\r\n\tFood insecurity results in fear of hunger and starvation that ultimately affects one’s ability to work for sustainability and economic growth of the country. In addition to this, food insecurity results in various chronic diseases due to reduce immunity that ultimately, a burned on the county economy. Therefore, this book will intend to discuss in detail about the food insecurity challenges and their effect on the quality of life. This book will also aim to provide an overview about the new trends and future prospective that help to resolve the food security issues.
",isbn:"978-1-80356-942-0",printIsbn:"978-1-80356-941-3",pdfIsbn:"978-1-80356-943-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"090302a30e461cee643ec49675c811ec",bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",keywords:"Nutrition, Poverty, Hunger, Food Waste Utilization, Innovative Technologies, Food Processing, Genetically Modified Food, Policy Making, Trade Reforms, Climate Change, Agriculture Productivity, Disease Resistant Crops",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2022",dateEndSecondStepPublish:"May 5th 2022",dateEndThirdStepPublish:"July 4th 2022",dateEndFourthStepPublish:"September 22nd 2022",dateEndFifthStepPublish:"November 21st 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"21 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An emerging scientist in the field of food science and technology with special expertise in development of rapid and nondestructive technologies, chemometrics and data mining.",coeditorOneBiosketch:"Muhammad Imran has expertise in extrusion technology, microencapsulation, lipids chemistry, sensory evaluation and food process engineering.",coeditorTwoBiosketch:"A renowned scientist with expertise in Novel food processing technologies.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",middleName:null,surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/292145/images/system/292145.png",biography:"Dr. Muhammad Haseeb Ahmad is currently an assistant professor in the Department of Food Science, Government College University Faisalabad, Pakistan. He also served as an assistant professor for one year at the National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan. He received his doctoral degree from Hohenheim University, Stuttgart, Germany, in 2016. During his stay there, he also worked as a research associate for research projects relevant to various food disciplines. Dr. Ahmad is the author of about thirty five research publications and twelve book chapters. He has also presented his research work at various national and international conferences (25). His area of research is food science with special expertise in process analytics and data mining.",institutionString:"Government College University, Faisalabad",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:{id:"208646",title:"Dr.",name:"Muhammad",middleName:null,surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran",profilePictureURL:"https://mts.intechopen.com/storage/users/208646/images/system/208646.jpg",biography:"Dr. Muhammad Imran, is an Assistant Professor in the Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad–Pakistan since September 03, 2012. Dr. Muhammad Imran completed his Doctorate (Food Technology) from the National Institute of Food Science and Technology, University of Agriculture, Faisalabad. He won the Indigenous and IRSIP (Department of Food Science and Human Nutrition, Michigan State University, East Lansing, USA) Fellowships for completion of doctorate research funded by HEC, Islamabad, Pakistan. Dr. Muhammad Imran has expertise in extrusion technology, microencapsulation, lipids chemistry, sensory evaluation, and food process engineering. Until today, Dr. Muhammad Imran has authored 80 publications (International & National) in various Impact Journals of Scientific repute and written 15 Book Chapters as principal author and co-author. Dr. Muhammad Imran has attended several International Conferences (held nationally and locally) as an Invited and Keynote Speaker and also participated as an organizing member to conduct International Conferences, Seminars Workshops, etc. Dr. Muhammad Imran is a Life Time Member of PSFST.",institutionString:"Government College University, Faisalabad",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},coeditorTwo:{id:"208645",title:"Dr.",name:"Muhammad",middleName:null,surname:"Kamran Khan",slug:"muhammad-kamran-khan",fullName:"Muhammad Kamran Khan",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:"Government College University Faisalabad",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"80113",title:"Brushite: Synthesis, Properties, and Biomedical Applications",doi:"10.5772/intechopen.102007",slug:"brushite-synthesis-properties-and-biomedical-applications",body:'
1. Introduction
Calcium phosphates (CaP) are one of the most important compounds found in nature [1, 2]. There are many applications for these compounds in various fields, especially agricultural, environmental, and medical applications. CaP are characterized by their wide diversity as it is produced at different temperatures and pH ranges. In addition, the molar ratio of calcium to phosphorous in the precursors plays an important role in the resulting materials. The biochemical characteristics and mineralogical structures of CaP are similar to inorganic constituents of mammals’ bones [3, 4]. Because of their excellent biocompatibility, high bioactivity, and low toxicity, CaP are considered as a good candidate for bone tissue engineering applications. The CaP minerals such as hydroxyapatite, brushite, tricalcium phosphates (TCP) are used as precursors for the preparation of bone cements and bio-ceramics [5, 6]. Therefore, these minerals are widely used for biomedical applications such as drug delivery and bone tissue engineering (Table 1) [6, 7, 8, 9].
[a] In aqueous solution, [b] These compounds cannot be precipitated from aqueous solutions. [c] Cannot be measured precisely. However, the following values were reported: 25.7 ± 0.1 (pH 7.40), 29.9 ± 0.1 (pH 6.00), and 32.7 ± 0.1 (pH 5.28). [d] Stable at temperatures above 100°C.
CaP belong to the family of apatite. There are several CaP phases, the most ubiquitous being hydroxyapatite [HAp, Ca10(PO4)6(OH)2]. Other CaP structures include brushite (DCPD, CaHPO4·2H2O) and tricalcium phosphate (TCP, Ca3(PO4)2). Several low- and high-temperature approaches have been reported for synthesizing HAp and brushite (DCPD), while TCP is primarily synthesized using high-temperature methods [6]. The chemical formation of CaP minerals is common in natural systems, although the elucidation of the mechanisms of formation and transformations between the crystal forms of the minerals remains a major challenge. The most thermodynamically stable form, at ambient temperature and pressure, is calcium hydroxyapatite (HAp); however, this does not form readily without a transition phase. Other mineral phases, such as octacalcium phosphate (OCP) and amorphous TCP, are precursor phases that can transform to HAp [10].
Acidic CaP, such as brushite (dicalcium phosphate dehydrate, DCPD), are thermodynamically unstable under pH values greater than 6–7 and thus undergo transformation into more stable CaP. Researchers have also demonstrated that meta-stable brushite (DCPD) may convert to OCP or calcium hydroxyapatite (HAp), and that OCP may convert to hydroxyapatite, depending on the Ca/P ratio and the pH value of the setting reactions [11]. Brushite, a type of CaP that is the most easily synthesized, transforms into monetite (dicalcium phosphate anhydrate, DCPA) at temperatures above 80°C. Monetite (DCPA) is the anhydrous form of brushite (DCPD) and can, like brushite, be crystallized from aqueous solutions, but only when the temperature is above 80°C. At low pH values (<7), monetite is the most stable of the CaP, although the conversion of brushite to monetite is faster when the water is warmer and more acidic [8].
Brushite-based biomaterials are characterized by good bioactivity, and they are bioresorbable and biocompatible. Unlike apatite-based materials, brushite-based ones are rapidly resorbed in vivo [12]. The bioactivity and biocompatibility of brushite-based biomaterials have been investigated in several compositions, applications, and in vivo [11]. Brushite-based materials are biocompatible with and tolerated by soft tissues and bone in vivo, so that material resorption was shortly followed by the formation of new bone tissues. Histological measurements and experimental studies indicate that brushite-based materials feature good biocompatibility, with no appearance of inflammatory cells [12].
Amorphous calcium phosphate (ACP) is often encountered as a transient phase during the formation of CaP in aqueous systems. Usually, ACP is the first phase that is precipitated from a supersaturated solution prepared by the rapid mixing of solutions containing calcium cations and phosphate anions. The chemical composition of ACP strongly depends on the solution’s pH value and the concentrations of calcium and phosphate ions. For example, ACP phases are formed with Ca/P ratios in the range of 1.18:1 (precipitated in a solution with a pH value of 6.6) to 1.53:1 (precipitated in a solution with a pH value of 11.7), although ratios of up to 2.5:1 have also been encountered [8]. The structure of ACP is still uncertain and it has been reported to be more soluble than brushite [13]. ACP could be stabilized by another chemical compound: e.g., pyrophosphate (P2O74−) retards the conversion of ACP to apatite. Finally, ACP is characterized by its relatively high solubility and ability to obtain a substantial release of Ca2+ and PO4 ions [12].
This chapter aims to synthesis brushite as one of the most common CaP. The microstructural and thermal properties of this mineral are characterized and discussed. After that, the thermochemical transformation of brushite was investigated. The resultant compound is used as precursors for bone cement. Finally, biomineralization and the bioactivity, and biomineralization of calcium phosphate cement (CPC) are studied in vitro.
2. Synthesis of brushite (CaHPO4·2H2O)
The typical method synthesis of the brushite powder was performed at ambient according to the following equation:
CaNO32+Na2HPO4→CaHPO4·2H2O+2NaNO3E1
Two solutions were prepared for the synthesis of brushite. The first solution is prepared by dissolving 0.5 mol of Na2HPO4·2H2O in 1 L of distilled water, and the second solution is a result of dissolving 0.5 mol of Ca(NO3).6H2O in 1 L of distilled water. After preparing the solutions, 200 ml of the Ca(NO3)2 was added dropwise using a glass funnel with a glass stopcock (flow rate is 2 ml/min) to the Na2HPO4·2H2O solution while stirring and adjusting the pH between 6 and 6.5 using ammonia solution (25%, Labochemie, India). Afterward, the resultant solution with precipitates was stirred (400 rpm) at ambient conditions for 1 hour to ensure a homogeneous mixture. The precipitate was vacuum filtered using a qualitative filter paper via a Buchner funnel, washed three times with de-ionized water and another three times with ethanol to reduce the possibility of agglomeration [14, 15], after which it was placed upon a watch glass and dried at 40°C overnight in a drying-oven. After the formation of the precipitate, some of the powder was washed with distilled water, then dried using ethanol at 40°C for a week. The major steps of the experimental design are reported in Figure 1.
Figure 1.
preparation of brushite [16].
3. Crystal morphology of brushite
Two morphologies of brushite crystal layers are reported in our previous work [17]. These brushite crystals consist of [2] platy particles (Figure 2A) and a continuous needle-like (Figure 2B) dendritic network [18]. The plate-like brushite crystals mostly formed in parallelogram shapes stacked in multiple layers. Their dimensions ranged from 1 μm to a few micrometers, in two directions. The thickness of the platy crystals is measured in the nano-scale. The needle-like brushite particles appeared to have a dendritic network structure. The total length of the crystal is around 40 μm. The EDS measurements (Figure 2C) showed that the needle-like brushite crystals are composed of, by atomic percentage: O (76.46%), Ca (12.04%), and P (10.95%). The fact that the percentages of P and Ca are nearly equal and is in good agreement with the theoretical Ca/P atomic percentages of brushite [19, 20]. The brushite morphology depends on the pH of the solution during the precipitation; at acidic pH, around 5, platy crystals of brushite are formed (Figure 2A), whereas needle-like (Figure 2B) ones are predominant at a higher pH [2].
Figure 2.
(A) crystal morphologies of brushite; platy structure, (B) needle-like structure, and (C) EDS analysis [17].
SEM images of the brushite crystals are shown in Figure 3. These plate-like crystals are obtained according to the experimental procedure as reported in Figure 1. It is known that the morphology of brushite is characterized by a plate-like or needle-like structure, depending on the solution pH used [11, 13]. The plate-like crystals are thin (~400 nm), while their width and elongation are approximately 10 and 20 μm, respectively, values similar to those reported in other studies [21].
Figure 3.
SEM image of monoclinic brushite crystals, see Figure 1 (preparation procedure).
The XRD patterns of brushite, as well as the patterns of standard brushite, are shown in Figure 4. The mineralogy of the powder confirms that this precipitate produced after mixing NaH2PO4·2H2O and Ca(NO3)2·4H2O solutions with a Ca:P molar ratio 1:1 (Figure 1) is pure brushite, while its crystals grow after nucleation in proportion to the three major planes, namely, (020), (121-), and (141). All peaks of the powder pattern denote the brushite’s monoclinic structure [16], while the peak at 11.7° 2-Theta indicates that the crystal growth takes place primarily along the (020) crystallographic plane. Rietveld refined unit cell parameters for brushite are presented in Table 2.
Figure 4.
XRD patterns of brushite (synthesis details are shown in Figure 1) [16].
wt%
a(Å)
b(Å)
c(Å)
(βo)
V(Å3)
100.0
5.8145
15.1693
6.2399
116.392
492.83
Table 2.
Refined unit cell parameters for brushite from XRD data using the Rietveld approach.*
Standard deviation varied between 0.001 and 0.005 for all samples.
4. Thermal properties of brushite
The results of the TG analysis for the brushite are reported in Figure 5. Brushite is considered as a water-bearing phosphate mineral [2] and its crystal structure contains compact sheets consisting of parallel chains in which Ca ions are coordinated by six phosphate ions and two oxygen atoms belonging to the water molecules [22]. Brushite contains two water molecules in its lattice and adsorbed water molecules on its surface, as indicated by the presence of two sharp peaks of mass loss during heating between 80 and 220°C (Figure 5A) [2, 23]. Part of the chemically-bound water is released during the transformation of brushite to monetite, CaHPO4, at ~220°C [17], and later to calcium pyrophosphate, Ca2P2O7, at ~400°C [24]. Pyrophosphates are decomposed at higher temperatures of 750–800°C (Figure 5B) [8, 25]. The heating of pure brushite to 600°C results in a mass loss of approximately 25%wt, while the theoretical mass loss for the dehydration of brushite is 20.93%wt [1].
Figure 5.
TGA of brushite: (A) cumulative mass loss, and (B) mass loss rate.
Dehydration of brushite over the temperature range 110–215°C takes place according to Eq. (2) and normally results in a weight loss of about 19%wt, while the formation of calcium pyrophosphate is accomplished by Eq. (3) a
CaHPO4·2H2O→CaHPO4+2H2OE2
2CaHPO4→Ca2P2O7+H2OE3
Figure 5B shows the rate of mass loss as a function of heating temperature for brushite. More specifically, Figure 5B shows the dehydration peaks corresponding to the two water molecules of brushite [26, 27].
5. Calcium phosphate cement (CPC)
Brushite is used to prepare the powder component, tetracalcium phosphate (TTCP), of the CPC. Brushite was calcined at 500°C and transformed into a more stable phase; calcium pyrophosphate (Ca2P2O7). Afterward, calcium pyrophosphate and calcium carbonate were mixed with a Ca/P molar ratio of 1.9 [5]. These two compounds were mixed in ethanol for 10 h. Then the resultant mixture was dried at 105°C for 24 h and then crushed. The mixture was heated at 1500°C for 4 h quenching to room temperature, see Figure 7. The resultant powder (TTCP) was ground into a fine powder [5]. The general equation TTCP synthesis is as follows:
CaHPO4·2H2O+2CaCO31500°Cfor3h→Ca4PO42O+2CO2E4
Mannitol, sizes vary from 100 to 400 μm, was added to the TTCP with the weight ratio of 0.5. Diammonium hydrogen phosphate solution with a concentration of 33.3 wt% was mixed with TTCP-mannitol mixture, with the weight ratio of O.34 mL (solution)/g (TTCP). After mixing the CPC components for 2 min, the paste was packed in a polycarbonate mold which has an opening of 10 × 10 mm under a pressure of ~1 MPa at 37°C. The hardened samples were then demolded and immersed in Hanks’ physiological solution at 37°C for 1 day [28, 29]. The composition of Hanks’ physiological solution is reported in Table 3.
Component
Concentration
NaCl (mw: 58.44 g/mol)
0.14 M
KCl (mw: 74.55 g/mol)
0.005 M
CaCl2 (mw: 110.98 g/mol)
0.001 M
MgSO4−7H2O (mw: 246.47 g/mol)
0.0004 M
MgCl2−6H2O (mw: 203.303 g/mol)
0.0005 M
Na2HPO4−2H2O (mw: 177.99 g/mol)
0.0003 M
KH2PO4 (mw: 136.086 g/mol)
0.0004 M
D-Glucose (Dextrose) (mw: 180.156 g/mol)
0.006 M
NaHCO3 (mw: 84.01 g/mol)
0.004 M
Table 3.
Composition of Hanks’ physiological solution.
After mixing the two components of CPC, TTCP, and the hardening solution, TTCP hydrolyses through a dissolution-precipitation reactions resulting in the formation of layers of Ca-deficient hydroxyapatite (CDHA) crystals, which are similar to the mineral component of the bone from (Figure 6). This hydrolysis process occurs during the setting reactions, which is confirmed by XRD and SEM (Figures 7 and 8). These CDH layers are characterized by wide range distribution of rod-like crystals [30].
Figure 6.
Schematic diagram of CPC preparation.
Figure 7.
XRD patterns of CPC and CPC powder [5].
Figure 8.
Growth of thick Ca-deficient hydroxyapatite (CDHA) layer on the surface of the CaP matrix.
The CPC was synthesized for in vitro cultivation [5, 31, 32]. Mesenchymal stem cells (MSCs) were seeded on the CPC porous matrix in presence of an osteogenic medium for 21 days [5, 12]. As a result of in vitro cultivation, mineralized nodules were formed in the constructs. The seeded cells grow and their sizes increase from 5 μm to around 50 μm. The growing cells adhered to the CPC matrix and developed cytoplasmic extension as reported in Figure 8.
A thick layer of nano fibrous CDH crystals covers the surfaces of the CPC matrix (Figure 7B). The cultured CPC exhibits new connective tissues and throughout the CaP matrix (Figure 8). The CPC matrix contains bioactive CDH with both Ca and P, therefore, this matrix provides the appropriate environment for MSCs growth and osteogenic differentiation (Figure 9) [33].
Figure 9.
SEM image of the surface of CPC after MSCs culturing for 21 days.
6. Conclusions
Brushite crystals consist of platy and needle-like crystals. It is found that the pH of the solution during the precipitation of brushite plays the main role in determining the shape of the crystals. Usually at a relatively low pH, around 5, platy crystals are formed, while at a higher pH, around ph = 6.5, needle-like crystals are precipitated. In this study, brushite crystals with a monoclinic structure were synthesized using calcium and phosphate salts. The brushite crystal growth occurs mainly along the (020) crystallographic plane. Brushite crystal is characterized by the presence of two structural water molecules. These two molecules are released at a temperature range between 80°C and 220°C to form monetite minerals.
In this chapter, brushite is used as a precursor to synthesize TTCP, the powder components of CPC. As a result of the solid reactions between brushite and calcium carbonate, at high temperature, 1500°C, a new CaP phase is called TTCP. This powder reacts with the phosphate-based solution at 37°C to form CDHA. Immersing this CPC in Hanks’ Balanced Salt Solution results in the growth of nanofibrous crystals of CDHA layers on the surfaces of the CPC. The cultured CPC exhibits new connective tissues and throughout the CaP matrix. The CPC matrix contains bioactive CDH with both Ca and P, therefore this matrix provides an appropriate environment for MSCs growth and osteogenic differentiation.
Bioactive features of brushite-based materials affect cell adhesion, proliferation, and new bone formation. Bioactivity can be altered and controlled by the crystal structure and physical property of the scaffold. Bioactive characteristics are different depending on the produced type of CaP phases such as HAP, TCP, and ACP. These different bioactive characteristics are caused by the differences in Ca/P ratio, crystal structure, stability, and solubility. As mentioned above, brushite is often used with other CaP to control and improve their chemical, biological, and physical properties. Various applications have been exploited to actively utilize the bioactive features of brushite in bone regeneration.
\n',keywords:"brushite, hydroxyapatite, tetracalcium phosphates, bioactivity, porosity",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/80113.pdf",chapterXML:"https://mts.intechopen.com/source/xml/80113.xml",downloadPdfUrl:"/chapter/pdf-download/80113",previewPdfUrl:"/chapter/pdf-preview/80113",totalDownloads:106,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:0,impactScoreQuartile:0,hasAltmetrics:0,dateSubmitted:"March 28th 2021",dateReviewed:"December 13th 2021",datePrePublished:"January 19th 2022",datePublished:"March 30th 2022",dateFinished:"January 19th 2022",readingETA:"0",abstract:"In this chapter, besides its biomedical applications, the synthesis and properties of brushite were investigated. Brushite consists of two types of crystals, platy and needle-like, and their formation depends on the pH of the medium during precipitation. Platy crystals are formed in a slightly acidic medium, pH = 5, and needle-like crystals at a higher pH = 6.5–7. In this study, the monoclinic brushite crystals were synthesized using dissolution-precipitation reactions. It is found that the brushite crystal growth occurs mainly along the (020) crystallographic plane. The thermogravimetric analysis confirms the presence of the two structural water molecules, which decompose at a temperature range between 80 and 220°C. Brushite was used in the preparation of tetracalcium phosphate mineral, which is the powder component for calcium phosphate cement (CPC). CPC was subsequently prepared from TTCP and phosphate-based hardening solution. In vitro evaluation of the resultant CPC using Hanks’ Balanced Salt Solution results in the growth of nanofibrous crystals of Calcium-deficient hydroxyapatite (CDHA) layers on the surfaces of the CPC. The cultured CPC exhibits new connective tissues and throughout the CaP matrix.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/80113",risUrl:"/chapter/ris/80113",book:{id:"10504",slug:"crystallization-and-applications"},signatures:"Khalil Issa, Abdulaziz Alanazi, Khalid A. Aldhafeeri, Ola Alamer and Mazen Alshaaer",authors:[{id:"315119",title:"Dr.",name:"Mazen",middleName:null,surname:"Alshaaer",fullName:"Mazen Alshaaer",slug:"mazen-alshaaer",email:"mazen.alshaaer@yahoo.com",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/315119/images/system/315119.jpg",institution:{name:"Prince Sattam Bin Abdulaziz University",institutionURL:null,country:{name:"Saudi Arabia"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Synthesis of brushite (CaHPO4·2H2O)",level:"1"},{id:"sec_3",title:"3. Crystal morphology of brushite",level:"1"},{id:"sec_4",title:"4. Thermal properties of brushite",level:"1"},{id:"sec_5",title:"5. Calcium phosphate cement (CPC)",level:"1"},{id:"sec_6",title:"6. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Kim Y, Lee SY, Roh Y, Lee J, Kim J, Lee Y, et al. Optimizing calcium phosphates by the control of pH and temperature via wet precipitation. Journal of Nanoscience and Nanotechnology. 2015;15(12):10008-10016'},{id:"B2",body:'Suryawanshi VB, Chaudhari RT. Growth and characterization of agar gel grown brushite crystals. Indian Journal of Materials Science. 2014;2014:1-6'},{id:"B3",body:'Alshaaer M, Kailani MH, Ababneh N, Mallouh SAA, Sweileh B, Awidi A. Fabrication of porous bioceramics for bone tissue applications using luffa cylindrical fibres (LCF) as template. Processing and Application of Ceramics. 2017;11(1):13-20'},{id:"B4",body:'Radwan NH, Nasr M, Ishak RA, Abdeltawa NF, Awad GA. Chitosan-calcium phosphate composite scaffolds for control of postoperative osteomyelitis: Fabrication, characterization, and in vitro–in vivo evaluation. Carbohydrate Polymers. 2020;244:116482'},{id:"B5",body:'Alshaaer M, Kailani MH, Jafar H, Ababneh N, Awidi A. Physicochemical and microstructural characterization of injectable load-bearing calcium phosphate scaffold. Advances in Materials Science and Engineering. 2013;2013:8. Article ID: 149261'},{id:"B6",body:'Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Advances in Colloid and Interface Science. 2020;279:102157. DOI: 10.1016/j.cis.2020.102157'},{id:"B7",body:'Shyong Y-J, Chang K-C, Lin F-H. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids and Surfaces B: Biointerfaces. 2018;1711:391-397'},{id:"B8",body:'Alshaaer M, Cuypers H, Rahier H, Wastiels J. Production of monetite-based Inorganic phosphate cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research. 2011;41:30-37'},{id:"B9",body:'Alshaaer M, Cuypers H, Mosselmans G, Rahier H, Wastiels J. Evaluation of a low temperature hardening inorganic phosphate cement for high-temperature applications. Cement and Concrete Research. 2011;41:38-45'},{id:"B10",body:'Zhang J, Liu W, Schnitzler V, Tancret F, Bouler J-M. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia. 2014;10:1035-1049'},{id:"B11",body:'Mert I, Mandel S, Tas AC. Do cell culture solutions transform brushite (CaHP04 2H20) to octacalium phosphate (Ca8(HP04)2(P04)4 5H20)? In: Narayan R, Colombo P, editors. Advances in Bioceramics and Porous Ceramics IV. Hoboken, New Jersey: John Wiley & Sons, Inc; 2011. pp. 79-94'},{id:"B12",body:'Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped brushite cements for bone regeneration. Acta Biomaterialia. 2021;123:51-71'},{id:"B13",body:'Dosen A, Giese RF. Thermal decomposition of brushite, CaHPO4·2H2O to monetite CaHPO4 and the formation of an amorphous phase. American Mineralogist. 2011;96(2-3):368-373'},{id:"B14",body:'Patil SB, Jena A, Bhargava P. Influence of ethanol amount during washing on deagglomeration of co-precipitated calcined nanocrystalline 3YSZ powders. International Journal of Applied Ceramic Technology. 2012. DOI: 10.1111/j.1744-7402.2012.02813.x'},{id:"B15",body:'Piva RH, Piva DH, Pierri J, Montedo ORK, Morelli MR. Azeotropic distillation, ethanol washing, and freeze drying on coprecipitated gels for production of high surface area 3Y–TZP and 8YSZ powders: A comparative study. Ceramics International. 2015;41:14148-14156'},{id:"B16",body:'Alshaaer M, Afify A, Moustapha M, Hamad N, Hammouda G, Rocha F. Effects of the full-scale substitution of strontium for calcium on the microstructure of brushite: (CaxSr1–x)HPO4.nH2O system. Clay Minerals. 2020;55(4):366-374'},{id:"B17",body:'Alshaaer M. Microstructural characteristics and long-term stability of wollastonite-based chemically bonded phosphate ceramics. International Journal of Applied Ceramic Technology. 2021;18:319-331'},{id:"B18",body:'Bhojani A, Jethva H, Joshi M. Growth inhibition study of urinary type brushite crystal using potassium dihydrogen citrate solution. AIP Conference Proceedings. 2019;2115:030417. DOI: 10.1063/1.5113256'},{id:"B19",body:'Wu X, Gu J. Inorganic resins composition, their preparation and use thereof. Belgium/Brussels Patent EP 0 861 216 B1. 2000'},{id:"B20",body:'Mosselmans G, Biesemans M, Willem R, Wastiels J, Leermakers M, Rahier H, et al. Thermal hardening and structure of a phosphorus containing cementitious model material. Journal of Thermal Analysis and Calorimetry. 2007;88:723-729'},{id:"B21",body:'Sayahi M, Santos J, El-Feki H, Charvillat C, Bosc F, Karacan I, et al. Brushite (Ca,M)HPO4, 2H2O doping with bioactive ions (M = Mg2+, Sr2+, Zn2+, Cu2+, and Ag+): A new path to functional biomaterials? Materials Today Chemistry. 2020;16:100230. DOI: 10.1016/j.mtchem.2019.100230'},{id:"B22",body:'G. Girişken and A. C. Taş, Development of biomineralization solutions to facilitate the transformation of brushite (CaHPO4·2H2O) into octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O), In: 15th National Biomedical Engineering Meeting (BIYOMUT), Antalya, Turkey; 2020'},{id:"B23",body:'Xue Z, Wang Z, Sun A, Huang J, Wu W, Chen M, et al. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration. Materials Science and Engineering: C. 2020;111:110782. DOI: 10.1016/j.msec.2020.110782'},{id:"B24",body:'Alshaaer M, Cuypers H, Rahier H, Wastiels J. Production of monetite-based inorganic phosphate cement (M-IPC) using. Cement and Concrete Research. 2011;41:30-37'},{id:"B25",body:'Frost RL, Palmer SJ. Thermal stability of the ‘cave’ mineral brushite CaHPO4·2H2O—Mechanism of formation and decomposition. Thermochimica Acta. 2011;521(1-2):14-17'},{id:"B26",body:'Tamimi F, Le Nihouannen D, Eimar H, Sheikh Z, Komarova S, Barralet J. The effect o fautoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomaterialia. 2012;8(8):3161-3169'},{id:"B27",body:'Tortet L, Gavarri JR, Nihoul G. Study of protonic mobility in CaHPO4 2H2O (Brushite) and CaHPO4 (Monetite) by infrared spectroscopy and neutron scattering. Journal of Solid State Chemistry. 1997;132:6-16'},{id:"B28",body:'Luo J, Engqvist H, Persson C. A ready-to-use acidic, brushite-forming calcium phosphate cement. Acta Biomaterialia. 2018;81:304-314'},{id:"B29",body:'Han L, Qi-Zhi Y, Yu-Ying W, Yi-Liang L, Gen-Tao Z. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization. Scientific Reports. 2015;5:7718. DOI: 10.1038/srep07718'},{id:"B30",body:'Ding H, Pan H, Xu X, Tang R. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Crystal Growth & Design. 2014;14(2):763-769'},{id:"B31",body:'Li H, Yao Q-Z, Wang Y-Y, Li Y-L, Zhou G-T. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization. Scientific Reports. 2015;5(1):7718'},{id:"B32",body:'Nosrati H, Le DQS, Zolfaghari RE, Canillas MP, Bünger CE. Nucleation and growth of brushite crystals on the graphene sheets applicable in bone cement. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. DOI: 10.1016/j.bsecv.2020.05.001'},{id:"B33",body:'Alshaaer M, Abdel-Fattah E, Saadeddin I, Al Battah F, Issa KI, Saffarini G. The effect of natural fibres template on the chemical and structural properties of Biphasic Calcium Phosphate scaffold. Materials Research Express. 2020;7(6):065405. DOI: 10.1088/2053-1591/ab9993'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Khalil Issa",address:"k.issa@najah.edu",affiliation:'
Faculty of Medicine and Health Sciences, Orthopedics Unit, An-Najah National University, Palestine
Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Saudi Arabia
GeoBioTec Research Center, University of Aveiro, Campus de Santiago, Portugal
'}],corrections:null},book:{id:"10504",type:"book",title:"Crystallization and Applications",subtitle:null,fullTitle:"Crystallization and Applications",slug:"crystallization-and-applications",publishedDate:"March 30th 2022",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83969-317-5",printIsbn:"978-1-83969-316-8",pdfIsbn:"978-1-83969-318-2",reviewType:"peer-reviewed",numberOfWosCitations:0,isAvailableForWebshopOrdering:!0,editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"290142",title:"Dr.",name:"Riadh",middleName:null,surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"76095",type:"chapter",title:"Polycrystalline Powder Synthesis Methods",slug:"polycrystalline-powder-synthesis-methods",totalDownloads:215,totalCrossrefCites:0,signatures:"Mosbah Jemmali, Basma Marzougui, Youssef Ben Smida, Riadh Marzouki and Mohamed Triki",reviewType:"peer-reviewed",authors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",fullName:"Youssef Ben Smida",slug:"youssef-ben-smida"},{id:"290142",title:"Dr.",name:"Riadh",middleName:null,surname:"Marzouki",fullName:"Riadh Marzouki",slug:"riadh-marzouki"},{id:"339980",title:"Dr.",name:"Mosbah",middleName:null,surname:"Jemmali",fullName:"Mosbah Jemmali",slug:"mosbah-jemmali"},{id:"347889",title:"Dr.Ing.",name:"Basma",middleName:null,surname:"Marzougui",fullName:"Basma Marzougui",slug:"basma-marzougui"},{id:"347890",title:"Prof.",name:"Mohamed",middleName:null,surname:"Triki",fullName:"Mohamed Triki",slug:"mohamed-triki"}]},{id:"73922",type:"chapter",title:"Effect of Operating Parameters and Foreign Ions on the Crystal Growth of Calcium Carbonate during Scale Formation: An Overview",slug:"effect-of-operating-parameters-and-foreign-ions-on-the-crystal-growth-of-calcium-carbonate-during-sc",totalDownloads:257,totalCrossrefCites:0,signatures:"Atef Korchef",reviewType:"peer-reviewed",authors:[{id:"327261",title:"Associate Prof.",name:"Atef",middleName:null,surname:"Korchef",fullName:"Atef Korchef",slug:"atef-korchef"}]},{id:"75752",type:"chapter",title:"Cadmium Contents in Biodegradable Films Made from Cassava",slug:"cadmium-contents-in-biodegradable-films-made-from-cassava",totalDownloads:158,totalCrossrefCites:0,signatures:"Maite Rada-Mendoza, José Luis Arciniegas Herrera and Patricia Vélez Varela",reviewType:"peer-reviewed",authors:[{id:"330797",title:"Dr.",name:"Maite",middleName:"Del Pilar",surname:"Rada-Mendoza",fullName:"Maite Rada-Mendoza",slug:"maite-rada-mendoza"},{id:"346659",title:"Dr.",name:"José Luis",middleName:null,surname:"Arciniegas Herrera",fullName:"José Luis Arciniegas Herrera",slug:"jose-luis-arciniegas-herrera"},{id:"346848",title:"Dr.",name:"Patricia",middleName:null,surname:"Vélez Varela",fullName:"Patricia Vélez Varela",slug:"patricia-velez-varela"}]},{id:"78554",type:"chapter",title:"Simultaneously Recovery of Phosphorus and Potassium Using Bubble Column Reactor as Struvite-K and Implementation on Crop Growth",slug:"simultaneously-recovery-of-phosphorus-and-potassium-using-bubble-column-reactor-as-struvite-k-and-im",totalDownloads:121,totalCrossrefCites:0,signatures:"Endar Hidayat and Hiroyuki Harada",reviewType:"peer-reviewed",authors:[{id:"339828",title:"Ph.D. Student",name:"Endar",middleName:null,surname:"Hidayat",fullName:"Endar Hidayat",slug:"endar-hidayat"},{id:"435339",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Harada",fullName:"Hiroyuki Harada",slug:"hiroyuki-harada"}]},{id:"76391",type:"chapter",title:"Recent Developments in the Crystallization of PLLA-Based Blends, Block Copolymers, and Nanocomposites",slug:"recent-developments-in-the-crystallization-of-plla-based-blends-block-copolymers-and-nanocomposites",totalDownloads:165,totalCrossrefCites:0,signatures:"Amit Kumar Pandey and Shinichi Sakurai",reviewType:"peer-reviewed",authors:[{id:"186430",title:"Dr.",name:"Shinichi",middleName:null,surname:"Sakurai",fullName:"Shinichi Sakurai",slug:"shinichi-sakurai"},{id:"341133",title:"Dr.",name:"Amit Kumar",middleName:null,surname:"Pandey",fullName:"Amit Kumar Pandey",slug:"amit-kumar-pandey"}]},{id:"76025",type:"chapter",title:"Polymorphism and Supramolecular Isomerism: The Impasse of Coordination Polymers",slug:"polymorphism-and-supramolecular-isomerism-the-impasse-of-coordination-polymers",totalDownloads:203,totalCrossrefCites:1,signatures:"Francisco Sánchez-Férez and Josefina Pons",reviewType:"peer-reviewed",authors:[{id:"344057",title:"Dr.",name:"Josefina",middleName:null,surname:"Pons",fullName:"Josefina Pons",slug:"josefina-pons"},{id:"344064",title:"Mr.",name:"Francisco",middleName:null,surname:"Sánchez-Férez",fullName:"Francisco Sánchez-Férez",slug:"francisco-sanchez-ferez"}]},{id:"80113",type:"chapter",title:"Brushite: Synthesis, Properties, and Biomedical Applications",slug:"brushite-synthesis-properties-and-biomedical-applications",totalDownloads:106,totalCrossrefCites:0,signatures:"Khalil Issa, Abdulaziz Alanazi, Khalid A. Aldhafeeri, Ola Alamer and Mazen Alshaaer",reviewType:"peer-reviewed",authors:[{id:"315119",title:"Dr.",name:"Mazen",middleName:null,surname:"Alshaaer",fullName:"Mazen Alshaaer",slug:"mazen-alshaaer"}]},{id:"76140",type:"chapter",title:"Advanced Biocrystallogenesis",slug:"advanced-biocrystallogenesis",totalDownloads:175,totalCrossrefCites:0,signatures:"Ivana Kuta Smatanova, Petra Havlickova, Barbora Kascakova and Tatyana Prudnikova",reviewType:"peer-reviewed",authors:[{id:"82667",title:"Prof.",name:"Ivana",middleName:null,surname:"Kuta Smatanova",fullName:"Ivana Kuta Smatanova",slug:"ivana-kuta-smatanova"},{id:"343944",title:"MSc.",name:"Barbora",middleName:null,surname:"Kascakova",fullName:"Barbora Kascakova",slug:"barbora-kascakova"},{id:"343945",title:"MSc.",name:"Petra",middleName:null,surname:"Havlickova",fullName:"Petra Havlickova",slug:"petra-havlickova"},{id:"343946",title:"Dr.",name:"Tatyana",middleName:null,surname:"Prudnikova",fullName:"Tatyana Prudnikova",slug:"tatyana-prudnikova"}]}]},relatedBooks:[{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"9729",title:"Thermodynamic Properties of Nano-Silver and Alloy Particles",slug:"thermodynamic-properties-of-nano-silver-and-alloy-particles",signatures:"Wangyu Hu, Shifang Xiao, Huiqiu Deng, Wenhua Luo and Lei Deng",authors:[null]},{id:"9731",title:"Linear and Nonlinear Optical Properties of Aligned Elongated Silver Nanoparticles Embedded in Silica",slug:"linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica",signatures:"Raul Rangel-Rojo, J.A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J.C. Cheang-Wong, J. McCarthy, H.T. Bookey and A.K. Kar",authors:[null]},{id:"9724",title:"The Applicability of Global and Surface Sensitive Techniques to Characterization of Silver Nanoparticles for Ink-Jet Printing Technology",slug:"the-applicability-of-global-and-surface-sensitive-techniques-to-characterization-of-silver-nanoparti",signatures:"M. Puchalski, P.J. Kowalczyk, Z. Klusek and W. Olejniczak",authors:[null]},{id:"9721",title:"In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes",slug:"in-situ-photochemically-assisted-synthesis-of-silver-nanoparticles-in-polymer-matrixes",signatures:"Lavinia Balan, Jean-Pierre Malval and Daniel-Joseph Lougnot",authors:[null]},{id:"9732",title:"Linear and Nonlinear Optical Properties of Silver Nanoparticles Synthesized in Dielectrics by Ion Implantation and Laser Annealing",slug:"linear-and-nonlinear-optical-properties-of-silver-nanoparticles-synthesized-in-dielectrics-by-ion-im",signatures:"Andrey L. Stepanov",authors:[null]},{id:"9719",title:"Synthesis of Silver Nanoparticles with Laser Assistance",slug:"synthesis-of-silver-nanoparticles-with-laser-assistance",signatures:"A. Pyatenko",authors:[null]},{id:"9735",title:"Synthesis of Ag Nanoparticles by Through Thin Film Ablation",slug:"synthesis-of-ag-nanoparticles-by-through-thin-film-ablation",signatures:"P. Terrence Murray and Eunsung Shin",authors:[null]},{id:"9720",title:"O-Phenylenediamine Encapsulated Silver Nanoparticles and Their Applications for Organic Light-Emitting Devices",slug:"o-phenylenediamine-encapsulated-silver-nanoparticles-and-their-applications-for-organic-light-emitti",signatures:"Chang-Sik Ha, Jin-Woo Park and Habib Ullah",authors:[null]},{id:"9722",title:"High Surface Clay-Supported Silver Nanohybrids",slug:"high-surface-clay-supported-silver-nanohybrids",signatures:"Jiang-Jen Lin, Rui-Xuan Dong and Wei-Cheng Tsai",authors:[null]},{id:"9723",title:"Silver Nanoparticles in Oxide Glasses: Technologies and Properties",slug:"silver-nanoparticles-in-oxide-glasses-technologies-and-properties",signatures:"N.V. Nikonorov, Sidorov A.I. and Tsekhomskii V.A.",authors:[null]},{id:"9730",title:"Silver Nanoparticles: Sensing and Imaging Applications",slug:"silver-nanoparticles-sensing-and-imaging-applications",signatures:"Carlos Caro, Paula M. Castillo, Rebecca Klippstein, David Pozo and Ana P. Zaderenko",authors:[null]},{id:"9734",title:"Silver Nanoparticles as Optical Sensors",slug:"silver-nanoparticles-as-optical-sensors",signatures:"Chien Wang, Marta Luconi, Adriana Masi and Liliana Fernandez",authors:[null]},{id:"9725",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",signatures:"Zygmunt Sadowski",authors:[null]},{id:"9733",title:"On-Paper Synthesis of Silver Nanoparticles for Antibacterial Applications",slug:"on-paper-synthesis-of-silver-nanoparticles-for-antibacterial-applications",signatures:"Hirotaka Koga and Takuya Kitaoka",authors:[null]},{id:"9727",title:"The Silver Nanoparticle (Nano-Ag): a New Model for Antifungal Agents",slug:"the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents",signatures:"Juneyoung Lee, Keuk-Jun Kim, Woo Sang Sung, Jong Guk Kim and Dong Gun Lee",authors:[null]},{id:"9728",title:"Silver Nanoparticles Interactions with the Immune System: Implications for Health and Disease",slug:"silver-nanoparticles-interactions-with-the-immune-system-implications-for-health-and-disease",signatures:"Rebecca Klippstein, Rafael Fernandez-Montesinos, Paula M. Castillo, Ana P. Zaderenko and David Pozo",authors:[null]},{id:"9726",title:"Potential Use of Silver Nanoparticles as an Additive in Animal Feeding",slug:"potential-use-of-silver-nanoparticles-as-an-additive-in-animal-feeding",signatures:"Manuel Fondevila",authors:[null]}]}],publishedBooks:[{type:"book",id:"9257",title:"Electromagnetic Field Radiation in Matter",subtitle:null,isOpenForSubmission:!1,hash:"dda82e17d67826552d58b2e610f32435",slug:"electromagnetic-field-radiation-in-matter",bookSignature:"Walter Gustavo Fano, Adrian Razzitte and Patricia Larocca",coverURL:"https://cdn.intechopen.com/books/images_new/9257.jpg",editedByType:"Edited by",editors:[{id:"215741",title:"Prof.",name:"Walter Gustavo",surname:"Fano",slug:"walter-gustavo-fano",fullName:"Walter Gustavo Fano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3066",title:"Nanowires",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"5c6a1098e69cd1ff0fd11e0d8b702b06",slug:"nanowires-recent-advances",bookSignature:"Xihong Peng",coverURL:"https://cdn.intechopen.com/books/images_new/3066.jpg",editedByType:"Edited by",editors:[{id:"24647",title:"Prof.",name:"Xihong",surname:"Peng",slug:"xihong-peng",fullName:"Xihong Peng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5747",title:"Nanowires",subtitle:"New Insights",isOpenForSubmission:!1,hash:"dde280ae9a6cf4036de089d63738a409",slug:"nanowires-new-insights",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5747.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3154",title:"Electrodeposited Nanowires and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"45243abd7aed0cc587462d93cb16169b",slug:"electrodeposited-nanowires-and-their-applications",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3154.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5789",title:"Nanoscaled Films and Layers",subtitle:null,isOpenForSubmission:!1,hash:"f43ea8f3894ee0c3e44b2351bf3447d5",slug:"nanoscaled-films-and-layers",bookSignature:"Laszlo Nanai",coverURL:"https://cdn.intechopen.com/books/images_new/5789.jpg",editedByType:"Edited by",editors:[{id:"61978",title:"Prof.",name:"Laszlo",surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"8612",title:"Geopolymers and Other Geosynthetics",subtitle:null,isOpenForSubmission:!1,hash:"adfd9b7e361d6bb82c88220c7b28765a",slug:"geopolymers-and-other-geosynthetics",bookSignature:"Mazen Alshaaer and Han-Yong Jeon",coverURL:"https://cdn.intechopen.com/books/images_new/8612.jpg",editedByType:"Edited by",editors:[{id:"315119",title:"Dr.",name:"Mazen",surname:"Alshaaer",slug:"mazen-alshaaer",fullName:"Mazen Alshaaer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"70814",title:"NQO1-Bioactivatable Therapeutics as Radiosensitizers for Cancer Treatment",doi:"10.5772/intechopen.90205",slug:"nqo1-bioactivatable-therapeutics-as-radiosensitizers-for-cancer-treatment",body:'
1. Introduction
For decades, radiobiologists and physician-scientists have collaborated to develop effective combination therapies with ionizing radiation and radiosensitizing agents to reduce the overall dose of radiation required in cancer therapy. This minimizes adverse side-effects observed in normal tissues and increases the efficacy of radiation in reducing tumor burden. Here, we discuss the pros and cons of radiosensitizing agents used in the clinic in comparison with NAD(P)H quinone oxidoreductase-1 (NQO1)-bioactivatable drugs. β-Lapachone (β-Lap) is a clinical chemotherapeutic agent discovered to be a potent DNA repair inhibitor in the late 1980s. It has since been shown to be bioactivated by NQO1, an enzyme elevated more than 20-fold in most solid human cancers, e.g., non-small cell lung, pancreas, prostate, head and neck, and breast cancers, and shows promise as a potent radiosensitizer.
2. Radiotherapy as a single agent
2.1 Initial use of ionizing radiation
The late 19th-century discovery of the X-ray by Wilhelm Roentgen led to diagnostic tools and therapies for diseases such as blood disorders and benign and malignant growths [1, 2]. Initially, radiation was delivered using unfocused beams, causing skin and blood malignancies in both patients and radiologists [1, 2]. Today, patients benefit from vast technological improvements, allowing for focused radiation beams, which markedly increased patient survival. Current approaches include conformal radiation therapy, proton beam radiation therapy, stereotactic radiation therapy (using linear accelerators or gamma knife devices), and intraoperative therapy [3]. Despite improvements in targeting tumors and reducing normal tissue damage, high doses of radiation are still required for a curative effect. Some tumors can also be resistant to radiotherapy, including hypoxic tumors and dormant cancer cells that regrow when the optimal tumor microenvironment presents itself. Thus, methods to improve the safety and efficacy of ionizing radiation were initiated, including combination with chemotherapeutics or radiosensitizers.
2.2 Enhancing radiation therapy with radiosensitizers
Radiosensitizing agents are molecules that enhance the dose of ionizing radiation delivered to a patient’s tumor. The optimal clinical radiosensitizer (a) lowers the required dose of ionizing radiation, (b) increases its antitumor effect, and (c) synergistically kills cancer cells. To date, no radiosensitizer has met these demands. Many radiosensitizers have been used clinically (Table 1, normal text) with limited success, or are currently in clinical trial (Table 1, bold text). These include suppressors of radioprotectors (e.g., thiol) [4], molecules releasing cytotoxic substances when radiolyzed [5], thymine/cytidine analogs [6], oxygen mimic sensitizers [7], and DNA repair inhibitors [8].
Radiosensitizer
Tumor type
Mechanism
Hyperbaric oxygen
Brain tumors
Oxygenation
Nicotinamide
Glioblastoma
Oxygenation
Metronidazole
Cervical cancer
Oxygenation
Mitomycin-C
Breast cancer
Kills hypoxic cells
5-fluorouracil (5FU)
Gastrointestinal
S-phase check points
Bromodeoxyuridine (BrDU)
Breast
Repair inhibition
Topo-inhibitors
Breast, cervical
DNA damage
NBTXR3
Solid tumors
Direct
Nimoral
Head and neck
Modifies hypoxia
Trans sodium crocetinate
Glioblastoma
Oxygenation
NVX108
Glioblastoma
Oxygenation
Table 1.
Clinical radiosensitizers.
List of commonly used radiosensitizing methods/agents for combination with radiotherapy in various tumor types. The last four are emboldened to denote their current use in ongoing clinical trials.
3. β-Lapachone, a DNA repair inhibitor
3.1 Initial discovery of β-lapachone’s effect on DNA repair
In the late 1980s, our laboratory began searching for DNA repair modulators that synergize with ionizing radiation to kill cancer cells more effectively. The goal was to thwart cancer cells’ ability to repair IR damage, to avoid the survival of IR-resistant malignant cells that have undergone potentially lethal damage repair (PLDR). One of those compounds was (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione), also known as β-lapachone [9].
We found that just four micromolar β-lapachone inhibited single-strand DNA break repair in cancer cells exposed to DNA-damaging agent methyl methane sulfonate [9, 10], killing 99% of cells at an exposure time 90–120 min [11]. Additionally, we found that combining β-lapachone with ionizing radiation in Hep2 cells increased double-strand breaks and dramatically lowered the dose of radiation required for cell death, highlighting β-lapachone as a potent radiosensitizer [12].
In the 1990s and early 2000s, we conducted subtraction-hybridization screening to isolate X-ray inducible genes to investigate ionizing radiation resistance and found Xip3, also known as NQO1 [13]. Dicoumarol, an NQO1 inhibitor, specifically blocked β-lapachone’s toxicity, indicating that the radiosensitizer may be bioactivated by this enzyme. As NQO1 is specifically expressed in tumor cells, this indicated a promising use of β-lapachone as a cancer therapeutic with or without ionizing radiation.
4. Mechanism of action for NQO1-bioactivatable therapies
4.1 NQO1 vs. catalase ratio and specificity
NQO1 is a Phase II detoxification enzyme that reduces ROS levels in cancer cells. NQO1 converts quinones into stable intermediate hydroquinones that are exported out of the cell by conjugation [10]. Most solid cancers, including non-small cell lung and pancreatic cancers (>85%), prostate, colon, and breast cancers (60%) and head and neck cancers (40%) overexpress NQO1 5- to 200- fold above normal tissue. Corresponding levels of catalase in these cancers were strikingly reduced, impacting the ability of cancer cells to eliminate ROS [14]. Overexpression of NQO1 appears to stabilize HIF-1alpha and promotes metastasis [15].
Though NQO1 detoxifies most quinones through two-electron oxidoreduction, a few quinones undergo a rapid futile redox cycle response, generating an unstable intermediate hydroquinone that spontaneously reverts back to its original form using two oxygenation steps and creating two superoxides. Deoxynyboquiones (DNQ), KP372 agents, and β-lapachone are three classes of NQO1-bioactivatable drugs currently known [16]. Recently, Napabucasin, an orphan drug in clinical trials for pancreatic and cervical cancer, has also been reported to be bioactivated by NQO1 [17]. Though mitomycin C and streptonigrin are metabolized by NQO1, these agents can also be activated by other drug metabolizing enzymes [18]. Human cancer cells overexpressing NQO1 have been shown to be sensitive to NQO1-bioactivatable drugs alone and in combination with PARP inhibitors, cisplatin, radiation, and NAMPT inhibitors both in cell culture and xenograft models [14, 19].
4.2 NQO1-dependent ROS formation and PARP hyperactivation
Cancer cells overexpressing NQO1 and exposed to NQO1-bioactivatable drugs, such as β-lapachone, DNQ or IB-DNQ , acquire extensive DNA lesions as evidenced by alkaline comet assays [11]. The unstable hydroquinone form of these NQO1 bioactivatable drugs reacts with two oxygen molecules spontaneously to regenerate the original compound [20]. This futile redox cycle consumes ~60 moles of NADPH to generate ~120 moles of ROS in ~2 min for β-lapachone, leading to the generation of permeable hydrogen peroxide (H2O2). This diffuses into the nucleus and causes massive oxidative stress and SSBs [16]. Initial DNA damage is mainly through the formation of altered bases, SSBs, and apurinic/apyrimidinic (AP) sites generated through incorporation of 8-oxo-deoxyguanine [21]. Ultimately, damage caused by H2O2 results in extensive SSBs and DSBs. These lesions lead to PARP hyperactivation that can be prevented by BAPTA-AM (chelates Ca2+), PARP inhibitors, or the NQO1 inhibitor dicoumarol, in NQO1+ cells. In contrast, cells deficient in NQO1 due to NQO1 polymorphisms, *2[C609T] or *3[C465T], are unaffected by exposure to NQO1-bioactivatable compounds [14], lacking the enzyme activity for redox cycling Hyperactivation of PARP rapidly degrades the increased NAD+ pools generated as a result of the oxidation of NADH in the futile cycle [11, 20, 22]. NAD+ loss is not seen in cells treated with PARP1 inhibitors; instead, cells exposed to PARP inhibitors in combination with NQO1-bioactivatable drugs undergo a synergistic apoptotic cell death response [14].
4.3 Calcium release, DNA damage and μ-Calpain-dependent programmed necrosis
One of the key components in the cell death response by NQO1-bioactivatable drugs is the release of calcium from the core endoplasmic reticulum (ER) stores, which is otherwise inert [11, 23]. This results in specific programmed necrosis referred to as NAD+ -Keresis. Pre-treatment, with the calcium chelator, BAPTA-AM, suppresses PARP hyperactivation and results in specific inhibition of NQO1-dependent cell death by NQO1-bioactivatable drugs. Extensive DNA damage along with Ca2+ release from the ER results in the hyperactivation of PARP1 in NQO1+ cancer cells. PARP1 hyperactivation rapidly degrades the NAD+ and causes concomitant ATP losses within 30–40 min of drug treatment. μ-Calpain activation is observed upon treatment with NQO1-bioactivatable drugs within 8–24 h [16, 24]. The multitude of damage caused by treatment with these drugs overwhelms DNA repair machinery and depletes the cells of the energy resources, culminating in cell death [10, 11, 16, 20, 24, 25, 26, 27].
4.4 NQO1-bioactivatable drugs lead to perturbations in metabolic pathways
Treatment with NQO1-bioactivatable drugs causes wide-scale metabolic changes in the cell, which can be attributed to cell death overwhelming the cellular machinery. Altering key enzymes in NAD metabolism results in synergy with NQO1-bioactivatable drugs. NAMPT is an important source of reducing equivalents for redox balance in cancer cells. Pretreatment with FK866, a NAMPT inhibitor, leads to accelerated cell death due to decrease in NAD+/NADH levels and reduced doses of NQO1-bioactivatable drugs [28]. NAMPT knockdown has also been shown to sensitize cancer cells to ROS induction through ionizing radiation [29, 30].
4.5 Exploiting NQO1-bioactivatable drugs as radiosensitizers
Cancer cells, tissues, and organs subjected to ionizing radiation experience a wide spectrum of DNA lesions including SSBs, DSBs, AP sites and DNA-protein crosslinks. One unrepaired DSB is lethal to the cell [21, 31]. Hence, NQO1-bioactivatable drugs, when combined with IR (Figure 1), synergistically kill cancer cells due to the combined effect of DNA damage and PARP1 hyperactivation [21, 32]. Sublethal doses of NQO1 drugs and IR combine to release massive amounts of ROS due to their synergy, resulting in PARP hyperactivation, loss of nucleotides and increased programmed necrosis (Figures 2 and 3), beyond the capabilities of the single agents (IR or NQO1-bioactivatable drug) alone. Head and neck cancers, PDA and NSCLC have been shown to be sensitive to nontoxic doses of β-lapachone when combined with IR [21, 32]. Using NQO1-bioactivatable drugs as radiosensitizers leads to increases in ROS, γH2AX formation, hyperactivation of PARP1, massive NAD+ and ATP losses, inhibition of DSB repair, perturbation in carbon flux pathways and μ-Calpain mediated programmed necrosis known as NAD + -Keresis. The cell death responses observed are independent of any oncogenic drivers [21, 31, 32, 33]. This lethal combination between radiation therapy and NQO1-bioactivatable drugs prolongs long-term survival and promotes enhanced tumor shrinkage at non-toxic doses of each agent (IR and Drug, Figure 4). Thus, combining NQO1-bioactivatable drugs with radiation therapy, should be a long-standing treatment modality for tumors overexpressing NQO1.
Figure 1.
Radiation sensitization by NQO1 bioactivatable drugs: sublethal doses of β-lapachone when bioactivated by NQO1 release massive amounts of ROS, resulting in synergy with IR and increased programmed necrosis. NQO1 bioactivatable drugs in combination with IR show tremendous synergy even at low doses. The combined effect of DNA damage and PARP hyperactivation provides more lethality to a cancer cell whereas NQO1 provides the specificity. This leads to increased ROS, gH2AX formation, hyperactivation of PARP, massive NAD and ATP losses, prevention of DSB repair, perturbations in the metabolic pathways, and μ-Calpain-mediated programmed necrosis known as NAD + -Keresis.
Figure 2.
Sublethal doses of IR and β-lap in NQO1+ LNCaP cells cause PARP-1 hyper-activation and dramatic ATP loss: A, LNCaP cells expressing or lacking NQO1 were treated with IR + β-lap and monitored for PAR formation—UT, untreated control for IR; V, vehicle; DMSO only. B, Synergistic ATP loss was noted after IR + β-lap compared to single treatments alone. Results are means ± SE for experiments performed three times in duplicate. Student’s t-tests compared single to combined treatments. ***p < 0.001, **p < 0.01.
Figure 3.
β-Lap inhibits DNA double strand break repair: A. log-phase A549 NSCLC cells were treated with or without β-lap (6 μM) and cell extracts prepared at various times during treatment to detect PAR-PARP formation, γ-H2AX (pS139), pS1981 ATM, total ATM (t-ATM) and α-tubulin steady-state levels by Western blot. A549 cells were also exposed or not to IR (8 Gy) and analyzed 1 h later. Mock, non-irradiated cells. DM, media alone. B. Graphical representation of data shown in Figure 2A. C. Representative images of A549 cells exposed or not to IR (2 Gy) alone, β-lap (3 μM, 2 h) alone, the combination [IR (2 Gy) + β-lap (3 μM, 2 h)], or the combination with DIC (50 μM, NQO1 inhibitor) and assessed for DSB breaks over time (0–120 min) using 53BP1 as the surrogate marker (in red). Cells were also stained for nuclear DNA using DAPI (in blue). Scale bar = 10 μm. D. Graphical representation of data presented in Figure 2C; ****p < 0.0001.
Figure 4.
β-Lap radiosensitizes subcutaneous A549-luc xenografts in athymic nude mice: A. subcutaneous A549-luc xenografts (400 mm3) were generated in athymic nude mice and then treated with or without IR (2 Gy) then immediately with or without β-lap (20 mg/kg) for 5 treatments every other day. Representative antitumor responses (at day 20 post-treatment) are demonstrated for β-lap alone, IR alone, and the IR + β-lap combination. B. Antitumor responses (tumor volumes, mm3) over time are shown for the treatments described in Figure 3A. C. Overall survival of animals treated as described in Figure 3A. D. PK values for plasma and subcutaneous vs. orthotopic A549-luc tumors in athymic nude mice. Note the significantly high levels of β-lap in orthotopic vs. subcutaneous A549 tumor tissue, whereas plasma levels were identical in both sets of mice.
5. Discussion
5.1 Advantages of NQO1-bioactivatable drugs vs. other radiosensitizers
The major advantage of using NQO1-bioactivatable drugs as radiosensitizers is the tumor selectivity afforded by the drugs themselves. Synergy is afforded by a number of tumor-selective responses to the drugs. First, the dependence of the drugs on NQO1 levels is perfect for the specific treatment of various difficult-to-treat human cancers, including non-small cell lung, pancreatic, breast, prostate, and head and neck cancers. Tumor selectivity requires approximately 100 units of enzyme activity, whereas lower levels of NQO1 results in mild metabolomic alterations used for the treatment of metabolic syndromes [34]. Second, the minimum time of exposure of 30–120 min fits the pharmacokinetics of the drug. It should be noted that all studies thus far indicate that the drugs have to be available immediately after or at the same time as exposure with IR. Pre-treatment prior to IR is ineffective. Third, synergy between NQO1-bioactivatable drugs and IR occurs due to PARP1 hyperactivation causing massive NAD+ and ATP loss, preventing repair of the DNA damage created by IR. NQO1-bioactivatable drugs are highly specific to tumors, causing little normal tissue toxicity, which is unaffected by IR treatment [14, 16, 20, 25, 31]. Preclinical in vivo data suggest that radiosensitization trials with NQO1-bioactivatable drugs are warranted for non-small cell lung, pancreatic, breast prostate, and head and neck cancers.
5.2 Future directions for NQO1-bioactivatable drugs
A clinical trial of radiation sensitization effects of the new drug, isobutyldeoxynyboquione (IB-DNQ), against non-small cell lung (NSCLC) and/or pancreatic adenocarcinomas (PDAC) is warranted. These cancers are almost uniformly NOQ1 over-expressive and they have routinely low levels of catalase [14]. We have developed CLIA assessments of NQO1 status and enzymatic levels for these studies. The pharmacokinetics of IB-DNQ in these cancers, particularly in NSCLC and PDAC cancers, is relatively short at about 6 h, but long enough for sensitization of tumors to the NQO1-bioactivatable drug + IR. Biomarker and DSB repair kinetics are ongoing in our laboratory in preparation for these radiosensitization studies.
Acknowledgments
This work was supported by NIH/NCI R01s - CA210489 and CA224493 to David A. Boothman.
\n',keywords:"NQO1 expression, PARP hyperactivation, abasic site synergy, NAD+/ATP losses, DSB repair inhibition, programmed necrosis",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/70814.pdf",chapterXML:"https://mts.intechopen.com/source/xml/70814.xml",downloadPdfUrl:"/chapter/pdf-download/70814",previewPdfUrl:"/chapter/pdf-preview/70814",totalDownloads:508,totalViews:0,totalCrossrefCites:0,dateSubmitted:"June 12th 2019",dateReviewed:"October 18th 2019",datePrePublished:"February 13th 2020",datePublished:"February 3rd 2021",dateFinished:"January 14th 2020",readingETA:"0",abstract:"Developing cancer therapeutics that radiosensitize in a tumor-selective manner remains an ideal. We developed a novel means of radiosensitization, exploiting NAD(P)H:Quinone Oxidoreductase 1 (NQO1) overexpression, and lowered catalase expression in solid human tumors using NQO1-bioactivatable drugs. Non-small cell lung (NSCLC), pancreatic (PDAC), prostate, and breast cancers overexpress NQO1. Ionizing radiation (IR) creates a spectrum of DNA lesions, including lethal DNA double-strand breaks (DSBs), and mutagenic but rarely lethal altered DNA bases and DNA single-strand breaks (SSBs). NQO1-bioactivatable drugs (e.g., β-lapachone and deoxynyboquiones) also promote abasic DNA lesions and SSBs. These hyperactivate poly (ADP-ribose) polymerase 1 (PARP1) and dramatically increase calcium release from the endoplasm reticulum (ER). Exposure of human cancer cells overexpressing NQO1 to NQO1-bioactivatable drugs immediately following IR, therefore, hyperactivates PARP1 synergistically, which in turn depletes NAD+ and ATP, inhibiting DSB repair. Ultimately, this leads to cell death. Combining IR with NQO1-bioactivatable drugs allows for a reduction in drug dose. Similarly, a lower IR dose can be used in combination with the drug, reducing the effects of IR on normal tissue. The combination treatment is effective in preclinical animal models with NSCLC, prostate, and head and neck xenografts, indicating that clinical trials are warranted.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/70814",risUrl:"/chapter/ris/70814",signatures:"Naveen Singh, Edward A. Motea, Xiumei Huang, Colton L. Starcher, Jayne Silver, I-Ju Yeh, S. Louise Pay, Xiaolin Su, Kristen A. Russ, David A. Boothman and Erik A. Bey",book:{id:"7015",type:"book",title:"Translational Research in Cancer",subtitle:null,fullTitle:"Translational Research in Cancer",slug:"translational-research-in-cancer",publishedDate:"February 3rd 2021",bookSignature:"Sivapatham Sundaresan and Yeun-Hwa Gu",coverURL:"https://cdn.intechopen.com/books/images_new/7015.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83880-535-7",printIsbn:"978-1-83880-534-0",pdfIsbn:"978-1-78984-837-3",isAvailableForWebshopOrdering:!0,editors:[{id:"187272",title:"Dr.",name:"Sivapatham",middleName:null,surname:"Sundaresan",slug:"sivapatham-sundaresan",fullName:"Sivapatham Sundaresan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313447",title:"Dr.",name:"Erik",middleName:null,surname:"Bey",fullName:"Erik Bey",slug:"erik-bey",email:"beye@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313448",title:"Dr.",name:"Edward",middleName:null,surname:"Motea",fullName:"Edward Motea",slug:"edward-motea",email:"eamotea@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313449",title:"Dr.",name:"Naveen",middleName:null,surname:"Singh",fullName:"Naveen Singh",slug:"naveen-singh",email:"navsing@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313451",title:"Dr.",name:"Xiumei",middleName:null,surname:"Huang",fullName:"Xiumei Huang",slug:"xiumei-huang",email:"xiuhuang@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313454",title:"Dr.",name:"S. Louise",middleName:null,surname:"Pay",fullName:"S. Louise Pay",slug:"s.-louise-pay",email:"slpay@iupui.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313456",title:"Mr.",name:"Colton",middleName:null,surname:"Starcher",fullName:"Colton Starcher",slug:"colton-starcher",email:"clstarch@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313458",title:"Mrs.",name:"Jayne",middleName:null,surname:"Silver",fullName:"Jayne Silver",slug:"jayne-silver",email:"jmsilver@iupui.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313459",title:"Dr.",name:"I-Ju",middleName:null,surname:"Yeh",fullName:"I-Ju Yeh",slug:"i-ju-yeh",email:"ijuyeh@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"313460",title:"Dr.",name:"Xiaolin",middleName:null,surname:"Su",fullName:"Xiaolin Su",slug:"xiaolin-su",email:"xiasu@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Indiana University – Purdue University Indianapolis",institutionURL:null,country:{name:"United States of America"}}},{id:"315027",title:"Ph.D.",name:"Kristen A.",middleName:null,surname:"Russ",fullName:"Kristen A. Russ",slug:"kristen-a.-russ",email:"karuss@iu.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Radiotherapy as a single agent",level:"1"},{id:"sec_2_2",title:"2.1 Initial use of ionizing radiation",level:"2"},{id:"sec_3_2",title:"2.2 Enhancing radiation therapy with radiosensitizers",level:"2"},{id:"sec_5",title:"3. β-Lapachone, a DNA repair inhibitor",level:"1"},{id:"sec_5_2",title:"3.1 Initial discovery of β-lapachone’s effect on DNA repair",level:"2"},{id:"sec_7",title:"4. Mechanism of action for NQO1-bioactivatable therapies",level:"1"},{id:"sec_7_2",title:"4.1 NQO1 vs. catalase ratio and specificity",level:"2"},{id:"sec_8_2",title:"4.2 NQO1-dependent ROS formation and PARP hyperactivation",level:"2"},{id:"sec_9_2",title:"4.3 Calcium release, DNA damage and μ-Calpain-dependent programmed necrosis",level:"2"},{id:"sec_10_2",title:"4.4 NQO1-bioactivatable drugs lead to perturbations in metabolic pathways",level:"2"},{id:"sec_11_2",title:"4.5 Exploiting NQO1-bioactivatable drugs as radiosensitizers",level:"2"},{id:"sec_13",title:"5. Discussion",level:"1"},{id:"sec_13_2",title:"5.1 Advantages of NQO1-bioactivatable drugs vs. other radiosensitizers",level:"2"},{id:"sec_14_2",title:"5.2 Future directions for NQO1-bioactivatable drugs",level:"2"},{id:"sec_16",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Brady LW. The changing role of radiation oncology in cancer management. Cancer. 1983;51:2506-2514'},{id:"B2",body:'Lederman M. The early history of radiotherapy: 1895-1939. International Journal of Radiation Oncology, Biology, Physics. 1981;7:639-648'},{id:"B3",body:'Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ. 2012;345:e7765'},{id:"B4",body:'Durand RE. Roles of thiols in cellular radiosensitivity. International Journal of Radiation Oncology, Biology, Physics. 1984;10:1235-1238'},{id:"B5",body:'Wardman P. Chemical radiosensitizers for use in radiotherapy. Clinical Oncology (Royal College of Radiologists). 2007;19:397-417'},{id:"B6",body:'Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiation Oncology. 2013;8:223'},{id:"B7",body:'Revesz L, Palcic B. Radiation dose dependence of the sensitization by oxygen and oxygen mimic sensitizers. Acta Radiologica. Oncology. 1985;24:209-217'},{id:"B8",body:'Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncology. 2013;9:219-233'},{id:"B9",body:'Boothman DA, Greer S, Pardee AB. Potentiation of halogenated pyrimidine radiosensitizers in human carcinoma cells by beta-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione), a novel DNA repair inhibitor. Cancer Research. 1987;47:5361-5366'},{id:"B10",body:'Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. The Journal of Biological Chemistry. 2000;275:5416-5424'},{id:"B11",body:'Bentle MS, Reinicke KE, Bey EA, Spitz DR, Boothman DA. Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. The Journal of Biological Chemistry. 2006;281:33684-33696'},{id:"B12",body:'Boothman DA, Pardee AB. Inhibition of radiation-induced neoplastic transformation by beta-lapachone. Proceedings of the National Academy of Sciences of the United States of America. 1989;86:4963-4967'},{id:"B13",body:'Boothman DA, Meyers M, Fukunaga N, Lee SW. Isolation of x-ray-inducible transcripts from radioresistant human melanoma cells. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:7200-7204'},{id:"B14",body:'Huang X, Motea EA, Moore ZR, et al. Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors. Cancer Cell. 2016;30:940-952'},{id:"B15",body:'Oh ET, Kim JW, Kim JM, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1alpha. Nature Communications. 2016;7:13593'},{id:"B16",body:'Huang X, Dong Y, Bey EA, et al. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Research. 2012;72:3038-3047'},{id:"B17",body:'Froeling FEM, Mosur Swamynathan M, Deschenes A, et al. Bioactivation of napabucasin triggers reactive oxygen species-mediated cancer cell death. Clinical Cancer Research. 2019'},{id:"B18",body:'Siegel D, Yan C, Ross D. NAD(P)H:Quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochemical Pharmacology. 2012;83:1033-1040'},{id:"B19",body:'Terai K, Dong GZ, Oh ET, et al. Cisplatin enhances the anticancer effect of beta-lapachone by upregulating NQO1. Anti-Cancer Drugs. 2009;20:901-909'},{id:"B20",body:'Bey EA, Bentle MS, Reinicke KE, et al. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:11832-11837'},{id:"B21",body:'Li LS, Reddy S, Lin ZH, et al. NQO1-mediated tumor-selective lethality and radiosensitization for head and neck Cancer. Molecular Cancer Therapeutics. 2016;15:1757-1767'},{id:"B22",body:'Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA. Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone. Cancer Research. 2007;67:6936-6945'},{id:"B23",body:'Tagliarino C, Pink JJ, Dubyak GR, Nieminen AL, Boothman DA. Calcium is a key signaling molecule in beta-lapachone-mediated cell death. The Journal of Biological Chemistry. 2001;276:19150-19159'},{id:"B24",body:'Tagliarino C, Pink JJ, Reinicke KE, Simmers SM, Wuerzberger-Davis SM, Boothman DA. Mu-calpain activation in beta-lapachone-mediated apoptosis. Cancer Biology & Therapy. 2003;2:141-152'},{id:"B25",body:'Bey EA, Reinicke KE, Srougi MC, et al. Catalase abrogates beta-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Molecular Cancer Therapeutics. 2013;12:2110-2120'},{id:"B26",body:'Chakrabarti G, Silvers MA, Ilcheva M, et al. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, beta-lapachone. Scientific Reports. 2015;5:17066'},{id:"B27",body:'Silvers MA, Deja S, Singh N, et al. The NQO1 bioactivatable drug, beta-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. The Journal of Biological Chemistry. 2017;292:18203-18216'},{id:"B28",body:'Moore Z, Chakrabarti G, Luo X, et al. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by beta-lapachone. Cell Death & Disease. 2015;6:e1599'},{id:"B29",body:'Chakrabarti G, Gerber DE, Boothman DA. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways. Clinical pharmacology: Advances and Applications. 2015;7:57-68'},{id:"B30",body:'Chakrabarti G, Moore ZR, Luo X, et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-lapachone. Cancer & Metabolism. 2015;3:12'},{id:"B31",body:'Dong Y, Bey EA, Li LS, et al. Prostate cancer radiosensitization through poly(ADP-ribose) polymerase-1 hyperactivation. Cancer Research. 2010;70:8088-8096'},{id:"B32",body:'Motea EA, Huang X, Singh N, et al. NQO1-dependent, tumor-selective radiosensitization of non-small cell lung cancers. Clinical Cancer Research. 2019;25:2601-2609'},{id:"B33",body:'Planchon SM, Pink JJ, Tagliarino C, Bornmann WG, Varnes ME, Boothman DA. Beta-lapachone-induced apoptosis in human prostate cancer cells: Involvement of NQO1/xip3. Experimental Cell Research. 2001;267:95-106'},{id:"B34",body:'Li LS, Bey EA, Dong Y, et al. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of beta-lapachone for pancreatic cancer therapy. Clinical Cancer Research. 2011;17:275-285'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Naveen Singh",address:null,affiliation:'
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States of America
'},{corresp:null,contributorFullName:"Edward A. Motea",address:null,affiliation:'
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States of America
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States of America
'},{corresp:null,contributorFullName:"Kristen A. Russ",address:null,affiliation:'
Translational Research Core, Simon Cancer Center, Indiana University School of Medicine, United States of America
'},{corresp:null,contributorFullName:"David A. Boothman",address:null,affiliation:'
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States of America
Deceased
'},{corresp:"yes",contributorFullName:"Erik A. Bey",address:"beye@iu.edu",affiliation:'
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States of America
'}],corrections:null},book:{id:"7015",type:"book",title:"Translational Research in Cancer",subtitle:null,fullTitle:"Translational Research in Cancer",slug:"translational-research-in-cancer",publishedDate:"February 3rd 2021",bookSignature:"Sivapatham Sundaresan and Yeun-Hwa Gu",coverURL:"https://cdn.intechopen.com/books/images_new/7015.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83880-535-7",printIsbn:"978-1-83880-534-0",pdfIsbn:"978-1-78984-837-3",isAvailableForWebshopOrdering:!0,editors:[{id:"187272",title:"Dr.",name:"Sivapatham",middleName:null,surname:"Sundaresan",slug:"sivapatham-sundaresan",fullName:"Sivapatham Sundaresan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"87824",title:"Dr.",name:"Edith",middleName:null,surname:"Kussener",email:"edith.kussener@isen.fr",fullName:"Edith Kussener",slug:"edith-kussener",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"32476",title:"Image Analysis for Automatically-Driven Bionic Eye",slug:"image-analysis-for-automatically-driven-bionic-eye",abstract:null,signatures:"F. Robert-Inacio, E. Kussener, G. Oudinet and G. Durandau",authors:[{id:"87824",title:"Dr.",name:"Edith",surname:"Kussener",fullName:"Edith Kussener",slug:"edith-kussener",email:"edith.kussener@isen.fr"}],book:{id:"747",title:"Advanced Topics in Neurological Disorders",slug:"advanced-topics-in-neurological-disorders",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"61090",title:"Dr",name:"Fabien",surname:"Scalzo",slug:"fabien-scalzo",fullName:"Fabien Scalzo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"86171",title:"Dr.",name:"Wanhong",surname:"Liu",slug:"wanhong-liu",fullName:"Wanhong Liu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wuhan University",institutionURL:null,country:{name:"China"}}},{id:"86265",title:"Dr.",name:"Ciara",surname:"Tate",slug:"ciara-tate",fullName:"Ciara Tate",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"86823",title:"Dr.",name:"Patrik",surname:"Kutilek",slug:"patrik-kutilek",fullName:"Patrik Kutilek",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Czech Technical University in Prague",institutionURL:null,country:{name:"Czech Republic"}}},{id:"86904",title:"Dr.",name:"Casey",surname:"Case",slug:"casey-case",fullName:"Casey Case",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"88443",title:"PhD.",name:"Olgica",surname:"Trenchevska",slug:"olgica-trenchevska",fullName:"Olgica Trenchevska",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ss. Cyril and Methodius",institutionURL:null,country:{name:"Slovakia"}}},{id:"127039",title:"Prof.",name:"Kiro",surname:"Stojanoski",slug:"kiro-stojanoski",fullName:"Kiro Stojanoski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"127214",title:"Dr.",name:"Jiri",surname:"Hozman",slug:"jiri-hozman",fullName:"Jiri Hozman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"127215",title:"Dr.",name:"Rudolf",surname:"Cerny",slug:"rudolf-cerny",fullName:"Rudolf Cerny",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"127216",title:"MSc.",name:"Jan",surname:"Hejda",slug:"jan-hejda",fullName:"Jan Hejda",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding-institutions-list",title:"List of Institutions by Country",intro:"
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n
CSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
The Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\n
\\n\\t
Virginia Polytechnic Institute and State University
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n
CSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
The Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\n
\n\t
Virginia Polytechnic Institute and State University
Important: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"297",title:"Animal Science",slug:"animal-science",parent:{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"},numberOfBooks:20,numberOfSeries:0,numberOfAuthorsAndEditors:510,numberOfWosCitations:405,numberOfCrossrefCitations:318,numberOfDimensionsCitations:650,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"297",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11008",title:"Sheep Farming",subtitle:"Herds Husbandry, Management System, Reproduction and Improvement of Animal Health",isOpenForSubmission:!1,hash:"992f691327b36848b6e1137b70d921d5",slug:"sheep-farming-herds-husbandry-management-system-reproduction-and-improvement-of-animal-health",bookSignature:"Manuel Gonzalez Ronquillo and Carlos Palacios Riocerezo",coverURL:"https://cdn.intechopen.com/books/images_new/11008.jpg",editedByType:"Edited by",editors:[{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:"Challenges and Advances",isOpenForSubmission:!1,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:"bovine-science-challenges-and-advances",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:"advanced-studies-in-the-21st-century-animal-nutrition",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:"Edited by",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9081",title:"Equine Science",subtitle:null,isOpenForSubmission:!1,hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",slug:"equine-science",bookSignature:"Catrin Rutland and Albert Rizvanov",coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,isOpenForSubmission:!1,hash:"32ef5fe73998dd723d308225d756fa1e",slug:"reproductive-biology-and-technology-in-animals",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",editedByType:"Edited by",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",isOpenForSubmission:!1,hash:"2aa2a9a0ec13040bbf0455e34625504e",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",bookSignature:"Naceur M'Hamdi",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",editedByType:"Edited by",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8288",title:"Bacterial Cattle Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f45b8b4974eb0d7de8719ef6b9146200",slug:"bacterial-cattle-diseases",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8288.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6898",title:"Comparative Endocrinology of Animals",subtitle:null,isOpenForSubmission:!1,hash:"1c615706c8e4220ea5a24d231947ac7a",slug:"comparative-endocrinology-of-animals",bookSignature:"Edward Narayan",coverURL:"https://cdn.intechopen.com/books/images_new/6898.jpg",editedByType:"Edited by",editors:[{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6993",title:"Bovine Science",subtitle:"A Key to Sustainable Development",isOpenForSubmission:!1,hash:"fe7bdc1a2e1aa960e1f51dae7c705002",slug:"bovine-science-a-key-to-sustainable-development",bookSignature:"Sadashiv S. O. and Sharangouda J. Patil",coverURL:"https://cdn.intechopen.com/books/images_new/6993.jpg",editedByType:"Edited by",editors:[{id:"176334",title:"Dr.",name:"Sadashiv",middleName:null,surname:"S. O.",slug:"sadashiv-s.-o.",fullName:"Sadashiv S. O."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:20,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"39623",doi:"10.5772/50192",title:"Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet",slug:"use-of-yeast-probiotics-in-ruminants-effects-and-mechanisms-of-action-on-rumen-ph-fibre-degradation-",totalDownloads:7881,totalCrossrefCites:17,totalDimensionsCites:37,abstract:null,book:{id:"2991",slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Frédérique Chaucheyras-Durand, Eric Chevaux, Cécile Martin and Evelyne Forano",authors:[{id:"151065",title:"Dr.",name:"Frederique",middleName:null,surname:"Chaucheyras-Durand",slug:"frederique-chaucheyras-durand",fullName:"Frederique Chaucheyras-Durand"},{id:"151068",title:"Mr.",name:"Eric",middleName:null,surname:"Chevaux",slug:"eric-chevaux",fullName:"Eric Chevaux"},{id:"151069",title:"Dr.",name:"Evelyne",middleName:null,surname:"Forano",slug:"evelyne-forano",fullName:"Evelyne Forano"},{id:"160177",title:"Dr.",name:"Cécile",middleName:null,surname:"Martin",slug:"cecile-martin",fullName:"Cécile Martin"}]},{id:"16107",doi:"10.5772/16563",title:"Effect of Cryopreservation on Sperm Quality and Fertility",slug:"effect-of-cryopreservation-on-sperm-quality-and-fertility",totalDownloads:15453,totalCrossrefCites:10,totalDimensionsCites:35,abstract:null,book:{id:"185",slug:"artificial-insemination-in-farm-animals",title:"Artificial Insemination in Farm Animals",fullTitle:"Artificial Insemination in Farm Animals"},signatures:"Alemayehu Lemma",authors:[{id:"25594",title:"Dr.",name:"Alemayehu",middleName:null,surname:"Lemma",slug:"alemayehu-lemma",fullName:"Alemayehu Lemma"}]},{id:"57645",doi:"10.5772/intechopen.71780",title:"Antibiotics in Chilean Aquaculture: A Review",slug:"antibiotics-in-chilean-aquaculture-a-review",totalDownloads:1914,totalCrossrefCites:15,totalDimensionsCites:28,abstract:"Aquaculture in Chile has been practiced since the 1920s; however, it was not until the 1990s that aquaculture became an important sector here. Important species in Chilean aquaculture include salmonids, algae, mollusks, and turbot. Salmonids are the dominant species in Chilean aquaculture for both harvest volume and export value, their production reaching greater than 800-thousand tons in 2015. However, this growth has been accompanied by an increase in disease presence, requiring greater drug use to control. This increase in drug use is an environmental and public health concern for the authorities, the salmon industry itself, and the destination markets. In this chapter, we review the literature on drug use, antibiotic resistance, regulatory framework, and alternatives, with focus on Chile.",book:{id:"6179",slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Ivonne Lozano, Nelson F. Díaz, Susana Muñoz and Carlos Riquelme",authors:[{id:"208847",title:"Dr.",name:"Ivonne",middleName:null,surname:"Lozano",slug:"ivonne-lozano",fullName:"Ivonne Lozano"},{id:"208895",title:"Dr.",name:"Nelson F.",middleName:null,surname:"Díaz",slug:"nelson-f.-diaz",fullName:"Nelson F. Díaz"},{id:"208897",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"},{id:"208898",title:"MSc.",name:"Susana",middleName:null,surname:"Muñoz",slug:"susana-munoz",fullName:"Susana Muñoz"}]},{id:"58486",doi:"10.5772/intechopen.72865",title:"Quality of Chicken Meat",slug:"quality-of-chicken-meat",totalDownloads:3248,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Chicken meat is considered as an easily available source of high-quality protein and other nutrients that are necessary for proper body functioning. In order to meet the consumers’ growing demands for high-quality protein, the poultry industry focused on selection of fast-growing broilers, which reach a body mass of about 2.5 kg within 6-week-intensive fattening. Relatively low sales prices of chicken meat, in comparison to other types of meat, speak in favor of the increased chicken meat consumption. In addition, chicken meat is known by its nutritional quality, as it contains significant amount of high-quality and easily digestible protein and a low portion of saturated fat. Therefore, chicken meat is recommended for consumption by all age groups. The technological parameters of chicken meat quality are related to various factors (keeping conditions, feeding treatment, feed composition, transport, stress before slaughter, etc.). Composition of chicken meat can be influenced through modification of chicken feed composition (addition of different types of oils, vitamins, microelements and amino acids), to produce meat enriched with functional ingredients (n-3 PUFA, carnosine, selenium and vitamin E). By this way, chicken meat becomes a foodstuff with added value, which, in addition to high-quality nutritional composition, also contains ingredients that are beneficial to human health.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Gordana Kralik, Zlata Kralik, Manuela Grčević and Danica Hanžek",authors:[{id:"207236",title:"Dr.",name:"Gordana",middleName:null,surname:"Kralik",slug:"gordana-kralik",fullName:"Gordana Kralik"},{id:"227281",title:"Prof.",name:"Zlata",middleName:null,surname:"Kralik",slug:"zlata-kralik",fullName:"Zlata Kralik"},{id:"227283",title:"Dr.",name:"Manuela",middleName:null,surname:"Grčević",slug:"manuela-grcevic",fullName:"Manuela Grčević"},{id:"227284",title:"BSc.",name:"Danica",middleName:null,surname:"Hanžek",slug:"danica-hanzek",fullName:"Danica Hanžek"}]},{id:"39624",doi:"10.5772/50320",title:"Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal Health",slug:"dairy-propionibacteria-less-conventional-probiotics-to-improve-the-human-and-animal-health",totalDownloads:5748,totalCrossrefCites:11,totalDimensionsCites:24,abstract:null,book:{id:"2991",slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Gabriela Zárate",authors:[{id:"150953",title:"Dr.",name:"Gabriela",middleName:null,surname:"Zárate",slug:"gabriela-zarate",fullName:"Gabriela Zárate"}]}],mostDownloadedChaptersLast30Days:[{id:"56612",title:"Reproduction in Goats",slug:"reproduction-in-goats",totalDownloads:2865,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Reproductive activity of the goat begins when the females reach puberty, which happens at 5 months of age. The ovarian or estrous cycle is the period between two consecutive estrus. It is also the time that lasts the development of the follicle in the ovary, until rupture occurs and ovulation takes place, which coincides with the appearance of estrus. This chapter will describe the physiological and endocrinological bases of estrus in the goat. Likewise, factors affecting the presence of estrus and ovulation will be described. At another point, synchronization of estrus and ovulation, factors affecting the presence of estrus and external symptoms of estrus, will be described. To achieve synchronization of estrus or induction of ovulation within or outside the breeding season, it may be necessary to manage light hours, male effect, and/or use of hormones. The importance of artificial insemination is described, as well as the current situation of this technique worldwide. Currently, the techniques of artificial insemination in goats have been limited worldwide, due to the lack of resources of producers and trained technicians. The techniques of artificial insemination with estrous synchronization programs and ovulation with current research results will be described.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"Fernando Sánchez Dávila, Alejandro Sergio del Bosque González\nand Hugo Bernal Barragán",authors:[{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila"},{id:"206127",title:"Dr.",name:"Alejandro Sergio",middleName:null,surname:"Del Bosque-Gonzalez",slug:"alejandro-sergio-del-bosque-gonzalez",fullName:"Alejandro Sergio Del Bosque-Gonzalez"},{id:"206128",title:"Dr.",name:"Hugo",middleName:null,surname:"Bernal-Barragán",slug:"hugo-bernal-barragan",fullName:"Hugo Bernal-Barragán"}]},{id:"58095",title:"The Innovative Techniques in Animal Husbandry",slug:"the-innovative-techniques-in-animal-husbandry",totalDownloads:3726,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"Technology is developing rapidly. In this development, the transfer of computer systems and software to the application has made an important contribution. Technologic instruments made farmers can work more comfortable and increased animal production efficiency and profitability. Therefore, technologic developments are the main research area for animal productivity and sustainability. Many technologic equipment and tools made animal husbandry easier and comfortable. Especially management decisions and applications are effected highly ratio with this rapid development. In animal husbandry management decisions that need to be done daily are configured according to the correctness of the decisions to be made. At this point, smart systems give many opportunities to farmers. Milking, feeding, environmental control, reproductive performance constitute everyday jobs most affected by correct management decisions. Human errors in this works and decisions made big effect on last product quality and profitability are not able to be risked. This chapter deal with valuable information on the latest challenges and key innovations affecting the animal husbandry. Also, innovative approaches and applications for animal husbandry are tried to be summarized with detail latest research results.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Serap Göncü and Cahit Güngör",authors:[{id:"215579",title:"Prof.",name:"Serap",middleName:null,surname:"Goncu",slug:"serap-goncu",fullName:"Serap Goncu"},{id:"218971",title:"Dr.",name:"Cahit",middleName:null,surname:"Güngör",slug:"cahit-gungor",fullName:"Cahit Güngör"}]},{id:"58486",title:"Quality of Chicken Meat",slug:"quality-of-chicken-meat",totalDownloads:3248,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Chicken meat is considered as an easily available source of high-quality protein and other nutrients that are necessary for proper body functioning. In order to meet the consumers’ growing demands for high-quality protein, the poultry industry focused on selection of fast-growing broilers, which reach a body mass of about 2.5 kg within 6-week-intensive fattening. Relatively low sales prices of chicken meat, in comparison to other types of meat, speak in favor of the increased chicken meat consumption. In addition, chicken meat is known by its nutritional quality, as it contains significant amount of high-quality and easily digestible protein and a low portion of saturated fat. Therefore, chicken meat is recommended for consumption by all age groups. The technological parameters of chicken meat quality are related to various factors (keeping conditions, feeding treatment, feed composition, transport, stress before slaughter, etc.). Composition of chicken meat can be influenced through modification of chicken feed composition (addition of different types of oils, vitamins, microelements and amino acids), to produce meat enriched with functional ingredients (n-3 PUFA, carnosine, selenium and vitamin E). By this way, chicken meat becomes a foodstuff with added value, which, in addition to high-quality nutritional composition, also contains ingredients that are beneficial to human health.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Gordana Kralik, Zlata Kralik, Manuela Grčević and Danica Hanžek",authors:[{id:"207236",title:"Dr.",name:"Gordana",middleName:null,surname:"Kralik",slug:"gordana-kralik",fullName:"Gordana Kralik"},{id:"227281",title:"Prof.",name:"Zlata",middleName:null,surname:"Kralik",slug:"zlata-kralik",fullName:"Zlata Kralik"},{id:"227283",title:"Dr.",name:"Manuela",middleName:null,surname:"Grčević",slug:"manuela-grcevic",fullName:"Manuela Grčević"},{id:"227284",title:"BSc.",name:"Danica",middleName:null,surname:"Hanžek",slug:"danica-hanzek",fullName:"Danica Hanžek"}]},{id:"56453",title:"Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer",slug:"goat-system-productions-advantages-and-disadvantages-to-the-animal-environment-and-farmer",totalDownloads:4304,totalCrossrefCites:4,totalDimensionsCites:20,abstract:"Goats have always been considered very useful animals. Goats success is related to its excellent adaptability to the difficult mountain conditions, extreme weather and low value feed acceptance, versatile habits and high production considering their size. These are some reasons because goats are among the first animals to be domesticated. In terms of evolution, goats could be separated by their dispersion area in three large groups: the European, the Asian, and the African. Global goat populations, mainly in Africa and in Asia, have increased for centuries but very strongly in the past decades, well above the world population growth. They are also used for forest grazing, an integrated and alternative production system, very useful to control weed growth reducing fire risk. Despite some exceptions, no large‐scale effort to professionalize this industry has been made so far. There are consumers for goat dairy products and there is enough global production, but misses a professional network between both. Regarding goat meat, the world leadership also stays in Africa and Asia, namely in China, and there is a new phenomenon, the spreading of goat meat tradition through Europe due to migrants from Africa and other places with strong goat meat consumption.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"António Monteiro, José Manuel Costa and Maria João Lima",authors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"203680",title:"Prof.",name:"Maria João",middleName:null,surname:"Lima",slug:"maria-joao-lima",fullName:"Maria João Lima"},{id:"203683",title:"MSc.",name:"José Manuel",middleName:null,surname:"Costa",slug:"jose-manuel-costa",fullName:"José Manuel Costa"}]},{id:"70760",title:"Induction and Synchronization of Estrus",slug:"induction-and-synchronization-of-estrus",totalDownloads:1683,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Estrus cycle is a rhythmic change that occur in the reproductive system of females starting from one estrus phase to another. The normal duration of estrus cycle is 21 days in cow, sow, and mare, 17 days in ewe, and 20 days in doe. The species which exhibit a single estrus cycle are known as monstrous and species which come into estrus twice or more are termed polyestrous animals. Among them some species have estrus cycles in a particular season and defined as seasonal polyestrous. It includes goats, sheep, and horses. On the other hand, cattle undergo estrus throughout the year. The estrus inducers can grossly be divided into two parts, that is, non-hormonal and hormonal. Non-hormonal treatments include plant-derived heat inducers, mineral supplementation, uterine and ovarian massage, and use of Lugol’s iodine. The hormones that are used in estrus induction are estrogen, progesterone, GnRH, prostaglandin, insulin, and anti-prolactin-based treatment. Synchronization can shorten the breeding period to less than 5 days, instead of females being bred over a 21-day period, depending on the treatment regimen. The combination of GnRH with the prostaglandin F2α (PGF2α)- and progesterone-based synchronization program has shown a novel direction in the estrus synchronization of cattle with the follicular development manipulation.",book:{id:"8545",slug:"animal-reproduction-in-veterinary-medicine",title:"Animal Reproduction in Veterinary Medicine",fullTitle:"Animal Reproduction in Veterinary Medicine"},signatures:"Prasanna Pal and Mohammad Rayees Dar",authors:[{id:"299126",title:"Dr.",name:"Mohammad Rayees",middleName:null,surname:"Dar",slug:"mohammad-rayees-dar",fullName:"Mohammad Rayees Dar"},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal"}]}],onlineFirstChaptersFilter:{topicId:"297",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:33,paginationItems:[{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423291",title:"Assistant Prof.",name:"Giovanni",middleName:null,surname:"Cagnetta",slug:"giovanni-cagnetta",fullName:"Giovanni Cagnetta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/80113",hash:"",query:{},params:{id:"80113"},fullPath:"/chapters/80113",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()