\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"10236",leadTitle:null,fullTitle:"Plasmodium Species and Drug Resistance",title:"Plasmodium Species and Drug Resistance",subtitle:null,reviewType:"peer-reviewed",abstract:"As teachers of parasite biology, we are becoming increasingly aware of the lack of detailed information and experimental approaches about drugs and drug resistance in many medical schools and undergraduate courses. Therefore, this book discusses parasite biology, antimalarial drugs and their mechanism of action, and the dynamic situation of evolving drug resistance of parasites, which has become a pressing issue. It provides insight into the plasmodium species, the role of cytokines in activating immune response during malaria infection, the importance of antimalarials as a therapeutic option, issues of drug resistance and co-resistance, and validation of evolved resistance in humanized mouse models. It is a timely addition to the existing literature on malaria parasite biology and a useful resource for students, researchers, and those working in the field of parasite biology, drugs, drug resistance of infectious diseases in general, and human malaria parasites in particular and beyond.",isbn:"978-1-83969-256-7",printIsbn:"978-1-83969-255-0",pdfIsbn:"978-1-83969-257-4",doi:"10.5772/intechopen.91077",price:119,priceEur:129,priceUsd:155,slug:"plasmodium-species-and-drug-resistance",numberOfPages:286,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"964a389525d1147af3e527c056ac1a73",bookSignature:"Rajeev K. Tyagi",publishedDate:"November 10th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10236.jpg",numberOfDownloads:2322,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:4,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 23rd 2020",dateEndSecondStepPublish:"December 21st 2020",dateEndThirdStepPublish:"February 19th 2021",dateEndFourthStepPublish:"May 10th 2021",dateEndFifthStepPublish:"July 9th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",biography:'Dr. Rajeev K. Tyagi earned Ph.D. degree at Biomedical Parasitology Unit, Institute Pasteur, Paris, France in June 2011 on a very challenging and interesting topic of malaria immunology/parasitology. He developed a long lasting, stable and straightforward laboratory animal model (humanized mouse model: a versatile mouse model) to study biology and immunology of infectious diseases and beyond. Dr. Tyagi worked as postdoc fellow in the laboratory of Dr. John Adams, University of South Florida, USA and received training to explore the potential of the developed “humanized mouse” to characterize attenuated asexual blood stage falciparum parasite to understand the innate immune response of the attenuated parasite (growth mutant). Also, he developed small laboratory human liver chimeric mice by transplanting the human hepatocytes in transgenic/immunodeficient mice (TK/NOG) at USF to study the least known liver stage infection of P. falciparum. Later on, he discovered novel dendritic like cell population called “pathogen differentiated dendritic cells (PDDCs)” when incubated with P. gingivalis and tracking of monocyte derived dendritic cells (MoDcs) in a reconstituted immunodeficient NOD.PrkdcscidIl2rg-/- (NSG) mice was carried out at Augusta University, USA to understand the host-pathogen interaction. Dr. Tyagi at the Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition Vanderbilt University Medical Centre (VUMC), USA deployed his efforts to understand the role of IL-23R in the modulation of functioning of regulatory T cells and its role in the pathogenesis of colitis in an experimental humanized mouse. Currently, Dr. Tyagi has been leading a group at CSIR-Institute of Microbial Technology, Chandigarh, India and his lab is focused to:\r\n 1. Developing human-liver chimeric mice for huHep transplantation to study liver stage infection of P. falciparum and transition to asexual blood stage infection to test antimalarial drugs and vaccine candidates in one host. \r\n2. Study of drug resistance against Plasmodium falciparum\r\n3. Dendritic cells as "therapeutic vaccines" playing a crucial role in translational biomedical research.\r\n4. Formulation and characterization of nanoscale drug carriers to deliver methotrexate (MTX) and aceclofenac to address Rheumatoid Arthritis, cancer and other inflammatory diseases as well as candidate vaccines.',institutionString:"CSIR - Institute of Microbial Technology, India",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1195",title:"Drug Discovery",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-drug-discovery"}],chapters:[{id:"76981",title:"Finding Novel Strategies to Overcome the Impact of Malaria Vector Resistance in Limited-Resources Settings. The Case of Cameroon as a Basis for Reflection",doi:"10.5772/intechopen.98318",slug:"finding-novel-strategies-to-overcome-the-impact-of-malaria-vector-resistance-in-limited-resources-se",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria remains one of the most important and deadliest diseases in many countries in Africa, in the Americas, in South-East Asia, in the Eastern Mediterranean and in the Western Pacific regions, with high morbidity and mortality, despite important successes for the control of this disease borne by the vector Anopheles mosquitoes. Malaria elimination relies on different strategies including early diagnosis, improved drug therapies and better health infrastructure, and mainly the use of long-lasting insecticidal nets (LLINs) and indoor residual sprayings (IRS) of insecticide. In Cameroon, a country composed of several ethnic groups, malaria transmission is endemic in some regions, while it is seasonal in others; children and pregnant women are most vulnerable. Progress has been made towards malaria control, considering these specificities, and led to a reduction in both morbidity and mortality, but these accomplishments are under threat, mainly due to the development of resistance to insecticides among mosquitoes, targeting the 4 commonly used insecticide classes. To continue our route towards malaria control and elimination, it is urgent to have more knowledge about resistance mechanisms, in the objective of elaborating new strategies with the involvement of the community; these strategies should take into consideration socio-ecological factors such as the young age of the population, low literacy rate especially among women, population’s beliefs, traditions, and customs. Forest ecosystems with abundant rains, humidity and hot temperature, lower access to water for populations living in rural areas, and poverty level are other factors to consider when elaborating malaria control approaches.",signatures:"Benjamin Jr Fouda Abougou",downloadPdfUrl:"/chapter/pdf-download/76981",previewPdfUrl:"/chapter/pdf-preview/76981",authors:[{id:"342228",title:"M.D.",name:"Benjamin Jr",surname:"Fouda Abougou",slug:"benjamin-jr-fouda-abougou",fullName:"Benjamin Jr Fouda Abougou"}],corrections:null},{id:"77286",title:"Plasmodium Species and Drug Resistance",doi:"10.5772/intechopen.98344",slug:"plasmodium-species-and-drug-resistance",totalDownloads:177,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria is a leading public health problem in tropical and subtropical countries of the world. In 2019, there were an estimated 229 million malaria cases and 409, 000 deaths due malaria in the world. The objective of this chapter is to discuss about the different Plasmodium parasites that cause human malaria. In addition, the chapter discusses about antimalarial drugs resistance. Human malaria is caused by five Plasmodium species, namely P. falciparum, P. malariae, P. vivax, P. ovale and P. knowlesi. In addition to these parasites, malaria in humans may also arise from zoonotic malaria parasites, which includes P. inui and P. cynomolgi. The plasmodium life cycle involves vertebrate host and a mosquito vector. The malaria parasites differ in their epidemiology, virulence and drug resistance pattern. P. falciparum is the deadliest malaria parasite that causes human malaria. P. falciparum accounted for nearly all malarial deaths in 2018. One of the major challenges to control malaria is the emergence and spread of antimalarial drug-resistant Plasmodium parasites. The P. vivax and P. falciparum have already developed resistance against convectional antimalarial drugs such as chloroquine, sulfadoxine-pyrimethamine, and atovaquone. Chloroquine-resistance is connected with mutations in pfcr. Resistance to Sulfadoxine and pyrimethamine is associated with multiple mutations in pfdhps and pfdhfr genes. In response to the evolution of drug resistance Plasmodium parasites, artemisinin-based combination therapies (ACTs) have been used for the treatment of uncomplicated falciparum malaria since the beginning of 21th century. However, artemisinin resistant P. falciparum strains have been recently observed in different parts of the world, which indicates the possibility of the spread of artemisinin resistance to all over the world. Therefore, novel antimalarial drugs have to be searched so as to replace the ACTs if Plasmodium parasites develop resistance to ACTs in the future.",signatures:"Sintayehu Tsegaye Tseha",downloadPdfUrl:"/chapter/pdf-download/77286",previewPdfUrl:"/chapter/pdf-preview/77286",authors:[{id:"344290",title:"M.Sc.",name:"Sintayehu",surname:"Tsegaye Tseha",slug:"sintayehu-tsegaye-tseha",fullName:"Sintayehu Tsegaye Tseha"}],corrections:null},{id:"76582",title:"Recent Advances in Antimalarial Drug Discovery: Challenges and Opportunities",doi:"10.5772/intechopen.97401",slug:"recent-advances-in-antimalarial-drug-discovery-challenges-and-opportunities-1",totalDownloads:192,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Malaria is a global health problem that needs attention from drug discovery scientists to investigate novel compounds with high drug efficacy, safety and low cost to encounter the malaria parasites that are resistant to existing drug molecules. Antimalarial drug development follows several approaches, ranging from modifications of existing agents to the design of novel agents that act against novel targets. Most of market and clinical drugs act on blood schizonticide are in current therapy for malaria reduction. This chapter will intend to highlight the currently available drugs including various novel agents. In addition, emphasis has been given on the prospective pharmacophores that are likely to emerge as effective clinical candidates in the treatment of malaria. Besides all aspects, some alternative approaches will also be highlight.",signatures:"Imrat, Ajeet Kumar Verma and Pooja Rani Mina",downloadPdfUrl:"/chapter/pdf-download/76582",previewPdfUrl:"/chapter/pdf-preview/76582",authors:[{id:"320004",title:"Dr.",name:"Pooja",surname:"Mina",slug:"pooja-mina",fullName:"Pooja Mina"},{id:"414260",title:"Dr.",name:"Imrat",surname:null,slug:"imrat",fullName:"Imrat null"},{id:"414261",title:"Dr.",name:"Ajeet",surname:"Kumar Verma",slug:"ajeet-kumar-verma",fullName:"Ajeet Kumar Verma"}],corrections:null},{id:"77047",title:"Adaptive Drug Resistance in Malaria Parasite: A Threat to Malaria Elimination Agenda?",doi:"10.5772/intechopen.98323",slug:"adaptive-drug-resistance-in-malaria-parasite-a-threat-to-malaria-elimination-agenda-",totalDownloads:154,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria is a global disease of importance, especially in the sub-Saharan African region, where malaria accounts for great losses economically and to life. Fight to eliminate this disease has resulted in reduced disease burden in many places where the diseases is endemic. Elimination strategies in most places is focus on the use of treated nets and drug application. Exposure of malaria parasites to anti-malaria drugs have led to the evolution of drug resistance in both parasites and host. Development of drug resistance vary but, studies on adaptive drug resistance has implications and consequences. Our knowledge of this consequences are limited but important for the pursuit of an uninterrupted malaria elimination agenda. This chapter draws our attention to this risks and recommends interventions.",signatures:"Moses Okpeku",downloadPdfUrl:"/chapter/pdf-download/77047",previewPdfUrl:"/chapter/pdf-preview/77047",authors:[{id:"344467",title:"Assistant Prof.",name:"Moses",surname:"Okpeku",slug:"moses-okpeku",fullName:"Moses Okpeku"}],corrections:null},{id:"77119",title:"Treatment of Malaria Infection and Drug Resistance",doi:"10.5772/intechopen.98373",slug:"treatment-of-malaria-infection-and-drug-resistance",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria is a public health challenge that requires prompt treatment for those infected to make a full recovery. Treatment of malaria infection is to be started as soon as a diagnosis is confirmed. Antimalarial medications are administered to prevent and also to treat malaria. The type of medication used and the duration of therapy is dependent on the type of malaria-causing plasmodium species, the severity of the symptoms, geographical area where malaria infection occurred and the medication used to prevent malaria and whether there is pregnancy. Treatment of malaria from public health perspective is to reduce transmission of the infection to others, by reducing the infectious reservoir and to prevent the emergence and spread of resistance to antimalarial medicines. Medications used in the treatment of malaria infection come from the following five groups of chemical compounds: quinolines and aryl amino alcohols, antifolate, artemisinin derivatives, hydroxynaphthoquinones and antibacterial agents. The treatment of malaria is not initiated until the diagnosis has been established through laboratory testing. Artemisinin-based Combination Therapy (ACTs) has been used for the treatment of uncomplicated malaria. ACTs are also to enhance treatment and protect against the development of drug resistance. IV artesunate is used in the treatment of severe malaria, regardless of infecting species.",signatures:"Bernard Kofi Turkson, Alfred Ofori Agyemang, Desmond Nkrumah, Reinhard Isaac Nketia, Michael Frimpong Baidoo and Merlin Lincoln Kwao Mensah",downloadPdfUrl:"/chapter/pdf-download/77119",previewPdfUrl:"/chapter/pdf-preview/77119",authors:[{id:"342313",title:"Dr.",name:"Bernard Kofi",surname:"Turkson",slug:"bernard-kofi-turkson",fullName:"Bernard Kofi Turkson"},{id:"344502",title:"Mr.",name:"Michael",surname:"Frimpong Baidoo",slug:"michael-frimpong-baidoo",fullName:"Michael Frimpong Baidoo"},{id:"344503",title:"Mr.",name:"Alred",surname:"Ofori Agyemang",slug:"alred-ofori-agyemang",fullName:"Alred Ofori Agyemang"},{id:"344504",title:"Mr.",name:"Desmond",surname:"Nkrumah",slug:"desmond-nkrumah",fullName:"Desmond Nkrumah"},{id:"344505",title:"Mr.",name:"Reinhard Isaac",surname:"Nketia",slug:"reinhard-isaac-nketia",fullName:"Reinhard Isaac Nketia"},{id:"344507",title:"Prof.",name:"Merlin Lincoln Kwao",surname:"Mensah",slug:"merlin-lincoln-kwao-mensah",fullName:"Merlin Lincoln Kwao Mensah"}],corrections:null},{id:"77461",title:"P. falciparum and Its Molecular Markers of Resistance to Antimalarial Drugs",doi:"10.5772/intechopen.98372",slug:"-em-p-falciparum-em-and-its-molecular-markers-of-resistance-to-antimalarial-drugs",totalDownloads:174,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The use of molecular markers of resistance to monitor the emergence, and the spread of parasite resistance to antimalarial drugs is a very effective way of monitoring antimalarial drug resistance. The identification and validation of molecular markers have boosted our confidence in using these tools to monitor resistance. For example, P. falciparum chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance protein 1 (PfMDR1), P. falciparum multidrug kelch 13 (pfk13), have been identified as molecular markers of resistance to chloroquine, lumefantrine, and artemisinin respectively. The mechanism of resistance to antimalarial drugs is mostly by; (1) undergoing mutations in the parasite genome, leading to expelling the drug from the digestive vacuole, or (2) loss of binding affinity between the drug and its target. Increased copy number in the pfmdr1 gene also leads to resistance to antimalarial drugs. The major cause of the widespread chloroquine and sulfadoxine-pyrimethamine resistance globally is the spread of parasites resistant to these drugs from Southeast Asia to Africa, the Pacific, and South America. Only a few mutations in the parasite genome lead to resistance to chloroquine and sulfadoxine-pyrimethamine arising from indigenous parasites in Africa, Pacific, and South America.",signatures:"Peter Hodoameda",downloadPdfUrl:"/chapter/pdf-download/77461",previewPdfUrl:"/chapter/pdf-preview/77461",authors:[{id:"344545",title:"M.Sc.",name:"Peter",surname:"Hodoameda",slug:"peter-hodoameda",fullName:"Peter Hodoameda"}],corrections:null},{id:"78631",title:"A Double Line of Defense: Heat Shock Proteins and Polyamines Act as Contributing Factors to Drug Resistance of some Plasmodium Parasites",doi:"10.5772/intechopen.98852",slug:"a-double-line-of-defense-heat-shock-proteins-and-polyamines-act-as-contributing-factors-to-drug-resi",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria remains a threat to human life worldwide with children under the age of 5 being the most vulnerable. Plasmodium falciparum, known as the causative agent of the deadliest malaria, survives both in the mosquito vector and human host. The sudden temperature change seems to not affect the parasite’s cellular system. Heat shock proteins and polyamines are the major house-keepers of the parasite’s cellular system to remain viable, despite the temperature changes that the parasite gets exposed to. While heat shock proteins protect newly synthesized proteins until they are properly folded polyamines are needed for cell differentiation, proliferation, and cell growth. In plants for example, polyamines have been reported to act as molecular chaperones when cells are exposed to unfavorable conditions that could be detrimental to cells. In this review, the role of heat shock proteins and polyamines in plasmodium parasite drug resistance and their role in parasite survival are discussed. The current drugs against malaria as well as the alternative future approach towards malarial drug development are reviewed.",signatures:"Xolani Henry Makhoba",downloadPdfUrl:"/chapter/pdf-download/78631",previewPdfUrl:"/chapter/pdf-preview/78631",authors:[{id:"342340",title:"Dr.",name:"Xolani Henry",surname:"Makhoba",slug:"xolani-henry-makhoba",fullName:"Xolani Henry Makhoba"}],corrections:null},{id:"77697",title:"Molecular Approaches for Malaria Therapy",doi:"10.5772/intechopen.98396",slug:"molecular-approaches-for-malaria-therapy",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria is a potentially fatal blood disease spread by mosquitos. Malaria is preventable, but it is more prevalent in developing countries where prevention is difficult and prophylaxis is often inaccessible. Malaria remains one of the world’s most serious public health problems, according to the World Health Organisation (WHO). The development of resistance is a current problem that poses a danger to the environment. Resistance is a current problem that could jeopardise the use of well-established and cost-effective antimalarials. The World Health Organisation recommends an artemisinin-based drug combination (ACT) to avoid or postpone the development of resistance. This book’s chapter discusses current medicines as well as potential and rational possibilities for finding new drugs to treat malady. There were also WHO recommendations for both complicated and non-complicated malaria. Other preventive measures such as ITN and IPT are listed in the manuscript in addition to routine care. While a brief overview of the vaccine tested so far has been included, there is currently no vaccine available to treat malaria.",signatures:"Mitali Mishra, Vikash Kumar Mishra, Varsha Kashaw and Sushil Kumar Kashaw",downloadPdfUrl:"/chapter/pdf-download/77697",previewPdfUrl:"/chapter/pdf-preview/77697",authors:[{id:"345127",title:"Dr.",name:"Sushil",surname:"Kashaw",slug:"sushil-kashaw",fullName:"Sushil Kashaw"},{id:"350673",title:"Dr.",name:"Vikash",surname:"Mishra",slug:"vikash-mishra",fullName:"Vikash Mishra"},{id:"350674",title:"Mrs.",name:"Mitali",surname:"Mishra",slug:"mitali-mishra",fullName:"Mitali Mishra"},{id:"350757",title:"Dr.",name:"Varsha",surname:"Kashaw",slug:"varsha-kashaw",fullName:"Varsha Kashaw"}],corrections:null},{id:"75927",title:"Regulation of T-reg/Th-17 Balance: One Step Closer Towards Immunotherapy Against Malaria Infection",doi:"10.5772/intechopen.97045",slug:"regulation-of-t-reg-th-17-balance-one-step-closer-towards-immunotherapy-against-malaria-infection",totalDownloads:130,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"According to World Malaria Report 2020, the rate of decline in malaria case incidence and deaths caused by malaria has ceased in latter half of the past decade. Though Artemisinin Combination Therapy (ACT) is still the major therapeutic approach globally to treat malaria patients, increased resistance of Plasmodium sp. to artemisinin can be looked upon as a major factor responsible for the rate of decline. In the present world, immunotherapeutic approaches are in the limelight to treat several infections, autoimmune disorders, cancers but application of such therapeutic measures in case of malaria are yet not available. Among different immune cells, T-regulatory cells (T-reg) and Th-17 cells and the balance between them, helps in determining the outcome of the immune response in host during both lethal and non-lethal malaria. TGFβ and IL-6 are two major cytokines that play important role in fine tuning the Treg/Th-17 balance by modulating dendritic cell responses, specially by regulating the ratio between myeloid DC and plasmacytoid DC (mDC/pDC). Studies in rodent malaria models have revealed that neutralization of IL-6 by using anti IL-6 monoclonal antibodies in-vivo has been found effective in declining the parasitemia, malaria induced deaths and also in reverting back the altered T-reg/Th-17 balance to normal levels. Apart from these, autophagy is one of the major factors which also contributes to regulate the T-reg/Th-17 balance. In malaria infected mice, autophagy induction has been found to normalise the dysregulated T-reg/Th-17 ratio and promote anti-inflammatory Th-2 pathway by supressing pro-inflammatory Th-1 pathway. So, Treg/Th-17 balance and its associated regulators can be important immunotherapeutic targets for malaria prevention in near future.",signatures:"Saikat Mukherjee, Soubhik Ghosh and Arindam Bhattacharyya",downloadPdfUrl:"/chapter/pdf-download/75927",previewPdfUrl:"/chapter/pdf-preview/75927",authors:[{id:"343432",title:"Prof.",name:"Arindam",surname:"Bhattacharyya",slug:"arindam-bhattacharyya",fullName:"Arindam Bhattacharyya"},{id:"343434",title:"Mr.",name:"Soubhik",surname:"Ghosh",slug:"soubhik-ghosh",fullName:"Soubhik Ghosh"},{id:"343435",title:"Mr.",name:"Saikat",surname:"Mukherjee",slug:"saikat-mukherjee",fullName:"Saikat Mukherjee"}],corrections:null},{id:"76204",title:"A Comprehensive Review of 4(1H)-Quinolones and 4(1H)-Pyridones for the Development of an Effective Antimalarial",doi:"10.5772/intechopen.97084",slug:"a-comprehensive-review-of-4-1-em-h-em-quinolones-and-4-1-em-h-em-pyridones-for-the-development-of-an",totalDownloads:207,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malaria is a global public health issue. Despite the efforts in malaria prevention, nearly half the world’s population is at risk of infection. Until present-day, researchers are struggling to design and discover an efficacious antimalarial. In comparison to most common antimalarial chemotypes that eliminate erythrocytic stages of P. falciparum, 4(1H)-quinolones and 4(1H)-pyridones exhibit antimalarial activity against multiple stages of the parasite. They have potential to treat blood stages of multidrug resistant P. falciparum malaria, eradicate dormant exoerythro stages of relapsing malaria species (P. vivax), and prevent transmission of infectious gametocytes to mosquitoes. However, thus far, the advancement of these chemotypes towards pre-clinical and clinical development has been impeded due to poor physicochemical properties, poor oral bioavailability, and poor dose-proportionality limiting preclinical safety and toxicity studies. Despite all these challenges, 4(1H)-quinolones and 4(1H)-pyridones continue to be at the forefront for the development of the next-generation antimalarials as they would have tremendous global public health impact and could significantly enhance current malaria elimination efforts.",signatures:"Ami H. Asakawa and Roman Manetsch",downloadPdfUrl:"/chapter/pdf-download/76204",previewPdfUrl:"/chapter/pdf-preview/76204",authors:[{id:"334739",title:"Associate Prof.",name:"Roman",surname:"Manetsch",slug:"roman-manetsch",fullName:"Roman Manetsch"},{id:"345559",title:"Dr.",name:"Ami H.",surname:"Asakawa",slug:"ami-h.-asakawa",fullName:"Ami H. Asakawa"}],corrections:null},{id:"78959",title:"Stable Artesunate Resistance in A Humanized Mouse Model of Plasmodium falciparum",doi:"10.5772/intechopen.100381",slug:"stable-artesunate-resistance-in-a-humanized-mouse-model-of-em-plasmodium-falciparum-em-",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Plasmodium falciparum, the most devastating human malaria parasite, confers higher morbidity and mortality. Although efforts have been made to develop an effective malaria vaccine, stage- and species-specific short-lived immunity crippled these efforts. Hence, antimalarial drug treatment becomes a mainstay for the treatment of malaria infection in the wake of the unavailability of an effective vaccine. Further, there has been a wide array of antimalarial drugs effective against various developmental stages of P. falciparum due to their different structures, modes of action, and pharmacodynamics as well as pharmacokinetics. The development of resistance against almost all frontline drugs by P. falciparum indicates the need for combination therapy (artemisinin-based combination therapy; ACT) to treat patients with P. falciparum. A higher pool of parasitemia under discontinuous in vivo artemisinin drug pressure in a developed humanized mouse allows the selection of artesunate resistant (ART-R) P. falciparum. Intravenously administered artesunate, using either single flash doses or a 2-day regimen, to the P. falciparum-infected human blood chimeric NOD/SCID.IL-2Rγ−/− immunocompromised (NSG) mice, with progressive dose increments upon parasite recovery, was the strategy deployed to select resistant parasites. Parasite susceptibility to artemisinins and other antimalarial compounds was characterized in vitro and in vivo. P. falciparum has shown to evolve extreme artemisinin resistance as well as co-resistance to antimalarial drugs. Overall, the present information shall be very useful in devising newer therapeutic strategies to treat human malaria infection.",signatures:"Sheetal Saini, Rajinder Kumar and Rajeev K. Tyagi",downloadPdfUrl:"/chapter/pdf-download/78959",previewPdfUrl:"/chapter/pdf-preview/78959",authors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"},{id:"426960",title:"Dr.",name:"Sheetal",surname:"Saini",slug:"sheetal-saini",fullName:"Sheetal Saini"},{id:"426961",title:"Mr.",name:"Rajinder",surname:"Kumar",slug:"rajinder-kumar",fullName:"Rajinder Kumar"}],corrections:null},{id:"77444",title:"Drug Design for Malaria with Artificial Intelligence (AI)",doi:"10.5772/intechopen.98695",slug:"drug-design-for-malaria-with-artificial-intelligence-ai-",totalDownloads:188,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Malaria is a deadly disease caused by the plasmodium parasites. Approximately 210 million people get affected by malaria every year resulting in half a million deaths. Among several species of the parasite, Plasmodium falciparum is the primary cause of severe infection and death. Several drugs are available for malaria treatment in the market but plasmodium parasites have successfully developed resistance against many drugs over the years. This poses a serious threat to efficacy of the treatments and continuing discovery of new drug is necessary to tackle the situation, especially due to failure in designing an effective vaccine. People are now trying to design new drugs for malaria using AI technologies which can substantially reduce the time and cost required in classical drug discovery programs. In this chapter, we provide a comprehensive overview of a road map for several AI based computational techniques which can be implemented in a malaria drugs discovery program. Classical computers has limiting computing power. So, researchers are also trying to harness quantum machine learning to speed up the drug discovery processes.",signatures:"Bhaswar Ghosh and Soham Choudhuri",downloadPdfUrl:"/chapter/pdf-download/77444",previewPdfUrl:"/chapter/pdf-preview/77444",authors:[{id:"343436",title:"Dr.",name:"Soham",surname:"Choudhri",slug:"soham-choudhri",fullName:"Soham Choudhri"},{id:"346210",title:"Dr.",name:"Bhaswar",surname:"Ghosh",slug:"bhaswar-ghosh",fullName:"Bhaswar Ghosh"}],corrections:null},{id:"76742",title:"Plasmodium vivax and Drug Resistance",doi:"10.5772/intechopen.97320",slug:"-em-plasmodium-vivax-em-and-drug-resistance",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Resistance to antimalarial drugs is a threat to global efforts to eliminate malaria by 2030. Currently, treatment for vivax malaria uses chloroquine or ACT for uncomplicated P. vivax whereas primaquine is given to eliminate latent liver stage infections (a method known as radical cure). Studies on P. vivax resistance to antimalarials and the molecular basis of resistance lags far behind the P. falciparum as in vitro cultivation of the P. vivax has not yet been established. Therefore, data on the P. vivax resistance to any antimalarial drugs are generated through in vivo studies or through monitoring of antimalarial treatments in mixed species infection. Indirect evidence through drug selective pressure on the parasites genome, as evidenced by the presence of the molecular marker(s) for drug resistance in areas where P. falciparum and P. vivax are distributed in sympatry may reflect, although require validation, the status of P. vivax resistance. This review focuses on the currently available data that may represent the state-of-the art of the P. vivax resistance status to antimalarial to anticipate the challenge for malaria elimination by 2030.",signatures:"Puji Budi Setia Asih and Din Syafruddin",downloadPdfUrl:"/chapter/pdf-download/76742",previewPdfUrl:"/chapter/pdf-preview/76742",authors:[{id:"216332",title:"Dr.",name:"Puji",surname:"Budi Setia Asih",slug:"puji-budi-setia-asih",fullName:"Puji Budi Setia Asih"},{id:"239838",title:"Prof.",name:"Din",surname:"Syafruddin",slug:"din-syafruddin",fullName:"Din Syafruddin"}],corrections:null},{id:"77452",title:"rRNA Platform Technology for Drug Discovery Methods for Identifying Ligands That Target Plasmodium RNA Structural Motifs",doi:"10.5772/intechopen.98776",slug:"rrna-platform-technology-for-drug-discovery-methods-for-identifying-ligands-that-target-plasmodium-r",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Determining the structure of the P. falciparum40s leads to better understanding of the structural basis for its protein-synthesizing roles in the cell. This enables researchers in the field of drug development to run in silico ligand screening experiments using the solved P. falciparum 40S structure as a target against a library of potential anti-malarial compounds. Drug leads identified through this method can lead to further biochemical and In vitro binding studies with the ultimate goal of developing new class of anti-malarial drugs. The use of structure prediction and modeling technologies in this study dramatically reduces the time it takes from target identification to drug lead determination. Furthermore, very many compounds that were previously incapable of being experimentally tested can now be tested in silico against the generated structure. Owing to the increasing utility of bioinformatics and three dimensional structural modeling software, one can accurately build physical models solely from sequence data by unwrapping the information therein on probable motif sites capable of being anchored onto available compounds or aptamers.",signatures:"Harrison Ndung’u Mwangi and Francis Jackim Mulaa",downloadPdfUrl:"/chapter/pdf-download/77452",previewPdfUrl:"/chapter/pdf-preview/77452",authors:[{id:"343043",title:"Prof.",name:"Francis",surname:"Jackim Mulaa",slug:"francis-jackim-mulaa",fullName:"Francis Jackim Mulaa"},{id:"343049",title:"Dr.",name:"Harrison",surname:"Ndung’u Mwangi",slug:"harrison-ndung'u-mwangi",fullName:"Harrison Ndung’u Mwangi"}],corrections:null},{id:"77404",title:"Malaria: Introductory Concepts, Resistance Issues and Current Medicines",doi:"10.5772/intechopen.98725",slug:"malaria-introductory-concepts-resistance-issues-and-current-medicines",totalDownloads:178,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Malaria continues to be the main community health problem in numerous nations. Six species of Plasmodium are documented as the cause of human malaria infection. Among others, Plasmodium falciparum and Plasmodium vivax parasites produce an immense challenge in the public health. Anopheles funestus and Anopheles gambiae are the major transimmiter of the disease (malaria) from one person to another. The disease parasite has a complicated cycle of life that occurs in human and mosquitoes. In general, malaria diagnosis is divided into parasitological and clinical diagnosis. Internationally, the death rate of malaria becomes reduced although few records from Ethiopia describe the presence of raised prevalence of malaria in certain areas. Apart from reduction in incidence and prevalence, transmission of malaria is continued throughout the globe. Hence, its control needs a combined approach comprising treatment with effective antimalarial agents. A lot of novel compounds are under pre-clinical and clinical studies that are triggered by the occurrence of resistance among commonly used antimalarial drugs. In addition to the already known new compounds and targets for drug discovery, scientists from all corner of the world are in search of novel targets and chemical entities.",signatures:"Dejen Nureye",downloadPdfUrl:"/chapter/pdf-download/77404",previewPdfUrl:"/chapter/pdf-preview/77404",authors:[{id:"343470",title:"Mr.",name:"Dejen",surname:"Nureye",slug:"dejen-nureye",fullName:"Dejen Nureye"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7663",title:"Role of Novel Drug Delivery Vehicles in Nanobiomedicine",subtitle:null,isOpenForSubmission:!1,hash:"e3fc1c64277dcc5702828fc74a423eea",slug:"role-of-novel-drug-delivery-vehicles-in-nanobiomedicine",bookSignature:"Rajeev K. Tyagi, Neeraj Garg, Rahul Shukla and Prakash Singh Bisen",coverURL:"https://cdn.intechopen.com/books/images_new/7663.jpg",editedByType:"Edited by",editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"671",title:"Drug Discovery and Development",subtitle:"Present and Future",isOpenForSubmission:!1,hash:"74072e600a9fb54b8257355a7954399e",slug:"drug-discovery-and-development-present-and-future",bookSignature:"Izet M. Kapetanovic",coverURL:"https://cdn.intechopen.com/books/images_new/671.jpg",editedByType:"Edited by",editors:[{id:"68650",title:"Dr.",name:"Izet",surname:"Kapetanović",slug:"izet-kapetanovic",fullName:"Izet Kapetanović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6636",title:"Molecular Insight of Drug Design",subtitle:null,isOpenForSubmission:!1,hash:"6dd106b3bc6a30ae0147ead58f9a8830",slug:"molecular-insight-of-drug-design",bookSignature:"Arli Aditya",coverURL:"https://cdn.intechopen.com/books/images_new/6636.jpg",editedByType:"Edited by",editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7867",title:"Drug Discovery and Development",subtitle:"New Advances",isOpenForSubmission:!1,hash:"5dd2483e8a643b7da16c4be006fd61cf",slug:"drug-discovery-and-development-new-advances",bookSignature:"Vishwanath Gaitonde, Partha Karmakar and Ashit Trivedi",coverURL:"https://cdn.intechopen.com/books/images_new/7867.jpg",editedByType:"Edited by",editors:[{id:"221897",title:"Dr.",name:"Vishwanath",surname:"Gaitonde",slug:"vishwanath-gaitonde",fullName:"Vishwanath Gaitonde"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6410",title:"Drug Discovery",subtitle:"Concepts to Market",isOpenForSubmission:!1,hash:"7c11a8742cce40078f11cacb0d5a5fee",slug:"drug-discovery-concepts-to-market",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/6410.jpg",editedByType:"Edited by",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8067",title:"Molecular Docking and Molecular Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"1d45bbc09e3ad00be279eea0df45abcc",slug:"molecular-docking-and-molecular-dynamics",bookSignature:"Amalia Stefaniu",coverURL:"https://cdn.intechopen.com/books/images_new/8067.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9831",title:"Drug Design",subtitle:"Novel Advances in the Omics Field and Applications",isOpenForSubmission:!1,hash:"38a66ca979ccd932cbcfbaea9d57ad2f",slug:"drug-design-novel-advances-in-the-omics-field-and-applications",bookSignature:"Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/9831.jpg",editedByType:"Edited by",editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72959",slug:"erratum-driving-control-technologies-of-new-high-efficient-motors",title:"Erratum - Driving Control Technologies of New High-Efficient Motors",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72959.pdf",downloadPdfUrl:"/chapter/pdf-download/72959",previewPdfUrl:"/chapter/pdf-preview/72959",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72959",risUrl:"/chapter/ris/72959",chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]}},chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]},book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11273",leadTitle:null,title:"Ankylosing Spondylitis",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tDuring the last years, there was intense research on Ankylosing Spondylitis (AS) and related disorders, which were found to have a strong association with the HLA-B27 allele. Further studies showed that 92% of the population variance is due to genetic factors, and only a fraction of AS genetics can be explained by the influence of HLA-B27. Updated information on the genomic and auto-immune knowledge on AS is an important component of this book, calling attention to markers of disease activity, possible pathways, and the interaction with the gut microbiome, which are a step forward in the knowledge of the pathophysiology of AS, providing markers which are targets for the more recent biologic therapies.
\r\n\tAn update on clinical manifestations, their assessment, monitoring, and imagiology, including peripheral arthritis, enthesopathy, and extra-articular findings, and, the differential diagnosis with other diseases which evolves with axial and peripheral calcifications will be provided.
\r\n\t
\r\n\tAn important component of this book must be dedicated to the more recent treatments namely with biologic therapies but focusing also on new small molecule inhibitors and experimental therapies.
GM crops are one of the noble invention of 21st century that holds a good promise for better survival of humanity. These crops are developed through genetic engineering by altering the genetic make-up of the crops for enriching it with one or several economically important traits such as improved quality traits, reduction in anti-nutritional factors, herbicide tolerance, resistance to various biotic and abiotic stresses, etc. The GM crops have helped mankind to stand against various challenges arising out of high population growth, biodiversity loss and climate change but the process following which these crops have been developed may posed serious threat to the biodiversity which serve as the repository of raw materials for various biotechnological applications ranging from improved and processed foods, fibres and fuels, noble medicines and drugs, enzymes, etc. thus it is imperative that the biodiversity must be preserved satisfactorily to fully exploit the potential of this indispensable technology. In recent times, Biotechnological tool such as genetic engineering and recombinant DNA technology has proved its worth in achieving the sustainable development goals and enjoyed a great potential to mitigate the impact of climate change as well and opened new avenues for climate smart agriculture. However, while doing so we must take care of the ultimate stakeholder whether for the biodiversity or the technology i.e. the human beings and its environment. Fulfilling all these contradictory demands concurrently requires an elaborative and exhaustive framework involving robust protocols regarding safe designing, production, handling and transfer of GM crops. Keeping this in view, a series of meeting were held internationally to discuss the possible innovation or strategies to reduce the ill-effects of these technological interventions and to develop effective strategies for conservation and preservation of biological resources. One of the practical outcome of these discussion fruits in form of “The Cartagena Protocol on Biosafety, 2000” [1, 2].
The Cartagena Protocol on Biosafety (CPB) was adopted on 29 January 2000 in Montreal with the holistic approach to addresses the probable threats from the transfer, handling and use of living modified organisms (LMOs) under the umbrella of Convention on Biological Diversity, 1992 (Figure 1).
Timeline of “The Cartagena Protocol on Biosafety”. Key: COP: Conference of the parties; CPB: Cartagena protocol on biosafety; IGC: Intergovernmental committee.
The term “Biosafety” describes the principles, procedures and policies to be adopted to ensure the environmental and personal safety. The convention directs its Contracting Party to take appropriate measures to regulate, manage or control the risks that may arise due to use and handling of LMOs that may pose some threats to biological and to ensure the safe handling, transport and use of LMOs. Recognising the need of biosafety in genetic engineering research, the Cartagena Protocol on Biosafety (CPB) was adopted with the following objectives:
To set up the procedures for safe trans-boundary movement of LMOs.
To harmonise principles and methodology for risk assessment and establish a mechanism for information sharing through the Biosafety Clearing House (BCH) [3, 4].
The CPB promotes biosafety through well-defined guidelines for the safe transfer, handling and use of LMOs or GMOs, with a specific focus on regulating transboundary movements of these organisms. These guidelines ensure comprehensive information to take decisions on scientifically sound risk assessments and on the precautionary approach in use of LMOs and/or GMOs.
In India, Ministry of Environment & Forests (MoEF) plays the role of the nodal ministry for implementation of Cartagena Protocol and undertakes several initiatives to meet its obligations to the Protocol. It also organised various capacity building programmes to strengthen of the regulatory framework, particularly on transboundary movement of LMOs or genetically modified organisms, risk assessment and its management, training and human resource development and information sharing.
Authorities for implementation of regulations and guidelines in the country [5]
Recombinant DNA Advisory Committee (RDAC)
Review Committee of Genetic Manipulation (RCGM)
Genetic Engineering Approval Committee (GEAC)
Institutional Biosafety Committees (IBSC)
State Biosafety Coordination Committees (SBCC)
District Level Committees (DLC)
Risk assessment identifies potential hazards and/or adverse impacts of GM crops or derived product on non-target organisms and/or environment. This involves a number of coordinated steps like risk identification, risk characterisation and risk categorisation. The first and foremost practice i.e. risk identification involves identification of risk or possible hazard to the non-target species or the environment, if any, associated with release and use of transgenic or GM crops and associated products. This is followed by overall characterisation of risk i.e., whether its effect are direct or indirect, chronic or acute, immediate or delayed in action, etc. Finally, risk categorisation is done which involvves grouping of identified and well characterised risk under various categories
Risk management involves strategic techniques to reduce the adverse effect of GM crops and associated products on non-target species or environment and also to reduce the chances of development of resistance in target pest population. Several tactics
Modern advances in biotechnology has revolutionalised the way of living particularly in meeting the requirement of food, fodder, fibre and fuel by use of GM crops. However, a group of social activist and environmentalists are always in against of the use of GM crops because of its unprecedented effects on ecosystem and human health. Thus, a scientific debate has been continued for a long time in which the favouring statements are made based on risk assessment and its consecutive management as per the norms and protocols. In addition to this a number of initiatives have already been taken by national as well as international agencies to ensure safety measures in use, handling and transfer of these GM crops. Thus, basically these crops can be commercialised in public domain with adequate care following the defined biosafety measures.
For sustainable food production, it is an absolute requirement that nutrients removed with the harvest of crops are replaced to prevent nutrient depletion and soil degradation. Achievement and maintenance of high nutrient use efficiency (NUE) together with high crop productivity have become a major challenge in both developed and developing countries with an increasing growing population, depletion of natural resources, and deteriorating environmental conditions. This is occurring at the same time as society becomes ever more concerned about resource management practices and the environment, especially when it comes to nutrient management [1]. Fertilizer nutrients applied that are not taken up by the crop are also vulnerable to losses from leaching, erosion, and denitrification or volatilization in the case of N, or they could be temporarily immobilized in soil organic matter to be released at a later time, all of which impact apparent use efficiency [2].
Improving nutrient use efficiency (NUE) in plants is vital to enhance the yield and quality of crops, reduce nutrient input cost and improve soil, water, and air quality [3]. Higher NUE by plants could reduce fertilizer input costs, decrease the rate of nutrient losses, and enhance crop yields. Improving crop nutrient use efficiency ideally requires an understanding of the whole system, from the macro (agro-ecosystem) to the molecular level [4]. Nutrient uptake and their internal utilization efficiencies are the two central cores for improving crop NUE [5]. This can be achieved through optimizing agronomic strategies (soil-rhizosphere management) and breeding nutrient-efficient cultivars. Plant genetics and physiological mechanisms and their interaction with best agronomic practice are also a tool that can be used to increase efficiency of cropping systems [3]. Thus, it needs involvement of integrated nutrient management strategies that take into consideration improved fertilizer along with soil and crop management practices are necessary [6]. Sustainable nutrient management must be both efficient and effective to deliver anticipated economic, social, and environmental benefits.
Plants experience nutrient deficiency when soil nutrient availability is either an inherently low amount or low mobility of nutrients in the soil, or poor solubility of certain chemical forms of soil nutrients [7]. Of the various nutrients essential for plants, nitrogen (N), phosphorus (P), and potassium (K) are required in the largest quantities, and their deficiency severely limits crop yield [8]. The dynamic nature of N and P in soil-plant systems creates a unique and challenging environment with nitrate and phosphate contamination of surface and/or groundwater, which can be attributed in large part to low efficiency in plant nutrient uptake. The main challenge for improving P and K use efficiency at the farm level is to apply the existing knowledge in a practical manner [9]. Hence, the best management practice for N, P, and K must consider the specific characteristics of crops, cropping systems, environments, and soils is application of 4R nutrient stewardship. Therefore, this chapter tries to summarize the concept of NUE and recent strategies for enhancing use efficiency of N, P, and K. These approaches consider economic, social, and environmental dimensions essential to sustainable agricultural systems and afford a suitable context for specific NUE indicators.
The variations in defining nutrient efficient plants and methods used in calculating nutrient use efficiency make it difficult to compare results of different studies [10, 11, 12, 13]. Understanding the terminology and the context in which it is used is critical to prevent misinterpretation and misunderstanding and determination of NUE in crop plants is an important approach to evaluate the fate of applied chemical fertilizers and their role in improving crop yields. In order to develop a common framework for NUE, scientists started to formulate concepts and definitions that should serve as a basis for comparison and discussion of research. Nutrient use efficiency in its broadest sense indicates how effectively a plant is able to capture and utilize nutrients to produce biomass. It is simply a measure of how well plants use the available mineral nutrients [10]. The earlier definition of NUE by [14] is simply increment of yield per applied nutrient (Eq. (1)).
While the most recent and complicated one used in crop modeling formula is (Eq. (2)) [12].
where
Generally, nutrient use efficiency comprises both yield as a function of inputs and percentage of nutrient recovered respectively, contributing to yield and quality [15]. The NUE is based on (a) uptake efficiency (acquire from soil, influx rate into roots, influx kinetics, radial transport in roots are based on root parameters per weight or length, and uptake is also related to the amounts of the particular nutrient applied or present in soil), (b) incorporation efficiency (transports to shoot and leaves are based on shoot parameters), and (c) utilization efficiency (based on remobilization, whole plant, i.e., root and shoot parameters) [4].
Phosphorus use efficiency can be divided into (i) P acquisition efficiency [the capacity of a cultivar to extract P from soil] and (ii) P internal utilization efficiency [the capacity of a cultivar to transform the acquired P into biomass/grain yield] [16, 17, 18].
Phosphorus uptake or acquisition efficiency (PACE)
Uptake efficiency or the ability of the plant to extract the nutrient from the soil is calculated as [19] (Eq. (3)).
Phosphorus utilization efficiency (PUTE)
Phosphorus utilization efficiency is defined as a crop’s ability to convert the absorbed P into grain yield [19] (Eq. (4)) can be calculated as:
Utilization efficiency can also be calculates as suggested by [20], (Eqs. (5) and (6)) and expressed as follows:
Generally, if P supply is limited or in more acidic and calcareous soil, P acquisition could be more important than P utilization and high fertilizer application necessary in order to provide sufficient plant-available P. On the other hand, with adequate P supply, PUTE could be considered more important than PACE for crop P efficiency [17]. Therefore, the improvement of both PACE and PUTE in the given species under different P supply conditions in the different soil types seems to be the perfect breeding approach (Figure 1) [17].
Schematic representation of the possible mechanisms of P acquisition and utilization for better growth of modern crops grown in intensive cropping systems (adopted from [
Hence, Nutrient use efficiency = Uptake efficiency × Utilization efficiency. All unit dry weights are in g m−2 [19].
For nitrogen use efficiency in their various definitions and components (Figure 2) [21].
Illustration of nutrient use efficiency parameters exemplified by NUE in wheat. Key process contributing to the NUE trait: nitrogen uptake efficiency, NUpE; nitrogen utilization efficiency, NUtE; nitrogen harvest index, NHI (adopted form [
Apparent recovery efficiency is one of the more complex forms of nutrient use efficiency (NUE) expressions and is most commonly defined as the difference in nutrient uptake in above-ground parts of the plant between the fertilized and unfertilized crop relative to the quantity of nutrient applied. It is often the preferred NUE expression by scientists studying the nutrient response of the crop [22]. Reference [23] proposed that the balance method be used to assess fertilizer P efficiency (Eq. (7)). The balance method is described mathematically as:
Phosphorus use efficiency has become burning issues in recent times due to several reasons [24]. Unlike N, the amount of P is less-abundant, finite resource, less-available, and poor mobility in the soil, being one of the most inaccessible elements for plants. Its deficiency is a major constraint to agricultural production, and it affects an area of over 2 billion hectares worldwide that is on about 70% of the world’s arable land [25]. Remarkably, usually only about 10–30% of the P fertilizer applied in the first year is taken up by the roots, with a substantial part accumulated in the soil as residual P not readily available for plants [26]. This may be due to nature of P that can bound to calcium in alkaline soils and readily complexed to charged Al and Fe oxides and groups hydroxyls on clay surfaces in acidic soils [23]. In addition, agricultural phosphorus (P) run-off is a primary factor in the eutrophication of aquatic and marine ecosystems and has also led to blooms of toxic cyanobacteria [27] and can contain heavy metals such as cadmium that may accumulate in arable soils. Moreover, organic material present in the soil (e.g., from manure or crop residues) can also bind phosphate ions as well as phytate (inositol compounds). In order to avoid a future food-related crisis, phosphorus scarcity needs to be recognized and addressed in contemporary discussions on global environmental change and food security, alongside water, energy, and nitrogen [28].
Selection and breeding nutrient-efficient species or genotypes within a species are justified in terms of reduction in fertilizer input cost of crop production and also reduced risk of contamination of soil and water. Many plants have evolved morphological, physiological, biochemical, and molecular adaptive systems to cope with P-deficiency stress, such as altered root architecture to explore more soil volume and increased carboxylate exudation containing phosphatases, nucleases, and various organic acids [29]. These mechanisms and strategies are necessary to liberate or solubilize Pi from organic and other insoluble pools [30], enhance Pi uptake capacity [31], recycle internal Pi remobilize/retranslocate P from mature to young developing organs [32, 33], and reprioritize metabolic P utilization [34]. Under the current situation, farmers need P-efficient genotypes that perform better than other genotypes with equivalent P inputs. Therefore, selection/identification of cultivars that can absorb and use P efficiently is a promising strategy to cope with environments deficient in bio-available P. Due to the diverse functional and structural roles of P in plants, P-use efficiency (PUE) is a complex trait to dissect [24].
The root morphological factors such as length, thickness, surface area, and volume have profound effects on the plant’s ability to acquire and absorb nutrients in soil [35]. These parameters are influencing the ability of the roots to penetrate high density soil layers, to extremes tolerate temperature, moisture, toxicities, and deficiencies of elements. Additionally, they have the ability to modify the rhizosphere pH and the nutrient uptake kinetics. Efficient acquisition will depend first on root architecture in terms of transporters and exudates and often the presence of symbiotic associations such as mycorrhiza. Hence, improving early root establishment, high-affinity transporter systems, association of microorganisms (mycorrizha), proliferation of roots, and enhanced mechanisms for increasing bio-availability of nutrients and then enhancing NUE [5]. Improvement of transporters plays essential roles particularly in conjunction with effective root proliferation in contributing to nutrient use efficiency. The other important attribute for uptake efficiency is having adequate sinks to store acquired nutrients, which will prevent negative feedback regulation on the initial acquisition/assimilatory processes and should provide important remobilizable storage [5]. The second component of uptake efficiency is root physiological activity such as differing uptake kinetics, i.e., maximum net influx (Imax), affinity of the transporter (Km) and the roots depletion ability (Cmin), which result in different nutrient uptake rates per unit root and time due to their effect on P diffusion [36]. Lower Km values (higher affinity) and higher Imax values indicate a higher uptake rate of plants for a determined nutrient at low concentration [11].
A recent study further showed that root tips also play an important role and, despite their small size, accounted for approximately 20% of the total seedling Pi uptake [37], mainly increasing organic acid exudation strategies [38]. Plants increase total soil exploration by increasing root length, increasing root branching, increasing specific root length (i.e., roots with smaller diameter), and modifying branching angle [39, 40, 41]. The findings of Bates and Lynch [39] suggested that increased root growth is associated with improved plant performance under low P by exploring a larger volume of soil. Consequently, root: shoot ratio increases significantly in low-P environments and is an excellent index for partitioning photosynthesized carbon between above- and below-ground plant parts. Root density and root: shoot ratio generally increased under P deficiency, thus favoring P acquisition by plants [29].
Genetic variation for root hair traits, particularly root hair length, can be exploited in breeding for improved P uptake efficiency and P fertilizer use efficiency in crops. Moreover, a deeper root with more aerenchyma tissues in the cortex of the roots can also be an important trait that contributes to efficient N uptake with lower carbon input in root growth [42]. This root architecture may also be efficient in the uptake of deep water and therefore help to increase drought resistance [43]. However, Miguel et al. [44] showed in field trials that shallow and hairy root traits are synergistic in their effects on Pi uptake by bean. However, modifying root growth in response to nutrient deficiency, it is a challenge and complex to identify key regulators that are sufficiently upstream and robust to be suitable for developing plants with optimized root systems for nutrient uptake [8].
Levels of fertilizer applications influence the total dry matter accumulation, thereby affecting the nutrient demand (uptake/utilization) [9]. Improved nutrient utilization efficiency from agrochemicals through PGPR and (or) AMF can contribute to the protection of water resources against agro-pollution and reduce the growing cost of fertilizers [10]. After inorganic phosphate (Pi) acquisition from rhizosphere, Pi should be efficiently transported to shoot for the requirement of plant growth by phosphate transporters (
Another promising area for improvement of crop NUE is to enhance the efficiency of nutrient remobilization from senescing organs to young, developing organs, particularly immature leaves, and developing seeds [47]. The senescence process, that is, the dying-off of vegetative plant parts during seed maturation, is at the core of the nutrient use efficiency issue, as the nutrients need to be remobilized from these parts and translocated into the developing seed [48]. Maximizing the effectiveness of P-remobilization from senescing organs could make an important contribution to the development of crops that can tolerate Pi deficiency, because senescing organs of most “modern” crop varieties exhibit low P-remobilization efficiencies of <50% [30]. An integral understanding of P remobilization would facilitate development of effective biotechnological strategies to improve crop PUE, thereby reducing the rate of depletion of nonrenewable rock P reserves [30, 47]. Therefore, mobilization and redistribution of P from the old tissues to the young tissues will also contribute to high P use efficiency. Better distribution of nutrients in parts of plant (root, shoot, and grain) reflects their use efficiency [11].
In the plant, uptake and utilization efficiency of nutrients are governed by different physiological mechanisms and their response to deficiency, tolerance, and toxicity of element(s) and climatic variables [49]. Efficient internal utilization of nutrient is generally attributed because of high photosynthetic activity per unit of nutrient (P) and more efficient P remobilization from older to young leaves [47]. Acid phosphatase contributes to the increased P utilization efficiency in bean through P remobilization from old leaves [50]. Therefore, improving higher total chlorophyll concentration [51], enhancing phosphorylase stimulation [52], and improving partitioning of carbon between glycolytic and pentose phosphate pathways [53] also provide an effective approach to improve phosphorus use efficiency and crop productivity simultaneously.
P-utilization efficient cultivars produce high yield per unit of absorbed P under P deficient conditions, since they have low internal P demand for normal metabolic activities and growth. Hence, they have low requirement for mineral P fertilizer inputs to produce reasonably high yield. Moreover, they remove less P from soil during growth and therefore the quantity of P removed along with the harvestable parts of the crop would obviously be less, consequently reducing the quantity of mineral P fertilizer inputs required for maintenance fertilization [54].
Agronomic practices can change soil physicochemical properties and biological characteristics. As a result, a number of agronomic practices have been proposed to enhance nutrient availability under diverse climatic conditions [55, 56]. The rhizosphere (root-soil interface) is the most important area for plant–soil-microorganism interactions and is the hub for controlling nutrient transformation and plant uptake [7]. This modification is paramount to increase nutrient availability and to minimize losses in surface runoff. Possible management strategies options for improving NUE through optimizing agronomic practice or rhizosphere modification [57] are the following:
The 4R Nutrient Stewardship framework promotes the application of nutrients using the right source (or product) at the right rate, right time, and right place. The framework was established to help convey how fertilizer application can be managed to ensure alignment with economic, social, and environmental goals [58]. Nutrient Stewardship defines the right source, rate, time, and place for fertilizer application as those producing the economic, social, and environmental outcomes desired by all stakeholders of the plant ecosystem (Figure 3). This 4R techniques applies (1) right rate—supplying growing crops with the right amount of nutrients for healthy growth and development based on experimentation under various environmental conditions; (2) right time—matching nutrient availability to with the timing of plant peak nutrient uptake and demand; (3) right placement adding nutrients to the soil at a place where crops can easily access them related to volume of roots.; (4) right source—applying the correct fertilizer and organic resources that provide growing crops with all nutrients required for good growth and maturity [58]. The 4R concept was established to help convey how fertilizer application can be managed to ensure alignment with economic, environmental, and social goals [22, 59].
The 4R nutrient stewardship concept (adopted from [
Soil testing remains one of the most powerful tools available for determining the nutrient supplying capacity of the soil, but to be useful for making appropriate fertilizer recommendations good calibration data is also necessary [2]. As P is less mobile, less soluble, and highly prone to soil fixation; effectiveness of applied P depends on the properties of soil being fertilized, fertilizer itself, and time and method of its application [60]. To enhance phosphorus use efficiency (PUE) of applied P fertilizer, time and method of its application are critically important, because different P application methods differ in PUE [61]. In highly sandy soils, P may need to be managed like N, by splitting applications and applying small amounts at sowing and topdressing later in the crop growth cycle [62]. Studies of Jing et al. [63] suggested that localized supply of superphosphate combined with ammonium-N (NH4+-N) significantly stimulated root proliferation, especially of fine roots, and thus improved maize growth in a calcareous soil. Further studies indicated that localized supply of P and NH4+-N at both seeding and later growth stages increased maize yield by 8–10%, P uptake by 39–48%, and localized increases in root density and length of 50% [64]. Rehim et al. [65] also reported that the fixation of broadcasted P is much greater than the fertilizer applied in bands because of less contact with P fixing ingredients. At higher P application, the adsorption of P increased because the plants readily utilize only 8–33% of applied P in the first growing season and remaining portion remained fixed that consequently resulted in higher Olsen P. So, at higher P application rates, plants used smaller proportion of fertilizer P that resulted in low PUE [61].
In principle, N deficiency increases root growth, resulting in longer axial roots (primary roots, seminal roots, and nodal roots), and this helps maize roots to explore a larger soil volume and thus increases the spatial N availability [66]; however, long-term N deficiency stunts root growth due to insufficient N. But also, root elongation can be inhibited if the N supply is too high. Excessive application of N-P fertilizers may lead to high concentrations of soluble nutrients in the root zone, which can also restrict root growth and rhizosphere efficiency [67], even small amounts of P lost can be a cause of the adverse effects of eutrophication of surface waters. Therefore, judicious application of fertilizer best management practices (BMP) [22] that includes the right rate [68], right time [69], right source, right place, and balanced fertilization (4RB) is the best management practice for achieving optimum nutrient efficiency [2, 22].
Cereal-legume intercropping is a crop production system utilized to improve productivity and sustainability under diverse environmental conditions. It can also improve nutrient use efficiency and crop productivity [7]. Intermingling of maize and faba-bean roots increased N acquisition by both crop species by about 20% compared with complete or partial separation of the root systems. Further studies indicate that N2 fixation can be improved by yield maximization in the intercropping system. The improved productivity observed in this production system has been associated with increased levels of available phosphorus (P) in the root rhizosphere. Hinsinger et al. [70] reported more stable yield, superior land resource utilization or conservation, and enhanced pest or weed control [71, 72, 73]. Furthermore, cereal-legume intercropping can also enhance the phosphatase enzyme activity and available P in the soil due to rhizosphere acidification by the legumes in the cropping system [74].
The possible mechanism that increases PUE in intercropping is the increased rhizosphere soil acid phosphatase (RS-APase) activity observed in intercropping due to the fact that large amounts of acid phosphatase are known to be released from their roots into the root rhizosphere. The (RS-APase) activity was significantly higher (26–46%) in the intercropping and occurred concomitant with a significant increase in available phosphorus (RS-Pavailable) in the rhizosphere on podzols in cool climate boreal ecosystem [75]. Another mechanism could be secreting H+ into the soil that acidifiies the rhizosphere [57, 76] and improves dissolution of phosphorus and then enhances P-availability [70]. Additional possible mechanism that improves of plant growth and P uptake in mixed planting was due to root interspecific complementation or facilitation. The complementarity between root morphological and physiological traits of neighboring plants underpins the interactive facilitation, which was the main underlying mechanism improving nutrient-use efficiency, particularly of P, in mixed cropping system [77, 78]. The complementary niches of maize and faba bean significantly reduce interspecific nutrient competition and thus improve nutrient-use efficiency [79]. The presence of maize increased the secretion of carboxylates from alfalfa roots, suggesting that the root interactions between maize and alfalfa are crucial for improving P-use efficiency and productivity in intercropping [80]. Subsequently, Sun et al. [76] reported that decreasing rhizosphere pH and increasing organic anion exudation played key roles in soil P mobilization of maize and alfalfa, with little contribution of acid phosphatase.
The mycorrhizal symbiosis particularly, arbuscular mycorrhizal fungi (AMF), is arguably the most important symbiosis on earth [81]. AMF colonize the roots of many agriculturally important food and bioenergy crops form (approximately 80–90% of all known land plant species) [81] and could serve as “biofertilizers and bioprotectors” in environmentally sustainable agriculture [82]. In AMF associations, two pathways for plant P uptake exist: the direct pathway (P uptake by roots) and the AM fungal pathway [83]. AMF facilitates the uptake and transfer of mineral nutrients, such as phosphorus, nitrogen, sulfur, potassium, calcium, copper, and zinc, from the soil to their host plants by means of the extraradical mycelium extending from colonized roots into the soil [84]. The contribution of AMF to P uptake reaches up to 77% under low P supply compared with only 49% under high P supply [85]. Furthermore, the commercial inoculum Mycobiol, consisting of Glomus spp.,
Various mechanisms have been suggested for the increase in the plant uptake of P. These include: exploration of larger soil volume; faster movement of P into mycorrhizal hyphae; and solubilization of soil phosphorus [88]. Exploration of larger soil volume by mycorrhizal plants is achieved by decreasing the distance that P ions must diffuse to plant roots and by increasing the surface area for absorption. Faster movement of P into mycorrhizal hyphae is achieved by increasing the affinity for P ions and by decreasing the threshold concentration required for absorption of P [88]. Solubilization of soil P is achieved by rhizospheric modifications through the release of organic acids, phosphatase enzymes, and some specialized metabolites such as siderophores [55].
The composition and amount of root exudates affect the composition of microbes in the rhizosphere and the structure of the rhizosphere microbiome, affecting plant growth and nutrient uptake [81]. For precision rhizosphere management, plant-microbe interactions must be finely tuned to improve P use efficiency by crops [57]. Figure 4 illustrates the main structural differences between AM (more for P absorption) and ectomycorrhizal (more for N and few for P absorption) associations of angiosperms or gymnosperms [81].
Phosphorus acquisition efficiency related traits of wheat and barley roots affected by arbuscular mycorrhizal symbiosis in comparison to a non-colonized counterpart (adopted from [
Among the soil bacterial communities, ectorhizospheric strains from Pseudomonas and Bacilli and endosymbiotic rhizobia have been described as effective phosphate solubilizers [90]. Phosphate-solubilizing bacteria (PSB) are also capable of making P available to plants from both inorganic sources and organic ones and increasing P-fertilizer-use efficiency by different mechanisms [91]. They are rhizobacteria that convert insoluble phosphates into soluble forms through acidification, chelation, exchange reactions, and the production of organic acids [92]. Therefore, combined application of AMF and P solubilizers [93] and N fixers are the best inoculants. AM fungi together with PSMs could be much more effective in supplementing soil P. Understanding AM-plant symbiosis, developing AM fungi that could be cultured in vitro, and developing P-solubilizing AM will help realize their potential as phosphate biofertilizer [94].
Soil pH is one of the most important chemical properties influencing nutrient solubility and hence availability to plants. Large amount of P applied as fertilizer enters in to the immobile pools through precipitation reaction (fixation) with highly reactive Al3+ and Fe3+ in acidic and Ca2+ in calcareous or normal soils [94]. Acidic, highly weathered, iron (Fe)-rich soils rapidly bind phosphates at mineral surfaces, limiting access to plant roots. Furthermore, applied Pi (inorganic P) is quickly fixed into insoluble inorganic or organic forms due to its high reactivity and microbial action [95].
Soil pH markedly limits plant growth and P chemistry in soils through its effect on P adsorption and through interactions that affect precipitation of P into solid forms in soil [62]. Consequently, about 80–90% soil P becomes unavailable depending on soil composition and pH [96], 50–70% of the total applied conventional fertilizers are lost to the environment. This level of loss in agricultural nutrients not only leads to the loss of valuable resources but also causes the severe reduction of yield [97]. The pH of a calcareous soil is reduced by the presence of gypsum (CaSO4·2H2O) due to the concentration of Ca2+, which would be expected to decrease the sorption of P, if followed by leaching to removed much of the soluble Na+ and Ca2+ [98]. Thus, adjusting soil pH and base saturation are methods to reduce the amount of P that is bound by Al, Fe, and Ca, further reducing the effects of Al toxicity to plants, which can inhibit uptake, and use of P by the plant (Figure 5) [23, 99].
Soil P availability as affected by soil pH (adopted from Havlin et al. 1999).
Lime acidic soil is widely used in agriculture to create and maintain a soil pH optimal for plant growth in acid soils. Lime reduces toxic effects of hydrogen, aluminum, and manganese, improves soil biological activities, cation exchange capacity (CEC), P, Ca, and Mg availability and soil structure, promotes N2 fixation, stimulates nitrification, and decreases availability of K, Mn, Zn, Fe, boron (B), and Cu [11]. An increase in soil pH, as a result of liming, was due to an increase in hydroxide ions, which increases microbial activity and communities, hence, increasing decomposition of soil organic matter and release of Fe and Al [100]. The decrease in Al-P and Fe-P could be due to their precipitation as insoluble Al(OH)3 and Fe(OH)3 after increased addition of liming material [101]. In addition, Al and Fe oxides become more negatively charged with an increase in pH contributing to an increase in available P [102].
Liming, gypsum application, or mixing of both is an effective practice to improve pH, improve Ca content, and control Al toxicity. Lime has very low mobility in soil, and when surface applied, it does not reduce the acidity of subsurface soil horizons. Contrary to lime, gypsum (CaSO4) has a greater downward movement, and when applied to the surface, it can still impact and reduce the acidity of the subsoil [4]. The pH of a calcareous soil is reduced by the presence of gypsum (CaSO4·2H2O) due to the concentration of Ca2+, which would be expected to decrease the sorption of P, if followed by leaching to removed much of the soluble Na+ and Ca2+. The uptake of nutrients by plants, content of nutrients in plants and in soil were substantially positively influenced by both the wood ash, especially by FGD gypsum [103]. Gypsum application can ameliorate saline-sodic soil, thereby increasing crop yield and NUE [104].
Apart from traditional methods, new techniques have been developed such as site-specific/real-time nitrogen management, slow release/controlled release fertilizer (SR/CRF), site-specific precision nutrient management, and urease/nitrification inhibitor. Those techniques play an important role in decreasing fertilizer loss and increasing NUE [105]. The remote sensing is quicker than the previous two methods, and it obtains continuous data rather than spot data, which is more advantageous. It is becoming the major means of obtaining data for precision farming. GIS (geographic information system) establishes the field management information system by processing, analyzing, and trimming the data of soil and crops [105]. Another approach to synchronize release of N from fertilizers with crop need is the use of N stabilizers and controlled release fertilizers. Nitrogen stabilizers (e.g., nitrapyrin, DCD [dicyandiamide], NBPT [n-butyl-thiophosphoric triamide]) inhibit nitrification or urease activity, thereby slowing the conversion of the fertilizer to nitrate. The most promising for widespread agricultural use are polymer-coated products, which can be designed to release nutrients in a controlled manner.
Agronomic management strategies such as precision P fertilization, polymer coated P-fertilizers, and recycling of P from domestic, agricultural, and industrial wastes can be helpful in improving P use at farm level [106]. Modern concepts for tactical N management should involve a combination of anticipatory (before planting) and responsive (during the growing season) decisions [9]. On soils with moderate P and K levels and little fixation, management must focus on balancing inputs and outputs at field and farm scales to maximize profit, avoid excessive accumulation, and minimize risk of P losses. Improving the internal, on-farm and field recycling is the most important K management issue worldwide. As for N, the primary determinants for REP and REK are the size of the crop sink, soil supply, soil characteristics, and fertilizer rate.
Control release fertilizers with polymer coatings are commonly applied to crops to increase efficiency of nutrients [96]. One way of improving the P availability to crop plant is by coating diammonium phosphate (DAP) with polymer that allows a steady but controlled discharge of phosphorus from the granules for crop plant uptake and improved P recovery percentage. Thus, by the use of polymer, availability of P to plant increased because it has high cation exchange capacity, which holds the divalent calcium (Ca+2) and trivalent cations iron and aluminum (Fe+3 and Al+3) and stop P fixation with these cations. Moreover, polymer absorbs water efficiently and holds more water and keeps P in available form that enhanced the plant growth and yield-contributing factors [97]. This is because polymer-coated diammonium phosphate (DAP) absorbs water many times of its original weight, which increases the availability of phosphorus for longer period of time [107] and creates a diffusion shell around the grain of DAP and directly reduces the fixation and precipitation by reducing the availability of calcium and magnesium (Ca+2/Mg+2) cations [108]. As the result of this mechanism, availability of phosphorus to plants increases and leads to more P uptake, and this uptake indirectly influences the other nutrient absorption by crop plants.
Considering the wide variety of soil types, cropping patterns, and farmers’ resources, several management practices are adopted to reduce the magnitude of soil fertility degradation. Integrated Plant Nutrient Management System (IPNMS) is defined as the package of practices for the manipulation of the plant growth environment to supply essential nutrients to a crop in an adequate amount and proportion for optimum production without degrading the natural resources [3]. Many authors have reported that combining organic and inorganic P can improve and sustain crop yields in low fertility soils [109, 110, 111]. Best management practices (BMPs) such as use of fertilizer and amendment (lime), proper crop rotations, increases in organic matter content, and control of erosion, insects, diseases, and weeds can significantly improve crop yields and optimize nutrient use efficiency [11]. Integrated use of organic manures and fertilizers not only improves efficiency of crops but also significantly increases the availability of P [112, 113].
Organic amendment improves the structure and fertility of the soil by adding nutrients and organic matter and consequently promotes soil microbial biomass and activity. Blockage of P sorption sites by organic acids, as well as complexation of exchangeable Al and Fe in the soil, is potential cause of this mobilization [114]. Organic materials can reduce P fixation by masking the fixation sites on the soil colloids and by forming organic complexes or chelates with Al, Fe, and Mn ions, thereby improving P uptake efficiency of crop plants. Decomposition of organic matter produces organic anions that interact with soil to reduce P sorption via (1) complexation/competition for soil P binding sites such as Fe and Al oxyhydroxides or (2) increased soil PH. Organic materials also increase agronomic efficiency by improving availability of P by promoting soil aggregation, increased soil PH, microbial biomass, and parameters controlling soil-P-sorption [115]. The integration of biochar FYM, poultry manure, and inorganic P sources increases in PUE under both wheat and maize crops, and there is a concomitant increase in crop yields compared with the unamended soil [112, 113]. This increase in PUE with biochar addition could also be the result of the additional nutrients made available by biochar [112]. Similarly, FYM applications increase soil P bioavailability more than applications of triple supper phosphate that enhance P Uptake Efficiency. FYM is also a source of other nutrients used by crops via mineralization, which promotes root development and root area interception and thus increases nutrient uptake including P uptake [116].
Rotating a legume with a cereal can enhance P acquisition by cereals through indirect feedback interactions [117]. A legume crop modifies the rhizosphere through biological and chemical processes, thereby increasing P uptake by the following cereal crop. As reported by [77], legumes are able to mobilize P that is not initially available to cereal species, thereby improving the availability of P for the following crop. The biological processes include the promotion of symbiotic mutualists such as nitrogen-fixing rhizobacteria and mycorrhizal fungi, while the chemical processes are acidification of the rhizosphere and secretion of organic anions [79].
Achievement and maintenance of high nutrient use efficiency (NUE) together with high crop productivity have become a major challenge in both developed and developing countries with an increasing growing population, depletion of natural resources, and deteriorating environmental conditions. Improving nutrient use efficiency (NUE) in plants is vital to enhance the yield and quality of crops, reduce nutrient input cost and improve soil, water, and air quality [3]. Higher NUE by plants could reduce fertilizer input costs, decrease the rate of nutrient losses, and enhance crop yields. Improving crop nutrient use efficiency ideally requires an understanding of the whole system, from the macro (agro-ecosystem) to the molecular level.
The development of nutrient-efficient crop varieties that can grow and yield better with low supply is a key to improving crop production. A prerequisite for nutrient use efficiency for any germplasm will be the optimization of agronomic practice for any given environment and season. Judicious application of fertilizer that includes the right rate, right time, right source, right place, and balanced fertilization (4RB) is the best management practice for achieving optimum nutrient efficiency. By the coordination of the acquisition, root-to-shoot translocation, utilization, and remobilization of internal Pi can be achieved through genetic breeding. Selection and breeding nutrient efficient species or genotypes within a species are justified in terms of reduction in fertilizer input cost of crop production and also reduced risk of contamination of soil and water. Overall NUE in plant is a function of capacity of soil to supply adequate levels of nutrients and ability of plant to acquire, transport in roots and shoot, and remobilize to other parts of the plant. Improvement in NUE will ultimately come from integrating a range of different approaches to develop a more efficient farming system. Use of nutrient efficient crop species or genotypes within species in combination with other improved crop production practices offers the best option for meeting the future food requirements of expanding world populations. Modern tools and resources available to plant scientists and the agronomy and breeding communities should aid further improvements in NUE and hence crop production. Therefore, integrated strategy that seeks to increase phosphorus use efficiency and simultaneously seeks to recover unavoidable phosphorus losses. The nutrient inputs in the intensive farming system should be optimized to achieve both high crop productivity and high nutrient use efficiency through maximizing root/rhizosphere efficiency in nutrient mobilization and acquisition.
The authors are highly thankful to researchers whose findings are included directly or indirectly in preparing this manuscript.
The authors declare no conflict of interest.
The authors received no direct funding for this research.
All data generated are included in this article reference’s part.
AMF | arbuscular mycorrhizal fungi |
BMP | best management practice |
DAP | diammonium phosphate |
FYM | farm-yard manure |
NUE | nutrient use efficiency |
PACE | phosphorus acquisition efficiency |
PSB | phosphate solubilizing bacteria |
PUE | phosphorus use efficiency |
PUTE | phosphorus utilization efficiency |
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"14"},books:[{type:"book",id:"11988",title:"Magnesium Alloys",subtitle:null,isOpenForSubmission:!0,hash:"4da7079fb57ccc6aa9f8323d8d42bda6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11988.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11990",title:"Iron Ores and Iron Oxide",subtitle:null,isOpenForSubmission:!0,hash:"20cbec723d56ff06096e08d93750ad58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11990.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11991",title:"Trace Metals in the Environment",subtitle:null,isOpenForSubmission:!0,hash:"668c7f042fb58587e82ac90c32a22447",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11991.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11993",title:"Reinforced Concrete",subtitle:null,isOpenForSubmission:!0,hash:"74188d8583c4569b6cf7755128a311be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11993.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11995",title:"Elastomers",subtitle:null,isOpenForSubmission:!0,hash:"e37c2de13a51e358b06c9cf637b55d33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11995.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11996",title:"Granite",subtitle:null,isOpenForSubmission:!0,hash:"03b9e834fd0abe7ffef7ef85e7c02426",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11996.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites",subtitle:null,isOpenForSubmission:!0,hash:"31d8afbb8256b34918ddc7ce910cc6e5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12261",title:"Sol-gel Method",subtitle:null,isOpenForSubmission:!0,hash:"5d96c89299217a36052ad1b8031be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12261.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12263",title:"Geosynthetic Materials and Products",subtitle:null,isOpenForSubmission:!0,hash:"9f1b26209b356040678d896248f51215",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12263.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12264",title:"Polyaniline",subtitle:null,isOpenForSubmission:!0,hash:"2e0710de2d17485e9d56a87461a2b0b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12264.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12265",title:"Silk-based Materials",subtitle:null,isOpenForSubmission:!0,hash:"7f580af2140c873052c6e12f9318ee95",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12265.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1150",title:"Orthopedics",slug:"orthopedics",parent:{id:"202",title:"Surgery",slug:"surgery"},numberOfBooks:31,numberOfSeries:0,numberOfAuthorsAndEditors:745,numberOfWosCitations:443,numberOfCrossrefCitations:276,numberOfDimensionsCitations:665,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1150",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:"arthroscopy",bookSignature:"Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9801",title:"A Comprehensive Review of Compartment Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ba676e67fb29de60aee9048ff13bf479",slug:"a-comprehensive-review-of-compartment-syndrome",bookSignature:"Saqeb Beig Mirza and Khaled Elawady",coverURL:"https://cdn.intechopen.com/books/images_new/9801.jpg",editedByType:"Edited by",editors:[{id:"99767",title:"Dr.",name:"Saqeb Beig",middleName:null,surname:"Mirza",slug:"saqeb-beig-mirza",fullName:"Saqeb Beig Mirza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9522",title:"Tibia Pathology and Fractures",subtitle:null,isOpenForSubmission:!1,hash:"a458a39d8281ed7fda0548fbb75927a2",slug:"tibia-pathology-and-fractures",bookSignature:"Dimitrios D. Nikolopoulos, George K. Safos and John Michos",coverURL:"https://cdn.intechopen.com/books/images_new/9522.jpg",editedByType:"Edited by",editors:[{id:"228477",title:"Dr.",name:"Dimitrios D.",middleName:null,surname:"Nikolopoulos",slug:"dimitrios-d.-nikolopoulos",fullName:"Dimitrios D. Nikolopoulos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9350",title:"Knee Surgery",subtitle:"Reconstruction and Replacement",isOpenForSubmission:!1,hash:"78aa92dc594a2cc0f60f28b640b28c10",slug:"knee-surgery-reconstruction-and-replacement",bookSignature:"João Bosco Sales Nogueira, José Alberto Dias Leite, Leonardo Heráclio Do Carmo Araújo and Marcelo Cortez Bezerra",coverURL:"https://cdn.intechopen.com/books/images_new/9350.jpg",editedByType:"Edited by",editors:[{id:"215718",title:"M.Sc.",name:"João Bosco Sales",middleName:null,surname:"Nogueira",slug:"joao-bosco-sales-nogueira",fullName:"João Bosco Sales Nogueira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7975",title:"Limb Amputation",subtitle:null,isOpenForSubmission:!1,hash:"4cf345d93bc54587899c69ce6d3b07f2",slug:"limb-amputation",bookSignature:"Masaki Fujioka",coverURL:"https://cdn.intechopen.com/books/images_new/7975.jpg",editedByType:"Edited by",editors:[{id:"53197",title:"Prof.",name:"Masaki",middleName:null,surname:"Fujioka",slug:"masaki-fujioka",fullName:"Masaki Fujioka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editedByType:"Edited by",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7548",title:"Meniscus of the Knee",subtitle:"Function, Pathology and Management",isOpenForSubmission:!1,hash:"a82a659a178c693e15f88dcfb8fb2782",slug:"meniscus-of-the-knee-function-pathology-and-management",bookSignature:"Taiceer Abdulwahab and Karl Almqvist",coverURL:"https://cdn.intechopen.com/books/images_new/7548.jpg",editedByType:"Edited by",editors:[{id:"204153",title:"Dr.",name:"Taiceer",middleName:null,surname:"Abdulwahab",slug:"taiceer-abdulwahab",fullName:"Taiceer Abdulwahab"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8676",title:"Hip Surgeries",subtitle:null,isOpenForSubmission:!1,hash:"35280afd3082f1a6b3c10bdc0ae447f6",slug:"hip-surgeries",bookSignature:"Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/8676.jpg",editedByType:"Edited by",editors:[{id:"68911",title:"Dr.",name:"Nahum",middleName:null,surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6585",title:"Total Hip Replacement",subtitle:"An Overview",isOpenForSubmission:!1,hash:"fc19d9c4ee5073fbab74a0e2aed20ba2",slug:"total-hip-replacement-an-overview",bookSignature:"Vaibhav Bagaria",coverURL:"https://cdn.intechopen.com/books/images_new/6585.jpg",editedByType:"Edited by",editors:[{id:"37266",title:"Dr.",name:"Vaibhav",middleName:null,surname:"Bagaria",slug:"vaibhav-bagaria",fullName:"Vaibhav Bagaria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6755",title:"Recent Advances in Arthroscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5c122c5b88bdc03c130d34ad2ac2d722",slug:"recent-advances-in-arthroscopic-surgery",bookSignature:"Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/6755.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",middleName:"Wimal",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6337",title:"Update in Management of Foot and Ankle Disorders",subtitle:null,isOpenForSubmission:!1,hash:"8b2f0af3f51f43cce1e3e36375ea3220",slug:"update-in-management-of-foot-and-ankle-disorders",bookSignature:"Thanos Badekas",coverURL:"https://cdn.intechopen.com/books/images_new/6337.jpg",editedByType:"Edited by",editors:[{id:"66087",title:"Dr.",name:"Thanos",middleName:null,surname:"Badekas",slug:"thanos-badekas",fullName:"Thanos Badekas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:31,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"26862",doi:"10.5772/27413",title:"Titanium as a Biomaterial for Implants",slug:"titanium-as-a-biomaterial-for-implants",totalDownloads:16232,totalCrossrefCites:50,totalDimensionsCites:123,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Carlos Oldani and Alejandro Dominguez",authors:[{id:"70012",title:"Dr.",name:"Carlos",middleName:null,surname:"Oldani",slug:"carlos-oldani",fullName:"Carlos Oldani"},{id:"73445",title:"MSc.",name:"Alejandro",middleName:"Anibal",surname:"Dominguez",slug:"alejandro-dominguez",fullName:"Alejandro Dominguez"}]},{id:"50915",doi:"10.5772/63266",title:"Doped Bioactive Glass Materials in Bone Regeneration",slug:"doped-bioactive-glass-materials-in-bone-regeneration",totalDownloads:3462,totalCrossrefCites:13,totalDimensionsCites:33,abstract:"In the arena of orthopaedic surgery, autograft is considered to be the gold standard for correction of fracture repair or other bone pathologies. But, it has some limitations such as donor site morbidity and shortage of supply, which evolved the use of allograft that also has some disadvantages such as immunogenic response to the host, low osteogenicity as well as possibilities of disease transmission. Despite the benefits of autografts and allografts, the limitations of each have necessitated the pursuit of alternatives biomaterials that has the ability to initiate osteogenesis, and the graft should closely mimic the natural bone along with regeneration of fibroblasts. A variety of artificial materials such as demineralised bone matrix, coralline hydroxyapatite and calcium phosphate-based ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and bioactive glass have been used over the decades to fill bone defects almost without associated soft tissue development. Most of them were having only the properties of osteointegration and osteoconduction. Only bioactive glass possesses osteogenic property that stimulates proliferation and differentiation of osteoprogenitor cells and in some cases influencing the fibroblastic properties. But, this material has also some disadvantages such as short-term and low mechanical strength along with decreased fracture resistance; but, this was further minimised by ion doping that positively enhanced new bone formation. There are many metal ions such as magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), silver (Ag) and some rare earths that have been doped successfully into bioactive glass to enhance their mechanical and biological properties. In some of the cases, mesoporous bioactive glass materials with or without such doping have also been employed (with homogeneous distribution of pores in the size ranging between 2 and 50 nm). These biomaterials can be served as scaffold for bone regeneration with adequate mechanical properties to restore bone defects and facilitate healing process by regeneration of soft tissues as well. This chapter encompasses the use of bioactive glass in bulk and mesoporous form with doped therapeutic ions, their role in bone tissue regeneration, use as delivery of growth factors as well as coating material for orthopaedic implants.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Samit Kumar Nandi, Arnab Mahato, Biswanath Kundu and Prasenjit\nMukherjee",authors:[{id:"60514",title:"Dr.",name:"Samit",middleName:null,surname:"Nandi",slug:"samit-nandi",fullName:"Samit Nandi"}]},{id:"26863",doi:"10.5772/26362",title:"The Bearing Surfaces in Total Hip Arthroplasty – Options, Material Characteristics and Selection",slug:"the-bearing-surfaces-in-total-hip-arthroplasty-options-material-characteristics-and-selection",totalDownloads:9436,totalCrossrefCites:10,totalDimensionsCites:21,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Hamid Reza Seyyed Hosseinzadeh, Alireza Eajazi and Ali Sina Shahi",authors:[{id:"66361",title:"Dr.",name:"Alireza",middleName:null,surname:"Eajazi",slug:"alireza-eajazi",fullName:"Alireza Eajazi"},{id:"74857",title:"Dr.",name:"Hamid Reza",middleName:null,surname:"Seyyed Hosseinzadeh",slug:"hamid-reza-seyyed-hosseinzadeh",fullName:"Hamid Reza Seyyed Hosseinzadeh"},{id:"173207",title:"Dr.",name:"Alisina",middleName:null,surname:"Shahi",slug:"alisina-shahi",fullName:"Alisina Shahi"}]},{id:"50276",doi:"10.5772/62523",title:"Regenerative Medicine: A New Paradigm in Bone Regeneration",slug:"regenerative-medicine-a-new-paradigm-in-bone-regeneration",totalDownloads:3347,totalCrossrefCites:10,totalDimensionsCites:19,abstract:"Bone defects are the cause of functional disability and the restoration of skeletal function remains an important challenge on orthopedics, neurosurgery and oral and maxillofacial surgery. Because of the limitations of the currently used techniques for the reconstruction of bone defects and the difficulties for the implementation of new therapeutic strategies, a new paradigm in the field of reconstructive surgery has arisen, leading to tissue engineering and regenerative medicine. Mesenchymal stem cells (MSC) have emerged as a promising alternative for the treatment of bone lesions. It was postulated that the therapeutic action was the result of proliferation and differentiation of MSCs, replacing injured tissue. However, recent studies have shown that MSCs secrete a number of trophic factors that have a strong effect during repair and tissue regeneration. This represents a shift from a paradigm centered on MSC proliferation and differentiation to a new paradigm in which the MSCs exert their beneficial effect by the secretion of paracrine factors that induce endogenous repair mechanisms. This chapter will bring together basic and clinical aspects, focused on novel findings on MSC paracrine effect and the development of new therapeutic strategies based on growth factors, cytokines and signaling molecules involved in bone regeneration.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Orlando Chaparro and Itali Linero",authors:[{id:"179436",title:"Dr.",name:"Orlando",middleName:null,surname:"Chaparro",slug:"orlando-chaparro",fullName:"Orlando Chaparro"},{id:"180151",title:"Dr.",name:"Itali",middleName:null,surname:"Linero",slug:"itali-linero",fullName:"Itali Linero"}]},{id:"42805",doi:"10.5772/53245",title:"Predictors of Pain and Function Following Total Joint Replacement",slug:"predictors-of-pain-and-function-following-total-joint-replacement",totalDownloads:3092,totalCrossrefCites:1,totalDimensionsCites:16,abstract:null,book:{id:"3394",slug:"arthroplasty-update",title:"Arthroplasty",fullTitle:"Arthroplasty - Update"},signatures:"Michelle M. Dowsey and Peter F. M. Choong",authors:[{id:"80820",title:"Prof.",name:"Peter",middleName:null,surname:"Choong",slug:"peter-choong",fullName:"Peter Choong"},{id:"82173",title:"Dr.",name:"Michelle",middleName:"Maree",surname:"Dowsey",slug:"michelle-dowsey",fullName:"Michelle Dowsey"}]}],mostDownloadedChaptersLast30Days:[{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:7603,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Current medical practice does not recognize the influence of innate, physiological, human asymmetry on scoliosis and other postural disorders. Interventions meant to correct these conditions are commonly based on symmetrical models of appearance and do not take into account asymmetric organ weight distribution, asymmetries of respiratory mechanics, and dominant movement patterns that are reinforced in daily functional activities. A model of innate, human asymmetry derived from the theoretical framework of the Postural Restoration Institute® (PRI) explicitly describes the physiological, biomechanical, and respiratory components of human asymmetry. This model is important because it gives an accurate baseline for understanding predisposing factors for the development of postural disorders, which, without intervention, will likely progress to structural dysfunction. Clinical tests to evaluate tri-planar musculoskeletal relationships and function, developed by PRI, are based on this asymmetric model. These tests are valuable for assessing patient’s status in the context of human asymmetry and in guiding appropriate exercise prescription and progression. Balancing musculoskeletal asymmetry is the aim of PRI treatment. Restoration of relative balance decreases pain, restores improved alignment, and strengthens appropriate muscle function. It can also halt the progression of dysfunction and improve respiration, quality of life, and appearance. PRI’s extensive body of targeted exercise progressions are highly effective due to their basis in the tri-planar asymmetric human model.",book:{id:"5816",slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]},{id:"62871",title:"Successful Knee Arthroscopy: Techniques",slug:"successful-knee-arthroscopy-techniques",totalDownloads:1652,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Knee arthroscopy is one of the most common arthroscopic procedures required of an orthopedic surgeon. A successful case hinges primarily on adequate pre-operative planning, proper intra-operative set-up and thoughtful portal placement. This chapter will discuss in detail the necessary ingredients of a smooth and successful knee arthroscopy case. Advanced techniques to deal with intra-operative difficulties will be presented. Though uncommon, complications arising from knee arthroscopy will be presented and their management techniques described. Common procedures will be discussed, including simple knee arthroscopic debridement, arthroscopic cartilage reconstruction, anterior cruciate ligament reconstruction, and meniscus repair. Surgical steps for a safe and smooth case will be presented.",book:{id:"6755",slug:"recent-advances-in-arthroscopic-surgery",title:"Recent Advances in Arthroscopic Surgery",fullTitle:"Recent Advances in Arthroscopic Surgery"},signatures:"Chia-Liang Ang",authors:[{id:"218149",title:"Dr.",name:"Chia Liang",middleName:null,surname:"Ang",slug:"chia-liang-ang",fullName:"Chia Liang Ang"}]},{id:"54481",title:"Pelvic Osteotomies for Developmental Dysplasia of the Hip",slug:"pelvic-osteotomies-for-developmental-dysplasia-of-the-hip",totalDownloads:2589,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Treatment of developmental dysplasia of the hip (DDH) is based on concentric reducibility of the femoral head, patient age and the status of triradiate cartilage. Patients in walking age are indicated for pelvic osteotomy to correct the dysplastic acetabulum. Salter innominate osteotomy and Pemberton osteotomy are the most widely used procedures to treat the developmental dysplasia of the hip in early childhood. Although short-term results of the pelvic osteotomies are reported well, some long-term sequalae such as coxa valga caused by Kalamchi type II osteonecrosis of the femoral head, leg length discrepancy and impingement of hip may occur.",book:{id:"5439",slug:"developmental-diseases-of-the-hip-diagnosis-and-management",title:"Developmental Diseases of the Hip",fullTitle:"Developmental Diseases of the Hip - Diagnosis and Management"},signatures:"Chunho Chen, Ting-Ming Wang and Ken N. Kuo",authors:[{id:"189672",title:"M.D.",name:"Chunho",middleName:null,surname:"Chen",slug:"chunho-chen",fullName:"Chunho Chen"},{id:"189675",title:"Dr.",name:"Tingming",middleName:null,surname:"Wang",slug:"tingming-wang",fullName:"Tingming Wang"},{id:"189859",title:"Prof.",name:"Ken N",middleName:null,surname:"Kuo",slug:"ken-n-kuo",fullName:"Ken N Kuo"}]},{id:"72475",title:"Tibial Plateau Fracture",slug:"tibial-plateau-fracture",totalDownloads:1205,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Tibial plateau fractures are a common orthopedic injury. These fractures involve the articular surface of the tibia that is part of the knee joint. Plateau fractures can range from low energy injuries with little or no displacement to complex fractures with significant associated injuries. Stability of these injuries depends on a combination of bony and associated ligamentous injuries. Treatment consists of a wide spectrum of therapies which have been discussed in this chapter. Complications such as compartment syndrome, post-traumatic arthritis, chronic pain, malunion, and wound problems (in addition to other complications) can develop.",book:{id:"9522",slug:"tibia-pathology-and-fractures",title:"Tibia Pathology and Fractures",fullTitle:"Tibia Pathology and Fractures"},signatures:"Christian M. Schmidt II, Jan P. Szatkowski and John T. Riehl",authors:null},{id:"70683",title:"Restoration of Cervical and Lumbar Lordosis: CBP® Methods Overview",slug:"restoration-of-cervical-and-lumbar-lordosis-cbp-methods-overview",totalDownloads:1380,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Low back and neck pain disorders are among the leading causes for work loss, suffering, and health care expenditures throughout the industrialized world. It has been extensively demonstrated that sagittal plane alignment of the cervical and lumbar spines impacts human health and well-being. Today there are reliable and predictable means through the application of extension spinal traction as part of comprehensive rehabilitation programs to restore the natural curvatures of the spine. High-quality evidence points to Chiropractic BioPhysics® (CBP®) methods offering superior long-term outcomes for treating patients with various craniocervical and lumbosacral disorders. CBP technique is a full spine and posture rehabilitation approach that incorporates mirror image® exercises, spinal and postural adjustments, and unique traction applications in the restoration of normal/ideal spinal alignment. Recent randomized controlled trials using CBP’s unique extension traction methods in conjunction with various conventional physiotherapeutic methods have demonstrated those who restore normal lordosis (cervical or lumbar) get symptomatic relief that lasts up to 2 years after treatment. Comparative groups receiving various ‘cookie-cutter’ conventional treatments experience only temporary symptomatic relief that regresses as early as 3 months after treatment. The economic impact/benefit of CBPs newer sagittal spine rehabilitation treatments demand continued attention from clinicians and researchers alike.",book:{id:"9154",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",title:"Spinal Deformities in Adolescents, Adults and Older Adults",fullTitle:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Paul A. Oakley, Ibrahim M. Moustafa and Deed E. Harrison",authors:[{id:"308067",title:"Dr.",name:"Paul A.",middleName:null,surname:"Oakley",slug:"paul-a.-oakley",fullName:"Paul A. Oakley"},{id:"308068",title:"Dr.",name:"Deed E.",middleName:null,surname:"Harrison",slug:"deed-e.-harrison",fullName:"Deed E. Harrison"},{id:"311314",title:"Prof.",name:"Ibrahim M.",middleName:null,surname:"Moustafa",slug:"ibrahim-m.-moustafa",fullName:"Ibrahim M. Moustafa"},{id:"410567",title:"Dr.",name:"Paul A.",middleName:null,surname:"Oakley",slug:"paul-a.-oakley",fullName:"Paul A. Oakley"},{id:"410568",title:"Dr.",name:"Ibrahim M.",middleName:null,surname:"Moustafa",slug:"ibrahim-m.-moustafa",fullName:"Ibrahim M. Moustafa"},{id:"410569",title:"Dr.",name:"Deed E.",middleName:null,surname:"Harrison",slug:"deed-e.-harrison",fullName:"Deed E. Harrison"}]}],onlineFirstChaptersFilter:{topicId:"1150",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:314,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:193,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:168,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:383,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/80533",hash:"",query:{},params:{id:"80533"},fullPath:"/chapters/80533",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()