Open access peer-reviewed chapter

Analysis of Heat Transfer in Non-Coaxial Rotation of Newtonian Carbon Nanofluid Flow with Magnetohydrodynamics and Porosity Effects

Written By

Wan Nura’in Nabilah Noranuar, Ahmad Qushairi Mohamad, Sharidan Shafie, Ilyas Khan, Mohd Rijal Ilias and Lim Yeou Jiann

Submitted: September 17th, 2021 Reviewed: September 24th, 2021 Published: November 8th, 2021

DOI: 10.5772/intechopen.100623

Chapter metrics overview

130 Chapter Downloads

View Full Metrics


The study analyzed the heat transfer of water-based carbon nanotubes in non-coaxial rotation flow affected by magnetohydrodynamics and porosity. Two types of CNTs have been considered; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Partial differential equations are used to model the problem subjected to the initial and moving boundary conditions. Employing dimensionless variables transformed the system of equations into ordinary differential equations form. The resulting dimensionless equations are analytically solved for the closed form of temperature and velocity distributions. The obtained solutions are expressed in terms of a complementary function error. The impacts of the embedded parameters are graphically plotted in different graphs and are discussed in detail. The Nusselt number and skin friction are also evaluated. The temperature and velocity profiles have been determined to meet the initial and boundary conditions. An augment in the CNTs’ volume fraction increases both temperature and velocity of the nanofluid as well as enhances the rate of heat transport. SWCNTs provides high values of Nusselt number compared to MWCNTs. For verification, a comparison between the present solutions and a past study is conducted and achieved excellent agreement.


  • Nanofluids
  • Carbon nanotubes
  • Newtonian fluid
  • Magnetohydrodynamics
  • Heat transfer

1. Introduction

The growing demand in manufacturing has led to a significant process of heat energy transfer in industry applications such as nuclear reactors, heat exchangers, radiators in automobiles, solar water heaters, refrigeration units and the electronic cooling devices. Enhancing the heating and cooling processes in industries will save energy, reduce the processing time, enhances thermal rate and increase the equipment’s lifespan. Sivashanmugam [1] found that nanofluid emergence has improved heat transfer capabilities for processes in industries. Choi and Eastman [2] established the nanofluid by synthesizing nanoparticles in the conventional base fluid. To be specific, nanofluid is created by suspending nano-sized particles with commonly less than 100 nm into the ordinary fluids such as ethylene glycol, propylene glycol, water and oils [3]. Various materials from different groups can be used as the nanoparticles such as Al2O3 and CuO from metalic oxide, Cu, Ag, Au from metals, SiC and TiC from carbide ceramics, as well as TiO3 from semiconductors [4]. In addition, immersion of nanoparticles is a new way of enhancing thermal conductivity of ordinary fluids which directly improves their ability in heat transportation [5]. In line with nanofluid’s contribution in many crucial applications, a number of research has been carried out to discover the impacts of various nanofluid suspension on the flow features and heat transfer with several effects including Sulochana et al. [6] considering CuO-water and TiO-water, Sandeep and Reddy [7] using Cu-water, and Abbas and Magdy [8] choosing Al2O3-water as their nanofluid.

Magnetohydrodynamics (MHD) is known as the resultant effect due to mutual interaction of magnetic field and moving electrical conducting fluid. Their great applications such as power generation system, MHD energy conversion, pumps, motors, solar collectors have drawn significant attention of several researcher for MHD nanofluid in convective boundary layer flow [9]. Benos and Sarris [10] studied the impacts of MHD flow of nanofluid in a horizontal cavity. Hussanan et al. [11] analyzed the transportation of mass and heat for MHD nanofluid flow restricted to an accelerated plate in a porous media. In this study, water-based oxide and non-oxide had been considered as the nanofluids. Prasad et al. [12] performed similar work as [11] concerning the radiative flow of nanofluid over a vertical moving plate. Anwar et al. [13] conducted the MHD nanofluid flow in a porous material with heat source/sink and radiation effects. Cao et al. [14] analyzed the heat transfer and flow regimes for a Maxwell nanofluid under MHD effect. While, Ramzan et al. [15] investigated for a radiative Jeffery nanofluid and Khan et al. [16] carried out for a Casson nanofluid with Newtonian heating.

One of the greatest discoveries in material science history is carbon nanotubes (CNTs), which was discovered by a Japanese researcher in the beginning of the 1990s. Since the discovery, due to the unique electronic structural and mechanical characteristics, CNTs are found as valuable nanoparticles, especially in nanotechnology field. CNTs are great conductance which is highly sought in medical applications. They have been used as drug carriers and have benefited cancer therapy treatments [17]. The high thermal conductivity of CNTs has attracted significant attention from many researchers, including Xue [18], Khan et al. [19] and Saba et al. [20]. CNTs are hollow cylinders of carbon atoms in the forms of metals or semiconductors. CNTs are folded tubes of graphene sheet made up of hexagonal carbon rings, and their bundles are formed. CNTs are classified into two types with respectively differ in the graphene cylinder arrangement which are single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs has one layer [21], while MWCNTs consist of more than one graphene cylinder layers [22]. Khalid et al. [23] studied the characteristics of flow and heat transfer for CNTs nanofluid affected by MHD and porosity effects. Acharya et al. [24] discussed a comparative study on the properties of MWCNTs and SWCNTs suspended in water with the imposition of magnetic field. The CNTs nanofluid flow induced by a moving plate was investigated by Anuar et al. [25] and a prominent effect on heat transfer and skin friction by SWCNTs was observed. Ebaid et al. [26] analyzed convective boundary layer for CNTs nanofluid under magnetic field effect. The closed form solution was derived using Laplace transform method and the findings showed increasing magnetic strength and volume fraction of CNTs had deteriorated the rate of heat transport. Aman et al. [27] improved heat transfer for a Maxwell CNTs nanofluid moving over a vertical state plate with constant wall temperature. The investigation of velocity slip of carbon nanotubes flow with diffusion species was conducted by Hayat et al. [28]. Recently, the heat transmission analysis for water-based CNTs was discussed by Berrehal and Makinde [29], considering the flow over non-parallel plates and Ellahi et al. [30] considering flow past a truncated wavy cone.

Due to its broad range of uses such as car brake system, manufacturing of glass and plastic films, gas turbines, and medical equipment’s, numerous researchers have effectively studied heat transfer and fluid flow in a rotation system [31]. The impact of MHD and porosity on rotating nanofluid flow with double diffusion by using regular nanoparticles was discussed by Krishna and Chamkha [32]. More features of heat transfer affected by porosity and magnetic field for a rotating fluid flow were referred in Das et al. [33] and Krishna et al. [34, 35]. Kumam et al. [36] implemented CNTs in analyzing the flow behavior for a rotating nanofluid. The nanofluid was considered as an electrical conducting fluid moving in a channel under heat source/sink and radiation effects. More study on the heat propagation for a convective flow of nanofluid in a rotating system affected by CNTs with several effects and different geometries were presented by Imtiaz et al. [37], Mosayebidorcheh and Hatami [38] and Acharya et al. [39]. Interestingly, several researchers had recently concentrated their study on the non-coaxial rotation flow. Mixer machines in food processing industry, cooling pad of electronic devices and rotating propellers for aircraft have become great application to exemplify the non-coaxial rotating phenomenon in various industries. Mohamad et al. [40] presented the mathematical expression for heat transfer in non-coaxial rotation of viscous fluid flow. As the extension of the previous study, the heat and mass transfer effects (double diffusion) were considered by Mohamad et al. [41] and followed by Mohamad et al. [42] investigating porosity effect in double diffusion flow of MHD fluid. Ersoy [43] imposed a disk with non-torsional oscillation to study the convective non-coaxial rotating flow for a Newtonian fluid. Mohamad et al. [44, 45] worked on similar study considering the second grade fluid and Rafiq et al. [46] concerning the Casson fluid model. The time dependent flow of an incompressible fluid with MHD, chemical reaction and radiation effects under non-coaxial rotation was investigated by Rana et al. [47]. Subjecting to the same type of rotation, Mohamad et al. [48] studied the porosity and MHD consequences in mixed convection flow influenced by an accelerated disk. The study was improved by Noranuar et al. [49] including the effects of double diffusive flow. According to the review of non-coaxial rotation, it is clear that most of the study are subjected to the ordinary fluid. However, the study of non-coaxial rotation for nanofluid by using regular nanoparticles had been performed by Das et al. [50] and Ashlin and Mahanthesh [51] but then the study reporting the implementation of CNTs in non-coaxial rotation flow remains limited.

Inspiring from the above literature, new study is essential to explore more findings on non-coaxial rotation of CNTs nanofluid. Therefore, the investigation of MHD non-coaxial rotating flow of CNTs nanofluid due to free convection in a porous medium become the primary focus of the current study. Water base fluid is chosen to suspend nanoparticle of SWCNTs and MWCNTs. The exact solutions for velocity and temperature distributions are attained by solving the problem analytically using the Laplace transform method. The results are illustrated in several graphs and tables for further analysis of various embedded parameters.


2. Problem formulation

The incompressible time-dependent carbon nanofluid instigated by non-coaxial rotation past a vertical disk with an impulsive motion is considered as illustrated in Figure 1, where xand zare the Cartesian coordinates with x-axis is chosen as the upward direction and z-axis is the normal of it. The semi-finite space z>0is occupied by nanofluid that composed by constant kinematic viscosity υnfof SWCNTs and MWCNTs suspended in water and acts as an electrically conducting fluid flowing through a porous medium. The disk is placed vertically along the x-axis with forward motion and a uniform transverse magnetic field of strength B0is applied orthogonal to it. The plane x=0is considered as rotation axes for both disk and fluid. Initially, at t=0, the fluid and disk are retained at temperature Tand rotate about z-axis with the same angular velocity Ω. After time t>0, the fluid remains rotating at z-axis while the disk begins to move with velocity U0and rotates at z-axis. Both rotations have a uniform angular velocity Ω. The temperature of the disk raises to Twand the distance between the two axes of rotation is equal to . With above assumptions, the usual Boussinesq approximation is applied, and the nanofluid model proposed by Tiwari and Das [52] is used to represent the problem in the governing equations, express as

Figure 1.

Physical model of the problem.


The corresponding initial and boundary conditions are


in which F=f+igis the complex velocity; fand gare (real) primary and (imaginary) secondary velocities respectively, Tis the temperature of nanofluid and U0is the characteristic velocity. The following nanofluid constant for dynamic viscosity μnf, density ρnf, heat capacitance ρCpnf, electrical conductivity σnf, thermal expansion coefficient βTnfand thermal conductivity knfcan be used as


where the subscripts fis for fluid and CNTsis for carbon nanotubes. Meanwhile, ϕis the solid volume fraction of nanofluid. The constants in Eq. (4) are used based on the thermophysical features in Table 1.


Table 1.

Thermophysical features of water, SWCNTs, and MWCNTs.

Introducing following dimensionless variables


Using Eqs. (4) and (5), the governing equations in Eqs. (1)(3) reduce to (excluding the * notation to simplify the equations)


and the conditions take the form




At this point, d1and a1are constant parameters, Mis the magnetic parameter (magnetic field), Kis the porosity parameter, Pris Prandtl number, Gris Grashof number and Uis the amplitude of disk. Besides that, the other constant parameters are


3. Exact solution

Next, the system of equations in Eqs. (6)(8) after applying Laplace transform yield to the following form


Then, Eqs. (11) and (13) are solved by using the boundary conditions, Eqs. (12) and (14). After taking some manipulations on the resultant solutions, the following Laplace solutions form




are defined, respectively. The exact solutions for the temperature and velocity are finally generated by utilizing the inverse Laplace transform on Eqs. (15) and (16). Hence, it results






4. Physical quantities

In this study, the skin friction τtand Nusselt number Nufor the flow of Newtonian nanofluid in non-coaxal rotation are also analyzed. Their dimensional form is expressed as


Incorporating Eqs. (22) and (23) with the nanofluid model Eq. (4), dimensionless variables Eq. (5) and solutions Eqs. (18) and (19), the following dimensionless skin friction and Nusselt number form as




with τ=τνfμfΩ32.


5. Analysis of results

The dimensionless differential equations of non-coaxial rotating nanofluid flow with associated boundary and initial conditions are analytically solved using the method of Laplace transform to obtain the closed form solutions of heat transfer. Further analysis for the role of dimensionless time t, Grashof number Gr, volume fraction of nanoparticles ϕ, porosity parameter K, magnetic field parameter Mand amplitude of disk Uon velocity and temperature distributions as well as Nusselt number and skin friction are presented in figures and tables. The profiles are plotted with the physical value of parameters as Pr=6.2,Gr=0.5,M=0.2,K=2.0,ϕ=0.02,U=2.0and t=0.2. The values are same unless for the investigated parameter of the profile. Since the rotating nanofluid is part of the problem, the results are discussed by presenting the graph of velocity profile in real and imaginary parts, specifically describes the primary fand secondary gvelocities. The velocity profiles are demonstrated in Figures 27 and the temperature profiles are illustrated in Figures 8 and 9. From these profiles, it is found that all the obtained results satisfy both boundary and initial conditions. SWCNTs and MWCNTs have an identical nature of fluid flow and heat transfer.

Figure 2.

Profile offandgfor varied values oft.

Figure 3.

Profile offandgfor varied values ofGr.

Figure 4.

Profile offandgfor varied values ofM.

Figure 5.

Profile offandgfor varied values ofK.

Figure 6.

Profile offandgfor varied values ofϕ.

Figure 7.

Profile offandgfor varied values ofU.

Figure 8.

Profile ofTztfor varied values oft.

Figure 9.

Profile ofTztfor varied values ofϕ.

Figure 2 depicts the plotting of fand gprofiles with varying tvalues. Overall, the velocity of both SWCNTs and MWCNTs rises over time. As tincreases, the buoyancy force becomes more effective and functions as an external source of energy to the flow, causing the velocity of fluid to increase. Figure 3 illustrates the variation of fand gprofiles for SWCNTs and MWCNTs cases under the effect of Gr. It is essential to note that Gris an approximation of the buoyancy force to the viscous force exerting on the flow. Hence, an increase of Grsuggests to the domination of buoyancy force and reduces the viscosity of fluid. Thus, growing Grleads to an augment of fluid velocity.

On the other hand, Figure 4 discloses the nature of fluid flow in response to M. For both SWCNTs and MWCNTs cases, the figure suggests that amplifying Mdecreases fand gprofiles. This impact is owing to the fact that a greater Mvalue increases the frictional forces acting on the fluid, commonly known as the Lorentz force. Consequently, the fluid encounters substantial resistance along the flow and its velocity decreases. Next, the contribution of Kin SWCNTs and MWCNTs nanofluids for both fand gprofiles are displayed in Figure 5. It suggests that Kvalue increases linearly with the velocities for both SWCNTs and MWCNTs. Noting that porosity is also greatly affected by the permeability of a medium, where it determines the ability of a medium to enable the fluid to flow through it. Then, the increasing values of Kcause the medium to be more permeable and the fluid can easily pass through the medium. Therefore, it increases both fand gprofiles.

Figure 6 reveals the consequences of ϕon fand gprofiles in the cases of SWCNTs and MWCNTs. It shows that increasing ϕvalues result in the increment of fprofiles and fluctuating trend of gprofiles. This suggests significant advantages of non-coaxial rotation in CNTs, especially in industrial and medical applications. In line with a general finding, an analysis proceeding in cancer treatment has reported that the CNTs with higher velocity have been used to reach the tumor’s site. Besides, referring to Figure 7, it is noticed that ascending Ualso has a positive impact on velocity profiles for both CNTs suspensions, where the velocity ascends linearly with the values of U. As Uincreases, this proposes to the creation of external sources, which are used to enhance the thrust force acting in the fluid flow. Thus, the velocity fluid elevates with increasing U.

Furthermore, the temperature profiles Tztunder the impacts of tand ϕare displayed graphically in Figures 8 and 9. It reveals that increment of tand ϕcontributes to a rise in nanofluid temperature for both types of CNTs case and followed by the magnification of thermal boundary layer. Physically, the addition of sufficient ϕof CNTs can improve nanofluid’s thermal conductivity. The more CNTs being inserted, the higher the thermal conductivity, which unsurprisingly improves the ability of fluid to conduct heat. Therefore, a growth of temperature profile is exhibited for increasing ϕ. The comparison of physical behavior for SWCNTs and MWCNTs are clearer when referring to the zooming box of each graph. Overall, Figures 27 reveal that the velocity profile of MWCNTs case is more significant compared to the velocity of SWCNTs. This behavior is agreed to the thermophysical features in Table 1, where MWCNTs have low density, which also being a key factor for the increase of velocity profiles. Meanwhile, from Figures 8 and 9, SWCNTs have provided a prominent effect on temperature profiles as it is affected by a high thermal conductivity property.

Tables 2 and 3 show the results of skin friction (τpand τs) and Nusselt number Nufor various parameters on both cases SWCNTs and MWCNTs. According to Table 2, it shows that both τpand τsof SWCNTs and MWCNTs rise when the strength of Mhigher. These effects cause the surface to produce high friction drag due to the maximization of wall shear stress. On the contrary, as Gr,Kand tincrease, both suspension of SWCNTs and MWCNTs report a diminution in τpand τs. This shows that augmentation of Gr,Kand thave reduced the friction between fluid and surfaces which lead the velocity to increase. Meanwhile, as ϕand Uincrease, both suspension of SWCNTs and MWCNTs report a growth of τpand a diminution in τs. From Table 3, it shows that Nufor both CNTs cases decrease as the values of tincrease. However, when involving high ϕ, both SWCNTs and MWCNTs have large Nuwhich also implies to have a great of heat transfer rate. This effect is also directly affected by the reduction of nanofluid heat capacitance as ϕincreases. Overall, for Table 3, it is found that SWCNTs case have high value of Nucompared to MWCNTs, due to its reduction of heat capacitance. This effect also signifies for a better heat transfer process that can be used in several engineering and industrial system.


Table 2.

Values of primary τpand secondary τsskin friction for SWCNTs and MWCNTs.

The significance of bold emphasis used in Table 2 is for the comparison of the effects for varied values of the particular parameters. For each parameter, the changes of skin friction values are compared among the bold values of parameters.


Table 3.

Values of Nusselt number Nufor SWCNTs and MWCNTs.

The significance of bold emphasis used in Table 3 is for the comparison of the effects for varied values of the particular parameters. For each parameter, the changes of Nusselt number values are compared among the bold values of parameters.

The accuracy of the obtained solution is verified by comparing solution in Eq. (18) with the solution obtained by Mohamad et al. [40] in Eq. (53). The comparison is conducted by letting magnetic parameter and nanoparticle volume fraction M=ϕ=0, and porosity parameter Kin the present solution for both types of CNTs and letting phase angle ω=0and amplitude of disk oscillation U=2in the published work. This comparison shows that fand gprofiles for both present and previous works are identical to each other as clearly presented in Figures 10 and 11, which thus proves that the accuracy of obtained solution is verified. Meanwhile, another verification is also carried out to verify the validity of present solution by comparing the values of velocity profiles from the present work with the numerical values solved by numerical Gaver-Stehfest algorithm [53, 54]. Tables 4 and 5 observe that the results of fand gprofiles from the exact solution in Eq. (18) and the results from numerical solution are in excellent agreement.

Figure 10.

Comparison offprofiles from present results inEq. (18)with the published work by Mohamad et al. [40] in Eq. (53).

Figure 11.

Comparison ofgprofiles from present results inEq. (18)with the published work by Mohamad et al. [40] in Eq. (53).

zExact Eq. (18)Numerical Laplace Eq. (15)

Table 4.

Comparison of exact and numerical solution of fprofiles for SWCNTs and MWCNTs with t=0.2,Gr=0.5,M=0.2,K=2,ϕ=0.02,U=2,Pr=6.2.

zExact Eq. (18)Numerical Laplace Eq. (15)

Table 5.

Comparison of exact and numerical solution of gprofiles for SWCNTs and MWCNTs with t=0.2,Gr=0.5,M=0.2,K=2,ϕ=0.02,U=2,Pr=6.2.


6. Summary with conclusion

The unsteady non-coaxial rotation of water-CNTs nanofluid flow in a porous medium with MHD effect is analytically solved for the exact solutions by applying the Laplace transform method. The temperature and velocity profiles with various values of parameter for the immersion of SWCNTs and MWCNTs are plotted graphically and analyzed for their effects. From the discussion, significant findings emerge:

  1. Both primary and secondary velocities for SWCNTs and MWCNTs suspension increase as the values of t,Gr,K,and Uincrease while decrease as the values of Mincrease.

  2. The insertion of higher ϕof SWCNTs and MWCNTs increases the primary velocity profiles while for secondary velocity profiles, fluctuating trend is reported for both cases.

  3. The temperature of nanofluid increases when ϕand tincrease for both SWCNTs and MWCNTs cases.

  4. MWCNTs have higher primary and secondary velocity profiles compared to SWCNTs because of their low-density property

  5. SWCNTs have higher temperature profile than MWCNTs owing to their high thermal conductivity property.

  6. The increasing values of t,Grand Kdecrease both primary and secondary skin friction for both types of CNTs while the increase of Mgives opposite effect on both skin friction.

  7. Nusselt number for both CNTs cases reduce as tincreases and amplify as ϕincreases.

  8. The findings in present work are in accordance to findings in Mohamad et al. [40] and numerical values obtained by numerical Gaver-Stehfest algorithm.



The authors would like to acknowledge the Ministry of Higher Education Malaysia and Research Management Centre-UTM, Universiti Teknologi Malaysia (UTM) for the financial support through vote number 17 J98, FRGS/1/2019/STG06/UTM/02/22 and 08G33.


Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.



βTThermal expansion coefficient
CpSpecific heat
σElectrical conductivity
μDynamic viscosity
gxAcceleration due to gravity
kThermal conductivity
TTemperature of nanofluid
T∞Free stream temperature
TwWall temperature
B0Magnetic field
U0Characteristic of velocity
NuNusselt number
τSkin friction
τpPrimary skin friction
τsSecondary skin friction
FComplex velocity
fPrimary velocity
gSecondary velocity
ϕVolume fraction nanoparticles
ΩAngular velocity
iImaginary unit
PrPrandtl number
GrGrashof number
CNTsCarbon nanotubes


  1. 1. Sivashanmugam P. Application of nanofluids in heat transfer, In: S. N. Kazi (Ed.), An Overview of Heat Transfer, INTECH Publications, Croatia, 2012, 411-440.
  2. 2. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, United States, 1995.
  3. 3. Azhar WA, Vieru D, Fetecau C. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source. Physics of Fluids. 2017:29(9):1-13. DOI:
  4. 4. Gbadeyan JA, Titiloye EO, Adeosun AT. Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon. 2020:6:e03076. DOI:
  5. 5. Rehman F, Khan MI, Sadiq M, Malook A. MHD flow of carbon in micropolar nanofluid with convective heat transfer in the rotating frame. Journal of Molecular Liquids. 2017:231:353-263. DOI: 10.1016/j.molliq.2017.02.022
  6. 6. Sulochana C, Ashwinkumar GP, Sandeep N. Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate. Alexandria Engineering Journal. 2018:57(4):2573-2584. DOI:
  7. 7. Sandeep N, Reddy MG. Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries. Journal of Molecular Liquids. 2017:225:87-94. DOI:
  8. 8. Abbas W, Magdy MM. Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3, and TiO2 over a moving rotating plate and impact of various nanoparticle shapes. Mathematical Problems in Engineering. 2020:2020:1-12. DOI:
  9. 9. Anwar T, Kumam P, Watthayu W. An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption. Scientific Reports. 2020:10(1):1-19. DOI:
  10. 10. Benos L, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. International Journal of Heat and Mass Transfer. 2019:130:862-873. DOI:
  11. 11. Hussanan A, Salleh MZ, Khan I, Chen ZM. Unsteady water functionalized oxide and non-oxide nanofluids flow over an infinite accelerated plate. Chinese Journal of Physics. 2019:62:115-131. DOI:
  12. 12. Prasad PD, Kumar RVMSSK, Varma SVK. Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shams Engineering Journal. 2018:9(4):801-813. DOI:
  13. 13. Anwar T, Kumam P, Shah Z, Watthayu W, Thounthong P. Unsteady radiative natural convective MHD nanofluid flow past a porous moving vertical plate with heat source/sink. Molecules. 2020:25(4):1-21. DOI: 10.3390/molecules25040854
  14. 14. Coa Z, Zhoa J, Wang Z, Liu F, Zheng L. MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate. Journal of Molecular Liquids. 2016:222:1121-1127. DOI: 10.1016/j.molliq.2016.08.012
  15. 15. Ramzan M, Bilal M, Chung JD, Mann AB. On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Computing and Applications. 2017:30(9):2739-2748. DOI:
  16. 16. Khan A, Khan D, Khan I, Ali F, Karim FU, Imran M. MHD flow of sodium alginate-based Casson type nanofluid passing through a porous medium with Newtonian heating, Scientific Reports. 2018:8(1):1-18. DOI: 10.1038/s41598-018-26994-1
  17. 17. Saleh H, Alali E, Ebaid A. Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2017:24:206-212. DOI:
  18. 18. Xue QZ. Model for thermal conductivity of carbon nanotubes-based composites. Physica B: Condensed Matter. 2005:368(1–4):302-307. DOI: 10.1016/j.physb.2005.07.024
  19. 19. Khan ZH, Khan WA, Haq RU, Usman M, Hamid M. Effects of volume fraction on water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based analysis. International Communications in Heat and Mass Transfer. 2020:116:1-10. DOI:
  20. 20. Saba F, Ahmed N, Hussain S, Khan U, Mohyud-Din ST, Darus M. Thermal analysis of nanofluid flow over a curved stretching surface suspended by carbon nanotubes with internal heat generation. Applied Sciences. 2018:8(3):395. DOI:
  21. 21. Pham VP, Jo YW, Oh JS, Kim SM, Park JW, Kim SH, Jhon MS, Yeom GY. Effect of plasma-nitric acid treatment on the electrical conductivity of flexible transparent conductive films. Japanese Journal of Applied Physics. 2013:52(7R): 075102. DOI:
  22. 22. Ellahi R, Hassan M, Zeeshan A. Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Transactions on Nanotechnology. 2015:14(4):726-734. DOI: 10.1109/TNANO.2015.2435899
  23. 23. Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Studies in Thermal Engineering. 2018:12:374-380. DOI:
  24. 24. Acharya N, Bag R, Kundu PK. On the mixed convective carbon nanotube flow over a convectively heated curved surface Heat Transfer. 2020:49(4):1713-1735. DOI: 10.1002/htj.21687
  25. 25. Anuar N, Bachok N, Pop I. A stability analysis of solutions in boundary layer flow and heat transfer of carbon nanotubes over a moving plate with slip effect. Energies. 2018:11(12):1-20. DOI: 10.3390/en11123243
  26. 26. Ebaid A, Al Sharif MA. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids. Zeitschrift für Naturforschung A. 2015:70(6):471-475. DOI: 10.1515/zna-2015-0125
  27. 27. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QM. Heat transfer enhancement in free convection flow of CNTS Maxwell nanofluids with four different types of molecular liquids. Scientific Reports. 2017:7(1):2445. DOI: 10.1038/s41598-017-01358-3
  28. 28. Hayat T, Hussain Z, Alsaedi A, Hobiny A. Computational analysis for velocity slip and diffusion species with carbon nanotubes. Results in Physics. 2017:7(1):3049-3058. DOI:
  29. 29. Berrehal H, Makinde OD. Heat transfer analysis of CNTs-water nanofluid flow between nonparallel plates: Approximate solutions, Heat Transfer. 2021:1-15. DOI:
  30. 30. Ellahi R, Zeeshan A, Waheed A, Shehzad N, Sait SM. Natural convection nanofluid flow with heat transfer analysis of carbon nanotubes–water nanofluid inside a vertical truncated wavy cone. Mathematical Methods in the Applied Sciences. 2021:1-19. DOI:
  31. 31. Jayadevamurthy PGR, Rangaswamy NK, Prasannakumara BC, Nisar KS. Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward–downward moving rotating disk. Numerical Methods for Partial Differential Equations. 2020:1-22. DOI: 10.1002/num.22680
  32. 32. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics. 2019:15:1-10. DOI:
  33. 33. Das S, Tarafdar B, Jana RN. Hall effects on unsteady MHD rotating flow past a periodically accelerated porous plate with slippage. European Journal of Mechanics / B Fluids. 2018:72:135-143. DOI:
  34. 34. Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Engineering Journal. 2020:59(2):565-577. DOI:
  35. 35. Krishna MV, Ahamad NA, Chamkha AJ. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface, Ain Shams Engineering Journal. 2020:1-11. DOI:
  36. 36. Kumam P, Shah Z, Dawar A, Rasheed HU, Islam S. Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink, Mathematical Problems in Engineering. 2019:2019(9158093):1-14. DOI:
  37. 37. Imtiaz M, Hayat T, Alsaedi A, Ahmad B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. International Journal of Heat and Mass Transfer. 2016:101:948-957. DOI:
  38. 38. Mosayebidorcheh S, Hatami M. Heat transfer analysis in carbon nanotube-water between rotating disks under thermal radiation conditions. Journal of Molecular Liquids. 2017:240:258-267. DOI:
  39. 39. Acharya N, Das K, Kundu PK. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Applied Nanoscience. 2018:8(3):369-378. DOI:
  40. 40. Mohamad AQ, Khan I, Ismail Z, Shafie S. Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation. Springerplus. 2016:5(1):1-22. DOI: 10.1186/s40064-016-3748-2
  41. 41. Mohamad AQ, Khan I, Shafie S, Isa ZM, Ismail Z. Non-coaxial rotating flow of viscous fluid with heat and mass transfer. Neural Computing and Applications. 2017:30(9):1-17. DOI:
  42. 42. Mohamad AQ, Khan I, Jiann LY, Shafie S, Isa ZM, Ismail Z. Double convection of unsteady MHD non-coaxial rotation viscous fluid in a porous medium, Bulletin of the Malaysian Mathematical Sciences Society. 2018:41(4):2117-2139. DOI:
  43. 43. Ersoy HV. Unsteady flow due to a disk executing non-torsional oscillation and a Newtonian fluid at infinity rotating about non-coaxial axes. Sādhanā. 2017:42(3):307-315. DOI: 10.1007/s12046-017-0600-5
  44. 44. Mohamad AQ, Jiann LY, Khan I, Zin NAM, Shafie S, Ismail Z. Analytical solution for unsteady second grade fluid in presence of non-coaxial rotation. Journal of Physics: Conference Series. 2017:890(1):1-7. DOI: 10.1088/1742-6596/890/1/012040
  45. 45. Mohamad AQ, Khan I, Zin NAM, Isa ZM, Shafie S, Ismail Z. Mixed convection flow on MHD non-coaxial rotation of second grade fluid in a porous medium, AIP Conference Proceedings. 2017:1830(1):020044. DOI:
  46. 46. Rafiq SH, Nawaz M, Mustahsan M. Casson fluid flow due to non-coaxial rotation of a porous disk and the fluid at infinity through a porous medium, Journal of Applied Mechanics and Technical Physics. 2018:59(4):601-607. DOI: 10.1134/S0021894418040053
  47. 47. Rana S, Iqbal MZ, Nawaz M, Khan HZI, Alebraheem J, Elmoasry A. Influence of chemical reaction on heat and mass transfer in MHD radiative flow due to non-coaxial rotations of disk and fluid at infinity. Theoretical Foundations of Chemical Engineering. 2020:54(4):664-674. DOI: 10.1134/S0040579520040247
  48. 48. Mohamad AQ, Ismail Z, Omar NFM, Qasim M, Zakaria MN, Shafie S, Jiann LY. Exact solutions on mixed convection flow of accelerated non-coaxial rotation of MHD viscous fluid with porosity effect, Defect and Diffusion Forum. 2020:399:26-37. DOI: 10.4028/
  49. 49. Noranuar WNN, Mohamad AQ, Shafie S, Khan I. Accelerated non-coaxial rotating flow of MHD viscous fluid with heat and mass transfer, IOP Conference Series: Materials Science and Engineering. 2021:1051(1):012044. DOI: 10.1088/1757-899X/1051/1/012044
  50. 50. Das S, Tarafdar B, Jana RN. Hall effects on magnetohydrodynamics flow of nanofluids due to non-coaxial rotation of a porous disk and a fluid at infinity. Journal of Nanofluids. 2018:7(6):1172-1186. DOI:
  51. 51. Ashlin TS, Mahanthesh B. Exact solution of non-coaxial rotating and non-linear convective flow of Cu–Al2O3–H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. Journal of Nanofluids. 2019:8(4):781-794. DOI:
  52. 52. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 2007:50:2002-2018. DOI:
  53. 53. Stehfest H. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM. 1970:13(1):47-49. DOI:
  54. 54. Villinger H. Solving cylindrical geothermal problems using the Gaver-Stehfest inverse Laplace transform. Geophysics. 1985:50(10):1581-1587. DOI:

Written By

Wan Nura’in Nabilah Noranuar, Ahmad Qushairi Mohamad, Sharidan Shafie, Ilyas Khan, Mohd Rijal Ilias and Lim Yeou Jiann

Submitted: September 17th, 2021 Reviewed: September 24th, 2021 Published: November 8th, 2021