Abstract
Fungi and oomycetes are the subjects of numerous current research studies. These are natural agents that can control parasitic populations, and arthropod populations with a role in the transmission of various diseases but can also eliminate various pollutants that are found in the external environment. Therefore, their conservation and exploitation are a global necessity, due to the benefits they confer on the quality of life of animals, but also of humans. Science must be aimed at finding a balance between the different constituents of the ecosystem and establishing coexistence relationships that are beneficial to all. Thus, research should be directed at investigating the potential actions of fungi and oomycetes against the various agents with which they coexist naturally in the external environment. This chapter provides information regarding the mechanism of action of these natural constituents and updates information on the species of fungi and oomycetes that have been studied so far. Thus, readers can have a base in this field and can further exploit what they have discovered to continue to improve the welfare of animals, addressing an ecological and healthy vision.
Keywords
- ecological action
- fungi
- oomycetes
- cleaning
1. Introduction
Plants and animals coexist in a certain balance within the ecosystem, together with fungi, oomycetes, bacteria, viruses, and parasites.
Currently, about 75.000 species of fungi have been described, many of which are still unclassified [1]. Also, in the category of fungi, oomycetes have been included in the past. Detailed studies have highlighted their morphological and functional differences, the oomycetes being now included in the phylum
Many bacteria, viruses, and single-celled parasites can be carried by arthropods (insects, mites) or other vectors (amoebas) and can be sources of infection, causing many diseases in animals. Fungi and oomycetes can use different mechanisms by which they can eliminate these vectors. They can also be involved in the detoxification of the environment from numerous pollutants and can be considered important agents in the biocontrol of some animal parasites. In removing amoebae, fungi use hyphae that function as “sticky extensions” that capture “prey” or can parasitize internally, causing amoebae death by sporulation [4]. Sprayed in the form of a solution on the body of insects, more precisely on the body of mosquitoes, the fungi attach themselves through the conidia to their cuticle. Then begins the germination and dispersal of spores in the hemocoel. At this level, the evolutionary cycle of fungi continues with the multiplication of hyphae, which gradually kill the host by colonizing the trachea and producing toxins, after which the fungi leave their body [5, 6]. In eliminating the larval forms of some insects, the fungi also through the conidia block the siphon region and thus determine the death by asphyxiation of the hosts [6]. The same mechanisms have been reported in the elimination of evolutionary stages of ticks. An important role in the fixation and adhesion of conidia at the cuticular level is played by hydrophobins and adhesins, as proteins, but also lipase and esterase, as enzymes [7, 8, 9].
Certain pollutants, such as pesticides, can be battered by various fungi through numerous chemical processes (deoxygenation, hydroxylation, esterification, or dehydrogenation) [10]. Certain heavy metals in the environment can be inactivated by organic acids and siderophores (metabolites) of fungi [11]. Enzymes also play an important role in bioremediation, among them can be mentioned: cellulase, lipase, protease, peroxidase, amylase, chitinase, catalase, laccase, xylanase, etc. [12].
In the management of parasitic populations, especially nematode populations found in animals, fungi use complex mechanisms to eliminate these pathogens. The first stage is the recognition between the fungus and the nematode. Fungi adhere to the body of nematodes through lecithin that binds to carbohydrate receptors located in the cuticle of the parasite [13, 14]. Adhesion is facilitated by fungal spores and protein fibrils that form nematode-trapping traps. The fibrils are arranged in a network or perpendicular to the external surface of the nematodes, after which they easily penetrate their body. The penetration step involves the release of hydrolytic enzymes and the application of progressive pressure on the parasite’s cuticle [15]. After complete penetration of the cuticle, the formation and multiplication of hyphae begin. Gradually the fungi digest the nematodes internally. Nutrients are captured in the hyphae in lipid droplets or are fixed and carried by lecithin [16]. The same steps are observed in the case of oomycetes. They adhere to the surface of parasite eggs or larvae, through hyphae, after which they penetrate the egg wall or larval cuticle, releasing various enzymes (various exoglycosidases, kinases, endo-β-1,3-glucanases, and cellulases). Gradually, they digest and destroy the internal contents through hyphae and zoospores that form continuously [17].
Another method of removing nematodes is using adhesive nets, hyphae, or knobs forming constricting rings together. Through the movements and body heat, the nematodes trigger the complete tightening of the rings around them and the exteriorization of a penetrating tube where the internal multiplication of the hyphae begins [18]. Certain fungi can spread to the surface of the body of nematodes or larvae, including the wall of nematode eggs. Gradually the sporulation takes place internally, having an ovicidal, larvicidal, or adulticidal effect [19, 20]. An ovicidal effect can be exerted by fungi also through hyphae, more precisely through oppressors, secondary metabolites, and the toxins they contain [19]. The same toxins can cause paralysis of adult nematodes [19].
The following subchapters contain information related to fungal species, but also oomycetes that can be used successfully in the elimination of various animal pathogens.
2. Elimination of vectors involved in the transmission of various diseases to animals
2.1 Amoebae
Amoebae are protozoa that can live freely in very different environments or can be parasitic, surviving in different hosts. Free amoebae are present in the external environment in soil, water, and air, but are also used in various medical fields, such as dialysis centers and dentistry [21]. Parasitic amoebae (
In veterinary medicine, only four classes of free amoebae have pathogenic potential:
An important role in the circulation of certain pathogens has the amoebas of the
Numerous researchers aim to use amoebophagous fungi in the elimination of vectors and in the prevention of many diseases that can be transmitted to animals. They can act as parasites or predators. Among the fungi with the role of parasites, which invade and multiply inside the amoebae, are found
2.2 Insects
Globally, insects can be found in many habitats [62]. They have an important role in all terrestrial ecosystems, intervening in soil fertilization by circulating nutrients and seeds, but also in plant pollination. Thus, they are essential for maintaining optimal qualities in the development of agriculture [63]. Another role with a major impact on the quality of life of animals is the fact that insects are a nutritional basis for them [64]. The larval and adult stages are the most frequently consumed by animals.
In veterinary medicine, the role of insects is very important. Like amoebae, they can transmit various diseases from one animal to another.
The use of pyrethroids as insecticides is the most widely used method of control. However, recent research aims to apply fungi, in various forms, as an ecological method of controlling insect populations [80]. Ansari et al. [81] used the conidia of several species of fungi against culicid adults. The species chosen were
2.3 Ticks
Ticks are parasitic mites, which require, for the complete development and completion of the biological cycle, a blood-feed on the vertebrates involved. The tick population is extremely numerous in the warm season, being an important agent for transmitting contagious diseases to animals, but also humans. They can carry bacteria (
Biological control of ticks can be achieved by using entomopathogenic fungi. Currently, many fungi are known with a high potential to eliminate various evolutionary forms of ticks. Among them are:
Depending on the evolutionary stage, the action of certain fungi is different. Eggs are the most sensitive and nymphs are the most resistant [115, 116]. A high ovicidal action against
3. Environmental detoxification
Currently, our planet is going through continuous degradation due to the numerous pollutants accumulated in soils, waters, and air. Many of them are difficult to decompose. The current trend in research concerns the concept of bioremediation. It refers to the use of certain microbes in various habitats to metabolize various pollutants [134, 135]. Fungi have been intensively studied, their potential to cleanse the planet being recognized by many researchers. Detoxified soils are more fertile, ensuring rapid growth of plants, their nutritional qualities being better preserved. Indirectly, fungi provide animals with adequate food. The same is true of detoxifying water and air: it improves the quality of life of animals.
3.1 Heavy metals in the soil
Animals exposed for a long time to the action of heavy metals have developed developmental problems, spermatogenesis, neurological, renal, and liver problems [136]. Their carcinogenic potential has also been reported [137].
The action of fungi on heavy metals in the soil (Pb, Cd, Cu, Zn, Cr, Ni, Ag) is mediated by external temperature, but also by pH, the whole detoxification process being explained by the phenomena of bioabsorption, bioconcentration, and biotransformation [138]. Among the effective fungi are
3.2 Pesticides in wastewater
Wastewater is subject to filtration and treatment, as it can be an important source of pesticides, with harmful effects on the environment and animals. Currently, certain fungi capable of eliminating these pollutants have been identified. Hultberg and Bodin [144] used experimentally a combination of
Certain residual insecticides, such as endosulfan, can be deteriorated by
3.3 Various pollutants from soil, water, and air
Xenobiotic compounds are chemicals that enter the animal body in numerous ways (digestive, respiratory, parenteral) and are various. Reproductive problems (infertility, abortion) have been reported in animals following exposure [150]. Many plant constituents, various pesticides, medicinal products, feed additives, or industrial chemicals, are considered xenobiotics [151]. They have been successfully degraded by species of white-rot fungi (
Polycyclic aromatic hydrocarbons are found in the form of aerosol particles and can enter the body through the respiratory tract. Prolonged exposure to these constituents has devastating effects on the body. They can adversely affect the endocrine, reproductive, immune, and nervous systems. It also has a carcinogenic and teratogenic action [153].
4. Biocontrol of animal parasitosis
Parasites are pathogens that can survive in the body of animals for long periods, significantly affecting their quality of life. Depending on the class they belong to (Protozoa, Trematodes, Cestodes, Nematodes), they can be diagnosed in different age categories of the hosts [155]. There are many ways to infest animals, with a major impact on the digestive tract. In this way, the hosts can ingest from the external environment eggs or larvae of parasites. Adult forms usually survive in various animal organs. In stopping the evolutionary cycle of parasites, the veterinarian must take several preventive measures. These are undoubtedly necessary, due to the zoonotic potential of certain parasites. To eliminate and kill the adult forms, but also certain larval stages of the parasites, it is well known that various medicinal substances with the antiparasitic role are used. Of the four parasitic classes, nematodes are the most developed, and the main classes of drugs used against them are benzimidazoles, nicotinic receptor agonists, and macrocyclic lactones (avermectins, milbemycins) [156]. Cestodes are sensitive to isoquinolines (praziquantel) and trematodes to thiabendazole (benzimidazole) [157]. We mention only the helminths because they are pentiful in the animal population and the intermediate evolutionary forms resist the most in the external environment. One aspect that must be taken into account when administering the anthelmintics mentioned above is the one related to their use in farm animals. The possibility of eliminating them through milk (ruminants) must be known and indirectly, their remanence in certain secondary products must be mentioned. Macrocyclic lactones also have a long residue in the body of animals [158]. Analyzing this desideratum we can consider the elimination and the complete degradation of parasitic elements from the external environment as the main stage in stopping the biological cycle of parasites. This stage was a basis for current research in the field of biomedical sciences. Disinfectants have been tested and analyzed in numerous studies. Among those discovered so far as having a potential effect on the intermediate elements of nematodes, are those based on alcohols (ethanol, propanol), pentapotassium, and quaternary ammonium compounds [159, 160]. Alcohol-based disinfectants and more can have a corrosive effect if applied to different surfaces and instruments. Also, not enough details are known about the effect they can have on the skin of animals. Here we refer to those kept in paddocks or cages. Considering these aspects, the current research investigates the application of some fungi or oomycetes in the control of the evolutionary cycle of parasites, being an ecological and environmentally friendly method.
Ruminants are frequently parasitized with trichostrongyls. Of these,
Other researchers have investigated the action of fungi (
In horses, Araujo et al. [176] investigated the larvicidal action of 3 fungi (
A satisfactory larvicidal potential against the gastrointestinal nematode
Biocontrol in animal trematodes is still at the beginning of the research, until now the ovicidal effect of
5. Conclusions
Fungi and oomycetes are important agents in the control of animal diseases, which can seriously alter their health. Through the actions they present (insecticide, amoebicide, antiparasitic - ovicidal, larvicidal, nematicidal, and anti-pollution) according to those deduced from the scientific literature, they are key elements in ensuring the welfare of animals and improving their quality of life.
Notes/Thanks/Other declarations
Thanks go to Banat’s University of Agricultural Sciences and Veterinary Medicine “‘King Michael I of Romania”, for helping the author with the costs of publishing this book chapter.
References
- 1.
Volk TJ. Fungi. In: Levin SA, editor. Encyclopedia of Biodiversity. Second ed. Cambridge, Massachusetts: Academic Press; 2013. pp. 624-640. DOI: 10.1016/B978-0-12-384719-5.00062-9 - 2.
Barr DJS. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia. 1992; 84 :1-11 - 3.
Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P. New insights into animal pathogenic oomycetes. Trends in Microbiology. 2007; 16 :13-19. DOI: 10.1016/j.tim.2007.10.013 - 4.
Sparrow FK. Aquatic Phycomycetes Exclusive of the Saprolegniaceae and Pythium. Ann Arbor: University of Michigan Press; 1943 - 5.
Roberts DW. Toxins of entomopathogenic fungi. In: Burges HD, editor. Microbial Control of Pests and Plant Diseases. 1970-1980. New York, NY: Academic Press; 1981. pp. 441-464 - 6.
Clark TB, Kellen WR, Fukuda T, Lindegren JE. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. Journal of Invertebrate Pathology. 1968;11 (1):1-7. DOI: 10.1016/0022-2011(68)90047-5 - 7.
Beys da Silva WO, Santi L, Corrêa AP, Silva LA, Bresciani FR, Schrank A, et al. The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fungal Biology. 2010;114 (11-12):911-916. DOI: 10.1016/j.funbio.2010.08.007 - 8.
Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects. 2013; 4 :357-374. DOI: 10.3390/insects4030357 - 9.
Skinner M, Parker BL, Kim JS. Role of entomopathogenic fungi in integrated pest management. Journal of Integrated Pest Management. 2014; 10 :169-191. DOI: 10.1016/B978-0-12-398529-3.00011-7 - 10.
Deshmukh R, Khardenavis AA, Purohit HJ. Diverse metabolic capacities of Fungi for bioremediation. Indian Journal of Microbiology. 2016; 56 (3):247-264. DOI: 10.1007/s12088-016-0584-6 - 11.
Minney SF, Quirk AV. Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations. Microbios. 1985;42 (167):37-44 - 12.
Betancor L, Johnson GR, Luckarift HR. Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem. 2013; 5 (1):46-60 - 13.
Ahman J, Ek B, Rask L, Tunlid A. Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora . Microbiology (Reading). 1996;142 (7):1605-1616. DOI: 10.1099/13500872-142-7-1605 - 14.
Bonants PJ, Fitters PF, Thijs H, den Belder E, Waalwijk C, Henfling JW. A basic serine protease from Paecilomyces lilacinus with biological activity againstMeloidogyne hapla eggs. Microbiology (Reading). 1995;141 (4):775-784. DOI: 10.1099/13500872-141-4-775 - 15.
Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A. Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Applied Environmental Microbiology. 2002; 68 (7):3408-3415. DOI: 10.1128/AEM.68.7.3408-3415.2002 - 16.
Rosén S, Sjollema K, Veenhuis M, Tunlid A. A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology (Reading). 1997;143 (8):2593-2604. DOI: 10.1099/00221287-143-8-2593 - 17.
Luca I, Ilie MS, Florea T, Olariu-Jurca A, Stancu A, Dărăbuş G. The use of Pythium oligandrum in the biological control of roundworm infection in dogs and cats. Pathogens. 2022;11 (3):367. DOI: 10.3390/pathogens11030367 - 18.
Chen TH, Hsu CS, Tsai PJ, Ho YF, Lin NS. Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides . Planta. 2001;212 (5-6):858-863. DOI: 10.1007/s004250000451 - 19.
Nordbring-Hertz B, Jansson HB, Tunlid A. Nematophagous fungi. Chichester: John Wiley & Sons; 2006. pp. 145-179 - 20.
Zhang Y, Li GH, Zhang KQ. A review on the research of nematophagous fungal species. Mycosystema. 2011; 30 :836-884 - 21.
Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, et al. Pathogenic free-living amoebae: Epidemiology and clinical review. Pathologie Biologie (Paris). 2012; 60 (6):399-405. DOI: 10.1016/j.patbio.2012.03.002 - 22.
Ravdin JI. Pathogenesis of disease caused by Entamoeba histolytica : Studies of adherence, secreted toxins, and contact-dependent cytolysis. Research and Reviews of Infectious Diseases. 1986;8 (2):247-260. DOI: 10.1093/clinids/8.2.247 - 23.
Balczun C, Scheid PL. Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses. 2017; 9 (4):65. DOI: 10.3390/v9040065 - 24.
Qvarnstrom Y, Nerad TA, Visvesvara GS. Characterization of a new pathogenic Acanthamoeba species,A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. The Journal of Eukaryotic Microbiology. 2013;60 (6):626-633. DOI: 10.1111/jeu.12069 - 25.
Walochnik J, Aspöck H. Die Diagnostik von Infektionen mit freilebenden Amöben (FLA). Laboratoriums Medizin. 2005; 29 :446-456 - 26.
Butt CG. Primary amebic meningoencephalitis. The New England Journal of Medicine. 1966; 274 (26):1473-1476. DOI: 10.1056/NEJM196606302742605 - 27.
Scheid P. Balamuthiose. In: Hofmann F, editor. Handbuch der Infektionskrankheiten. Hamburg, Germany: ecomed Verlag; 2012 - 28.
Siddiqui R, Khan NA. Balamuthia amoebic encephalitis: An emerging disease with fatal consequences. Microbial Pathogenesis. 2008; 44 (2):89-97. DOI: 10.1016/j.micpath.2007.06.008 - 29.
Qvarnstrom Y, da Silva AJ, Schuster FL, Gelman BB, Visvesvara GS. Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. The Journal of Infectious Diseases. 2009;199 (8):1139-1142. DOI: 10.1086/597473 - 30.
Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunology and Medical Microbiology. 2007;51 (2):243-259. DOI: 10.1111/j.1574-695X.2007.00332.x - 31.
Akya A, Pointon A, Thomas C. Mechanism involved in phagocytosis and killing of listeria monocytogenes byAcanthamoeba polyphaga . Parasitology Research. 2009;105 (5):1375-1383. DOI: 10.1007/s00436-009-1565-z - 32.
Cirillo JD, Falkow S, Tompkins LS, Bermudez LE. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infection and Immunity. 1997;65 (9):3759-3767. DOI: 10.1128/iai.65.9.3759-3767.1997 - 33.
Samba-Louaka A, Robino E, Cochard T, Branger M, Delafont V, Aucher W, et al. Environmental Mycobacterium avium subsp.paratuberculosis hosted by free-living amoebae. Frontiers in Cellular and Infection Microbiology. 2018;8 :28. DOI: 10.3389/fcimb.2018.00028 - 34.
Michel R. Freilebende Amöben als Wirte und Vehikel von Mikroorganismen. Mitteilungen der Österreichischen Gesellschaft für Tropenmedizin und Parasitologie. 1997; 19 :11-20 - 35.
Fritsche TR, Sobek D, Gautom RK. Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS Microbiology Letters. 1998;166 (2):231-236. DOI: 10.1111/j.1574-6968.1998.tb13895.x - 36.
Gaze WH, Burroughs N, Gallagher MP, Wellington EM. Interactions between Salmonella typhimurium andAcanthamoeba polyphaga , and observation of a new mode of intracellular growth within contractile vacuoles. Microbial Ecology. 2003;46 (3):358-369. DOI: 10.1007/s00248-003-1001-3 - 37.
Snelling WJ, McKenna JP, Lecky DM, Dooley JS. Survival of Campylobacter jejuni in waterborne protozoa. Applied and Environmental Microbiology. 2005;71 (9):5560-5571. DOI: 10.1128/AEM.71.9.5560-5571.2005 - 38.
Steinert M, Birkness K, White E, Fields B, Quinn F. Mycobacterium avium bacilli grow saprozoically in coculture withAcanthamoeba polyphaga and survive within cyst walls. Applied and Environmental Microbiology. 1998;64 (6):2256-2261. DOI: 10.1128/AEM.64.6.2256-2261.1998 - 39.
Dey R, Hoffman PS, Glomski IJ. Germination and amplification of anthrax spores by soil-dwelling amoebas. Applied and Environmental Microbiology Journal. 2012; 78 :8075-8081 - 40.
Winiecka-Krusnell J, Wreiber K, von Euler A, Engstrand L, Linder E. Free-living amoebae promote growth and survival of helicobacter pylori . Scandinavian Journal of Infectious Diseases. 2002;34 (4):253-256. DOI: 10.1080/00365540110080052 - 41.
La Scola B, Raoult D. Survival of Coxiella burnetii within free-living amoebaAcanthamoeba castellanii . Clinical Microbiology and Infection. 2001;7 (2):75-79. DOI: 10.1046/j.1469-0691.2001.00193.x - 42.
Abd H, Johansson T, Golovliov I, Sandström G, Forsman M. Survival and growth of Francisella tularensis inAcanthamoeba castellanii . Applied and Environmental Microbiology Journal. 2003;69 (1):600-606. DOI: 10.1128/AEM.69.1.600-606.2003 - 43.
Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proceedings of the National Academy of Sciences of the United States of America. 2001;98 (26):15245-15250. DOI: 10.1073/pnas.261418798 - 44.
Scheid PL, Schwarzenberger R. Free-living amoebae as vectors of cryptosporidia. Parasitology Research. 2011; 109 (2):499-504. DOI: 10.1007/s00436-011-2287-6 - 45.
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunology. 2016;38 (9):535-457. DOI: 10.1111/pim.12350 - 46.
Lorenzo-Morales J, Coronado-Alvarez N, Martinez-Carretero E, Maciver SK, Valladares B. Detection of four adenovirus serotypes within water-isolated strains of Acanthamoeba in the Canary Islands, Spain. American Journal of Tropical Medicine and Hygiene. 2007;77 :753-756 - 47.
Van Waeyenberghe L, Baré J, Pasmans F, Claeys M, Bert W, Haesebrouck F, et al. Interaction of aspergillus fumigatus conidia withAcanthamoeba castellanii parallels macrophage-fungus interactions. Environmental Microbiology Reports. 2013;5 (6):819-824. DOI: 10.1111/1758-2229.12082 - 48.
Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, et al. Virulence determinants of the human pathogenic fungus aspergillus fumigatus protect against soil amoeba predation. Environmental Microbiology. 2015;17 (8):2858-2869. DOI: 10.1111/1462-2920 - 49.
Nunes T, Brazil N, Fuentefria A, Rott M. Acanthamoeba andfusarium interactions: A possible problem in keratitis. Acta Tropica. 2016;157 :102-107. DOI: 10.1016/j.actatropica.2016.02.001 - 50.
Bullock JD, Warwar RE. Contact lens solution-associated Acanthamoeba andfusarium keratitis . Emerging Infectious Diseases. 2010;16 (9):1501-1502. DOI: 10.3201/eid1609.091381 - 51.
Sassuchin D. Hyperparasitism in Protozoa. The Quarterly Review of Biology. 1934; 9 (2):215-224. DOI: 10.1086/394461 - 52.
Scheid P. Mechanism of intrusion of a microspordian-like organism into the nucleus of host amoebae ( Vannella sp.) isolated from a keratitis patient. Parasitology Research. 2007;101 :1097-1102. DOI: 10.1007/s00436-007-0590-z - 53.
Kurek R, Scheid P, Michel R. Darstellung von pilzartigen Endoparasiten bei freilebenden Amöben nach spezifischer Fluoreszenzanfärbung. Mikrokosmos. 2010; 99 :327-330 - 54.
Drechsler C. Five new Zoopagaceae destructive to Rhizopods and nematodes. Mycologia. 1939; 31 (4):388-415. DOI: 10.1080/00275514.1939.12017354 - 55.
Drechsler C. Three new Zoopagaceae subsisting on soil amoebae. Mycologia. 1946;38 (2):120-143 - 56.
Saikawa M, Sato H. Ultrastructure of Cochlonema odontosperma , an endoparasite in amoebae. Mycologia. 1991;83 (4):403-408. DOI: 10.1080/00275514.1991.12026029 - 57.
Koehsler M, Michel R, Lugauer J, Wylezisch C. Molecular identification and classification of Cochlonema euryblastum , a zoopagalean parasite ofThecamoeba quadrilineata . Mycologia. 2007;99 :215-221. DOI: 10.1080/15572536.2007.11832580 - 58.
Drechsler C. Some non-catenulate conidial phycomycetes preying on terriculous amoebae. Mycologia. 1935; 27 :176-205. DOI: 10.1080/00275514.1935.12017070 - 59.
Michel R, Walochnik J, Scheid P. Isolation and characterisation of various amoebophagous fungi and evaluation of their spectrum. Experimental Parasitology. 2014; 145 :131-136. DOI: 10.1016/j.exppara.2014.10.005 - 60.
Saikawa M, Kadowaki T. Sudies on Acaulopage dichotoma and A. tetraceros (Zoopagales, Zygomycota) capturing amoebae. Nova Hedwigia. 2002; 74 :365-371. DOI: 10.1127/0029-5035/2002/0074-0365 - 61.
Michel R, Scheid P, Köhsler M, Walochnik J. Acaulopage tetraceros DRECHSLER 1935 (Zoopagales): Cultivation, prey pattern and molecular characterization. Endocytobiosis and Cell Research. 2015; 26 :76-82 - 62.
Grimaldi D, Engel MS. Evolution of the Insects. New York: Cambridge University Press; 2005. p. 755 - 63.
Cock MJW, Biesmeijer JC, Cannon RJC, Gerard PJ, Gillespie D, Jiménez JJ, et al. The positive contribution of invertebrates to sustainable agriculture and food security. CAB Reviews. 2012; 7 :1-27 - 64.
Carpenter GH. The Biology of Insects. London: Sidgwick and Jackson; 1928. p. 473 - 65.
Mellor PS, Boorman J, Baylis M. Culicoides biting midges: Their role as arbovirus vectors. Annual Review of Entomology. 2000; 45 :307-340. DOI: 10.1146/annurev.ento.45.1.307 - 66.
Barin A, Arabkhazaeli F, Rahbari S, Madani SA. The housefly, Musca domestica , as a possible mechanical vector of Newcastle disease virus in the laboratory and field. Medical and Veterinary Entomology. 2010;24 (1):88-90. DOI: 10.1111/j.1365-2915.2009.00859.x - 67.
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and reverse zoonotic transmissibility of SARS-CoV-2. Virus Research. 2021; 302 :198473. DOI: 10.1016/j.virusres.2021.198473 - 68.
Shane SM, Montrose MS, Harrington KS. Transmission of Campylobacter jejuni by the housefly (Musca domestica ). Avian Diseases. 1985;29 (2):384-391 - 69.
Barreiro C, Albano H, Silva J, Teixeira P. Role of flies as vectors of foodborne pathogens in rural areas. International Scholarly Research Notices. 2013; 2013 :718780. DOI: 10.1155/2013/718780 - 70.
Bamou R, Mayi MPA, Djiappi-Tchamen B, Nana-Ndjangwo SM, Nchoutpouen E, Cornel AJ, et al. An update on the mosquito fauna and mosquito-borne diseases distribution in Cameroon. Parasites Vectors. 2021; 14 :527. DOI: 10.1186/s13071-021-04950-9 - 71.
Komarov A, Kalmar E. A hitherto undescribed disease–Turkey meningo-encephalitis. Veterinary Record. 1960; 72 :257-621 - 72.
Rijks JM, Kik ML, Slaterus R, Foppen RPB, Stroo A, IJzer J, et al. Widespread Usutu virus outbreak in birds in the Netherlands, 2016. Euro Surveillance. 2016; 21 (45):30391. DOI: 10.2807/1560-7917.ES.2016.21.45.30391 - 73.
Huhtamo E, Lambert AJ, Costantino S, Servino L, Krizmancic L, Boldorini R, et al. Isolation and full genomic characterization of Batai virus from mosquitoes, Italy 2009. Journal of General Virology. 2013; 94 (6):1242-1248. DOI: 10.1099/vir.0.051359-0 - 74.
Eiden M, Ziegler U, Keller M, Müller K, Granzow H, Jöst H, et al. Isolation of sindbis virus from a hooded crow in Germany. Vector Borne Zoonotic Diseases. 2014; 14 (3):220-222. DOI: 10.1089/vbz.2013.1354 - 75.
Genchi C, Kramer L. Subcutaneous dirofilariosis ( Dirofilaria repens ): An infection spreading throughout the old world. Parasitology & Vectors. 2017;10 (2):517. DOI: 10.1186/s13071-017-2434-8 - 76.
Lytra I, Emmanouel N. Study of Culex tritaeniorhynchus and species composition of mosquitoes in a rice field in Greece. Acta Tropica. 2014;134 :66-71. DOI: 10.1016/j.actatropica.2014.02.018 - 77.
Kopp A, Gillespie TR, Hobelsberger D, Estrada A, Harper JM, Miller RA, et al. Provenance and geographic spread of St. Louis encephalitis virus. MBio. 2013; 4 (3):e00322-13. DOI: 10.1128/mBio.00322-13 - 78.
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging threats to animals in the United Kingdom by arthropod-borne diseases. Frontiers in Veterinary Science. 2020; 7 :20. DOI: 10.3389/fvets.2020.00020 - 79.
Kono Y, Tsukamoto K, Abd Hamid M, Darus A, Lian TC, Sam LS, et al. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. American Journal of Tropical Medicine and Hygiene. 2000; 63 (1-2):94-101. DOI: 10.4269/ajtmh.2000.63.94 - 80.
Papadopoulos E, Bartram D, Carpenter S, Mellor P, Wall R. Efficacy of alphacypermethrin applied to cattle and sheep against the biting midge Culicoides nubeculosus . Veterinary Parasitology. 2009;163 (1-2):110-114. DOI: 10.1016/j.vetpar.2009.03.041 - 81.
Ansari MA, Pope EC, Carpenter S, Scholte EJ, Butt TM. Entomopathogenic fungus as a biological control for an important vector of livestock disease: The Culicoides biting midge. PLoS One. 2011;6 (1):e16108. DOI: 10.1371/journal.pone.0016108 - 82.
Ansari MA, Carpenter S, Butt TM. Susceptibility of Culicoides biting midges larvae to the entomopathogenic fungus,Metarhizium anisopliae : Prospects for bluetongue vector control. Acta Tropica. 2010;113 :1-6 - 83.
Mishra S, Kumar P, Malik A, Satya S. Adulticidal and larvicidal activity of Beauveria bassiana andMetarhizium anisopliae against housefly,Musca domestica (Diptera:Muscidae ), in laboratory and simulated field bioassays. Parasitology Research. 2011;108 (6):1483-1492. DOI: 10.1007/s00436-010-2203-5 - 84.
Sharififard M, Mossadegh MS, Vazirianzadeh B, Mahmoudabadi AZ. Laboratory evaluation of pathogenecity of entomopathogenic fungi Beauveria bassiana (Bals) andMetarhizium anisopliae (Metech) Sorok to larvae and adults of the housefly,Musca domestica L (Diptera:Muscidae ). Asian Journal of Biological Sciences. 2011;4 (2):128-137 - 85.
Mwamburi LA, Laing MD, Miller RM. Laboratory screening of insecticidal activities of Beauveria bassiana andPaecilomyces lilacinus against larval and adult house fly (Musca domestica L.). African Entomology. 2010;18 :38-46 - 86.
Lohmeyer KH, Miller JA. Pathogenicity of three formulations of entomopathogenic fungi for control of adult Haematobia irritans (Diptera:Muscidae ). Journal of Economic Entomology. 2006;99 (6):1943-1947. DOI: 10.1603/0022-0493-99.6.1943 - 87.
Unkles SE, Marriott C, Kinghorn JR, Panter C, Blackwell A. Efficacy of the entomopathogenic fungus, Culicinomyces clavisporus against larvae of the biting midges,Culicoides nubeculosus (Diptera :Ceratopogonidae ). Biocontrol Science and Technology. 2004;14 :397-401 - 88.
Narladkar BW, Shivpuje PR, Harke PC. Fungal biological control agents for integrated management of Culicoides spp. (Diptera :Ceratopogonidae ) of livestock. Veterinary World. 2015;8 (2):156-163. DOI: 10.14202/vetworld.2015.156-163 - 89.
Ong’wen F, Onyango PO, Bukhari T. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Parasites Vectors. 2020;13 :43. DOI: 10.1186/s13071-020-3915-8 - 90.
Ishii M, Kanuka H, Badolo A, Sagnon NF, Guelbeogo WM, Koike M, et al. Proboscis infection route of Beauveria bassiana triggers early death ofAnopheles mosquito. Scientific Reports. 2017;7 :3476. DOI: 10.1038/s41598-017-03720-x - 91.
Kerwin JL. Oomycetes: Lagenidium giganteum . Journal of the American Mosquito Control Association. 2007;23 (2):50-57. DOI: 10.2987/8756-971X(2007)23[50,OLG]2.0.CO;2 - 92.
Kaczmarek A, Boguś MI. Fungi of entomopathogenic potential in Chytridiomycota andBlastocladiomycota , and in fungal allies of theOomycota andmicrosporidia . IMA Fungus. 2021;12 :29. DOI: 10.1186/s43008-021-00074-y - 93.
Wang Q, Zhao S, Wureli H, Xie S, Chen C, Wei Q, et al. Brucella melitensis andB. abortus in eggs, larvae and engorged females ofDermacentor marginatus . Ticks and Tick Borne Diseases. 2018;9 (4):1045-1048. DOI: 10.1016/j.ttbdis.2018.03.021 - 94.
Li S, Wang Y, Qv G, Sun C, Yang L, Lin C, et al. Epidemiological investigation of Francisella tularensis transmitted by rabbits and ticks in some provinces of China. China Animal Husbandry & Veterinary Medicine. 2020;47 :4069-4075 - 95.
Fang LQ, Liu K, Li XL, Liang S, Yang Y, Yao HW, et al. Emerging tick-borne infections in mainland China: An increasing public health threat. The Lancet Infectious Diseases. 2015; 15 (12):1467-1479. DOI: 10.1016/S1473-3099(15)00177-2 - 96.
Cradock KR, Needham GR. Beauveria bassiana (Ascomycota :Hypocreales ) as a management agent for free-livingAmblyomma americanum (Acari:Ixodidae ) in Ohio. Experimental and Applied Acarology. 2011;53 (1):57-62. DOI: 10.1007/s10493-010-9381-9 - 97.
Garcia MV, Rodrigues VDS, Monteiro AC, Simi LD, Higa LDOS, Martins MM, et al. In vitro efficacy of Metarhizium anisopliae sensu lato against unfedAmblyomma parvum (Acari:Ixodidae ). Experimental and Applied Acarology. 2018;76 :507-512 - 98.
Kaaya GP, Mwangi EN, Ouna EA. Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus andAmblyomma variegatum , using the entomogenous fungiBeauveria bassiana andMetarhizium anisopliae . Journal of Invertebrate Pathology. 1996;67 (1):15-20. DOI: 10.1006/jipa.1996.0003 - 99.
Sullivan CF, Parker BL, Davari A, Lee MR, Kim JS, Skinner M. Evaluation of spray applications of Metarhizium anisopliae ,Metarhizium brunneum andBeauveria bassiana against larval winter ticks,Dermacentor albipictus . Experimental and Applied Acarology. 2020;82 (4):559-570. DOI: 10.1007/s10493-020-00547-6 - 100.
Maranga RO, Kaaya GP, Mueke JM, Hassanali A. Effects of combining the fungi Beauveria bassiana andMetarhiziumanisopliae on the mortality of the tickAmblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia. 2005;159 :527-532 - 101.
Frazzon AP, da Silva Vaz Junior I, Masuda A, Schrank A, Vainstein MH. In vitro assessment of Metarhizium anisopliae isolates to control the cattle tickBoophilus microplus . Veterinary Parasitology. 2000;94 (1-2):117-125. DOI: 10.1016/s0304-4017(00)00368-x - 102.
Szczepańska A, Kiewra D, Plewa-Tutaj K, Dyczko D, Guz-Regner K. Sensitivity of Ixodes ricinus (L., 1758) andDermacentor reticulatus (Fabr., 1794) ticks to entomopathogenic fungi isolates: Preliminary study. Parasitology Research. 2020;119 (11):3857-3861. DOI: 10.1007/s00436-020-06805-1 - 103.
Samsináková A, Kálalová S, Daniel M, Dusbábek F, Honzáková E, Cerný V. Entomogenous fungi associated with the tick Ixodes ricinus (L.). Folia Parasitologica (Praha). 1974;21 (1):39-48 - 104.
Kirkland BH, Westwood GS, Keyhani NO. Pathogenicity of entomopathogenic fungi Beauveria bassiana andMetarhizium anisopliae toIxodidae tick speciesDermacentor variabilis ,Rhipicephalus sanguineus , andIxodes scapularis . Journal of Medical Entomology. 2004;41 (4):705-711. DOI: 10.1603/0022-2585-41.4.705 - 105.
Yoder JA, Rodell BM, Klever LA, Dobrotka CJ, Pekins PJ. Vertical transmission of the entomopathogenic soil fungus Scopulariopsis brevicaulis as a contaminant of eggs in the winter tick,Dermacentor albipictus , collected from calf moose (New Hampshire, USA). Mycology. 2019;10 (3):174-181. DOI: 10.1080/21501203.2019.1600062 - 106.
Zhendong H, Guangfu Y, Zhong Z, Ruiling Z. Phylogenetic relationships and effectiveness of four Beauveria bassiana sensu lato strains for control ofHaemaphysalis longicornis (Acari:Ixodidae ). Experimental and Applied Acarology. 2019;77 (1):83-92. DOI: 10.1007/s10493-018-0329-9 - 107.
Ren Q, Chen Z, Luo J, Liu G, Guan G, Liu Z, et al. Laboratory evaluation of Beauveria bassiana andMetarhizium anisopliae in the control ofHaemaphysalis qinghaiensis in China. Experimental and Applied Acarology. 2016;69 (2):233-238. DOI: 10.1007/s10493-016-0033-6 - 108.
Lipa JJ. Microbial control of mites and ticks. In: Burges HD, Hussey NW, editors. Microbial Control of Insects and Mites. London, UK: Academic Press; 1971. pp. 357-373 - 109.
Kaay GP, Hassan S. Entomogenous fungi as promising biopesticides for tick control. Experimental and Applied Acarology. 2000; 24 (12):913-926. DOI: 10.1023/a:1010722914299 - 110.
Campos RA, Boldo JT, Pimentel IC, Dalfovo V, Araújo WL, Azevedo JL, et al. Endophytic and entomopathogenic strains of Beauveria sp to control the bovine tickRhipicephalus (Boophilus )microplus . Genetics and Molecular Research. 2010;9 (3):1421-1430. DOI: 10.4238/vol9-3gmr884 - 111.
Fernández-Salas A, Alonso-Díaz MA, Alonso-Morales RA, Lezama-Gutiérrez R, Rodríguez-Rodríguez JC, Cervantes-Chávez JA. Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tickRhipicephalus microplus . Medical and Veterinary Entomology. 2017;31 (1):36-43. DOI: 10.1111/mve.12203 - 112.
Angelo IC, Fernandes ÉK, Bahiense TC, Perinotto WM, Golo PS, Moraes AP, et al. Virulence of Isaria sp. andPurpureocillium lilacinum toRhipicephalus microplus tick under laboratory conditions. Parasitology Research. 2012;111 (4):1473-1480. DOI: 10.1007/s00436-012-2982-y - 113.
Casasolas-Oliver A, Estrada-Pena A, Gonzalez-Cabo J. Activity of Rhizopus thailandensis ,Rhizopus arrhizus andCurvularia lunata on reproductive efficacy ofRhipicephalus sanguineus (Ixodidae ). In: Dusbadek E, Bukva V, editors. Modern Acaralogy. Prague, Czech Republic: Academia Prague and SPB Academic Publishing BV; 1991. pp. 633-637 - 114.
Samish M, Gindin G, Alekseev E, Glazer I. Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari:Ixodidae ). The Journal of Parasitology. 2001;87 (6):1355-1359. DOI: 10.1645/0022-3395(2001)087[1355,POEFTD]2.0.CO;2 PMID: 11780821 - 115.
Fernandes ÉK, Bittencourt VR, Roberts DW. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology. 2012; 130 (3):300-305. DOI: 10.1016/j.exppara.2011.11.004 - 116.
Aboelhadid SM, Ibrahium SM, Arafa WM, Maahrous LN, Abdel-Baki AAS, Wahba AA. In vitro efficacy of Verticillium lecanii andBeauveria bassiana of commercial source against cattle tick,Rhipicephalus (Boophilus )annulatus . Advances in Animal and Veterinary Sciences. 2018;6 (3):139-147 - 117.
Abdigoudarzi M, Esmaeilnia K, Shariat N. Laboratory study on biological control of ticks (Acari: Ixodidae ) by Entomopathogenic indigenous Fungi (Beauveria bassiana ). Iranian Journal of Arthropod-Borne Diseases. 2009;3 (2):36-43 - 118.
da Costa GL, Sarquis MI, de Moraes AM, Bittencourt VR. Isolation of Beauveria bassiana andMetarhizium anisopliae var. anisopliae fromBoophilus microplus tick (Canestrini, 1887), in Rio de Janeiro state, Brazil. Mycopathologia. 2002;154 (4):207-209. DOI: 10.1023/a:1016388618842 - 119.
do Carmo Barcelos Correia A, Fiorin AC, Monteiro AC, Veríssimo CJ. Effects of Metarhizium anisopliae on the tickBoophilus microplus (Acari:Ixodidae ) in stabled cattle. Journal of Invertebrate Pathology. 1998;71 (2):189-191. DOI: 10.1006/jipa.1997.4719 PMID: 9500942 - 120.
Immediato D, Camarda A, Iatta R, Puttilli MR, Ramos RA, Di Paola G, et al. Laboratory evaluation of a native strain of Beauveria bassiana for controllingDermanyssus gallinae (De Geer, 1778) (Acari:Dermanyssidae ). Veterinary Parasitology. 2015;212 (3-4):478-482. DOI: 10.1016/j.vetpar.2015.07.004 - 121.
Tavassoli M, Pourseyed SH, Ownagh A, Bernousi I, Mardani K. Biocontrol of pigeon tick Argas reflexus (Acari:Argasidae ) by entomopathogenic fungusMetarhizium anisopliae (Ascomycota :Hypocreales ). Brazilian Journal of Microbiology. 2011;42 (4):1445-1452. DOI: 10.1590/S1517-838220110004000030 - 122.
Pirali-Kheirabadi K, Haddadzadeh H, Razzaghi-Abyaneh M, Bokaie S, Zare R, Ghazavi M, et al. Biological control of Rhipicephalu s (Boophilus )annulatus by different strains ofMetarhizium anisopliae ,Beauveria bassiana andLecanicillium psalliotae fungi. Parasitology Research. 2007;100 (6):1297-1302. DOI: 10.1007/s00436-006-0410-x - 123.
Molan PC. Potential of honey in the treatment of wounds and burns. American Journal of Clinical Dermatology. 2001; 2 :13-19. DOI: 10.2165/00128071-200102010-00003 - 124.
Ahmed S, Othman NH. Honey as a potential natural anticancer agent: A review of its mechanisms. Evidence-Based Complementary and Alternative Medicine. 2013; 2013 :829070. DOI: 10.1155/2013/829070 - 125.
Vogt NA, Vriezen E, Nwosu A, Sargeant JM. A scoping review of the evidence for the medicinal use of natural honey in animals. Frontiers in Veterinary Sciences. 2021; 7 :618301. DOI: 10.3389/fvets.2020.618301 - 126.
Shaw KE, Davidson G, Clark SJ, Bal BV, Pell JK, Chandler D, et al. Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari:Mesostigmata ), an ectoparasitic mite of the honeybee,Apis mellifera . Biological Control. 2002;24 :266-276 - 127.
Kanga LH, James RR, Boucias DG. Hirsutella thompsonii andMetarhizium anisopliae as potential microbial control agents ofVarroa destructor , a honey bee parasite. Journal of Invertebrate Pathology. 2002;81 (3):175-184. DOI: 10.1016/s0022-2011(02)00177-5 - 128.
Steenberg T, Kryger P, Holst N. A scientific note on the fungus Beauveria bassiana infectingVarroa destructor in worker brood cells in honey bee hives. Apidologie. 2010;41 :127-128. DOI: 10.1051/apido/2009057 - 129.
Peng CY, Zhou X, Kaya HK. Virulence and site of infection of the fungus, Hirsutella thompsonii , to the honey bee ectoparasitic mite, Varroa destructor. Journal of Invertebrate Pathology. 2002;81 (3):185-195. DOI: 10.1016/s0022-2011(02)00188-x - 130.
García-Fernández P, Santiago-Álvarez C, Quesada-Moraga E. Pathogenicity and thermal biology of mitosporic fungi as potential microbial control agents of Varroa destructor (Acari:Mesostigmata ), an ectoparasitic mite of honey bee,Apis mellifera (Hymenoptera:Apidae ). Apidologie. 2008;39 :662-673. DOI: 10.1051/apido:2008049 - 131.
Hamiduzzaman MM, Sinia A, Guzman-Novoa E, Goodwin PH. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor , and their effect on the immune response of honey bees (Apis mellifera L.). Journal of Invertebrate Pathology. 2012;111 (3):237-243. DOI: 10.1016/j.jip.2012.09.001 - 132.
Ahmed AA, Abd-Elhady HK. Efficacy of two fungus-based biopesticide against the honeybee ectoparasitic mite, Varroa destructor . Pakistan Journal of Biological Sciences. 2013;16 (16):819-825. DOI: 10.3923/pjbs.2013.819.825 - 133.
Voigt K, Rademacher E. Effect of the Propolis components, Cinnamic acid and pinocembrin, on Apis Mellifera andAscosphaera Apis . Journal of Apicultural Science. 2015;59 (1):89-95. DOI: 10.1515/jas-2015-0010 - 134.
Gillespie IMM, Philip JC. Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology. 2013; 31 :329-332. DOI: 10.1016/j.tibtech.2013.01.015 - 135.
Mishra A, Malik A. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresource Technology. 2014; 171 :217-226. DOI: 10.1016/j.biortech.2014. 08.047 - 136.
Chałabis-Mazurek A, Valverde Piedra JL, Muszyński S, Tomaszewska E, Szymańczyk S, Kowalik S, et al. The concentration of selected heavy metals in muscles, liver and kidneys of pigs fed standard diets and diets containing 60% of new Rye varieties. Animals. 2021; 11 (5):1377. DOI: 10.3390/ani11051377 - 137.
Hejna M, Gottardo D, Baldi A, Dell'Orto V, Cheli F, Zaninelli M, et al. Review: Nutritional ecology of heavy metals. Animal. 2018; 12 (10):2156-2170. DOI: 10.1017/S175173111700355X - 138.
Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology. 2017; 224 :25-33. DOI: 10.1016/j.biortech.2016.11.095 - 139.
Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M. Shaikh Ziauddin Ahammad. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technology. 2016; 218 :388-396. DOI: 10.1016/j.biortech.2016.06.096 - 140.
Iram S, Zaman A, Iqbal Z, Shabbir R. Heavy metal tolerance of fungus isolated from the soil contaminated with sewage and industrial waste- water. Polish Journal of Environmental Studies. 2013; 22 :691-697 - 141.
Volesky B. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews. 1994; 14 (4):291-302. DOI: 10.1111/j.1574-6976.1994.tb00102.x - 142.
Maheswari S, Murugesan AG. Removal of arsenic (III) ions from aqueous solution using aspergillus favus isolated from arsenic contaminated site. Indian Journal of Chemical Technology. 2011;18 :45-52 - 143.
Park D, Yun YS, Park JM. Use of dead fungal biomass for the detoxifcation of hexavalent chromium: Screening and kinetics. Process Biochemistry. 2015; 40 :2559-2565. DOI: 10.1016/j.procbio.2004.12.002 - 144.
Hultberg M, Bodin H. Effects of fungal-assisted algal harvesting through biopellet formation on pesticides in water. Biodegradation. 2018; 29 :557-565. DOI: 10.1007/s10532-018-9852-y - 145.
Levio-Raiman M, Briceño G, Leiva B, López S, Schalchli H, Lamilla C, et al. Treatment of pesticide-contaminated water using a selected fungal consortium: Study in a batch and packed-bed bioreactor. Agronomy. 2021; 11 (4):743. DOI: 10.3390/agronomy11040743 - 146.
Ahmad KS. Remedial potential of bacterial and fungal strains ( Bacillus subtilis ,aspergillus Niger ,aspergillus flavus andPenicillium chrysogenum ) against organochlorine insecticide Endosulfan. Folia Microbiologica (Praha). 2020;65 (5):801-810. DOI: 10.1007/s12223-020-00792-7 - 147.
Supreeth M, Raju NS. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Applied Microbiology and Biotechnology. 2017; 101 (15):5961-5971. DOI: 10.1007/s00253-017-8401-7 - 148.
Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr. Biodegradation kinetics of endosulfan by fusarium ventricosum and aPandoraea species. Journal of Agricultural and Food Chemistry. 2003;51 (27):8015-8019. DOI: 10.1021/jf030503z - 149.
Mohammed YMM, Badawy MEI. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus aspergillus terreus YESM3. Journal of Environmental Science and Health. 2017;52 (10):752-761. DOI: 10.1080/03601234.2017 - 150.
Panter KE, Stegelmeier BL. Effects of xenobiotics and phytotoxins on reproduction in food animals. Veterinary Clinics of North America: Food Animal Practice. 2011; 27 (2):429-446. DOI: 10.1016/j.cvfa.2011.02.010 - 151.
Idle JR, Gonzalez FJ. Metabolomics. Cell Metabolism. 2007; 6 (5):348-351. DOI: 10.1016/j.cmet.2007.10.005 - 152.
Adenipekun CO, Lawal R. Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Review. 2012; 7 (3):62-68 - 153.
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Science of the Total Environment. 2021; 773 :145403. DOI: 10.1016/j.scitotenv.2021.145403 - 154.
Sungthong R, van West P, Heyman F, Funck Jensen D, Ortega-Calvo JJ. Mobilization of pollutant-degrading Bacteria by eukaryotic zoospores. Environmental Science & Technology. 2016; 50 (14):7633-7640. DOI: 10.1021/acs.est.6b00994 - 155.
Dhaliwal BBS, Juyal PD. Parasitic Zoonoses. New Delhi: Springer; 2013. pp. 1-14. DOI: 10.1007/978-81-322-1551-6_1 - 156.
Romero-Gonzalez R, Garrido Frenich A, Martınez Vida JL. Anthelmintics. In: Motarjemi Y, Moy G, Todd E, editors. Encyclopedia of Food Safety. Cambridge, Massachusetts: Academic Press; 2013. pp. 45-54 - 157.
Chai JY. Praziquantel treatment in trematode and cestode infections: An update. Infection & Chemotherapy. 2013; 45 (1):32-43. DOI: 10.3947/ic.2013.45.1.32 - 158.
Moreno L, Lanusse C. Chapter 24 - specific veterinary drug residues of concern in meat production. In: Purslow PP, editor. Food Science, Technology and Nutrition, New Aspects of Meat Quality. Sawston, Cambridge: Woodhead Publishing Series; 2017. pp. 605-627. DOI: 10.1016/B978-0-08-100593-4.00025-4 - 159.
Luca I, Oprescu I, Morariu S, Mederle N, Ilie MS, Dărăbuș G. Effects of some disinfectants on Toxocara spp. eggs viability of dogs and cats. Turkish Journal of Veterinary & Animal Sciences. 2020;44 (3):734-739. DOI: 10.3906/vet-1905-92 - 160.
Luca I, Iancu TG, Oprescu I, Dărăbuș G. The in vitro effect of 1% pentapotassium solution on Toxocara canis eggs. Scientia Parasitologica. 2018;19 (1-2):66-69 - 161.
Cuevas-Padilla EJ, Aguilar-Marcelino L, Sánchez JE, González-Cortázar M, Zamilpa-Álvarez A, Huicochea-Medina M, et al. A Pleurotus spp. hydroalcoholic fraction possess a potent in vitro ovicidal activity against the sheep parasitic nematodeHaemonchus contortus . In: Sánchez JE, Mata G, Royse DJ, editors. Updates on Tropical Mushrooms. Basic and Applied Research. 1st. ed. San Cristóbal de las Casas, Mexico: El Colegio de la Frontera Sur, San Cristóbal de Las Casas; 2018. pp. 193-211 - 162.
Li S, Shah NP. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii andStreptococcus thermophilus ASCC 1275. Food Chemistry. 2014;165 :262-270. DOI: 10.1016/j.foodchem.2014.05.110 - 163.
Vieira ÍS, Oliveira IC, Campos AK, Araújo JV. Association and predatory capacity of fungi Pochonia chlamydosporia andArthrobotrys cladodes in the biological control of parasitic helminths of bovines. Parasitology. 2019;146 (10):1347-1351. DOI: 10.1017/S003118201900060X - 164.
Araújo JV, Braga FR, Silva AR, Araujo JM, Tavela AO. In vitro evaluation of the effect of the nematophagous fungi Duddingtonia flagrans ,Monacrosporium sinense , andPochonia chlamydosporia onAscaris suum eggs. Parasitology Research. 2008;102 (4):787-790. DOI: 10.1007/s00436-007-0852-9 - 165.
Ranjbar-Bahadori S, Rhazzagi-Abyaneh M, Baya M, Eslami A, Pirali K, Shams-Ghahfarokhi M, et al. Studies on the effect of temperature, incubation time and in vivo gut passage on survival and Nematophagous activity Arthrobotrys oligospora var.oligospora andA. cladodes var.macroides . Global Veterinaria. 2010;4 :112-117 - 166.
Braga FR, Araújo JV, Tavela Ade O, Vilela VL, Soares FE, Araujo JM, et al. First report of interaction of nematophagous fungi on Libyostrongylus douglassii (Nematoda:Trichostrongylidae ). Revista Brasileira de Parasitologia Veterinaria. 2013;22 (1):147-151. DOI: 10.1590/s1984-29612013000100027 - 167.
de Castro OI, de Carvalho LM, Vieira ÍS, Campos AK, Freitas SG, de Araujo JM, et al. Using the fungus Arthrobotrys cladodes var.macroides as a sustainable strategy to reduce numbers of infective larvae of bovine gastrointestinal parasitic nematodes. Journal of Invertebrate Pathology. 2018;158 :46-51. DOI: 10.1016/j.jip.2018.09.004 - 168.
Silva ME, Braga FR, de Gives PM, Millán-Orozco J, Uriostegui MA, Marcelino LA, et al. Fungal antagonism assessment of predatory species and producers metabolites and their effectiveness on Haemonchus contortus infective larvae. Biomed Research International. 2015;2015 :241582. DOI: 10.1155/2015/241582 - 169.
Soto-Barrientos N, de Oliveira J, Vega-Obando R, Montero-Caballero D, Vargas B, Hernández-Gamboa J, et al. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes. Revista de Biologia Tropical. 2011; 59 (1):37-52. DOI: 10.15517/rbt.v59i1.3177 - 170.
Cai KZ, Wang BB, Xu Q, Liu JL, Wang KY, Xue YJ, et al. In vitro and in vivo studies of nematophagous fungi Arthrobotrys musiformis andArthrobotrys robusta against the larvae of the trichostrongylides. Acta Parasitologica. 2017;62 (3):666-674. DOI: 10.1515/ap-2017-0080 - 171.
Silva ME, Uriostegui MA, Millán-Orozco J, Gives PM, Hernández EL, Braga FR, et al. Predatory activity of Butlerius nematodes and nematophagous fungi againstHaemonchus contortus infective larvae. Revista Brasileira de Parasitologia Veterinaria. 2017;26 (1):92-95. DOI: 10.1590/S1984-29612016091 - 172.
Acevedo-Ramírez PMC, Quiroz-Romero H, Valero-Coss RO, Mendozade-Gives P, Gómez JL. Nematophagous fungi from Mexico with activity against the sheep nematode Haemonchus contortus . Revista Ibero-Latinoamericana de Parasitologia. 2011;70 (1):101-108 - 173.
Chandrawathani P, Jamnah O, Waller PJ, Höglund J, Larsen M, Zahari WM. Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: A special emphasis on Duddingtonia flagrans . Veterinary Research. 2002;33 (6):685-696. DOI: 10.1051/vetres:2002049 - 174.
Kanadani Campos A, Caixeta Valadão M, de Carvalho LM, de Araújo JV, Pezzi GM. In vitro nematophagous activity of predatory fungi on infective larvae of Strongyloides papillosus . Acta Veterinaria Brasilica. 2017;11 (4):213-218. DOI: 10.21708/avb.2017.11.4.7261 - 175.
Zarrin M, Rahdar M, Poormohamadi F, Rezaei-Matehkolaei A. In vitro Nematophagous activity of predatory Fungi on infective nematodes larval stage ofStrongyloidae family. Open Access Macedonian Journal of Medical Sciences. 2017;5 (3):281-284. DOI: 10.3889/oamjms.2017.064 - 176.
Araujo JM, Araújo JV, Braga FR, Carvalho RO. In vitro predatory activity of nematophagous fungi and after passing through gastrointestinal tract of equine on infective larvae of Strongyloides westeri . Parasitology Research. 2010;107 (1):103-108. DOI: 10.1007/s00436-010-1841-y - 177.
Zhong W, Chen Y, Gong S, Qiao J, Meng Q, Zhang X, et al. Enzymological properties and nematode-degrading activity of recombinant chitinase AO-379 of Arthrobotrys oligospora . Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2019;25 :435-444 - 178.
Lozano J, Almeida C, Oliveira M, Paz-Silva A, Madeira de Carvalho L. Biocontrol of avian gastrointestinal parasites using predatory Fungi: Current status, challenges, and opportunities. Parasitologia. 2022; 2 (1):37-44. DOI: 10.3390/parasitologia2010004 - 179.
Thapa S, Thamsborg SM, Wang R, Meyling NV, Dalgaard TS, Petersen HH, et al. Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens. Parasites & Vectors. 2018;11 :319. DOI: 10.1186/s13071-018-2898-1 - 180.
Braga FR, Araújo JV, Silva AR, Carvalho RO, Araujo JM, Ferreira SR, et al. Viability of the nematophagous fungus Pochonia chlamydosporia after passage through the gastrointestinal tract of horses. Veterinary Parasitology. 2010;168 (3-4):264-268. DOI: 10.1016/j.vetpar.2009.11.020 - 181.
Ferreira SR, de Araújo JV, Braga FR, Araujo JM, Frassy LN, Ferreira AS. Biological control of Ascaris suum eggs byPochonia chlamydosporia fungus. Veterinary Research Communications. 2011;35 (8):553-558. DOI: 10.1007/s11259-011-9494-6 - 182.
Araujo JM, Araújo JV, Braga FR, Ferreira SR, Tavela AO. Predatory activity of chlamydospores of the fungus Pochonia chlamydosporia onToxocara canis eggs under laboratory conditions. Revista Brasileira de Parasitologia Veterinaria. 2013;22 (1):171-174. DOI: 10.1590/s1984-29612013000100033 - 183.
Luca I, Imre M, Ilie MS, Oprescu I, Dărăbuş G. The biological potential of a product containing Pythium oligandrum againstUncinaria stenocephala (Railliet, 1884) larvae. Journal of the Hellenic Veterinary Medical Society. 2022;73 (1):3651-3656. DOI: 10.12681/jhvms.25380 - 184.
de Souza Maia Filho F, da Silva Fonseca AO, Persici BM, de Souza SJ, Braga CQ, Pötter L, et al. Trichoderma virens as a biocontrol ofToxocara canis : In vivo evaluation. Revista Iberoamericana de Micologia. 2017;34 (1):32-35. DOI: 10.1016/j.riam.2016.06.004 - 185.
Carvalho RO, Araújo JV, Braga FR, Araujo JM, Alves CD. Ovicidal activity of Pochonia chlamydosporia andPaecilomyces lilacinus onToxocara canis eggs. Veterinary Parasitology. 2010;169 (1-2):123-127. DOI: 10.1016/j.vetpar.2009.12.037 - 186.
Ciarmela ML, Minvielle MC, Lori G, Basualdo JA. Biological interaction between soil fungi and Toxocara canis eggs. Veterinary Parasitology. 2002;103 (3):251-257. DOI: 10.1016/s0304-4017(01)00598-2 - 187.
Manzanilla-López RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, et al. Pochonia chlamydosporia : Advances and challenges to improve its performance as a biological control agent of sedentary Endo-parasitic nematodes. Journal of Nematology. 2013;45 (1):1-7 - 188.
Dias AS, Araújo JV, Braga FR, Araujo JM, Puppin AC, Fernandes FM, et al. Biological control of Fasciola hepatica eggs with thePochonia chlamydosporia fungus after passing through the cattle gastrointestinal tract. Parasitology Research. 2012;110 (2):663-667. DOI: 10.1007/s00436-011-2538-6