and accounting (AAA) services; and configuration services. Figure 3 shows the WiMax network components role during the handover. The complete message exchange is done through the inter-Domain manager (IDM) which monitors and set the next access network within its domain based on FMIPv6 and context transfer protocol messages described in [Koodli, 2004; Kempf, 2002]. The scenario of the exchange is as follows:
\n\t\t\tMN sends RTSOLPR to PAR to indicate HO initiation and to start the operation of acquiring a new address. The PAR will not reply directly (as in the normal FMIPv6 signaling flow) but it will wait for the IDM to select the appropriate NAR.
MN sends Context Transfer Activation Request CTAR to PAR and PIDM prior to HO. this message contains MN IP address and PIDM IP address, and the entire context to be transferred. It also contains token to be used by NIDM for verification.
Context Transfer Request CTREQ is sent from PIDM to PAR to update the context already available in the entry of the PIDM.
PAR starts to send Context Transfer Data CTD to PIDM with the feature data context parameters.
The "Who\'s next phase" is started. PIDM will start scanning (based on CTD) for a NIDM whose resources will satisfy the required context of MN asking for HO.
Handover Initiation HI is sent from the PIDM to NIDM and NAR to configure the new CoA.
All the FMIPv6 signaling flow will now proceed to perform the handover request to the selected access network.
MN will finally send a Fast Neighbor Advertisement (FNA) to the NAR-MCP to notify it of its presence in the new access network.
The packets destined to the old access router are no more buffered in PAR but in the PIDM which will forward these packets to the NIDM, as soon as the mobile node starts to communicate with the NAR.
The messages exchanged in the vertical handover scenario from WLAN to WiMax are shown in figure 3.
\n\t\t\tWLAN to WiMax Handover.
In the case of vertical handover, before the MN is out of coverage in the current network or before application degradation occurs, the handover operation is initiated. The handover could be requested by the user to satisfy the user policies and preferences. The handover could also be requested to benefit from a faster and high coverage network as from WLAN networks to WiMax. The handover is first requested before the real threshold is reached in order not to be disconnected. Once initiated, the HO request is treated by starting the context transfer exchange and mapping the requested QoS parameters into the next selected network. The request is classified into horizontal or vertical handover. If the application is tolerant to degradation, the HIDM will perform horizontal HO. On the other hand, if the application is of high sensitivity and not tolerant to degradation, the HO call will be guided to a SIDM which will perform vertical HO. This is done in the "WHO\'S NEXT" phase. The mobility management will take place and the CoA is configured and updates to the IDM and AR are done. Next, the mobile node will start to communicate with the New access router (NAR) on the new access network.
\n\t\tThe handover from WLAN to WiMax is modeled on the following basis: Since WiMax has more bandwidth and can accommodate more calls; the following Markovien model is used figure 4. In this model, the HO calls are privileged over the local calls. The local calls are accepted until the threshold T is reached. When the number of calls is greater then T, then the only the HO calls (vertical calls from WLAN) are accepted.
\n\t\t\tSIDM admission Model (UMTS, WLAN to WiMax)The following assumptions were made:
\n\t\t\tThe IDM is modeled as M/M/C/C queuing system.
C-T interval channels are the guard band channels used only for handover calls.
The local traffic is a poisson process of rate λl and the handoff request is a poisson process of rate λh.
The time of stay in IDM is exponentially distributed of rate 1/µ.
The blocking and dropping probabilities PB and PD in function of the threshold T are as shown in figures 5 and 6. The choice of the threshold will highly affects the handover dropping probability as well as the blocking probability of the incoming local calls. The variation of these two probabilities with respect to the threshold is given in figures 5 and 6. The maximum allowed threshold is when T=C. As T increases, the blocking probability decreases, since the calls (local requests) are accepted until T is reached; whereas, the dropping probability is increased since the probability of dropping the handover calls is increased with no priority scheme. Figure 4 shows the results with T and C difference from 0 to 50.
\n\t\t\tSIDM model for WiMax Handovers.
The horizontal and vertical handover considered are a complementary solution for a seamless handover. We considered that VHO could occur when the HHO could not be performed successfully or seamlessly. Thus, when no available resources are possible to perform the required parameters of the HHO, the VHO will take place. The proposed solution provides QoS provisioning and seamless handover between different access technologies. Integrating the emerging WiMax in the all-IP architecture is a vertical handover solution that decreases the Handover dropping probability and profits from high data rates provided by WiMax networks thus guiding the handover request to WiMax.
\n\t\t\tBlocking Probability for WiMax Handovers.
Dropping Probability for WiMax Handovers.
Preparing for life on another planet or a planetary object requires an enormous effort from scientists and engineers [1]. The first steps toward extraterrestrial life are the crewed missions to the Moon, aiming to build the basis for the future long-term presence of humans beyond Earth. A remarkable amount of research and feasibility studies are being done by the European Space Agency (ESA) in Europe [2] and the National Aeronautics and Space Administration (NASA) in the USA [3, 4] on how to construct a “new home in space,” in a manner to eliminate the need for supply materials from Earth.
In this context, the use of space resources is one of the key directions in preparation for future human missions to the Moon. The so-called
In space and on the lunar surface, there are many factors potentially leading to damage in materials, such as exposure to vacuum, extreme thermal conditions, impact collisions with micrometeoroids, and radiation [14]. Among these, radiation is considered particularly harmful for different functional components and instruments of spacecraft and lunar surface missions. Radiation can induce structural defects that evolve from nanoscale to micro- and macro-damage, causing degradation of the mechanical, thermal, and electrical properties of materials or can even lead to direct failure in electronic signals before interacting with the very structural composition of the material. Therefore, improving the radiation resistance of materials to be used in space missions and searching for more radiation-resistant materials is of utmost importance. The research effort is directed toward finding composite materials that can better withstand radiation and other challenges faced by mission components in space and on space bodies and exhibit self-healing capabilities [15].
In this chapter, we first introduce some relevant materials for two of the most critical applications on the Moon, i.e., habitat construction and energy production. Then, we provide an overview of the radiation environment on the lunar surface and different radiation effects that can be induced in materials by such an environment. We then discuss the ways of combining traditional methods commonly used to study radiation effects with recent advanced approaches in materials modeling and provide examples of radiation-effects modeling studies on different materials. Additionally, we discuss the possibilities of using novel promising materials with exceptional properties relevant for space exploration, with an emphasis on their radiation resistance.
NASA has identified the most important components of the lunar mission as (i) design and construction of habitats and (ii) resource and power management [16]. In particular, the emphasis is on lightweight materials that will be critical for mass reduction and thus increase the science return of the mission. Both components mentioned above will strongly rely on ISRU, i.e.,
Constructing a habitat on the Moon can be done in two ways, by delivering materials from Earth and by using local resources. Although the latter option is more sustainable, the first one cannot be completely avoided. An important consideration that needs to be made when choosing materials is the type of habitat. NASA considers several types of habitat for different use, namely rigid (metals, alloys, and concrete) [18], inflatable (e.g., inflatable concrete [19]), or hybrid structures, as well as underground construction [20]. Depending on the type of habitat, different materials will be used [16, 21]. For example, unprocessed lunar regolith may be used for radiation shielding of habitat (e.g., lunar regolith geopolymer) [22, 23, 24, 25], as well as for construction when converted into concrete [26, 27], 3D-printed [28, 29, 30], or processed into other construction material (e.g., bricks and glass) [16, 21]. For materials delivered from Earth, it is crucial to ensure their low weight, as well as resistance to very high and very low temperatures (which change from 127°C in the daytime to −173°C at night on the Moon surface) and radiation, durability, reusability, and structural reliability [16].
Metals and alloys are essential structural materials for construction given their compressive strength and good tensile properties and for other applications, such as energy carrier/storage (wires) [31] or equipment (e.g., excavation tools, molds, and rovers) [32]. Al, Ca, Fe, Ti, and Mg are the most abundant metals in the lunar regolith, which also contains smaller amounts of Ni, Cr, Mn, Zr, and V [5, 20]. These metals—together with Si, also abundant on the Moon—can be used to produce alloys. However, only Fe can be easily separated from regolith (using magnets). Other metals are present in the form of oxides and thus have to be obtained by manufacturing. Metal and alloy manufacturing will be extremely important for the exploration of the Moon as they represent an essential part of the construction and are critical ingredients for most technologies.
One of the crucial steps toward the Moon exploration and settlement is a reliable energy technology for electricity generation and power storage [33, 34] that would withstand the temperature gradients, high levels of radiation, and impact. The primary energy sources considered for future crewed lunar missions are solar power [35, 36], nuclear power [37], and fuel cells [38, 39]. Other ways may include the production of electricity from the excess heat from the sunlight collected by an “evergreen” inflatable dome [40]. In this chapter, we focus on solar cells, a safe and reliable source of electricity in space.
In the past decades, solar cells for space applications have evolved from single-crystalline Si-based cells to multi-junction (MJ) ones based on GaInP, GaAs, and Ge [41, 42, 43]. A promising class of materials for next-generation lightweight and high-power-conversion efficiency [44] solar cells are hybrid organic-inorganic perovskites (HOIPs) [45, 46, 47], which are considered as potential candidates for use on future lunar bases [34].
HOIPs possess a unique combination of properties, such as enhanced charge carrier mobility [48, 49, 50, 51], diffusion length, and lifetime [48, 52, 53], high optical absorption [54, 55], and low production costs [56], representing a paradigm shift in solar cell technology [57] on Earth [58] and for space applications [59, 60, 61, 62]. Given their flexibility [63], low weight, small dimensions (0.5 μm as compared to 200 μm for Si solar cells), the possibility of
The radiation environment on the Moon is constituted, apart from solar electromagnetic radiation, by three radiation “populations”—the constant solar wind, the intense but sporadic Solar Energetic Particles (SEPs), and the constant background of Galactic Cosmic Rays (GCRs). A summary of the radiation environment on the lunar surface is given in Table 1.
Source | Particles | Energy, MeV/nuc | Flux, nuc/cm2/s |
---|---|---|---|
Solar Wind | Protons & electrons | ||
SEPs | Protons | 0 – | |
GCRs | Protons | 2–4 |
The solar wind is a constant flux of plasma from the upper atmosphere of the Sun. It consists mainly of ionized hydrogen (protons and electrons), a small percentage of
SEPs originate from solar transient events, such as coronal mass ejections or flares, and consist in a sudden intense flux of high-energy protons and electrons (and a small amount of
GCRs constitute the slowly varying, low-intensity (few particles/cm2(m2) per second), highly-energetic radiation background in space. They are mainly associated with supernova explosions in the galaxy, but extra-galactic contributions also exist. GCRs are constituted by
The annual exposure caused by GCRs on the lunar surface is
The effects of radiation on materials and devices can be cumulative (long term) and noncumulative (caused even by a single particle). The so-called Single Event Effects (SEEs) can occur when an ionizing particle passing through an electronic device carries a charge large enough to affect the device’s performance. SEEs in aerospace technology can lead to errors, corrupt the data, create noise, reset the device, or even cause fatal part failure [92, 93, 94, 95]. Cumulative radiation damage, on the other hand, occurs through continuous radiation exposure or exposure to intense flux due to SEPs events and can lead to the degradation of optical components and solar cells, eventually causing permanent damage. The total ionizing dose experienced by an electronic device can cause variations in threshold voltage or leakage current.
Cumulative non-ionizing damage in materials due to protons, electrons, and neutrons (originating from the interaction of energetic protons and electrons with the lunar surface) leads to defect formation (displacement damage) [94]. The types and sources of radiation, as well as the effects it can cause in materials, are summarized in Table 2.
Particle type | Energy | Sources | Radiation effects |
---|---|---|---|
Electrons | SEPs | Ionization radiation damage | |
Protons | SEPs | Surface damage to materials | |
Protons | SEPs accelerated in shocks | Displacement damage in solar cells | |
Protons | SEPs and GCRs | Ionization and displacement damage, background counting in sensors | |
Protons | SEPs and GCRs | Single event effects | |
Ions | SEPs and GCRs | Single event effects |
Sources and types of radiation and the effects it causes in materials and devices [96].
Cumulative radiation damage is a multiscale process in terms of time and length. A schematic representation of the so-called displacement damage cascade is shown in Figure 1. At first, an energetic external particle approaches (Figure 1(1)) and enters the target (Figure 1(2)). As the particle passes through the material, it first transfers its kinetic energy to electronic degrees of freedom of the target (electronic stopping) (Figure 1(3)). Electronic excitations happen at a very short time scale (
Schematic representation of different stages of the damage cascade in a crystalline material under irradiation.
Atomic displacements described above lead to defect clustering and eventual amorphization in crystalline materials. Consequently, mechanical, physical, and other properties of the irradiated material can be significantly altered. The scale of the changes depends on the energy of incoming particles and the actual number and spatial distribution of survived defects after eventual self-healing [98].
The radiation-induced effects after atomic displacements strongly depend on the type of material. For metals and metallic alloys, the main effect of radiation is the generation of dislocation loops and point defects which cause significant radiation-induced strengthening or hardening. As a result, the ductility and fracture toughness of the metals (alloys) can be reduced, leading to brittle behavior [99]. Ductile-to-brittle transition is especially pronounced at low temperatures at which the defect mobility, and consequently the annealing of defects, is reduced.
As to other materials, such as semiconductors in solar cells, cumulative exposure to space radiation or high SEPs fluxes can strongly affect the performance of MJ solar cells [100]. Moreover, the impacting radiation can reduce the transmittance of the protective SiO2 cover-glass on top of MJ cells by inducing color centers in the oxide material. The color centers appear when electrons excited by radiation become trapped by impurities in the oxide to form stable defect complexes. On the other hand, the radiation which is not blocked by the cover-glass causes damage in the functional layers of MJ solar cells by displacing atoms. Different energy levels can be created within the bandgap as a consequence of such structural defects. Such electronic defect levels affect the electrical performance of MJ solar cells acting as traps, recombination centers, or carrier removal sites which reduce free carrier concentration [100, 101].
Below, we will present different methods used to describe radiation-induced effects in materials focusing on the description of cumulative effects related to atomic displacements.
High-energy charged particles undergo a daunting number of interactions with target materials. Such interactions include:
electronic collisions leading to ionization and excitation;
multiple Coulomb scattering at small angles (elastic deflection without energy loss, or minimal inelastic loss);
inelastic nuclear reactions, that is, high-energy reactions in which a nucleus in the target struck by an incident particle (with energy
elastic nuclear interactions (
The most commonly used approach to study radiation-induced effects in materials is the Monte Carlo (MC) particle transport method [102, 103]. In MC particle transport, the interactions of individual primary ions and their secondaries are sampled to build a history of charged particle passage and energy deposition in the target [104], with a large enough statistical sample of trajectories. The energy- and angle-dependent cross sections for different interactions are provided by theoretical models of the elementary interactions and/or experimental data, depending on the energy window. Codes, such as Geant4 [105], MCNP6 [106, 107, 108], FLUKA [109], PHITS [110], and HETC-HEDS [111], have been successfully applied to study the radiation at a hemispherical dome made of lunar regolith used to simulate a lunar habitat [112, 113] and the radiation environment around the Moon [114, 115].
Several relevant radiation-induced effects in materials are due to particles with an energy of a few MeV to a few tenths of MeV, as can be seen in Table 2. In this regime, below hadronic interactions causing fragmentation/spallation, atomic displacements are induced in the target by elastic nuclear interactions. Two concepts describe the slowing down of the impacting particles (and the induced secondaries), (i) the
A displacement cascade in MC particle transport simulations is generally modeled within the Binary Collision Approximation (BCA) [119] which assumes a series of independent two-body collisions. Between collisions, particles travel in a straight line. The BCA is valid when (i) the projectile energy is higher than 1 keV per nucleon, which, for PKAs, could be relevant energy, and (ii) the target material has low density, in which case the collisions between the incoming particle and the target atoms occur rarely. BCA allows reducing the computational complexity of the ion-matter interactions compared to a full many-body simulation (e.g., molecular dynamics, discussed in Section 5) and allows for reaching large dimensions with reduced computational needs. However, this method is valid for linear collisions only and describes only primary damage, that is, it does not account for the dynamic evolution of induced defects at later times (Figure 2).
Time and length scales and corresponding methods can be applied to study different stages of radiation damage.
One of the most popular tools in which the BCA is implemented is the Stopping and Range of Ions in Matter (SRIM) code [120]. Besides containing semiempirical data for the electronic stopping power of a variety of targets, SRIM can be applied to model the linear cascades and estimate the number of defects in any material and any ion energy up to 1 GeV. Nuclear stopping in very low-energy intervals uses the so-called ZBL (Ziegler-Biersack-Littmark) universal potential that combines classical Coulomb potential with a semiempirical screening function [120]. The electronic and nuclear degrees of freedom are completely separated in SRIM as well as in other MC particle transport tools used by the particle physics community and the space radiation effects community. Finally, it is important to remark that materials are static in MC particle transport methods—there is no dynamics induced in them by the impact of primaries and the generation and passage of secondaries. Thus, more accurate methods are needed to get access to the processes missing in MC particle transport calculations. Such methods are described in the next section.
There is a large variety of methods used in condensed matter physics and materials science to study radiation effects in materials, each of them describing a particular aspect of the damage process. Figure 2 shows a schematic representation of the different time and length scales with the corresponding computational methods that can be applied to study different stages of radiation damage [97, 121, 122]. The very first stage, at the smallest time-length scale, is the electronic stopping regime. For decades, the semiempirical SRIM code discussed in the previous section has been the most widely used tool to calculate electronic stopping power. Nowadays, the electronic stopping power (and the induced electronic excitations in the target) can be described by
For a complete and accurate description of every aspect of radiation damage, as well as the interplay between them, one has to adopt a combined approach. In recent years, researchers have realized the importance of a multiscale approach to studying radiation damage, as follows from many publications and reviews [121, 122, 130, 131, 132, 133, 134]. Each of the methods presented in Figure 2, as well the ways of combining them, will be discussed below in the order of increasing complexity. The main focus will be on classical MD, AIMD, and TDDFT, which are fundamental for the description of primary radiation damage at the atomic scale.
The most widely used approach in materials science to study the interaction of ions with matter (collision cascades) is MD [135]. MD offers a picture of the ion–ion interaction beyond the linear cascade of the pure BCA by including many-body effects. In MD, atoms are treated as classical particles, and their motion is described by Newtonian dynamics. No electronic effects are thus included.
Cascade simulations need large samples consisting of up to a million atoms (depending on the PKA’s energy), which prohibits using parameter-free methods (such as DFT, see Section 5.2) to compute the interatomic forces. Instead, in MD, the forces on atoms are calculated from empirical or semiempirical interatomic potentials (also called force fields) [136, 137, 138]. MD with empirical potentials proved to work well for large systems and long time scales [139].
In an MD cascade simulation, the system is usually modeled using periodic boundary conditions, that is, by replicating a small unit cell in all directions. Typically, prior to the cascade simulation itself, a regular MD simulation is done to thermally equilibrate the target system at the desired initial temperature. Then, with the equilibrated configuration, the cascade simulation is initiated by changing the velocity of one of the atoms (the PKA), giving it the desired amount of kinetic energy in the intended direction. The system is then evolved in time as in regular MD, that is, by integrating Newton’s equations along with a series of time-steps, which involves computing the atomic forces, velocities, and positions at each time-step (see Refs. [140, 141] for classical texts on MD). At the end of the cascade simulation, the number of defects is obtained by evaluating the final geometry of the system. Usually, cascade simulations are repeated several times, choosing a different PKA and/or a different direction of the PKA’s movement to obtain a statistical average of the number of final defects.
MD has been successfully applied to simulate radiation cascades in a variety of materials [139], from simple metals [142, 143] and compounds [144, 145, 146] to complex nanostructures [147], 2D materials [148], and novel multicomponent alloys [149, 150]. MD simulations can afford to access the processes taking place on a relatively long time scale up to ps or even ns which is enough to describe the damage cascade until the thermal spike of the collision has dissipated. Most of the MD codes, however, describe only elastic collisions between atoms and disregard the energy loss mechanisms such as electronic excitation and ionization. The possibility of including electronic excitations is discussed in Section 5.3.
After the primary damage has been formed, defects may continue diffusing, thus annihilating or forming defect clusters. Such processes occur on a much longer time scale, reaching at least seconds, not accessible via regular MD. The problem of simulating a process not accessible in a feasible amount of computational time has motivated the development of several enhanced sampling techniques [151], which in the case of MD simulations of materials have allowed to observe otherwise challenging processes, such as phase transitions.
KMC [127] simulations are commonly used to access long-time effects of radiation in materials [152, 153, 154, 155]. KMC is designed to model the time evolution of an atomic system. However, instead of solving the equations of motion, as it is done in MD, the KMC method is based on the assumption that the long-time dynamics of a system consists of diffusive jumps from state to state. Each of the states is treated independently, which makes KMC a very efficient method. The dynamics of the system, that is, the probability of transition from one state to another does not depend on the history of the system. The probability of a state-to-state transition is assigned randomly and the most probable transition is statistically chosen. This allows avoiding the complications related to the choice of interatomic potentials, thus overcoming the time limitations of MD simulations (usually
To further extend the problem into the macro-domain, the DD [128] and FEM [129, 156] methods, based on dividing a geometrical space on a number of finite (non-overlapping) segments, are usually applied. FEM has been used to study the response of a macro-object to external stress in engineering and has also been applied to study the behavior of solids under irradiation by extrapolating the known displacements and evaluating the geometry of a 3D object. DD method allows for calculating the motion of dislocations as well as evaluating the plastic deformation in the material induced by the collective motion of dislocations.
AIMD is one of the most important tools in quantum physics and chemistry [157]. In a typical AIMD simulation, it is assumed that the system consists of
Practical DFT calculations are based on the Kohn-Sham (KS) formalism [126], which replaces the complex problem of interacting electrons in the standard Schrödinger equation by a problem of non-interacting electrons moving in an effective potential
where
AIMD is used to simulate any physicochemical process where the electronic structure of the system changes significantly or when a detailed description of the structure is needed. A typical example would be the simulation of chemical reactions, where chemical bonds are formed or broken, which cannot be described via classical force fields.
Although the adiabatic BO approximation is the usual approximation in the methods described above, its applicability is only justified in near-equilibrium situations. However, under ion impact, the electronic subsystem is rapidly driven out of equilibrium.
A realistic description of the dynamics of the electrons in the target during the passage of fast ions can be obtained in the framework of TDDFT which gives access to the electron dynamics out of the electronic ground state. In particular, real-time TDDFT [160] provides a non-perturbative description of the electronic excitations upon an external perturbation and can be combined with the Ehrenfest MD scheme [161], which allows for coupling between electron and ion motion, contrary to the BO picture.
TDDFT consists in solving the time-dependent KS equations [123]:
where
where
The solution of the time-dependent KS equations in real time can be obtained by applying the so-called time-evolution operator, evolving the KS states in time [123]. The time-step of this propagation must be of the order of attoseconds to describe the fast dynamics of the electrons, in contrast to what occurs in AIMD and MD where the time-step is of the order of femtoseconds. The time-dependent electron density is calculated at each step, from which the total energy of the system is obtained. Knowing the total energy as a function of time, the electronic stopping power can be calculated as
Many examples of accurate first-principles calculations of the electronic stopping power are available in the literature [117, 118, 163, 164, 165, 166, 167, 168]. Recent studies have demonstrated that electronic excitations (induced by both the primary impacting ion and especially by PKAs and further displaced atoms) affect the cascade evolution [118, 169, 170, 171] and thus, they need to be accounted for. The electronic stopping effects can be included in MD cascade simulations through the so-called two-temperature (2T) model [118, 172]. In 2 T-MD, the electrons are included as a thermal bath. Each particle is subject to a friction force representing the electronic stopping and a stochastic force representing the coupling between the vibrational degrees of freedom of the lattice and the electrons. This model considers constant electronic density in the entire system and thus, the electronic stopping power is independent of the crystal direction. Recent studies have extended the 2T model by coupling the electronic and nuclear effects via many-body forces that act in a correlated way. This allowed for the construction of a unified model for ion-electron interactions [170, 171, 173, 174] with a complex energy-exchange process between the ionic and electronic subsystems [174].
The previous section provided an overview of computational methods that can be applied to study radiation damage in materials and discussed the advantages of combining such methods into a multiscale approach. This section mainly focuses on the effects of radiation on materials of practical use on the Moon, including several novel and promising materials. We overview the existing radiation damage studies for these novel materials, emphasizing multiscale modeling when available.
Generally, degradation of solar cells is modeled via the non-ionizing energy loss (NIEL) approach, the NIEL being the portion of energy loss per unit path length of the projectile converted into displacement damage. According to Akkerman et al. [175] (the definition used in most simulation tools), the NIEL is defined as:
where
On the basis of a large set of experimental observations, it is assumed that the degradation of a semiconductor device under irradiation can be linearly correlated with the NIEL [176]. In practice, this means that the number of defects should give a measure of the damage irrespective of their distribution, whether clustered in high density in small regions (as in the case of neutron damage) or homogeneously scattered over a relatively wide volume (as in the case of the low-energy proton or
Generally, the NIEL is calculated via MC particle transport codes, assuming amorphous target materials, a static
NIEL for protons and electrons in GaAs for different values of the threshold displacement energy
Another example of possible improvement in the NIEL model is a more precise calculation of the number of radiation-induced defects and of the “quality” of radiation-induced damage (which type of defects are induced). It has been observed that point-like and clustered defects contribute differently to some degradation parameters [191]. Recent MD studies [192, 193, 194] and experimental works [181, 195, 196] have proposed an effective or
On a parallel research stream, multiscale studies in a number of materials combining MD simulations of collision cascades with the electronic stopping from TDDFT offer a more accurate description of both the number and the nature of defects created under realistic conditions. The electronic degrees of freedom and their coupling to the phonons of the target affect the cascade evolution and morphology [170, 171, 173, 174]. This is of relevance for the NIEL which includes a part of energy dissipated to phonons. This fraction depends on the energy of the impinging particle but also on the properties of the material. Some studies have shown that the direction-dependence of the electronic stopping can influence the collision cascades [118]. Other studies have demonstrated that the formation of thermal spikes and therefore of amorphous pockets is sensitive to the electronic specific heat [199] and others that the choice of the model employed for the inclusion of the electronic effects and in particular the overestimation (or underestimation) of electron-phonon coupling can have a significant influence on the number of defects created [171].
As discussed in Section 2, HOIPs have a unique combination of properties particularly interesting for lunar exploration. The general chemical formula for perovskites is ABX3, where A and B are two metal ions with different ionic radii and X is an anion that is six coordinated to the B-site [200]. HOIPs, in particular, comprise a negatively charged lead-halide inorganic skeleton where B is a metal cation (Sn2+ or Pb2+), X is a halide anion (I−, Br−, and/or Cl−) and A is a monovalent positively charged organic cation, such as methylammonium (MA+ = CH3NH3X+, where X = I, Br, Cl) or formamidinium (
Structure of a HOIP: methylammonium cation (
Despite many advantages, several external factors, such as air, moisture [202], UV light [47, 203], heat, light soaking [204], and partially also radiation [205, 206], induce considerable structural instabilities in HOIPs. An intrinsic instability is also present, caused by a relatively weak cohesion between the organic cation and the inorganic octahedra and predominantly by the low-energy barriers for the migration of halide anions and organic cations, with halide migration being the most prevalent [201, 207, 208, 209, 210]. Phase segregation can be induced by large-scale ion migration [211]. However, some of the challenges that HOIPs-based solar cells face on Earth, such as degradation caused by moisture, are not relevant for space applications [212]. Thermal and vacuum stability, high power-conversion efficiency, and radiation resistance are the main challenges in the space context. A sensible choice of the chemical composition, of eventual use in tandem devices [212] (which also helps to reach an efficiency of up to 30%) or incorporation of a functionalized 2D metal-organic frameworks (MOFs) [213], can improve the long-term operational stability of HOIPs.
A relevant collection of DFT studies for HOIPs can be found in Ref. [214]. A recent study based on DFT + compressed sensing-symbolic regression has shown that mitigation of the propensity of halogens to migrate could be achieved by selectively strengthening specific bonds [215]. The study also unveiled the reasons for improved stability given by specific halogens, the origin of the higher stability offered by certain organic cations compared to others, and highlighted in a quantitative and first-principles manner how weak interactions have a significant role in binding the halogens more strongly.
The study of the radiation tolerance of perovskite solar cells is an extremely active field of research. Solar cells based on HOIPs as active layers have been recently sent to space via first campaigns [60, 216]. Several ground-testing experiments have been performed mostly using protons, either with an energy of several tenths of MeV [69, 211, 217] or with an energy of 150 keV, 100 keV, and 50 keV [70, 218, 219], of less relevance for realistic space conditions.
Superior radiation resistance of perovskite solar cells in comparison to commercially available crystalline Si-based cells has been demonstrated [69]. Moreover, experiments have shown that perovskite solar cells have remarkable self-healing capabilities (at room temperature) that lower the number of defects caused by proton irradiation [69]. Another experimental study has shown that the proton irradiation effects on the physical properties of HOIPs are strongly dependent on the synthesis method [220] which appeared to affect the strength of specific chemical bonds. In particular, HOIPs, produced by mechano-chemical synthesis, have shown practically no change in their physical properties after irradiation with a high-energy 10 MeV proton beam with doses of up to 1013 protons/cm2.
Recently, multi-junction tandem solar cells (combining HOIPs with previous technologies or technologies investigated in parallel) have also been studied under ion irradiation [217]. Lang et al. [217] carried out SRIM simulations of energy loss of high-energy protons as well as the energy transferred to the recoiling nuclei—a measure of the degradation of PV parameters—in tandem solar cells (Figure 5). The study [217] has shown that HOIP/CIGS tandem solar cells possess a high radiation hardness and retain over 85% of their initial performance even after 68 MeV proton irradiation and a dose of
3D scatter plots of the straggling of 68 MeV protons within the (A) HOIP/CIGS(Cu(In,Ga)Se
First-principles calculations of the atomic knock-on displacement events in HOIPs have shown that such displacements are significant and highly energy-dependent [221]. The work has shown that only certain types of atoms are prone to displacements suggesting that mitigation strategies should be directed toward some chemical species more than others. Overall, further studies are necessary, but existing research proves that HOIPs-based solar cells have a remarkable potential for power generation on missions to low Earth orbit, the Moon, and beyond [62].
Another promising class of novel materials for space applications is multi-principal element alloys (MPEAs) [222, 223], which combine superior mechanical properties and enhanced radiation resistance [224]. Also known as high-entropy alloys (HEAs) or concentrated solid-solution alloys (CSSAs), MPEAs consist of at least five principal elements with the concentration of each element from 5 to 35% [222]. Despite the complex composition, MPEAs often form single-phase solid solutions (Figure 6). The interest of researchers in MPEAs has been growing exponentially in recent years, as they exhibit a paradigm shift in alloy development. MPEAs indeed combine a set of outstanding properties, such as high strength, hardness, fracture toughness, corrosion resistance, strength retention at high temperature [226], good low-temperature performance [227], and recently discovered enhanced radiation resistance, superior to conventional alloys and pure metals [149, 222, 223, 228, 229, 230, 231, 232, 233]. Moreover, MPEAs have great potential as 3D printing materials [235]. MPEAs can be printed from a powder, providing manufacturing freedom for lightweight and customizable products of complex geometries for applications in the aerospace, energy, molding, tooling, and other industries, all of the great relevance for the exploration of the Moon.
Atomic structure of a body-centered cubic (BCC) AlCoCrCuFeNi HEA. The Al, Fe, Co, Cr, Ni, and Cu atoms are shown in red, magenta, green, blue, cyan, and gray colors, respectively [
Recent experiments have shown that MPEAs have a higher resistance to defect formation due to high atomic-level stress and chemical heterogeneity [235]. MPEAs also possess lower void swelling and higher phase stability [236, 237] as compared to conventional alloys. Self-healing capability is another remarkable property of MPEAs [227, 236, 238].
The subclass of lightweight (LW) MPEAs have a great potential for space applications due to their high strength-to-weight ratio [239, 240, 241]. The main components of LWMPEAs are low-density elements, such as Al, Mg, Si, and Ti [240]. The latter is of extreme importance for ISRU since 99% of the lunar soil consists of Si, Al, Ca, Fe, Mg, and Ti oxides [5, 242].
Currently, the main focus of computational studies has been on the single-phase random solid-solution (SS) alloys based on transition metals with high densities (Co, Cr, Fe, Ni) for application in radiation environments, in particular in nuclear reactors [148, 149, 232, 236, 243, 244, 245]. MD simulations of displacement cascades applied to pure metals and multicomponent alloys [150, 244, 245, 246, 247, 248] confirm the experimentally observed reduction of the number of defects and defect clusters in MPEAs compared to pure metals (Figure 7).
The number of defects in Ni, NiFe, and NiCoCr from experiments and MD simulations [
The electronic stopping power for a proton in binary alloys has recently been calculated using real-time TDDFT [249]. The study has shown that the electronic stopping power of binary alloys is higher than that of pure Ni, suggesting that alloys more effectively stop the incoming particles. Moreover, the inclusion of the electronic stopping into MD simulations of defect formation significantly reduces the final number of surviving defects, as shown in Figure 8. The inclusion of both the electron-phonon coupling and the electronic stopping in the 2T-MD model not only reduces the actual number of defects but also notably impacts their final arrangement, namely leading to more isolated point defects and reducing the size of defect clusters in binary and ternary alloys [250, 251, 252, 253, 254].
Average number of surviving defects in the classical MD cascade, MD cascade including electronic stopping force, and the 2 T-MD cascade at the end of the simulation for 50 keV Ni cascade in Ni, Ni80Fe20, and NiFe [
The majority of MD studies focus on binary and ternary MPEAs due to the lack of force fields for alloys with more than three elements. However, some studies exist [233] on defect formation in NiCoFeCr alloy in which fewer defects have been found at the end of the displacement cascade with PKA energies from 10 to 50 keV, as compared with pure Ni. The limitations of the classical MD with force fields and the ways of solving this problem are discussed in the following.
Classical MD with empirical potentials is the method that proved to work well for large systems and long time scales [139] for the modeling of collision cascades. However, classical interatomic potentials cannot accurately reproduce interactions between the atoms in MPEAs due to their complex structure and lattice distortions leading to internal strain [149, 255, 256]. On the other hand,
Recent developments in machine learning (ML) approaches can provide a solution to this problem. ML-enhanced materials discovery is an emerging and extremely rapidly growing field. The combination of a precise model based on quantum mechanics and ML algorithms have the potential for an efficient and accurate description of materials properties [257, 258, 259]. Much progress has been made in recent years in the development of ML-based interatomic potentials with the input from electronic structure calculations. First applications have shown that accurate potentials can be obtained for many relevant systems [260, 261, 262, 263, 264, 265]. ML-assisted calculations have been applied to pure metals, binary, ternary alloys [266, 267], and MPEAs [268, 269, 270].
ML and artificial intelligence (AI) may become powerful tools for more accurate multiscale modeling of materials properties. Artificial Neural Networks (ANN) [271] combined with atomistic KMC have already been used to describe the microstructural changes in metals and alloys induced by irradiation [272]. Machine-learned interatomic potentials have been used to study defect formation in refractory MPEAs [273]. The results confirm experimental findings, showing that the 3D migration and increased mobility of defects in MPEAs promote defect recombination leading to more efficient healing. AI, thus, can provide a bridge between different methods, such as DFT, MD, and KMC, and allow for large-scale atomistic simulations of high accuracy, which will accelerate the discovery of new advanced materials.
Fiber-reinforced polymers (FRPs) are composite materials made of a polymer matrix reinforced with fibers. Typical polymers that are often used include epoxy, vinyl ester, polyester thermosetting plastic, and phenol-formaldehyde resins. Typical fibers include, but are not limited to, glass, carbon, and aramid. In a composite FRP material, the polymer and fiber often have significantly different physical and/or chemical properties, which remain separate and distinct within the finished structure but are complementary for tailored properties [274]. Because of their low density (lightweight), great moldability, specific strength, stiffness [275], excellent mechanical stability, and good thermal properties, FRPs are being increasingly used as structural materials in aerospace, automotive, marine industries, and civil infrastructures. Hence, FRPs are of great interest for many applications for lunar missions as potential structural materials [276]. Glass fibers (also “fiberglass”) can be directly produced from the lunar soil as well as from by-products of metal extraction and can be used to reinforce lunar concrete [277].
The radiation environment on the Moon presents challenges for FRPs with concerns on both the immediate reactions taking place in the materials (short-term effects) and continued post-exposure degradation processes (long-term effects) [277, 279]. In the past decades, many selected FRPs have been ground-tested at different kinds of radiation and particle accelerator facilities for their potential use in space-related radiation environments, including UV-light [276, 280],
Carbon-fiber composites have been widely used in aerospace industries due to their high-temperature stability and low density along with high strength, as well as superior beam-induced shock absorption [285, 286]. A combined modeling and experimental study of the radiation effect on carbon-fiber-reinforced molybdenum-graphite compound (MoGRCF) [285], including MC simulations of the energy deposited into a realistic structure by a 200-MeV proton beam (Figure 9) has show that carbon-fiber-reinforced composites have superior beam-induced shock absorption ability compared to that of graphite.
MC modeling of the energy deposition for a 200-MeV proton beam interacting with an irradiation target array (MoGRCF) in tandem with the isotope production array downstream [
In the 1980s, the degradation behavior of carbon-fiber-reinforced plastic (CFRP) under electron beam irradiation in various conditions simulating experiments in space has been studied by Sonoda et al. [283]. It has been observed that there is no change in mechanical properties of CFRP when irradiated by up to a dose of 50 MGy. MC simulations of radiation effects in FRPs have shown that by adding lead nanoparticles it is possible to increase their radiation resistance [287]. According to the study, the addition of 15 wt% of lead nanoparticles to FRPs led to a mass reduction of
An alternative to glass fiber for polymer reinforcement is basalt fiber which offers advantages, such as high specific mechanical and physicochemical properties, biodegradability, non-abrasive qualities, and cost-effectiveness [288]. Arnhof et al. [289] have recently studied mechanical properties of fiber-reinforced geopolymer (FRG) with basalt fiber (i.e., inorganic alumino-silicate polymer) made from lunar regolith simulant as potential shielding and structural material. As basalt fibers can be produced
The additive-manufacturing (AM) techniques for lunar construction from regolith, including FRP materials, and their suitability for ISRU has recently been reviewed in Refs. [292, 293]. The AM techniques for lunar construction include Cement Contour Crafting (CCC), Binder Jetting (BJ), Selective Solar Light Sintering (SSLS) and Selective Laser Sintering/Melting (SLS/SLM) for 3D printing and metal melting, Stereolithography/Digital Light Processing (SLA/DLP), among others. CCC and BJ technologies could be used for outdoor lunar civil engineering. SSLS could be applied to both direct compacting of lunar regolith to ceramic parts and 3D printing. SLA/DLP-based methods could be used for the indoor manufacturing of ceramic instruments, providing higher precision and printing quality and lower defect rate of the printed parts than other AM methods. In the last decade, studies have clearly shown that the 3D-printing technologies will become one of the cornerstones of lunar exploration, providing future astronauts with all the necessary infrastructure [293].
Lunar concrete consisting of mined regolith with the addition of glass fibers (also made
It is worth mentioning that the 4D printing of a “smart material” with FRPs that responds to radiation-induced damages and aging in a programmable way could be realized in near future [296, 297]. In addition to experiments on the radiation environment in a lab, multiscale computational simulations as mentioned above could be helpful for gaining further insights into the radiation-induced molecular changes occurring in polymers.
In this chapter, we introduced some relevant materials for lunar habitat construction and power generation. We discussed the radiation environment on the Moon and the effects that radiation can cause in such materials. We provided an overview of computational methods used to study different stages of radiation damage in materials, focusing on the methods that allow simulating the behavior of materials with extreme accuracy down to the atomic scale. We emphasized that by coupling different methods, it is possible to account for different time and length scales in the evolution of the radiation-induced effects and to combine the electronic effects with atomic displacements.
Several particular examples of radiation damage studies have been discussed with the focus on novel materials with enhanced radiation resistance and other remarkable properties for use on the Moon that can revolutionize space exploration. Such materials include HOIPs for energy production and MPEAs and FRP composite materials for construction. The primary materials considered for lunar construction are FRGs with basalt or glass fibers, which have excellent mechanical properties, can benefit from ISRU, and provide necessary radiation shielding. We emphasized that researchers’ effort is mainly directed toward the development of additive manufacturing techniques, such as 3D printing for habitat construction from lunar regolith. 3D printing will allow producing complex and customizable products in a shorter time and with a lower cost and material consumption.
Nowadays, the radiation-induced effects in materials for space missions are mainly studied by MC particle transport modeling, inheriting the remarkable modeling and computational efforts by the high-energy physics community. However, with the development of first-principles methods and multiscale simulations, a more accurate understanding of radiation effects in materials can be achieved for the regime below hadronic interactions, with details down to atomic scale. It can be expected that the combination of first-principles methods, MC particle transport, and ML will contribute further to the investigation of materials to unravel their full potential for the application in harsh space radiation environments, in particular for what concerns the resistance and resilience to cumulative displacements effects.
The authors are grateful for the funding provided by the project ESC2RAD within the Horizon 2020 Research and Innovation program (grant agreement ID: 776410) and by the project PROIRICE within the program H2020-MSCA-IF 2016 of the Horizon 2020 program of the European Union (grant agreement ID: 748673).
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17715}],offset:12,limit:12,total:134176},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"7"},books:[{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12133",title:"Agricultural Value Chain",subtitle:null,isOpenForSubmission:!0,hash:"19892b77680b500f259ea7a506365cdc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12133.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12134",title:"Sustainable Tourism",subtitle:null,isOpenForSubmission:!0,hash:"bb510c876f827a1df7960a523a4b5db3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12134.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12138",title:"Online Advertising",subtitle:null,isOpenForSubmission:!0,hash:"d1a7aaa841aba83e7199b564c4991cf1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12138.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12239",title:"Topics on Globalization",subtitle:null,isOpenForSubmission:!0,hash:"43443244d8385c57f1424d5d37c91788",slug:null,bookSignature:"Prof. Elsadig Musa Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/12239.jpg",editedByType:null,editors:[{id:"268621",title:"Prof.",name:"Elsadig",surname:"Ahmed",slug:"elsadig-ahmed",fullName:"Elsadig Ahmed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11601",title:"Econometrics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",slug:null,bookSignature:"Dr. Brian Sloboda",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",editedByType:null,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11477",title:"Public Economics - New Perspectives and Uncertainty",subtitle:null,isOpenForSubmission:!0,hash:"a8e6c515dc924146fbd2712eb4e7d118",slug:null,bookSignature:"Dr. Habtamu Alem",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",editedByType:null,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"131303f07b492463a5c4a7607fe46ba9",slug:null,bookSignature:"Dr. Norman Chivasa",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:[{id:"331566",title:"Dr.",name:"Norman",surname:"Chivasa",slug:"norman-chivasa",fullName:"Norman Chivasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",subtitle:null,isOpenForSubmission:!0,hash:"85f77453916f1d80d80d88ee4fd2f2d1",slug:null,bookSignature:"Dr. Joseph Crawford",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",editedByType:null,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11774",title:"International Law - A Practical Manual",subtitle:null,isOpenForSubmission:!0,hash:"c607e873911da868c0764770dc224313",slug:null,bookSignature:"Dr. Michael Underdown",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:[{id:"478218",title:"Dr.",name:"Michael",surname:"Underdown",slug:"michael-underdown",fullName:"Michael Underdown"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12139",title:"Global Market and Trade",subtitle:null,isOpenForSubmission:!0,hash:"fa34af07c3a9657fa670404202f8cba5",slug:null,bookSignature:"Dr.Ing. Ireneusz Miciuła",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",editedByType:null,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4430},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"412",title:"Cardiology",slug:"cardiology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:74,numberOfWosCitations:108,numberOfCrossrefCitations:31,numberOfDimensionsCitations:113,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"412",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5194",title:"Exploring New Findings on Amyloidosis",subtitle:null,isOpenForSubmission:!1,hash:"c6bf83beb57bbae5110be176ebc490f0",slug:"exploring-new-findings-on-amyloidosis",bookSignature:"Ana-Maria Fernandez-Escamilla",coverURL:"https://cdn.intechopen.com/books/images_new/5194.jpg",editedByType:"Edited by",editors:[{id:"177897",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Fernandez-Escamilla",slug:"ana-maria-fernandez-escamilla",fullName:"Ana Maria Fernandez-Escamilla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2134",title:"Oxidative Stress and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"dfa7002beaf617a62594a235a9fe5dfd",slug:"oxidative-stress-and-diseases",bookSignature:"Volodymyr I. Lushchak and Dmytro V. Gospodaryov",coverURL:"https://cdn.intechopen.com/books/images_new/2134.jpg",editedByType:"Edited by",editors:[{id:"96151",title:"Dr.",name:"Volodymyr",middleName:"I",surname:"Lushchak",slug:"volodymyr-lushchak",fullName:"Volodymyr Lushchak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"35949",doi:"10.5772/32741",title:"Oxidative Stress in Diabetes Mellitus: Is There a Role for Hypoglycemic Drugs and/or Antioxidants?",slug:"oxidative-stress-in-diabetes-mellitus-is-there-a-role-for-hypoglycemic-drugs-and-or-antioxidants",totalDownloads:3800,totalCrossrefCites:2,totalDimensionsCites:28,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Omotayo O. Erejuwa",authors:[{id:"92521",title:"Dr.",name:"Omotayo",middleName:null,surname:"Erejuwa",slug:"omotayo-erejuwa",fullName:"Omotayo Erejuwa"}]},{id:"35941",doi:"10.5772/38093",title:"Oxidative Stress: Cause and Consequence of Diseases",slug:"oxidative-stress-as-a-cause-and-consequence-of-diseases",totalDownloads:3427,totalCrossrefCites:3,totalDimensionsCites:10,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Dmytro Gospodaryov and Volodymyr Lushchak",authors:[{id:"96151",title:"Dr.",name:"Volodymyr",middleName:"I",surname:"Lushchak",slug:"volodymyr-lushchak",fullName:"Volodymyr Lushchak"},{id:"115540",title:"Dr.",name:"Dmytro V.",middleName:null,surname:"Gospodaryov",slug:"dmytro-v.-gospodaryov",fullName:"Dmytro V. Gospodaryov"}]},{id:"35953",doi:"10.5772/32515",title:"The Role of Oxidative Stress in Female Reproduction and Pregnancy",slug:"the-role-of-oxidative-stress-in-female-reproduction-and-pregnancy",totalDownloads:5043,totalCrossrefCites:1,totalDimensionsCites:8,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Levente Lázár",authors:[{id:"91791",title:"Dr.",name:"Levente",middleName:null,surname:"Lazar",slug:"levente-lazar",fullName:"Levente Lazar"}]},{id:"35961",doi:"10.5772/33251",title:"Oxidative Therapy Against Cancer",slug:"oxidative-therapy-against-cancer",totalDownloads:4264,totalCrossrefCites:0,totalDimensionsCites:7,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Manuel de Miguel and Mario D. Cordero",authors:[{id:"67123",title:"Dr.",name:"Mario D.",middleName:null,surname:"Cordero",slug:"mario-d.-cordero",fullName:"Mario D. Cordero"},{id:"77269",title:"Mr.",name:"Manuel",middleName:null,surname:"De Miguel",slug:"manuel-de-miguel",fullName:"Manuel De Miguel"}]},{id:"35957",doi:"10.5772/35082",title:"The Relationship Between Thyroid States, Oxidative Stress and Cellular Damage",slug:"the-relationship-between-thyroid-states-oxidative-stress-and-cellular-damage",totalDownloads:3453,totalCrossrefCites:5,totalDimensionsCites:6,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Cano-Europa, Blas-Valdivia Vanessa, Franco-Colin Margarita and Ortiz-Butron Rocio",authors:[{id:"91909",title:"Prof.",name:"Edgar",middleName:null,surname:"Cano-Europa",slug:"edgar-cano-europa",fullName:"Edgar Cano-Europa"},{id:"102920",title:"Dr.",name:"Rocio",middleName:null,surname:"Ortiz-Butron",slug:"rocio-ortiz-butron",fullName:"Rocio Ortiz-Butron"},{id:"114461",title:"Prof.",name:"Vanessa",middleName:null,surname:"Blas-Valdivia",slug:"vanessa-blas-valdivia",fullName:"Vanessa Blas-Valdivia"},{id:"114462",title:"Prof.",name:"Adelaida",middleName:null,surname:"Hernández-García",slug:"adelaida-hernandez-garcia",fullName:"Adelaida Hernández-García"},{id:"114464",title:"Prof.",name:"Margarita",middleName:null,surname:"Franco-Colin",slug:"margarita-franco-colin",fullName:"Margarita Franco-Colin"}]}],mostDownloadedChaptersLast30Days:[{id:"35958",title:"Oxidative Stress in Human Autoimmune Joint Diseases",slug:"oxidative-stress-in-human-autoimmune-joint-diseases",totalDownloads:2550,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Martina Škurlová",authors:[{id:"95645",title:"Ph.D.",name:"Martina",middleName:null,surname:"Skurlova",slug:"martina-skurlova",fullName:"Martina Skurlova"}]},{id:"51951",title:"Amyloid Nephropathy: A Practical Diagnostic Approach and Review on Pathogenesis",slug:"amyloid-nephropathy-a-practical-diagnostic-approach-and-review-on-pathogenesis",totalDownloads:1649,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Amyloidosis comprises a group of protein-folding disorders in which extracellular deposits share unique Congo red staining properties and fibrillary ultrastructural appearance. These fibrillary deposits ultimately cause tissue destruction and progressive disease. Amyloidosis can be either systemic affecting multiple organs or localized. Renal involvement by amyloidosis (amyloid nephropathy) is a frequent manifestation of systemic amyloidosis. Immunofluorescence, immunohistochemistry (IHC), and more recently laser microdissection and mass spectrometry (LMD/MS) are important techniques in typing of amyloid nephropathy. This in-depth review discusses practical diagnostic approach and pathogenesis of amyloid nephropathy and includes discussion of treatment and prognosis.",book:{id:"5194",slug:"exploring-new-findings-on-amyloidosis",title:"Exploring New Findings on Amyloidosis",fullTitle:"Exploring New Findings on Amyloidosis"},signatures:"Paisit Paueksakon",authors:[{id:"180754",title:"Associate Prof.",name:"Paisit",middleName:null,surname:"Paueksakon",slug:"paisit-paueksakon",fullName:"Paisit Paueksakon"}]},{id:"51051",title:"A Nanobody‐Based Approach to Amyloid Diseases, the Gelsolin Case Study",slug:"a-nanobody-based-approach-to-amyloid-diseases-the-gelsolin-case-study",totalDownloads:1636,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Gelsolin amyloidosis (AGel) is an autosomal‐dominant inherited disease caused by point mutations in the gelsolin gene. At the protein level, these mutations result in the loss of a Ca2+‐binding site, crucial for the correct folding and function. In the trans‐Golgi network, this mutant plasma gelsolin is cleaved by furin, giving rise to a 68 kDa C-terminal fragment. When secreted in the extracellular matrix, this fragment undergoes proteolysis by MT1‐MMP–like proteases, resulting in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies, the variable part of the heavy chain of heavy‐chain antibodies, have been used as molecular chaperones for mutant plasma gelsolin and the 68 kDa C‐terminal fragment in an attempt to inhibit their pathogenic proteolysis. Furthermore, these nanobodies have also been tested and applied as a 99mTc‐based imaging agent in the gelsolin amyloidosis mouse model.",book:{id:"5194",slug:"exploring-new-findings-on-amyloidosis",title:"Exploring New Findings on Amyloidosis",fullTitle:"Exploring New Findings on Amyloidosis"},signatures:"Adriaan Verhelle and Jan Gettemans",authors:[{id:"181057",title:"Prof.",name:"Jan",middleName:null,surname:"Gettemans",slug:"jan-gettemans",fullName:"Jan Gettemans"},{id:"186102",title:"MSc.",name:"Adriaan",middleName:null,surname:"Verhelle",slug:"adriaan-verhelle",fullName:"Adriaan Verhelle"}]},{id:"35947",title:"Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases",slug:"oxidative-stress-and-mitochondrial-dysfunction-in-cardiovascular-diseases",totalDownloads:3027,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"2134",slug:"oxidative-stress-and-diseases",title:"Oxidative Stress and Diseases",fullTitle:"Oxidative Stress and Diseases"},signatures:"Sauri Hernández-Reséndiz, Mabel Buelna-Chontal, Francisco Correa and Cecilia Zazueta",authors:[{id:"102566",title:"Dr.",name:"Cecilia",middleName:null,surname:"Zazueta",slug:"cecilia-zazueta",fullName:"Cecilia Zazueta"},{id:"102568",title:"BSc.",name:"Sauri",middleName:null,surname:"Hernández-Reséndiz",slug:"sauri-hernandez-resendiz",fullName:"Sauri Hernández-Reséndiz"},{id:"102569",title:"BSc.",name:"Mabel",middleName:null,surname:"Buelna-Chontal",slug:"mabel-buelna-chontal",fullName:"Mabel Buelna-Chontal"},{id:"102570",title:"Dr.",name:"Francisco",middleName:null,surname:"Correa",slug:"francisco-correa",fullName:"Francisco Correa"}]},{id:"50968",title:"Advances in AFM Imaging Applications for Characterizing the Biophysical Properties of Amyloid Fibrils",slug:"advances-in-afm-imaging-applications-for-characterizing-the-biophysical-properties-of-amyloid-fibril",totalDownloads:2157,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Although the formation mechanism of amyloid fibrils in bodies is still debated, it has recently been reported how amyloid fibrils can be formed in vitro. Accordingly, we have gained a better understanding of the self-assembly mechanism and intrinsic properties of amyloid fibrils. Because the structure of amyloid fibrils consists of nanoscaled insoluble strands (a few nanometers in diameter and micrometers long), a special tool is needed to study amyloid fibrils at length. Atomic force microscopy (AFM) is supposed to be a versatile toolkit to probe such a tiny biomolecule. The physical/chemical properties of amyloid fibrils have been explored by AFM. In particular, AFM enables the visualization of amyloid fibrillation with different incubation times as well as the concentrations of the formed amyloid fibrils as affected by fibril diameters and lengths. Very recently, the minute structural changes and/or electrical properties of amyloid fibrils have been made by using advanced AFM techniques including dynamic liquid AFM, PeakForce QNM (quantitative nanomechanical mapping), and Kelvin probe force microscopy (KPFM). Herein, we summarize the biophysical properties of amyloid fibrils that are newly discovered with the help of those advanced AFM techniques and suggest our perspectives and future directions for the study of amyloid fibrils.",book:{id:"5194",slug:"exploring-new-findings-on-amyloidosis",title:"Exploring New Findings on Amyloidosis",fullTitle:"Exploring New Findings on Amyloidosis"},signatures:"Wonseok Lee, Hyungbeen Lee, Gyudo Lee and Dae Sung Yoon",authors:[{id:"180553",title:"Prof.",name:"Dae Sung",middleName:null,surname:"Yoon",slug:"dae-sung-yoon",fullName:"Dae Sung Yoon"},{id:"185225",title:"Mr.",name:"Wonseok",middleName:null,surname:"Lee",slug:"wonseok-lee",fullName:"Wonseok Lee"},{id:"185226",title:"Mr.",name:"Hyungbeen",middleName:null,surname:"Lee",slug:"hyungbeen-lee",fullName:"Hyungbeen Lee"},{id:"185227",title:"Dr.",name:"Gyudo",middleName:null,surname:"Lee",slug:"gyudo-lee",fullName:"Gyudo Lee"}]}],onlineFirstChaptersFilter:{topicId:"412",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:317,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 28th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,annualVolume:11967,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,annualVolume:11968,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,annualVolume:11969,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:9,paginationItems:[{id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",hash:"cf1ee76443e393bc7597723c3ee3e26f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:35,paginationItems:[{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:317,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,submissionDeadline:"July 1st 2022",editors:[{id:"347657",title:"Prof.",name:"El-Sayed",middleName:null,surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama",profilePictureURL:"https://mts.intechopen.com/storage/users/347657/images/system/347657.png",biography:"El-Sayed Salama is a professor in the Public Health School,\nLanzhou University, China. He is also a director of the Green Environmental & Energy Laboratory (GEEL) and a distinguished\nexpert of science and technology in the ecological industry, Gansu Province. His GEEL research work focuses on bioenvironmental science and bioenergy. He has several journal publications to\nhis credit.",institutionString:"Lanzhou University, Gansu Academy of Membrane Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Lanzhou University",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,submissionDeadline:"July 22nd 2022",editors:[{id:"196849",title:"Dr.",name:"Ahmed",middleName:null,surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez",profilePictureURL:"https://mts.intechopen.com/storage/users/196849/images/system/196849.jpg",biography:"Ahmed A. Abdelhafez, PhD, is an associate professor of the Department of Soils and Water Science, Faculty of Agriculture, New Valley University. He is one of the leading scientists in the field of biochar in the Arab region. He worked as a researcher at the Department of Environmental Researches, Agricultural Research Center (ARC), Egypt, for more than 10 years. Dr. Abdelhafez focuses mainly on agricultural production, environmental contamination control, risk assessment and biochar technology. He is a member of the National Committee of Soil Sciences and the Academy of Scientific Research & Technology, Egypt. He has published several research papers related to environmental contamination, risk assessment and potential remediation technologies.",institutionString:"New Valley University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,submissionDeadline:"June 9th 2022",editors:[{id:"299110",title:"Dr.",name:"Adnan",middleName:null,surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa",profilePictureURL:"https://mts.intechopen.com/storage/users/299110/images/system/299110.jpg",biography:"Adnan has completed his Ph.D in Soil Science from Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.\nHe is currently working as an Assistant Professor at Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czech Republic. He is simultaneously working as a Researcher with Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition (FA), Mendel University Brno and Institute of Environmental Studies, Charles University Prague, Czechia. \nHis research is focused on soil organic carbon (SOC) accumulation mechanisms, plant-microbe interactions, biochar production, and utilization for agricultural crop production and environmental remediation. He is actively involved in bioremediation of contaminated soils using organic and inorganic amendments in addition to exploiting plant-microbe interactions. He has published over 50 refereed journal articles, many of which sought to explore the effectiveness of innovative soil amendments and plant growth promoting rhizobacteria (PGPR) for improving crop performance and soil resilience under various abiotic stresses. He has been working for several renowned academic societies and enjoys early career in research.",institutionString:"Brno University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Brno University of Technology",institutionURL:null,country:{name:"Czech Republic"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 28th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:317,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/9481",hash:"",query:{},params:{id:"9481"},fullPath:"/chapters/9481",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()