These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\n
This collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\n
To celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\n
Initially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\n
This collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\n
To celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6095",leadTitle:null,fullTitle:"Insecticides - Agriculture and Toxicology",title:"Insecticides",subtitle:"Agriculture and Toxicology",reviewType:"peer-reviewed",abstract:"Insecticides are substances used to kill insects. They are used primarily in agriculture to control pests that infest crop. Nearly all insecticides have the potential to significantly alter ecosystems: many are toxic to humans and/or animals; some become concentrated as they spread along the food chain. The presence of these chemicals in both aquatic and terrestrial ecosystems has become an important issue globally. The book Insecticides - Agriculture and Toxicology provides information on the use of insecticides in pest management in order to enhance crop protection and their effects on nontarget organisms.",isbn:"978-1-78923-167-0",printIsbn:"978-1-78923-166-3",pdfIsbn:"978-1-83881-288-1",doi:"10.5772/intechopen.68177",price:119,priceEur:129,priceUsd:155,slug:"insecticides-agriculture-and-toxicology",numberOfPages:146,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"4e249884334e8155c1e57e34b7d8c9d2",bookSignature:"Ghousia Begum",publishedDate:"May 23rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6095.jpg",numberOfDownloads:9189,numberOfWosCitations:23,numberOfCrossrefCitations:22,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:44,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:89,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 6th 2017",dateEndSecondStepPublish:"June 27th 2017",dateEndThirdStepPublish:"September 23rd 2017",dateEndFourthStepPublish:"December 22nd 2017",dateEndFifthStepPublish:"February 20th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"83759",title:"Dr.",name:"Ghousia",middleName:null,surname:"Begum",slug:"ghousia-begum",fullName:"Ghousia Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/83759/images/3549_n.jpg",biography:"Dr. Ghousia Begum got her Ph.D from Osmania University and continued her postdoctoral wok in the same University. In 1998 she was appointed Junior Scientist in Biology Division, CSIR- Indian Institute of Chemical Technology. She has significantly contributed to the field of Ecotoxicology, Biochemical and Molecular Mechanisms of Toxicity and Environmental Biology. Her research interests lies in how environmental changes, particularly toxicants affect physiological functions in aquatic animals especially in fish She is also working on alternative animal models which include lower invertebrates (Daphnia) and vertebrates (Zebra fish and edible fishes) for toxicity evaluation. She has published more than 30 research articles in reputed journals. She has more than 500 citations to her credit\nShe has been awarded YOUNG SCIENTIST AWARD for the year 1993 by National Environmental Science Academy (NESA), gold medal for academic excellence and SCIENTIST OF THE YEAR AWARD-2012 by NESA. She has edited a book entitled “ECOTOXICOLOGY” published by InTech. Presently she is editorial board member in eleven journals and editor of two journals. Many journals in the area of environmental biology, toxicology and related areas used her as peer reviewer.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Indian Institute of Chemical Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"310",title:"Pestology",slug:"agronomy-pestology"}],chapters:[{id:"58734",title:"Biorational Insecticides and Diatomaceous Earth for Control Sustainability of Pest in Chickpea and Mexican Bean Weevil",doi:"10.5772/intechopen.71534",slug:"biorational-insecticides-and-diatomaceous-earth-for-control-sustainability-of-pest-in-chickpea-and-m",totalDownloads:1035,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Sustainability involving the conservation and/or enhancement of natural resources and environmental protection can be practiced with biorational insecticides or diatomaceous earth. Two researches were carried out; in one, the objective was to determine the efficacy of biorational insecticides in controlling chickpea leaf miner, Liriomyza sativae Blanchard, without completely inhibiting the presence of parasitoids of this pest. Biorational insecticides were chlorantraniliprole, cyromazine and spinosad, and conventional insecticide was chlorpyrifos, which were similarly effective to control adults and larvae of Liriomyza. Most chickpea production in 2012–2013 (1993.3 and 1806.8 kg ha−1) was obtained where chlorantraniliprole and chlorpyrifos were applied, respectively, and where spinosad and cyromazine were applied also exceeded the performance of absolute control (1213.6 kg ha−1). In 2013–2014, the increased production was 1621.9 kg ha−1 with chlorantraniliprole and 1556.3 kg ha−1 with chlorpyrifos, significantly different from the absolute control that produced 1136.5 kg ha−1. Earnings were MX$ 21011.7 in 2012–2013 and MX$ 16036.7 in 2013–2014 with chlorantraniliprole, while in the absolute control, earnings were MX$ 12305.1 and MX$ 11083.5. Chlorantraniliprole was the biorational insecticide that caused greater effect in the management of this pest of chickpea and crop yields. While in another research, the objective was to determine the efficacy of different doses of diatomaceous earth against Mexican bean weevil Zabrotes subfasciatus Boheman. An experiment was carried out in two phases: in first, one tested diatomaceous earth at doses of 1.0, 2.0, 3.0, 4.0, and 5.0 g kg−1 of seed, with samples at 15, 30, 45, and 60 days after application (daa), while in the second, the doses were 0.2, 0.4, 0.6, 0.8, and 1.0 g kg−1 and samples at 10, 20, 30, and 40 daa. The parameters evaluated were weevil mortality and seed germination. The results indicated that the doses from 0.8 to 5.0 g kg−1 of diatomaceous earth efficiently controlled the Mexican bean weevil. The treatments did not inhibit seed germination.",signatures:"Jacobo Enrique Cruz Ortega, Leopoldo Partida Ruvalcaba,\nRaymundo Medina López, Tomás Díaz Valdés, Teresa de Jesús\nVelázquez Alcaraz and Felipe Ayala Tafoya",downloadPdfUrl:"/chapter/pdf-download/58734",previewPdfUrl:"/chapter/pdf-preview/58734",authors:[{id:"206346",title:"Dr.",name:"Partida",surname:"Ruvalcaba Leopoldo",slug:"partida-ruvalcaba-leopoldo",fullName:"Partida Ruvalcaba Leopoldo"},{id:"206348",title:"Dr.",name:"Medina",surname:"López Raymundo",slug:"medina-lopez-raymundo",fullName:"Medina López Raymundo"},{id:"206349",title:"Dr.",name:"Cruz",surname:"Ortega Jacobo Enrique",slug:"cruz-ortega-jacobo-enrique",fullName:"Cruz Ortega Jacobo Enrique"},{id:"206350",title:"Dr.",name:"Díaz",surname:"Valdés Tomás",slug:"diaz-valdes-tomas",fullName:"Díaz Valdés Tomás"},{id:"206351",title:"Dr.",name:"Velázquez",surname:"Alcaraz Teresa De Jesús",slug:"velazquez-alcaraz-teresa-de-jesus",fullName:"Velázquez Alcaraz Teresa De Jesús"},{id:"206352",title:"Dr.",name:"Ayala",surname:"Tafoya Felipe",slug:"ayala-tafoya-felipe",fullName:"Ayala Tafoya Felipe"}],corrections:null},{id:"60115",title:"Plant Lectins with Insecticidal and Insectistatic Activities",doi:"10.5772/intechopen.74962",slug:"plant-lectins-with-insecticidal-and-insectistatic-activities",totalDownloads:1285,totalCrossrefCites:5,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Lectins are an important group of proteins which are spread in all kingdoms of life. Their most lighted characteristic is associated to their specific carbohydrate binding, although function has been not even identified. According to their carbohydrate specificity, several biological activities have been assessed, finding that lectins can be used as mitogenic agents, biomarkers, and cytotoxic and insecticide proteins. Lectins have been classified according to several features such as structure, source, and carbohydrate recognition. The Protein Research Group (PRG) has worked on Colombian seeds from the family of Fabaceae and Lamiaceae plants, isolating and characterizing their lectins, and found more than one lectin in some plants, indicating that according to its specificity, different lectins can have different biological activities. In the case of legume domain lectins, they have shown the biggest potential as insecticide or insectistatic agents due to the glycosylation pattern in insect midgut cells. This review attempts to identify the characteristics of plant legume lectin domains that determine their insecticidal and insectistatic activities.",signatures:"Edgar Antonio Reyes-Montaño and Nohora Angélica Vega-Castro",downloadPdfUrl:"/chapter/pdf-download/60115",previewPdfUrl:"/chapter/pdf-preview/60115",authors:[{id:"100016",title:"Dr.",name:"Edgar Antonio",surname:"Reyes-Montaño",slug:"edgar-antonio-reyes-montano",fullName:"Edgar Antonio Reyes-Montaño"},{id:"207931",title:"Dr.",name:"Nohora Angélica",surname:"Vega-Castro",slug:"nohora-angelica-vega-castro",fullName:"Nohora Angélica Vega-Castro"}],corrections:null},{id:"58195",title:"Role of the Formulation in the Efficacy and Dissipation of Agricultural Insecticides",doi:"10.5772/intechopen.72340",slug:"role-of-the-formulation-in-the-efficacy-and-dissipation-of-agricultural-insecticides",totalDownloads:2042,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Considering the implications the formulation may have on the effectiveness and residuality of an active ingredient, four trials were conducted comparing two commercial formulations of the diazinon insecticide, two of acetamiprid, two of lambda-cyhalothrin, and, finally, three formulations of imidacloprid. For diazinon and acetamiprid, the comparison parameters used correspond to efficacy against three key pests in apple trees: Cydia pomonella, Diaspidiotus perniciosus, and Pseudococcus viburni; for l-cyhalothrin, efficacy against C. pomonella was compared; and for imidacloprid, differences in control P. viburni were established. In all cases, their persistence was established in terms of initial and final residue levels in samples of fruits, at 1 and 25 days after application (DAA). Different formulations of the same insecticide correspond to a relevant factor in the general behavior that each product presents in field conditions, being able to affect parameters such as its persistence in the fruit and/or initial deposit of the active ingredient. This variation was demonstrated in the comparison performed on acetamiprid, imidacloprid, and diazinon, but it was not so in l-cyhalothrin. Efficacy was affected in all parameters evaluated for each group of insecticides, demonstrating that different formulations can deliver different biological activity in the control of various pests.",signatures:"Karina Buzzetti",downloadPdfUrl:"/chapter/pdf-download/58195",previewPdfUrl:"/chapter/pdf-preview/58195",authors:[{id:"214596",title:"Dr.",name:"Karina",surname:"Buzzetti",slug:"karina-buzzetti",fullName:"Karina Buzzetti"}],corrections:null},{id:"60444",title:"Evaluation of Insecticides in Protective Clothing",doi:"10.5772/intechopen.76075",slug:"evaluation-of-insecticides-in-protective-clothing",totalDownloads:908,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The exposure to insecticides causes several health problems, which can be aggravated by more toxicity. Therefore, to avoid this exposure, it is required to use protective clothing. The use of protective equipment against pesticides is indispensable and essential from the preparation/handling regulations of the pesticides spray to the application of diluted formulations. However, even with this protection, workers are not totally immune to the contamination of pesticides. There are several factors that contribute to the loss of efficiency of protective clothing against pesticides, such as field use, activity of application, the type of material, seam presence, clothing model, types of formulation used in the application, the process of washing, and the ironing of clothes after their use.",signatures:"Melina Espanhol Soares and Flávio Soares Silva",downloadPdfUrl:"/chapter/pdf-download/60444",previewPdfUrl:"/chapter/pdf-preview/60444",authors:[{id:"234424",title:"Ph.D.",name:"Melina",surname:"Espanhol Soares",slug:"melina-espanhol-soares",fullName:"Melina Espanhol Soares"},{id:"240925",title:"Prof.",name:"Flávio",surname:"Soares Silva",slug:"flavio-soares-silva",fullName:"Flávio Soares Silva"}],corrections:null},{id:"58221",title:"Particulate Nanoinsecticides: A New Concept in Insect Pest Management",doi:"10.5772/intechopen.72448",slug:"particulate-nanoinsecticides-a-new-concept-in-insect-pest-management",totalDownloads:1650,totalCrossrefCites:7,totalDimensionsCites:17,hasAltmetrics:0,abstract:"Nanostructured alumina (NSA) has insecticidal properties and has been demonstrated to be effective against stored product insect pests in laboratory bioassays. NSA is a nano-engineered material synthesized by oxidation of metals, and resulting particles show fixed electric charges. On the other hand, insects exhibit their own electric charges generated by triboelectrification. We propose that the mechanism of action of NSA involves two steps occurring in sequential order. First, a strong electrical binding between negatively charged NSA particles and positively charged insect. Next, dehydration of the insect occurs due to the strong sorbtive action of the NSA particles that remove the insect cuticular, leading to death by dehydration. As postulated for insecticidal inert powder in generals, particles attach to the insect cuticle surface disrupting water balance, and effectiveness decreases as ambient humidity increases, given that electrostatic bond forces are reduced by electrostatic discharge. The high insecticidal efficacy of NSA is a result of its intrinsic electric charge, small particle size and high sorptive potential due to its large specific surface area. NSA could provide an alternative to conventional synthetic organic insecticides due to its strong insecticidal properties with the advantage that its mechanism of action involves physical and electrostatic phenomena.",signatures:"Teodoro Stadler, Micaela Buteler, Susana R. Valdez and Javier G.\nGitto",downloadPdfUrl:"/chapter/pdf-download/58221",previewPdfUrl:"/chapter/pdf-preview/58221",authors:[{id:"207985",title:"Ph.D.",name:"Teodoro",surname:"Stadler",slug:"teodoro-stadler",fullName:"Teodoro Stadler"},{id:"208044",title:"Dr.",name:"Micaela",surname:"Buteler",slug:"micaela-buteler",fullName:"Micaela Buteler"},{id:"208045",title:"Ph.D. Student",name:"Javier",surname:"Gitto",slug:"javier-gitto",fullName:"Javier Gitto"},{id:"210819",title:"Dr.",name:"Susana Ruth",surname:"Valdez",slug:"susana-ruth-valdez",fullName:"Susana Ruth Valdez"}],corrections:null},{id:"58125",title:"Propesticides and Their Implications",doi:"10.5772/intechopen.71532",slug:"propesticides-and-their-implications",totalDownloads:1080,totalCrossrefCites:5,totalDimensionsCites:7,hasAltmetrics:0,abstract:"With increasing knowledge of the biochemistry and genetics of major pest insects, weeds, and agricultural pathogens, the design of such selectivity becomes a part of pesticide development and is achieved by appropriate structural modification of the parent lead molecule which is called as propesticide. In a strict sense, a propesticide is a biologically inactive compound requiring structural transformation(s) after application to become pesticidally active. Various pesticides have come to the limelight of being a propesticide by carrying out studies on their metabolic fate in organisms. Studies on the metabolic fate of diafenthiuron in vitro by liver microsomes from various vertebrates revealed a variety of possible transformations of the thiourea. Few have been developed by reversibly masking the active ingredients. Fluorinated N-acylaziridine behaves as a propesticide of the fluorinated carboxylate and the hydrolysis of the former to 2-methylaziridine and carboxylate being activation pathway. Imidacloprid and the thiazolylmethyl analogue masked with oxodioxolyl group decomposed with half life of 15.4 and 11.4 h in alkaline and physiological salt solutions, respectively, releasing imidacloprid quantitatively. New propesticide with two effects of both benzoylphenyl ureas and carbamates were designed and synthesized.",signatures:"Shaon Kumar Das and Irani Mukherjee",downloadPdfUrl:"/chapter/pdf-download/58125",previewPdfUrl:"/chapter/pdf-preview/58125",authors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"},{id:"213740",title:"Prof.",name:"Irani",surname:"Mukherjee",slug:"irani-mukherjee",fullName:"Irani Mukherjee"}],corrections:null},{id:"58099",title:"Toxic Effects of the Organophosphorus Insecticide Fenthion on Growth and Chlorophyll Production Activity of Unicellular Marine Microalgae Tetraselmis suecica: Comparison between Observed and Predicted Endpoint Toxicity Data",doi:"10.5772/intechopen.72321",slug:"toxic-effects-of-the-organophosphorus-insecticide-fenthion-on-growth-and-chlorophyll-production-acti",totalDownloads:1192,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This chapter provides the results of a laboratory ecotoxicological study conducted to assess the acute toxicity of the organophosphorus pesticide fenthion toward the marine microalgal species Tetraselmis suecica. Bioassays were performed, and algal densities and chlorophyll pigments fractions were measured in the exponential phase after 96 h of exposure to fenthion. Two quantitative structure activity relationships (QSARs) were used to estimate the toxicity of 13 primary metabolites and degradation products of fenthion toward the selected organism; the first was based on the use of the n-octanol/water partition coefficient, whereas the second was based on the solubility of the compound in water. Results revealed that fenthion can have marked effects on the growth and photosynthesis of the target primary producers of marine ecosystems T. suecica. The parent pesticide toxicant was found not toxic to the tested algal species up to 1.00 mg L−1, while higher treatment concentrations not only affected algal densities and significantly decreased specific growth rate values (μ) (p < 0.05) but also decreased the contents of photosynthetic pigments. The comparison between the observed and the predicted toxicity values of the parent compound fenthion indicated that the predictive capability of the QSARs applied can be considered highly satisfactory. Consequently, both QSAR models were used for the prediction of toxicity data of fenthion’s principal metabolites and degradation products.",signatures:"Maria C. Vagi, Andreas S. Petsas, Maria D. Pavlaki, Niki M.\nSmaragdaki and Maria N. Kostopoulou",downloadPdfUrl:"/chapter/pdf-download/58099",previewPdfUrl:"/chapter/pdf-preview/58099",authors:[{id:"200196",title:"Dr.",name:"Andreas",surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"},{id:"217857",title:"Dr.",name:"Maria",surname:"Pavlaki",slug:"maria-pavlaki",fullName:"Maria Pavlaki"},{id:"217858",title:"Prof.",name:"Maria",surname:"Kostopoulou",slug:"maria-kostopoulou",fullName:"Maria Kostopoulou"},{id:"229000",title:"Ms.",name:"Niki",surname:"Smaragdaki",slug:"niki-smaragdaki",fullName:"Niki Smaragdaki"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"677",title:"Ecotoxicology",subtitle:null,isOpenForSubmission:!1,hash:"1925c37f0dfc6eb0d8448aa22777eb9e",slug:"ecotoxicology",bookSignature:"Ghousia Begum",coverURL:"https://cdn.intechopen.com/books/images_new/677.jpg",editedByType:"Edited by",editors:[{id:"83759",title:"Dr.",name:"Ghousia",surname:"Begum",slug:"ghousia-begum",fullName:"Ghousia Begum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6566",title:"Biomarker",subtitle:"Indicator of Abnormal Physiological Process",isOpenForSubmission:!1,hash:"d50cce2242888a02ce742196a7dbf09f",slug:"biomarker-indicator-of-abnormal-physiological-process",bookSignature:"Ghousia Begum",coverURL:"https://cdn.intechopen.com/books/images_new/6566.jpg",editedByType:"Edited by",editors:[{id:"83759",title:"Dr.",name:"Ghousia",surname:"Begum",slug:"ghousia-begum",fullName:"Ghousia Begum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5526",title:"Biological Control of Pest and Vector Insects",subtitle:null,isOpenForSubmission:!1,hash:"2e787450cc7eded94883ef67852a07b4",slug:"biological-control-of-pest-and-vector-insects",bookSignature:"Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/5526.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80612",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:null},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:null},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:null}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12027",leadTitle:null,title:"Optical Fiber",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"479f515bddf75aa9857e4f0ccf3e7c74",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12027.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"8904",title:"Computational Tools to Study and Predict the Long-Term Stability of Nanowires.",doi:"10.5772/39477",slug:"computational-tools-to-study-and-predict-the-long-term-stability-of-nanowires-",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
“The era in which the number of transistors on a computer chip doubles at a constant rate is drawing to a close”. This is not the prophecy of an obscure mind, but is more or less the conclusion drawn by none other than the man who coined Moores´ law\n\t\t\t\t\t
Times Online September 19, 2007, http://technology.timesonline.co.uk/tol/news/tech_and_web/article2489053.ece
\n\t\t\t\t. In an interview held in 2007, Gordon Moore recognized that by about 2020, his law would come up against the laws of physics. Furthermore, he recognized a change in a paradigm: the replacement of the top-down approach currently used for building circuits by a bottom-up procedure, where chips would be assembled using individual atoms or molecules. This is nothing but the realm of nanotechnology, while there is some consensus that the elementary switches of these circuits should be molecules with some feature allowing for the on/off status required for the components of logical devices, many questions remain concerning their stability. In the case of micrometric circuit components temperature may be an issue, but in the case of single molecules thermal effects may be overwhelming, since current flow occurs across a single bond. The lifetime of this bond, will determine the lifetime of the circuit component. Under these conditions, circuit engineering will be coming unexpectedly close to chemical kinetics.
\n\t\t\t
It still is far from clear which will be the technological procedure for the massive production of these molecular circuits. However, there are a number of experimental techniques for the study of their properties that are well established. These are shown schematically in Fig. 1. Fig. 1d shows a method devised to study the structure of monatomic nanowires (NWs). It has been developed by Kondo and Takayanagi (Kondo & Takayanagi, 1997) using High Resolution Transmission Electronic Microscopy (HRTEM) and allows the generation of suspended NWs. In this approach nanowires are generated in situ by focusing an electron beam on adjacent sites of a self-supported metal thin film (ca. 3 nm), making holes and allowing them to grow until a nanometric bridge is formed inside or between grains. The relatively long lifetimes of these metallic nanowires (of the order of seconds and even minutes) allows for a detailed characterization of their geometries. This method has even been used to study the structure of alloyed metal monatomic nanowires (Bettini et al., 2006). However, because of the preparation procedure, these nanowires are susceptible to contamination by light impurity atoms (Galvão et al., 2004, Legoas et al., 2002, Legoas et al., 2004), not observed directly in the HRTEM, that affect their structure upon insertion in the monatomic chain.
\n\t\t\t
Figure 1.
Different methods employed to generate suspended nanowires: a) metallic jump-to-contact, b) mechanically controllable break-junction, c) electrochemical growth, d) electron beam punching, and e) molecular jump-to-contact.
\n\t\t\t
Another procedure that has been used to study the properties of monatomic metal contacts is the so-called Mechanically Controllable Break-Junctions method (MCBJ, Fig. 1 b). In this technique, a metal wire is mechanically broken by mounting its two ends on a bendable substrate. In this way, the length of the contact can be adjusted by controlling the bending of the substrate. Lithographic designed MCBJ provides highly stable electrodes, with standard deviations of less than 1 pm over 24 h at low temperatures. A detailed discussion on this technique has been given by van Ruitenbeek et al. (van Ruitenbeek et al., 2005). The metal neck at the MCBJ can be also tuned by electrochemical methods as long as the metal involved can be deposited electrochemically. The main drawbacks of this technique are the lack of information on the atomic configuration, and the fact that both electrodes must be made of the same metal. The former situation was challenged recently by Yoshida et al. (Yoshida et al., 2007), who developed MCBJ inside a HRTEM chamber that allows for simultaneous performance of conductance measurements and electronic imaging of the atomic chain.
\n\t\t\t
In the case of metallic Scanning Tunnelling Microscopy (STM) and conducting Atomic Force Microscopy (AFM) break junctions (Ohnishi et al., 1998, Rubio-Bollinger et al., 2001, Xu et al., 2003a, Xu & Tao, 2003), the sharp tip of the scanning probe microscope is approached to the surface and brought into contact with it (Fig. 1a). The surface may be made either of the same material as the tip or of a different one containing islands of the tip material. Upon retraction, an atomic chain of atoms occurs, whose properties are analyzed. When employed in an Ultra High Vacuum (UHV). The main drawbacks of this technique are the need for an intensive cleaning procedure and the implementation of thermal and mechanical stability conditions, as it is the case of STM. On the other hand, this methodology can be used in situ for electrochemical experiments. In fact, it has been employed by Tao and co-workers to perform conductance measurements with Au nanowires under a variety of experimental electrochemical conditions (He et al., 2002, Xu et al., 2003b), including the properties of the nanojunction when molecules are inserted into it (Xu et al., 2003a; Xu & Tao, 2003). Efficient electrochemical methods for the generation of nanowires have also been developed. Li and Tao(Li & Tao, 1998) managed to bridge the gap between an STM tip and a substrate by a suitable potential control of both the tip and the surface(Fig. 1c). In a similar procedure, the gap between two supported metal pieces was filled by a nanometric wire using an adequate feedback electronic setup (Li et al, 1999). The latter procedure has the advantage of removing thermal drift problems.
\n\t\t\t
Finally, the method developed Haiss et al. moves more into the spirit of bottom up nanostructuring (Fig. 1e). In this procedure, a molecule bridges spontaneously the gap between an STM tip and a surface (Haiss et al., 2004, Haiss et al., 2006). The substrate-tip connection is verified by jumps in the tunnelling current measured.
\n\t\t
\n\t\t
\n\t\t\t
2. Structure and stability of pure and contaminated metallic monatomic nanowires
\n\t\t\t
\n\t\t\t\t
2.1. Experimental measurements
\n\t\t\t\t
The conductance measured through metallic monatomic nanowires is quantized in units of G\n\t\t\t\t\t0 = 2e\n\t\t\t\t\t2/h (where e is the charge of an electron and h stands for Planck’s constant). The force during the fabrication and breaking of a gold nanowire was measured using a specific STM supplemented with a force sensor at room temperature (Rubio-Bollinger et al., 2001). Force and conductace curves were thus obtained simultaneously. The later displayed a steplike behavior down to a value close to one conductance quantum (G\n\t\t\t\t\t0), which corresponds to a one-atom contact, while the force curve showed a sawtooth like signal decreasing in amplitude in a sequence of elastic stages separated by sudden force relaxations. In this experiments the one-atom contact of gold was further stretched a distance of about 1 nm while the conductance remained close to G\n\t\t\t\t\t0, which signals the formation of a chain of about four atoms long that finally breaks. This corresponds to a monatomic neck of ~4 gold atoms. Similar observations were made in STM experiments at 4 K (Yanson et al., 1998), and from direct observations by means of HRTEM measurements (Ohnishi et al., 1998, Rodrigues & Ugarte, 2001a, Rodrigues & Ugarte, 2002; Rodrigues et al., 2000).
\n\t\t\t\t
Due to the inherent irreproducibility of the contacts formed, and therefore of the measured conductance curves, it is useful to construct histograms with a few hundred measured curves. A force histogram for the Au nanowire showed a narrow distribution centered at 1.5 ± 0.3 nN for the force needed to break one single bond in the chain (Rubio-Bollinger et al., 2001).
Two striking experimental features have drawn the attention of the researches in the last few years: first, the existence of unusually large Au – Au distances in the order of 3.6 – 4.0 Å (Kizuka, 2008, Koizumi et al., 2001, Ohnishi et al., 1998, Sato et al., 2006b), longer than the bulk distance of 2.88 Å. These experimental observations along with the simulation of HRTEM measurements suggest that the atomic-sized wires are complexed with light elements (such as H, C, S for example) (Kizuka, 2008, Koizumi et al., 2001).
Time sequence of atomic resolution images of the formation, elongation and fracture of a suspended chain of gold atoms: (a) 0 s; (b) 0.64 s; (c) 1.12 s; and (d) 3.72 s. Atomic positions appear as dark lines or dots. A schematic representation of the chain structure is shown in (e) (distances are marked in Å and the error bar is 0.1 Å); the letters A and B indicate the apex position in (c). Note that the chain is attached to the tips through a two atom structure. The double arrows in (a) and (b) have been drawn to indicate the movement (rotation) of the lower apex. Reprinted figure with permission from Rodrigues, V.; Ugarte, D. Phys. Rev. B, Vol. 63, No.7, 073405 (pp 1-4), 2001. Copyright 2001 by the American Physical Society.
\n\t\t\t\t
The stability and breakdown of gold nanojunctions at different stretching rates has recently been measured by Huang et al. (Huang et al., 2007a). Information about the lifetime of the Au – Au bond is extracted from the length of the last plateau in the conductance traces of Au – Au point contacts. The most probable stretching distance for this last plateau (corresponding to an atom-sized contact between the electrodes as verified by its conductance at a G\n\t\t\t\t\t0 value) maintains a constant value of ~0.1 nm at low stretching rates (0.8 – 8.3 nm/s). At high stretching rates (45.9 – 344 nm/s) a maximum plateau of ~0.17 nm is reached. Between these two plateaus, a linearly proportional regime is observed between the most probable distance and the logarithm of the stretching rate. This three-phase regime (illustrated in Fig. 3) has also been observed in the breakdown of biological molecules measured by AFM (Auletta et al., 2004; Merkel et al., 1999, Schönherr et al., 2000, Zou et al., 2005). The linear increase in stretching distance is related to the stretching rate according to Eq. 1 (Evans & Ritchie, 1997, , Evans 1999, Evans, 2001).
Most probable stretching distance, L*, vs logarithm of stretching rate for a Au – Au point contact. The black line is the linear fit of L* with the logarithm of the stretching rate, according to Eq 1. Reprinted with permission from Huang, Z. F.; Chen, F.; Bennett, P. A.; Tao, N. J. J. Am. Chem. Soc., Vol. 129, No.43, 13225-13231, 2007. Copyright 2007 American Chemical Society.
\n\t\t\t\t
In Eq. 1\n\t\t\t\t\tL* is the most probable stretching distance, k\n\t\t\t\t\ts is the effective spring constant of the bond, x\n\t\t\t\t\tβ is the average thermal bond length along the pulling direction until dissociation, t\n\t\t\t\t\toff is the natural lifetime, and ν is the stretching rate. By fitting the linear regime observed for the Au – Au point contacts to the above equation, a value of t\n\t\t\t\t\toff = 81 ms was obtained.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Computational simulations
\n\t\t\t\t
Experimental observations such as those described above, have triggered numerous theoretical approaches to gain further insight into the structure and transmission properties of these metallic nanowires. The mechanical structure and evolution of a tip-surface contact has been modelled by means of different computational techniques. In early works, Molecular Dynamics (MD) and effective medium theory potentials have been used to simulate the mechanical deformation of atomic-sized metallic contacts under tensile strain for Au, Ag, Pt, Ni (Bahn & Jacobsen, 2001; Dreher et al., 2005, Rubio-Bollinger et al., 2001, Sørensen et al., 1998). The relative utility of different semiempirical potentials for MD simulations of stretched gold nanowires has been recently reviewed (Pu et al., 2007a). In this work the authors find that the second-moment approximation of the tight-binding potential reproduces well the energetics of finite Au clusters. Also, the calculated tensile force just before the nanowire breaks is around 1.5 nN, consistent with the experimental result The stretching of gold nanowires has also been simulated in the presence of solvent (Pu et al., 2007b).
\n\t\t\t\t
Tight binding MD simulations using the Naval Research Laboratory potentials, along with ab-initio quantum calculations within the Density Functional Theory (DFT) framework, provided evidence that a one-atom thick 5-atom long necklace is formed for gold nanowires under a stretching force (da Silva et al., 2001; da Silva et al., 2004). Before breaking, relatively long Au – Au distances, of the order of 3.0 – 3.1 Å are obtained, in agreement with experiments.
\n\t\t\t\t
The main drawback of the MD simulations mentioned above is that the stretching rate used (typically in the order of 1 -2 m/s) is around 9 - 10 orders of magnitude larger than the experimental values (in the order of a tenths to a few nm/s).
\n\t\t\t\t
The use of ab-initio quantum methods to study the stability of monatomic metallic nanowires is usually performed using two different methodologies. One of these procedures involves stretching the nanowire in steps of a certain elongation, minimizing the energy of the system at each step, until the breakage of the nanowire is achieved (Bahn et al., 2002, da Silva et al., 2004; De Maria & Springborg, 2000; Häkkinen et al., 2000, Nakamura et al., 1999, Nakamura et al., 2001; Novaes et al., 2003, Okamoto & Takayanagi, 1999, Rubio-Bollinger et al., 2001, Sánchez-Portal et al., 1999, Skorodumova & Simak, 2003). This method has been successfully used to, for example, predict the pulling force necessary for breaking the nanowire (da Silva et al., 2004; Nakamura et al., 1999, Novaes et al., 2003, Rubio-Bollinger et al., 2001). An alternative procedure, and more costly from a computational point of view, consists in performing Ab-initio Molecular Dynamics (AIMD), which has been employed to obtain a detailed description of the elongation process of pure gold nanowires (Hobi et al., 2008, Torres et al., 1999), and gold NWs in the presence of organic molecules (Krüger et al., 2002), or light weight elements as contaminants (Hobi et al., 2008, Legoas et al., 2004). AIMD takes into account the thermal motion of the system, for which in a first approach seems a more appropriate approximation to obtain reliable information about the mechanical proprieties and the stability of metallic atom-sized wires. Nonetheless, the experimental elongation times are far larger than those accessible by an AIMD simulation, typically in the order of nanoseconds.
\n\t\t\t\t
As it was mentioned above, one of the possible explanations for the rather long Au – Au distances observed in a monatomic neck is the presence of light weight elements, such as C, H, O or S, intercalated between gold atoms. This possibility has only been investigated so far by the means of computational simulations, since these light weight elements would have a low contrast against the much heavier Au atoms, and thus rendering their direct visualization by today’s electronic microscopes very difficult. Carbon is a frequent contaminant in bulk gold (Legoas et al., 2002), while hydrogen (O\'Hanlon, 2001) and oxygen (Bahn et al., 2002) are impurities very difficult to extract even in the best UHV conditions. Although the possibility of hydrogen acting as a contaminant has been ruled out by an AIMD study (Legoas et al., 2004), this result has been subsequently challenged (Hobi et al., 2005).
\n\t\t\t\t
Legoas et al. (Legoas et al., 2002) modelled monatomic gold chains contaminated with carbon by means of geometry optimization at DFT-LDA level. The authors used an isolated linear chain and no tension was exerted on the system. Their results showed that long Au – Au distances of around 4 – 4.5 Å could be explained by the presence of two consecutive carbon atoms (C2) inserted into the gold chain. Whereas, another set of anomalously long bond in the order of 3 – 3.7 Å could be a consequence of a mixture of pure Au – Au bonds with contamination of such a bond by a single carbon atom.
\n\t\t\t\t
Skorodumova and Simak (Skorodumova & Simak, 2003) showed, using DFT-GGA calculations, that the unusual structural stability of monatomic gold wires could be explained in terms of hydrogen contamination. Stretching the nanowire, the authors observed that the chain takes a linear structure with hydrogen atoms intercalated and a Au – Au distance of 8.8 Å before the nanowire breaks. The cohesive energy of the contaminated gold wire was found to be 2-fold higher than a pure chain of gold atoms. This last result was attributed to a partial charge transfer from gold to hydrogen. Subsequently, the influence of carbon was explored using the same computational methodology (Skorodumova et al., 2007, Skorodumova & Simak, 2004), also finding that carbon can enhance the stability of linear gold chains yielding large interatomic distances.
\n\t\t\t\t
Novaes et al. (Novaes et al., 2003) studied through ab- initio calculations the effect of H, B, C, N, O and S impurities on a gold nanowire electronic and structural properties. The authors find that the most likely candidates to explain the distances in the range of 3.6 Å and 4.8 Å are H and S impurity atoms, respectively.
\n\t\t\t\t
The main drawback of the procedures presented so far is that the presence of the impurity is simply assumed, and no description is obtained of how, when, or with what probability it migrates to the position it was assumed to have. To overcome this limitation, an AIMD study of the formation and growth of gold chains with a variety of impurities (H, C, O, S), without any assumption of their initial positions was performed (Anglada et al., 2007). One or two impurity atoms were introduced randomly in an amorphous column of 50 – 150 gold atoms. These amorphous solid columns were stretched during 4 – 18 ns until they broke. Hydrogen was always found to evaporate before formation of the monatomic chain took place. Carbon and oxygen were found in the final chains with low probability (~ 10 %), while sulphur was found participating in it with a high probability (~ 90 %). The mean distances between gold atoms bridged by C, O and S were 3.3, 3.4 and 5.0 Å, respectively, in good agreement with experiments.
\n\t\t\t\t
Inasmuch as this last study provides a level of accuracy and reliability superior to those mentioned before, the stretching rate is still much higher than those typically used in experiments, and the simulations last only a few nanoseconds, while experiments take place in the order of 0.001 – 1 second.
\n\t\t\t\t
The study of the effect of impurities on the structure and stability of gold nanowires is an ongoing investigation topic. Some of the most recent theoretical work can be found in (Jelínek et al., 2008;, Novaes et al., 2006, Zhang et al., 2008). Although gold is by far the most prominent element of interest in the formation of nanowires, some recent computational studies have also involved copper nanowires (Amorim et al., 2007, Amorim et al., 2008; Sato et al., 2006a).
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Single molecule nanowires
\n\t\t\t
\n\t\t\t\t
3.1. Experimental measurements
\n\t\t\t\t
Building a device in which a single molecule bridges two metallic electrodes is of major interest, since one could easily tailor the nanojunction electronic properties by changing the molecule or even only a substituent in the molecule. This opens an enormous range of possibilities in the field of molecular electronics.
Xu et. al. reported the first electromechanical measurement of a molecular junction (Xu et al., 2003a). The authors determined simultaneously the conductance and the force under mechanical stretching for the octanodithiol (ODT) and 4,4’-bipyridine (BYP) nanojunctions. The quantum conductance for BYP resulted 40 times larger than that of ODT, while the force quantum was 0.8 ± 0.2 nN, considerably smaller than the 1.5 ± 0.2 nN determined for ODT. This last value is the same as that required to break a Au – Au bond (Rubio-Bollinger et al., 2001). Thus, the authors concluded that the breakdown of the ODT nanojunction involves a Au – Au bond rupture, whereas in the case of BYP, the lower breaking force would indicate that a Au – N bond is breaking. These results are in agreement with the notion of the Au- S bond being stronger than the Au-N bond (Stolberg et al., 1990). In a subsequent study, Huang et. al. found that the behavior of the ODT nanojunction as a function of the stretching rate is essentially identical to that of a pure gold point contacts (Huang et al., 2007a).
\n\t\t\t\t
One useful experimental parameter to determine how strong is the molecule bonded to the metallic electrodes is the length that the junction formed by a single molecule can be stretched before it breaks. This allowed Kiguchi et. al. to establish the following order in binding energies for 1,4-disubstituted benzenes with Au and Pt electrodes: Au-NH2< Pt-NH2 ~ Au-S < Au-isoCN < Pt-isoCN ~ Pt-S (Kiguchi et al., 2006; Kiguchi et al., 2007; Kiguchi et al., 2008).
\n\t\t\t\t
The statistical analysis of the stretching length was also used to establish the following order in the sense of increasing binding strength: Au-COOH < Au-NH2< Au-S (Chen et al., 2006).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Computational simulations
\n\t\t\t\t
As mentioned above, a large proportion of the theoretical work on molecular nanowires involves the calculation of the conductance. Only a few of these have addressed some aspects of the thermodynamic stability of such nanocontacts.
\n\t\t\t\t
As it respects to the mechanical properties of a molecular nanojunction, one or the first ab-initio studies was performed by Krüger et. al. (Krüger et al., 2003). A thiomethyl radical bonded to a 5-atom planar cluster was used as a model for a typical Au – S contact. The junction was elongated, with geometry optimization at each step, obtaining an isomerization of the cluster into a linear chain which finally breaks at a Au – Au bond with a force of ~ 1.5 nN. In a Car-Parrinello molecular dynamics the same authors showed that when ethylthiol attached to a gold surface is pulled, this leads to the formation of a monoatomic gold nanowire, followed by breaking a Au – Au bond with a rupture force of about 1.2 nN (Krüger et al., 2002).
\n\t\t\t\t
In a different study, the stretching and breaking behavior of a benzene dithiol molecule sandwiched between two Au(111) slabs was studied using DFT calculations (Lorenz et al., 2006). It was found that breakage occurs through a dissociation of one of the Au – S bonds with a maximum force of 1.25 nN in the case when the molecule is directly attached to the surface, and of 1.9 nN when an adatom is placed between the sulphur and the gold slab.
4. Long term stability of metallic monatomic nanowires
\n\t\t\t
As can be gathered from the summary of the computational work performed so far with the aim of obtaining valuable information about the stability of NWs, the main challenge remains to develop models that would allow to use this valuable computational information to extrapolate to the experimental time scale, and taking thermal motion into account. In the following sections a simple kinetic model based on the Transition State Theory (TST) is presented. The utility of this model along with DFT calculations and an exploration of the energy landscape with a suitable algorithm will be illustrated for pure and contaminated gold monatomic NWs, as well as for single molecule contacts.
\n\t\t\t
\n\t\t\t\t
4.1. The minimum energy path and the transition state theory
\n\t\t\t\t
A common and important problem in theoretical chemistry and solid state physics is to identify the path with the lowest energy for the reorganization of a group of atoms from a stable configuration to another. This path is referred to as the Minimum Energy Path (MEP) and is often used to define a Reaction Coordinate (RC) for transitions of the type of chemical reactions, conformational changes in molecules or diffusion processes in solids. The maximum potential energy along the MEP is referred to as the saddle point, and provides the activation energy for the occurrence of the process. To calculate the transition rate constant is of central importance in the TST (Eyring, 1935; Vineyard, 1957), as will be discussed in section 4.2.
\n\t\t\t\t
Different methods have been developed to find the reaction path and saddle points (Michael & Michael, 2007). We focus our attention on methods that make use of two boundary conditions: the initial and final configurations for the transition. These settings should normally correspond to two local minima in the multidimensional potential energy surface. These minima may be obtained from different energy minimization techniques such as the simulated annealing, conjugate gradient, etc.
\n\t\t\t\t
These methods require only the calculation of first derivatives of the potential energy. They generate a chain of images or replicas of the system between the initial and final configurations. All the intermediate images are simultaneously optimized in some concerted way of the potential energy surface that should be as close as possible to guarantee the convergence to the MEP. The method called Nudged Elastic Band (NEB) (Henkelman et al., 2000; Henkelman & Jonsson, 2000; Mills & Jónsson, 1994) works in the scheme of these methods and its implementation is particularly simple. The NEB method has been successfully applied to a variety of problems, such as studies of diffusion on metal surfaces (Villarba & Jónsson, 1994), the dissociative adsorption of molecules on a surface (Mills & Jónsson, 1994), and the formation of a contact between a STM tip and a surface (Sørensen et al., 1996).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Kinetic model
\n\t\t\t\t
As it was shown by Krüger et. al. in the computational simulation studies described above (Krüger et al., 2002; Krüger et al., 2003), the creation of a Au nanowire takes place in a number of steps, involving an isomerization process. Our approach will only deal with the final stage, where the NW breaks but the model could be extended to a multi-step process. We will assume that, for a given elongation of the wire, it may exist either in a broken (b) or unbroken (u) state (see Fig. 4). The related system energies are denoted with E\n\t\t\t\t\tb and E\n\t\t\t\t\tu, respectively. When shifting from state u to b, the system will find an energy barrier (activation energy) that we will denote with ΔE\n\t\t\t\t\t‡. We will neglect the reverse process in all the treatment we give below. In principle, wire reformation could be easily introduced in the model. However, we must take into account that in order to surmount the activation energies involved, the system must gain a considerable amount of energy, which will be released in the downhill stage after crossing through the maximum. This excess energy will rapidly take the systems to other more compact configurations of the final state. To be more illustrative, immediately after the rupture the wire (state b) will find itself in a situation where the Au atoms are in a very low coordination, so that they will stabilize by merging to
\n\t\t\t\t
Figure 4.
Scheme of the different stages of the rupture of a Au NW. The states labelled as u, b and # correspond to the unbroken, broken and activated states, respectively. The state labelled as c indicates a situation where the broken wire has evolved towards a more compact state, in which the pieces of the broken NW are attached to the bulky pieces of the junction. Although the present figure is meant with illustrative purposes, the configurations and energies were obtained from calculations using the modified embedded atom method potentials (Baskes et al., 1989) and the nudged elastic method (\n\t\t\t\t\t\t\t\tHenkelman et al., 2000\n\t\t\t\t\t\t\t; \n\t\t\t\t\t\t\t\tHenkelman & Jonsson, 2000\n\t\t\t\t\t\t\t). Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t\t
a bulky piece of metal of one of the tips making the junction (state c). These qualitative assessments are based on semiempirical calculations\n\t\t\t\t\t\t
P. Vélez, S. A. Dassie, E. P. M. Leiva unpublished results.
\n\t\t\t\t\t.
\n\t\t\t\t
Following the TST, we have for the forward process (wire breaking) the frequency ν\n\t\t\t\t\tf given by Eq. 2.
where k\n\t\t\t\t\tB is Boltzmann’s constant, T the absolute temperature, ν\n\t\t\t\t\tu is a factor showing a weak dependence on temperature that represents an average oscillation frequency and ΔE\n\t\t\t\t\t‡ is calculated as E\n\t\t\t\t\t# - E\n\t\t\t\t\tu. Since ΔE\n\t\t\t\t\t‡ and ν\n\t\t\t\t\tu are in principle functions of the wire elongation, this will also be the case of ν\n\t\t\t\t\tf. Typical values of ν\n\t\t\t\t\tu are 3.5 – 7.0 x 1012 Hz (Bürki et al., 2005; Todorov et al., 2001). We have found that the assumption of constant (elongation independent) values in this range leads essentially to the same qualitative and quantitative predictions we show below. However, in order to get a parameter free description of the problem, it would be desirable to get not only ΔE\n\t\t\t\t\t‡ but also ν\n\t\t\t\t\tu from first-principles calculations. Sánchez-Portal et al. (Sánchez-Portal et al., 1999) have calculated the transversal and longitudinal phonon frequencies of a Au NW by means of the frozen phonon method at different wire lengths. In order to get an estimation of ν\n\t\t\t\t\tu for our problem, we have parameterized the results of these authors for the transversal mode as a function of the wire elongation and introduced it in our equations for ν\n\t\t\t\t\tu (Δz).
\n\t\t\t\t
Let us now consider a differential elongation of the wire dΔz performed in a period of time dt. The number of crossings from state u to state b over the barrier in dt will then be given by Eq. 3.
\n\t\t\t\t\tdn being the average number of times that the system moves from the unbroken to the broken state in the time dt. If we want to calculate the number of possible crossings in a finite period of time we integrate between 0 and t, which is given Eq. 4.
Note that in the present formulation no assumption has been made on how the wire is elongated. We turn now to consider two different possibilities:
\n\t\t\t\t
\n\t\t\t\t\tStatic rupture of the nanowire: In this case, rupture of the NW is studied at a constant elongation Δz. Under these conditions, the argument of the integral in Eq. 5 becomes independent of time and the breaking time can be straightforwardly obtained by solving Eq. 6, given below.
\n\t\t\t\t\tRupture of the nanowire at a constant elongation rate: If we assume that the NW is stretched at a constant rate, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, then we have Eq. 7, where Δz\n\t\t\t\t\t0 is the elongation at t=0, Δz\n\t\t\t\t\t* is the breaking elongation for the NW and we have written the activation energy as ΔE\n\t\t\t\t\t‡(Δz) to emphasize the dependence of the quantity on the elongation. ν\n\t\t\t\t\tu was also considered to be elongation dependent and calculated as pointed out above. However, the dependence of the predictions on this parameter is rather weak. Once the dependence of ΔE\n\t\t\t\t\t‡(Δz) on Δz is given, Eq. 7 can be solved numerically to get the dependence of Δz\n\t\t\t\t\t* on the elongation rate ν\n\t\t\t\t\te.
In order to illustrate the method, we consider a system consisting of a Au nanowire made of a supercell containing 4 atoms which are periodically repeated in space (Au4 NW). Fig. 5 shows a scheme of the unit cell employed to simulate the Au4 NW considered here. We used 4 atoms because the elongation distances at which a NW of this size breaks are in the range between 0.11 to 0.14 nm, which is the value that Huang et al. (Huang et al., 2007a) have found experimentally (see Fig. 9a below). Although this is a rather small system, the rupture of the wire has been found to be the displacement of one of atoms perpendicular to the wire axis (Ke et al., 2007), so that the interaction of the breaking bond with the rest of the system should be minimal. Atom 1 is fixed and the length of the supercell is stretched. For a given stretching of the NW, the energy of the system can be minimized with respect to all the atomic coordinates. Let us denote with E\n\t\t\t\tmin (Δz) the minimum energy for a given Δz = L – L\n\t\t\t\t0, where L\n\t\t\t\t0 is the chain length at equilibrium for each system and L is the total chain length; at some Δz, say Δz\n\t\t\t\tmin, E\n\t\t\t\tmin will present a minimum, that we denote with E\n\t\t\t\tmin (Δz). In the following discussion, we refer all the stretching lengths to Δz\n\t\t\t\tmin and all the energies to E\n\t\t\t\tmin (Δz).
\n\t\t\t
While the unbroken state is clearly defined, some uncertainty remains concerning the broken one. With this purpose, ab initio molecular dynamics simulations were performed near the point where the NW breaks, finding structures which are very similar to that proposed below in the broken state of Fig. 7, which was obtained by minimizing the energy of the systems, as were the remaining configurations. It is interesting to point out that the broken configuration is the same as one of the most stable Au4 clusters reported in (Bonacic-Koutecky et al., 2002).
\n\t\t\t
Figure 5.
Schematic representation of the unit cell employed in the present calculations. L is the total chain length and \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t4\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t\t¯\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tAu-Au\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t is the average Au-Au separation distance. Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t
This configuration was then adopted to obtain the broken state for different elongations. This was achieved by compressing the system to a cell size corresponding to the desired length L, and then performing a conjugate gradient minimization to obtain the broken state for each system. The minimum energy path between the unbroken and broken states at each Δz, was then obtained by means of the NEB algorithm.
\n\t\t\t
Curves for the energy of the unbroken state E\n\t\t\t\tu, the broken state E\n\t\t\t\tb, and the activated state E\n\t\t\t\t# as a function of the wire elongation are shown in Fig. 6a. The energy curves of the broken and unbroken state meet for an elongation of Δz\n\t\t\t\tu-b = 0.1565 nm. At this point the activation energies for the backward and forward reactions are the same and they are equal to 0.33 eV.
\n\t\t\t
Figure 6.
System energy and force curves upon system elongation for the Au4 nanowire. a) Energy of the unbroken state, E\n\t\t\t\t\t\tu, energy of the broken state, E\n\t\t\t\t\t\tb, and energy of the activated state, E\n\t\t\t\t\t\t#, as a function of the stretching of the NW, Δz. In all cases the energy of the system is referred to the minimum value that the system takes for the set of Δz considered. The activation energy for NW rupture is ΔE\n\t\t\t\t\t\t‡ = E\n\t\t\t\t\t\t# - E\n\t\t\t\t\t\tu. b) Force calculated according to Eq. 8 as a function of Δz. Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t
This would yield a switching frequency between the broken and unbroken state of the order of 106 Hz at room temperature, going down to the order of 1 Hz at 135 K. However, as we stated previously, after the bond is broken the system will immediately rearrange to other more stable configuration so that the forward reaction can be considered as irreversible under the usual stretching conditions. On the other hand, the energies of the unbroken and activated state meet at an elongation Δz\n\t\t\t\tu-# = 0.1995 nm. This represents a non-activated rupture process for the NW, and thus the Au – Au average distance at this point (ca. 2.88 Å) represents an absolute limit for wire stability.
\n\t\t\t
\n\t\t\t\tFig. 6b shows the force of the system, calculated as the component of the force applied on the NW at each step from Eq. 8.
In Fig. 7 we can observe curves for the energies of the system between broken and unbroken states at some sample elongations. From these curves it can be appreciated that the transition state is shifted towards the broken state. The configurations of the system at the broken, unbroken, and activated state are also shown. It is remarkable that the structure of the broken state is similar to the Au fragment attached to an ethylthiolate molecule, as it was found in an AIMD simulation (Krüger et al., 2002).
\n\t\t\t
Figure 7.
Energy of the system at the reaction path between broken and unbroken states at some sample elongations. The energy is in all cases referred to the unbroken state. The configurations of the system at the broken, unbroken, and activated states are depicted within each frame. Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t
Static rupture of the nanowire: A logarithmic plot for the static rupture of the NW calculated according to Eq. 6 is shown in Fig. 8. The lowest stretching rates employed in the experiments allow the rupture of NWs in times of the order of 0.1 s. Fig. 8 shows that in this order of times the wires should break at distances close to 0.105 nm. This is very close to the experimental value of 0.1 nm (Huang et al., 2007a) obtained at the lowest stretching rates. Thus, the present results also support the general idea that long Au – Au distances such as those found in the experiments of (Legoas et al., 2002; Ohnishi et al., 1998; Rodrigues & Ugarte, 2001a; Rodrigues & Ugarte, 2001b) at room temperature cannot occur for pure Au NWs. On the other hand, at 150 K and below, pure Au NWs can be considerably stretched beyond that point.
\n\t\t\t
Figure 8.
Decimal logarithm of the lifetime τ* of a Au4 nanowire at different elongations calculated according to Eq. 6 for different temperatures. The dotted line denotes a constant lifetime of 0.1 s. Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t
Figure 9.
Dynamic rupture of a Au4 nanowire: a) Breaking distance as a function of the logarithm of the elongation rate νe. The full line shows the calculations according to the present model and the squares are data for gold point contacts taken from (Huang et al., 2007a). The segments show the width of the distribution reported there. No fitting parameters were considered. b) Logarithm of the lifetime of the wire, τ*, as a function of the decimal logarithm of the elongation rate, νe. The full line shows the calculations according to the present model and the squares are experimental data for the rupture of the Au – ODT taken from (Huang et al., 2007a). The segments show the width of the distribution reported there. No fitting parameters were considered. Reprinted from Vélez, P.; Dassie, S. A.; Leiva, E. P. M. Chem. Phys. Lett., Vol. 460, No.1-3, 261-265, 2008 with permission from Elsevier.
\n\t\t\t
Rupture of the nanowire at a constant elongation rate: The dynamic rupture of a Au4 nanowire was studied according to Eq. 7. Fig. 9a shows the breaking distance as a function of ln (νe) for elongation rates between e-1 and e6 in comparison with the experimental date taken from Huang et al. (Huang et al., 2007a). It can be observed that the calculated results resemble the experimental trend in the general features.
\n\t\t\t
A further point that can be analyzed through the present calculations is the lifetime of the wires as a function of the elongation rates. These results are given in Fig. 9b. There is no experimental data available for a straightforward comparison with our calculations. However, AIMD simulations (Krüger et al., 2002), and considerations based on experiments (Huang et al., 2006; Huang et al., 2007a; Li et al., 2006a) indicate that the rupture of a nanocontact made of an alkanethiol and Au contacts should break at a Au – Au bond, so that comparison between the present results may be made with the experiment of Huang et al. (Huang et al., 2007a), who have studied the rupture of single molecule junctions involving Au contacts and ODT. The experimental data of Huang et al. is included in Fig. 9b, where it is found that the calculated lifetimes closer resemble those from the experiment; specially taking into account that no fitting attempt was made seeking for agreement.
\n\t\t\t
\n\t\t\t\t
4.2. Results for contaminated metallic nanowires
\n\t\t\t\t
\n\t\t\t\t\tFig. 10 shows a scheme of the unit cell employed to simulate the pure (Au-p) and contaminated Au NWs considered here. The light weight elements taken into account as contaminants are a H atom (Au-H) and a C atom (Au-C). The grey circles represent Au atoms, which remain fixed at their positions during the relaxation processes. The latter consists in a local energy minimization procedure by means of the conjugate gradient method or a search of a MEP by means of the NEB method.
\n\t\t\t\t
In the case of contaminated NWs the circle marked with an X represents the location the contaminant atom. This figure also shows the definition of the α1, α2 and α3 bond angles, determined by the atoms relevant for the analysis of the rupture of the NW.
\n\t\t\t\t
Figure 10.
Schematic representation of the unit cell employed in the present calculations: a) the rectangle indicates the extension of the unit cell. The grey circles represent the Au atoms fixed during the simulation. α1, α2 and α3 are the bond angles between the Au atoms, and αX is the angle defined by the atoms Au1 – X – Au2. L is the total chain length and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t¯\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tAu-Au is the average Au – Au separation distance. b) Front view of the pyramid of Au atoms shown in a).
\n\t\t\t\t
The length of the NW, L, is defined here as the distance between the atoms Au1 and Au5. We also define an average Au – Au separation, as\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t¯\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tAu-Au\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t4\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. Fig. 10b shows the front view of one of the pyramid of Au atoms, represented as grey circles in Fig. 10a. The present systems contains as a whole 18 atoms. It must be emphasized that in the case of calculations for pure Au NWs, the present systems deliver results that are close to those presented in the previous section for only four atoms in the unit cell. This indicates that the mechanical properties of the NW appear to be quite local, with a rather slight dependence from the bulky atomic environment.
\n\t\t\t\t
The atomic impurity was located between the atoms Au1 and Au2. This choice was made because in the literature we found first principles calculations, similar to those performed here, where the H and C were positioned at a similar place, as well as between the Au2 and Au3 atoms, with similar results (Novaes et al., 2003; Skorodumova et al., 2007). As it will be found below, the present results agree with those where the impurity was located at another sites of the chain.
\n\t\t\t\t
Structure and energetics of pure and contaminated Au NWs. For all the systems we shall refer to the equilibrium state as that where the derivative of the energy with respect to the elongation is equal to zero (ie. the external force, or stress, acting on the system is null). The rupture force will be considered to be the value of the force Fz where it presents a maximum at long elongations, being the force defined in Eq. 8 (da Silva et al., 2004; Jelínek et al., 2008; Novaes et al., 2003; Novaes et al., 2006; Rubio-Bollinger et al., 2001; Vélez et al., 2005; Vélez et al., 2008). Accordingly, we refer in the following to the “at rupture” state as that where the coordinates of the atoms are such that \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t (maximum force). With this definition, we are trying to address the status of the system just at the point where the NW is breaking by further force application. The structural information at the equilibrium and “at rupture” states of the NWs is summarized in Table 1 for the three systems types considered.
\n\t\t\t\t
Considering the length difference between the “at rupture” and equilibrium states of the different systems, it is found that the stretching lengths of the Au-p and Au-C systems are 1.9 Å and 1.6 Å respectively, while the elongation of the Au-H system is considerably larger (2.6 Å). This fact bears direct consequences for the force constant kz, as will be seen later on. Inspecting Table 1 it becomes clear that the equilibrium geometries of the contaminated
\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Equilibrium geometries
\n\t\t\t\t\t\t\t
„At rupture“ geometries
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Au-p
\n\t\t\t\t\t\t\t
Au-H
\n\t\t\t\t\t\t\t
Au-C
\n\t\t\t\t\t\t\t
Au-p
\n\t\t\t\t\t\t\t
Au-H
\n\t\t\t\t\t\t\t
Au-C
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Le or L* / Å
\n\t\t\t\t\t\t\t
9.80
\n\t\t\t\t\t\t\t
9.60
\n\t\t\t\t\t\t\t
10.8
\n\t\t\t\t\t\t\t
11.7
\n\t\t\t\t\t\t\t
12.2
\n\t\t\t\t\t\t\t
12.4
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
d (1,2) / Å
\n\t\t\t\t\t\t\t
2.63
\n\t\t\t\t\t\t\t
2.76
\n\t\t\t\t\t\t\t
3.78
\n\t\t\t\t\t\t\t
2.85
\n\t\t\t\t\t\t\t
3.58
\n\t\t\t\t\t\t\t
3.87
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
d (2,3) / Å
\n\t\t\t\t\t\t\t
2.64
\n\t\t\t\t\t\t\t
2.62
\n\t\t\t\t\t\t\t
2.59
\n\t\t\t\t\t\t\t
2.95
\n\t\t\t\t\t\t\t
2.75
\n\t\t\t\t\t\t\t
2.67
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
d (3,4) / Å
\n\t\t\t\t\t\t\t
2.63
\n\t\t\t\t\t\t\t
2.67
\n\t\t\t\t\t\t\t
2.66
\n\t\t\t\t\t\t\t
3.05
\n\t\t\t\t\t\t\t
3.16
\n\t\t\t\t\t\t\t
3.15
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
d (4,5) / Å
\n\t\t\t\t\t\t\t
2.63
\n\t\t\t\t\t\t\t
2.61
\n\t\t\t\t\t\t\t
2.62
\n\t\t\t\t\t\t\t
2.85
\n\t\t\t\t\t\t\t
2.71
\n\t\t\t\t\t\t\t
2.71
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
α1 / °
\n\t\t\t\t\t\t\t
139.5
\n\t\t\t\t\t\t\t
149.6
\n\t\t\t\t\t\t\t
161.8
\n\t\t\t\t\t\t\t
179.3
\n\t\t\t\t\t\t\t
178.6
\n\t\t\t\t\t\t\t
178.5
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
α2 / °
\n\t\t\t\t\t\t\t
125.2
\n\t\t\t\t\t\t\t
108.6
\n\t\t\t\t\t\t\t
116.5
\n\t\t\t\t\t\t\t
179.7
\n\t\t\t\t\t\t\t
177.0
\n\t\t\t\t\t\t\t
176.5
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
α3 / °
\n\t\t\t\t\t\t\t
139.7
\n\t\t\t\t\t\t\t
157.4
\n\t\t\t\t\t\t\t
136.0
\n\t\t\t\t\t\t\t
179.9
\n\t\t\t\t\t\t\t
178.5
\n\t\t\t\t\t\t\t
178.2
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
αX / °
\n\t\t\t\t\t\t\t
---
\n\t\t\t\t\t\t\t
102.5
\n\t\t\t\t\t\t\t
168.5
\n\t\t\t\t\t\t\t
---
\n\t\t\t\t\t\t\t
179.2
\n\t\t\t\t\t\t\t
179.5
\n\t\t\t\t\t\t
\n\t\t\t\t\t
Table 1.
Structural information of the pure Au (Au-p) and hydrogen (Au-H) or carbon contaminated (Au-C) NWs at the equilibrium and close to rupture situations. In the first row, Le is the equilibrium length of the NW, whereas L* corresponds to length just before breakage occurs. Refer to Fig. 11 for an illustration of each of the geometries analyzed. The d (1,2) bond distance and the αX bond angle of the impurity are in boldface.
\n\t\t\t\t
Figure 11.
a) Equilibrium geometries for the pure gold NW (Au-p) and contaminated with H (Au-H) and C (Au-C). b) Geometries just before rupture for stretched NWs. The arrows indicate the bond at which the NW breaks.
\n\t\t\t\t
systems are very different from each other. Close to equilibrium, the presence of the H atom changes only slightly the d (1,2) bond distance, while the carbon atom inserts itself almost completely in the middle of this bond. This fact can be appreciated in the characteristics of the equilibrium configuration (see αX bond angle and d (1,2) bond distance).
\n\t\t\t\t
At the situation of the rupture, all three systems present a linear configuration and the distance of the Au3 – Au4 bond where it occurs is very similar (~3.1 Å). The contaminated systems arrive to the point of rupture with large Au – Au distances at the Au1 – Au2 bond; 3.58 Å for the Au-H system and 3.87 Å for the Au-C system. These figures indicate that our results are in a very good agreement with the Au – Au separation distances found experimentally (Kizuka, 2008; Kondo & Takayanagi, 2000; Legoas et al., 2002; Ohnishi et al., 1998; Rodrigues et al., 2000; Yanson et al., 1998) and with the first-principles calculations from other research groups (Novaes et al., 2003; Skorodumova et al., 2007).
\n\t\t\t\t
Up to now, we have only explored the possibility of the incorporation of a single atomic impurity. In relation to this, it must be recognized that the extremely large Au – Au distances of 4 – 5 Å (Legoas et al., 2002), as well as consecutive distances of 3.5 – 4 Å (Kondo & Takayanagi, 2000; Ohnishi et al., 1998; Rodrigues & Ugarte, 2001a; Rodrigues et al., 2000) cannot be reproduced by our calculations. To tackle this point, more impurities should be considered, and probably other molecular species as proposed by other groups that performed first-principles calculations (Bahn et al., 2002; Galvão et al., 2004; Legoas et al., 2002; Novaes et al., 2003; Skorodumova & Simak, 2003; Skorodumova & Simak, 2004). However, the present approach is not devoted to predict all the Au – Au distances observed, but to understand the effect that an atomic impurity produces on a monatomic Au NW from energetic, geometrical, electronic and kinetic viewpoints.
\n\t\t\t\t
Analysis of the time-stability of pure and contaminated NWs. In the following the kinetic aspects of the rupture process for the Au-p, Au-H and Au-C systems are considered. Fig. 12a shows the energy curves for the unbroken (u), broken (b) and activated (#) states as a function of the elongation (Δz) for Au-H. For Au-p the respective curves are similar to those shown in Fig. 6 for the 4-atom gold nanowire. The results obtained for Au-C have qualitatively the same features as those obtained for Au-p.
\n\t\t\t\t
Figure 12.
a) Energy values corresponding to the unbroken state Eu, broken state Eb and activated state E# of the system Au-H as a function of the elongation. b) Continuous curve: z component of the force acting on the system, Fz, calculated according to Eq. 8, as a function of Δz for Au-H. Broken line: Linear fit to Fz between zero and the maximum force. The maximum force Fz\n\t\t\t\t\t\t\tmax is indicated in normal typeset, while the force constant, kz (slope of the broken lines), is denoted in italics.
\n\t\t\t\t
In order to find candidate configurations for the broken (final in TST jargon) state at each elongation, molecular dynamics runs were performed at an elongation corresponding to the “at-rupture” configuration. This led to structures that looked like those illustrated for Au-H for the broken state configurations in Fig. 14 below.
\n\t\t\t\t
We will perform a more detailed discussion of the reaction path for the rupture of the NWs below. We first consider the behaviour of the forces along the stretching procedure, since they are closely related to the energy curves of the unbroken state. In fact, the energy curves for the unbroken states in Fig. 12a may be used to calculate the longitudinal force Fz acting on this system according to Eq. 8. In Fig. 6, it was found that the stability limit of a monoatomic Au NW is reached at a force of 1.45 nN, which is close to the experimental value of 1.5 ± 0.3 nN (Kizuka, 2008; Rubio et al., 1996; Rubio-Bollinger et al., 2001). Fig. 12b shows Fz for the Au-H as a function of the elongation Δz. The maximum force Fz\n\t\t\t\t\tmax is also reported there. Table 2 compiles relevant information for this and the other systems under consideration in this study (Au-p, Au-C). For the Au-p system, the maximum force is 1.57 nN, also in agreement with the experiments and other theoretical values (da Silva et al., 2004; Rubio-Bollinger et al., 2001; Vélez et al., 2008). In the case of the contaminated systems, this value is somewhat lower (1.19 nN for Au-H and 1.14 nN for Au-C). First principles results from literature show the same trend (Novaes et al., 2003; Skorodumova et al., 2007).
\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Fzmax, nN
\n\t\t\t\t\t\t\t
kz, N/m
\n\t\t\t\t\t\t\t
ΔE‡(Δz), eV(Å)
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Au-p
\n\t\t\t\t\t\t\t
1.57
\n\t\t\t\t\t\t\t
9.1
\n\t\t\t\t\t\t\t
0.99 (0.0)
\n\t\t\t\t\t\t\t
0.22 (1.8)
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Au-H
\n\t\t\t\t\t\t\t
1.19
\n\t\t\t\t\t\t\t
5.0
\n\t\t\t\t\t\t\t
1.33 (0.0)
\n\t\t\t\t\t\t\t
1.02 (2.7)
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Au-C
\n\t\t\t\t\t\t\t
1.14
\n\t\t\t\t\t\t\t
8.2
\n\t\t\t\t\t\t\t
1.12 (0.0)
\n\t\t\t\t\t\t\t
1.10 (1.8)
\n\t\t\t\t\t\t
\n\t\t\t\t\t
Table 2.
Maximum tensile force sustained before breakage (Fz\n\t\t\t\t\t\t\tmax, nN), force constant (kz, N/m) and activation energy (ΔE‡, eV) for the minimum energy path at the equilibrium and “at-rupture” geometries, for the systems Au-p, Au-H and Au-C. The activation energy for the rupture of the NW at each Δz is calculated as ΔE‡ = E# - Eu.
\n\t\t\t\t
In their studies on the mechanic properties of monatomic Au NWs, (Rubio-Bollinger et al., 2001) found that these chains are five times harder than the massive electrodes. They evaluated from the experimental results the slopes of the force curves in the last stage of the elastic deformation, before the rupture of the NW, from a set of 200 experiments. The average value of the force constant for an average chain length was 8 N/m. The present calculations show that the behaviour of the force curves of the Au-p, Au-H and Au-C systems is quite elastic, as can be inferred from the linear fit of Fz between zero and the maximum force, shown in Fig. 12b for Au-H as a broken line. In the elastic deformation region, the force Fz may be written as:
where kz is the force constant of the system. The value of kz found from the present calculations for Au-p, 9.1 N/m, is in perfect agreement with the experimental value reported in references (Rubio-Bollinger et al., 2001; Xu et al., 2003a). The contaminated systems present a remarkably different behaviour when compared between each other. The Au-C system has kz =8.1 N/m, a very similar value to that of Au-p, but 1.6 larger than the value of this property for Au-H (kz=5.0 N/m). These are interesting predictions, since up to date no measurements have been performed comparing pure and contaminated systems. A suitable fitting of the experimental data of this property could help to shed light on the type of impurity present when a NW exhibits large Au – Au separation distances.
\n\t\t\t\t
\n\t\t\t\t\tFig. 13 shows the energy of the system, E, as a function of the normalized reaction coordinate (NRC) for the system Au-H for some sample elongations. The corresponding configurations are presented in Fig. 14.
\n\t\t\t\t
\n\t\t\t\t\tFig. 13 shows that the Au-H system presents an energy curve along the minimum energy path that is more complex than those for Au-p and Au-C (not shown here). The distinctive feature for of Au-H is that at short elongations the energy curves present a minimum. This behavior is related to the incorporation of the hydrogen atom into the wire that takes place as the elongation proceeds. However, for the Au-C system, the C atom is incorporated into the wire since the beginning of the elongation. The minimum in the minimum energy path profile of the Au-H system disappears gradually with increasing elongation of the NW, remaining a shoulder at long elongations (see Fig. 13b).
\n\t\t\t\t
The images of monatomic Au chains showing long separation distances (3.6 – 4 Å) were obtained by TEM and HRTEM using electron beam lithography for the fabrication of the NWs (Kizuka, 2008; Kondo & Takayanagi, 2000; Legoas et al., 2002; Ohnishi et al., 1998; Rodrigues & Ugarte, 2001a; Rodrigues et al., 2000). Under these experimental conditions, the elongation rate is not controlled and in principle not known. However, an estimation can be made looking at the pictures provided in some of these publications, as the one illustrated in
\n\t\t\t\t
Figure 13.
System energy, E, as a function of the normalized reaction coordinate (NRC) along the reaction path between unbroken (u) and broken (b) states for different elongations Δz of the NW. a), b) and c) correspond to the Au-p system, d), e) and f) to the Au-H system and g), h) and i) to the Au-C system. In all cases the energy of the system is referred to the energy of the unbroken state (u). The activation energies ΔE‡ and the corresponding elongations are given for each case.
\n\t\t\t\t
Figure 14.
Configurations of the unbroken (u), activated (#) and broken (b) states of the NW for each of the elongations Δz whose energy curves along the reaction path are shown in Fig. 13 for Au-H.
\n\t\t\t\t
\n\t\t\t\t\tFig. 2 (Rodrigues & Ugarte, 2001a), and is found to be very slow, of the order of 0.1 nm/s in the final stage, allowing for a complete equilibration of the system at the atomic scale all along the elongation process. Thus, the rupture of the NWs in these experiments takes place in the timescale of a second, so that it can be inferred that the activation barriers must be quite high. In the static limit, the lifetime τ* of a NW can be estimated from Eq 6. In this equation, we have used νu(Δz) = νu = 3 x 1012 Hz and T = 300 K. Similar values were used in references (Bürki et al., 2005; Rubio et al., 1996; Todorov et al., 2001; Vélez et al., 2008). Fig. 15 shows a plot of the decimal logarithm of the lifetime τ* of the NW, as a function of the elongation force Fz for the Au-p, Au-H and Au-C systems.
\n\t\t\t\t
It becomes evident from this figure that the contaminated NWs live considerably longer than Au-p NWs for all elongations. It is found that pure Au NW become unstable in the experimental time scale from an elongation which corresponds to dAu-Au = 2.74 Å / atom on. In fact, for larger Fz (dAu-Au), pure NWs should live less than 0.1 s. The remarkable behaviour of the Au-H system is due to the shape of the activation energy, discussed above in Fig. 13. Fig. 15 also supports the idea that impurities are responsible for the large Au – Au distances observed experimentally. These impurities, as stated above, modify geometrically the structure of the NWs, giving place to the occurrence of the anomalous large Au – Au distances. Furthermore, they modify the NW chemically by charge transfer and rearrangement, which in turn changes the potential energy surfaces so that for each elongation the contaminated NWs present higher activation barriers for the rupture than the pure NWs. Fig. 15 makes also plausible that stretched (contaminated) NWs may have lifetimes of the order of the second, sometimes even of the order of minutes (Ohnishi et al., 1998).
\n\t\t\t
\n\t\t
\n\t\t
Figure 15.
Decimal logarithm of the lifetimes of the NWs corresponding to the systems Au-p (), Au-H (---) and Au-C (••••) as a function of the elongation force Fz, calculated according to Eq. 6.
\n\t\t
\n\t\t\t
5. Long term stability of molecular nanowires. Effect of substituents on the Au – N nanojunction.
\n\t\t\t
The formalism proposed in the previous sections could, in principle, be applied to study the mechanical and kinetic stability of single molecule nanowires. To the best of our knowledge, no such study has been yet attempted. One possible approximation to the long term stability problem is to estimate the kinetic barrier for the rupture of the nanowire by means of the binding energy of the system (Eb).
\n\t\t\t
The mechanical properties of ortho substituted pyrazines bonded to planar gold clusters of 6 and 7 atoms have been studied using the same methodology described for the monatomic metallic nanowires. In Table 3, we summarize the values obtained for the binding energies (Eb) and rupture forces (Frup) for the substituted pyrazines bonded to the 6-atom (Au6) and the 7-atom (Au6+1) gold clusters.
\n\t\t\t
The systems studied are illustrated in Fig. 16. These systems are taken as a model for the last stage in the stretching of a Au – bipyridine nanojunction, and allow an assessment of the effect of a substituent in the molecule on the stability of the nanojunction.
\n\t\t\t
The Eb values summarized in Table 3 were obtained as the energy difference between the minimum energy structure for each system and the final broken structure after stretching the nanojunction. In all cases the rupture occurred at the Au – N bond. Frup values were obtained using Eq. 8.
\n\t\t\t
Figure 16.
Illustration of the models adopted to study the effect of ortho substituents on the mechanical stability of a Au – N nanojunction. a) Au6 + X-pyrazine. b) Au6+1 + X-pyrizane.
\n\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
Au6 + X-pyrazine
\n\t\t\t\t\t\t
Au6+1 + X-pyrazine
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
X
\n\t\t\t\t\t\t
σ
\n\t\t\t\t\t\t
Eb, eV
\n\t\t\t\t\t\t
Frup, nN
\n\t\t\t\t\t\t
Eb, eV
\n\t\t\t\t\t\t
Frup, nN
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
NH2
\n\t\t\t\t\t\t
-0.66
\n\t\t\t\t\t\t
0.795
\n\t\t\t\t\t\t
1.16
\n\t\t\t\t\t\t
0.913
\n\t\t\t\t\t\t
1.26
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
CH3
\n\t\t\t\t\t\t
-0.17
\n\t\t\t\t\t\t
0.731
\n\t\t\t\t\t\t
1.07
\n\t\t\t\t\t\t
0.828
\n\t\t\t\t\t\t
1.13
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
H
\n\t\t\t\t\t\t
0.00
\n\t\t\t\t\t\t
0.671
\n\t\t\t\t\t\t
1.00
\n\t\t\t\t\t\t
0.778
\n\t\t\t\t\t\t
1.09
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Cl
\n\t\t\t\t\t\t
0.23
\n\t\t\t\t\t\t
0.596
\n\t\t\t\t\t\t
0.82
\n\t\t\t\t\t\t
0.689
\n\t\t\t\t\t\t
0.98
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
CONH2
\n\t\t\t\t\t\t
0.36
\n\t\t\t\t\t\t
0.549
\n\t\t\t\t\t\t
0.77
\n\t\t\t\t\t\t
---
\n\t\t\t\t\t\t
---
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
CN
\n\t\t\t\t\t\t
0.66
\n\t\t\t\t\t\t
0.497
\n\t\t\t\t\t\t
0.77
\n\t\t\t\t\t\t
0.605
\n\t\t\t\t\t\t
0.88
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
NO2
\n\t\t\t\t\t\t
0.78
\n\t\t\t\t\t\t
0.409
\n\t\t\t\t\t\t
0.48
\n\t\t\t\t\t\t
0.560
\n\t\t\t\t\t\t
0.73
\n\t\t\t\t\t
\n\t\t\t\t
Table 3.
Hammett’s σ (values taken from (Hansch et al., 1991)), binding energies (Eb) and rupture forces (Frup) obtained from stretching experiments for Au6 + X-pyrazines and Au6+1 X-pyrazines.
\n\t\t\t
Using the Eb values as a lower limit for the activation energy to break the nanojunction, and using Eq. 6 with νu = 1012 Hz (a typical value for these systems as shown above), time constant values, τ*, can be calculated for the different nanojunctions. The values for τ so obtained represent a lower limit for the lifetime of the nanojunctions. Interestingly, there is a an excellent correlation between the logarithmic lifetime and a pure empirical parameter describing the electronic nature of the substituent such as Hammett’s σ (Hansch et al., 1991), as illustrated in Fig. 17a.
\n\t\t\t
\n\t\t\t\tFig. 17b shows that a good correlation is also observed with respect to the calculated rupture force for the nanojunction. This is interesting since Frup values can be obtained experimentally.
\n\t\t\t
Note that the electronic properties of the substituent has a marked effect on the lifetime of the nanojunction, which ranges from 10-6 seconds for X = NO2 to about 103 seconds for NH2. On the other hand, only a slight effect of the substituent was found on the experimentally measured conductance of a structurally similar system (Venkataraman et al., 2007).
\n\t\t\t
When the molecule binds to a less coordinated gold atom, such as in Au6+1 – X-pyrazine systems, the strength of the nanojunction increases, as reflected by the higher values obtained for both Eb and Frup. This also causes an increase in the lifetime of the molecular junction, as illustrated in Fig. 17.
\n\t\t
\n\t\t
Figure 17.
Correlation between log τ, calculated as the lower limit for the nanojunction’s lifetime and a) Hammett’s σ and b) calculated rupture force (Frup). In both plots, open circles represent the Au6 + X-pyrazine systems, whereas filled triangles are for the Au6+1 – X-pyrazine systems.
\n\t\t
\n\t\t\t
6. Conclusions and perspectives
\n\t\t\t
A comprehensive revision of the most recent advances with respect to the experimental techniques and computational simulations focused on the stability and mechanical properties of monatomic metallic and single molecule nanowires is presented.
\n\t\t\t
We have established a simple model based on the Transition State Theory and using the Minimum Energy Path to study the long-term stability of nanowires in a time scale corresponding to that of the experimental observations. The utility of this model has been demonstrated for the quantitative evaluation of the effect of impurities in gold nanowires, as well as for a qualitative assessment of the effect exerted by a change in the electronic properties of a molecule in the temporal stability of a metal – molecule junction.
\n\t\t\t
Some of the future work within this topic includes the analysis of other systems, including different metals and / or other chemical linkers for molecular nanowires. It would also be of great interest to evaluate, if there is any, the correlation between the stability of the nanowire and its electronic properties, such as conductance.
\n\t\t
\n\t\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/8904.pdf",chapterXML:"https://mts.intechopen.com/source/xml/8904.xml",downloadPdfUrl:"/chapter/pdf-download/8904",previewPdfUrl:"/chapter/pdf-preview/8904",totalDownloads:2369,totalViews:198,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:17,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"February 1st 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/8904",risUrl:"/chapter/ris/8904",book:{id:"3154",slug:"electrodeposited-nanowires-and-their-applications"},signatures:"Martin E. Zoloff Michoff, Patricio Vélez, Sergio A. Dassie and Ezequiel P. M. Leiva",authors:[{id:"7474",title:"Prof.",name:"Ezequiel",middleName:null,surname:"Leiva",fullName:"Ezequiel Leiva",slug:"ezequiel-leiva",email:"eva@fcq.unc.edu.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Cordoba University",institutionURL:null,country:{name:"United States of America"}}},{id:"7475",title:"Dr.",name:"Martin",middleName:"Eduardo",surname:"Zoloff Michoff",fullName:"Martin Zoloff Michoff",slug:"martin-zoloff-michoff",email:"martinz@fcq.unc.edu.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Cordoba University",institutionURL:null,country:{name:"United States of America"}}},{id:"121000",title:"Prof.",name:"Patricio",middleName:null,surname:"Velez",fullName:"Patricio Velez",slug:"patricio-velez",email:"velez@neuro.fsu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"National University of Córdoba",institutionURL:null,country:{name:"Argentina"}}},{id:"121004",title:"Prof.",name:"Sergio Alberto",middleName:null,surname:"Dassie",fullName:"Sergio Alberto Dassie",slug:"sergio-alberto-dassie",email:"sdassie@fcq.unc.edu.ar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Structure and stability of pure and contaminated metallic monatomic nanowires",level:"1"},{id:"sec_2_2",title:"2.1. Experimental measurements",level:"2"},{id:"sec_3_2",title:"2.2. Computational simulations",level:"2"},{id:"sec_5",title:"3. Single molecule nanowires",level:"1"},{id:"sec_5_2",title:"3.1. Experimental measurements",level:"2"},{id:"sec_6_2",title:"3.2. Computational simulations",level:"2"},{id:"sec_8",title:"4. Long term stability of metallic monatomic nanowires",level:"1"},{id:"sec_8_2",title:"4.1. The minimum energy path and the transition state theory",level:"2"},{id:"sec_9_2",title:"4.2. Kinetic model",level:"2"},{id:"sec_11",title:"4.2, Results for pure metallic nanowires",level:"1"},{id:"sec_11_2",title:"4.2. Results for contaminated metallic nanowires",level:"2"},{id:"sec_13",title:"5. Long term stability of molecular nanowires. Effect of substituents on the Au – N nanojunction.",level:"1"},{id:"sec_14",title:"6. Conclusions and perspectives",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmorim\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Computer Simulations of Copper and Gold Nanowires and Single-wall Nanowires, J. Phys. Chem. C, 112\n\t\t\t\t\t39 15241-15246, 1932-7447\n\t\t\t\t\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmorim\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Short linear atomic chains in copper nanowires, Nanotechnology, 18\n\t\t\t\t\t14 145701, 0957-4484\n\t\t\t\t\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAnglada\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTorres\n\t\t\t\t\t\t\tJ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYndurain\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSoler\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Formation of Gold Nanowires with Impurities: A First-Principles Molecular Dynamics Simulation, Phys. Rev. Lett., 98\n\t\t\t\t\t9 096102-096104, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAuletta\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tde Jong\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMulder\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Veggel\n\t\t\t\t\t\t\tF. C. J. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuskens\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReinhoudt\n\t\t\t\t\t\t\tD. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZapotoczny\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchönherr\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVancso\n\t\t\t\t\t\t\tG. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuipers\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 β-Cyclodextrin Host−Guest Complexes Probed under Thermodynamic Equilibrium: Thermodynamics and AFM Force Spectroscopy, J. Am. Chem. Soc., 126\n\t\t\t\t\t5 1577-1584, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBahn\n\t\t\t\t\t\t\tS. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLopez\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNørskov\n\t\t\t\t\t\t\tJ. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Adsorption-induced restructuring of gold nanochains, Phys. Rev. B, 66\n\t\t\t\t\t8 081405 (1\n\t\t\t\t\t4 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBahn\n\t\t\t\t\t\t\tS. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Chain Formation of Metal Atoms, Phys. Rev. Lett., 87\n\t\t\t\t\t26 266101-1-266101-4, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBaskes\n\t\t\t\t\t\t\tM. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNelson\n\t\t\t\t\t\t\tJ. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWright\n\t\t\t\t\t\t\tA. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1989 Semiempirical modified embedded-atom potentials for silicon and germanium, Phys. Rev. B, 40\n\t\t\t\t\t9 6085-6100, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBatista\n\t\t\t\t\t\t\tR. J. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOrdejon\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChacham\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArtacho\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Resistive and rectifying effects of pulling gold atoms at thiol-gold nanocontacts, Phys. Rev. B, 75\n\t\t\t\t\t4 041402-041404, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeebe\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEngelkes\n\t\t\t\t\t\t\tV. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiller\n\t\t\t\t\t\t\tL. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFrisbie\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Contact Resistance in Metal-Molecule-Metal Junctions Based on Aliphatic SAMs: Effects of Surface Linker and Metal Work Function, J. Am. Chem. Soc., 124\n\t\t\t\t\t38 11268-11269, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBettini\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSato\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCoura\n\t\t\t\t\t\t\tP. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDantas\n\t\t\t\t\t\t\tS. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvão\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Experimental realization of suspended atomic chains composed of different atomic species, Nat Nano, 1\n\t\t\t\t\t3 182-185, 1748-3387\n\t\t\t\t\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBonacic-Koutecky\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurda\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMitric\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGe\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZampella\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFantucci\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Density functional study of structural and electronic properties of bimetallic silver--gold clusters: Comparison with pure gold and silver clusters, J. Chem. Phys., 117\n\t\t\t\t\t7 3120-3131, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBürki\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStafford\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStein\n\t\t\t\t\t\t\tD. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Theory of Metastability in Simple Metal Nanowires, Phys. Rev. Lett., 95\n\t\t\t\t\t9 090601, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHihath\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules, J. Am. Chem. Soc., 128\n\t\t\t\t\t49 15874-15881, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCui\n\t\t\t\t\t\t\tX. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPrimak\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZarate\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTomfohr\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSankey\n\t\t\t\t\t\t\tO. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoore\n\t\t\t\t\t\t\tA. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoore\n\t\t\t\t\t\t\tT. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGust\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarris\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLindsay\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Reproducible Measurement of Single-Molecule Conductivity, Science, 294\n\t\t\t\t\t5542 571-574, 0036-8075\n\t\t\t\t\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 How Do Gold Nanowires Break?, Phys. Rev. Lett., 87\n\t\t\t\t\t25 256102, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovaes\n\t\t\t\t\t\t\tF. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Theoretical study of the formation, evolution, and breaking of gold nanowires, Phys. Rev. B, 69\n\t\t\t\t\t11 115411 (1\n\t\t\t\t\t11 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDe Maria\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSpringborg\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Electronic structure and dimerization of a single monatomic gold wire, Chemical Physics Letters, 323\n\t\t\t\t\t3-4 , 293-299, 0009-2614\n\t\t\t\t\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDreher\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPauly\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHeurich\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCuevas\n\t\t\t\t\t\t\tJ. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScheer\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNielaba\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Structure and conductance histogram of atomic-sized Au contacts, Phys. Rev. B, 72\n\t\t\t\t\t7 075435-11, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvans\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRitchie\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Dynamic strength of molecular adhesion bonds, Biophysical Journal, 72\n\t\t\t\t\t4 1541-1555, 0006-3495\n\t\t\t\t\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvans\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Introductory Lecture Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy, Faraday Discussions, 111 1-16, 1364-5498\n\t\t\t\t\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvans\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Probing the Relation Between Force-Lifetime and Chemistry in Single Molecular Bonds, Annual Review of Biophysics and Biomolecular Structure, 30\n\t\t\t\t\t1 105-128, 1056-8700\n\t\t\t\t\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEyring\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1935 The Activated Complex in Chemical Reactions, J. Chem. Phys., 3\n\t\t\t\t\t2 107-115, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvão\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLegoas\n\t\t\t\t\t\t\tS. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 The role of carbon contamination in metallic nanowires, Materials Research, 7 339-342, 1516-1439\n\t\t\t\t\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaiss\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartín\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeary\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZalinge\n\t\t\t\t\t\t\tH. v.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggins\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBouffier\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNichols\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Impact of Junction Formation Method and Surface Roughness on Single Molecule Conductance, The Journal of Physical Chemistry C, 113\n\t\t\t\t\t14 5823-5833, 1932-7447\n\t\t\t\t\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaiss\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNichols\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Zalinge\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggins\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBethel\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchiffrin\n\t\t\t\t\t\t\tD. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Measurement of single molecule conductivity using the spontaneous formation of molecular wires, Phys. Chem. Chem. Phys., 6 4330-4337, 1463-9076\n\t\t\t\t\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaiss\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrace\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBatsanov\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchiffrin\n\t\t\t\t\t\t\tD. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggins\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBryce\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLambert\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNichols\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Precision control of single-molecule electrical junctions, Nature Materials, 5\n\t\t\t\t\t12 995-1002, 1476-1122\n\t\t\t\t\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaiss\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJitchati\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrace\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartín\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBatsanov\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggins\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBryce\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLambert\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJensen\n\t\t\t\t\t\t\tP. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNichols\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges, Journal of Physics: Condensed Matter, 20\n\t\t\t\t\t37 374119 (9pp), 0953-8984\n\t\t\t\t\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHäkkinen\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarnett\n\t\t\t\t\t\t\tR. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScherbakov\n\t\t\t\t\t\t\tA. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLandman\n\t\t\t\t\t\t\tU.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Nanowire Gold Chains: Formation Mechanisms and Conductance, J. Phys. Chem. B, 104\n\t\t\t\t\t39 9063-9066, 1520-6106\n\t\t\t\t\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHansch\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeo\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTaft\n\t\t\t\t\t\t\tR. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1991 A Survey of Hammett Substituent Constants and Resonance and Field Parameters, Chem. Rev., 91\n\t\t\t\t\t2 165-195, 0009-2665\n\t\t\t\t\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tH. X.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShu\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tC. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Adsorbate effect on the mechanical stability of atomically thin metallic wires, Journal of Electroanalytical Chemistry, 522\n\t\t\t\t\t1 26-32, 0022-0728\n\t\t\t\t\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHenkelman\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJonsson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113\n\t\t\t\t\t22 9978-9985, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHenkelman\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUberuaga\n\t\t\t\t\t\t\tB. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJonsson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113\n\t\t\t\t\t22 9901-9904, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHobi\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovaes\n\t\t\t\t\t\t\tF. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Comment on "Contaminants in Suspended Gold Chains: An Ab Initio Molecular Dynamics Study", Phys. Rev. Lett., 95\n\t\t\t\t\t16 169601 (1 , 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHobi\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJr \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Temperature and Quantum Effects in the Stability of Pure and Doped Gold Nanowires, Phys. Rev. Lett., 100\n\t\t\t\t\t5 056104 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHou\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNing\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShen\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXue\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Influences of the molecule-electrode interface structure on the conducting characteristics of the gold-4,4 bipyridine-gold molecular junction, Chem. Phys., 327\n\t\t\t\t\t1 1-9, 0301-0104\n\t\t\t\t\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHou\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNing\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHan\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShen\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXue\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 First-principles calculation of the conductance of a single 4,4 bipyridine molecule, Nanotechnology, 16\n\t\t\t\t\t2 239-244, 0957-4484\n\t\t\t\t\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tZ. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBennett\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007a Single Molecule Junctions Formed via Au-Thiol Contact: Stability and Breakdown Mechanism, J. Am. Chem. Soc., 129\n\t\t\t\t\t43 13225-13231, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tZ. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB. Q.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tY. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVentra\n\t\t\t\t\t\t\tM. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Measurement of Current-Induced Local Heating in a Single Molecule Junction, Nano Lett., 6\n\t\t\t\t\t6 1240-1244, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tD’agosta\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBennett\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDi Ventra\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007b Local ionic and electron heating in single-molecule junctions, Nature Nanotechnology, 2\n\t\t\t\t\t11 698-703, 1748-3387\n\t\t\t\t\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKlare\n\t\t\t\t\t\t\tJ. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWhalley\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Amine-linked single-molecule circuits: systematic trends across molecular families, Journal of Physics: Condensed Matter, 20\n\t\t\t\t\t37 374115, 0953-8984\n\t\t\t\t\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJelínek\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPérez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOrtega\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFlores\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Ab initio study of evolution of mechanical and transport properties of clean and contaminated Au nanowires along the deformation path, Phys. Rev. B, 77\n\t\t\t\t\t11 115447 (1\n\t\t\t\t\t12 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKamenetska\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKoentopp\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWhalley\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tY. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Formation and Evolution of Single-Molecule Junctions, Phys. Rev. Lett., 102\n\t\t\t\t\t12 126803-126804, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKe\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKotani\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Schilfgaarde\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBennett\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Breakdown of a gold nanowire between electrodes, Nanotechnology, 18\n\t\t\t\t\t42 424002, 0957-4484\n\t\t\t\t\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKiguchi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiura\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHara\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSawamura\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurakoshi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes, Appl. Phys. Lett., 89\n\t\t\t\t\t21 213104-3, 0003-6951\n\t\t\t\t\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKiguchi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiura\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHara\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSawamura\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurakoshi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes, Appl. Phys. Lett., 91\n\t\t\t\t\t5 053110-053113, 0003-6951\n\t\t\t\t\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKiguchi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiura\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakahashi\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHara\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSawamura\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurakoshi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Conductance of Single 1,4-Benzenediamine Molecule Bridging between Au and Pt Electrodes, J. Phys. Chem. C, 112\n\t\t\t\t\t35 13349-13352, 1932-7447\n\t\t\t\t\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKiguchi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurakoshi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Fabrication of stable Pd nanowire assisted by hydrogen in solution, Appl. Phys. Lett., 88\n\t\t\t\t\t25 253112-253113, 0003-6951\n\t\t\t\t\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tB. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeebe\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhu\n\t\t\t\t\t\t\tX. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFrisbie\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006a Correlation between HOMO Alignment and Contact Resistance in Molecular Junctions: Aromatic Thiols versus Aromatic Isocyanides, J. Am. Chem. Soc., 128\n\t\t\t\t\t15 4970-4971, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B49",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tY. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTahir-Kheli\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchultz\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoddard\n\t\t\t\t\t\t\tW. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tI. I. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006b First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices, Phys. Rev. B, 73\n\t\t\t\t\t23 235419-10, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B50",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKizuka\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width, Phys. Rev. B, 77\n\t\t\t\t\t15 155401 (1\n\t\t\t\t\t11 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B51",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKoizumi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOshima\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKondo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Quantitative high-resolution microscopy on a suspended chain of gold atoms, Ultramicroscopy, 88\n\t\t\t\t\t1 17-24, 0304-3991\n\t\t\t\t\n\t\t\t'},{id:"B52",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKondo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Gold Nanobridge Stabilized by Surface Structure, Phys. Rev. Lett., 79\n\t\t\t\t\t18 3455, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B53",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKondo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Synthesis and Characterization of Helical Multi-Shell Gold Nanowires, Science, 289\n\t\t\t\t\t5479 606-608, 0036-8075\n\t\t\t\t\n\t\t\t'},{id:"B54",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrüger\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFuchs\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRousseau\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarx\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParrinello\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Pulling Monatomic Gold Wires with Single Molecules: An Ab Initio Simulation, Phys. Rev. Lett., 89\n\t\t\t\t\t18 186402, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B55",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrüger\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRousseau\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFuchs\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarx\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Towards "Mechanochemistry": Mechanically Induced Isomerizations of Thiolate-Gold Clusters, Angew. Chem. Int. Ed. Eng., 42\n\t\t\t\t\t20 2251-2253, 1433-7851\n\t\t\t\t\n\t\t\t'},{id:"B56",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLegoas\n\t\t\t\t\t\t\tS. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvao\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains, Phys. Rev. Lett., 88\n\t\t\t\t\t7 076105 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B57",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLegoas\n\t\t\t\t\t\t\tS. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvão\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Contaminants in Suspended Gold Chains: An Ab Initio Molecular Dynamics Study, Phys. Rev. Lett., 93\n\t\t\t\t\t21 216103 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B58",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tet.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tal\n\t\t\t\t\t\t\tC. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Fabrication of stable metallic nanowires with quantized conductance, Nanotechnology, 10\n\t\t\t\t\t2 221, 0957-4484\n\t\t\t\t\n\t\t\t'},{id:"B59",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tC. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution, Appl. Phys. Lett., 72\n\t\t\t\t\t8 894-896, 0003-6951\n\t\t\t\t\n\t\t\t'},{id:"B60",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPobelov\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWandlowski\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBagrets\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArnold\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvers\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007b Charge Transport in Single Au | Alkanedithiol | Au Junctions: Coordination Geometries and Conformational Degrees of Freedom, J. Am. Chem. Soc., 130\n\t\t\t\t\t1 318-326, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B61",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPobelov\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWandlowski\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBagrets\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArnold\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvers\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007a Charge Transport in Single Au | Alkanedithiol | Au Junctions: Coordination Geometries and Conformational Degrees of Freedom, J. Am. Chem. Soc., 130\n\t\t\t\t\t1 318-326, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B62",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Electronic transport property of 4,4’-bipyridine molecular junction, Ultramicroscopy, 105\n\t\t\t\t\t1-4 , 293-298, 0304-3991\n\t\t\t\t\n\t\t\t'},{id:"B63",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHihath\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLindsay\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006a Conductance of Single Alkanedithiols: Conduction Mechanism and Effect of Molecule-Electrode Contacts, J. Am. Chem. Soc., 128\n\t\t\t\t\t6 2135-2141, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B64",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tZ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLuo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006b Effects of Electrode Distances on Geometric Structure and Electronic Transport Properties of Molecular 4,4’-Bipyridine Junction, Journal of Physics: Conference Series, 29 110-114, 1742-6596\n\t\t\t\t\n\t\t\t'},{id:"B65",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tZ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLuo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006c Electronic transport properties of molecular bipyridine junctions: Effects of isomer and contact structures, Phys. Rev. B, 73\n\t\t\t\t\t7 075326-075327, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B66",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLorenz\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGeorg\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMathis\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJean-Luc\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEgbert\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Stretching and Breaking of a Molecular Junction, Small, 2\n\t\t\t\t\t12 1468-1475, 1613-6829\n\t\t\t\t\n\t\t\t'},{id:"B67",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartín\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaiss\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggins\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCea\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLopez\n\t\t\t\t\t\t\tM. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNichols\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 A Comprehensive Study of the Single Molecule Conductance of α,ω-Dicarboxylic Acid-Terminated Alkanes, J. Phys. Chem. C, 112\n\t\t\t\t\t10 3941-3948, 1932-7447\n\t\t\t\t\n\t\t\t'},{id:"B68",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMerkel\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNassoy\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeung\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRitchie\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvans\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature, 397\n\t\t\t\t\t6714 50-53, 0028-0836\n\t\t\t\t\n\t\t\t'},{id:"B69",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMichael\n\t\t\t\t\t\t\tL. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMichael\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Computing Reaction Pathways on Molecular Potential Energy Surfaces, In: Reviews in Computational Chemistry 4 Kenny, B. L. (Ed.), 35-65,\n\t\t\t'},{id:"B70",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMills\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJónsson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett., 72\n\t\t\t\t\t7 1124, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B71",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNakamura\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrandbyge\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHansen\n\t\t\t\t\t\t\tL. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Density Functional Simulation of a Breaking Nanowire, Phys. Rev. Lett., 82\n\t\t\t\t\t7 1538, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B72",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNakamura\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKobayashi\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAono\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Electronic states and structural stability of gold nanowires, RIKEN Review, 2001\n\t\t\t\t\t37 17-20, 0919-3405\n\t\t\t\t\n\t\t\t'},{id:"B73",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovaes\n\t\t\t\t\t\t\tF. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Effect of Impurities in the Large Au-Au Distances in Gold Nanowires, Phys. Rev. Lett., 90\n\t\t\t\t\t3 036101 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B74",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovaes\n\t\t\t\t\t\t\tF. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. A. J. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tda\n\t\t\t\t\t\t\tSilva. E. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFazzio\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Oxygen Clamps in Gold Nanowires, Phys. Rev. Lett., 96\n\t\t\t\t\t1 016104 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B75",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tO’Hanlon\n\t\t\t\t\t\t\tJ. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tA User’s Guide to Vacuum Technology, John Wiley & Sons, Inc, 978-0-47127-052-2 Hoboken, NJ.\n\t\t\t'},{id:"B76",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOhnishi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKondo\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Quantized conductance through individual rows of suspended gold atoms, Nature, 395\n\t\t\t\t\t6704 780-783, 0028-0836\n\t\t\t\t\n\t\t\t'},{id:"B77",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkamoto\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Structure and conductance of a gold atomic chain, Phys. Rev. B, 60\n\t\t\t\t\t11 7808-7811, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B78",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tY. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWhalley\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKamenetska\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Contact Chemistry and Single-Molecule Conductance: A Comparison of Phosphines, Methyl Sulfides, and Amines, J. Am. Chem. Soc., 129\n\t\t\t\t\t51 15768-15769, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B79",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tY. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWidawsky\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKamenetska\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Frustrated Rotations in Single-Molecule Junctions, J. Am. Chem. Soc., 131\n\t\t\t\t\t31 10820-10821, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B80",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatrone\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPalacin\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBourgoin\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003a Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes, Applied Surface Science, 212-213 , 446-451, 0169-4332\n\t\t\t\t\n\t\t\t'},{id:"B81",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatrone\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPalacin\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCharlier\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArmand\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBourgoin\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTang\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGauthier\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003b Evidence of the Key Role of Metal-Molecule Bonding in Metal-Molecule-Metal Transport Experiments, Phys. Rev. Lett., 91\n\t\t\t\t\t9 096802, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B82",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPaulsson\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrag\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFrederiksen\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrandbyge\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Conductance of Alkanedithiol Single-Molecule Junctions: A Molecular Dynamics Study, Nano Lett., 9\n\t\t\t\t\t1 117-121, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B83",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPerez-Jimenez\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Uncovering Transport Properties of 4,4’-Bipyridine/Gold Molecular Nanobridges, J. Phys. Chem. B, 109\n\t\t\t\t\t20 10052-10060, 1520-6106\n\t\t\t\t\n\t\t\t'},{id:"B84",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPu\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeng\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsetseris\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tH. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPantelides\n\t\t\t\t\t\t\tS. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCummings\n\t\t\t\t\t\t\tP. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007a Molecular dynamics simulations of stretched gold nanowires: The relative utility of different semiempirical potentials, J. Chem. Phys., 126\n\t\t\t\t\t14 144707-6, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B85",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPu\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeng\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCummings\n\t\t\t\t\t\t\tP. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007b Molecular simulations of stretching gold nanowires in solvents, Nanotechnology, 18\n\t\t\t\t\t42 424007, 0957-4484\n\t\t\t\t\n\t\t\t'},{id:"B86",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQuek\n\t\t\t\t\t\t\tS. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChoi\n\t\t\t\t\t\t\tH. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLouie\n\t\t\t\t\t\t\tS. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNeaton\n\t\t\t\t\t\t\tJ. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Amine-Gold Linked Single-Molecule Circuits: Experiment and Theory, Nano Lett., 7\n\t\t\t\t\t11 3477-3482, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B87",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQuek\n\t\t\t\t\t\t\tS. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKamenetska\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChoi\n\t\t\t\t\t\t\tH. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLouie\n\t\t\t\t\t\t\tS. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNeaton\n\t\t\t\t\t\t\tJ. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Mechanically controlled binary conductance switching of a single-molecule junction, Nat Nano, 4\n\t\t\t\t\t4 230-234, 1748-3387\n\t\t\t\t\n\t\t\t'},{id:"B88",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQuinn\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFoss\n\t\t\t\t\t\t\tF. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBreslow\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Single-Molecule Junction Conductance through Diaminoacenes, J. Am. Chem. Soc., 129\n\t\t\t\t\t21 6714-6715, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B89",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBettini\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRocha\n\t\t\t\t\t\t\tA. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRego\n\t\t\t\t\t\t\tL. G. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties, Phys. Rev. B, 65\n\t\t\t\t\t15 153402, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B90",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001a Real-time imaging of atomistic process in one-atom-thick metal junctions, Phys. Rev. B, 63\n\t\t\t\t\t7 073405 (1\n\t\t\t\t\t4 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B91",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001b Structural and electronic properties of gold nanowires, Eur. Phys. J. D, 16\n\t\t\t\t\t1-3 , 395-398, 1434-6060\n\t\t\t\t\n\t\t\t'},{id:"B92",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Quantum conductance properties of metal nanowires, Materials Science and Engineering B, 96\n\t\t\t\t\t2 188-192, 0921-5107\n\t\t\t\t\n\t\t\t'},{id:"B93",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBettini\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSilva\n\t\t\t\t\t\t\tP. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Evidence for Spontaneous Spin-Polarized Transport in Magnetic Nanowires, Phys. Rev. Lett., 91\n\t\t\t\t\t9 096801, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B94",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrigues\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFuhrer\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires, Phys. Rev. Lett., 85\n\t\t\t\t\t19 4124-4127, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B95",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRubio\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAgraït\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVieira\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996 Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport, Phys. Rev. Lett., 76\n\t\t\t\t\t13 2302-2305, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B96",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRubio-Bollinger\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBahn\n\t\t\t\t\t\t\tS. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAgraït\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVieira\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Mechanical Properties and Formation Mechanisms of a Wire of Single Gold Atoms, Phys. Rev. Lett., 87\n\t\t\t\t\t2 026101 (1\n\t\t\t\t\t4 ), 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B97",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSánchez-Portal\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArtacho\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJunquera\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOrdejón\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGarcía\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSoler\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry, Phys. Rev. Lett., 83\n\t\t\t\t\t19 3884-3887, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B98",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSato\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoreira\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBettini\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCoura\n\t\t\t\t\t\t\tP. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDantas\n\t\t\t\t\t\t\tS. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvao\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006a On the Formation of Copper Linear Atomic Suspended Chains, Condensed Matter, arXiv:cond-mat/06020921\n\t\t\t\t\n\t\t\t'},{id:"B99",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSato\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoreira\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBettini\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCoura\n\t\t\t\t\t\t\tP. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDantas\n\t\t\t\t\t\t\tS. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUgarte\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvao\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006b Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains, Phys. Rev. B, 74\n\t\t\t\t\t19 193401-193404, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B100",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchönherr\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeulen\n\t\t\t\t\t\t\tM. W. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBügler\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuskens\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Veggel\n\t\t\t\t\t\t\tF. C. J. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReinhoudt\n\t\t\t\t\t\t\tD. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVancso\n\t\t\t\t\t\t\tG. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Individual Supramolecular Host−Guest Interactions Studied by Dynamic Single Molecule Force Spectroscopy, J. Am. Chem. Soc., 122\n\t\t\t\t\t20 4963-4967, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B101",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSkorodumova\n\t\t\t\t\t\t\tN. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimak\n\t\t\t\t\t\t\tS. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Stability of gold nanowires at large Au-Au separations, Phys. Rev. B, 67\n\t\t\t\t\t12 121404 (1\n\t\t\t\t\t4 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B102",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSkorodumova\n\t\t\t\t\t\t\tN. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimak\n\t\t\t\t\t\t\tS. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Stabilization of monoatomic gold wires by carbon impurities, Solid State Communications, 130\n\t\t\t\t\t11 755-757, 0038-1098\n\t\t\t\t\n\t\t\t'},{id:"B103",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSkorodumova\n\t\t\t\t\t\t\tN. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimak\n\t\t\t\t\t\t\tS. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKochetov\n\t\t\t\t\t\t\tA. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJohansson\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Ab initio study of electronic and structural properties of gold nanowires with light-element impurities, Phys. Rev. B, 75\n\t\t\t\t\t23 235440 (1\n\t\t\t\t\t4 ), 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B104",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSørensen\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrandbyge\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms, Phys. Rev. B, 57\n\t\t\t\t\t6 3283, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B105",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSørensen\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJónsson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996 Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility, Phys. Rev. Lett., 77\n\t\t\t\t\t25 5067, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B106",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStadler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tThygesen\n\t\t\t\t\t\t\tK. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobsen\n\t\t\t\t\t\t\tK. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Forces and conductances in a single-molecule bipyridine junction, Phys. Rev. B, 72\n\t\t\t\t\t24 241401-241404, 1098-0121\n\t\t\t\t\n\t\t\t'},{id:"B107",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStolberg\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLipkowski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIrish\n\t\t\t\t\t\t\tD. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1990 Adsorption of pyridine at the Au(110)- solution interface, Journal of Electroanalytical Chemistry, 296\n\t\t\t\t\t1 171-189, 0022-0728\n\t\t\t\t\n\t\t\t'},{id:"B108",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakai\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawasaki\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKimura\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIkuta\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShimizu\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Dynamic Observation of an Atom-Sized Gold Wire by Phase Electron Microscopy, Phys. Rev. Lett., 87\n\t\t\t\t\t10 106105, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B109",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTodorov\n\t\t\t\t\t\t\tT. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHoekstra\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSutton\n\t\t\t\t\t\t\tA. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Current-Induced Embrittlement of Atomic Wires, Phys. Rev. Lett., 86\n\t\t\t\t\t16 3606, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B110",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTorres\n\t\t\t\t\t\t\tJ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTosatti\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDal\n\t\t\t\t\t\t\tCorso. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tErcolessi\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKohanoff\n\t\t\t\t\t\t\tJ. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDi Tolla\n\t\t\t\t\t\t\tF. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSoler\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 The puzzling stability of monatomic gold wires, Surface Science, 426\n\t\t\t\t\t3 L441-L446, 0039-6028\n\t\t\t\t\n\t\t\t'},{id:"B111",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUlrich\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEsrail\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPontius\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMillar\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDoerrer\n\t\t\t\t\t\t\tL. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Variability of Conductance in Molecular Junctions, J. Phys. Chem. B, 110\n\t\t\t\t\t6 2462-2466, 1520-6106\n\t\t\t\t\n\t\t\t'},{id:"B112",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Ruitenbeek\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScheer\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWeber\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Contacting Individual Molecules Using Mechanically Controllable Break Junctions, In: Introducing Molecular Electronics, Cuniberti, G., Fagas, G., and Richter, K. (Ed.), 253\n\t\t\t\t\t274 , Springer Berlin Heidelberg, 16166361\n\t\t\t\t\n\t\t\t'},{id:"B113",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVélez\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDassie\n\t\t\t\t\t\t\tS. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeiva\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 First Principles Calculations of Mechanical Properties of 4,4’-Bipyridine Attached to Au Nanowires, Phys. Rev. Lett., 95\n\t\t\t\t\t4 045503-045504, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B114",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVélez\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDassie\n\t\t\t\t\t\t\tS. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeiva\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 When do nanowires break? A model for the theoretical study of the long-term stability of monoatomic nanowires, Chem. Phys. Lett., 460\n\t\t\t\t\t1-3 , 261-265, 0009-2614\n\t\t\t\t\n\t\t\t'},{id:"B115",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVélez\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDassie\n\t\t\t\t\t\t\tS. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeiva\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Understanding the properties of nanocontacts. Recent advances in experiment and theory, In: Recent Advances in Nanoscience, Mariscal, M. M. and Dassie, S. A. (Ed.), 1\n\t\t\t\t\t38 , Research Signpost, 978-8-13080-207-7 Kerala, India.\n\t\t\t'},{id:"B116",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKlare\n\t\t\t\t\t\t\tJ. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTam\n\t\t\t\t\t\t\tI. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006a Single-Molecule Circuits with Well-Defined Molecular Conductance, Nano Lett., 6\n\t\t\t\t\t3 458-462, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B117",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tY. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWhalley\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Electronics and Chemistry: Varying Single-Molecule Junction Conductance Using Chemical Substituents, Nano Lett., 7\n\t\t\t\t\t2 502-506, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B118",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkataraman\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKlare\n\t\t\t\t\t\t\tJ. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNuckolls\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHybertsen\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSteigerwald\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006b Dependence of single-molecule junction conductance on molecular conformation, Nature, 442\n\t\t\t\t\t7105 904-907, 0028-0836\n\t\t\t\t\n\t\t\t'},{id:"B119",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVillarba\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJónsson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surface Science, 317\n\t\t\t\t\t1-2 , 15-36, 0039-6028\n\t\t\t\t\n\t\t\t'},{id:"B120",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVineyard\n\t\t\t\t\t\t\tG. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1957 Frequency factors and isotope effects in solid state rate processes, Journal of Physics and Chemistry of Solids, 3\n\t\t\t\t\t1-2 , 121-127, 0022-3697\n\t\t\t\t\n\t\t\t'},{id:"B121",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Nonequilibrium electronic transport of 4,4’-bipyridine molecular junction, J. Chem. Phys., 123\n\t\t\t\t\t18 184712-184716, ISSN:\n\t\t\t'},{id:"B122",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXiao\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003a Measurements of Single-Molecule Electromechanical Properties, J. Am. Chem. Soc., 125\n\t\t\t\t\t52 16164-16165, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B123",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB. Q.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tX. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXiao\n\t\t\t\t\t\t\tX. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSakaguchi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Electromechanical and Conductance Switching Properties of Single Oligothiophene Molecules, Nano Lett., 5\n\t\t\t\t\t7 1491-1495, 1530-6984\n\t\t\t\t\n\t\t\t'},{id:"B124",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoussaad\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003b Electrochemical properties of atomic-scale metal wires, Electrochimica Acta, 48\n\t\t\t\t\t20-22 , 3085-3091, 0013-4686\n\t\t\t\t\n\t\t\t'},{id:"B125",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions, Science, 301\n\t\t\t\t\t5637 1221-1223, 0021-9606\n\t\t\t\t\n\t\t\t'},{id:"B126",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYanson\n\t\t\t\t\t\t\tA. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBollinger\n\t\t\t\t\t\t\tG. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan den\n\t\t\t\t\t\t\tBrom. H. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAgraït\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Ruitenbeek\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Formation and manipulation of a metallic wire of single gold atoms, Nature, 395\n\t\t\t\t\t6704 783-785, 0028-0836\n\t\t\t\t\n\t\t\t'},{id:"B127",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYasuda\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYoshida\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSasaki\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkutsu\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNakamura\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTaninaka\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakeuchi\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShigekawa\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Bond Fluctuation of S/Se Anchoring Observed in Single-Molecule Conductance Measurements using the Point Contact Method with Scanning Tunneling Microscopy, J. Am. Chem. Soc., 128\n\t\t\t\t\t24 7746-7747, 0002-7863\n\t\t\t\t\n\t\t\t'},{id:"B128",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYoshida\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKurui\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOshima\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakayanagi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 In situ Observation of the Electrical Conductance of the Bridged Single Fullerene using TEM-STM, Microscopy and Microanalysis, 13 No.Supplement S02, 748-749, 1431-9276\n\t\t\t\t\n\t\t\t'},{id:"B129",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarnett\n\t\t\t\t\t\t\tR. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLandman\n\t\t\t\t\t\t\tU.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Bonding, Conductance, and Magnetization of Oxygenated Au Nanowires, Phys. Rev. Lett., 100\n\t\t\t\t\t4 046801-046804, 0031-9007\n\t\t\t\t\n\t\t\t'},{id:"B130",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZoloff\n\t\t\t\t\t\t\tMichoff. M. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVélez\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeiva\n\t\t\t\t\t\t\tE. P. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Substituent Effect on the Mechanical Properties of Au−N Nanojunctions, J. Phys. Chem. C, 113\n\t\t\t\t\t9 3850-3854, 1932-7447\n\t\t\t\t\n\t\t\t'},{id:"B131",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchonherr\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVancso\n\t\t\t\t\t\t\tG. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Force Spectroscopy of Quadruple H-Bonded Dimers by AFM: Dynamic Bond Rupture and Molecular Time−Temperature Superposition, J. Am. Chem. Soc., 127\n\t\t\t\t\t32 11230-11231, 0002-7863\n\t\t\t\t\n\t\t\t'}],footnotes:[{id:"fn1",explanation:"Times Online September 19, 2007, http://technology.timesonline.co.uk/tol/news/tech_and_web/article2489053.ece"},{id:"fn2",explanation:"P. Vélez, S. A. Dassie, E. P. M. Leiva unpublished results."}],contributors:[{corresp:"yes",contributorFullName:"Martin E. Zoloff Michoff",address:"",affiliation:'
INFIQC, Departamento de Matemática y Física, Argentina
INFIQC, Departamento de Matemática y Física, Argentina
'},{corresp:null,contributorFullName:"Sergio A. Dassie",address:null,affiliation:'
Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
'},{corresp:null,contributorFullName:"Ezequiel P. M. Leiva",address:null,affiliation:'
INFIQC, Departamento de Matemática y Física, Argentina
'}],corrections:null},book:{id:"3154",type:"book",title:"Electrodeposited Nanowires and their Applications",subtitle:null,fullTitle:"Electrodeposited Nanowires and their Applications",slug:"electrodeposited-nanowires-and-their-applications",publishedDate:"February 1st 2010",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3154.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-7619-88-6",pdfIsbn:"978-953-51-4563-9",reviewType:"peer-reviewed",numberOfWosCitations:119,isAvailableForWebshopOrdering:!0,editors:[{id:"6995",title:"Dr.",name:"Nicoleta",middleName:null,surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"8903",type:"chapter",title:"Electrodeposited Nanowires and Their Applications",slug:"electrodeposited-nanowires-and-their-applications",totalDownloads:3574,totalCrossrefCites:1,signatures:"Nicoleta Lupu",reviewType:"peer-reviewed",authors:[{id:"6995",title:"Dr.",name:"Nicoleta",middleName:null,surname:"Lupu",fullName:"Nicoleta Lupu",slug:"nicoleta-lupu"}]},{id:"8904",type:"chapter",title:"Computational Tools to Study and Predict the Long-Term Stability of Nanowires.",slug:"computational-tools-to-study-and-predict-the-long-term-stability-of-nanowires-",totalDownloads:2369,totalCrossrefCites:0,signatures:"Martin E. Zoloff Michoff, Patricio Vélez, Sergio A. Dassie and Ezequiel P. M. Leiva",reviewType:"peer-reviewed",authors:[{id:"7474",title:"Prof.",name:"Ezequiel",middleName:null,surname:"Leiva",fullName:"Ezequiel Leiva",slug:"ezequiel-leiva"},{id:"7475",title:"Dr.",name:"Martin",middleName:"Eduardo",surname:"Zoloff Michoff",fullName:"Martin Zoloff Michoff",slug:"martin-zoloff-michoff"},{id:"121000",title:"Prof.",name:"Patricio",middleName:null,surname:"Velez",fullName:"Patricio Velez",slug:"patricio-velez"},{id:"121004",title:"Prof.",name:"Sergio Alberto",middleName:null,surname:"Dassie",fullName:"Sergio Alberto Dassie",slug:"sergio-alberto-dassie"}]},{id:"8905",type:"chapter",title:"Modelling Metallic Nanowires Breakage for Statistical Studies: Ni Case as Example",slug:"modelling-metallic-nanowires-breakage-for-statistical-studies-ni-case-as-example",totalDownloads:1953,totalCrossrefCites:0,signatures:"Samuel Peláez, Carlo Guerrero, Ricardo Paredes, Pedro A. Serena, and Pedro García-Mochales",reviewType:"peer-reviewed",authors:[{id:"7222",title:"Dr.",name:"Pedro",middleName:null,surname:"Garcia-Mochales",fullName:"Pedro Garcia-Mochales",slug:"pedro-garcia-mochales"},{id:"121015",title:"Dr.",name:"Pedro",middleName:null,surname:"Serena",fullName:"Pedro Serena",slug:"pedro-serena"}]},{id:"8906",type:"chapter",title:"Fabrication of Functional Metallic Nanowires Using Electrodeposition Technique",slug:"fabrication-of-functional-metallic-nanowires-using-electrodeposition-technique",totalDownloads:5286,totalCrossrefCites:0,signatures:"Takeshi Ohgai",reviewType:"peer-reviewed",authors:[{id:"7108",title:"Prof.",name:"Takeshi",middleName:null,surname:"Ohgai",fullName:"Takeshi Ohgai",slug:"takeshi-ohgai"}]},{id:"8907",type:"chapter",title:"Annealing Effects on the Metal and Semiconductor Nanowires Loaded Inside the Alumina Pores",slug:"annealing-effects-on-the-metal-and-semiconductor-nanowires-loaded-inside-the-alumina-pores",totalDownloads:3472,totalCrossrefCites:0,signatures:"Arūnas Jagminas",reviewType:"peer-reviewed",authors:[{id:"7653",title:"Dr.",name:"Arunas",middleName:null,surname:"Jagminas",fullName:"Arunas Jagminas",slug:"arunas-jagminas"}]},{id:"8908",type:"chapter",title:"Fabrication and Applications of Metal Nanowire Arrays Electrodeposited in Ordered Porous Templates",slug:"fabrication-and-applications-of-metal-nanowire-arrays-electrodeposited-in-ordered-porous-templates",totalDownloads:9865,totalCrossrefCites:8,signatures:"Giray Kartopu and Orhan Yalçın",reviewType:"peer-reviewed",authors:[{id:"7163",title:"Dr.",name:"Giray",middleName:null,surname:"Kartopu",fullName:"Giray Kartopu",slug:"giray-kartopu"},{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",fullName:"Dr. Orhan Yalçın",slug:"dr.-orhan-yalcin"}]},{id:"8909",type:"chapter",title:"Ferromagnetic Nanowires and Nanotubes",slug:"ferromagnetic-nanowires-and-nanotubes",totalDownloads:4785,totalCrossrefCites:6,signatures:"Xiu-Feng Han, Shahzadi Shamaila and Rehana Sharif",reviewType:"peer-reviewed",authors:[{id:"7414",title:"Dr.",name:"Xiufeng",middleName:null,surname:"Han",fullName:"Xiufeng Han",slug:"xiufeng-han"},{id:"26975",title:"Prof.",name:"Rehana",middleName:null,surname:"Sharif",fullName:"Rehana Sharif",slug:"rehana-sharif"},{id:"121020",title:"Prof.",name:"Shahzadi",middleName:null,surname:"Shamaila",fullName:"Shahzadi Shamaila",slug:"shahzadi-shamaila"}]},{id:"8910",type:"chapter",title:"Extracting Individual Properties from Global Behaviour: First-order Reversal Curve Method Applied to Magnetic Nanowire Arrays",slug:"extracting-individual-properties-from-global-behaviour-first-order-reversal-curve-method-applied-to-",totalDownloads:3125,totalCrossrefCites:13,signatures:"Fanny Béron, Louis-Philippe Carignan, David Ménard and Arthur Yelon",reviewType:"peer-reviewed",authors:[{id:"7433",title:"Dr.",name:"Fanny",middleName:null,surname:"Beron",fullName:"Fanny Beron",slug:"fanny-beron"},{id:"121023",title:"PhD.",name:"Louis-Philippe",middleName:null,surname:"Carignan",fullName:"Louis-Philippe Carignan",slug:"louis-philippe-carignan"},{id:"121024",title:"Prof.",name:"David",middleName:null,surname:"Menard",fullName:"David Menard",slug:"david-menard"},{id:"121026",title:"Prof.",name:"Arthur",middleName:null,surname:"Yelon",fullName:"Arthur Yelon",slug:"arthur-yelon"}]},{id:"8911",type:"chapter",title:"Impact of Nanowires on the Properties of Magnetorheological Fluids and Elastomer Composites",slug:"impact-of-nanowires-on-the-properties-of-magnetorheological-fluids-and-elastomer-composites",totalDownloads:3190,totalCrossrefCites:2,signatures:"R. C. Bell, D. T. Zimmerman, and N. M. Wereley",reviewType:"peer-reviewed",authors:[{id:"121029",title:"Dr.",name:"Richard C.",middleName:null,surname:"Bell",fullName:"Richard C. Bell",slug:"richard-c.-bell"},{id:"121030",title:"Prof.",name:"D. T.",middleName:null,surname:"Zimmerman",fullName:"D. T. Zimmerman",slug:"d.-t.-zimmerman"},{id:"121033",title:"Dr.",name:"Norman M.",middleName:null,surname:"Wereley",fullName:"Norman M. Wereley",slug:"norman-m.-wereley"}]},{id:"8912",type:"chapter",title:"The Applications of Metallic Nanowires for Live Cell Studies",slug:"the-applications-of-metallic-nanowires-for-live-cell-studies",totalDownloads:3382,totalCrossrefCites:0,signatures:"Chiung-Wen Kuo and Peilin Chen",reviewType:"peer-reviewed",authors:[{id:"7620",title:"Dr.",name:"Peilin",middleName:null,surname:"Chen",fullName:"Peilin Chen",slug:"peilin-chen"},{id:"121034",title:"Prof.",name:"Chiung-Wen",middleName:null,surname:"Kuo",fullName:"Chiung-Wen Kuo",slug:"chiung-wen-kuo"}]}]},relatedBooks:[{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"8883",title:"Nickel Silicide Nanowire Growth and Applications",slug:"nickel-silicide-nanowire-growth-and-applications",signatures:"Joondong Kim",authors:[{id:"7322",title:"Dr.",name:"Joondong",middleName:null,surname:"Kim",fullName:"Joondong Kim",slug:"joondong-kim"}]},{id:"8884",title:"Syntheses of Silver Nanowires in Liquid Phase",slug:"syntheses-of-silver-nanowires-in-liquid-phase",signatures:"Xinling Tang and Masaharu Tsuji",authors:[{id:"8684",title:"Prof.",name:"Masaharu",middleName:null,surname:"Tsuji",fullName:"Masaharu Tsuji",slug:"masaharu-tsuji"}]},{id:"8885",title:"Growth of Nanowire and Nanobelt Based Oxides by Thermal Oxidation with Gallium",slug:"growth-of-nanowire-and-nanobelt-based-oxides-by-thermal-oxidation-with-gallium",signatures:"Qing Yang, Takahito Yasuda, Hitonori Kukino, Miyoko Tanaka and Hirokazu Tatsuoka",authors:[{id:"7615",title:"Professor",name:"Hirokazu",middleName:null,surname:"Tatsuoka",fullName:"Hirokazu Tatsuoka",slug:"hirokazu-tatsuoka"},{id:"26060",title:"Prof.",name:"Qing",middleName:null,surname:"Yang",fullName:"Qing Yang",slug:"qing-yang"},{id:"120913",title:"Prof.",name:"Miyoko",middleName:null,surname:"Tanaka",fullName:"Miyoko Tanaka",slug:"miyoko-tanaka"}]},{id:"8886",title:"Nano-Cones Formed on a Surface of Semiconductors by Laser Radiation: Technology, Model and Properties",slug:"nano-cones-formed-on-a-surface-of-semiconductors-by-laser-radiation-technology-model-and-properties",signatures:"Artur Medvid’",authors:[{id:"7220",title:"Prof.",name:"Artur",middleName:null,surname:"Medvid'",fullName:"Artur Medvid'",slug:"artur-medvid'"}]},{id:"8887",title:"Magnetic Properties of Nanowires guided by Carbon Nanotubes",slug:"magnetic-properties-of-nanowires-guided-by-carbon-nanotubes",signatures:"Miguel A. Correa-Duarte and Veronica Salgueirino",authors:[{id:"7411",title:"Dr.",name:"Veronica",middleName:null,surname:"Salgueirino",fullName:"Veronica Salgueirino",slug:"veronica-salgueirino"},{id:"120914",title:"PhD.",name:"Miguel A.",middleName:null,surname:"Correa-Duarte",fullName:"Miguel A. Correa-Duarte",slug:"miguel-a.-correa-duarte"}]},{id:"8888",title:"Synthesis of Germanium/Multi-Walled Carbon Nanotube Core-Sheath Structures via Chemical Vapor Deposition",slug:"synthesis-of-germanium-multi-walled-carbon-nanotube-core-sheath-structures-via-chemical-vapor-deposi",signatures:"Dali Qian, Mark Crocker, A. Pandurangan, Cedric Morin and Rodney Andrews",authors:[{id:"7436",title:"Dr.",name:"Mark",middleName:null,surname:"Crocker",fullName:"Mark Crocker",slug:"mark-crocker"},{id:"28690",title:"Dr.",name:"A",middleName:null,surname:"Pandurangan",fullName:"A Pandurangan",slug:"a-pandurangan"},{id:"120916",title:"Dr.",name:"Dali",middleName:null,surname:"Qian",fullName:"Dali Qian",slug:"dali-qian"},{id:"120921",title:"PhD.",name:"Rodney",middleName:null,surname:"Andrews",fullName:"Rodney Andrews",slug:"rodney-andrews"}]},{id:"8889",title:"Advances of SiOx and Si/SiOx Core-Shell Nanowires",slug:"advances-of-siox-and-si-siox-core-shell-nanowires",signatures:"Kuan Yew Cheong and Yi Ling Chiew",authors:[{id:"6946",title:"Dr.",name:"Kuan Yew",middleName:null,surname:"Cheong",fullName:"Kuan Yew Cheong",slug:"kuan-yew-cheong"}]},{id:"8890",title:"Yttrium Oxide Nanowires",slug:"yttrium-oxide-nanowires",signatures:"Nan Li and Kazumichi Yanagisawa",authors:[{id:"136366",title:"Prof.",name:"Kazumichi",middleName:null,surname:"Yanagisawa",fullName:"Kazumichi Yanagisawa",slug:"kazumichi-yanagisawa"},{id:"152384",title:"Dr.",name:"Nan",middleName:null,surname:"Li",fullName:"Nan Li",slug:"nan-li"}]},{id:"8891",title:"Polymer Nanowires",slug:"polymer-nanowires",signatures:"Baojun Li and Xiaobo Xing",authors:[{id:"7018",title:"Prof. Dr.",name:"Baojun",middleName:null,surname:"Li",fullName:"Baojun Li",slug:"baojun-li"},{id:"140396",title:"Dr.",name:"Xiaobo",middleName:null,surname:"Xing",fullName:"Xiaobo Xing",slug:"xiaobo-xing"}]},{id:"8892",title:"Doping of Polymers with ZnO Nanostructures for Optoelectronic and Sensor Applications",slug:"doping-of-polymers-with-zno-nanostructures-for-optoelectronic-and-sensor-applications",signatures:"Aga and Mu",authors:[{id:"7216",title:"Prof",name:"Richard",middleName:null,surname:"Mu",fullName:"Richard Mu",slug:"richard-mu"},{id:"9284",title:"Dr.",name:"Roberto",middleName:null,surname:"Aga",fullName:"Roberto Aga",slug:"roberto-aga"}]},{id:"8893",title:"A Review on Electronic Transport Properties of Individual Conducting Polymer Nanotubes and Nanowires",slug:"a-review-on-electronic-transport-properties-of-individual-conducting-polymer-nanotubes-and-nanowires",signatures:"Yun-Ze Long, Zhaojia Chen, Changzhi Gu, Meixiang Wan, Jean-Luc Duvail, Zongwen Liu and Simon P. Ringer",authors:[{id:"7656",title:"Dr., Prof.",name:"Yun-Ze",middleName:null,surname:"Long",fullName:"Yun-Ze Long",slug:"yun-ze-long"},{id:"120982",title:"Prof.",name:"Zhaojia",middleName:null,surname:"Chen",fullName:"Zhaojia Chen",slug:"zhaojia-chen"},{id:"120985",title:"Prof.",name:"Changzhi",middleName:null,surname:"Gu",fullName:"Changzhi Gu",slug:"changzhi-gu"},{id:"120988",title:"Prof.",name:"Meixiang",middleName:null,surname:"Wan",fullName:"Meixiang Wan",slug:"meixiang-wan"},{id:"120990",title:"Prof.",name:"Jean-Luc",middleName:null,surname:"Duvail",fullName:"Jean-Luc Duvail",slug:"jean-luc-duvail"},{id:"120991",title:"Dr.",name:"Zongwen",middleName:null,surname:"Liu",fullName:"Zongwen Liu",slug:"zongwen-liu"},{id:"120993",title:"Prof.",name:"Simon",middleName:null,surname:"Ringer",fullName:"Simon Ringer",slug:"simon-ringer"}]},{id:"8894",title:"Conjugated Polymer and Hybrid Polymer-Metal Single Nanowires: Correlated Characterization and Device Integration",slug:"conjugated-polymer-and-hybrid-polymer-metal-single-nanowires-correlated-characterization-and-device-",signatures:"L. Gence, V. Callegari, S. Melinte, S. Demoustier-Champagne, Y. Long, A. Dinescu and J.L. Duvail",authors:[{id:"7656",title:"Dr., Prof.",name:"Yun-Ze",middleName:null,surname:"Long",fullName:"Yun-Ze Long",slug:"yun-ze-long"},{id:"120990",title:"Prof.",name:"Jean-Luc",middleName:null,surname:"Duvail",fullName:"Jean-Luc Duvail",slug:"jean-luc-duvail"},{id:"7536",title:"Dr.",name:"Loïk",middleName:null,surname:"Gence",fullName:"Loïk Gence",slug:"loik-gence"},{id:"120942",title:"Prof.",name:"Vincent",middleName:null,surname:"Callegari",fullName:"Vincent Callegari",slug:"vincent-callegari"},{id:"120943",title:"Dr.",name:"Sorin",middleName:null,surname:"Melinte",fullName:"Sorin Melinte",slug:"sorin-melinte"},{id:"120944",title:"Prof.",name:"Sophie",middleName:null,surname:"Champagne",fullName:"Sophie Champagne",slug:"sophie-champagne"},{id:"120948",title:"Prof.",name:"A.",middleName:null,surname:"Dinescu",fullName:"A. Dinescu",slug:"a.-dinescu"}]},{id:"8895",title:"Photoferroelectric Nanowires",slug:"photoferroelectric-nanowires",signatures:"Marian Nowak",authors:[{id:"6874",title:"Prof.",name:"Marian",middleName:null,surname:"Nowak",fullName:"Marian Nowak",slug:"marian-nowak"}]},{id:"8896",title:"Nanowires with Unimaginable Characteristics",slug:"nanowires-with-unimaginable-characteristics",signatures:"Hui Li and Fengwei Sun",authors:[{id:"6986",title:"Prof.",name:"Hui",middleName:null,surname:"Li",fullName:"Hui Li",slug:"hui-li"}]},{id:"8897",title:"Mn–Fe Nanowires Towards Cell Labeling and Magnetic Resonance Imaging",slug:"mn-fe-nanowires-towards-cell-labeling-and-magnetic-resonance-imaging",signatures:"Ken Cham-Fai Leung and Yi-Xiang J. Wang",authors:[{id:"7095",title:"Prof",name:"Ken",middleName:null,surname:"Leung",fullName:"Ken Leung",slug:"ken-leung"},{id:"120959",title:"PhD.",name:"Yi-Xiang",middleName:null,surname:"Wang",fullName:"Yi-Xiang Wang",slug:"yi-xiang-wang"}]},{id:"8898",title:"pH Dependent Hydrothermal Synthesis and Photoluminescence of Gd2O3:Eu Nanostructures",slug:"ph-dependent-hydrothermal-synthesis-and-photoluminescence-of-gd2o3-eu-nanostructures",signatures:"Kyung-Hee Lee, Yun-Jeong Bae and Song-Ho Byeon",authors:[{id:"7363",title:"Professor",name:"Song-Ho",middleName:null,surname:"Byeon",fullName:"Song-Ho Byeon",slug:"song-ho-byeon"},{id:"135522",title:"Prof.",name:"Kyung-Hee",middleName:null,surname:"Lee",fullName:"Kyung-Hee Lee",slug:"kyung-hee-lee"}]},{id:"8899",title:"Transition Metal-Doped ZnO Nanowires: En Route Towards Multi-colour Light Sensing and Emission Applications",slug:"transition-metal-doped-zno-nanowires-en-route-towards-multi-colour-light-sensing-and-emission-applic",signatures:"N. Kouklin, M. Omari and A. Gupta",authors:[{id:"7552",title:"Dr.",name:"Nikolai",middleName:null,surname:"Kouklin",fullName:"Nikolai Kouklin",slug:"nikolai-kouklin"},{id:"120965",title:"Dr.",name:"M",middleName:null,surname:"Omari",fullName:"M Omari",slug:"m-omari"}]},{id:"8900",title:"Modeling and Performance Analysis of III-V Nanowire Field-Effect Transistors",slug:"modeling-and-performance-analysis-of-iii-v-nanowire-field-effect-transistors",signatures:"M. Abul Khayer and Roger K. Lake",authors:[{id:"7087",title:"PhD.",name:"Mohammad Abul",middleName:null,surname:"Khayer",fullName:"Mohammad Abul Khayer",slug:"mohammad-abul-khayer"},{id:"120976",title:"PhD.",name:"Roger",middleName:null,surname:"Lake",fullName:"Roger Lake",slug:"roger-lake"}]}]}],publishedBooks:[{type:"book",id:"514",title:"Nanowires",subtitle:"Implementations and Applications",isOpenForSubmission:!1,hash:"a72c02407edeef3d1a2ff8ddc07cad87",slug:"nanowires-implementations-and-applications",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/514.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5139",title:"Semiconductor Photocatalysis",subtitle:"Materials, Mechanisms and Applications",isOpenForSubmission:!1,hash:"ddd35bd632c061ec2e69a0886a817443",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",bookSignature:"Wenbin Cao",coverURL:"https://cdn.intechopen.com/books/images_new/5139.jpg",editedByType:"Edited by",editors:[{id:"48383",title:"Prof.",name:"Wenbin",surname:"Cao",slug:"wenbin-cao",fullName:"Wenbin Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7630",title:"Inelastic X-Ray Scattering and X-Ray Powder Diffraction Applications",subtitle:null,isOpenForSubmission:!1,hash:"80896f929598a48f6b4c306a6be47ea6",slug:"inelastic-x-ray-scattering-and-x-ray-powder-diffraction-applications",bookSignature:"Alessandro Cunsolo, Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/7630.jpg",editedByType:"Edited by",editors:[{id:"176605",title:"Dr.",name:"Alessandro",surname:"Cunsolo",slug:"alessandro-cunsolo",fullName:"Alessandro Cunsolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"860",title:"Nanofabrication",subtitle:null,isOpenForSubmission:!1,hash:"163b1f420f2cefb517606c6c31b2d104",slug:"nanofabrication",bookSignature:"Yoshitake Masuda",coverURL:"https://cdn.intechopen.com/books/images_new/860.jpg",editedByType:"Edited by",editors:[{id:"12385",title:"Dr.",name:"Yoshitake",surname:"Masuda",slug:"yoshitake-masuda",fullName:"Yoshitake Masuda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5182",title:"Lab-on-a-Chip Fabrication and Application",subtitle:null,isOpenForSubmission:!1,hash:"f4c8e226ea2612f5ecceb7e6311581d4",slug:"lab-on-a-chip-fabrication-and-application",bookSignature:"Margarita Stoytcheva and Roumen Zlatev",coverURL:"https://cdn.intechopen.com/books/images_new/5182.jpg",editedByType:"Edited by",editors:[{id:"170080",title:"Dr.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"3154",title:"Electrodeposited Nanowires and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"45243abd7aed0cc587462d93cb16169b",slug:"electrodeposited-nanowires-and-their-applications",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3154.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"75840",title:"Glaucoma Related to Ocular and Orbital Tumors",doi:"10.5772/intechopen.96907",slug:"glaucoma-related-to-ocular-and-orbital-tumors",body:'
1. Introduction
With the advent of constantly evolving and advancing ophthalmic imaging techniques as well as surgical modalities in the field of ophthalmic diseases, diagnostic accuracy, and treatment outcomes of ocular as well as orbital tumors have improved remarkably over the past few years. Raised intraocular pressure (IOP) is known to be one of the presenting features or associated finding for numerous ocular as well as orbital tumors. Ocular and orbital tumors can cause secondary glaucoma due to various mechanisms. They often pose a diagnostic challenge as well as a therapeutic dilemma owing to the complex pathophysiology involved. A thorough clinical evaluation, appropriate index of suspicion and optimum use of ancillary testing can lead to a proper diagnosis and management in such scenario.
Intraocular tumors that can lead to secondary glaucoma are malignancies like iris melanoma, iris metastasis, iris lymphoma, ciliochoroidal melanoma, retinoblastoma as well as benign pathologies like iris melanocytoma, benign ciliary body medulloepithelioma, diffuse choroidal hemangioma. [1] Indicators for a possible underlying intraocular tumor are, markedly elevated and often asymmetric level of IOP, acquired iris heterochromia, glaucoma non-responsive to optimum treatment or accompanying distinctive ocular features. [1, 2] The mechanism by which these tumors can cause secondary glaucoma varies with tumor type, size, and extent of the main tumor as well as seeding, tumor location, growth pattern, ongoing treatment along with secondary features related to the tumor. [3] Iris and predominantly ciliary body tumors located in anterior segment can cause glaucoma by direct infiltration of anterior chamber angle or because of iris neovascularization; while large tumors originating in retina or choroid are likely to cause glaucoma following iris neovascularization because of long standing or total retinal detachment or secondary angle closure. [1, 2]
Orbital tumors which can be congenital, traumatic, inflammatory, vascular, or neoplastic in origin may cause secondary glaucoma due to mass effect or anatomical and vascular changes leading to raised IOP [4] Orbital tumors causing raised orbital pressure may directly increase the IOP by increasing hydrostatic pressure around the globe or indirectly by raising the episcleral venous pressure.
Management of secondary glaucoma due to ocular and orbital tumors depends on both tumor characteristics and glaucoma related factors. Treatment of primary tumor may lead to IOP control in some cases while for others, management options include medical management, laser trabeculoplasty, transscleral cyclophotocoagulation, anti-VEGF injections, minimally invasive glaucoma surgery (MIGS), filtering or shunting surgery or enucleation. Glaucoma surgery like filtering or shunting procedure can be performed with due caution in proven benign or completely regressed tumors post-treatment. Such surgeries in an eye with suspected but unproven benign/malignant ocular tumor must be avoided to prevent unintended iatrogenic tumor dispersion or seeding especially in cases with iridociliary tumors or retinoblastoma.
2. Mechanisms of glaucoma secondary to ocular and orbital tumors
Direct mechanism-
Solid tumor invasion- related outflow obstruction
Infiltrative tumor -related outflow obstruction
Trabecular meshwork seeding
Indirect mechanism-
Angle closure from neovascularization
Angle closure (compressive and rotational)
Ghost cell- Hemolytic
Elevated episcleral venous pressure
3. Ocular tumor related glaucoma
3.1 Anterior segment tumors
Anterior uveal tumors known to cause secondary glaucoma are iris/ciliary body melanocytoma, iris melanoma (nodular or diffuse), ciliary body melanoma (nodular or ring melanoma), iris lymphoma and iris metastasis. Direct invasion of the anterior chamber angle by infiltration followed by neovascularization and trabecular meshwork tumor seeding are the common etiologies of raised IOP in iris tumors; while pigment dispersion followed by direct angle invasion are the common etiologies for same in pigmented ciliary body tumors. [1, 2, 5, 6]
Iris melanocytoma, a variant of melanocytic iris nevus is a deeply pigmented benign tumor which is well circumscribed, often dark brown to black dome shaped lesion with cobblestone surface and feathery edges showing echogenic nodular thickening of iris on ultrasound biomicroscopy (UBM). (Figure 1A–C) [2, 7] Melanocytoma can undergo spontaneous necrosis with pigment dispersion leading to pigment-laden melanophages seeding the angle causing secondary glaucoma. [8] (Figure 1D) Secondary glaucoma has been reported in 11% of cases in a series of 47 iris melanocytoma where pigmented keratic precipitates and anterior chamber inflammation were identified as factors predictive of development of raised IOP emphasizing the role of macrophages in the anterior chamber angle. [7]
Figure 1.
(A) Slit lamp image of iris melanocytoma; (B) Gonioscopy image of iris melanocytoma with extension of pigmentation up to the angle, (C) ultrasound biomicroscopy (UBM) image of iris melanocytoma appearing as irregular hyperreflective lesion on iris surface; (D) large iris melanocytoma leading to raised IOP due to angle closure glaucoma (compressive angle closure) {image credit for Figure 1A–C Dr. Paul T Finger MD, FACS, Director, The New York Eye Cancer Center, New York USA}.
Suspected melanocytoma can be observed cautiously. They are very rarely known to show malignant transformation. [9] Clear corneal approach fine needle aspiration biopsy, minimally invasive Finger Iridectomy technique (FIT), iridectomy or iridogoniocyclectomy can be utilized to obtain histopathological diagnosis in atypical iris nevi and suspected melanocytoma. [7, 10] Secondary glaucoma demonstrating melanocytoma eyes can be treated medically, by transscleral photocoagulation, by sector iridectomy or with glaucoma filtration surgery. [7, 8, 11, 12] However, a diagnostic confirmation of the lesion by prior biopsy and histopathology is mandated before planning a filtering surgery. Local surgical resection can be used to treat the secondary glaucoma caused by necrotic iris melanocytoma. [8, 13] Enucleation is reserved for painful blind eyes or eyes with absolute glaucoma.
Iris and iridociliary melanoma are the least common variant of uveal melanoma constituting only 2–3% of cases and have documented metastatic rate of 10.7–11%. [14, 15, 16]. Iris melanoma presents as a variably pigmented lesion (melanotic or amelanotic) which can be well circumscribed- nodular type, flat pigmented on iris surface- diffuse type and rarer predominantly trabecular meshwork involving type. (Figure 2) Secondary glaucoma has been reported in 33% of cases with iris melanoma while, with 100% of those with trabecular meshwork melanoma. [6, 17] Mechanisms include direct angle invasion (infiltration), iris neovascularization and trabecular meshwork seeding (melanomalytic glaucoma). [2, 3, 6] Unilateral findings of markedly elevated IOP, heterochromia iridis along with pigment dispersion onto the corneal endothelium, anterior iris surface and into the angle point towards melanomalytic glaucoma. [2, 18] Diffuse iris melanoma should be suspected in all cases of iris heterochromia and unilateral glaucoma. (Figure 2B and D) [2, 19] Morphological features of iris melanoma such as diffuse tumor location (>1 quadrant), posterior tumor margin involving the angle, reduced median tumor thickness (flat configuration) and greater extent of tumor seeding on the iris stroma and angle have been statistically related to presence of glaucoma at presentation. [6] Patients with iris melanoma and secondary glaucoma are at significantly higher risk of systemic metastasis with a hazard ratio of 4.51 compared to iris melanoma without glaucoma. [3, 6] Possible explanation being-tumor location and its discohesive nature along with raised IOP that enables the egress of tumor cells into emissary veins leading to distant metastasis. [2, 6, 20].
Figure 2.
(A) Slit lamp image of iris melanoma showing correctopia, ectropion uveae and extension up to the angle, (B) slit lamp image of diffuse iris melanoma presenting with angle closure, (C) slit lamp image of ciliary body melanoma with iris infiltration presenting as secondary glaucoma with hyphema. (D) Gonioscopy image of blood vessel (black arrowhead) at the anterior chamber angle in a case of diffuse iris melanoma with angle closure depicted in Figure 2B. {image credit for Figure 1 A, B, D- Dr. Paul T Finger MD, FACS, Director, The New York Eye Cancer Center, New York USA and for Figure 2C- Dr. Santosh G Honavar MD FACS, Director, Ocular Oncology Services, Centre For Sight Hospital, Hyderabad, India}.
Management of iris and iridociliary melanoma depends upon tumor size, location or extent, tumor seeding and presence of tumor related glaucoma. [15, 20] Local resection (iridectomy, iridocyclectomy), plaque brachytherapy, proton beam radiotherapy and enucleation are available treatment options for both nodular as well as diffuse iris melanoma. [6, 15, 20, 21] Secondary glaucoma in association with iris melanoma can be managed with medications, transscleral photocoagulation or laser trabeculoplasty. [22] Antivascular endothelial growth factor (anti-VEGF) injections can be tried in neovascular glaucoma. [23] Cases with refractory glaucoma resulting in blind painful eyes may warrant enucleation. [24] Filtering, shunting surgery or MIGS should be avoided in eyes with untreated tumor to prevent tumor spread outside of the globe. Diffuse iris melanoma or trabecular meshwork melanoma if misdiagnosed or missed prior to performing above named procedures can warrant enucleation for further tumor control. [3, 19]
Ring melanoma of the iris and ciliary body are a rare entity constituting only 0.3% of all uveal melanomas while having a poor prognosis owing to metastatic rate of up to 50%. [25]. The later could be likely due to delayed diagnosis as ring melanoma tend to grow circumferentially involving iris and entire ciliary body making them less obvious on ophthalmic examination. Prominent episcleral (sentinel) vessels, anterior chamber shallowing, multinodular tumor configuration, unilateral lens changes and occasional extra-scleral extension, light blockage on transillumination and ultrasonographic hollowness with intrinsic vascular pulsations are salient diagnostic features suggestive of ring melanoma. [25, 26] They tend to initially manifest with low intraocular pressure and later develop secondary glaucoma and secondary retinal detachment. Secondary glaucoma has been reported in 35% of cases. [25] The mechanisms involved are direct angle infiltration, trabecular meshwork seeding, angle closure and neovascularization of iris. [2, 3, 27, 28, 29] Plaque radiotherapy, proton beam radiotherapy or enucleation are available management options for the tumor. [25, 26, 30] Medical management, transscleral cyclophotocoagulation to uninvolved ciliary body or laser trabeculoplasty to uninvolved angle can be tried to control glaucoma in salvaged eyes. However, refractory cases require enucleation. [3] High index of suspicion is warranted when examining a case of unilateral refractory glaucoma with multinodular thickening of angle structures to avoid misdiagnosis as uveal effusion. Ultrasound biomicroscopy in such a case can help in identifying the tumor. Hurried shunting or filtering surgery for IOP control in tumor containing eyes can lead to tumor spread and further necessitate enucleation. [29, 31]
Iris and ciliary body metastasis constitute 8% and 2% of all cases of uveal metastasis respectively with breast and lung cancers being the most common primary tumors. [32] They tend to appear as solitary or multiple yellow, white, or pink stromal nodules with hyphema or pseudo hypopyon. They may present as ill-defined iris or ciliary body thickening in a setting of iridocyclitis. Ultrasound biomicroscopy (UBM) is useful in suspicious cases. (Figure 3A and B) Secondary glaucoma has been reported in about 37% of iris metastasis with angle invasion and iris neovascularization as mechanisms for raised IOP. [33] Treatment of primary, plaque brachytherapy, external beam radiotherapy (EBRT) or systemic chemotherapy are management options for iris and ciliary body metastasis. [2, 3, 33] Medical management, transscleral laser photocoagulation or laser trabeculoplasty can be useful for IOP control in these eyes. Anti VEGF injections may help in neovascular glaucoma. [3, 33, 34, 35]
Figure 3.
(A) Slit lamp image of iris and ciliary body metastasis from lung adenocarcinoma showing correctopia, ectropion uveae, neovascularization of iris presenting with raised IOP (B) Ultrasound biomicroscopy image of iris metastasis with blunting of anterior chamber angle and thickened ciliary body (C) Slit lamp image of large choroidal melanoma presenting with intratumoral hemorrhage and raised IOP. (D) Ultrasound B scan of lesion in (C) showing low to moderately reflective choroidal melanoma with surrounding detached retina {image credit for Figure 1 A, B- Dr. Paul T Finger MD, FACS, Director, The New York Eye Cancer Center, New York USA}.
Iris lymphoma, localized or diffuse is a differential diagnosis of iris melanoma or metastasis. Unilateral or bilateral presentation of diffuse non-granulomatous uveitis with raised IOP in open angles, uveitis- glaucoma- hyphema syndrome (UGH) or steroid resistant pseudo-uveitis are documented clinical manifestations of intraocular lymphoma. [36, 37, 38] The mechanism for raised IOP include angle infiltration, angle closure, hyphema. [3, 37] Plaque radiotherapy, EBRT, systemic chemotherapy have been used for management of iris lymphoma while, the raised IOP may respond to medical therapy, transscleral cyclophotocoagulation or laser trabeculoplasty. Enucleation is reserved for refractory cases. [2, 3]
Leukemic infiltration from acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML) in the anterior chamber, trabecular meshwork and Schlemm’s canal can cause outflow obstruction and raised IOP. [2] ALL is the most common cause of both intraocular leukemia and secondary leukemia related glaucoma. Leukemia with central nervous system (CNS) involvement has been strongly associated with leukemic hypopyon and glaucoma. [2, 39] Treatment with systemic chemotherapy or EBRT is recommended for these. EBRT is known to show rapid resolution of angle infiltration in cases with secondary glaucoma. [2]
Other disorders like: Multiple myeloma, a malignant proliferation of plasma cells characterized by monoclonal production od immunoglobulins; Juvenile Xanthogranuloma, a benign histiocytic skin disorder can also affect anterior segment and lead to raised IOP. [2]
3.2 Posterior segment tumors
3.2.1 Choroidal tumors
Choroidal melanoma is the most common primary intraocular malignancy found in adults and the most common uveal melanoma encountered overall. Clinically it manifests as a dome shaped or mushroom shaped pigmented (melanotic) or non-pigmented (amelanotic) choroidal mass often associated with surrounding sub-retinal fluid, overlying orange pigmentation and exudative retinal detachment. (Figure 3C) The ultrasound B scan shows low to moderately reflective choroidal lesion with associated detached retina or occasional vitreous hemorrhage. (Figure 3D) Compared to anterior uveal melanomas, choroidal melanoma is less likely to cause secondary glaucoma (2%). [2, 3] Secondary glaucoma has been reported in both known and previously undiagnosed cases of choroidal melanoma. [2, 3] Secondary glaucoma has also been termed as the ‘masquerading sign’ for uveal melanomas in the literature. [40, 41] The reported mechanisms for raised IOP include iris neovascularization, direct angle invasion, angle closure, hyphema and suprachoroidal hemorrhage. [1, 3] Globe sparing episcleral plaque brachytherapy is commonly used modality of treatment followed by proton beam radiotherapy and local resection. Enucleation is warranted for large melanomas not amenable to radiotherapy or those causing absolute glaucoma. For control of IOP, medical management, transscleral cyclophotocoagulation or laser trabeculoplasty can be tried. In contrast to anterior uveal melanomas, for choroidal melanoma not involving ciliary body or iris root MIGS, filtering and shunting surgery can be considered in eyes where complete tumor regression has been achieved. [3]
Contrary to traditional thinking, a recent study of analysis of glaucoma drainage device surgery for control of IOP in treated (totally regressed) uveal melanoma (both anterior as well as posterior) did not find a greater risk of local or extraocular recurrence after a median follow up of 2 years. [42] However, further analysis with larger sample size and longer follow up duration is warranted, and caution needs to be exercised while deciding regarding treatment options for control of IOP in such cases.
Choroidal metastasis represents around 90% of total uveal metastasis. Breast, lung, kidney, gastrointestinal tract, and cutaneous melanoma are the leading sites of primary malignancies. [32] (Figure 4A) Secondary glaucoma has been reported in 1% of cases with mechanism being angle closure and iris neovascularization. [24] Plaque brachytherapy, photodynamic therapy, EBRT, systemic chemotherapy or enucleation are available management options for choroidal metastasis. Secondary glaucoma can be managed like choroidal melanoma related secondary glaucoma described above.
Figure 4.
(A) Montage fundus image of choroidal metastasis from breast carcinoma presenting with multifocal lesions, retinal detachment and raised IOP. (B) Posterior pole fundus image of the same patient (A) showing radiation retinopathy after stereotactic radiotherapy (45Gy) (C) Fundus picture showing circumscribed choroidal hemangioma.
Choroidal hemangioma is a benign vascular hamartoma presenting as an orange- red mass showing hyperreflectivity on ultrasound B scan. It can be solitary or ‘circumscribed’ or ‘diffuse’. (Figure 4C) Circumscribed tumors cause secondary glaucoma in 1% of cases of due to angle closure and iris neovascularization due to total retinal detachment. [43] Diffuse choroidal hemangiomas appear as diffuse choroidal thickening and have been said to give ‘tomato-catsup’ fundus impression. They are known to be associated with Sturge–Weber syndrome (SWS). The raised IOP found in SWS has been found to be due to developmental anomalies of anterior chamber and raised episcleral venous pressure and often unrelated to diffuse choroidal hemangioma. Total retinal detachment and iris neovascularization can rarely cause secondary glaucoma in such eyes. [3] Management options include plaque brachytherapy (for circumscribed as well as to the nodular component if any, in the diffuse variant), photodynamic therapy or EBRT to halt tumor growth and control of subretinal fluid to achieve stabilization of visual acuity. [44, 45] For control of IOP, medical management, transscleral cyclophotocoagulation, laser trabeculoplasty, MIGS, filtering or shunting surgeries can be performed.
3.2.2 Retinal tumors
Retinoblastoma is the most common primary intraocular malignancy found in pediatric population with estimated incidence of 1:16,000–18,000 live births. [46] White reflex or ‘leukocoria’ is the most common presenting feature of retinoblastoma. Presence of an intraocular mass with presence of intratumoral calcifications demonstrated on ultrasound B scan and/or computed tomography (CT) scan is pathognomic of the malignancy. Retinoblastoma can show endophytic, exophytic, diffuse or mixed growth pattern with presence of vitreous seeds. Secondary glaucoma is reported in 17% of cases due to iris neovascularization (5%), angle closure (1%), anterior tumor seeding (<1%) or related to hyphema (<1%). [24] Retinoblastoma is an important differential diagnosis to be considered in any pediatric uveitis or glaucoma. Delayed presentation and often misdiagnosis as either only intraocular inflammation or glaucoma can result in delay in retinoblastoma treatment and greater risk of metastasis with poor prognosis. [1, 2] Neovascular glaucoma is the most common cause of retinoblastoma related raised IOP which is postulated to be mediated by vascular endothelial growth factor (VEGF) produced by necrotic and hypoxic tumor cells. [47] (Figure 5A and B) Other causes include pupillary block and tumor seeding in anterior chamber angle. Glaucoma in retinoblastoma has been reported to be associated with metastasis related to optic nerve invasion by tumor cells. [48] Presence of secondary glaucoma at presentation has also been identified as a predictor for high-risk histopathological features of retinoblastoma along with prolonged duration of symptoms. [49] Management options for retinoblastoma depend upon age at presentation, laterality as well as grouping and staging of the disease. Modalities used are systemic chemotherapy, intra-arterial chemotherapy, intravitreal chemotherapy, focal lasers, cryotherapy, plaque radiotherapy and Orbital radiotherapy. Non-salvageable and advanced tumor containing eyes need enucleation. The IOP can get controlled as tumor regression is achieved in some eyes precluding any need of separate management for the glaucoma. Medical management, laser trabeculoplasty or cyclophotocoagulation can be tried in selected eyes post-tumor treatment. Any filtering surgeries, shunting procedures, MIGS should be avoided in tumor containing eyes to avoid extra-scleral extension of tumor.
Figure 5.
(A) Group E retinoblastoma presenting with total retinal detachment, iris neovascularization and neovascular glaucoma (clinical risk factors) (B) iris neovascularization (black arrowhead) (C) post chemotherapy tumor necrosis induced vitreous hemorrhage and secondary glaucoma in an eye with retinoblastoma (D) secondary glaucoma and sterile orbital inflammation in a case of retinoblastoma on systemic chemotherapy.
4. Glaucoma associated with management of ocular tumors
Radiotherapy associated glaucoma- Radiotherapy is increasingly being used for management of intraocular tumors as means of eye and vision salvage. The modalities in practice are plaque brachytherapy (Iodine125, Palladium103, Ruthenium106), proton beam radiotherapy, stereotactic radiotherapy, and external beam radiotherapy. Glaucoma has been reported as one of the common side effects of radiation. The common cause of radiation induced raised IOP is development of iris neovascularization and subsequent neovascular glaucoma (NVG). Pathogenesis of iris neovascularization is multifactorial, including increased release angiogenic factors, anterior and posterior segment ischemia, vascular occlusion, tumor hypoxia, radiation retinopathy (Figure 4D) and optic neuropathy. [50] Secondary open angle glaucoma has also been noted in radiotherapy treated tumor eyes apart from NVG. After Iodine 125 plaque brachytherapy for uveal melanoma reported Kaplan–Meier estimated risk of secondary open angle glaucoma was 15% at 5 years with higher incidence in earlier postoperative period, whereas estimated incidence of NVG was 13% at 5 years. [51] The risk factors for development of radiation induced secondary glaucoma (both open angle and NVG) include larger tumor size, higher radiation dose, involvement of iris and ciliary body and presence of retinal detachment. [2, 51, 52, 53] Proton beam radiotherapy for uveal melanoma has reported NVG rate of 12–31% at 5 years with greater tumor height, older age at presentation and larger tumor diameter as identified risk factors. [54] Anti- VEGF injections as well as pan-retinal photocoagulation for treatment of ocular ischemia or radiation retinopathy might be useful to reduce rate of neovascular glaucoma induced by radiation retinopathy.
Tumor necrosis induced glaucoma- Hemolytic glaucoma (Ghost cell glaucoma) is known to occur in tumor containing eyes with vitreous hemorrhage following systemic chemotherapy or focal tumor treatments. It occurs due to obstruction of trabecular meshwork by red blood cells, their debris and macrophages filled with hemorrhagic components from phagocytosis of vitreous hemorrhage. It can be observed in retinoblastoma eyes showing tumor necrosis as well as vitreous hemorrhage post chemotherapy. (Figure 5C and D).
4.1 Special considerations
In instances where patient seeks attention with glaucoma as the presenting feature, a detailed work up involving slit lamp examination, dilated fundus examination, gonioscopy of anterior chamber angle, high frequency ultrasound microscopy (UBM) and ultrasound B scan of posterior segment will provide essential clues about diagnosis of possible intraocular tumor. Initial management with IOP lowering medications should be the first line treatment with simultaneous investigation for underlying cause. [2] When the tumor presents with atypical features or causes diagnostic uncertainty, a diagnostic biopsy is warranted in managing such case of secondary glaucoma. [55] Systemic work up with the help of positron emission tomography (PET) CT scan can come in handy while evaluating a case of possible secondary ocular metastasis by highlighting an existing primary malignancy elsewhere.
4.2 Orbital tumor related glaucoma
The orbit is a pyramidal structure limited by bony walls except from anteriorly where it is limited by soft tissue i.e., orbital septum and eyelids. Thus, any instances of increased orbital volume may lead to increased hydrostatic pressure in the orbit. This increased orbital pressure can have a direct effect of IOP by raised hydrostatic pressure around the eye or indirect effect by compression of episcleral and orbital veins raising venous pressure. The episcleral venous system mainly empties into the anterior ciliary and superior ophthalmic veins and eventually draining into cavernous sinus. Thus, any disease process that might affect this drainage pathway due to structural, occlusive, compressive, or destructive pathophysiology can alter and raise IOP causing secondary glaucoma. [4] Focal mass effect due to tumors or swollen extraocular muscles may directly compress the eye globe leading to raised IOP while, vascular changes affecting venous pressure due to compression of episcleral veins or altered arterio-venous flow may also increase IOP indirectly.
Table 1 summarizes the broad etiological classes of orbital tumors leading to rise in IOP and secondary glaucoma. Open angle glaucoma is more common in the listed diseases however, angle closure along with acute angle closure glaucoma has also been reported in variety of pathologies.
Sr. No
Etiology
Example
1
Inflammatory
Non-specific Orbital Inflammatory Disease (NSOID) Thyroid eye disease Orbital granulomatous disease Orbital Foreign Body granuloma Juvenile Xanthogranuloma (orbital histiocytosis)
2
Vascular
Carotid-cavernous fistula (Direct or Indirect) Arterio-venous malformations Orbital varix Cavernous hemangioma Orbital lymphangioma
3
Neoplastic
Orbital osteoma Lymphoproliferative disorders Optic nerve glioma Optic nerve meningioma Neurofibromatosis Lacrimal gland tumors Primary orbital melanoma
4
Secondary
Orbital metastasis (from breast, lung carcinoma) Orbital chloroma (Acute myeloid leukemia) Multiple myeloma Invasive (secondary) ocular melanoma Extra-scleral (orbital) extension of retinoblastoma Invasive (secondary) squamous cell carcinoma
Etiologic classification of orbital tumors causing secondary glaucoma.
IOP evaluation should be routinely performed when evaluating a case of suspected orbital tumor or pathology. Gonioscopic examination can provide essential information regarding the status of the anterior chamber angle as well as show evidence of blood in Schlemm’s canal as the distinguishing feature of elevated venous pressure. The treatment of primary orbital pathology along with medical management of raised IOP is indicated for control of orbital tumor related secondary glaucoma.
In sum, glaucoma can be associated with various ocular as well as orbital tumors. It may constitute one of the many manifesting clinical features or be the sole presenting feature of these pathologies. Appropriate diagnosis and timely management of these tumors can help eye and vision salvage; however, a misdiagnosis or delayed diagnosis due to initial presentation as secondary glaucoma can lead to catastrophic sequel necessitating enucleation and can pose a greater risk to life. A thorough clinical evaluation, use of ancillary testing and stepwise management can help achieve optimum visual outcome and overall survival in cases with ocular or orbital tumors.
Acknowledgments
The author acknowledges contributions from Dr. Paul T Finger MD, FACS, Director- The New York Eye Cancer Center, New York, USA and Dr. Santosh G Honavar MD, FACS, Director- Ocular Oncology Services, Centre For Sight Hospital, Hyderabad, India for select clinical images used in this chapter.
\n',keywords:"ocular tumors, secondary glaucoma, orbital tumors, angle infiltration, neovascular glaucoma, neoplastic glaucoma",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/75840.pdf",chapterXML:"https://mts.intechopen.com/source/xml/75840.xml",downloadPdfUrl:"/chapter/pdf-download/75840",previewPdfUrl:"/chapter/pdf-preview/75840",totalDownloads:308,totalViews:0,totalCrossrefCites:0,dateSubmitted:"December 3rd 2020",dateReviewed:"February 28th 2021",datePrePublished:"April 27th 2021",datePublished:"October 13th 2021",dateFinished:"March 20th 2021",readingETA:"0",abstract:"Secondary glaucoma due to ocular and orbital tumors can be a diagnostic challenge. It is an essential differential to consider in eyes with a known tumor as well as with unilateral, atypical, asymmetrical, or refractory glaucoma. Various intraocular neoplasms including iris and ciliary body tumors (melanoma, metastasis, lymphoma), choroidal tumors (melanoma, metastasis), vitreo-retinal tumors (retinoblastoma, medulloepithelioma, vitreoretinal lymphoma) and orbital tumors (extra-scleral extension of choroidal melanoma or retinoblastoma, primary orbital tumors) etc. can lead to raised intraocular pressure. The mechanisms for glaucoma include direct (tumor invasion or infiltration related outflow obstruction, trabecular meshwork seeding) or indirect (angle closure from neovascularization or anterior displacement or compression of iris) or elevated episcleral venous pressure secondary to orbital tumors. These forms of glaucoma need unique diagnostic techniques and customized treatment considerations as they often pose therapeutic dilemmas. This chapter will review and discuss the mechanisms, clinical presentations and management of glaucoma related to ocular and orbital tumors.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/75840",risUrl:"/chapter/ris/75840",signatures:"Sonal P. Yadav",book:{id:"10343",type:"book",title:"Ocular Hypertension",subtitle:"The Knowns and Unknowns",fullTitle:"Ocular Hypertension - The Knowns and Unknowns",slug:"ocular-hypertension-the-knowns-and-unknowns",publishedDate:"October 13th 2021",bookSignature:"Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83969-338-0",printIsbn:"978-1-83969-337-3",pdfIsbn:"978-1-83969-339-7",isAvailableForWebshopOrdering:!0,editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342776",title:"Dr.",name:"Sonal P.",middleName:null,surname:"Yadav",fullName:"Sonal P. Yadav",slug:"sonal-p.-yadav",email:"sonal.yadav@hvdeh.org",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Mechanisms of glaucoma secondary to ocular and orbital tumors",level:"1"},{id:"sec_3",title:"3. Ocular tumor related glaucoma",level:"1"},{id:"sec_3_2",title:"3.1 Anterior segment tumors",level:"2"},{id:"sec_4_2",title:"3.2 Posterior segment tumors",level:"2"},{id:"sec_4_3",title:"3.2.1 Choroidal tumors",level:"3"},{id:"sec_5_3",title:"3.2.2 Retinal tumors",level:"3"},{id:"sec_8",title:"4. Glaucoma associated with management of ocular tumors",level:"1"},{id:"sec_8_2",title:"4.1 Special considerations",level:"2"},{id:"sec_9_2",title:"4.2 Orbital tumor related glaucoma",level:"2"},{id:"sec_11",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Shields CL, Shields JA, Shields MB, Augsburger JJ. Prevalence and mechanisms of secondary intraocular pressure elevation in eyes with intraocular tumors. Ophthalmology 1987; 94:839-846'},{id:"B2",body:'Radcliffe NM, Finger PT. Eye cancer related glaucoma: current concepts. Survey of ophthalmology. 2009 Jan 1;54(1):47-73.'},{id:"B3",body:'Camp DA, Yadav P, Dalvin LA, Shields CL. Glaucoma secondary to intraocular tumors: mechanisms and management. Current Opinion in Ophthalmology. 2019 Mar 1;30(2):71-81.'},{id:"B4",body:'Nassr MA, Morris CL, Netland PA, Karcioglu ZA. Intraocular pressure change in orbital disease. Survey of ophthalmology. 2009 Sep 1;54(5):519-44.'},{id:"B5",body:'Foulds WS, Lee WR. The significance of glaucoma in the management of melanomas of the anterior segment. Trans Ophthalmol Soc UK. 1983;103(Pt 1):59—63'},{id:"B6",body:'Shields CL, Shah SU, Bianciotto CG, Emrich J, Komarnicky L, Shields JA. Iris melanoma management with iodine-125 plaque radiotherapy in 144 patients: impact of melanoma-related glaucoma on outcomes. Ophthalmology. 2013 Jan 1;120(1):55-61.'},{id:"B7",body:'Demirci H, Mashayekhi A, Shields CL, et al. Iris melanocytoma: clinical features and natural course in 47 cases. Am J Ophthalmol 2005; 139: 468-475.'},{id:"B8",body:'Fineman MS, Eagle RC Jr, Shields JA, et al. Melanocytomalytic glaucoma in eyes with necrotic iris melanocytoma. Ophthalmology 1998; 105: 492-496.'},{id:"B9",body:'Cialdini AP, Sahel JA, Jalkh AE, et al. Malignant transformation of an iris melanocytoma. A case report. Graefes Arch Clin Exp Ophthalmol. 1989;227(4):348—5'},{id:"B10",body:'Finger PT, Latkany P, Kurli M, et al The Finger iridectomy technique: small incision biopsy of anterior segment tumours British Journal of Ophthalmology 2005;89:946-949.'},{id:"B11",body:'Fountain TR, Goldberg MF, Green WR. Glaucoma and a melanocytic iris lesion in an-18-year-old. In: Schachat AP, editor. Current practice in ophthalmology. St. Louis: Mosby, 1992:371-380.'},{id:"B12",body:'Chen MJ, Liu JL, Li WY, et al. Diode laser transscleral cyclophotocoagulation in the treatment of refractory glaucoma with iris melanocytoma. J Chin Med Assoc 2008; 71:546-548.'},{id:"B13",body:'Shields JA, Annesley WH Jr, Spaeth GL. Necrotic melanocytoma of iris with secondary glaucoma. Am J Ophthalmol 1977;84:826-829.'},{id:"B14",body:'Shields CL, Shields JA, Materin M, et al. Iris melanoma: risk factors for metastasis in 169 consecutive patients. Ophthalmology. 2001;108:172-178.'},{id:"B15",body:'Khan S, Finger PT, Yu GP, et al. Clinical and pathologic characteristics of biopsy-proven iris melanoma: a multicenter international study. Arch Ophthalmol. 2012;130(1): 57-64.'},{id:"B16",body:'Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011; 118:1881-1885.'},{id:"B17",body:'Demirci H, Shields CL, Shields JA, et al. Ring melanoma of the anterior chamber angle: a report of fourteen cases. Am J Ophthalmol 2001; 132:336-342.'},{id:"B18",body:'Van Buskirk EM, Leure-duPree AE. Pathophysiology and electron microscopy of melanomalytic glaucoma. Am J Ophthalmol. 1987;85(2):160—6'},{id:"B19",body:'Demirci H, Shields CL, Shields JA, et al. Diffuse iris melanoma: a report of 25 cases. Ophthalmology 2002; 109:1553-1560.'},{id:"B20",body:'Shields CL, Kaliki S, Furuta M, et al. Iris melanoma features and prognosis in children and adults in 317 patients. J Am Assoc Pediatr Ophthalmol Strabismus 2012;16:10-6.'},{id:"B21",body:'Chaugule SS, Finger PT. Regression patterns of iris melanoma after palladium-103 (103Pd) plaque brachytherapy. Ophthalmology. 2017 Jul 1;124(7):1023-30.'},{id:"B22",body:'Girkin CA, Goldberg I, Mansberger SL, et al. Management of iris melanoma with secondary glaucoma. J Glaucoma 2002; 11:71-74.'},{id:"B23",body:'Bianciotto C, Shields CL, Kang B, Shields JA. Treatment of iris melanoma and secondary neovascular glaucoma using bevacizumab and plaque radiotherapy. Arch Ophthalmol 2008; 126:578-579.'},{id:"B24",body:'Shields JA, Shields CL, Shields MB. Glaucoma associated with intraocular tumors. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas, 2nd ed. St. Louis, MO: Mosby; 1996. pp. 1131-1139.'},{id:"B25",body:'Demirci H, Shields CL, Shields JA, Honavar SG, Eagle RC Jr: Ring melanoma of the ciliary body: report on twenty-three patients. Retina 2002;22:698-706; quiz 852-853'},{id:"B26",body:'Gunduz K, Shields CL, Shields JA, et al. Plaque radiotherapy of uveal melanoma with predominant ciliary body involvement. Arch Ophthalmol 1999;117:170-177'},{id:"B27",body:'Zhao M, Mu Y, Dang Y, Zhu Y. Secondary glaucoma as initial manifestation of ring melanoma: a case report and review of the literature. Int J Clin Exp Pathol 2014; 7:8163-8169.'},{id:"B28",body:'Lee V, Cree IA, Hungerford JL. Ring melanoma—a rare cause of refractory glaucoma. Br J Ophthalmol 1999; 83:194-198.'},{id:"B29",body:'Kaliki S, Eagle RC, Grossniklaus H, et al. Inadvertent implantation of aqueous tube shunts in glaucomatous eyes with unrecognized intraocular neoplasms: report of 5 cases. JAMA Ophthalmol 2013; 131:925-928.'},{id:"B30",body:'Gragoudas ES, Lane AM, Munzenrider J, Egan KM, Li W: Long-term risk of local failure after proton therapy for choroidal/ciliary body melanoma. Trans Am Ophthalmol Soc 2002; 100: 43-48; discussion 48-49.'},{id:"B31",body:'Pasternak S, Erwenne CM, Nicolela MT: Subconjunctival spread of ciliary body melanoma after glaucoma filtering surgery: a clinicopathological case report. Can J Ophthalmol 2005; 40: 69-71'},{id:"B32",body:'Shields CL, Welch RJ, Malik K, et al. Uveal metastasis: clinical features and survival outcomes of 2214 tumors in 1111 patients based on primary tumor origin. Middle East Afr J Ophthalmol 2018; 25:81-90.'},{id:"B33",body:'Shields CL, Kaliki S, Crabtree GS, et al. Iris metastasis from systemic cancer in 104 patients: the 2014 Jerry A. Shields Lecture. Cornea 2015; 34:42-48.'},{id:"B34",body:'Seidman CJ, Finger PT, Silverman JS, Oratz R. Intravitreal bevacizumab in the management of breast cancer iris metastasis. Retin Cases Brief Rep 2017; 11:47-50'},{id:"B35",body:'Aydin A, Tezel TH. Use of intravitreal bevacizumab for the treatment of secondary glaucoma caused by metastatic iris tumor. J Glaucoma 2018; 27:e113–e116.'},{id:"B36",body:'Chan CC, Buggage RR, Nussenblatt RB. Intraocular lymphoma. Curr Opin Ophthalmol. 2002;13(6):411—8'},{id:"B37",body:'Gauthier AC, Nguyen A, Munday WR, et al. Anterior chamber non-Hodgkin lymphoma of the iris masquerading as uveitis-glaucoma-hyphema syndrome. Ocul Oncol Pathol 2016; 2:230-233'},{id:"B38",body:'Bawankar P, Das D, Bhattacharjee H, et al. Systemic diffuse large B-cell lymphoma masquerading as neovascular glaucoma. Indian J Ophthalmol 2018; 66:317-319.'},{id:"B39",body:'Matano S, Ohta T, Nakamura S, et al. Leukemic hypopyon in acute myelogenous leukemia. Ann Hematol. 2000;79(8): 455—8'},{id:"B40",body:'Othman IS, Assem M, Zaki IM. Secondary glaucoma as initial manifestation of uveal melanoma. Saudi Journal of Ophthalmology. 2013 Jul 1;27(3):203-8.'},{id:"B41",body:'Vempuluru VS, Jakati S, Krishnamurthy R, Senthil S, Kaliki S. Glaucoma as the presenting sign of intraocular tumors: beware of the masquerading sign. International ophthalmology. 2020 Mar 20:1-7.'},{id:"B42",body:'Fatehi N, McCannel T, A, Giaconi J, Caprioli J, Law S, K, Nouri-Mahdavi K: Outcomes of Glaucoma Drainage Device Surgery in Eyes with Treated Uveal Melanoma. Ocul Oncol Pathol 2019;5:20-27. doi: 10.1159/000488056'},{id:"B43",body:'Shields CL, Honavar SG, Shields JA, et al. Circumscribed choroidal hemangioma: clinical manifestations and factors predictive of visual outcome in 200 cases. Ophthalmology 2001; 108:2237-2248.'},{id:"B44",body:'Finger PT. Radiation therapy for exudative choroidal hemangioma. Indian journal of ophthalmology. 2019 May;67(5):579.'},{id:"B45",body:'Sen M, Honavar SG. Circumscribed choroidal hemangioma: An overview of clinical manifestation, diagnosis and management. Indian journal of ophthalmology. 2019 Dec;67(12):1965.'},{id:"B46",body:'Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol 2009; 93:1129-1131.'},{id:"B47",body:'Kvanta A, Steen B, Seregard S. Expression of vascular endothelial growth factor (VEGF) in retinoblastoma but not in posterior uveal melanoma. Exp Eye Res. 1996;63(5): 511—8'},{id:"B48",body:'Shields CL, Shields JA, Baez K, et al: Optic nerve invasion of retinoblastoma. Metastatic potential and clinical risk factors. Cancer 73:692-8, 1994'},{id:"B49",body:'Kaliki S, Srinivasan V, Gupta A, Mishra DK, Naik MN. Clinical features predictive of high-risk retinoblastoma in 403 Asian Indian patients: a case-control study. Ophthalmology. 2015 Jun 1;122(6):1165-72.'},{id:"B50",body:'Sivak-Callcott JA, O’Day DM, Gass JD, et al. Evidence-based recommendations for the diagnosis and treatment of NVG. Ophthalmology 2001;108:1767-1776'},{id:"B51",body:'Kim EA, Salazar D, McCannel CA, Kamrava M, Demanes DJ, Lamb J, Caprioli J, McCannel TA. Glaucoma After Iodine-125 Brachytherapy for Uveal Melanoma: Incidence and Risk Factors. Journal of glaucoma. 2020 Jan 8;29(1):1-0.'},{id:"B52",body:'Finger PT. Plaque radiation therapy for malignant melanomaof the iris and ciliary body. Am J Ophthalmol. 2001; 132(3):328—35'},{id:"B53",body:'Finger PT. Radiation therapy for choroidal melanoma. Surv Ophthalmol. 1997;42(3):215—32'},{id:"B54",body:'Mishra KK, Daftari IK, Weinberg V, Cole T, Quivey JM, Castro JR, Phillips TL, Char DH. Risk factors for neovascular glaucoma after proton beam therapy of uveal melanoma: a detailed analysis of tumor and dose–volume parameters. International Journal of Radiation Oncology* Biology* Physics. 2013 Oct 1;87(2):330-6.'},{id:"B55",body:'Gombos D.S. (2019) Localised Therapy and Biopsies of Intraocular Tumors. In: Chaugule S., Honavar S., Finger P. (eds) Surgical Ophthalmic Oncology. Springer, Cham.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Sonal P. Yadav",address:"sonal.yadav@hvdeh.org",affiliation:'
Dept of Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, PBMA’s H V Desai Eye Hospital, Pune, Maharashtra, India
'}],corrections:null},book:{id:"10343",type:"book",title:"Ocular Hypertension",subtitle:"The Knowns and Unknowns",fullTitle:"Ocular Hypertension - The Knowns and Unknowns",slug:"ocular-hypertension-the-knowns-and-unknowns",publishedDate:"October 13th 2021",bookSignature:"Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83969-338-0",printIsbn:"978-1-83969-337-3",pdfIsbn:"978-1-83969-339-7",isAvailableForWebshopOrdering:!0,editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"101800",title:"Prof.",name:"Alan",middleName:null,surname:"Cornell",email:"alan.cornell@wits.ac.za",fullName:"Alan Cornell",slug:"alan-cornell",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"2",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}},booksEdited:[],chaptersAuthored:[{id:"35477",title:"Constraining the Couplings of a Charged Higgs to Heavy Quarks",slug:"constraining-the-couplings-of-a-charged-higgs-to-heavy-quarks",abstract:null,signatures:"A. S. Cornell",authors:[{id:"101800",title:"Prof.",name:"Alan",surname:"Cornell",fullName:"Alan Cornell",slug:"alan-cornell",email:"alan.cornell@wits.ac.za"}],book:{id:"1616",title:"Particle Physics",slug:"particle-physics",productType:{id:"1",title:"Edited Volume"}}},{id:"54795",title:"Semi-Analytic Techniques for Solving Quasi-Normal Modes",slug:"semi-analytic-techniques-for-solving-quasi-normal-modes",abstract:"In this chapter, we discuss an approach to obtaining black hole quasi-normal modes known as the asymptotic iteration method, which was initially developed in mathematics as a new way to solve for eigenvalues in differential equations. Furthermore, we demonstrate that the asymptotic iteration method allows one to also solve for the radial quasi-normal modes on a variety of black hole spacetimes for a variety of perturbing fields. A specific example for Dirac fields in a general dimensional Schwarzschild black hole spacetime is given, as well as for spin-3/2 field quasi-normal modes.",signatures:"Chun-Hung Chen, Hing-Tong Cho and Alan S. Cornell",authors:[{id:"101800",title:"Prof.",name:"Alan",surname:"Cornell",fullName:"Alan Cornell",slug:"alan-cornell",email:"alan.cornell@wits.ac.za"},{id:"199770",title:"Prof.",name:"Hing-Tong",surname:"Cho",fullName:"Hing-Tong Cho",slug:"hing-tong-cho",email:"htcho@mail.tku.edu.tw"},{id:"199771",title:"Dr.",name:"Chun-Hung",surname:"Chen",fullName:"Chun-Hung Chen",slug:"chun-hung-chen",email:"chunhungchen928@gmail.com"}],book:{id:"5918",title:"Trends in Modern Cosmology",slug:"trends-in-modern-cosmology",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"102886",title:"Prof.",name:"Brian Albert",surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/102886/images/system/102886.jpeg",biography:"Professor Brian Albert Robson obtained MSc, PhD and DSc degrees in Physics from the University of Melbourne, Australia. He is a Fellow of both the Australian Institute of Physics and the UK Institute of Physics. Currently he is an Honorary Professor in the Research School of Physics, The Australian National University, Canberra. During his academic career, he served for four years as Officer-in-Charge of the Australian National University’s first computer, for nine years as Head of the Department of Theoretical Physics, and for two years as Associate Director of the Research School of Physics and Engineering. Professor Robson has published more than 150 scientific publications mainly in the areas of nuclear physics, particle physics, gravitation and cosmology.",institutionString:"The Australian National University",institution:{name:"Australian National University",institutionURL:null,country:{name:"Australia"}}},{id:"104091",title:"Prof.",name:"Kihyeon",surname:"Cho",slug:"kihyeon-cho",fullName:"Kihyeon Cho",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Korea Institute of Science and Technology",institutionURL:null,country:{name:"Korea, South"}}},{id:"105859",title:"Dr.",name:"Dr Avijit K",surname:"Ganguly",slug:"dr-avijit-k-ganguly",fullName:"Dr Avijit K Ganguly",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Banaras Hindu University",institutionURL:null,country:{name:"India"}}},{id:"115462",title:"Dr.",name:"Joseph",surname:"Bevelacqua",slug:"joseph-bevelacqua",fullName:"Joseph Bevelacqua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/115462/images/system/115462.jpeg",biography:"Joseph John Bevelacqua, Ph.D., CHP, RRPT, is the President of Bevelacqua Resources, Richland, Washington, USA, a provider of physics-related consulting services. A theoretical nuclear physicist by training, Dr. Bevelacqua is a Certified Health Physicist, Registered Radiation Protection Technologist, and Certified Senior Reactor Operator and has over 45 years of professional experience. He was a key player in the Three Mile Island and Hanford cleanup activities, and he is an active researcher with over 185 publications and 4 textbooks. His research areas include theoretical nuclear physics, theoretical particle physics, cosmic radiation, astrophysics, planetary studies, earth science, solar physics, cancer therapy using heavy ions and microspheres, gravitation, group theory, mathematical physics, and applied health physics. Additional effort has focused on muon and tau colliders and theoretical studies of a tetraquark, pentaquark, and hexaquark systems. Studies involving quark fusion have also been published. Recent research has involved space medicine, physiological and radiological effects of manned space missions, COVID-19 treatment using low-dose radiation therapy, neutron excess nuclei formation in stellar collisions, and superheavy nuclei. He received a California University’s Professional Excellence Award for his accomplishments. Dr. Bevelacqua is a member of numerous professional organizations including the American Physical Society, American Nuclear Society, American Mathematical Association, Health Physics Society, and Royal Astronomical Society of Canada.",institutionString:"Bevelacqua Resources, United States",institution:null},{id:"199688",title:"Dr.",name:"Weiguang",surname:"Cui",slug:"weiguang-cui",fullName:"Weiguang Cui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"199770",title:"Prof.",name:"Hing-Tong",surname:"Cho",slug:"hing-tong-cho",fullName:"Hing-Tong Cho",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"199771",title:"Dr.",name:"Chun-Hung",surname:"Chen",slug:"chun-hung-chen",fullName:"Chun-Hung Chen",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"200410",title:"Dr.",name:"Nicholas",surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"200618",title:"Prof.",name:"Paraskevi",surname:"Divari",slug:"paraskevi-divari",fullName:"Paraskevi Divari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"205491",title:"Dr.",name:"Youcai",surname:"Zhang",slug:"youcai-zhang",fullName:"Youcai Zhang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"editorial-policies",title:"Editorial Policies",intro:'
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\n
For Editorial Policies for journals please consult individual journal pages.
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
With the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
IntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\n
Conflicts of Interest Policy
\\n\\n
In line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\n
\\n\\t
A substantial contribution to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work
\\n\\t
Participation in drafting or revising the work
\\n\\t
Approval of the manuscript version to be published
All scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
The Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
To identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
When faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\n
IntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\n
In order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\n
Translation Policy
\\n\\n
IntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
At IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
All chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\n
Online First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\n
Chapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\n
You are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\n
If there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\n
Readers and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\n
Access policy
\\n\\n
IntechOpen books are available online by accessing all published content on a chapter level.
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
With the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
IntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\n
Conflicts of Interest Policy
\n\n
In line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\n
\n\t
A substantial contribution to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work
\n\t
Participation in drafting or revising the work
\n\t
Approval of the manuscript version to be published
All scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
The Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
To identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
When faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\n
IntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\n
In order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\n
Translation Policy
\n\n
IntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
At IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
All chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\n
Online First Chapters are considered published on the day they are posted and are citable from that date.
\n\n
Chapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\n
You are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\n
If there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\n
Readers and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\n
Access policy
\n\n
IntechOpen books are available online by accessing all published content on a chapter level.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11507",title:"New Generation of Sustainable Smart Cities",subtitle:null,isOpenForSubmission:!0,hash:"dc693757b86ab8742367a38cda6cb622",slug:null,bookSignature:"Prof. Amjad Almusaed and Prof. Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/11507.jpg",editedByType:null,editors:[{id:"446856",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11510",title:"New Trends in Electric Machines - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f57b5e35a1bf18acd4fd0d41fe59f49c",slug:null,bookSignature:"Dr. Miguel Delgado Prieto, Dr. José Alfonso Antonino-Daviu and Dr. Roque A. Osornio-Rios",coverURL:"https://cdn.intechopen.com/books/images_new/11510.jpg",editedByType:null,editors:[{id:"234568",title:"Dr.",name:"Miguel",surname:"Delgado Prieto",slug:"miguel-delgado-prieto",fullName:"Miguel Delgado Prieto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11514",title:"Vision Sensors - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"6da8427ef3062c142b4e9650a5fed534",slug:null,bookSignature:"Dr. Francisco J. Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/11514.jpg",editedByType:null,editors:[{id:"2868",title:"Dr.",name:"Francisco",surname:"Gallegos-Funes",slug:"francisco-gallegos-funes",fullName:"Francisco Gallegos-Funes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11515",title:"Light-Emitting Diodes - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"08a7e9ae6b64e49a2118515e285b78da",slug:null,bookSignature:"Dr. Chandra Shakher Pathak and Mr. Uday Dadwal",coverURL:"https://cdn.intechopen.com/books/images_new/11515.jpg",editedByType:null,editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11518",title:"The Acoustics of Materials - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"769f942393275479acca64e4f4fea958",slug:null,bookSignature:"Dr. Bankole Kolawole Fasanya and Dr. Sridhar Krishnamurti",coverURL:"https://cdn.intechopen.com/books/images_new/11518.jpg",editedByType:null,editors:[{id:"214494",title:"Dr.",name:"Bankole",surname:"Fasanya",slug:"bankole-fasanya",fullName:"Bankole Fasanya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:89},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1239",title:"Learning Disability",slug:"learning-disability",parent:{id:"233",title:"Cognitive Science",slug:"cognitive-science"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:122,numberOfWosCitations:27,numberOfCrossrefCitations:32,numberOfDimensionsCitations:45,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1239",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10910",title:"Learning Disabilities",subtitle:"Neurobiology, Assessment, Clinical Features and Treatments",isOpenForSubmission:!1,hash:"0999e5f759c2380ae5a4a2ee0835c98d",slug:"learning-disabilities-neurobiology-assessment-clinical-features-and-treatments",bookSignature:"Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:"Edited by",editors:[{id:"103586",title:null,name:"Sandro",middleName:null,surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10228",title:"Dyslexia",subtitle:null,isOpenForSubmission:!1,hash:"6b4060d23ac02fcb4a11313ec1c911c6",slug:"dyslexia",bookSignature:"Jonathan Glazzard and Samuel Stones",coverURL:"https://cdn.intechopen.com/books/images_new/10228.jpg",editedByType:"Edited by",editors:[{id:"294281",title:"Prof.",name:"Jonathan",middleName:null,surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5878",title:"Learning Disabilities",subtitle:"An International Perspective",isOpenForSubmission:!1,hash:"233671027a40a86828b81f5f6094c4df",slug:"learning-disabilities-an-international-perspective",bookSignature:"Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/5878.jpg",editedByType:"Edited by",editors:[{id:"28738",title:"Dr.",name:"Carolyn S",middleName:null,surname:"Ryan",slug:"carolyn-s-ryan",fullName:"Carolyn S Ryan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"715",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!1,hash:"7cf7910a2068cff1fdcdfd5ed3c25cc7",slug:"learning-disabilities",bookSignature:"Wichian Sittiprapaporn",coverURL:"https://cdn.intechopen.com/books/images_new/715.jpg",editedByType:"Edited by",editors:[{id:"73395",title:"Dr.",name:"Phakkharawat",middleName:null,surname:"Sittiprapaporn",slug:"phakkharawat-sittiprapaporn",fullName:"Phakkharawat Sittiprapaporn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31205",doi:"10.5772/31726",title:"Could Motor Development Be an Emergent Property of Vestibular Stimulation and Primary Reflex Inhibition? A Tentative Approach to Sensorimotor Therapy",slug:"could-motor-development-be-an-emergent-property-partly-of-vestibular-stimulation-and-primary-reflex-",totalDownloads:4266,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"715",slug:"learning-disabilities",title:"Learning Disabilities",fullTitle:"Learning Disabilities"},signatures:"Mats Niklasson",authors:[{id:"88435",title:"MSc.",name:"Mats",middleName:null,surname:"Niklasson",slug:"mats-niklasson",fullName:"Mats Niklasson"}]},{id:"31209",doi:"10.5772/34299",title:"Disability and Oral Health",slug:"disability-and-oral-health",totalDownloads:7154,totalCrossrefCites:5,totalDimensionsCites:5,abstract:null,book:{id:"715",slug:"learning-disabilities",title:"Learning Disabilities",fullTitle:"Learning Disabilities"},signatures:"Jenny Gallagher and Sasha Scambler",authors:[{id:"99560",title:"Dr",name:"Jenny",middleName:null,surname:"Gallagher",slug:"jenny-gallagher",fullName:"Jenny Gallagher"},{id:"151953",title:"Dr.",name:"Sasha",middleName:null,surname:"Scambler",slug:"sasha-scambler",fullName:"Sasha Scambler"}]},{id:"55805",doi:"10.5772/intechopen.69464",title:"Classification and Detection of Specific Language Impairments in Children Based on their Speech Skills",slug:"classification-and-detection-of-specific-language-impairments-in-children-based-on-their-speech-skil",totalDownloads:1692,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The ability to use the spoken language is one of the most important characteristics in child development. Speech is difficult to replace in real life, although there are several other options for communication. Inabilities to communicate with speech skills can isolate children from society, especially children with specific language impairments. This research study focused on a specific disorder, known as specific language impairment (SLI); in the Czech language, it is specifically known as developmental dysphasia (DD). One major problem is that this disorder is detected at a relatively late age. Early diagnosis is critical for successful speech therapy in children. The current chapter presents several different approaches to solve this issue, including a simple test for detecting this disorder. One approach involves the use of an original iPad application for detecting SLI based on the number of pronunciation errors in utterances. One advantage of this method is its simplicity; anyone can use it, including parents.",book:{id:"5878",slug:"learning-disabilities-an-international-perspective",title:"Learning Disabilities",fullTitle:"Learning Disabilities - An International Perspective"},signatures:"Pavel Grill and Jana Tučková",authors:[{id:"199652",title:"Ph.D.",name:"Pavel",middleName:null,surname:"Grill",slug:"pavel-grill",fullName:"Pavel Grill"}]},{id:"57766",doi:"10.5772/intechopen.72052",title:"Developing Automaticity in Children with Learning Disabilities: A Functional Perspective Part Two: Programme Methods and Materials",slug:"developing-automaticity-in-children-with-learning-disabilities-a-functional-perspective-part-two-pro",totalDownloads:1405,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"This chapter is the second of two chapters in this book to describe an instructional programme based on Luria's theories, which can be used to develop basic skills and automaticity in reading, writing, and spelling. The first chapter focused on the programme's theory, and then described how assessment is used to develop an individual programme relating to both basic skill and fluency needs in reading, writing, and spelling. The process was illustrated with one detailed case study. The results of this case study (Child 1) are presented in the current chapter, together with the results of 13 children exposed to similar fluency-based interventions. The results of six children exposed to one or more systematic variations in programme implementation are then discussed. Case contrast analysis is used to highlight three variables affecting successful programme implementation, namely: consistent and regular exposure to phonological and phonic instruction to provide a foundation of basic skills on which the fluency interventions in the programme can be built; consistent implementation of methods designed to improve both reading fluency, and writing and spelling fluency, to produce the greatest likelihood of positive effects; and consistent support from parents in programme implementation to produce the greatest likelihood of positive effects.",book:{id:"5878",slug:"learning-disabilities-an-international-perspective",title:"Learning Disabilities",fullTitle:"Learning Disabilities - An International Perspective"},signatures:"Charles Potter",authors:[{id:"93190",title:"Dr.",name:"Charles",middleName:null,surname:"Potter",slug:"charles-potter",fullName:"Charles Potter"}]},{id:"31189",doi:"10.5772/30128",title:"Meeting the Needs of Twice-Exceptional Children in the Science Classroom",slug:"meeting-the-needs-of-twice-exceptional-children-in-the-science-classroom",totalDownloads:3035,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"715",slug:"learning-disabilities",title:"Learning Disabilities",fullTitle:"Learning Disabilities"},signatures:"Manabu Sumida",authors:[{id:"80976",title:"Dr.",name:"Manabu",middleName:null,surname:"Sumida",slug:"manabu-sumida",fullName:"Manabu Sumida"}]}],mostDownloadedChaptersLast30Days:[{id:"57054",title:"Specific Learning Disabilities: Response to Intervention",slug:"specific-learning-disabilities-response-to-intervention",totalDownloads:2135,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The content included in the current chapter centers around the screening and identification of students who experience learning challenges in an educational setting in the United States of America. The specific learning challenges discussed will focus on students who may have a specific learning disability (SLD). Legislation that brought about concepts such as response to intervention (RTI) is discussed in detail. The various levels of intensity of interventions, or tiers, provided to students are explained by more than one discipline. The new regulations guiding access to special education services are based on the identification, intervention, and close monitoring of student progress. The overarching goal of RTI is to provide support to students who may be experiencing difficulty, before they experience failure by falling too far behind their peers.",book:{id:"5878",slug:"learning-disabilities-an-international-perspective",title:"Learning Disabilities",fullTitle:"Learning Disabilities - An International Perspective"},signatures:"Kimberly A. Heinemann, Heather Bolanos and Jennifer S. Griffin",authors:[{id:"205622",title:"Mrs.",name:"Kimberly",middleName:null,surname:"Heinemann",slug:"kimberly-heinemann",fullName:"Kimberly Heinemann"},{id:"208681",title:"Mrs.",name:"Heather",middleName:null,surname:"Bolanos",slug:"heather-bolanos",fullName:"Heather Bolanos"},{id:"208691",title:"Mrs.",name:"Jennifer S.",middleName:null,surname:"Griffin",slug:"jennifer-s.-griffin",fullName:"Jennifer S. Griffin"}]},{id:"80202",title:"Depression, Suicidal Tendencies, Hopelessness, and Stress among Patients with Learning Disabilities",slug:"depression-suicidal-tendencies-hopelessness-and-stress-among-patients-with-learning-disabilities",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Self-harm and suicide are most commonly observed in adolescents specially females in Asian countries and in western. The psychosocial predictors, along with hopelessness and non-suicidal injury (NSSI), have not been studied properly before. Therefore, there is a need to address these issues. The objective of the study was to ascertain the psychosocial and clinical features predicting suicide and NSSI in adolescents with major depression. Increased number of suicidality and impaired family function at entry is autonomously connected with a suicidal attempt. NSSI are connected at base line and apply additive effect on likelihood, one keeping on through treatment period. Poor family functions, as well as family problems and social problems, were the causative agents for adolescent’s high suicidality and NSSI. A history of NSSI treatment is a clinical marker for suicidality. The previous suicidal attempts should be evaluated in depressed juvenile patients as indicators of future suicidal intent and behavior. Both suicidal and NSSI adolescents during the therapy and after treatment endure to be depressed when they are engaged in study. Major causes of suicide among our study participants were lost friend(s), drug abuse, living alone, disturbed parental marriage, sexual abuse, and other domestic problems.",book:{id:"10910",slug:"learning-disabilities-neurobiology-assessment-clinical-features-and-treatments",title:"Learning Disabilities",fullTitle:"Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments"},signatures:"Fahad Hassan Shah, Song Ja Kim, Laiba Zakir, Aqsa Ehsan, Sohail Riaz, Muhammad Sulaiman and Saad Salman",authors:[{id:"418086",title:"Dr.",name:"Saad",middleName:null,surname:"Salman",slug:"saad-salman",fullName:"Saad Salman"},{id:"439291",title:"Dr.",name:"Fahad Hassan",middleName:null,surname:"Shah",slug:"fahad-hassan-shah",fullName:"Fahad Hassan Shah"},{id:"439292",title:"Dr.",name:"Song Ja",middleName:null,surname:"Kim",slug:"song-ja-kim",fullName:"Song Ja Kim"},{id:"439293",title:"Dr.",name:"Laiba",middleName:null,surname:"Zakir",slug:"laiba-zakir",fullName:"Laiba Zakir"},{id:"439294",title:"Dr.",name:"Aqsa",middleName:null,surname:"Ehsan",slug:"aqsa-ehsan",fullName:"Aqsa Ehsan"},{id:"451112",title:"Dr.",name:"Sohail",middleName:null,surname:"Riaz",slug:"sohail-riaz",fullName:"Sohail Riaz"},{id:"451113",title:"Dr.",name:"Muhammad",middleName:null,surname:"Sulaiman",slug:"muhammad-sulaiman",fullName:"Muhammad Sulaiman"}]},{id:"79900",title:"Dyslexia, Dysgraphia and Dyscalculia: A Response to Intervention Approach to Classification",slug:"dyslexia-dysgraphia-and-dyscalculia-a-response-to-intervention-approach-to-classification",totalDownloads:165,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter provides a model for classification of dyslexia, dysgraphia and dyscalculia through analysis of the response of children to treatment. The model is discussed with reference to the types of multivariate treatment applied in a particular programme which works interactively online using an electronic data-base for linking functional difficulties in learning to treatment, and through this to firm diagnosis and classification. In applying the model, initial diagnosis of learning disabilities is treated as provisional, based on functional indicators as well as test data. Firm classification becomes possible through longitudinal assessment, analysis of response to multivariate intervention as well as response to specific programmes. Diagnosis can then be linked both to concessions as well as ongoing treatment.",book:{id:"10910",slug:"learning-disabilities-neurobiology-assessment-clinical-features-and-treatments",title:"Learning Disabilities",fullTitle:"Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments"},signatures:"Charles Potter",authors:[{id:"93190",title:"Dr.",name:"Charles",middleName:null,surname:"Potter",slug:"charles-potter",fullName:"Charles Potter"}]},{id:"78359",title:"Self-Regulation, Self-Efficacy, and Learning Disabilities",slug:"self-regulation-self-efficacy-and-learning-disabilities",totalDownloads:298,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter will discuss the roles of self-regulation and self-efficacy in students with learning disabilities. The guiding conceptual framework is based in social cognitive theory. In this theory, self-efficacy is a key motivational variable and self-regulation is a means for persons to develop a sense of agency, or the belief that they can exert a large degree of control over outcomes in their lives. Following a description of the theory, research is presented showing the operation of self-regulation and self-efficacy in students with learning disabilities. Future research directions are suggested, and implications of theory and research for educational practice are discussed.",book:{id:"10910",slug:"learning-disabilities-neurobiology-assessment-clinical-features-and-treatments",title:"Learning Disabilities",fullTitle:"Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments"},signatures:"Dale H. Schunk and Maria K. DiBenedetto",authors:[{id:"418379",title:"Prof.",name:"Dale H.",middleName:null,surname:"Schunk",slug:"dale-h.-schunk",fullName:"Dale H. Schunk"},{id:"418381",title:"Dr.",name:"Maria K.",middleName:null,surname:"DiBenedetto",slug:"maria-k.-dibenedetto",fullName:"Maria K. DiBenedetto"}]},{id:"31181",title:"Language Disabilities: Myths and Misconceptions vs. Reality",slug:"language-disabilities-myths-and-misconceptions-vs-reality",totalDownloads:3278,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"715",slug:"learning-disabilities",title:"Learning Disabilities",fullTitle:"Learning Disabilities"},signatures:"George S. Mouzakitis",authors:[{id:"81553",title:"Prof.",name:"George",middleName:null,surname:"Mouzakitis",slug:"george-mouzakitis",fullName:"George Mouzakitis"}]}],onlineFirstChaptersFilter:{topicId:"1239",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,annualVolume:11970,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,annualVolume:11971,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!0,annualVolume:11972,editor:{id:"203609",title:"Associate Prof.",name:"Hanna",middleName:null,surname:"Gorska-Warsewicz",slug:"hanna-gorska-warsewicz",fullName:"Hanna Gorska-Warsewicz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSD9pQAG/Profile_Picture_2022-06-14T11:58:32.jpeg",biography:"Hanna Górska-Warsewicz, Ph.D. is Associate Professor at Warsaw University of Life Sciences and Head of Department of Food Market and Consumption Research. She specializes in the subject of brands, brand equity, and brand management in production, service, and trade enterprises. She combines this subject with marketing and marketing management in both theoretical and practical aspects. Prof. Hanna Górska-Warsewicz also analyzes brands in the context of trademarks, legal regulations and the protection of intangible. She is an author or co-author of over 200 publications in this field, including 8 books. She works with the business sector and has participated in projects for the Ministry of Agriculture and Rural Development and the Ministry of Education and Science in Poland.",institutionString:null,institution:{name:"Warsaw University of Life Sciences",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:3,paginationItems:[{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},subseriesFiltersForOFChapters:[{caption:"Ecosystems and Biodiversity",value:40,count:3,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:6,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:34,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81159",title:"Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products",doi:"10.5772/intechopen.103933",signatures:"Rose Daphnee Ngameni Tchonkouang, Maria Dulce Carlos Antunes and Maria Margarida Cortês Vieira",slug:"potential-of-carotenoids-from-fresh-tomatoes-and-their-availability-in-processed-tomato-based-produc",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"80902",title:"Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs",doi:"10.5772/intechopen.103130",signatures:"Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik",slug:"computational-chemistry-study-of-natural-apocarotenoids-and-their-synthetic-glycopeptide-conjugates-",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Norma",surname:"Flores-Holguín"},{name:"Daniel",surname:"Glossman-Mitnik"},{name:"Juan",surname:"Frau"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/8904",hash:"",query:{},params:{id:"8904"},fullPath:"/chapters/8904",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()