Factors involved in the formation of biofilms in
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium living in the human gastrointestinal tract considered as the most common cause of gastritis. H. pylori was listed as the main risk factor for gastric cancer. Triple therapy consisting of a proton pump inhibitor and combinations of antibiotics is the main treatment used. However, this line of therapy has proven less effective mainly due to biofilm formation. Bacteria can regulate and synchronize the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis, and biofilm formation by quorum sensing (QS), thus contributing to antimicrobial resistance. Henceforth, the inhibition of QS called quorum quenching (QQ) is a promising target and alternative to fight H. pylori resistance to antimicrobials. Many phytochemicals as well as synthetic compounds acting as quorum quenchers in H. pylori were described in vitro and in vivo. Otherwise, many other compounds known as quorum quenchers in other species and inhibitors of biofilm formation in H. pylori could act as quorum quenchers in H. pylori. Here, we summarize and discuss the latest findings on H. pylori’s biofilm formation, QS sensing, and QQ mechanisms.
Keywords
- biofilm
- Helicobacter pylori
- quorum sensing
- bacterial resistance
- chemoreceptor
- quorum quenching
1. Introduction
In the early 1980s, Robin Warren and Barry Marshall showed for the first time that a bacterium named H. pylori could be associated with cancer development. In 2005, the Nobel Prize in Physiology or Medicine was awarded to R. Warren and B. Marshall for the “
Furthermore, the International Agency for Research on Cancer classified
Currently, the first line therapy used to treat
Most bacteria use quorum sensing (QS) as a communication system, relying on the secretion and perception of small molecules called auto-inducers (AIs) [19, 20]. The QS system can activate and/or regulate gene expression of many phenotypes that can be problematic for humans, i.e., biofilm formation, so that bacteria as a group can jointly cope with changes in the surrounding environment, resulting in adverse consequences such as drug resistance and virulence [21, 22]. A new tactic for outsmarting bacteria called quorum quenching (QQ) is currently explored to reduce their virulence without interfering with their growth, causing less Darwinian selection pressure for bacterial resistance [23]. This paradigm shift has become a promising antibacterial strategy, which not only prevents the development of antimicrobial resistance but also the disturbance of human gastrointestinal microflora, as well as the prevention of adverse side effects commonly associated with the available treatment [24]. Since the main steps of QS are the production and detection of signal molecules, QQ can interfere with this system in different ways, either intracellularly or extracellularly by application of inhibitors of AI biosynthesis and perception [25], application of AI antagonists (mimicking AIs), chemical inactivation of AI, sequestering antibodies [26] or macromolecules such as cyclodextrins [27], and degrading enzymes [28]. This strategy showed promising effect
Here, we summarize the biofilm formation regulated by the QS system involved in the antimicrobial resistance in
2. Biofilm formation in H. pylori
Biofilms have been recognized as a microbial sessile community, irreversibly attached to either animate and inanimate objects [30]. Biofilms are contained in a self-produced extracellular polysaccharide (EPS) layer. This matrix is commonly rich in proteins including enzymes, polysaccharides (1–2%), nucleic acids (<1%), and water (up to 97%) [31]. Temperature, pH, osmolarity, UV radiation, desiccation, oxygen tension, and nutrient availability are all environmental stressors that directly affect the phenotype of biofilms [16, 32].
In the human stomach,
Factors | References |
---|---|
Flagella and pili | [18] |
Outer membrane vesicles (OMV) | [43] |
Extracellular DNA (e-ADN) | [43] |
Adhesin (outer membrane proteins namely Hop & Hom) | [51] |
Lipopolysaccharides (LPS) | [52] |
Flagellar proteins | [52] |
Efflux pumps | [53] |
Enzymes regulating pH (urease and arginase) | [54] |
luxS gene | [54] |
Chemoreceptors | [54] |
Toxin-antitoxin system proteins | [55] |
[55, 56] | |
Mannose-related proteoglycans (proteomannans) | [57] |
3. Biofilm formation and QS in H. pylori
The discovery of QS in
Overall, the QS system includes the following steps: (i) AI production; (ii) excretion of AI to the surrounding environment; (iii) sensing and binding of the AI to receptors at high cell density; (iv) retrieval of the receptor-signal complex from the cell and its binding to the promoter region; and (v) activation of genes expression [62, 63]. There are four different signals involved in QS. The most common are N-acyl homoserine lactones (AHLs), also known as autoinducer-1 (AI-1), which are fatty acid derivatives produced and used by gram-negative bacteria [64], while gram-positive bacteria use peptides or modified peptides. Furanosyl borate diesters or autoinducer-2 (AI-2) are derived from the recycling of S-adenosyl-homocysteine and used by both gram-positive and gram-negative bacteria [64]. There is also the autoinducer-3 (AI-3), which allows the cross-talking with mammalian epinephrine host cell signaling systems [65].
The QS system regulates several mechanisms to assure
CagA protein, encoded by cag PAI, has been identified to be induced in
4. QQ in H. pylori
In
Since the main component of QS is the production and detection of signal molecules, QQ can interfere with this system in different ways, either intracellularly or extracellularly. It includes: (i) the inhibition of signal synthesis; (ii) the inhibition of signal transmission; (iii) the enzymatic degradation of AI; and (iv) the inhibition of signal detection [25, 28] (Figure 2). These strategies showed promising effect
To date, few
β-sitosterol ( | Antibiofilm, Antibacterial | AI-2 antagonist | [89] | |
N-acylhomoserine lactonase ( | Antibiofilm & antibacterial | Degradation of AHL (Ais) | [90] | |
Methylthio-DADMe-immucillin-A | MTAN inhibitor | Binding to the MTAN target | [91] | |
Parachlorophenylthio-DADMe-immucillin-A | MTAN inhibitor | Binding to the MTAN target | [91] | |
-SH Furanosyl Borate Diester | Antibiofilm, Antibacterial2 | AI-2 antagonist | [92] |
Another effective way to inhibit QS is the blockage of signaling cascade through the inactivation of downstream response regulators. The precursor SRH of AI-2 results from the action of MTAN on SAH. The inhibition of MTAN induces an accumulation of 5-methylthioadenosine (MTA) and SAH, which, in turn, inhibits AI-2 production [91, 94].
Based on previous studies, various phytochemicals from medicinal plants with known antibiofilm activity could act
Baicalin | Antibiofilm Adhesion inhibition Bactericidal Virulence reduction Urease inhibition | Reduction of binding and colonization Suppression urease and blockade of sulfhydryl group. | [83, 88] | |
Quercetin ( | Antibiofilm Growth inhibition | QSI in | [84] | |
Catechin ( | Antibiofilm Growth inhibition Urease inhibition Membrane disruption | QSI in | [86] | |
Naringenin ( | Antibiofilm Bactericidal | QSI in | [96] | |
Turmeric ( | Antibiofilm Antiadhesive Immunostimulant (igG toward | Inhibition of AHL production in Interaction with LuxI Down-regulation of LuxI-type & LuxR | [97, 98] | |
Proantho-cyanidins ( | Antibiofilm, Bacteriostatic, Inhibits siallylactose-specific (S-fimbriae) | Inhibition of AHL production Anti-QS regulators in | [98] | |
Emodin ( | Antibiofilm Antiadhesion Affects n-acetyl transferase | Inhibition of the HefA gene | [99] | |
Niclosamide | Antibiofilm Bacteriostatic, Decreasing the secretion of IL-8, Disruption of | QSI in | [100] |
5. Conclusion
Despite the advancements in the medical field, the treatment of
References
- 1.
Pohl D, Peter MK, Valentine B, Karoline W. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World Journal of Gastroenterology. 2019;25 (32):4629-4660. DOI: 10.3748/wjg.v25.i32.4629 - 2.
Peek RM Jr, Jean EC. Helicobacter infection and gastric neoplasia. The Journal of Pathology. 2006;208 (2):233-248. DOI: 0.1002/path.1868 - 3.
Pincock S. Nobel prize winners robin warren and Barry Marshall. The Lancet. 2005; 366 (9495):1429. DOI: 10.1016/S0140-6736(05)67587-3 - 4.
Marshall BJ. One hundred years of discovery and rediscovery of Helicobacter pylori and its association with peptic ulcer disease. In: Mobley HLT, Mendz GL, Hazell SL, editors.Helicobacter pylori : Physiology and Genetics. 1st ed. Washington, DC: ASM Press; 2001. pp. 19-26. DOI: 10.1128/9781555818005 - 5.
“Schistosomes, Liver Flukes and Helicobacter pylori . IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994.” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1994;61 :1-241 - 6.
Buzás GM. Metabolic consequences of Helicobacter pylori infection and eradication. World Journal of Gastroenterology. 2014;20 (18):5226-5234. DOI: 10.3748/wjg.v20.i18.5226 - 7.
Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection. Helicobacter. 2017;22 :e12403. DOI: 10.1111/hel.12403 - 8.
Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology. 2017;153 (2):420-429. DOI: 10.1053/j.gastro.2017.04.022 - 9.
Jaka H, Andreas M, Christa K, Stephen EM. Predictors of triple therapy treatment failure among H. pylori infected patients attending at a tertiary Hospital in Northwest Tanzania: A prospective study. BMC Infectious Diseases. 2019;19 (1):447. DOI: 10.1186/s12879-019-4085-1 - 10.
Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon ATR, Bazzoli F, et al. Management of Helicobacter pylori infection--the Maastricht IV/Florence consensus report. Gut. 2012;61 (5):646-564. DOI: 10.1136/gutjnl-2012-302084 - 11.
Almeida NJMR, Donato MM, Luxo C, Cardoso O, Cipriano MA, Marinho C, et al. Helicobacter pylori antimicrobial resistance rates in the central region of Portugal. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2014;20 (11):1127-1133. DOI: 10.1111/1469-0691.12701 - 12.
De Palma GZ, Mendiondo N, Wonaga A, Viola L, Ibarra D, Campitelli E, et al. Occurrence of mutations in the antimicrobial target genes related to levofloxacin, clarithromycin, and amoxicillin resistance in Helicobacter pylori Isolates from Buenos Aires City. Microbial Drug Resistance. 2017;23 (3):351-358. DOI: 10.1089/mdr.2015.0361 - 13.
Mabeku LBK, Bille BE, Zemnou CT, Nguefack LDT, Leundji H. Broad Spectrum resistance in Helicobacter pylori isolated from gastric biopsies of patients with dyspepsia in Cameroon and efflux-mediated multiresistance detection in MDR isolates. BMC Infectious Diseases. 2019;19 (1):880. DOI: 10.1186/s12879-019-4536-8 - 14.
Apolinaria G, Salas-jara MJ, Herrera C, González C. Biofilm and Helicobacter pylori : From environment to human host. World Journal of Gastroenterology. 2014;20 (19):5632-5638. DOI: 10.3748/wjg.v20.i19.5632 - 15.
Cammarota G, Branca G, Ardito F, Sanguinetti M, Ianiro G, Cianci R, et al. Biofilm demolition and antibiotic treatment to eradicate resistant Helicobacter pylori : A clinical trial. Clinical Gastroenterology and Hepatology. 2010;8 (9):817-820. DOI: 10.1016/j.cgh.2010.05.006 - 16.
Wen Y, Wang Y, Liu L, He J. Biofilms: The microbial ‘protective clothing’ in extreme environments. International Journal of Molecular Sciences. 2019; 20 (14):3423. DOI: 10.3390/ijms20143423 - 17.
Percival SL, Suleman L. Biofilms and Helicobacter pylori : Dissemination and persistence within the environment and host. World Journal of Gastrointestinal Pathophysiology. 2014;5 (3):122. DOI: 10.4291/wjgp.v5.i3.122 - 18.
Hathroubi S, Zerebinski J, Ottemann KM. Helicobacter pylori biofilm involves a multigene stress-biased response, including a structural role for flagella. MBio. 2018;9 (5):e01973-18. DOI: 10.1128/mBio.01973-18 - 19.
Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007; 450 (7168):411-414. DOI: 10.1038/nature06279 - 20.
Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012; 12 (3):2519-2538. DOI: 10.3390/s120302519 - 21.
Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001; 411 (6839):813-817. DOI: 10.1038/35081101 - 22.
Miller BL, Bassler B. Quorum sensing in bacteria. Annual Review of Microbiology. 2001; 55 :165-199. DOI: 10.1146/annurev.micro.55.1.165 - 23.
Maeda T, García-Contreras R, Pu M, et al. Quorum quenching quandary: Resistance to antivirulence compounds. The ISME Journal. 2012; 6 :493-501. DOI: 10.1038/ismej.2011.122 - 24.
Huedo P, Coves X, Daura X, Gibert I, Yero D. Quorum sensing Signaling and quenching in the multidrug-resistant pathogen Stenotrophomonas Maltophilia . Frontiers in Cellular and Infection Microbiology. 2018;8 (122):1-8. DOI: 10.3389/fcimb.2018.00122 - 25.
Tang K, Zhang XH. Quorum quenching agents: Resources for Antivirulence therapy. Marine Drugs. 2014; 12 (6):3245-3282. DOI: 10.3390/md12063245 - 26.
Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, et al. Infection control by antibody disruption of bacterial quorum sensing Signaling. Chemistry & Biology. 2007; 14 (10):1119-1127. DOI: 10.1016/j.chembiol.2007.08.013 - 27.
Kato N, Morohoshi T, Nozawa T, Matsumoto H, Ikeda T. Control of gram-negative bacterial quorum sensing with Cyclodextrin immobilized cellulose ether gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2006; 56 (1):55-59. DOI: 10.1007/s10847-006-9060-y - 28.
Fetzner S. Quorum Quenching Enzymes. Journal of Biotechnology. 2015; 201 :2-14. DOI: 10.1016/j.jbiotec.2014.09.001 - 29.
Ilk S, Sağlam N, Özgen M, Korkusuz F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules. 2017; 94 :653-662. DOI: 10.1016/j.ijbiomac.2016.10.068 - 30.
Irie Y, Parsek MR. Quorum sensing and microbial biofilms. Current Topics in Microbiology and Immunology. 2008; 322 :67-84. DOI: 10.1007/978-3-540-75418-3_4 - 31.
Cammarota G, Sanguinetti M, Gallo A, Posteraro B. Biofilm formation by Helicobacter pylori as a target for eradication of resistant infection. Alimentary Pharmacology & Therapeutics. 2012;36 (3):222-230. DOI: 10.1111/j.1365-2036.2012.05165.x - 32.
Yonezawa H, Osaki T, Kamiya S. Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. BioMed Research International. 2015;2015 :914791. DOI: 10.1155/2015/914791 - 33.
Binkowska A, Biernat M, Dus I, Gosciniak G. The role of biofilm formation in pathogenesis of Helicobacter pylori infections. Przeglad Gastroenterologiczny. 2013;8 (1):27-30. DOI: 10.5114/pg.2013.34179 - 34.
Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology. 2001; 9 (1):34-39. DOI: 10.1016/s0966-842x(00)01913-2 - 35.
Savarino V, Zentilin P, Bisso G, Pivari M, Bilardi C, Biagini R, et al. Optimal duration of therapy combining ranitidine bismuth citrate with clarithromycin and metronidazole in the eradication of Helicobacter pylori infection. Alimentary Pharmacology & Therapeutics. 1999;13 (1):43-47. DOI: 10.1046/j.1365-2036.1999.00436.x - 36.
Torres J, Camorlinga-Ponce M, Pérez-Pérez G, Madrazo-De la Garza A, Dehesa M, González-Valencia G, et al. Increasing multidrug resistance in Helicobacter pylori strains isolated from children and adults in Mexico. Journal of Clinical Microbiology. 2001;39 (7):2677-2680. DOI: 10.1128/JCM.39.7.2677-2680.2001 - 37.
Bardhan KD, Morton D, Perry MJ, Sanders DS, Morris P, Rowland A, et al. Ranitidine bismuth citrate with clarithromycin alone or with metronidazole for the eradication of Helicobacter pylori . Alimentary Pharmacology & Therapeutics. 2001;15 (8):1199-1204. DOI: 10.1046/j.1365-2036.2001.01040.x - 38.
Zullo A, De Francesco V, Hassan C, Morini S, Vaira D. The sequential therapy regimen for Helicobacter pylori eradication: A pooled-data analysis. Gut. 2007;56 (10):1353-1357. DOI: 10.1136/gut.2007.125658 - 39.
Tanih NF, Ndip LM, Clarke AM, Ndip RN. An overview of pathogenesis and epidemiology of Helicobacter pylori infection. African Journal of Microbiology Research. 2010;4 (6):426-436 - 40.
Boyanova L, Davidkov L, Gergova G, Kandilarov N, Evstatiev I, Panteleeva E, et al. Helicobacter pylori susceptibility to fosfomycin, rifampin, and 5 usual antibiotics forH. pylori eradication. Diagnostic Microbiology and Infectious Disease. 2014;79 (3):358-361. DOI: 10.1016/j.diagmicrobio.2014.03.028 - 41.
Wueppenhorst N, Stueger HP, Kist M, Glocker EO. High secondary resistance to quinolones in German Helicobacter pylori clinical isolates. The Journal of Antimicrobial Chemotherapy. 2013;68 (7):1562-1566. DOI: 10.1093/jac/dkt061 - 42.
Bolor-Erdene M, Namdag B, Yamaoka Y, Jav S. Antibiotic resistance of Helicobacter pylori in Mongolia. The Journal of Infection in Developing Countries. 2017;11 (11):887-894. DOI: 10.3855/jidc.8619 - 43.
Azevedo NF, Pinto AR, Reis NM, Vieira MJ, Keevil CW. Shear stress, temperature, and inoculation concentration influence the adhesion of water-stressed Helicobacter pylori to stainless steel 304 and polypropylene. Applied and Environmental Microbiology. 2006;72 (4):2936-2941. DOI: 10.1128/AEM.72.4.2936-2941.2006 - 44.
Yang JC, Wang HL, Chern HD, Shun CT, Lin BR, Lin CJ, et al. Role of omeprazole dosage and cytochrome P450 2C19 genotype in patients receiving omeprazole-amoxicillin dual therapy for Helicobacter pylori eradication. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2011;31 (3):227-238. DOI: 10.1592/phco.31.3.227 - 45.
Rhee KH, Park JS, Cho MJ. Helicobacter pylori : Bacterial strategy for incipient stage and persistent colonization in human gastric niches. Yonsei Medical Journal. 2014;55 (6):1453-1466. DOI: 10.3349/ymj.2014.55.6.1453 - 46.
Krzyzek P, Gosciniak G. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori . The Turkish Journal of Gastroenterology. 2018;29 (1):7-13. DOI: 10.5152/tjg.2017.17349 - 47.
Anderson JK, Huang JY, Wreden C, Goers Sweeney E, Goers J, Remington SJ, et al. Chemorepulsion from the quorum signal Autoinducer-2 promotes Helicobacter pylori biofilm dispersal. MBio. 2015;6 (4):e00379-15. DOI: 10.1128/mBio.00379-15 - 48.
Bavington C, Page C. Stopping bacterial adhesion: A novel approach to treating infections. Respiration. 2005; 72 (4):335-344. DOI: 10.1159/000086243 - 49.
Krzyżek P, Paluch E, Gościniak G. Synergistic therapies as a promising option for the treatment of antibiotic-resistant Helicobacter pylori . Antibiotics. 2020;9 (10):658. DOI: 10.3390/antibiotics9100658 - 50.
Krzyżek P, Biernat MM, Gościniak G. Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains. Folia Microbiologica. 2019;64 (3):273-281. DOI: 10.1007/s12223-018-0665-5 - 51.
Servetas SL, Doster RS, Kim A, Windham IH, Cha JH, Gaddy JA, et al. ArsRS-dependent regulation of homB contributes to Helicobacter pylori biofilm formation. Frontiers in Microbiology. 2018;9 :1497. DOI: DOI. 10.3389/fmicb.2018.01497 - 52.
Wong EHJ, Ng CG, Chua EG, Tay ACY, Peters F, Marshall BJ, et al. Comparative genomics revealed multiple Helicobacter pylori genes associated with biofilm formationin vitro . PLoS One. 2016;11 (11):1-16. DOI: 10.1371/journal.pone.0166835 - 53.
Ge X, Cai Y, Chen Z, Gao S, Geng X, Li Y, et al. Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). Antimicrobial Agents and Chemotherapy. 2018;62 (11):e00957-18. DOI: 10.1128/AAC.00957-18 - 54.
Shao C, Sun Y, Wang N, Yu H, Zhou Y, Chen C, et al. Changes of proteome components of Helicobacter pylori biofilms induced by serum starvation. Molecular Medicine Reports. 2013;8 (6):1761-1766. DOI: 10.3892/mmr.2013.1712 - 55.
Cárdenas-Mondragón MG, Ares MA, Panunzi LG, Pacheco S, Camorlinga-Ponce M, Girón JA. De la Cruz MA. Transcriptional profiling of type II toxin–antitoxin genes of Helicobacter pylori under different environmental conditions: Identification of HP0967–HP0968 system. Frontiers in Microbiology. 2016;7 :1872. DOI: 10.3389/fmicb.2016.01872 - 56.
Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, et al. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. The Journal of Experimental Medicine. 2000;191 (9):1467-1476. DOI: 10.1084/jem.191.9.1467 - 57.
Bessa LJ, Grande R, Iorio DD, Giulio MD, Campli ED, Cellini L. Helicobacter pylori free-living and biofilm modes of growth: Behavior in response to different culture media. APMIS. 2013;121 (6):549-560. DOI: 10.1111/apm.12020 - 58.
Nealson KH, Hastings JW. Bacterial bioluminescence: Its control and ecological significance. Microbiological Reviews. 1979; 43 (4):496-518. DOI: 10.1128/MMBR.43.4.496-518.1979 - 59.
Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a Chemorepellentvia the chemoreceptor TlpB. Microbiology. 2011;157 (9):2445-2455. DOI: 10.1099/mic.0.049353-0 - 60.
Wen Y, Huang H, Tang T, Yang H, Wang X, Huang X, et al. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori -induced inflammatory response of gastric epithelial cells. Helicobacter. 2021;26 (2):e12778. DOI: 10.1111/hel.12778 - 61.
Challa S, Neelapu NRR. Quorum sensing in Helicobacter pylori : Role of biofilm and its implications for antibiotic resistance and immune evasion. In: Implication of Quorum Sensing System in Biofilm Formation and Virulence. 1st ed. Singapore: Springer; 2019. pp. 277-286. DOI: 10.1007/978-981-13-2429-1_18 - 62.
Deng Y, Wu J, Tao F, Zhang LH. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chemical Reviews. 2011; 111 :160-173. DOI: 10.1021/cr100354f M.B - 63.
Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L, et al. Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: A review. Biotechnology Advances. 2016;34 :1030-1045. DOI: 10.1016/j.biotechadv.2016.06.003 - 64.
Hemmati F, Salehi R, Ghotaslou R, Kafil HS, Hasani A, Gholizadeh P, et al. Quorum quenching: A potential target for antipseudomonal therapy. Infection and Drug Resistance. 2020; 13 :2989-3005. DOI: 10.2147/IDR.S263196 - 65.
Asfour HZ. Anti - quorum sensing natural compounds. Journal of Microscopy and Ultrastructure. 2018; 6 (1):1-10. DOI: 10.4103/JMAU.JMAU - 66.
Ortega Á, Zhulin IB, Krell T. Sensory repertoire of bacterial chemoreceptors. Microbiology and Molecular Biology Reviews. 2017; 81 (4):e00033-e00017. DOI: 10.1128/MMBR.00033-17 - 67.
Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi . Journal of Bacteriology. 1997;179 (12):4043-4045. DOI: 10.1128/jb.179.12.4043-4045.1997 - 68.
Forsyth MH, Cover TL. Intercellular communication in Helicobacter pylo ri: LuxS is essential for the production of an extracellular Signaling molecule. Infection and Immunity. 2000;68 (6):3193-3199. DOI: 10.1128/IAI.68.6.3193-3199.2000 - 69.
Rader BA, Campagna SR, Semmelhack MF, Bassler BL, Guillemin K. The quorum-sensing molecule autoinducer 2 regulates motility and Flagellar morphogenesis in Helicobacter pylori . Journal of Bacteriology. 2007;189 (17):6109-6117. DOI: 10.1128/JB.00246-07 - 70.
Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell. 2004;15 :677-687. DOI: 10.1016/j.molcel.2004.07.020 - 71.
Mattar R, Marques SB, Monteiro MDS, Dos Santos AF, Iriya K, Carrilho FJ. Helicobacter pylori cag Pathogenicity Island genes: Clinical relevance for peptic ulcer disease development in Brazil. Journal of Medical Microbiology. 2007;56 (1):9-14. DOI: 10.1099/jmm.0.46824-0 - 72.
Voland P, Hafsi N, Zeitner M, Laforsch S, Wagner H, Prinz C. Antigenic properties of HpaA and Omp18, two outer membrane proteins of Helicobacter pylori . Infection and Immunity. 2003;71 (7):3837-3843. DOI: 10.1128/IAI.71.7.3837-3843.2003 - 73.
Kim N, Marcus EA, Wen Y, Weeks DL, Scott DR, Jung HC, et al. Genes of Helicobacter pylori regulated by attachment to AGS cells. Infection and Immunity. 2004;72 (4):2358-2368. DOI: 10.1128/IAI.72.4.2358-2368.2004 - 74.
Dunne C, Dolan B, Clyne M. Factors that mediate colonization of the human stomach by Helicobacter pylori . World Journal of Gastroenterology. 2014;20 (19):5610-5624. DOI: 10.3748/wjg.v20.i19.5610 - 75.
Coticchia JM, Sugawa C, Tran VR, Gurrola J, Kowalski E, Carron MA. Presence and density of Helicobacter pylori biofilms in human gastric mucosa in patients with peptic ulcer disease. Journal of Gastrointestinal Surgery. 2006;10 (6):883-889. DOI: 10.1016/j.gassur.2005.12.009 - 76.
Lucio-Sauceda DG, Urrutia-Baca VH, Gomez-Flores R, La Garza-Ramos D, Angélica M, Tamez-Guerra P, et al. Antimicrobial and anti-biofilm effect of an electrolyzed Superoxidized solution at neutral-PH against Helicobacter pylori . BioMed Research International. 2019;2019 :6154867. DOI: 10.1155/2019/6154867 - 77.
De Francesco V, Zullo A, Hassan C, Giorgio F, Rosania R, Ierardi E. Mechanisms of Helicobacter pylori antibiotic resistance: An updated appraisal. World Journal of Gastrointestinal Pathophysiology. 2011;2 (3):35-41. DOI: /10.4291/wjgp.v2.i3.35 - 78.
Cushnie TT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents. 2011; 38 (2):99-107. DOI: 10.1016/j.ijantimicag.2011.02.014 - 79.
Ning Q , Wang D, You J. Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria. Environmental Science: Processes & Impacts. 2021; 23 :995-1005. DOI: 10.1039/D1EM00047K - 80.
Ahumedo M, Velásquez M, Reyes RV. Virtual screening: Identification of compounds with possible quorum sensing agonistic activity in Pseudomonas aeruginosa . Vitae. 2017;24 (2):89-101. DOI: 10.17533/udea.vitae.v24n2a02 - 81.
Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Frontiers in Microbiology. 2019; 10 :41-52. DOI: 10.3389/fmicb.2019.00041 - 82.
O’Mahony R, Al-Khtheeri H, Weerasekera D, Fernando N, Vaira D, Holton J, et al. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori . World Journal of Gastroenterology. 2005;11 (47):7499-7507. DOI: 10.3748/wjg.v11.i47.7499 - 83.
Chen ME, Su CH, Yang JS, Lu CC, Hou YC, Wu JB, et al. Baicalin, Baicalein, and lactobacillus Rhamnosus JB3 alleviatedHelicobacter pylori infectionsin vitro andin vivo . Journal of Food Science. 2018;83 (12):3118-3125. DOI: 10.1111/1750-3841.14372 - 84.
Brown JC, Wang J, Kasman L, Jiang X, Haley-Zitlin V. Activities of Muscadine grape skin and quercetin against Helicobacter pylori infection in mice. Journal of Applied Microbiology. 2011;110 (1):139-146. DOI: 10.1111/j.1365-2672.2010.04870.x - 85.
Krzyżek P, Junka A, Słupski W, Dołowacka-Jóźwiak A, Płachno BJ, Sobiecka A, et al. Antibiofilm and antimicrobial-enhancing activity of Chelidonium majus andCorydalis cheilanthifolia extracts against multidrug-resistantHelicobacter pylori . Pathogens. 2021;10 (8):1033. DOI: 10.3390/pathogens10081033 - 86.
Shin JE, Kim JM, Bae EA, Hyun YJ, Kim DH. In vitro inhibitory effect of flavonoids on growth, infection and Vacuolation ofHelicobacter pylori . Planta Medica. 2005;71 (3):197-201. DOI: 10.1055/s-2005-837816 - 87.
Jiang X, Jiang C, Huang C, Chen G, Jiang K, Huang B, et al. Berberine combined with triple therapy versus triple therapy for Helicobacter pylori eradication: A Meta-analysis of randomized controlled trials. Evidence-based Complementary and Alternative Medicine. 2018;2018 :8716910. DOI: 10.1155/2018/8716910 - 88.
Yu XD, Zheng RB, Xie JH, Su JY, Huang XQ , Wang YH, et al. Biological evaluation and molecular docking of Baicalin and Scutellarin as Helicobacter pylori urease inhibitors. Journal of Ethnopharmacology. 2015;162 :69-78. DOI: 10.1016/j.jep.2014.12.041 - 89.
Prasad A, Devi AT, Prasad MN, Zameer F, Shruthi G, Shivamallu C. Phyto anti-biofilm elicitors as potential inhibitors of Helicobacter pylori . 3 Biotech. 2019;9 (2):53. DOI: 10.1007/s13205-019-1582-2 - 90.
Gopalakrishnan V, Masanam E, Ramkumar VS, Baskaraligam V, Selvaraj G. Influence of N-Acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori : A potential strategy to combat biofilm formation. Journal of Basic Microbiology. 2020;60 (3):207-215. DOI: 10.1002/jobm.201900537 - 91.
Harijan RK, Hoff O, Ducati RG, Firestone RS, Hirsch BM, Evans GB, et al. Selective inhibitors of Helicobacter pylori Methylthioadenosine Nucleosidase and human Methylthioadenosine phosphorylase. Journal of Medicinal Chemistry. 2019;62 (7):3286-3296. DOI: 10.1021/acs.jmedchem.8b01642 - 92.
Kumar M, Naaz A, Sharma A, Teotia D, Nandi S. Pharmacophore Modeling of Furanosyl borate Diester: An attempt to combat antibiotic resistance induced Helicobacter pylori . Quorum sensing mediated peptic and duodenal ulcer. Journal of Bioanalysis & Biomedicine. 2018;10 (6):114-117. DOI: 10.4172/1948-593x.1000218 - 93.
Zhou L, Zhang Y, Ge Y, Zhu X, Pan J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in Microbiology. 2020; 11 :1-11. DOI: 10.3389/fmicb.2020.589640 - 94.
Ronning DR, Iacopelli NM, Mishra V. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-Methylthioadenosine/S-Adenosylhomocysteine Nucleosidase. Protein Science. 2010;19 (12):2498-2510. DOI: 10.1002/pro.524 - 95.
Wang S, Haapalainen AM, Yan F, Du Q , Tyler PC, Evans GB, et al. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori . Biochemistry. 2012;51 (35):6892-6894. DOI: 10.1021/bi3009664 - 96.
Tran TH, Huynh TTH, Thuy NTL, Minh NVH, Nguyen TMN, Thi LMN. Growth-inhibiting, bactericidal, Antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains ofHelicobacter pylori . ACS Omega. 2020;5 (32):20080-20089. DOI: 10.1021/acsomega.0c01640 - 97.
Vetvicka V, Vetvickova J, Fernandez-Botran R. Effects of curcumin on Helicobacter pylori infection. Annals of Translational Medicine. 2016;4 (24):1-7. DOI: 10.21037/atm.2016.12.52 - 98.
Shmuely H, Ofek I, Weiss EI, Rones Z, Houri-Haddad Y. Cranberry components for the therapy of infectious disease. Current Opinion in Biotechnology. 2012; 23 (2):148-152. DOI: 10.1016/j.copbio.2011.10.009 - 99.
Cellini L, Di Bartolomeo S, Di Campli E, Genovese S, Locatelli M, Di Giulio M. In vitro activity of aloe Vera inner gel againstHelicobacter pylori strains. Letters in Applied Microbiology. 2014;59 (1):43-48. DOI: 10.1111/lam.12241 - 100.
Tharmalingam N, Port J, Castillo D, Mylonakis E. Repurposing the anthelmintic drug Niclosamide to combat Helicobacter pylori . Scientific Reports. 2018;8 (1):1-12. DOI: 10.1038/s41598-018-22037-x - 101.
Pattiyathanee P, Vilaichone RK, Chaichanawongsaroj N. Effect of curcumin on Helicobacter pylori biofilm formation. African Journal of Biotechnology. 2009;8 (19):5106-5115. DOI: 10.4314/ajb.v8i19.65231