Composition and formula of chemical and organic nutrient solutions used in the trial.
\r\n\tContaminated water is not suitable for drinking, or use in recreation, agriculture, and industrial activities. These waters cause poisoning of drinking water, deterioration of river and lake ecosystems, decrease in biological diversity as a result of the death of aquatic life, and various environmental problems.
\r\n\r\n\tWater resources are limited however, the need for water is gradually increasing. Considering that water quality deteriorates increasingly, the importance of preserving existing water resources in terms of quantity and quality is increasing day by day. So, it is important to determine the sources of contamination correctly and to take the necessary precautions.
",isbn:"978-1-83969-010-5",printIsbn:"978-1-83969-009-9",pdfIsbn:"978-1-83969-062-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"74540b33c77cb2a431ca0a4965d0031b",bookSignature:"Prof. Sadik Dincer, Dr. Hatice Aysun Merci̇mek Takci and Associate Prof. Melis Sümengen Özdenefe",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11531.jpg",keywords:"Water Quality Criteria, Hydrocarbons, Pesticides, Nanomaterials, Toxins, Bacteria, Fungi, Viruses, Parasites, Surface Water, Drinking Water, Recreational Water",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 15th 2022",dateEndSecondStepPublish:"May 13th 2022",dateEndThirdStepPublish:"July 12th 2022",dateEndFourthStepPublish:"September 30th 2022",dateEndFifthStepPublish:"November 29th 2022",remainingDaysToSecondStep:"5 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher and Director of the Institute of Natural and Applied Science. Prof. Dincer received the Technology Development Award from the Scientific and Technological Research Council of Turkey (TÜBİTAK) in 2013 and a national study patent in 2019.",coeditorOneBiosketch:"Researcher in the field of Microbiology, Biotechnology, Enzymology, Microbial Genetics, and Bacteriology. Dr. Mercimek Takci has 47 manuscripts published in national and international journals and is a winner of the TÜBİTAK Incentive Award.",coeditorTwoBiosketch:"Associate Professor at Near East University in Northern Cyprus whose teaching interests include industrial microbiology, bacteriology, biotechnology, enzymology, and environmental microbiology.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer",profilePictureURL:"https://mts.intechopen.com/storage/users/188141/images/system/188141.jpeg",biography:"For the past 35 years, Prof. Sadık Dincer has been involved in teaching, research, and academic work in numerous distinguished universities in Turkey. Currently, he is working at Cukurova University, Biology and Biotechnology Departments, Adana, Turkey. His manuscripts and book chapters have been published in national and international journals and his works has been cited 1018 times. To date he has trained twenty-five MSc and eleven PhD students. He received the Technology Development Award from the Scientific and Technological Research Council of Turkey (TÜBİTAK) in 2013 and a national study patent in 2019. His research is focused on bacteriology, microbial ecology, industrial biotechnology, and microbial genetics.",institutionString:"Cukurova University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"423016",title:"Dr.",name:"Hatice Aysun",middleName:null,surname:"Merci̇mek Takci",slug:"hatice-aysun-mercimek-takci",fullName:"Hatice Aysun Merci̇mek Takci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003AAXMDQA5/Profile_Picture_1623738083139",biography:"Associate Prof. Dr. Hatice Aysun Mercimek Takcı received her M.Sc. and PhD. Degrees in Biotechnology and Biology from Cukurova University, Turkey in 2007 and 2011, respectively. Since 2009, she has worked at Kilis 7 Aralik University, Kilis, Turkey. Her teaching interests contain Microbiology, Biotechnology, Enzymology, Microbial Genetics and Bacteriology. She has 47 manuscripts published in national and international journals and her works has been cited 245 times. Her research interests focus on multiple antibiotic and heavy metal resistance in bacteria, production and characterization of bacterial enzymes, bioremediation by bacteria, microbial quality (fecal contamination, bacterial diversity and microbial load) of aquatic environments. Related to these research areas, she has 17 projects supported the Scientific and Technological Research Council of Turkey (TUBITAK) and coordinatorship of scientific research projects.",institutionString:"Kilis 7 Aralık University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Kilis 7 Aralık University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:{id:"292288",title:"Associate Prof.",name:"Melis",middleName:null,surname:"Sümengen Özdenefe",slug:"melis-sumengen-ozdenefe",fullName:"Melis Sümengen Özdenefe",profilePictureURL:"https://mts.intechopen.com/storage/users/292288/images/14472_n.jpg",biography:"Associate Prof. Dr. Melis Sumengen Ozdenefe received her BSc, MSc, and PhD Degrees in Biology from Cukurova University, Turkey in 2009, 2011, and 2014, respectively. During her MSc, she was at Anhalt University, Germany for six months as an international exchange student and a researcher from 2010 to 2011. She has been working in the Department of Biomedical Engineering at Near East University in Northern Cyprus since 2014. Her teaching interests include Industrial Microbiology, Bacteriology, Biotechnology, Enzymology, and Environmental Microbiology. Her research areas involve enzymes and biosurfactant which are produced from various bacteria and fungi for industrial applications, the production and characterization of bacterial enzymes and bacteriocins, the antimicrobial and antioxidant activity of various plant structures, and multiple antibiotic resistance and heavy metal resistance of Gram-negative bacteria isolated from the aquatic environment. Her works have been published in national-international journals, conferences, congresses, and symposiums and cited 142 times.",institutionString:null,position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Near East University",institutionURL:null,country:{name:"Cyprus"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418965",firstName:"Nera",lastName:"Butigan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/418965/images/16899_n.jpg",email:"nera@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors.\nFrom chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing or reviewing.\nI assist authors in preparing their full chapter submissions and track important deadlines to ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"79811",title:"FRP for Marine Application",doi:"10.5772/intechopen.101332",slug:"frp-for-marine-application",body:'Use of Fiber Reinforced Plastics (FRPs) is rapidly expanding in all fields such as medical equipment, engineering plants, packaging, transportation, aviation, space technology, building construction, heavy vehicles, and defense forces. Application of FRPs in marine construction industry is also not new and ever increasing with rapid advancements in exotic fibers, nanoparticles, and special polymers. For engineering application, principal requirements are inherent strength and a defined temperature limit up to which the strength is sustained to the desired level. The secondary requirements are high toughness, resistance to cyclic fatigue, low creep, low relaxation, environmental stability, and ease of joining and maintainability. The third most important factor is investment cost and processing cost. So far as mechanical strength is concerned, the Elastic Modulus in all modes and ultimate strengths are important. However, too stiff composites lack toughness, which often cause premature brittle failure. It has to be a tread-off between ultimate property and elastic modulus for restricting strain on the one hand and sustain low/high cycle fatigue on the other hand. The toughness imparted by flexible long-chain resin matrix results in high creep and relaxation, which are undesirable for engineering structures but improve the fatigue life. Inclusion of rubbery moieties in a stiff matrix may result in phase separation and stress concentration at the interface and may cause premature failure. Toughening by nanoparticles, such as functionalized carbon nanotubes and reduced graphene oxide and derivatives, are being actively researched at present with apparently encouraging results. Detailed study of creep and stress relaxation of CNT-polymer or graphene-polymer composites is not done yet in a comprehensive manner, but with a general understanding, it is expected to be even better than the pristine polymer.
Thermal properties are more extensive, since the thermal agitation of polymers undergoes very drastic rise beyond a characteristic temperature called glass transition, where the stiff polymer transforms into a rubbery soft material. For polymers with partial crystallinity, flow takes place at further enhancement of temperature, and finally, a polymer starts to decompose at even higher temperature. A design of structural element then has to depend on the limit of temperature at which the modulus starts decreasing. Ideally it should be glass transition temperature. However, in practice, dynamic mechanical analysis shows that the modulus decreases even about 10–15°C below the glass transition. The extreme hazards of heat for an organic polymer (and FRP) are the fire propagation and evolution of toxic gases. The fire-retardant additives both as physical addition and chemical modification of resins are widely used and are also currently being researched in the light of possible benefits of nanoparticle reinforcements.
Marine application both for static off-shore structures and sea-going vessels needs robust and durable FRP composites, which can compete well with metals in terms of specific strength, durability, and cost-effectiveness. The replacement of a metal requires some special properties in FRPs apart from strength and degradation. One of the most difficult solutions is joining the Thermoset FRP elements since the joint should be almost similar in mechanical strength and toughness. Identical thermoset as the FRP element is best preferred, with a short fiber dough molding system that must be cured at ambient, yet provide acceptable joint strength. There can be special drilling technique for joining through riveting using the dough as rivets. Thermoplastics can be “welded” by melt joining as metals, most suitable for particulate reinforced composites and short fiber composites. The second and very important property of an FRP to qualify marine standard is effect of sea water aging considering all the chemical and biological adversaries of the sea. This single factor mostly decides the design and service life of a marine-grade FRP structure.
Although marine corrosion of FRP is not so severe as for steel, the FRP structures and underwater hulls need to be protected from bio-fouling. With the advancement of anti-fouling coatings, it is possible to protect a hull for minimum 3 years without any maintenance painting. Modern low surface energy foul release coatings based on silicones and fluoro-silicones are environment-friendly as they do not release toxins in the sea. These are non-depleting coatings and hence can have higher service life. However, These types of coatings are more effective for high-speed boats.
The different elements of a ship can be defined as primary, such as superstructure, hull, SONAR Dome, bulkhead, decks, propeller shafts, masts, doors, hatches, machinery foundations, support frames, etc. Secondary items are rudder, pipes, valves, ladder, stanchions, guard rails, etc.
In naval vessels, three important advantages of using FRP composite are (1) ability to damp vibration, thereby reducing the radiated noise in the sea. In addition, FRPs are acoustically transparent, hence reduce the acoustic reflection (2) FRPs without carbon or conducting material inclusions are radar transparent. These two features enhance the stealthy character of a battle ship and submarine and importantly (3) most common reason is no corrosion of FRP in sea water and saline atmosphere.
The most used application areas for FRP in ships are superstructure and bulkhead, where thick FRP panels are used with flap joint overlapping at the corner to flush the sides. Riveting with composite rivets can be done along with interface adhesion using a hand layup of fabric with resin so that the joint is sufficiently strong.
Vibration and fatigue are other important aspects. Machinery and propeller movement cause vibration of the hull and hull-mounted SONAR dome, which adversely affect SONAR performance and also results in fatigue. Normally, the fundamental frequency of machinery and propeller is up to 34 Hz, and prominent modes are up to about 200 Hz. Also, slow cycle fatigue results from sea waves, which is approximately 0.8 Hz. It is well known that slow cycle fatigue is quite important to decide the service life for steel hulls and is expected to have similar effect on FRP hull. Till now, there is no such detailed study on fatigue at various frequency envelops for marine FRPs, which are actually exposed in sea water with vibrations.
Hull construction using FRP is very common for speed boats, small to medium size (8–80 m) patrolling boats, research ships for acoustic and underwater mapping studies, coastal ships, corvettes, etc. [1, 2, 3, 4]. A very comprehensive list of literature is given by Galanis [3] in his M.S. thesis. One very interesting naval ship is mine countermeasure vessel (MCMV) which is about 60 m long [1]. MCMV uses passive magnetic sensors to detect underwater mines, which use a magnetic sensor to trigger the mine. Therefore, the ship as such should not have any magnetic signature. Conventional hull material of MCMV is nonmagnetic steel. However, FRP is preferred because of lightweight and corrosion-free nature in addition to nonmagnetic character. Miller [4] reported one such MCMV of Royal Navy (U.K.) made of GFRP way back in 1973 and a bigger one (60 m long) in 1980s. FRP is being used since World War II by the United States in noncritical areas and small boats [2]. Till now, large commercial or Naval ships such as Frigates, etc., are not made with FRP. The FRP hull of ships of 60–80-m size is a sandwich construction with thick FRP skin and a foam core. Thickness of the FRP skin on both sides of the foam core can be 8–10 mm each, and the foam core can be 50–80 mm thick. Previously PVC foam core was very common. However, with the large variety of polyurethane foam available today, even fire-retardant type including polyisocyanurate-modified polyurethane [5], the scope and ease of foam filling in between two hull panels have facilitated production system, and also large seamless foam core is easily made by foam spray machine.
Generally, unsaturated polyester made with isophthalic acid and neopentyl glycol and epoxy-based vinyl ester resins is widely used for marine boats and ship hull. Both of these resins are cross-linked by styrene monomer to form a thermosetting polymer.
FRP hull of boats of maximum 8 meters contains six types of fiber and fabric layers arranged in a sequence and requires minimum 25 layers of reinforcing mats and fabrics. The different fiber-based layers are random chopped strand mat, 300–450 GSM, woven roving mat 400–600 GSM, fabric of different thicknesses (approximately 0.25 mm), core mat of 1 mm and 3 mm thickness, and a 1 mm skin layer of the resin with particulate fillers (titanium dioxide, aerosil, barytes, etc.). Aerosil (fumed silica) is used with the resin to make it more impermeable to water. However, aerosil makes the resin somewhat thixotropic. Due to large size, and to make seamless hull, wooden mold is first made, and hand lay-up technique is used for fabrication. In an elaborate arrangement, vacuum bagging or vacuum-assisted resin infusion can be used for at least small boats. Vacuum-assisted molding can make composite with about 70% fiber and 30% resin, which is obviously advantageous for strength.
A special application of naval ships, submarines and fishing vessels is SONAR dome, which houses the arrays of acoustic transmitting and receiving transducers for detection of underwater objects. Conventionally titanium is used to make sonar domes due to its fair acoustic transparency, high strength-to-weight ratio, and good resistance to sea water corrosion and bio-fouling. However, acoustic impedance of titanium is not as close to that of sea water compared with glass-fiber based FRPs. Therefore, titanium domes are less efficient in underwater acoustic transmission and have underwater acoustic reflectivity more than FRP. For naval vessels such as submarines and battleships, FRP SONAR domes are being used in some countries, for example, the United Kingdom France, Sweden, Australia, Holland [1, 2, 3]. Such SONAR domes are very critical with respect to high drag force, compressive stresses at high depth in sea for submarines, and requirement of high acoustic transmission characteristics. The thickness of the dome is decided by the strength and modulus of the FRP, but higher thickness results in loss in acoustic transmission power. Therefore, the design and fabrication of an FRP dome are very critical and are done using Finite Element Method (FEM) so that the dimensional features, strain levels at different sections, and maximum stress can be somewhat accurately determined for both static and dynamic conditions. A prediction of acoustic transmission can also be done using general acoustic attenuation theories. Fabrication method can be very important, so that the dome would have nearly same theoretical strength and dimensional accuracy with acceptable tolerances. Among many possibilities, resin film infusion technique or vacuum-assisted resin infusion can be adopted to make the domes with precise dimensions, strength, and flawless integrity. The thickness of such domes can vary from 20 mm to 80 mm depending on the size. The vacuum process has two advantages, (1) the high fiber content resulting in high strength and (2) nearly zero air gap/flaw in the composite. The air gap is undesirable in sonar dome since any such air bubble would increase acoustic reflection, thus reducing the acoustic transmission across the dome thickness. The aspect of sea water diffusion and corresponding loss of strength, lowering of glass transition, and deterioration of acoustic transparency are main consideration of its long usability and depend on both material and fabrication process. Commonly used fabric is E-glass and S-glass while the resin can be a hybrid of vinyl ester and epoxy resin. For the purpose of enhancement of strength, carbon fibers are preferred over glass fiber, since a carbon fabric-epoxy FRP would have Young’s modulus of nearly 70 GPa compared with GFRP of about 30 GPa.
Recently aligned carbon nanotube containing GFRP domes are being considered for mid-frequency acoustic application to reduce the thickness of the dome and to impart better structural vibration damping.
Of the superstructural components, carbon fiber-epoxy combination is best, provided there is no necessity of radar stealth features. However, carbon fiber-epoxy composites are used in cabinets and covers of power electronics in ships and submarines for EMI shielding purpose.
Composite pipe can be made using a combination of prepreg lay-up on a mandrel followed by filament winding technique. This fabrication method can give sufficient Hoop Stress. A best possible fiber alignment in subsequent layers on the mandrel is determined by a stress-strain analysis by FEM method. Resin pick-up by the fiber strands in automatic winding method is minimized by two doctor’s blades fixed on the fiber running line as one of the guide systems for the strands before winding onto the mandrel. Autoclave curing at high pressure and temperature can be adopted for such pipes.
Composite valves are made by dough molding compounds because of intricate dimensional requirement to make them leak-proof. Pipes and valves are special among all items because the fluid pressure (Pascal’s pressure) in most commercial ships is designed for 12 bar, and for Naval standard, it should be 20 bar with continuous use and should withstand maximum 30 bar pressure for 24 h. This stringent requirement makes the fabrication method very critical, for example, the surface of the pipe must not “sweat” at high hydrostatic pressure and circularity and movement of the ball in a Ball valve must be very precise to avoid leakage of liquid, besides resistance to the “sweating.” The processing and fabrication with dough molding compounds are best done by application of high pressure of 1–3 MPa to eliminate excess resin and to ensure compactness with precise dimensional tolerance and without layer gaps or air entrapment. Vacuum application is not beneficial since the dough, containing 20% short fiber, would have very poor flow property. Instead, kneader mixing can produce dough without air entrapped in the green dough. The molds are made with die steel for high-pressure molding.
The elements that are used on board such as ladder, stanchion, and guard rails are critical due to shape and require high-impact energy to resist crack or breakage on impact. Hence, a method of flexibilizing or nanoparticle reinforcement must be attempted to improve impact energy of common reins. As an example, a common epoxy thermoset Glass FRP has an impact energy of 750–850 J/m (Charpy impact), while a modified epoxy-Glass FRP would have 1300–1500 J/m, which may qualify the impact requirement. The strength must not be compromised too much. A maximum 10% reduction for the FRP could be accepted by a designer to prefer a flexibilized resin matrix. For such small and shaped components, hand lay-up of fabric and resin or prepreg lay-up in metallic mold can be adopted. High compression would be beneficial to eliminate any flaw, air gap, and better compactness. In these on-board components, carbon fabric prepregs cannot be used in naval vessels since carbon-based composites increase radar signature.
Off-shore marine structures such as oil rigs and columns of bridges, underwater pipe line supports, etc., are conventionally made using reinforced cement concrete having steel rods as reinforcements inside the concrete. In some other cases, steel pipes, pillars, and column supports are used.
The underwater static steel structures are protected from corrosion and fouling by electrochemical protection system and paints. A new method of protecting the steel structure is to provide a wrap of composite as an outer lining, which is far more durable than painting and more maintenance-free. Steel pipes are used as a mandrel for a filament winding technique to provide a composite lining. Steel structures require underwater welding, etc., for repair and maintenance, which is very complicated and costly. The FRP lining provides a very convenient solution to reduce such maintenance cost and frequency of repair.
The concrete with diffused sea water generates more alkali, and the pH of this alkaline seawater increases from normal range of 8–8.3 to about 12–13 and accelerates the corrosion of the steel reinforcement in the RCC structure. Therefore, FRP reinforcements are modern way of construction for higher durability and lesser maintenance. However, in a higher alkaline sea water environment, the FRP degradation is expected to be faster than in normal sea water.
For off-shore and maritime civil engineering structures, carbon fiber composites (CFRP) are preferred over glass fiber (GFRP) because of higher mechanical strength of CFRP. In addition, sea water uptake and degradation of GFRP in sea water are higher those in than CFRP. There are very few applications of GFRP in marine structures despite the fact that GFRP is cheaper compared with CFRP.
The durability is also dependent on the resin type and its interface bonding with the fiber. Generally, thermosetting polymers such as epoxy, polyurethane, phenolic resin, vinyl ester, and unsaturated polyester resins are used for composites. These resins and corresponding composites are to be evaluated for long period of sea water exposure in an RCC construction for durability. As accelerated studies might give some extrapolated figures of service life, but such studies cannot determine the effect of microorganisms on degradation of a composite. A very common example is sulfate-reducing bacteria (SRB) in the sea water. These organisms use sulfates dissolved in the sea (for example, MgSO4) for metabolism and produce hydrogen sulfide, which is highly corrosive to metals and may also increase the degradation of composites after settling onto the surface. The effect of such organisms is much more important for static structures rather than moving objects. Fouling by other micro and macro-organisms and subsequently the effect on the composite is another aspect of static structures. The protection from bio-fouling by application of anti-fouling coating is another subject of study. However, this type of coatings work either on toxin release mechanism or by providing a low surface energy coating. In case of toxin release coating, the toxin release depends on the hydrolysis and dissolution of the toxin in water, which is more effective in moving condition than stagnant water. Because of toxin depletion, the coating requires renewal after a certain time, mostly 3 years. In case of low surface energy coating, the effectiveness is far less for static structures, as this type of coating is quite good for moving objects, that too at certain minimum speed. However, the advantage is that the settlement of bio-fouling species on these low surface energy coating is very weak and can be removed by a soft cleaning mop. The second most important aspect of static structures is stress. Most supports and beams are under stress, small or large. The pre-stressed composite structure may have lesser service life compared with no-stress elements. The third consideration is fatigue. A bridge column, pipeline carrying liquids under the sea are subjected to vibrations. Hence, the composite elements are to be evaluated by fatigue for a predetermined frequency and number of cycles. This should be done in a repeated experiment and at a regular immersion period. The effect of pre-stress and vibration parameters may reveal some results, which could be different from normal static experiments.
A general understanding of large-scale application of FRP is that there can be three main alternatives for a techno-commercially viable thermoset selection, e.g., (1) unsaturated polyester resin (USP) cross-linked with styrene, (2) vinyl ester resin (VE) cross-linked with styrene, and (3) epoxy resin cross-linked with amine. Whereas, there can be two common fibers such as glass and carbon.
Service life of a structural element for marine vessels has to be minimum 25 years for reducing the investment for replacement and should be maintenance-free for at least 8 years to reduce the cost of refits in drydocks. For off-shore structures, where FRPs are used to make barrier for underwater cement concrete structures, the maintainability is even more difficult, requiring high service life without maintenance activity. Apart from the general physical and mechanical properties, an FRP for marine application must have additional characteristics of low moisture/sea water ingress, minimum hydrolysis, good bond strength between fiber and polymer, minimum physical damage of fiber and polymer due to water ingress and retention of mechanical properties even after prolonged sea water immersion. However, all the properties are primarily dependent on the matrix polymer and fiber and their interaction, secondary parameter being processing technique and fabrication methods to make flawless FRP components with fairly accurate dimensions, such as for a marine ball valve or pipe joint. Processing assumes larger importance since partially cured samples are prone to poorer physico-mechanical properties and higher degradation in water.
A significant improvement in properties of marine composites can be achieved by prepreg method and resin transfer molding (RTM) assisted by vacuum. Good compaction and high fiber volume fraction can be achieved by these processes. The process of prepreg molding is feasible where the resin-hardener reaction does not take place at ambient or storage temperature, and the curing is done at a fixed higher temperature. There are high-temperature reacting systems such as epoxy resin 4,4′methylene dianiline tetraglycidyl ether (TGDDM), to be cured with hardener such as 4,4′-diaminodiphenyl sulfone (DDS), modified polyamines, etc., which are used for making prepregs. The shelf life of such prepregs at storage temperature of −20°C is about 10–12 months, but few weeks at 20°C. The prepregs are cured in compression at above 100°C. However, prepreg system may not be possible for vinyl ester or polyester resins. RTM process requires low viscosity resin and hardener to facilitate good flow in the fabric stacked in the mold for proper wetting at all corners and contours. Trujillo et al. [6] reported the properties of RTM processed composites based on three common resins, i.e., epoxy, vinyl ester, and unsaturated polyester with glass and carbon fabrics. The flexural modulus of the glass composites was about 40GPa and about 110–120 GPa for carbon fabric composites, while the flexural strengths were seen to be in the range of 600–800 for glass composites and 1300–1400 MPa for carbon fabric composites.
Sea water absorption causes changes in the matrix by both plasticization and hydrolysis. Initial effect of water ingress is a plasticizing effect and swelling of the polymer matrix. The results are lowering of glass transition temperature due to plasticization and a possibility of debonding of the polymer-fiber interface due to swelling of the polymer. The initial effect of water ingress also causes hydrolysis of the fiber sizing and generates alkali (Na+ and K+) and the Fiber-polymer interface weakens. All these events result in reduction of ultimate strength and elastic modulus of an FRP.
On prolonged exposure, several chemical reactions may take place, such as hydrolysis of the polymer resulting in small molecules such as glycol, chain breaking, and release of low-molecular-weight polymer (especially polyester), release of the constituents of the resin (typically maleic/fumaric acid), release of styrene (cross-linker for polyester and vinyl ester), and extraction of these species from the FRP to the sea water. Prolonged water immersion of FRP may also cause mechanical damage to the fiber and polymer both, which may not be observed in short period, even in few months of exposure. SEM analysis of all FRPs irrespective of the fiber showed detachment of matrix from the fiber, which is the main reason for such drastic decrease in strength of the composite laminates as reported in literature.
The polymer plays the most important role in the hydrolytic durability of an FRP. As a special case of glass fiber reinforcement, the coated material used as coupling agent chemically degrades and causes weak interface of fiber-polymer. Therefore, a polymer-fiber combination is ultimately the consideration for optimization of hydrolytic properties.
The main reason why GFRP is not used in maritime civil construction applications is because sea water environment degrades the long-term mechanical properties of GFRP composites and interlaminar shear strength (ILSS). The glass fiber-polymer interface is strengthened by a coupling agent coated on the glass fibers and the process is called “Sizing.” The sizing formulations are very complicated, may contain many different chemicals, and are proprietary to the manufacturers [7]. Most common are γ-amino propyl tri ethoxy silane (APTES), γ-glycidoxy propyl trimethoxy silane (GPTMS), γ-methacryloxy propyl trimethoxy silane (MPTMS), and vinyl tri ethoxy silane (VTES) having Si-OH groups on the fiber surface for improving the interface adhesion with the resin. The sea water diffused to the interface of fiber and polymer very quickly degrades the glass to produce alkaline oxides unless protected by sizing. Even then, prolonged immersion of the GRP with fiber with appropriate sizing may cause leaching of alkali oxides (sodium and potassium) from the surface of the fiber and degrade the composite mechanical property [8].
Epoxy resin is a versatile thermoset, widely used in many marine structures for many years. It has good mechanical properties, is highly polar and compatible to most fibers including metals, glass, carbon, Kevlar, and polybenzimidazole. Epoxy nanocomposites are gaining importance due to lightweight and high performance in some functional properties when used with carbon nanotubes, nanofibers, graphene, and also natural nanofibers. The conventional epoxy resin thermosets are somewhat brittle and, in many occasions, modifications are done either by physical mixing or chemical reaction onto the epoxy oligomer or use of high-molecular-weight epoxy and/or the amine curing agent to make optimum tough thermoset. However, flexibilization means increase in free volume in the polymer and subsequent increase in moisture absorption. As such the degradation of conventional epoxy thermoset and composites is very widely studied by many researchers since last 45 years, for example, by Augl and Berger [9] in 1976 on carbon fiber-epoxy composites, McKague et al. [10], DeIasi and Whiteside [11], and Whitney and Browning [12] studied moisture diffusion in epoxy matrix and composite, during 1976–1978, to name a few. Similarly, Loos and Springer [13], Bohlmann and Derby [14], Shirrell [15] studied moisture diffusion and its effect on graphite epoxy composites way back during 1976−1979. Glass fiber-epoxy composites are most widely evaluated for effect of moisture or water or sea water absorption from those periods and are still being the subject of study. A few are listed here as references [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
The glass transition temperature of cured epoxy matrix and composites is reduced from 120°C to as low as 66°C on a 2-month sea water exposure, but was observed to be almost constant around 85–88°C from 4 months onward till the end of the study period (12 months), as reported by Chakraverty et al. [31]. The authors explained this anomaly by probable osmotic effect of the bulky molecules of dissolved salts in sea water, which might have initially facilitated the creation of more free volume in the cross-linked epoxy matrix, but on prolonged exposure, deposition of these salts could have reduced the water ingress. Murthy et al. [32] have shown that the water uptake by epoxy-glass composite is more (about 0.9%) compared with 0.7% by epoxy-carbon composites after 12 months and remained unchanged. However, their study was limited to 16 months. The ILSS was reduced by 38% for epoxy-carbon and by 31% for 450 days at ambient temperature. SEM analysis revealed that the moisture penetration along the fiber/matrix interfaces caused interfacial debonding and consequently degradation of the interface. Espinel et al. [28] also showed that for an epoxy-glass composite, the saturation level of sea water was 0.4% at 25°C attained after 30 days. The tensile and flexural strength reduced by about 24% and 35% respectively after 90 days sea water immersion at 25°C, but observed that the strength did not decrease much after saturation of sew water. Contrary to these results, Murad et al. [25] showed that the sea water intake in epoxy-glass unidirectional composite was 2.5% after 12 months, but the strength and elastic modulus had no noticeable change compared with fresh sample. However, the fiber volume % was only 52. Wood and Bradley [20] also reported about 2.2% sea water uptake for 5 months at ambient temperature for an epoxy-glass-graphite hybrid composite, each layer fabricated by a similar process as filament winding, and hence the layers were unidirectional. The glass and carbon were in transverse direction to each other. However, the resin used had a 5% flexibilizer (rubber) and fiber volume % was 60. Komorek et al. [29] used fabrics of glass and carbon in epoxy resin. The bending strength was found to be 8% less for the samples immersed for 36 days at 15°C in sea water.
A unique study on fatigue and sea water aging of epoxy-glass and epoxy-Kevlar composite was done by Menali et al. [33]. The authors studied the effect of sea water (artificial) immersion (40 days) after fatigue for 100–50,000 cycles for these composites. There was about 19% reduction in tensile strength for the Glass-epoxy composite samples and about 15% for Kevlar-epoxy samples which had undergone 50,000 cycles of straining and aged in sea water for 40 days. The stiffness of the composite laminates was also degraded by almost similar extent. This result, when compared with that of Komorek [29], clearly shows the additional degradation under cyclic loading.
There is another interesting review report by Li et al. [34] on effect of alkaline sea water (pH at 12–13) for pre-stressed FRP laminate and FRP tendons. The alkaline sea water simulates the property of the sea water sea sand concrete (SWSSC), which is now very much used in civil construction of marine static structures such as off-shore platforms. The authors compiled several results by some researchers. It is seen from the review article that the alkaline SWSSC at pH of 12–13 has a higher degrading effect under such condition.
A comprehensive study was done on the effect of sea water immersion at various temperatures for an epoxy thermoset plaque and its E-glass fabric composite having 55% fiber by volume. The report is not for publication. The composite samples were made by vacuum bagging process followed by compression molding at 120°C. The curing of plaque and composite was done after thorough degassing of the resin-hardener mix. It was observed that after 360 days of immersion, the flexural strength reduced from about 90 MPa to about 65 MPa, and the dynamic flexural modulus was reduced from about 3.20 GPa to about 2.5 GPa at 30°C in natural sea water. The E-glass composites of the same resin were seen to deteriorate in flexural strength and modulus. The strength reduced from 250 MPa to about 180 MPa, and the dynamic modulus reduced from 8 GPa to about 5.5 GPa. The results clearly show the effect of debonding of the fiber from the epoxy matrix interface thereby drastically reducing the loadbearing capability. The water had a plasticizer effect too, as the glass transition temperature changed from 60 to 62°C to about 52–54°C in 12 months, and the SEM micrograph showed separation of the fiber from the matrix at the interface very clearly. However, the effect of the microbes on degradation could not be quantified separately.
The studies done so far indicate a common observation and conclusion that the degradation of epoxy-based composites is significantly high in terms of delamination, loss of mechanical properties and glass transition on exposure in sea water even for a year. The initial moisture ingress has a plasticizing and swelling effect, due to which the glass transition temperature reduces with a drop in mechanical properties. In prolonged exposure, the water molecules chemically react with the resin (hydrolysis) producing small chemical substances, which tend to diffuse out of the resin, causing blisters. Also, various salt components of the sea water may affect the moisture absorption rate compromising some properties of FRP in sea water. It is also known that the effect of sea water on glass fiber reinforced composites differs according to the type of matrix and fiber. The mode of failure of glass/epoxy composite is altered from a brittle matrix and ductile fiber to ductile matrix and brittle fiber. However, in some opinion, the strength stabilizes after the absorbed moisture attains saturation.
In construction of FRP elements of ships, the items that are not in continuous immersed condition such as superstructures, ladders, stanchions, guard rails, etc., are better designed with toughened epoxy resin and carbon/glass fabric composites since the degradation is limited in the atmosphere and the composites can have sufficient strength, reasonable glass transition temperature even after the toughening process of the resin. For naval ships of stealth features, carbon fiber and nanocarbons cannot be used as the radar reflection will be increased. For elements to be used underwater, epoxy resin is not that superior to the vinyl ester class of resins.
Vinyl ester resins are most commonly used for marine composites for two main reasons, the mechanical strength retention on prolonged exposure in sea water and the strength is comparable to epoxy composites and higher than polyester-based composites. The resin has inherent resistance to water diffusion and consequently lesser effect on its glass transition and strength. For large ship structures, vinyl ester resin is a better thermoset due to suitability for processing large items such as hulls, using vacuum infusion due to its low viscosity, apart from its durability in marine environment.
Conventional vinyl esters are having aromatic backbone of epoxy base and the double bond of the unsaturated ester is cured by styrene, exactly the same process as a polyester resin. The presence of the higher content of stiff aromatic epoxy backbone provides the higher mechanical strength compared with phthalic-acid-based polyesters. The higher aromatic content also restricts the diffusion of fluids. Unlike epoxy matrix cured by amines, the vinyl ester matrix is cured by hydrophobic monomer styrene, and hence, the water ingress is lesser than epoxy resin.
VE-CFRP and VE-GRPF have different strength ratios depending on the mode of force application. Wonderly et al. [35] compared these two types of composites in terms of tensile strength and found that CFRP was about 850–950 MPa and was 1.6–1.75 times higher than GFRP, but the open hole tensile strength was comparable at about 250–265 MPa, and compression strength of GFRP was about 330–360 MPa for CFRP and was about 17% lower than GFRP. Transverse tensile strength of CFRP was also about 75% of GFRP. One interesting study was done by the authors on ballistic impact test, which is important for military application. At a comparable areal density, the specific energy (J/kg/m2) required to penetrate the panels for CFRP was higher by about 25% compared with GFRP for identical muzzle velocity.
In general, the glass transition temperature of a vinyl ester matrix is about 115–120°C. The flexural modulus and strength of a vinyl ester plaque are about 3.0–3.5 GPa and 80–120 MPa respectively, almost same as epoxy plaque. GFRP of vinyl ester has flexural modulus of about 10–12 GPa and flexural strength of about 270–300 MPa, ILSS of about 30–35 MPa, depending on the fiber type and fiber volume fraction in the composite. The CFRP of vinyl ester has much higher strength and modulus, about 3–3.5 times higher than GFRP at the identical volume fraction of fiber.
Water diffusion studies show on an average 0.6% water intake at equilibrium for GFRP and about 0.4% for CFRP, which are almost half of corresponding figures for epoxy CFRP. Murthy et al. [32] showed that the sea water saturation levels in both GFRP and CFRP of vinyl ester are about 0.7% and approximately 0.4% respectively, and there was no reduction in the total weight of the samples even after 450 days of immersion. The interlaminar shear strength was reduced by about 35% after 365 days for both CFRP and GFRP of vinyl ester. Similar extent of degradation was observed for flexural strength. The reduction of tensile strength was about 30% for the same period of immersion. However, it is observed that the mechanical properties and the water uptake almost became steady after 365 days. The authors showed that after immersion in artificial sea water for 450 days, the strength reduced by about 35% for both the composites. Similarly, the ILSS also reduced by about same extent. CFRP is marginally better in ILSS on aging in sea water. The maximum water intake for CFRP was about 0.4% compared with about 0.48% for GFRP.
A study by Mungamurugu et al. [36] showed about 1% water absorption at 20°C for vinyl ester GFRP composite for glass fiber volume of 58% compared with about 0.75% for the plaque after 450 day and the reduction in flexural strength (original 250 MPa) by about 25% for the composite after 300 days.
However, most experiments reported in literature are done with artificial sea water, and the effect of the microorganisms and of the evolved materials due to the metabolism of the microbes present in sea water was not possible to observe. Therefore, the drastic decrease in mechanical strength for thermosets resin plaques is due to reaction with water and hence loss of molecular integrity of the cross-linked matrix.
Unsaturated polyesters (USPs) are also widely used in marine construction since it is very cost-effective, easy to process by vacuum-assisted resin transfer process due to low viscosity. Easy to cure, and intricate shapes can be made with a large variety of USP. The oligomer resin is cured conventionally by styrene in presence of catalysts such as methyl ethyl ketone peroxide (MEKP) and in some cases added accelerators such as a cobalt salt or those based on a tertiary amine. The cross-link density and corresponding mechanical properties are controlled by styrene content and the unsaturation in the oligomer. There are new USPs developed where styrene is replaced by acrylic monomers such as tri- or tetraethylene glycol dimethacrylate (TEGDM) [37], which are comparatively less toxic than styrene. The general-purpose and marine-grade USPs are synthesized with different glycols such as isomers of pentyl glycol and isomers of phthalic acid with small amount of an unsaturated acid such as fumaric acid or malic acid. The average flexural strength of USP-based GFRP is about 250 MPa with 58–60% glass fiber by volume.
A study on long-term natural sea water immersion of USP was done by Norwood [38]. The USPs of orthophthalic-acid-based marine resin and isophthalic acid-neopentyl glycol (IST-NGP)-based marine-grade resin were used with about 2.25:1 ratio of CSM: resin by weight in the form of chopped strand mat (CSM) and 1:1 ratio by weight for woven roving (WR): resin. The surface tissue coating of the same resin with 5% filler content and a gel coat was used to reduce water permeation. The study revealed that the IST-NGP-glass composite showed best water resistance in terms of appearance of blisters. The best performance was of high HDT (heat deflection temperature) IST-NGP where the blister formation was seen only after 200 weeks, while orthophthalic-acid-based conventional marine resin (medium HDT) showed blisters in about 52 weeks as the best performance. The conclusion in that study was significant for subsequent research on marine-grade FRPs. It was suggested to use a tissue layer of about 5% (by weight) CSM in the IST-NGP resin (high HDT grade marine resin) over the outer layer of the composite and a top layer of the gel coat (white) to ensure longer life in continuous sea water immersion for at least 4 years. However, the study was restricted to only blister formation, but did not indicate change in mechanical properties on sea water aging.
Mechanical properties for short period were investigated by Espinel et al. [28], which revealed that the tensile strength for USP-glass FRP reduced by 20% after 125 days immersion, and interestingly, while the tensile strength attained a constant value after 30 days of saturation, the transverse strength in flexure continued to decrease till 125 days, indicating that the fiber-polymer delamination is more observed if flexural properties are considered. The reason for difference in behavior in these two modes is that the interface delamination affects the bending load-bearing capacity, while in tension, the maximum load is taken by the fiber as such. Unless the fibers are damaged to very high extent as to break down below a critical length, the longitudinal strength will not decrease significantly. This is perhaps the reason for most researchers to measure flexural properties of composites rather than tensile for sea water aging study.
Kootsookos et al. [39] studied the sea water durability of GFRP and CFRP based on USP containing about 32–35% fiber by volume. The flexural modulus of GFRP was about 50% of that for CFRP. The water uptake trend was similar to many other observations, a peak water uptake of about 0.75% for GFRP and 0.5% for CFRP after 16–20 days. However, the water ingress curve had a negative slope after 20 days for both composites. The corresponding flexural modulus of GFRP showed an initial increase, and then finally after 145 days, there was no significant change. Whereas the modulus for CFRP initially decreased and ultimately the reduction is also negligible. It was opined that the weight reduction after peak water uptake is due to hydrolysis and loss of small molecules, but the modulus did not change much for the period of study (145 days). However, the flexural strength of GFRP was seen to reduce considerably, by about 33% but that for CFRP did not change significantly. The performance of the CFRP in sea water aging was seen to be much superior to the GFRP based on polyester resin.
Loos et al. [40] studied hydrothermal effect on USP-based GFRP using distilled water and saturated NaCl solution at 32°C and 50°C. The authors observed that at 32°C, the weight increase is continued with time till saturation value of 3.5–3.6% on 100 days and remained constant thereafter (till 150 days) when immersed in distilled water. For immersion at 50°C, the weight change was having a negative slope after about 50 days. Similar observations were also made by Fraga et al. [41], who studied hydrothermal aging and its effect on interlaminar shear strength and dynamic mechanical properties of GFRP made from isophthalic-acid-based USP with styrene as cross-linker. After 12 days exposure in water at 80°C, the weight change showed a negative slope indicating release of silane coupling agent (sizing of fiber) and also small organic molecules due to hydrolysis of the resin at the elevated temperature. The shear modulus was reduced by about 50% for the composite at 80°C at the end of the study period (1000 h). The glass transition did not change significantly, and the dynamic modulus increased by about 30% but flexural modulus reduced by about 25% at 80°C after about 400 h but stabilized thereafter till 1000 h of study.
Although an USP made of isophthalic acid and neopentyl glycol meets the requirement as a marine-grade resin, as its water resistance is much better than the other USPs, but on a comparison with epoxy resin and vinyl ester resin, the strength of the USP is quite lower, which necessitates a thicker section of a component, say hull of a boat, and consequently there is a possibility of more defects, enhanced water ingress, and faster damage.
The design of a marine structure is fully dependent on the mechanical properties of the candidate material in various modes. In addition, it must consider the environment in which the object has to perform. Therefore, there is a third consideration of timescale of the service. A very simple example is a static beam under a constant bending load in a building that should carry the load for a long period, for instance, 2–4 decades. Therefore, the design input must be the properties of the material after aging for that service period in the atmospheric environment, especially moisture, carbon dioxide, ultraviolet ray, oxygen, and ozone. While it is not possible to have a data for such a long period for designing an object, it is best to make a prediction of the extent of degradation/aging and degraded properties after a target period of service. This simulation is quite difficult because all environmental and load conditions cannot be simultaneously considered in the mathematical predictive equations. However, a preliminary knowledge or previous study might help in deciding the conditions of fastest degradation due to aging effect. For example, it is known that polypropylene degrades in sunlight due to UV much faster than any other environmental conditions. Therefore, the service life is better decided upon aging under UV of varying intensity.
For marine structures and vessels, the most important considerations to decide the service life are sea water aging, fatigue due to vibration, constant load, and also degradation due to microbial activities. Cyclic sorption-desorption along with a pre-stress was studied by Burla [42], which gave more information on the repeated sorption phenomenon of the cloisite 10A nanocomposites of epoxy, vinyl ester, and unsaturated polyester.
Atmospheric aging due to ozone, UV, etc., is also important for the objects or part of the structures above the water line. In all the factors, sea water aging is most severe because of dissolved salts and alkalinity. The pH of sea water is about 8.3 on an average, and it also contains chlorides, bromides, iodides, sulfates, and carbonates of sodium, magnesium, potassium, calcium, and also traces of heavy metals such as Iron, manganese, cadmium, lead etc. Therefore, diffusion of sea water, and the effect thereof, is the most relevant study for deciding the degradation in mechanical properties of FRP for marine application. It is well known that the extent of sea water uptake and its effect is quite different from potable water or industrial process water.
The diffusion phenomenon in pure thermosets and corresponding FRPs can be generally described by a fundamental theory of diffusion by Fick’s Law:
where
Considering only unidirectional diffusion of sea water in a thin panel, (thickness less than 2% of length and breadth), Eq. (1) can be solved to obtain a fractional mass gain (
where
The diffusivity can be directly calculated from a simple experiment of water uptake by a panel till saturation, using the following equation:
If
Eq. (1) can be approximated as [43]:
If the sample is exposed to the sea water on both sides, then
Rearranging Eq. (4) we can get the time required to attain a certain water content due to unidirectional steady-state diffusion in a thermoset and FRP as:
Eq. (5) is used for predicting the time required to attain any level of water uptake for different thicknesses (
The one-dimensional diffusion equation is valid for thin panels, where the diffusion from edges is not significant. In case of pure thermoset plaques, the edge effect is not very important, but FRP composites are anisotropic materials and hence the edges are to be protected. This is ensured in FRPs by applying the thermoset resin coating on all edges of the panel. However, there can be an edge correction too, to be more precise on unidirectional mass transfer, provided the sample is homogeneous in diffusivity in all directions [43]:
where
Figure 1 shows an example of water diffusion data for an epoxy GFRP composite of dimensions
Typical experimental data and corresponding Fickian model prediction.
In order to determine the time required for water absorption to the extent of 90% of the saturation for a 12 mm thick FRP panel, assuming identical conditions, Eq.(5) is used and the time calculated as:
The life prediction can be done on the basis of the minimum strength required by a designer of the FRP item. Suppose a minimum Flexural strength of 175 MPa is required for the designer to design an underwater vessel hull. The service life of an epoxy-GFRP hull of 12 mm thickness is to be predicted.
Taking the same FRP composition, the laboratory flexural strength data at various times of sea water aging was observed at 35°C for 10,000 h, and Figure 2 shows the combined data of fractional water absorption and flexural strength with time. The flexural strength measured in 3-point bending test of the original, cured GFRP at 20°C was about 238–245 MPa.
Flexural strength and fraction of saturation with immersion time in artificial sea water for an epoxy-GFRP at 35°C.
From the source data of Figure 2, it is known that the fraction of saturation is 95.4% corresponding to the flexural strength of 175 MPa. Therefore, time required for the 12 mm thick panel at 0.954% saturation as calculated using Eq. (5) is:
The above solution of prediction is obviously approximate, as the theoretical curve is not in exact agreement with the experimental data till 7500 h (300 days). However, the theoretical prediction of the diffusion curve in Figure 1 shows better agreement at longer period of exposure. In addition, considering the good fit in Figure 2 for the fractional saturation (
In a different approach, the diffusion-related life estimation can be realized if a time-temperature superposition is done from the data of sea water absorption and a functional property such as strength vs. immersion time at different fixed temperatures of the sea water. In an isothermal analysis with one temperature, the slow relaxation of larger segments of a thermoset polymer (
where
However, the value of the constants
Williams, Landel and Ferry [46] relate the temperature-dependent events such as viscosity, relaxation time, or relaxation frequency with change in fractional free volume of the molecule or segments. The fractional free volume changes linearly with temperature. Accordingly, the relaxation time-temperature relationship is given as the famous WLF equation:
where log(
However, the best process of superposition is to shift the isotherms graphically in a data plot of the property (say strength) vs. time.
A typical
Isotherms of flexural strength vs. time of immersion of a GFRP based on epoxy resin.
Subsequently, the shifted data are plotted as a master curve with a reference temperature of 20°C as shown in Figure 4. The best fit of the shifted data is approximately a second-order polynomial expression here. However, for a long period, the property will vary with the logarithm of time. The shift factors corresponding to the temperatures 30°C, 40°C, and 50°C were used to calculate new time (
Master curve for 20°C reference temperature: epoxy-GFRP aging in sea water.
The process of determination of shift factor from a graphical shifting is described in Ref. [47]. For example, shift factor log(
log(
This means that the strength at 50°C after 8 months of sea water aging corresponds to 16 months aging in sea water at 20°C. The shifted values can be approximately described by a polynomial fit:
where
The polynomial fit can be used for determination of the property at extended period too. Therefore, the strength is calculated with Eq. (11) for longer period than the shifted data. Figure 5 shows the data up to 50 months. The result is obviously an approximation, but gives one the idea of range of the degraded property (strength) for a long exposure time. The validation of the data is not possible unless an experiment is done for the similar period.
Extrapolation of the master curve for longer period.
Similarly, 10 months data on water uptake by an epoxy-GFRP were studied at limited temperature range of 20°C, 30°C, 40°C, and 50°C. The data were plotted as isotherms and graphically shifted to the reference temperature 20°C. The shift factors were determined, and subsequently new time was obtained using the method already described, and a master curve of water uptake predicted at longer time was obtained. The plot is shown as Figure 6 here only from 20 months of aging onward till 90 months.
Long period prediction of water uptake constructed by graphical t-T shift.
A correlation of these two master curves for prediction of long-term properties as water uptake and flexural strength can be made with some approximation, in this case, because of the limitation of data.
Let us take strength and diffusion data at 48 months from Figures 5 and 6 respectively. At 48 months, the Flexural strength is 85.6 MPa (calc.) and Water uptake is 6.61% (calc), at a sea water temperature of 20°C.
The example of evaluation of long-term property and water diffusion shown above does not simulate an actual FRP item. In practice, the thicknesses for underwater structures are much higher due to load requirements. Moreover, multiple types of mats, chopped fibers, fabric with various weaving styles are used in thick composites where FEM analysis is resorted to design the layers.
An approach can be made for life estimation by calculating the diffusion time using Eq. (5) for an FRP of actual size and thickness from the laboratory experiment at different temperature of sea water aging with respect to time. Once a data table is made of Mt% vs. time for the actual size at various isothermal aging temperatures, the data can be used to obtain a graphically constructed master cure following a time-temperature superposition principle for a reference temperature, which is the actual sea water temperature of that geographical region. Since the composites often show dual Fickian behavior or non-Fickian behavior, the data for only long-term study can be taken from the master curve for a good fitting equation. The probability of error is minimized in this process, as graphical shift does not need any assumption such as glass transition temperature, values of activation energy, or the WLF constants, etc. However, a careful experimental determination of the value of diffusivity is required, which is a most critical parameter.
In experiments on diffusion, the panel thickness plays an important part. Although there is an edge correction method available, but it is best to use thin panels of maximum 4.0 mm thickness and edge sealing by a marine-grade vinyl ester resin tissue coat and gel coat of 1.0 mm thickness each. Number of layers of the fabric should be restricted by using fairly thick quality fabric and mats, but not very thick to make the resin infusion difficult. Nevertheless, similar materials such as the resin, curatives, catalysts, and type of mats and fabrics as actual FRP item would be best for a realistic prediction of service life.
After observation of many experimental results on water diffusion process in thermosets and composites, it is certain that the diffusivity is not unique for a case and may vary according to the behavior of the polymer as the process of water ingress progresses. The water diffused in a polymer acts as a plasticizer to change the relaxation process, resulting in swelling, and also initiates some chemical reactions. Karter and Kibler [48] offered a theory that the water absorption is described by a simple diffusion with sources and sinks of diffusing water molecule and that the absorbed water is divided into mobile and strongly bound phases in the polymer. There is a continuous migration from mobile to bound phase and the reverse. There is an equilibrium of this interchange of bound and mobile water. The theory is somewhat similar to Langmuir theory of adsorption-desorption. Considering the probabilities of the interchange of bound and mobile water molecules, the relative mass gain is given by the authors as:
where
The constant
When the exposure time is short, an approximate equation can be used as follows:
Hence,
and for a long exposure period, so that
Eq. (15) can be rearranged, and after taking logarithm, it becomes:
Eq. (16) represents a straight line with −
A GFRP based on USP and chopped glass fiber is exposed to artificial sea water at 45°C for 8400 h. The size of the laminate was 80 mm × 12 mm × 4 mm (
Figure 7 shows the experimental data and the predicted data of absorption for long-term approximation considering a period beyond 2000 h as the long term.
Long-term water uptake data: experimental and
Due to the time-varying process of moisture absorption, it is assumed that instead of one constant diffusivity, two diffusivities can be used to describe the long-term water uptake, provided that there is no loss of small molecules as a product of hydrolysis and subsequent leaching out of the experimental panel. The initial diffusivity
where
A similar expression is a modified Jacob-Jones model [43, 49, 50]:
Here,
Comparing Eqs. (17) and (18), it is more convenient to use the latter, although the equation is an approximate one.
The same water diffusion data of Example 5.1.1, which did not show good fit using the Fickian model with one diffusivity, is tested for the dual Fickian model, taking modified Jacob-Jones expression as in Eq. (18). The diffusivities were calculated as
Dual Fickian model fitted to experimental data of example 6.1.1.
In some models, apart from initial diffusion process of Fickian type, relaxation of the polymer chain segments is also considered, as the water ingress progresses. The water has a plasticizing effect, and hence the relaxational phenomenon, which involves segmental motion of macro-Brownian type, increases with the progress of diffusion. The relaxation process in a polymer is related to the slow rearrangements of the chain segments and therefore, distribution of the free volume in the polymer, considering large number of different sizes of the segments in the network. The diffusion and relaxation were combined in a single model by adding the relaxation terms to a classical Fickian diffusion model. The two diffusion processes were assumed to be independent of each other. The mass uptake at any time interval,
where
The above model is only applicable where the relaxation process is approximately commensurate with the experimental timescale, since a short-term experiment may not result in actual effect of segmental motion and relaxation of a thermoset, which has a very high relaxation time at the experimental temperature.
Nanometric-sized materials are presently used as reinforcing fillers with polymers. The nanoparticles are defined as those that has at least one dimension below 100 nm. Due to the tiny size, the nanoparticles have very high surface area compared with volume, and hence, their force of attraction with a polymer is much higher compared with common fillers. In addition, the shaped nanoparticles such as rods, platelets, stacked layers, fibers, etc., impart good resistance to diffusion of gas and liquids in polymers.
Needless to say that the intermolecular forces between the nanoparticle and the polymer much depend on homogeneity and polarity. The force of attraction may be Van der Waals, hydrogen bond, polar attraction, dipole-dipole, etc. Some fillers also form covalent bonds too. The secondary valence bonds are physical bonds and are reversible, unlike the covalent bond, which is a chemical bond. Most common nanoparticles are carbon nanotubes, nanorods, nanofibers, graphene and graphene oxide, clays such as montmorillonite, layered silica, nano particles of minerals such as nano titanium dioxide, nano ceramics, etc.
Nano carbons are chemically modified, for example, ▬COOH functionalized to improve physical bonding with polymers. The reinforcing effect of single-wall carbon nanotube (SWCNT) is much higher than multiwall tubes (MWCNT) because of higher specific surface area.
Graphene and graphene oxides are a new class of plate-type reinforcing nanoparticles, having layer of single graphitic plates, can be physically bunched as 3–8 layers. Graphene is an allotrope of carbon whose structure is a single planar sheet of sp2 bonded carbon atoms that are densely packed in a honeycomb crystal lattice. The graphene can have a spacing of 0.3–0.5 nm between two platelets. Graphene is purer form of carbon, having no organic impurities or functional groups attached, hence their bond with polymers is less intensive than other allotropes of carbon nanoparticles. However, synthesis of graphene from graphite/carbon leads to graphene oxide, which is more polar and can have better bonding with polar resins, which are used for FRP.
Clays are layered silicates, with complex crystal structures. There are different naturally occurring clays such as bentonite, which is kind of rock, mixture of different minerals, including smectite (2:1 layered clay), montmorillonite (dioctahedral), hectorite, (tri-octahedral). The clays are organically modified, for example, ion exchanged with quaternary alkyl ammonium salts, to allow an oligomer molecule to enter in the clay gallery, thus intercalating or even exfoliating the clay. Cloisite is a class of montmorillonite clay, commercially available in various hydrophobicities, and is in the order: Cloisite 15A > 20A > 25A > 10A > 93A > 30B > Cloisite Na+. Typical clay gallery spacing in montmorillonite (Cloisite) is about 1–1.9 nm depending on their structure, and the spacing is increased upon modification and is further exfoliated or intercalated when a low-molecular-weight polymer enters the clay gallery. Typical surface area of a montmorillonite nanoclay of 75–150 nm transverse size is approximately 750 m2/g.
However, for processing the nanoparticles with an epoxy/unsaturated polyester/vinyl ester oligomer is not easy because of high agglomeration of the nano particles, causing inhomogeneity. In fact, carbon nanotubes cannot be homogeneously mixed with epoxy oligomer beyond 1% without adding any solvent.
Common processing methods are:
Ultrasonication: it is effective in low-viscosity fluids. Generally, 40–50 kHz ultrasound is used in a bath containing the polymer mixed with a solvent. It improves dispersion of the nanoparticle by decreasing aggregates or even separates the nanoparticle. For example, SWCNT is mixed with epoxy using dichloromethane as a solvent.
Introducing surfactant: composites containing as little as 1 wt% surfactant-dispersed MWCNTs have better homogeneity, resulting in improved interaction between nanoparticle and matrix.
Chemically functionalizing the nanoparticle: nanoclays or MWCNTs are organically modified/functionalized leading to an improved dispersion in thermoset forming oligomers such as epoxy, unsaturated polyester, or vinyl ester.
Figure 9 shows a general process flow of polymer-nanocomposite preparation, using ultrasonication. As an example, an epoxy resin with clay is shown here with appropriate processing parameters.
A typical process for polymer-nanocomposite using ultrasonication.
For FRP nanocomposites, it is better to use a pre-bound process rather than mixing the nano material in the resin—which may cause processing difficulties. In this process, the nanoparticle is dispersed in a solvent and sprayed onto the dry fiber mat laid on a steel mesh fitted with a vessel. A vacuum at the bottom of the vessel extracts the gaseous and fluid part and facilitates drying of the mat. Typical parameters for such process for thermoset-MWCNT-based FRP are:
MWCNT: 1% in acetone
Air pressure for spray: 0.3–0.4 MPa
Vacuum: 0.25 atm (absolute)
Drying after spray: 12 h at 120°C
Figure 10 shows a schematic diagram for the pre-bound process of FRP-nanocomposites.
A typical arrangement for pre-bound process.
The barrier property is a function of cross-link density of the thermoset. The free volume for such densely cross-linked network is small, and the chain segments are very stiff. These two factors resist the penetrant transport in the matrix. Since the glass transition temperature is far higher than ambient, the thermoset can be described as an amorphous material trapped as a frozen mass below its glass transition. The dependence of diffusion on cross-linking is reflected in nonlinear behavior and also wide range of diffusivities reported in literature for rigid thermosets and FRPs based on these.
Thermoset nanocomposites were studied by many researchers to observe the effect of inclusion of nanoparticles in highly cross-linked networks, such as epoxy, USP and VE.
Epoxy-amino functionalized carbon nano fiber (CNF) composite was studied by Prolongo et al. [51] and concluded that the CNF effectively controlled the extent of unbound free water, which fills the nano-voids, without swelling (type-I water). However, the final water uptake was not much different than FRP without CNF. Balgis et al. [52] studied MWCNT and milled carbon (spherical graphite and chopped micron scaled carbon fiber) in epoxy resin and found that the dynamic modulus improved by addition of these reinforcements by about 8%. The uptake of water was slow, and the ultimate water was reduced by 12% compared with the neat epoxy resin, and after hydrothermal aging, the dynamic modulus was marginally changed from 2900 MPa to 2700 MPa, but the glass transition temperature changed by about 10–11°C.
Maheshwari et al. [53] studied the effect of nano silica on sea water diffusion of unsaturated polyester resin nanocomposites at varying temperatures (40–60°C) and salinity (0–25%). The effect of inclusion of 3% nano silica in distilled water reduced the saturation water uptake from 0.65 to 0.52% approximately, at ambient temperature, while for a 4% saline water, which is slightly more saline than sea water, the saturation with 3% nano silica is about 0.46%, compared with neat USP at 0.6%. Their study also showed a gradual decrease in saturation of water in nano silica content. See et al. [54] used a organically modified montmorillonite (OMMT) clay treated with a modification agent known as X-treatment using an organically reactive dispersion agent (commercially restricted) in unsaturated polyester resin to make a gel coat with improved barrier property against water immersion/moisture diffusion. It is seen that the moisture uptake increased upon addition of 1% OMMT from 1.74% for without clay to about 2.17%, and with a X-treated OMMT, the figure is about 1.9%. The study clearly shows that the inclusion of the OMMT nanoclay did not reduce the ultimate water uptake, nor it could improve upon glass transition compared with the neat resin after moisture saturation, but the diffusivity was reduced by about 25–30%, and the saturation time is same as the neat resin coating. The life extension by formation of the clay-nano composite cannot be expected to be significant. Shah [55] used two different types of surface-treated OMMT with vinyl resin and studied water diffusion and its effect on properties of the resin-clay nanocomposite. The study indicated similar result as reduction of diffusivity but not the ultimate water uptake and no significant difference in glass transition.
Burla [42] studied the absorption-desorption cycles of water in Cloisite 10A nanocomposites of epoxy, polyester, and vinyl ester thermosets at various values of relative humidity and immersion in water at 25°C under a tensile stress to the extent of 17% of their ultimate tensile strength. Although the diffusivities were reduced upon in addition of the clay, but the ultimate extent of water uptake did not reduce and the time to reach saturation was not improved.
The nanocomposites in all above cases were seen to be non-Fickian in diffusion and in most cases had slightly higher moisture uptake at saturation. This is possibly due to the bound water molecule at the surface of the clay, which is more hydrophilic due to more ▬OH groups present in the clay compared with that in the resin. A study on fractional free volume and nano hole size distribution was done by Patil et al. [56] with epoxy-Cloisite 10A clay nanocomposites. The authors used Positron Annihilation Lifetime Spectroscopy (PALS) to determine the subnanoscopic free volume in the nanocomposite. The fractional free volume decreased with clay incorporation, but at higher loading, the decrease did not follow a simple linear mixing rule with respect to the volume fraction of the clay, but the reduction was more. This is possibly due to more interaction of the clay with the resin. PALS results showed strong (repulsive) interactions between the clay and the epoxy matrix at lower clay concentrations, which decrease at higher clay concentrations due to the clay-intercalated structure. However, the nanohole size distribution showed an interesting feature. The nanoholes became smaller in size, but the size distribution broadened with respect to nanohole volume beyond the original maximum nanohole volume. There was a net increase in total void volume, although average nanohole volume reduced from 0.075 nm3 to about 0.05 nm3 on incorporation of 7.5% cloisite 10A. The reduction of size and increase in overall hole volume are, of course, a function of the clay-resin interaction, for example, in this case it was repulsive.
A study was done by Rath et al. [57] with USP-Cloisite 15A nanocomposites on the reason for reduction of mechanical properties with increase in clay loading. PALS technique was used to find the free volume change on incorporation of the clay. It was seen that clay loading caused an increase in fractional free volume, suggesting a lower chain packing efficiency in these intercalated USP/clay nanocomposites. This could be a reason for higher or at the most similar water uptake on saturation by the clay nanocomposites.
Microorganisms in sea water can settle on structures, such as on metals, FRPs, and on almost all materials. The microbes form a very thin layer of viscoelastic nature as micro-fouling, quite adherent, and this layer is commonly termed as a slime. The slime formation on a substrate can take place within few days of immersion, as there are enormous amounts and varieties of microbes in the sea.
The slime facilitates the settlement of macro-organisms, which is termed as macro-fouling, and most common fouling macro-organisms are bryozoans, barnacles, mollusks, polychaete and other tube worms, zebra mussels, etc. The size of macro foulants is quite large, could be few centimeters even. The slime formation and macro-fouling are highly undesirable for marine vessels and structures, because of many reasons such as evolution of corrosive gases such as hydrogen sulfide, hydrogen, etc., due to metabolism of the organisms, surface roughness of vessels due to macro-fouling, thereby increasing the drag on movement substantially. FRPs are equally vulnerable to such settlements and degradation due to microbial settlement. There are many microbiological studies on the effect of microbes on various materials immersed in sea water. A brief discussion and most important findings are given here for FRP composites.
Little et al. [58] studied the adhesion of the slime on substrates. Gu et al. [59, 60] reported microbial growth and degradation of glass and carbon fibers upon penetration of fungi into the resin matrix. Organic additives to fibers, such as plasticizers and surfactants, may provide nutrients for microbial growth and ultimate degradation as reported by Upsher [61]. Glass fibers are more vulnerable.
Wagner et al. [62] examined carbon fiber-reinforced epoxy (T-300) and a glass (S-2) and carbon fiber (T-300) vinyl ester exposed to microbial culture for 161 days, to study the possible microbiologically influenced degradation. Composites, resins, and fibers were exposed to various microbes including hydrogen producing and sulfate-reducing bacteria (SRB). All types of bacteria colonized surfaces, preferentially on irregularities such as scratches and fiber disruptions. SRB degraded the organic surfactant on glass fibers. Tensile strength of a CFRP of epoxy was reduced on exposure to SRB. The SRB mixed culture did not degrade neat vinyl ester. Degradation of the organic surfactant on glass fibers due to the microbes was observed. Hydrogen-producing bacteria appear to have disrupted fiber-vinyl ester resin bonding with gas production. The study indicated that it is essential for marine application to screen the FRPs against various microbes of sea water before designing the structure.
Application of fiber reinforced composites based on thermosets is increasing as the cost and availability of fuel increase with time. This is simply because a lighter marine vessel has the fuel efficiency much higher than metallic vessels. For static RCC construction too, a simple outer jacket of a composite can protect a concrete pillar of off-shore structure for quite a longer period than an exposed RCC. The undersea pipelines are the other areas of potential use of carbon-vinyl ester composites. Nano-carbons can effectively improve the toughness of such items.
A large number of studies are already done to examine the efficacy of using FRPs for use in marine environment considering the chemistry of the matrix resins and relevant properties. Similarly, various fibers were also investigated by many researchers. Recent advancement is focused at incorporation of nanofillers of different chemistry and forms such as nanotubes, fibers, rods, spherical, platelets, etc.
The composites studied so far are widely varying in the resin-fiber ratios, forming sequence, and processing methods. Therefore, the results of each study cannot be fully generalized, but a broad conclusion on quantitative figures of merit can be made for each polymer-fiber combination.
A very general conclusion on durability in marine environment is that vinyl ester resin with carbon fiber is the best choice for applications in static structures, high strength ship components, and commercial speed boats where durability and weight reduction are important. However, for naval ships and submarines, for use in superstructures, the CFRP composites have a problem of radar reflections similar to metallic structures. Modern-day stealth ships exclusively use GFRP since it is radar transparent material (RTM). CFRP is only used in radar absorbing structures (RAS). Internal areas of the vessel can be made with CFRP for better strength and hence reduced weight. However, GFRP has slightly more damping capability than CFRP, which is stiffer. The SONAR Dome can be made with glass fiber or carbon fiber, also with hybrid fiber system. CFRPs are electrically more conductive than GFRP, and hence it is better to use GFRP as inside layers to avoid electrical problems for securing the transducer arrays.
Most studies on durability of FRPs reported so far are either using moisture, or distilled water or artificial sea water, but very rarely natural sea water has been used. Artificial sea water does not simulate the natural sea water. The variations in types of microbes across the world are so much that a result of durability study in sea water at Mumbai coast in India is not applicable in a coast of the United States. There are no comprehensive reports on effect of microbial activity and effect of sea water constituents both considered together to decide a service life of an FRP.
To determine service life of an FRP in marine water, it is required to use the panels immersed in actual sea water using a raft and periodically observing the change in water uptake, chemical groups, mechanical strength, dynamic mechanical properties, surface restructuring, glass transition, etc. Mathematical models commonly used may not be directly applicable for considering the influence of all unforeseen parameters of the sea, but a functional property such as bending strength/modulus can be monitored with time. The data can be superimposed with the similar value of the property with that from a simultaneous laboratory experiment at different temperature as is normally done. The time-temperature superposition will be better used in such cases with graphical shift method to avoid any assumptions. Although the microbe activities are not mapped in temperature scale in such method, it is fairly accurate since the microbe activity is constant due to approximately constant sea water temperature and salinity. The study must be done for at least two cycles of breeding of microbes. This means that the experiment may be only for at least 12 months. Vinyl-ester-based GFRP and CFRP are therefore required to be studied to observe the effects of sew water chemistry and microbiological activity to decide the service life.
Grapes (
Soilless culture techniques are primarily applied in ornamental plants and vegetables in the world and Turkey [2, 3]. In recent years, this technique is also used to overcome some problems due to its various advantages in grape cultivation [2, 4, 5, 6]. No need for tillage and soil preparation, protection from soil pathogens, effective use of water and nutrient solutions, reduction of spraying, obtaining more quantity and quality products per unit area, production of new or traditional grape varieties in a more extended period according to market demands, and control of harvest time are among some advantages of soilless cultivation [2, 4, 7].
In the world and Turkey, when it is considered together with the cultivation of greenhouse grapes for early grape ripening or late harvest, grape cultivation in soilless culture is considered an important cultivation method due to its advantages. This technique may be used for both early- and late-maturing grape varieties. According to our current information, no producer grows grapes commercially in soilless culture in Turkey. Studies on the subject are still carried out in horticulture departments of some agriculture faculties and viticulture research institutes.
Depending on the research purposes, different varieties, substrate mixtures, containers and nutrient solutions [2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15] were used in the grape cultivation experiments in the soilless culture system.
In the studies conducted by Tangolar et al. [6], the effect of substrates on the grape yield and quality of the berries in vines grown in the open and under the greenhouse was determined. The study that examined the yield, cluster, and berry properties of Early Sweet variety determined that perlite:peat (2:1) and cocopeat substrates gave better results. Tangolar et al. [16] also researched Early Sweet and Trakya Ilkeren cultivars to determine the effects of three different media, namely perlite:peat (2:1), cocopeat and pumice, and two different modified Hoagland nutrient solutions on shoot diameter as well as the nutrient element and chlorophyll levels of the leaves and grape yield and quality characteristics. The study found a significant difference between media and nutrient solution application for some characteristics examined.
Achieving a good quality in grapes is an essential goal wherever it is grown; one of the important components that make up the quality is the phytochemical content of the berries. Grapes contain a number of phytochemicals beneficial for human health, as well as amino acids, proteins, vitamins, and minerals [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. So, berries are efficiently used to increase the nutritional and energy value of the human diet.
Some studies [27] have shown that magnesium, calcium, zinc, and vitamins such as B and C are related to people’s cognitive performance. Clinical findings have revealed that extreme deficiencies of one or more of these nutrients are not uncommon, even in developed countries. These deficiencies may affect cognitive performance, especially in vulnerable groups such as the elderly and those exposed to occupational pressures and difficult living conditions.
Key et al. [28] noted that dietary science is increasingly recognized for its ability to prevent and support disease prevention and new technologies and therapies to improve modern medical practice. Researchers noted that dietary studies help discover specific dietary patterns that promote healthy brain aging and moderate the involvement of nervous systems known to facilitate cognitive performance in later life [28].
The composition of grape berries in different grape cultivars grown open field is affected by different factors such as variety, stress conditions, biostimulants, irrigation, fertigation, pruning, and others [26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
In spite of this, the studies conducted in the world and Turkey found no study of the effects of the different substrates and nutrition solutions on the biochemical content of berries obtained from varieties grown in soilless culture. So, this subject is thought to have not been sufficiently investigated yet.
Because of these, it has been seen beneficial to examine the effects of substrates and nutrition solutions on the biochemical contents, which are essential for human health. Therefore, this study was designated to evaluate the amino acid, mineral, and vitamin content of berries from Early Cardinal table grape cultivar grown in different soilless culture medium and plant nutrient solutions.
This research was carried out in a greenhouse at the Department of Horticulture, Faculty of Agriculture, the University of Cukurova, which was conducted under a 21 m, 9 m, and 3 m in length, width, and height greenhouse covered with UV plastic with a thickness of 0.4 mm. During the research, no heating process was done in the greenhouse.
As plant material, own-rooted Early Cardinal grape (
Element | Formula | Hoagland A (mg kg−1) | Hoagland (mg kg−1) | Organic liquid worm fertilizer |
---|---|---|---|---|
N | K2(NO3)2 | 150 | 210 | 5% |
P | H3PO4 | 30 | 31 | 0.49% |
K | K2SO4 | 175 | 235 | 1.47% |
Mg | MgSO4.7H2O | 20 | 48 | 0.78% |
S | CaSO4.H2O | 15 | 64 | Not detected |
Fe | Fe-EDDHA | 5 | 2.5 | 5257 ppm |
Mn | MnSO4. H2O | 3 | 0.5 | 565 ppm |
B | H3BO3 | 0.4 | 0.5 | Not detected |
Cu | CuSO4 5H2O | 0.02 | 0.02 | 58 ppm |
Zn | ZnSO4 7H2O | 1 | 0.05 | 152.5 ppm |
Mo | (NH4)6Mo7O24.4 H2O | 0.05 | 0.01 | Not detected |
pH | 5.28 | |||
Total dry matter | 13% | |||
Humic-fulvic acid | 38% |
Composition and formula of chemical and organic nutrient solutions used in the trial.
One-year-old vines entered the resting period at the end of the first year were pruned and trained to a guyot system to prepare for the crop year, on January 31, 2019. About 20 buds were left per vine. The number of clusters of the vines was equal to 12 clusters by removing the excessive clusters on May 24, 2019, after the berry set. Grapevines were given different solutions within the second vegetation year, starting from the bud burst.
The pH value of the tap water used in the experiment was 7.68, and the EC value was 0.813 mS cm−1. The amount of water given to the plants varied between 1 and 3 L pot−1 per day according to the water-holding capacity of the growth medium. The total amount of nutrients applied per plant in the first and crop year of the experiment is shown in Table 2.
Element | Hoagland A | Hoagland | Organic liquid worm fertilizer | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
N (g) | 12.75 | 21.00 | 17.85 | 29.39 | 37.40 | 59.90 |
P (g) | 2.55 | 4.20 | 2.64 | 4.34 | 3.67 | 5.87 |
K (g) | 14.87 | 24.50 | 19.97 | 32.89 | 10.99 | 17.61 |
Mg (g) | 1.89 | 15.91 | 4.53 | 37.47 | 5.83 | 9.34 |
Zn (mg) | 84.92 | 139.86 | 4.165 | 6.86 | 114.07 | 182.70 |
Cu (mg) | 1.70 | 2.80 | 1.70 | 2.80 | 43.38 | 69.48 |
B (mg) | 85.0 | 140.00 | 106.25 | 175.00 | Not detected | Not detected |
Mn (mg) | 255.0 | 420.00 | 42.5 | 70.00 | 422.62 | 676.87 |
Mo (mg) | 0.43 | 0.70 | 0.09 | 0.14 | Not detected | Not detected |
Fe (mg) | 474.8 | 777.9 | 235.5 | 387.8 | 3932.2 | 6297.9 |
The amount of nutrients given per plant by different nutrient solutions in 2 years.
When the total soluble solids (TSS) reached about 12–14%, five cluster samples were taken from each of the three replicates of treatments on July 1, 2019. After removing from the clusters, stored berries at −20°C before the phytochemical analysis were analyzed in the Department of Genetic and Bio-Engineering, Faculty of Engineering, University of Yeditepe.
Macro and micronutrient element analyses were carried out using samples of berries. Phosphorus (P) was determined vanadomolibdo phosphoric acid yellow color method as reported by Bremner [50]. Potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) concentrations of the berries were analyzed by atomic absorption spectrophotometer [51].
1 g fresh sample was treated with 0.1 N HCl, homogenized with ultra turrax, and incubated at 4°C for 12 hours. Supernatants were filtered through 0.22-m filters after samples were centrifuged at 1200 rpm for 50 minutes (Millex Millipore). The supernatants were then transferred to a vial, and the amino acids were analyzed in HPLC as described by Antoine et al. [52] and Kitir et al. [53]. Readings from Zorbax Eclipse-AAA 4.6150 mm and 3.5 m columns (Agilent 1200 HPLC) were taken at 254 nm, and the amino acids were identified by comparing them to standards of O-phthaldialdehyde (OPA), fluorenylmethyl-chloroformate (FMOC), and 0.4 N borate. The following solutions were used in the mobile phase chromatography system: Phase A: 40 mM NaH2PO4 (pH: 7.8) and Phase B: acetonitrile/methanol/water (45/45/10 v/v/v), after a 26-minute derivation process in HPLC, aspartate, glutamate, asparagine, serine, glutamine, histidine, glycine, arginine, alanine, tyrosine, cysteine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine, thionine, and proline.
A 50 mg frozen berry sample was crushed using liquid nitrogen and extracted with 4.5 mL of 3-sulfosalicylic acid, and then filtered through a Whatman filter paper (#2) for proline measurement. In a test tube, 2 mL of the filtrate were mixed with 2 mL acid-ninhydrin and 2 mL glacial acetic acid for 1 hour at 100°C, stopped the reaction with an ice bath, and the filtrates were analyzed. The concentration of proline was measured spectrophotometrically at 520 nm [54].
Berry samples were ground for vitamin A (Retinol). Berry samples were extracted with a mixture of n-hexane and ethanol. 1% BHT was added and kept in the dark environment for 1 day. At the end of this period, centrifugation was conducted at 4000 rpm (+4°C) for 10 min. The obtained supernatant was filtered with the help of Whatman filter paper and added 0.5 mL of n-hexane. Drying was then performed using nitrogen gas. The residue in the tubes was dissolved in a methanol + tetrahydrofuran mixture. Analyses were carried out in Thermo Scientific Finnigan Surveyor model high-performance liquid chromatography (HPLC) and in amber glass vials on Tray, and autosampler using PDA array detector [55, 56].
A total of 10 g of samples were weighed and homogenized. The samples were then transferred to a conical flask with 25 mL of extraction solution. A shaking water bath at an ambient temperature of 70°C was used to sonicate the solution for 40 minutes. Following sonication, the sample was cooled and filtered to make a volume of 50 mL with extraction solution. The extraction solution was again filtered with filter trips (0.45 μm), and 20 μl aliquots solution was injected into the HPLC by using an auto-sampler. A reversed-phase C-18 analytical column (STR ODS-M, 150 mm 4.6 mm ID, 5 m, Shimadzu Corporation, Japan) separated the B complex vitamins. At 40°C, the mobile phase consists of a 9:1 (v/v) combination of 100 mM sodium phosphate buffer (pH: 2.2) containing 0.8 mM sodium-1-octane sulfonate and acetonitrile. The flow rate was constant at 0.8 mL/min using a PDA detector with a 270 nm absorption rate. The peak area of the corresponding chromatogram was used to calculate B vitamins using the following equation [57]:
Plants were sliced, frozen in liquid nitrogen, and kept at a temperature of −80°C until the analyses were completed. The extraction solution was combined with 2.5 ml of frozen crushed plant material (3% MPA and 8% acetic acid for MPA-acetic acid extraction and 0.1% oxalic acid for oxalic acid extraction). The mixture was titrated with indophenol solution (25% DCIP and 21% NaHCO3 in water) until light, but the distinct rose-pink color appeared and persisted for more than 5 seconds [58].
The study was designed according to the “Randomized Complete Blocks” with three replicates in 12 treatments. For each application and replicate, approximately 500 g of the berry samples were taken and analyzed for the compounds to be studied. Data obtained from the study were subjected to variance analysis using the SAS-based JMP statistical package programmer. The least significant difference (LSD) test was used to separate different groups at a 5% significance level.
Besides bodywork, vitamins, and minerals, protection of the body from diseases, blood formation, bone, dental health, etc., are required for functions. Each food contains different amounts of various vitamins and minerals. Its richest sources are fresh vegetables and fruits [59].
As shown in Table 3, there were significant differences among the substrates related to macro- and microelements of berries except for boron. Considering, P, K, Ca, Mg, Mn, and Cu concentrations of berries were higher in Z + C (1:1) than the other substrates. However, zeolite, cocopeat, and Z + C (1:1) for Na, Cocopeat, and Z + C (1:1) for Fe, and zeolite for Zn concentrations gave higher values than the other applications. Phosphorus, Mg, Fe in Hoagland; K in Hoagland A; calcium, Na, and Mn in Hoagland and Hoagland A, and zinc in OLWF fertilizers were recorded have higher concentrations than those of the others.
Sources of variation | Macroelements (mg 100 g−1) | ||||
---|---|---|---|---|---|
P | K | Ca | Mg | Na | |
Zeolite | 17.7 cy | 213 b | 48 b | 13.7 d | 2.7 a |
Cocopeat | 19.1 b | 208 c | 47 b | 17.9 b | 2.4 a |
Z + C (1:1)x | 21.0 a | 234 a | 51 a | 20.0 a | 2.4 a |
Z + C (1:2) | 15.4 d | 193 d | 39 c | 16.7 c | 1.9 b |
LSD 5% | 0.4 | 5 | 2 | 0.8 | 0.3 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0011 | |
Hoagland A | 19.3 b | 227 a | 49 a | 16.8 b | 2.6 a |
Hoagland | 19.8 a | 223 b | 50 a | 18.1 a | 2.6 a |
OLWF | 15.8 c | 186 c | 40 b | 16.3 b | 1.9 b |
LSD 5% | 0.4 | 4 | 1 | 0.7 | 0.3 |
<0.0001 | <0.90001 | <0.0001 | <0.0001 | <0.0001 | |
Zeolite × Hoagland A | 2.52 a | 3.35a | 0.67 a | 1.61de | 0.43 a |
Zeolite × Hoagland | 1.63 ef | 1.92 f | 0.46 d | 1.25 g | 0.29 b |
Zeolite × OLWF | 1.15 ı | 1.13 j | 0.31 g | 1.24 g | 0.08 e |
Cocopeat × Hoagland A | 1.38 h | 1.45 ı | 0.36 f | 1.41 f | 0.16 d |
Cocopeat × Hoagland | 2.31 c | 2.24 d | 0.55 b | 1.97b | 0.28 b |
Cocopeat × OLWF | 2.06 d | 2.54 c | 0.50 c | 1.98b | 0.27 b |
Z + C (1:1) × Hoagland A | 2.40 b | 2.48 c | 0.57 b | 2.20a | 0.26 bc |
Z + C (1:1) × Hoagland | 2.34 bc | 2.87 b | 0.56 b | 2.26a | 0.27 b |
Z + C (1:1) × OLWF | 1.55 g | 1.67 h | 0.39 e | 1.56e | 0.20 cd |
Z + C (1:2) × Hoagland A | 1.40 h | 1.81 g | 0.36 f | 1.49ef | 0.19 d |
Z + C (1:2) × Hoagland | 1.65 e | 1.88 fg | 0.41 e | 1.77c | 0.19 d |
Z + C (1:2) × OLWF | 1.57 fg | 2.10 e | 0.40 e | 1.74 cd | 0.19 d |
LSD 5% | 0.7 | 8 | 3 | 1.3 | 0.6 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
The effect of different substrates and nutrient solution applications on the level of macro elements in berries.
Z + C: Zeolite+Cocopeat, OLWF: Organic liquid worm fertilizer,
Mean separation within columns by LSD multiple range test at 0.05 level.
Macrominerals presented in Table 3 determined that the potassium contents of berries were higher than those of the others, ranging from 234 mg 100 g−1 for Z + C (1:1) substrate and 186 mg 100 g−1 for OLWF fertilizer. Followed calcium content of grapes was found between 51 mg 100 g−1 for Z + C (1:1) substrate and 40 mg 100 g−1 for OLWF fertilizer. Among the macroelements, sodium gave the lowest amount.
Considering trace elements, the highest iron content (0.362 mg 100 g−1) is obtained from Z + C (1:1), whereas the lowest level of iron (0.255 mg 100 g−1) was found in zeolite. The zinc content of grape berries was in the range of 0.299 and 0.184 mg 100 g−1, whereas the manganese content of grape berries was in the range of 0.235–0.178 mg 100 g−1. Cupper and boron microminerals varied between 0.147 and 0.105 and 0.481 and 0.329 mg 100 g−1, respectively. The substrate × fertilizer interaction was significant for all elements except Cu and B (Tables 3 and 4).
Sources of variation | Microelements (mg 100 g−1) | ||||
---|---|---|---|---|---|
Fe | Zn | Mn | Cu | B | |
Zeolite | 0.255 c y | 0.299 a | 0.178 c y | 0.105 b | 0.348 |
Cocopeat | 0.353 a | 0.184 c | 0.208 b | 0.131ab | 0.448 |
Z + C (1:1)x | 0.362 a | 0.187 c | 0.235 a | 0.147 a | 0.481 |
Z + C (1:2) | 0.288 b | 0.192 b | 0.195 b | 0.113 ab | 0.329 |
LSD 5% | 0.011 | 0.011 | 0.016 | 0.036 | NS |
<0.0001 | <0.0001 | <0.0001 | 0.1082 | 0.002 | |
Hoagland A | 0.325 b | 0.206 b | 0.208 a | 0.123 | 0.399 |
Hoagland | 0.340 a | 0.207 b | 0.216 a | 0.136 | 0.455 |
OLWF | 0.279 c | 0.233 a | 0.188 b | 0.112 | 0.351 |
LSD 5% | 0.010 | 0.009 | 0.014 | NS | NS |
<0.0001 | <0.0001 | 0.001 | 0.2907 | 0.3459 | |
Zeolite × Hoagland A | 373.26 c | 23.36c | 257.02 b | 111.36 | 33.55 |
Zeolite × Hoagland | 274.67e | 26.09b | 161.89 fg | 107.69 | 36.95 |
Zeolite × OLWF | 119.72 g | 40.33a | 115.50 h | 96.29 | 33.83 |
Cocopeat × Hoagland A | 229.96f | 22.09 cd | 145.29 g | 113.61 | 38.77 |
Cocopeat × Hoagland | 399.01 b | 17.68gh | 222.25 cd | 159.97 | 59.94 |
Cocopeat × OLWF | 430.45 a | 15.31ı | 255.55 b | 120.14 | 35.54 |
Z + C (1:1) × Hoagland A | 403.44 b | 19.74ef | 247.77 bc | 177.22 | 61.79 |
Z + C (1:1) × Hoagland | 404.49 b | 17.81gh | 290.87 a | 135.89 | 40.02 |
Z + C (1:1) × OLWF | 276.79de | 18.58fgh | 166.47 fg | 126.40 | 42.59 |
Z + C (1:2) × Hoagland A | 294.99 d | 17.26 h | 182.54 f | 90.53 | 25.58 |
Z + C (1:2) × Hoagland | 282.14de | 21.29de | 188.47 ef | 142.21 | 44.89 |
Z + C (1:2) × OLWF | 289.78de | 19.16 fg | 212.86 de | 104.91 | 28.33 |
LSD 5% | 0.020 | 0.018 | 0.028 | NS | NS |
<0.0001 | <0.0001 | <0.0001 | 0.3888 | 0.3886 |
The effect of different substrates and nutrient solution applications on the level of microelements in berries.
Z + C: Zeolite+Cocopeat, OLWF: Organic liquid worm fertilizer.
Mean separation within columns by LSD multiple range test at 0.05 level,
NS: Nonsignificant.
In the study by Abdrabba and Hussein [35], calcium, magnesium, potassium, phosphorus, and iron values were determined as 120, 31, 154, 39, and 5 mg 100 g−1 as the average of pulp, seed, and peel, respectively, and these minerals useful for the human body have been deemed necessary.
Similarly, the values given in Kral et al. [59] for Ca, K, Mg, Na, Cu, Fe, Mn, and Zn; in Cantürk et al. [60] for Ca, K, Mg, Na, P, Cu, Fe, Mn, B, and Zn; in Abdrabba and Hussein [35] for Ca, K, Mg, P, and Fe; in Anonymous [61] for Ca, K, Mg, Na, and Fe; in Olsen and Ware [62] for Ca, K, Mg, Na, P, Fe, Mn, B, and Zn were found to be quite close to the values given in Table 3 for the specified elements.
For this reason, it was concluded that there were no significant losses in terms of mineral levels of grapes grown under soilless culture conditions.
Vitamins, like minerals, are micronutrients that play an essential role in fulfilling metabolic functions, producing new cells, and repairing damaged cells.
There were found significant differences among substrates and fertilizers in terms of vitamin contents of berries analyzed in the study. The higher vitamin A, B1, B2, B6, and C values were analyzed in berries of plants grown in Z + C (1:1) substrate mix and berries of applications using Hoagland solution (Table 5). The higher values obtained from vitamin A, B1, B2, B6, and C were 39.21, 65.12, 167.06, 95.19, and 15.21 mg 100 g−1, respectively. The substrate × fertilizer interaction was significant for all vitamins examined (Table 5).
Sources of variation | A Retinol | B1 Thiamin | B2 Riboflavin | B6 Pyridoxine | C Ascorbic acid |
---|---|---|---|---|---|
Zeolite | 29.95 d y | 45.39 b | 113.76 d | 78.50 c | 12.49 c |
Cocopeat | 34.91 b | 59.59 a | 148.49 b | 88.27 b | 13.51 b |
Z + C (1:1)x | 39.21 a | 65.12 a | 167.06 a | 95.18 a | 15.21 a |
Z + C (1:2) | 31.65 c | 46.02 b | 121.29 c | 69.74 d | 12.14 c |
LSD 5% | 1.09 | 5.54 | 6.59 | 4.55 | 0.42 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Hoagland A | 34.51 b | 55.67 b | 140.93 b | 84.44 b | 13.62 b |
Hoagland | 36.51 a | 60.47 a | 153.29 a | 91.79 a | 14.46 a |
OLWF | 30.76 c | 45.95 c | 118.74 c | 72.54 c | 11.93 c |
LSD 5% | 0.95 | 4.80 | 5.71 | 3.94 | 0.36 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Zeolite × Hoagland A | 39.40 b | 56.80 bc | 144.69 de | 93.26 b | 15.72 b |
Zeolite × Hoagland | 28.89 de | 49.01 cd | 114.02 fg | 80.73 c | 12.41 d |
Zeolite × OLWF | 21.54 g | 30.37e | 82.57 h | 61.52 f | 9.33 f |
Cocopeat × Hoagland A | 26.70 f | 43.21 d | 106.56 g | 71.01 de | 10.88 e |
Cocopeat × Hoagland | 39.49 b | 74.24 a | 187.54 b | 109.98 a | 15.58 b |
Cocopeat × OLWF | 38.53 b | 61.32 b | 151.37 d | 83.81 c | 14.07 c |
Z + C (1:1) × Hoagland A | 43.75 a | 82.81 a | 204.58 a | 113.18 a | 17.43 a |
Z + C (1:1) × Hoagland | 43.59 a | 63.66 b | 172.08 c | 94.21 b | 16.08 b |
Z + C (1:1) × OLWF | 30.29 d | 48.88 cd | 124.53 f | 78.14 cd | 12.11 d |
Z + C (1:2) × Hoagland A | 28.19 ef | 39.86 de | 107.89 g | 60.31 f | 10.43 e |
Z + C (1:2) × Hoagland | 34.08 c | 54.98 bc | 139.50 e | 82.23 c | 13.76 c |
Z + C (1:2) × OLWF | 32.67 c | 43.22 d | 116.47 fg | 66.69 ef | 12.21 d |
LSD 5% | 1.89 | 9.60 | 11.41 | 7.88 | 0.72 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
The effect of different substrate and nutrient solution applications on vitamins (mg 100 g−1).
Z + C: Zeolite+Cocopeat, OLWF: organic liquid worm fertilizer.
Mean separation within columns by LSD multiple range test at 0.05 level.
According to the Bourre [63] and Key et al. [28], nutrients such as vitamins, minerals, and amino acids play a crucial role in ensuring proper brain function. Vitamins protect against inflammation and reactive oxidative species. Minerals function as cofactors for enzymes, prevent lipid peroxidation, and promote energy production. Amino acids serve as precursors to neurotransmitters and neuromodulator metabolites responsible for various functions related to attention, mood, arousal, and memory.
Most vitamins and microelements have been studied concerning brain functioning. For example, it has been reported by Bourre [63] that the use of glucose for energy production occurs in the presence of vitamin B1. This vitamin regulates cognitive performance, especially in the elderly. It has been reported that vitamin B6 is beneficial in treating premenstrual depression. Vitamins B6 and B12, among others, are directly involved in synthesizing certain neurotransmitters. Vitamin B12 delays the onset of signs of dementia and blood abnormalities when administered at an appropriate time before the first symptoms.
Emphasizing the importance of mineral nutrients for healthy brain aging, Key et al. [28] stated in their results that a nutrient regime containing macro- and micronutrients softens the effect of brain structure on cognitive function in old age and supports the effectiveness of interdisciplinary methods in nutritional cognitive neuroscience for a healthy brain. In the article of Çetin et al. [64], different researchers reported that potassium is a very important component of human health. A high-potassium diet lowers blood pressure and reduces cardiovascular disease morbidity and mortality [65]. In addition, potassium intake reduces urinary calcium excretion and decreases the risk of osteoporosis [66]. Ca is the primary element of the bone system, assists in tooth development, helps regulate endo- and exo-enzymes, and plays a significant role in regulating blood pressure [67]. Therefore, it is an essential mineral for human health. Zn and Fe deficiency in the diet programs is a common problem and a matter of great concern, especially in developing countries where people trust vegetarian diets more. Zn is involved with the immune system, and Fe is concerned with hemoglobin, myoglobin, and cytochrome [68]. They are also recognized to be potential antioxidants [69]. Mg is essential to all living cells, where they play a major role in manipulating important biological polyphosphate compounds such as ATP, DNA, and RNA. Also, more than 300 enzymes require magnesium ions to function [70].
In the study, the effects of applications on 20 amino acids in grapes were evaluated. For all amino acids examined in Table 5, the differences between treatments were statistically significant. The highest values were found from Z + C (1:1) application in 14 amino acids (Table 6), namely aspartate, glutamate, proline, arginine, glutamine, histidine, alanine, cystine, methionine, tryptophan, phenylalanine, isoleucine, leucine, and lysine. In Z + C (1:1), Z + C (1:2), and cocopeat applications for valine; in Z + C (1:1) and zeolite for serine; and in cocopeat and Z + C (1:2) applications for glycine were the highest values. Apart from these, the highest tyrosine and asparagine in Zeolite were detected. Among nutrient solutions, Hoagland for aspartate, glutamate, alanine, and phenylalanine amino acids; Hoagland and Hoagland A for proline, arginine, glutamine, tyrosine, methionine, tryptophan, isoleucine, and leucine; Hoagland and OLWF nutrient solutions for histidine; Hoagland A for glycine, thionine, cystine, valine, lysine, asparagine and serine amino acids gave the highest values. As can be seen in Table 6, substrate × fertilizer interaction was found to be significant for all amino acids.
Sources of Variation | Aspartate | Glutamate | Proline | Arginine | Glutamine |
---|---|---|---|---|---|
Zeolite | 14,930 c y | 10,637 d | 28,607 c | 34,258 c | 20,750 c |
Cocopeat | 16,289 b | 14,849 b | 33,667 b | 39,258 b | 24,768 b |
Z + C (1:1)x | 17,718 a | 15,751 a | 37,901 a | 42,880 a | 27,569 a |
Z + C (1:2) | 13,867 d | 12,257 c | 34,200 b | 35,427 c | 22,018 c |
LSD 5% | 5529 | 774 | 1290 | 2222 | 1668 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Hoagland A | 16,172 b | 13,440 b | 34,041 a | 39,771 a | 24,293 a |
Hoagland | 16,725 a | 15,096 a | 34,020 a | 38,911 a | 25,437 a |
OLWF | 14,206 c | 11,585 c | 32,720 b | 35,186 b | 21,599 b |
LSD 5% | 470 | 670 | 1117 | 1924 | 1445 |
<0.0001 | <0.0001 | 0.0342 | 0.0001 | <0.0001 | |
Zeolite × Hoagland A | 20,134 ab | 14,265 c | 42,259 c | 51,443 a | 26,212 bc |
Zeolite × Hoagland | 13,650 efg | 12,818 de | 22,751 ıj | 28,563 ef | 19,198 ef |
Zeolite × OLWF | 11,005 ı | 4828 g | 20,810 j | 22,769 g | 16,841 f |
Cocopeat × Hoagland A | 12,168 h | 10,323 f | 23,521 ı | 26,383 fg | 18,822 ef |
Cocopeat × Hoagland | 18,646 cd | 18,030 a | 32,766 f | 40,354 c | 28,919 ab |
Cocopeat × OLWF | 18,052 d | 16,195 b | 44,713 b | 51,038 a | 26,562 b |
Z + C (1:1) × Hoagland A | 19,396 bc | 17,604 a | 36,692 e | 46,293 b | 31,632 a |
Z + C (1:1) × Hoagland | 20,511 a | 16,144 b | 51,120 a | 54,359 a | 30,277 a |
Z + C (1:1) × OLWF | 13,248 fg | 13,505 cd | 25,890 h | 27,989 f | 20,799 de |
Z + C (1:2) × Hoagland A | 12,990 gh | 11,568 ef | 33,693 f | 34,966 d | 20,506 de |
Z + C (1:2) × Hoagland | 14,091 ef | 13,390 cd | 29,442 g | 32,367 de | 23,354 cd |
Z + C (1:2) × OLWF | 14,520 e | 11,814 e | 39,465 d | 38,948 c | 22,193 d |
LSD 5% | 940 | 1341 | 2234 | 3849 | 2889 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Zeolite | 1895 d | 2190 b | 5423 a | 22,905 c | 2724 a |
Cocopeat | 3454 b | 2510 a | 5598 a | 26,921 b | 2535 bc |
Z + C (1:1)x | 3752 a | 2200 b | 4870 b | 30,365 a | 2632 ab |
Z + C (1:2) | 3113 c | 2560 a | 5699 a | 25,722 b | 2455 c |
LSD 5% | 243 | 150 | 289 | 1855 | 138 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0034 | |
Hoagland A | 2892 b | 2710 a | 6197 a | 26,486 ab | 2807 a |
Hoagland | 3149 a | 2130 c | 4904 b | 27,826 a | 2689 a |
OLWF | 3119 a | 2260 b | 5091 b | 25,123 b | 2264 b |
LSD 5% | 211 | 130 | 250 | 1607 | 120 |
0.073 | <0.0001 | <0.0001 | 0.0079 | <0.0001 | |
Zeolite × Hoagland A | 2314 fg | 141.2 e | 4365 ef | 29,162 cd | 4232 a |
Zeolite × Hoagland | 1313 h | 169.9 d | 4589 e | 20,585 fg | 2817 c |
Zeolite × OLWF | 2059 g | 346.6 ab | 7314 bc | 18,968 g | 1124 g |
Cocopeat × Hoagland A | 2360 fg | 367.8 a | 7761 ab | 20,839 fg | 1900 f |
Cocopeat × Hoagland | 3648 c | 157.1 de | 3686 gh | 28,825 cd | 2623 cd |
Cocopeat × OLWF | 4355 b | 227.4 c | 5348 d | 31,100 bc | 3082 b |
Z + C (1:1) × Hoagland A | 3761 c | 337.4 b | 7120 c | 32,508 b | 2561 d |
Z + C (1:1) × Hoagland | 4904 a | 150.8 de | 3484 h | 35,810 a | 3072 b |
Z + C (1:1) × OLWF | 2592 f | 170.7 d | 4005 fg | 22,776 f | 2263 e |
Z + C (1:2) × Hoagland A | 3134 de | 235.6 c | 5541 d | 23,435 ef | 2535 d |
Z + C (1:2) × Hoagland | 2732 ef | 372.2 a | 7856 a | 26,085 de | 2243 e |
Z + C (1:2) × OLWF | 3472 cd | 160.0 de | 3699 gh | 27,646 d | 2589 cd |
LSD 5% | 422 | 260 | 501 | 3214 | 239 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Zeolite | 3846 ab y | 1526 b | 6339 c | 5409 c | 7410 d |
Cocopeat | 3675 b | 1728 a | 7544 b | 5845 b | 9456 b |
Z + C (1:1)x | 3995 a | 1892 a | 8232 a | 6663 a | 10,707 a |
Z + C (1:2) | 3272 c | 1805 a | 6697 c | 5886 b | 8196 c |
LSD 5% | 177 | 170 | 599 | 329 | 595 |
<0.0001 | 0.0015 | <0.0001 | <0.0001 | <0.0001 | |
Hoagland A | 3986 a | 1818 a | 7405 a | 6213 a | 9070 b |
Hoagland | 3822 b | 1655 b | 7501 a | 6018 a | 9796 a |
OLWF | 3283 c | 1740 ab | 6702 b | 5621 b | 7961 c |
LSD 5% | 153 | 147 | 519 | 285 | 515 |
<0.0001 | 0.0930 | 0.0079 | 0.0010 | <0.0001 | |
Zeolite × Hoagland A | 6100 a | 2834 b | 9659 b | 8966 a | 9836 de |
Zeolite × Hoagland | 3273 f | 934 e | 5259 f | 4190 g | 7250 gh |
Zeolite × OLWF | 2164 j | 810 e | 4099 g | 3071 h | 5146 ı |
Cocopeat × Hoagland A | 2525 ı | 920 e | 4934 fg | 3689 g | 6936 h |
Cocopeat × Hoagland | 3975 d | 1410 d | 8014 c | 5578 e | 11,157 bc |
Cocopeat × OLWF | 4523 c | 2854 b | 9685 b | 8268 b | 10,276 cd |
Z + C (1:1) × Hoagland A | 4098 d | 1454 d | 8261 c | 6291 d | 12,360 a |
Z + C (1:1) × Hoagland | 5093 b | 3214 a | 10,906 a | 9520 a | 11,623 ab |
Z + C (1:1) × OLWF | 2794 hı | 1007 e | 5528 f | 4178 g | 8139 fg |
Z + C (1:2) × Hoagland A | 3220 fg | 2065 c | 6766 de | 5906 de | 7150 gh |
Z + C (1:2) × Hoagland | 2945 gh | 1062 e | 5827 ef | 4785 f | 9157 ef |
Z + C (1:2) × OLWF | 3650 e | 2288 c | 7496 cd | 6967 c | 8285 f |
LSD 5% | 307 | 294 | 1038 | 571 | 1031 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Zeolite | 4933 c | 9161 c | 7862 c | 9618 a | 16,332 a |
Cocopeat | 5582 ab | 10,046 b | 9003 b | 7140 c | 14,232 b |
Z + C (1:1)x | 6111 a | 11,322 a | 9860 a | 8111 b | 15,996 a |
Z + C (1:2) | 5119 bc | 9917 bc | 9350 ab | 8500 b | 14,284 b |
LSD 5% | 531 | 790 | 658 | 754 | 1060 |
0.0006 | 0.0001 | <0.0001 | <0.0001 | 0.0003 | |
Hoagland A | 5717 a | 10,580 a | 9411 a | 9851 a | 16,941 a |
Hoagland | 5528 a | 10,270 a | 8620 b | 7332 b | 15,112 b |
OLWF | 5064 b | 9485 b | 9024 ab | 7844 b | 13,580 c |
LSD 5% | 460 | 684 | 570 | 653 | 918 |
0.0214 | 0.0092 | 0.0297 | <0.0001 | <0.0001 | |
Zeolite × Hoagland A | 7633 a | 14,380 ab | 14,573 b | 20,483 a | 28,776 a |
Zeolite × Hoagland | 3996 ef | 7216 de | 4845 fg | 5060 fg | 12,623 fg |
Zeolite × OLWF | 3170 f | 5889 e | 4168 g | 3310 h | 7599 j |
Cocopeat × Hoagland A | 3672 ef | 6456 e | 4777 fg | 3636 h | 9376 ıj |
Cocopeat × Hoagland | 5610 bc | 10,072 c | 7385 e | 5030 fg | 13,807 ef |
Cocopeat × OLWF | 7463 a | 13,609 b | 14,846 b | 12,755 c | 19,514 c |
Z + C (1:1) × Hoagland A | 6440 b | 11,145 c | 7614 e | 5672 f | 15,296 de |
Z + C (1:1) × Hoagland | 7999 a | 15,692 a | 16,718 a | 14,686 b | 22,072 b |
Z + C (1:1) × OLWF | 3894 ef | 7129 de | 5247 fg | 3974 gh | 10,621 hı |
Z + C (1:2) × Hoagland A | 5122 cd | 10,338 c | 10,683 d | 9611 e | 14,315 ef |
Z + C (1:2) × Hoagland | 4507 de | 8099 d | 5531 f | 4552 fgh | 11,949 gh |
Z + C (1:2) × OLWF | 5728 bc | 11,316 c | 11,835 c | 11,338 d | 16,588 d |
LSD 5% | 919 | 1369 | 1140 | 1305 | 1836 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
The effect of different substrate and nutrient solution applications on amino acid content (μg kg−1) of Early Cardinal berries.
Z + C: Zeolite+Cocopeat, OLWF: organic liquid worm fertilizer.
Mean separation within columns by LSD multiple range test at 0.05 level.
Proline is reported in many works of literature as an amino acid whose synthesis is increased, especially under abiotic stress conditions such as drought [43, 71]. For this reason, we evaluated that the high increase in proline amino acid in Hoagland A and Hoagland nutrient solutions may be due to the lower amounts of some macro- (N) and microelements (Zn, Cu, Mn, Fe) in these solutions compared with OLWF nutrient solution (Table 1). Anjum et al. [72], Liang et al. [73], and Arabshahi and Mobasser [74] indicated that sensitive plants are less able to accumulate solutes, but increases in proline can be found in most organisms (including animals) following water stress [25, 43].
According to the Huang and Ough [29], Canoura et al. [43], Bouzas-Cid et al. [36, 47, 48, 49], Sánchez-Gómez et al. [41], Gutiérrez-Gamboa et al. [26, 42, 45, 46], Fernández-Novales et al. [75], and Wu et al. [44], amino acid contents of grape berries are affected by different variety, rootstock, location and fertilization, etc., viticultural practices. For instance, in the study by Gutiérrez-Gamboa et al. [26], the effect of foliar application of a seaweed extract to a Tempranillo Blanco variety on must and wine amino acids and ammonium content was determined. The results suggested that Tempranillo Blanco behaved as an arginine accumulator variety. Biostimulation after seaweed applications at a high dosage to the grapevines increased the concentration of several amino acids in the 2017 season while scarcely affecting their content in 2018.
In the another research by Gutiérrez-Gamboa et al. [46], results showed that of some elicitors and nitrogen foliar applications to Garnacha and Tempranillo grapevines decreased the must amino acid concentration. The treatments applied to Graciano grapevines affected the grape amino acid content. According to the percentage of variance attributable, the variety had a higher effect on the must amino acid composition than the treatments and their interaction. In the study by Fernández-Novales et al. [75], researchers have investigated the use of visible and near-infrared spectroscopy to estimate the grape amino acid content on whole berries of Grenache grape variety. Amino acid values ranged between 0.01 mg L−1 (Leucine) and 341 mg L−1 (Arginine). In their results, amino acid values obtained in our study varied from 1526 μg kg−1 (valine in zeolite) to 42,880 μg kg−1 (arginine in Z + C (1:1)).
These values were close to the values of valine (1.07 mg L−1) given by Fernández-Novales et al. [75] for Grenache and arginine (38.44–89.60 mg L−1) given by Valdes et al. [76] for Tempranillo berries. Arginine and proline amino acids were recorded as the most abundant amino acids in all media and nutrient solutions used in our experiment; valine, glycine, and tyrosine were determined as the amino acids with the lowest values. These results agree with Fernández Novales et al. [75] and Valdes et al. [76] that arginine and proline were also reported as the most abundant amino acids, both of the researches.
From the above statements, it has been concluded that grapes grown in soilless culture will not encounter a significant nutrient loss in terms of amino acids examined in this study. In our study, it has been evaluated that the Z + C (1:1) mixture substrate, which has the higher values for 14 amino acids, including proline as well as arginine, is remarkable in terms of nutrient saving.
According to the main results obtained from this study;
In soilless culture cultivation of table grapes, it has been observed that zeolite and cocopeat media can be used alone, as well as a 1:1 mixture of Zeolite:Cocopeat, where the highest values are obtained.
Hoagland and modified Hoagland nutrient solutions mostly gave higher values than OLWF for the properties studied. However, since OLWF did not have a significant negative effect, it was considered that it would be appropriate to continue working with this and similar solutions.
Amino acid, vitamins, and mineral contents of grapes grown in soilless culture conditions were found to be close to the values given in the literature for grapes grown in open field.
This article was produced from the Master Thesis of Mikail Atalan, whose study was supported by the Cukurova University Scientific Research Coordination Unit (Project No: FYL-2018-11066).
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Journals",metaDescription:"IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors",metaKeywords:null,canonicalURL:"/page/publication-agreement-journals",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Journal Article:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Article who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author. Co-Author: All other Authors of the Article besides the Corresponding Author. IntechOpen: IntechOpen Ltd., the Publisher of the Journal.
\\n\\nJournal: The publication as a collection of Articles compiled by IntechOpen .
\\n\\nArticle: The original literary work created by Corresponding Author and any Co Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to publish, communicate to the public, reproduce, republish, transmit, sell, distribute and otherwise use and make available the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works, in electronic and print editions of the Publication and in derivative works and on any platform owned and/or operated by IntechOpen, throughout the world, in all languages, and in all media and formats now known or later developed.
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to create and store electronic archival copies of the Article, including the right to deposit the Article in open access digital repositories.
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to license others to reproduce, translate, republish, transmit and distribute the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works under the condition that the Corresponding Author and each Co-Author is attributed (currently this is carried out by publishing the Article under a Creative Commons 4.0 International Licence).
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Article but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Article as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world. The Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Article and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Article.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Article as a consequence of IntechOpen's changes to the Article arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Article, the Corresponding Author agrees to credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen, when they are distributing or re publishing the Article.
\\n\\n3.2 When submitting the Article, the Corresponding Author agrees to:
\\n\\n• Comply with all instructions and guidelines provided by IntechOpen;
\\n\\n• Produce the Article with all due skill, care and diligence, and in accordance with good scientific practice;
\\n\\n• Submit all the corrections in due time as defined during the publishing process schedule.
\\n\\nThe Corresponding Author will be held responsible for the payment of the Article Processing Charge.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Article worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Article does not and will not breach any applicable law or the rights of any third party and, specifically, that the Article contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Article is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Article has not been formally published in any other peer-reviewed journal or in a Journal or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication
\\n\\nAgreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Article to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Article was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Article on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Article attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Article and has the right to contact the Corresponding Author and any Co-Author until the Article is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Article,
\\n\\nIntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n"}]'},components:[{type:"htmlEditorComponent",content:"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Journal Article:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Article who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author. Co-Author: All other Authors of the Article besides the Corresponding Author. IntechOpen: IntechOpen Ltd., the Publisher of the Journal.
\n\nJournal: The publication as a collection of Articles compiled by IntechOpen .
\n\nArticle: The original literary work created by Corresponding Author and any Co Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to publish, communicate to the public, reproduce, republish, transmit, sell, distribute and otherwise use and make available the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works, in electronic and print editions of the Publication and in derivative works and on any platform owned and/or operated by IntechOpen, throughout the world, in all languages, and in all media and formats now known or later developed.
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to create and store electronic archival copies of the Article, including the right to deposit the Article in open access digital repositories.
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to license others to reproduce, translate, republish, transmit and distribute the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works under the condition that the Corresponding Author and each Co-Author is attributed (currently this is carried out by publishing the Article under a Creative Commons 4.0 International Licence).
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Article but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Article as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world. The Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Article and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Article.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Article as a consequence of IntechOpen's changes to the Article arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Article, the Corresponding Author agrees to credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen, when they are distributing or re publishing the Article.
\n\n3.2 When submitting the Article, the Corresponding Author agrees to:
\n\n• Comply with all instructions and guidelines provided by IntechOpen;
\n\n• Produce the Article with all due skill, care and diligence, and in accordance with good scientific practice;
\n\n• Submit all the corrections in due time as defined during the publishing process schedule.
\n\nThe Corresponding Author will be held responsible for the payment of the Article Processing Charge.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Article worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Article does not and will not breach any applicable law or the rights of any third party and, specifically, that the Article contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Article is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Article has not been formally published in any other peer-reviewed journal or in a Journal or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication
\n\nAgreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Article to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Article was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Article on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Article attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Article and has the right to contact the Corresponding Author and any Co-Author until the Article is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Article,
\n\nIntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26t