Variables description.
\r\n\tEqually important are the consequences deriving from the extraordinary nature of the present times. The COVID-19 pandemic and the restrictive measures to contain the infection (lockdown and "physical distancing" in primis) have revolutionized the lives, and a distortion/modification of habits, rhythms, arrangements will continue to be necessary.
\r\n\tGovernments have implemented a series of actions to mitigate the spread of infections and alleviate the consequent pressure on the hospital system. On the other hand, the Covid-19 pandemic has caused a series of other cascading effects that will probably be much more difficult to mitigate and which expose to complex consequences. The past two years have brought many challenges, particularly for healthcare professionals, students, family members of COVID-19 patients, people with mental disorders, the frail, the elderly, and more generally those in disadvantaged socio-economic conditions, and workers whose livelihoods have been threatened. Indeed, the substantial economic impact of the pandemic may hinder progress towards economic growth as well as progress towards social inclusion and mental well-being.
\r\n\t
\r\n\tAlthough in all countries the knowledge on the impact of the pandemic on mental health is still limited and mostly derived from experiences only partially comparable to the current epidemic, such as those referring to the SARS or Ebola epidemics, it is likely that the demand for intervention it will increase significantly in the coming months and years. The extraordinary growth of scientific research in the field of neuroscience now offers the possibility of a new perspective on the relationship between mind and brain and generates new scenarios in understanding the long wave of the pandemic and in the prospects for treatment. Moreover, the pandemic also has led to opportunities to implement remote monitoring and management interventions.
\r\n\t
\r\n\tOverall this volume will address the complex relationship existing between COVID-19, mental health, acquired knowledge, and possible interventions taking a highly multidisciplinary approach; from physiological and psychobiological mechanisms, and neuromodulation through medical treatment, psychosocial interventions, and self-management.
Reproduction refers to the production of new offspring, also known as breeding in animals. It includes a set of physiological processes (usually) that take place in the female reproductive system with the association of behaviors and anatomical structures that are necessary in order to ensure the birth of the next generation of human, domestic, wild, and laboratory vertebrate organisms. Although these processes take place within the female’s system, it is as a means of the fusion of haploid gametes each from male (sperm cell) and female (ovum) termed, fertilization in vertebrates. Testes, ductus deferens, epididymis, accessory glands, and penis make up the male reproductive system [1].
The males’ reproductive system functions mainly in the production, nourishment and temporary storage of male gametes (spermatozoa), which is produced via spermatogenesis. It produces androgens and estrogen through steroidogenesis [1] and very importantly, connected to the organ of copulation (penis) which serves to introduce semen containing spermatozoa into the female genital system via mating.
The primordial germ cells have shifted from their previous extra embryonic position to the gonadal ridges by the six weeks of development in both sexes, where they are surrounded by the sex cords to form a pair of primitive gonads. The forming gonad, whether chromosomally XX or XY, is potential until this point. The current theory is that the development of an ovary or testis is determined by the synchronized action of a series of genes that contribute to the development of the ovary when there is no Y chromosome or there is no Y testicular development. Unless a gene on the shooting arm of the Y named TDF (testis defined factor) acts as a switch, the ovarian pathway is followed, diverting development into the male pathway.
One of the leading current concerns in medical genetics is the search for the main testis-determined gene. The medullary tissue forms traditional testes with seminiferous tubules and Legdig cells in the presence of the Y chromosome that become capable of androgen secretion under the stimulation of human chorionic gonadotropin (HCG) from the placenta. Spermatogonia, produced by 200 or more successive mitoses from the primordial germ cells, forms the walls of the seminiferous tubules along with the supporting sertus cells. The gonad, by default, produces an ovary if no Y chromosome is present; the cortex develops, the medulla regresses, and oogonia starts to develop within follicles. Oogonia is obtained from primitive germ cells by a sequence of approximately 30 mitoses, less than the number necessary for spermatogenesis.
Oogonia joins meiosis 1 at about the end of the third month, but this process is interrupted at a point called dictyotene, in which the cell persists until ovulation happens several years later. Many of the oogonia degenerate before birth, and during the 30 years or so of sexual maturity of the female, only about 400 mature into ovas. Thickenings in the ridges suggest the developing genital ducts, the mesonephric (formerly called Wolffian) and paramesonephric (formerly called mellerian) ducts, while the primordial germ cells are migrating to the genital ridges. In the male, androgen is released by the Legdig cells of the fetal testes, which stimulates the mesonephric ducts to form the male genital ducts, and Sertoli cells produce a hormone that suppresses paramesonephric duct formation. The mesonephric ducts regress in the female (or in the non-gonadic embryo) and the paramesonephric ducts develop into the female duct system. The outer genitals consist of a genital tubercle, paired labio scrotal swellings and paired urethra folds in the early embryo. Under the influence of androgens, male external genitals develop from this undifferentiated state or, in the absence of a testis, female external genitals are produced regardless of whether an ovary is present. The male and the female phenotype is as discuss below (Figure 1).
Sexual differentiation in male and female.
Fetal testicular cells secrete ample testosterone to increase blood concentrations to the same degree as those seen in adult males. Accumulation of testosterone is increased by an additional influence of the gene product TDF gene or SRY (sex determining region of the Y chromosome), which inhibits aromatase production and prevents the conversion of testosterone to estrogens. Testosterone promotes the growth and differentiation of the wolffian ducts that develop into the internal male genital tracts.
Sertoli cells in the newly differentiated seminiferous tubule secrete a glycoprotein called antimullerian hormone (AMH) under the influence of the SRY gene product and various transcription factors, inducing apoptosis of tubular epithelial cells and atrophy or reabsorption of the mullerian ducts (which would have become the female internal genital tract).
The primitive structures that give rise to the outside genitalia in both sexes are the urogenital sinus and genital tubarcle. Masculanization of these structures relies on the secretion of testosterone by the fetal testis to form the penis, scrotum and prostate gland. Those structures grow into the female external genitalia unless stimulated by androgen. Differentiation is incomplete when there is insufficient androgen in male embryos or too much androgen in female embryos and the external genitals are unclear. Male external genitalia distinction relies on dilydrotestosterone rather than testosterone.
Estrogen is secreted by the ovaries in gonadal females but not by testosterone antimullerian hormone.
Wolffian ducts cannot distinguish without testosterone.
Mullerian is not suppressed without antimullerian ducts and thus develops into the female internal genital tract.
The human male reproductive system is a collection of organs that contribute to the reproductive process situated outside the body and around a male’s pelvic region. The key direct function of the male reproductive system is to supply the ovum for fertilization by the male gamete or spermatozoa. The male reproductive system is divided into four main compartments (as indicated in Figure 2):
The testis.
Accessory ducts: This includes Epidydimis, Vas deferens, Ejaculatory Duct.
Accessory glands: Accessory glands are internal reproductive organs which supply fluids that nourish the sperm cells and lubricate the duct system. They are the seminal vesicles, the the bulbourethral glands, and the prostate glands (Cowper glands).
Supporting structures which include the scrotum and the penis.
Typical structure of the male reproductive system.
In mammals, paired testes, epididymides, ductus deferens, accessory sex glands and penis are part of the male reproductive system. Tests perform two major roles that are very crucial for life perpetuation, spermatogenesis and steroidogenesis [2]. Within the seminiferous tubules of the testis, spermatogenesis or spermatozoa development takes place and steroidogenesis or testosterone synthesis occurs within the interstitial compartment. Spermatogenesis takes place within the stratified epithelium in the seminiferous tubules, while testosterone production takes place inside the Leydig cells that are spread between the seminiferous tubules in a vascular, loose connective tissue in the interstitial compartment [3]. In determining male secondary sexual characteristics, sperm development and fertility, testosterone, developed by the Leydig testis cells, plays an important role [4].
Epididymis is a single, long and extremely convoluted duct that connects the vas deferens (a coiled duct that connects epididymis to the ejaculatory duct) to the testicular efferent ducts. In the transport and storage of testicular spermatozoa, epididymis plays an significant role. Epididymis is categorized in most mammals into three distinct regions on the basis of its gross morphology; caput or head, corpus or body and region of cauda or tail. The area of the corpus is thinner and it joins the larger segments, caput and cauda. There is an additional canal in reptiles between the testes and the epididymis head, which receives the numerous efferent ducts. However, in both birds and mammals, this is missing [5]. A pseudostratified epithelium surrounds the epididymis. The epithelium is divided from the connective tissue wall, which has smooth muscle cells, by a basement membrane. In the epithelium, the main cell types are:
Spermatozoa formed in the testis are functionally immature and as they migrate through the epididymis they attain functional maturity. Epididymal epithelium absorptive and secretory behavior helps to maintain a particular intraluminal environment that is necessary for sperm maturation [6]. They transfer into the vas deferens, where it is processed before ejaculation, as spermatozoa mature. Sperm flows from the lower portion of the epididymis (which acts as a storage reservoir) during ejaculation. They have not been activated by prostate gland products and are unable to swim, but are transported inside the vas deferens by the peristaltic action of muscle layers and are combined before ejaculation with the diluting fluids of the seminal vessels and other accessory glands. There are some apical variations in the epithelial cells of the epididymis that are sometimes referred to as stereo cillia, as they appear like cilia under the light microscope. However, as electron microscopy has shown that they are more similar to microvilli structurally and functionally, some now refer to them as stereovilli. Stored sperm remain fertile for 40 to 60 days, but they disintegrate and the epididymis resorbs them if they become too mature without being ejaculated. A thin tube approximately 43.2 centimeters long that begins from the epididymis to the pelvic cavity is the vas deferens, also known as the sperm duct. In order to transfer sperm, there are two ducts which connect the left and right epididymis to the ejaculatory ducts. Each tube (in humans is about 30 centimeters long and surrounded by smooth muscle.
The smooth muscle in the walls of the vas deferens contract reflexively during ejaculation, thereby propelling the sperm forward. This is often referred to as peristalsis. The sperm is passed into the urethra from the vas deferens, gathering secretions from the male accessory sex glands, such as the seminal vesicles, the prostate gland, and the bulbourethral glands that make up the majority of the semen. The rate of fluid transfer by the vas deferens is not known in humans. The testes are brought up close to the abdomen just before ejaculation, and fluid is rapidly transferred through the vas deferens into the area of the ejaculatory ducts and then into the prostatic urethra. Intravasal fluid is transported back into the epididymis after ejaculation and even sometimes into the seminal vesicles [7]. Videoradiography during ejaculation after vasography has recorded the retrograde transport of sperm to the seminal vesicles. For some men after vasectomy, the return of sperm to the seminal vesicles after ejaculation can help to explain the prolonged presence of sperm in the ejaculate. The vas deferens can be obstructed or entirely missing, causing male infertility (the latter a possible characteristic of cystic fibrosis). Testicular sperm extraction (TESE), extracting sperm cells straight from the testicles, will resolve it. Seminal vesicles (glandulae vesiculosae) or vesicular glands are paired sac-like or simple tubular glands attached near the base of the bladder to the vas deferens [8]. They are glands of approximately 10 to 15 cm in length that are extremely convoluted [8, 9]. Tubular alveoli with active secretary epithelium are composed of seminal vesicles. The inner surface of the seminal vesicles consists of tubules that form irregular diverticula and are thrown into an intricate system of folds. The main portion of seminal fluid, the fluid that carries spermatozoa, is around 50–80% of the seminal vesicle secretions [10]. A large proportion of the substance that eventually becomes semen is secreted by the seminal vesicles. Dead epithelial cell lipofuscin granules give the scretion its yellowish hue.
Seminal vesicles are highly androgen dependent and contain prostaglandins, proteins, amino acids, citrate, fructose, flavins, enzymes, vitamin C and phosphoryl choline and their secretions are alkaline.
When processed in semen in the laboratory, the high fructose content provides nutrient energy for the spermatozoa. Seminal vesicle secretions enhance sperm capacity, increase sperm stability and help prevent sperm immune response in the female reproductive tract [11]. Alkaline secretion helps to neutralize the vaginal tract ‘s acidity, thus increasing sperm lifespan [8]. Secretion of the seminal vesicle in semen also tends to improve sperm chromatin stability. In addition, from the fructose found in the seminal secretion, spermatozoa acquire their key energy source.
Prostate is a fibromuscular elastic, donut shaped gland covering the urethra inferior to or at the urinary bladder neck [6]. A thin vascularized fibroelastic tissue layer [6] encapsulates the prostate. It is roughly 2 × 3 × 4 cm in diameter and weighs approximately 20 g. From these endodermal cells, the glandular epithelium of the prostate differentiates and the related mesenchyme differentiates into the prostate ‘s thick, solid and smooth muscle [12]. The primary function of the prostate is to secrete milky fluid containing proteins and hormones that are part of the seminal fluid produced by seminal vesicles. The prostate fluid is rich in phosphate acids, citric acid, fibrinolysin, antigen specific to the prostate, amylase, callikrein, zinc and calcium, which are essential for spermatozoa to function normally. The secretions of the prostate make up 30 percent of the amount of seminal fluid. The prostate is an androgensensitive organ and relies on the presence or absence of circulating androgens for growth and regression.
Two small glands situated on the sides of the urethra just below the prostate gland are the bulbourethral glands, often referred to as Cowper glands. These glands create a transparent, slippery fluid that directly empties the urethra. They are homologous in female to the Bartholin glands [13]. Compound tubulo-alveolar glands, each about the size of a pea in humans, are the bulbourethral glands [13]. They are made of several lobules with a fibrous covering kept together. Each lobule consists of a number of acini, lined by columnar epithelial cells, opening into a duct that forms a single excretory duct joining the ducts of other lobules. This duct is about 2.5 cm long and opens up at the base of the penis into the urethra. With advancing age, the glands decline steadily in size. Each gland causes a clear, salty, viscous secretion known as pre-ejaculate during sexual arousal. This fluid helps to lubricate the urethra to move through spermatozoa, neutralizing traces of urethra acidicurine [7], and helps to flush out any residual urine or foreign matter. Since there is no sperm in the preejaculate, it is possible for this fluid to absorb sperm, stay in the urethral bulb from previous ejaculations, and conduct it until the next ejaculation. Some amount of prostate specific antigen (PSA) is also produced by the Cowper’s gland, and Cowper’s tumors can increase PSA to a level that makes prostate cancer suspected [7].
The male reproductive anatomy is divided into five components which are very fundamental to human reproductive health. These include;
In adult males, the testis is a strong oval-shaped male gonad, about 4 cm long and 2.5 cm wide in size. Testes are located in the scrotum that regulates its temperature below the normal body temperature to approximately 23°C [1, 14]. There are normally two testis, each weighing about 11–17 g with the right one usually slightly larger and heavier than the left one weighing about 963 + 0 [1]. A testis (singular) is surrounded by a saccular extension, called tunica vaginalis, of the peritoneum inside the scrotum. Underneath the tunica vaginalis, Tunica albuginea is contained and forms the testis’ white fibrous capsule [8]. Tunica albuginea is subsequently thickened, assembling the testis mediastinum from which the fibrous septa penetrates the testis and divides into about 200 to 300 wedge-shaped lobules.
There are one to four tightly coiled seminiferous tubules in each testicular lobule where sperm is produced [8]. Testis seminiferous tubules consist of two main types of cells, the germ cells and the supporting cells or Sertoli cells. In the seminiferous epithelium, the Sertoli cells are uniformly distributed along with developing germ cells and they nourish the germ cells during their growth. A basal lamina, which includes peritubular myoid cells, lines the seminiferous tubule. Myoid cells constitute a barrier of partial permeability by preventing large molecules from entering the germinal epithelium. The close and gap junctions that exist between the adjacent Sertoli cells, however, form the main exclusion barrier. The seminiferous epithelium is divided into two distinct compartments by these inter-Sertoli cell junctions, called the blood testis barrier: the basal and the adluminal compartments. Spermatogonia and early spermatocytes live in the basal compartment and are readily available for systemic circulation. The adluminal compartment is sequestered from the systemic circulation, containing meiotic and post-meiotic spermatocytes, and is only exposed to the components transported by Sertoli cells [9]. The undifferentiated spermatogonia that reside in the basal compartment of the seminiferous epithelium undergo a series of mitotic divisions during the process of spermatogenesis to form primary spermatocytes.
The primary spermatocyte is then moved to the adluminal compartment and this requires comprehensive restructuring of the inter-Sertoli closed junctions. The spermatocytes undergo two consecutive meiosis rounds in the adluminal compartment to form mature haploid spermatids. In addition to offering physical support to germ cells, Sertoli cells provide a special atmosphere in the adluminal compartment, which is responsible for transporting sperm from the testis to the epididymis by providing a specialized testis. Development factors and nutrients that are essential for the survival of germ cells are important functions of the testis [15]. Germ cell variables, on the other hand, also play an important role in regulating the behavior of the Sertoli cells. For successful spermatogenesis, the interactions between germ cells and Sertoli cells are important. The interstitial compartment of the testis are made of steroid-secreting Leydig cells, blood and lymphatic vessels, nerves, macrophages, fibroblasts and loose connective tissues. However, the principal cells of this compartment are the Leydig cells of interstitial.
Sertoli cells are large, irregularly shaped somatic cells. Sertoli cells are bound by tight junctions to each other at their base. Sertoli cells, as shown by their close contact, are essential to the formation of germ cells. A Sertoli cell can be connected to as many as 6 to 12 spermatids. Sertoli cells assist in the spermiation process, where the final detachment of mature spermatozoa into the seminiferous tubule lumen takes place [16]. Excess cytoplasm resulting from the transition of spermatids to spermatozoa, as well as damaged germ cells, are also targeted and phagocytized by sertoli cells. Moreover, for germ cells, the Sertoli cells also provide structural support and nutrition, secreting fluid. In the seminiferous epithelium of adult rats, the columnar cells stretching from the basal to the luminal compartment are found to occupy a volume of approximately 17–19 percent. Sertoli cell secretes inhibin, which is a gonadal-origin nonsteroidal pituitary receptor [9]. The tight junctions around the circumference of each tubule that lead to the blood-testis barrier were created by a continuous layer of non-germinal Sertoli cells. Via the cytoplasm of Sertoli cells, molecules from the blood join germinal cells. A protein called androgen-binding protein is also secreted into the lumen of the seminiferous tubules by Sertoli cells. The Sertoli cell cytoplasm spreads from the periphery to the tubule lumen and envelops the developing germ cells. It helps to protect the seminiferous tubules from immune attack; on the surface of T lymphocytes, the Sertoli cells generate FAS ligand that binds to the FAS receptor. In this way, by inducing apoptosis of T lymphocytes, it avoids the immune attack of the developing sperm [3]. Sertoli cells refer to the testes’ somatic cells, which are important for testes to develop and also for spermatogenesis. Via direct interaction and regulation of the environment inside the seminiferous tubules, these cells (Sertoli) promote the progression of germ cells to spermatozoa. The blood testes barrier (BTB), which is produced near the basement membrane by adjacent Sertoli cells, acts as a “gatekeeper” to prevent harmful substances from reaching germ cells, especially during postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and luminal (apical) compartments to allow the growth of postmeiotic spermatids, namely spermiogenesis, to take place in the apical compartment behind the BTB in a specialized microenvironment. The BTB also contributes to the immune privilege status of the testis, at least in part, so that anti-sperm antibodies against antigens that are transiently expressed during spermatogenesis are not produced [10]. Sertoli cells have become incredibly difficult to remain morphologically stable because during the 14 phases of the epithelial cycle they have a continuously evolving, three dimensional relationship with growing germ cells. There have been many Sertoli cell functions identified, most of which are directly related to the production and movement of germ cells. These include 1) the provision of structural support; 2) the production of an impermeable and immunological barrier; 3) involvement in the movement and spermation of germ cells; 4) nutrition of germ cells through their secretory products [10].
Leydig cells are polygonal in form and are the main type of cell inside the interstitial tissue where they are mostly located adjacent to the seminiferous tubules and blood vessels. Other cell types, such as fibroblasts, macrophages and a limited number of mast cells, are also present in the interstitial space, in addition to Leydig cells. The primary source of testosterone in the systemic circulation of males is the Leydig cells. The Leydig cell cytoplasm contains a lot of mitochondria, a granular endoplasmic reticulum, lipid droplets and occasionally some protein crystals [10]. Leydig cells do not have follicle stimulating hormone (FSH) receptors. Therefore their growth is influenced indirectly rather than directly by the FSH. FSH activates the Sertoli cell development growth stimulators, which in turn stimulated the growth of the Leydig cells that were growing. In addition, the proliferation of developing Leydig cells can also be stimulated by the androgens. However, proliferation and activity of these cells are reduced by the Estrogen receptors that are present in the Leydig cells. Leydig cells have LH receptors, and inducing androgen secretion through a cAMP-dependent mechanism is the main effect of the luteinizing hormone (LH). Testosterone is the primary product of Leydig cells, but dehydroepiandrosterone (DHEA) and androstenedione, two other androgens of less biological activity, are also a product of Leydig cells [17]. However, now that human testes live in the scrotum, they have adapted to this cooler climate and are unable to generate sperm at the 37°C core body temperature. There are three mechanisms in the scrotum to control test temperature:
Most fish and amphibians do not have seminiferous tubules. The sperm is instead formed in the spherical form known as sperm ampullae. These are seasonal structures, which during the breeding season release their material and are then reabsorbed by the body. Fresh sperm ampullae begin to develop and ripen before the next breeding season. In higher vertebrates, with the same variety of cell types, the ampullae are otherwise virtually similar to the seminiferous tubules.
The testes perform best at temperature slightly lower than the core body temperature. At lower and higher temperatures, spermatogenesis is less effective[11]. This is possibly why the testicles are found outside of the body. To hold the tests at the optimum temperature, there are various mechanisms [11].
The germ cells migrate from the yolk sac to the genital ridge during the 3rd week of development after fertilization. In male embryos, testes develop from the genital ridges from the 4th to the 8th week, and primordial germ cells migrate from the wall of yolk sacs to the gonads. The Leydig cells of the developing testis are starting to evolve under the influence of human chorionic gonadotropin. Testosterone is secreted. The labioscrotal swellings merge at around week 9 to form the scrotum. In order to form the epididymis, vas deferens and seminal vesicles, testosterone also induces mesonephric (Wolfian) duct production [11]. The gubernaculum shortens and pushes the testes, the deferent duct, and its vessels downward between the 7th and the 12th week. The testes remain in the area of the inguinal canal between the 3rd and 7th months so that they may enter into it. Under the control of the androgen hormone, they enter the scrotum at roughly the time of birth. The vaginal process appears as an outpouching of the parietal peritoneum at about 13 weeks of development. The testis stays for 10 to 12 weeks at the beginning of the vaginal process, the internal inguinal ring. This patent herniation mechanism is at least partially dependent on the musculature of the abdominal wall to produce an elevated intra-abdominal input. The patent processus vaginalis does not advance through the inguinal canal if the abdominal muscles are unable to raise intra abdominal pressure, and the testis may not descend into the scrotum. Each testis is formed from three sources: First, in the 7th week of intrauterine life, the production of testes becomes apparent. The medulla of the undifferentiated genital ridge, and the cortex of which regresses, is the base of each testis. The proliferation of coelomic mesothelium covering the medial surface of the mesonephric ridge forms the genital ridge. From the proliferation of the endoderm of the dorsal wall of the hind intestine, primitive sex cells or gonocytes are produced and appear in the genital ridge through active dorsal and sephalic migration between the primitive dorsal mesentery layers of the gut. From the surface of the genital ridge, multiple solid cellular testis cords emerge and project into its interior. Within the testis cords, primitive sex cells are inserted. A cellular plexus and the rete cord, which is located near the blind ends of the mesonephric tubules, are connected by the inner ends of the testis cords to form. Invading the genital ridge, the mesenchymal cells of the mesonephrc ridge spread under the surface, later disconnecting the peripheral ends of the testis cords from the surface. Tunica albuginea forms this portion of the invaded cells. Some of the mesenchymal cells between the testis cords project inwards and persist as a septa testis, and the interstitial cells are formed from the mesenchymal cells that are detached. The testis cords and rete cords are canalized during the 7th month of intrauterine life and form the seminiferous tubules and the rete testis, respectively. Secondly, efferent testis ductules are created to form the proximal 12–15 of the persistent menosephric tubules that form secondary ties with the rete testis. Epididymis and vas deferens are formed from the mesonephric duct in the third channel. The epididymis precedes the testis into the processus vaginalis at 26 to 36 weeks of growth. These structures descend into the scrotum and are fused with the scrotum ‘s posterior layers, providing an anchor that prevents the movement of the testis. The vaginal process closes at 37 to 40 weeks (full term), preventing all contact between the peritoneum and the inguinal canal or scrotum. A proximal remnant (or more than one remnant) may persist as a small appendage, the appendix epididymis, as the mesonephric duct evolves into the epididymis. Most frequently, this tissue is connected to the caput (most proximal and cephalad portion) epididymis. Such an appendix can sometimes twist and become inflamed. The paramesonephric structures (Müllerian) simultaneously regress under the influence of the Müllerian inhibiting substance (MIS) secreted from the developing testis by the Sertoli cells.
The survival of the cells in target organs depends on the delivery of nutrient-rich, oxygenated blood and the removal of metabolic waste. In addition, neural signaling is required for most organs to perform specific duties. In terms of the testes, each of the spherical reproductive organs is supplied by a rather basic bilateral neurovascular network. The extensive vascular supply of the testes serves a variety of functions in addition to supplying oxygen, nutrients, and eliminating waste from the area. This is due to the organs
The testicular arteries are a pair of arterial structures on either side of the abdominal aorta that branch straight from it. They arise at the level of the base of the L1-L2 vertebra from the anterolateral surface of the massive artery caudal to the renal vessels. The right testicular artery travels inferolaterally, medial to the right testicular vein and the proximal section of the right ureter, after crossing the inferior vena cava anteriorly. The artery crosses the ureter anteriorly and continues its inferior path on the body of the psoas major. The left testicular artery runs medial to the testicular vein on the left side.
In comparison to the right testicular artery, it has a more vertical proximal path. It also passes anteriorly through the left ureter. The common and external iliac vessels are served by both the left and right testicular arteries. Only when they enter the inguinal canal via the deep inguinal ring do they cross the external iliac vessels (at which point the external iliac vessels become the femoral vessels). They run lateral to the vas (ductus) deferens and its artery within the canal. The testicular artery gives a branch to the epididymis after it enters the scrotum before bifurcating into lateral and medial branches. These two branches further split to perforate the organ’s material directly. There are also three noteworthy vascular anastomotic connections formed with the testicular artery. Each of the cremasteric arteries originates on the anteromedial side of its corresponding inferior epigastric artery (branch of the external iliac artery) and forms an anastomosis with the testicular artery as it passes through the spermatic cord (in the inguinal canal). The inferior vesical artery, which is supplied by the anterior segment of the internal iliac artery, gives birth to the ductus deferens artery. It also connects to the testicular artery via an anastomosis.
Around the testicular artery, a venous plexus is formed by a dense network of connected veins. The pampiniform plexus is a network that travels cranially with cooler, deoxygenated, nutrient-poor blood. The plexus’ branches continue to consolidate as it leaves the scrotum and enters the spermatic cord, eventually becoming four branches. Two branches join at the deep inguinal ring, on either side of the testicular artery. As a result, each testicular artery has two valvular testicular veins that run alongside it to their drainage locations. The two veins then merge to produce a single testicular vein that flows laterally alongside the testicular artery across the psoas muscles anterior surface. The neurovascular supply to the testes is definitely not a light topic, but interactive anatomy can definitely make it easier to study. Each testicular vein crosses its corresponding ureter on the front surface of the psoas muscles about the level of the L3 vertebra. The left testicular vein then travels almost vertically to pierce the left renal vein, passing between the testicular artery on the medial side and the ureter on the lateral side. The right testicular vein, on the other hand, goes practically vertically on the left side, then obliquely on the right side (also with the ureter lateral and the testicular artery medial) before draining straight into the inferior vena cava.
The sympathetic nerve fibers that innervate the testes come from the T10 spinal segment. The lesser splanchnic nerves carry them to the celiac ganglion, where they synapse. The testicular artery is then followed along its route to its place of innervation by the post-ganglionic fibers. Sensory root fibers follow a similar path, passing information to the T10 segment’s dorsal root ganglion cells. The testes’ tunica vaginalis receives sensory innervation from the genital branch (L2) of the genitofemoral nerve (L1, L2) of the lumbar plexus.
The testes are the only structures in the male external genitalia that do not leak into the inguinal lymph nodes. Its lymphatics follow the path of the testicular veins until they reach the para-aortic lymph nodes at the L2 vertebral level.
The male reproductive organs are specialized for the following functions:
Spermatogenic function; for sperm production,
maintainance and transport of sperm (the male reproductive cells and protective fluid semen)
Sperm Discharge function; for discharging sperm inside the female reproductive tract.
Hormonal function; for producing and secreting male sex hormones like testosterone.
Sperm cells and secretions of the seminal vesicles, prostate, Cowper’s gland and, perhaps, urothral glands are included in the fluid that is ejaculated in time of organism. It has a fixed gravity (1.028), a bright, opalescent fluid and a PH of 7.35–7.50 of it. For each ejaculation, the approximate volume of semen is 2.5 to 3.5 ml after several days of consistency [18]. The seminal vesicles contain the bulk of this secretion or fluid (about 60 percent), and the prostate gland contributes the remainder (about 40 percent). Components of seminal vesicle secretion include fructose, phosphorylcholine, ergothioneine, ascorbic acid, flavins and prostaglandins, while spermine, citric acid, cholesterol phospholipids, fibrinolysis, fibrinogenase, zinc, and acid phosphate are components of prostate secretion. Semen is also known to contain buffers (phosphate and bicarbonate) and hyaluronidase. The volume of the semen containing sperm decreases rapidly with repeated ejaculation. The sperm in human males ranges between 60 and 150million per millimeter in the ejaculated semen (which accounts for about 20% of the semen volume), even though it takes just only one sperm to fertilize the ovum. Human sperm moves through the female genital tract at a rate of about 3 nm/min and reaches the uterine tubes 30–60 minutes after copulation (sexual intercourse).
A sperm concentration below about 10 millimeter is termed oligospemia, and is associated with decreased fertility. Various factors, including heat from a sauna or hot tub, various prescription medications, lead and assenic poisoning and illicit drugs such as marijuana, cocaine and anabolic steroids, may cause oligospermia. In addition to low sperm counts, some men and women have antibodies against sperm antigens as a cause of infertility (this is very common in men with vasectomy). These antibodies do not tend to influence well being; however they decrease fertility. Secretion from the epididgmins, seminal vesicles, prostate gland and bulbourethral glands along with sperm composition makes up just 1 percent of the semen or seminal fluidsperm, the rest is made up of accessory gland fluids. Semen is over 90% water but contains many substance, most notably energy rich fructose, the known vitamins which include Vitamins C and inositol and the trace elements which include Calcium, Zinc, Magnesinm, copper and sulfur. Semen also contains the highest concentration of prostaglandin in the body. The consistency of semen varies from thick and viscous to almost watery fluid. Primordial germ cells are the first cells destined to become semen. They are produced in the sac of the yolk, a membrane connected with the embryo that is developing. They move into the embryo itself in the fifth to sixth week of development and colonize the seminiferous tubule, beyond the blood-test barrier (BTB). By mitosis, spermatogonia multiplies, producing two types of type A daughter cells and type B spermatogonia. Type A cells remain beyond the barrier of blood tests and begin to multiply from puberty until death. Therefore, men never exhaust their supply of gametes and typically remain fertile in old age. Spermatogonia type B migrates closer to the lumen of the tubule and differentiates into slightly large cells known as primary spermatocytes. These cells must pass through the membrane of the blood testicles and travel into the tubule lumen.
The tight junction between two sustentacular cells is usually dismantled ahead of the primary spermatocyte, while a new tight junction is forms on the other side. The primary spermatocyte undergoes mitosis 1, which gives rise to two equal- size, haploid secondary spermatocytes. Each of these undergoes meiosis II, dividing into two spermatid or a total of four for each spermatogomia. Each stage is a little bit closer to the tubule than the previousr stages. All stages on the luminal side of the blood testies barrier are bound to the sustentacular cells by the tight junctions and gap junction and are closely enveloped in tendrils of the sustentacular cells. Throughout this meiotic division, the daughter cell, remain connected to each other by means of narrow cytoplasmic bridges and do not completely separated. Hence, the rest of spermatogenesis is called spermiogenesis. It does not involve further cell division, but a gradual transformation of each spermatid (immature sperm) into a matured spermatozoon.
The cellular divisions and developmental changes that occur within the seminiferous tubules of the testes are termed spermatogenesis, and it consists of two major parts (Figure 3). In part 1, spermatocytogenesis occurs in which it starts with spermatogonia which involve mitotic division of stem cells to form spermatocytes that take place in the early stage, followed by meiosis where the number of chromosomes is reduced to form spermatids. In part 2, spermiogenesis occurs in which the spermatids are transformed in regards to metamorphic changes to sperm [19]. Spermatogenesis is a highly organized but complex process and it normally continuous throughout life [20]. The above description categories spermatogenesis into major three divisions; spermatocytogenesis, meiosis and spermiogenesis respectively. The process begins from spermatogonial stem cells that are found on the basement membrane of the seminiferous tubules, which usually proliferate for self-renewal and reproduced to a progeny of the differentiating spermatogenic cells such as (1) primary spermatocytes, (2) secondary spermatocytes, (3) spermatids and (4) spermatozoa [21]. The spermatogonia are duplicated mitotic division, one of the duplicate member called primary spermatocyte undergoes meiotic division in order to form secondary spermatocytes. When the spermatogonia (which are a diploid primary spermatocyte) complete the first meiosis, two daughter haploid cells will be produced, a result which is known as secondary spermatocytes. By the end of the second (2nd) meiotic cell division, each of the two (2) secondary spermatocytes formed two (2) haploid spermatids [3]. In the beginning, the spermatids will still pose the normal characteristics of epithelioid cells, however, they differentiate and elongate into matured spermatozoa. A matured spermatozoon comprises of a tail and a head which contains a condensed nuclear material, a thin cytoplasm and a surrounding membranous layer [22]. The major features of spermiogenesis includes the formation of the acrosome derived from the Golgi apparatus, condensation, elongation of the nucleus, formation of the flagellum and extensive shedding of the cytoplasm of the spermiated, spermatozoa consists of a head, middle piece and tail (Figure 4) [23].
Showing the Microscopic anatomy of the seminiferous tubules.
Showing an overview of spermatogenesis (adapted from
The sperm consists of a head, a centerpiece, and a tail. The head comprises nuclei surrounded by an acrosome of tightly packed chromatin. The acrosome includes enzymes that are used for oocyte penetration. A special arrangement of mitochondria spiraling around the middle part of the sperm is used for the production of ATP for the passage of the sperm through the female reproductive tract. Spermatozoa are driven by the tail or flagellum of the spermatozoa. Axoneme is the microtubule and related protein bundle that forms the center of the flagellum of eukaryotic sperm and is responsible for movement. Sperm cells and secretions of the seminal vesicles, prostate, Cowper’s gland and, perhaps, urothral glands are included in the fluid that is ejaculated in time of organism.
It has a fixed gravity (1.028), a bright, opalescent fluid and a PH of 7.35–7.50 of it. For each ejaculation, the approximate volume of semen is 2.5 to 3.5 ml after several days of consistency [18]. The seminal vesicles contain the bulk of this secretion or fluid (about 60 percent), and the prostate gland contributes the remainder (about 40 percent). Components of seminal vesicle secretion include fructose, phosphorylcholine, ergothioneine, ascorbic acid, flavins and prostaglandins, while spermine, citric acid, cholesterol phospholipids, fibrinolysis, fibrinogenase, zinc, and acid phosphate are components of prostate secretion.
Semen is also known to contain buffers (phosphate and bicarbonate) and hyaluronidase. The volume of the semen containing sperm decreases rapidly with repeated ejaculation. The sperm in human males ranges between 60 and 150million per millimeter in the ejaculated semen (which accounts for about 20% of the semen volume), even though it takes just only one sperm to fertilize the ovum. Human sperm moves through the female genital tract at a rate of about 3 nm/min and reaches the uterine tubes 30–60 minutes after copulation (sexual intercourse)
A sperm concentration below about 10 millimeter is termed oligospemia, and is associated with decreased fertility. Various factors, including heat from a sauna or hot tub, various prescription medications, lead and assenic poisoning and illicit drugs such as marijuana, cocaine and anabolic steroids, may cause oligospermia. In addition to low sperm counts, some men and women have antibodies against sperm antigens as a cause of infertility (this is very common in men with vasectomy). These antibodies do not tend to influence wellbeing, however they decrease fertility. Secretion from the epididgmins, seminal vesicles, prostate gland and bulbourethral glands along with sperm composition makes up just 1 percent of the semen or seminal fluidsperm, the rest is made up of accessory gland fluids. Semen is over 90% water but contains many substance, most notably energy rich fructose, the known vitamins which include Vitamins C and inositol and the trace elements which include Calcium, Zinc, Magnesinm, copper and sulfur. Semen also contains the highest concentration of prostaglandin in the body. The consistency of semen varies from thick and viscous to almost watery fluid. Primordial germ cells are the first cells destined to become semen. They are produced in the sac of the yolk, a membrane connected with the embryo that is developing. They move into the embryo itself in the fifth to sixth week of development and colonize the seminiferous tubule, beyond the blood-test barrier (BTB). By mitosis, spermatogonia multiplies, producing two types of type A daughter cells and type B spermatogonia. Type A cells remain beyond the barrier of blood tests and begin to multiply from puberty until death. Therefore, men never exhaust their supply of gametes and typically remain fertile in old age. Spermatogonia type B migrates closer to the lumen of the tubule and differentiates into slightly large cells known as primary spermatocytes. These cells must pass through the membrane of the blood testicles and travel into the tubule lumen.
The tight junction between two sustentacular cells is usually dismantled ahead of the primary spermatocyte, while a new tight junction is forms on the other side. The primary spermatocyte undergoes mitosis 1, which gives rise to two equal- size, haploid secondary spermatocytes. Each of these undergoes meiosis II, dividing into two spermatid or a total of four for each spermatogomia. Each stage is a little bit closer to the tubule than the previousr stages. All stages on the luminal side of the blood testies barrier are bound to the sustentacular cells by the tight junctions and gap junction and are closely enveloped in tendrils of the sustentacular cells. Throughout this meiotic division, the daughter cell, remain connected to each other by means of narrow cytoplasmic bridges and do not completely separated. Hence, the rest of spermatogenesis is called spermiogenesis. It does not involve further cell division, but a gradual transformation of each spermatid (immature sperm) into a matured spermatozoon (Figure 5).
Structure of a mature spermatozoon (adapted from [
During sperm passage through the epididymis, spermatozoa collected or derived from the testis do not show progressive motility or capacitate, but developed these abilities [24]. Dynamic morphological and metabolic changes leading to the development of active sperm capable of fertilizing the ovum are referred to as sperm maturation. These processes are called maturation. The completion of nuclear condensation and changes in the distribution and expression of molecules on the surface of the sperm are all part of sperm maturational changes. Phospholipid hydroperoxide glutathione peroxidase (GPx4) may be used as an alternative reductant to glutathione in the sperm nucleus by the thiol groups in nuclear proteins. ROS lipid peroxide generation could provide GPx4 with a substrate to drive the oxidation of these proteins and promote nuclear condensation, while providing protection against oxidative DNA damage at the same time [25]. By enhancing cyclic adenosine monophosphate (cAMP) synthesis and protein phosphorylation at the time of ejaculation, reactive oxygen species could also be involved in motility initiation [26]. For successful fertilization, the membrane structure of spermatozoa plays a pivotal role, as both the acrosome reaction and sperm-oocyte fusion are membrane-associated events; in fact, the spermatozoa membrane lipids are essential for spermatozoa fluidity and flexibility. These lipids, however, along with membrane proteins, are also the key substrates for peroxidation that can cause serious sperm functional disorders [27]. High oxidant concentrations have been shown to provoke sperm pathology such as ATP depletion, leading to inadequate axonemal phosphorylation, lipid peroxidation and loss of motility and viability. The adverse influence of reactive oxygen species (ROS) is due to the sperm plasma membrane’s peroxidative damage. In addition, in a high proportion of infertility patients, oxidative stress-mediated damage to the sperm plasma membrane can account for defective sperm function observed. In spermatozoa maturation, capacitation and the initiation of the gamete interaction process, ionic environment and ionic fluxes through the membrane are extremely significant. In the mammalian sperm plasma membrane, various kinds of ion channels are found, indicating a number of different functions in sperm physiology and gamete interaction.
The plasma membrane integral enzymes in most animal cells are Na+/K+-ATPase (E.C. 3.6.1.9) and Ca2+-ATPase (E.C. 3.6.1.3) and are important components involved in ionic homeostasis. Changes in the surrounding of the sperm membrane and thus in fluidity change the activities of these enzymes, requiring the existence of phospholipids closely linked to their structure. The Na + pump is a heteromeric protein consisting of several isozymes and is not only responsible for maintaining cell osmotic equilibrium, volume and pH, but also for maintaining the capacity of the cell resting membrane and supplying chemical energy across the cell membrane for the secondary Na + −coupled transport of other ions, solutes and water. The Ca2+ pump, on the other hand, is responsible for the homeostasis of calcium that is central to normal cell function. In particular, a distinctive Na+/K+-ATPase isoform expression profile has been found in the mammalian testis with regard to the Na+ pump. Sanchez
Capacitation is a morphological transition that spermatozoa are subjected to by hyperactivation and acrosome reaction sequence to gain the capacity to fuse with an ovum [30]. Sperm motility hyperactivation is characterized by a high amplitude, asymmetrical sperm tail beating pattern and enables the sperm to enter the ovum zone pellucida. It is accompanied by the acrosome reaction where acrosin and other enzymes are released by the head of the mature spermatozoa to digest the cumulus cells and break through the zona pellucida [24]. Research has shown that O2-plays an extremely important regulatory function in promoting both hyperactivated motion and acrosome reaction induction [24, 31]. Increased membrane fluidity, increased tyrosine phosphorylation, increased pH levels, increased intracellular cAMP, and calcium influx are characterized by capacitation. Substances present in semen, progesterone, peroxiredoxin-4 and other substances secreted by the oocyte cumulus complex [29] can regulate capacitation, but can also occur spontaneously under sufficient in vitro conditions. Moreover, through the redox regulation of tyrosine phosphorylation, ROS produced by mammalian spermatozoa can play a physiologically important role in driving the complex process of capacitation.
The mechanism that support this redox-effect on protein tyrosine phosphorylation include a number of additional signal transduction stalls, such as sarcoma and extracellular kinase regulated signal mediation pathways, stimulation of inhibition of tyrosine phosphatase activity by cAMP generation. Capacitation is therefore carried out by increasing membrane fluidity, cholesterol efflux, ion fluxes leading to sperm membrane potential alteration, increased protein phosphorylation of tyrosine, hyperactivation induction, and acrosome reaction. Reactive oxygen species function alongside other factors including bicarbonate, membrane cholesterol loss, and increased intracellular Ca2+ resulting in activation of the cyclase of adenyl (AC), leading to cAMP production and activation of protein kinase A (PKA) and the phosphorylation of tyrosine proteins. Lewis and Aitken proposed that adenyl cyclase is activated by superoxides, while Rivlin
Sperm anomalies, which are usually based on sperm concentration, motility, and morphology, include: oligospermia (sperm concentration lesser than 20 million/ml). This is supported by Iammarrone
Primary and secondary anomalies are the most important classification scheme types: primary abnormalities are structural defects in the location affecting head, midpiece and tail. While the sperm was still inside the seminiferous epithelium of the testis, a more primary serious defect is thought to originate while secondary defects are considered less extreme and thought to occur during the passage through the epididymis or by mishandling after ejaculation (sperm). The heterogeneous state of teratozoospermia includes changes in the form of various components of sperm. There is a strong connection between morphological defects and the potential for sperm fertilization, since mature spermatozoa structures have the best organization to serve specific functions. Teratozoospermia can therefore be considered to be a mixture of morphological defects with associated sperm function impairments [36].
The spermatogenesis process is highly sensitive to environmental fluctuations, especially hormones and temperatures. In order to sustain the process, which is accomplished by bidding testosterone with androgen binding protein present in the seminiferous tubules, testosterone is needed at large local concentrations. Testosterone is produced by interstitial cells that reside adjacent to the serminiferous tubule, also referred to as ledig cells. In humans and certain other animals, the seminiferous epithelium is susceptible to elevated temperatures and can be adversely affected by temperatures as high as average body temperature; therefore, the testes are found in a skin sack called the scrotum outside the body. At 20°C (Man) -80°C (mouse) below body temperature, the optimum temperature is preserved. This is accomplished by controlling blood flow and by placing the cremasteric muscle and dartos smooth muscle towards or away from the body heat. A nutritional deficiencies (such as vitamins B, E, and A), anabolic steriod, metals (Cadmium and lead), X-ray exposure, dioxin, alcohol, drug toxicant and diseases of pathogens may also adversely affect the rate of spermatogenesis [29, 37].
For both spermatogenesis and the development of secondary sex characteristics, steroidogenesis, which involved the production of testosterone (T) and dihydrotestosterone (DHT) from cholesterol by a series of P450 enzymes in the Leydig testis cells, is essential. The differentiation of the Wolffian ducts into the epididymides, vasa deferentia, seminal vesicles, and the development of the levatorani-muscle and bulbocavernosus gland (the LABC complex) is the responsibility of T in utero (produced locally by the interstitial Leydig cells regulated by LH). DHT (produced locally in the testis by T conversion using the 5-alpha-reductase enzyme) is responsible for differentiating the genital tubercle from the external genitalia and the urogenital sinus into the glands of the prostate and Cowper and for regression of nipple anlagen in the male fetuses. According to the receptors to which they attach, steroid hormones can be classified into five distinct groups: mineralocorticoids, glucocorticoids, androgens, estrogen and progestagen. Cholesterol, the basic precursor for biosynthesis of all steroid hormones, is integrated by receptor-mediated endocytosis into the Leydig cell from low-density lipoproteins or is synthesized de novo from acetate within the cell. In cytoplasmic lipid droplets, cholesterol is contained in an ester form and the number of droplets in Leydig cells is regarded to be inversely proportional to the rate of androgen synthesis [38]. LH-induced cholesterol ester hydrolase activation hydrolyzes cholesterol ester during steroidogenesis, which is transported into the mitochondria of Leydig cells. The StAR protein is used to transport cholesterol from the outside to the inner mitochondrial membrane. The exact mechanism by which cholesterol is transported by StAR protein to the mitochondria, however, remains uncertain. StAR protein is regulated acutely, and protein expression is critically dependent on stimulation of trophic hormones (e.g. LH and ACTH). This makes it sensitive to toxicants from the environment: several xenobiotics [e.g. 4-tert-octylphenyl and pesticides Lindane (1,2,3,4,5,6-hexachlorocyclohexane) and glyphosate Roundup (2-(phosphonomethylamino) acetate)] have been reported to interfere with StAR protein expression inhibitor Steroidogenesisby [39, 40]. The condition lipoid congenital adrenal hyperplasia (lipoid CAH) is believed to be caused by mutations in the StAR gene. Lipoid CAH is an autosomal recessive lethal condition in which cholesterol and cholesterol esters accumulate and a sufficient amount of steroids can not be synthesized by the newly born child. In humans, StAR knockout mice display a phenotype that is very similar to lipoid CAH, providing a clear model for studying the mechanism of the important contribution of StAR protein to steroidogenesis and endocrine production. In the inner mitochondrial membrane, the cytochrome P450scc side chain cleavage enzyme, which belongs to the monooxygenase family, transforms cholesterol to pregnenolone. Three successive monooxygenations are involved in this step: 22-hydroxylation, 20-hydroxylation and C20-C22 bond cleavage. Pregnenolone then diffuses across the mitochondrial membrane and is translocated to the endoplasmic reticulum, where it undergoes a series of testosterone-forming biochemical reactions. Pregnenolone undergoes C17 hydroxylation in the Delta 5 pathway to form 17 alpha-hydroxypregnenolone, which is then split between C17 and C20 bonds to form DHEA. The cytochrome P450 17 alpha-hydroxylase/ C17, 20 lyase catalyzes these reactions [41]. DHEA could be transformed by the action of 3β-HSD to androstenedione and then 17β-HSD to testosterone. The equilibrium between these androgens depends on the present activity and type of 17b-HSD. Types 3 and 5 of 17b-HSD catalyze the conversion of androstenedione to testosterone and are expressed in Leydig testis cells, while the opposite reaction occurs in type 2 (found among others in prostate and placenta) [42].
In steroidogenic and non-steroidogenic tissue such as asthetes, prostate, skin and brain, the enzyme 3β-HSD is commonly expressed. Four 3β-HSD isozymes exhibiting differential and tissue-specific expression were characterized in the rat. The spermatic vein transports testosterone into circulation. Testosterone synthesis is governed by LH in Leydig cells. Testosterone biosynthesis is also regulated by other factors, such as FSH, insulin-like growth factor-1 and cytokines [43]. By paracrine regulation of testicular functions, FSH also regulates spermatogenesis (Figure 6).
Showing the major pathways in steroid biosynthesis.
The discharge of semen into the reproductive tract of female has to do with the following steps;
The brain (on stimulation), the master endocrine gland, and local factors generated by the testes finely regulate the spermatogenic and steroidogenic functions of the testes. The proliferation of primitive germ cells and the development of the testes are carefully regulated by testosterone (secreted by the legdig cell on activation by placenta released human chorionic gonadotropin (HCG)) during intrauterine life [44]. The hormonal control of testes ceases after birth and the testes remain quiet until the beginning of puberty [45]. The testicular function setting is triggered at puberty by certain cells in the hypothalamus that activate GnRH secreting cells (Figure 7). These cells are referred to as kisspeptin secreting cells found in the periventricular nucleus (PVN), preoptic nucleus (PN) and arcuate nucleus (ARC) and in the anteroventral perivetricular nucleus (AVPV) [44].
Showing kisspeptin cells connections with GnRH cells (source:
Steroids, leptin, and other systemic factors are believed to have effect on the testicular functions by binding on receptor located on these kisspeptin secreting cells [44]. Kisspeptin stimulates GnRH cells to release gonadotropin releasing hormone via the median eminence (Figure 8). The cells that secrete GnRH are under the regulation of kisspeptin because they express the GPR54 receptor on their cell membrane that bind to kisspeptin released by kisspeptin secreting cells. This hormone is carried to the anterior pituitary through the hypothalmo-hypophyseal portal system. There the gonadotropes are stimulated by GnRH to release follicle stimulating hormone (FSH) and luteinizing hormone (LH) which are the tropics for leydig and sertoli cells respectively. This is the neuroendocrine axis of testicular regulation. The gonadotropes in the adenohypophysis, on stimulation, releases LH, FSH and growth hormone that regulate the functions of the testes. This is the endocrine axis of testicular regulation. Spermatozoa development is based on pituitary gonadotropins, LH and FSH, which are released in response to hypothalamic GnRH pulsatile release.
Regulation of kisspectin-GnRH axis (
The testes as an endocrine gland secrete steroid and other local factors that regulate its function through autocrine and paracrine mechanism. The steroids and inhibin synthesized by leydig and sertoli cells respectively regulate the neuroendocrine and endocrine factors via negative feedback mechanism. Abnormalities in these levels of testicular regulation results to male reproductive dysfunctions [29, 37]. This is hypogonadotropin-hypogonadism due to misdirection in GnRH cells migration from the olfactory cells during development [44].
GnRH act via interacting with a particular receptor found on the cell membrane of gonadotropes. These receptors are G-protein - coupled receptors that interact with the hormone to form a hormone receptor complex. This results in the interaction of phosphoinositide with Gp protein hydrolysis and the release of diacylglycerol and inositol triphosphate, resulting in the mobilization of calcium from intracellular stores and the inflow of extracellular calcium into the cell. The release of gonadotropin from gonadotropes into the general circulation results from this calcium influx [44].
LH binds to the receptors located on the Leydig cells in the testis and induces testosterone synthesis, which in turn could adversely affect the release of hypothalamic and pituitary hormones. FSH targets the receptors on the Sertoli cells and induces androgen-binding protein production, which helps to transport testosterone via the Sertoli cells’ tight junction complexes. Sertoli cells are also activated by FSH to secrete inhibin and activin, both of which have a negative effect on hypothalamus and pituitary hormone release. The primary endocrine hormone involved in testicular function control is FSH. FSH has a central role to play in regulating the Sertoli cell populations, which in turn modulates the number of germ cells proceeding through the mitotic and meiotic spermatogenesis phases. In mitotic and meiotic spermatogonia, FSH handles or regulate DNA synthesis and also prevents apoptosis induction in round spermatids [47]. It has been shown that FSH stimulates the release of various products from Sertoli cells. Sertoli cell products have been reported to play a role in the regulation of the functions of Leydig cells. For successful spermatogenesis and steroidogenesis, the ability of LH to function on the LH receptors present on Leydig cells is essential. LH controls the growth of Leydig cells, the number of Leydig cells, the biosynthesis of testosterone and its secretion. The removal of testosterone has been shown to induce spermatid detachment from Sertoli cells, resulting in full spermatogenesis stoppage. To initiate, sustain, and restore spermatogenesis, testosterone works synergistically with FSH. In particular, testosterone contributes to the blood-testis barrier development, the maintenance of interactions between Sertoli and germ cells, and the release of mature sperm from Sertoli cells). The blood-testis barrier formation is weakened in the absence of testosterone and germ cells are released from the Sertoli cells prematurely.
Estrogens, localized in Leydig and Sertoli testis cells, efferent ductules and epididymis also play a significant role in spermatogenesis control. Evidence suggests that estrogen is secreted into the seminiferous tubular fluid by germ cells, which may be essential for the efferent ductules and epididymis functions. It is stated that estrogen has a stimulatory and inhibitory effect on the proliferation and differentiation of germ cells. It has been shown that administration of aromatase inhibitors to male monkeys induces decreased spermatogenesis and sperm concentrations, suggesting estrogen ‘s crucial role in sustaining spermatogenesis. In proliferating Sertoli cells, high estrogen levels are present and their levels decrease as Sertoli cells avoid differentiation and start maturation. Estrogens control the expression of the molecule of cell adhesion, neural cadherins, involved in the maintenance of cell adhesion of germ cells-Sertoli.
Environmental estrogens is known to have a deleterious effects on male fertil¬ity and it has been shown that neonatal exposure to exogenous estrogens induces irreversible alteration of gene expression in the reproductive tract. Testicular steroidogenesis in adulthood has been shown to impair neonatal sensitivity to diethylstilbestrol, a synthetic estrogen. Administration of 17β-estradiol to adult rats has been shown to induce a decrease in basal and stimulated testosterone production of 33–48 percent. Adult male rats showed a substantial decrease in circulating FSH and LH concentrations when treated with estradiol, which subsequently contributed to reductions in serum and testicular testosterone levels. Several other factors, apart from hormones, have also been shown to affect testicular functions (Figure 9).
Showing the main product of Leydig cells (e.g testosterone), Regulation, hormonal products, Leydig and Sertoli cells interaction. AB (androgen binding protein); ATP (adenosine triphosphate); cAMP (cyclic adenosine monophosphate); E (estradiol); FSH (follicle-stimulating hormone); LH (luteinizing hormone); T (testosterone) [
The link between Corporate Social Responsibility (CSR) and Firm Financial Performance (FFP) remains one of the most controversial issues during the past fifty years. Despite the extensive research, both theoretical and empirical carried out in different contexts; it seems that no consensus has been reached on causality, sign and even less on its shape. On a theoretical level, the arguments in favor of a positive relationship are mainly found in the social impact hypothesis defended by the stakeholder approach according to which good stakeholder management would generate better performance. In contrast, the trade-off hypothesis stemming from a liberal view postulates that CSR would divert the company from its main mission of profit maximization Friedman [1]. Regarding the causality of the relationship, two hypotheses are also theoretically defensible: on the one hand, it is the Available Fund Hypothesis [2, 3] that would play an initiating element in CSR practices. This hypothesis is based on Slack Resource Theory [4, 5], maintaining that availability of financial resources would encourage companies to get involved in CSR activities, [6, 7]. On the other hand, according to the Managerial Opportunism Hypothesis [8], good financial performance would push managers to reduce their commitment to CSR actions to increase short-term profitability as well as their personal remuneration. Conversely, poor financial performance would lead to an increase in social spending in order to divert attention and justify their poor performance [8, 9]. On an empirical level, the researches carried out to date do not seem to have been sufficient either to draw a definitive conclusion as to the relationship between CSR and financial performance. Indeed, these investigations do not allow us to rule on a general and stable relationship between CSR and performance given many contingent factors that affect this relationship. In recent Meta-analysis, [10, 11] conclude that even if empirical research on the CSR-FFP relationship favors a positive link, the latter would be affected by several contingent variables (moderators and mediators). Thus, several variables are likely to influence this relationship such us firm size [12], firm’ origin country [13], Competition intensity within the industry [14], Industry [15, 16], earning management [17], ownership concentration [18], R and D expenditures [19], leadership styles [20], cultural differences and the crucial role that owner-managers could play when dealing with CSR agenda [21].
Furthermore, others arguments have been put forward to justify the lack of consensus on the nature of this relationship, such as the difficulties and biases related to the operationalization of CSR, the performance measurement indicators retained as well as the delay effects necessary to be able to judge the interaction between the two variables [22]. At last, some other recent empirical research questions the linearity of the relationship - when it exists - evoking cubic, or quadratic forms [23, 24]. Thus, specifying the nature of the relationship between CSP and FFP is a very “challenging task”. According to legitimacy theory [25], a firm needs to appropriate certain legitimacy granted by the stakeholders. Indeed, Stakeholders tend to pay more attention, surveillance and exert more intense pressure on the most visible companies by their size, their industry, their presence in the media …. The response to these different pressures depends on the firm’s Corporate Social Responsiveness as firms may tend to manage their legitimacy according to the intensity of the pressures to which they are subject. Thus, CSR commitment would be a way of responding to various pressures whose intensity depends on the degree of visibility of the company. The main arguments put forward to justify the impact of organizational visibility on social performance relate to the fact that large companies are supposed to be more visible would be subject to greater pressure from stakeholders to encourage them to consolidate their legitimacy. Much more, firm visibility has been identified as a factor impacting the social performance by recent empirical work [26, 27]. On the other hand, by reducing information asymmetry, firm visibility is supposed to attract more investor’s attention. Investors could better assess the company’s financial performance and make predictions on firm prospects. Firm visibility could also be affected by its sustainable innovation commitment. Cillo et
However, if firm visibility is liable to affect CSR on one hand and financial performance on the other hand, it will probably be a moderating variable in the CSR-FFP relationship. Hence, our research aims to test the impact of CSR on FFP and to highlight the moderating effect of firm visibility on this relationship on a sample of large French companies. This study makes three contributions to the literature. First, it provides proof of the significant impact of visibility on CSR. Then, it contributes to the literature on CSR by presenting visibility as a predictor of CSR initiatives. Third, this study demonstrates that visibility has a moderating effect on the link between CSR and FFP.
The remainder of this study will be organized as follows: Section 2 represents the research hypothesis, Section 3 describes the methodology, Section 4 provides the results and discussion of results and Section 5 presents the conclusion and recommendations.
CSR can be defined as the commitment to an improvement process in which companies integrate social, environmental, and economic considerations into management in a voluntary, systematic, and consistent manner with their stakeholders. Two theories are likely to shed light on the behavior of the company in society. Firstly, stakeholder theory [30] suggests that the success of the company depends on its ability to develop and maintain exchanges and transactions involving several resources with the various stakeholders [31]. It also recognizes that the expectations and interests of stakeholders are varied and sometimes contradictory [32]; it would therefore be called upon to take care of a real dialog to reply to its conflicting expectations and continually seek their support. From this angle, CSR is considered as a form of a dialog between the company and the various stakeholders. Secondly, legitimacy theory postulates that organizations continually seek to confirm that they operate within the bounds and in step with the standards of their respective Societies. According to Chiu and Sharfman [33], any institution – firms in particular - operates in society through an explicit or implicit contract. This continuous look for legitimacy could depend upon the degree of exposure of the firm to the assorted stakeholders and so, on the degree of its visibility. Indeed, visibility increases the company’s exposure to implicit claims, media, and the general public and can therefore lead to higher CSR; visibility is more consistent and a more powerful predictor of CSR initiatives than other factors previously studied [34].
Stakeholder theory [30], has marked the literature on the relationship between CSR and company performance [11, 35]. It states that if a company satisfies its stakeholders, by carrying out social projects, for instance, it will improve its image and reputation, and thereby it’s financial performance [4]. However, if the company fails to achieve a positive social impact, this will create fears among its stakeholders about its image which will increase costs and decrease profits [36]. A company that seeks to reduce its implicit costs (environmental costs, product quality costs, etc.) through irresponsible social actions should face higher explicit cost (reputation, payment of penalties, etc.). This will have a negative effect on its profitability and competitiveness. Therefore, authors who support this view predicting a positive correlation between CSR and FFP. This assumption is called “positive social impact” or “good management”. According to Cristache et al. [37], integration of social responsibility dimensions into companies’ strategies, would help to increase their long-term performance.
According to the legitimacy theory, CSR legitimizes firm’s businesses and guaranteed their existence [38]. Thus, the disclosure of the assorted CSR activities expected and desired by Society, make it possible to legitimize their commercial activities and failure to go with this instruction compromises overall profitability.
Resource Based View approach [39] suggests that by satisfying the expectations of stakeholders, the company develops inimitable and non-substitutable resources and skills. These resources can be intangible assets [40] such as innovation, human capital, leadership, etc. If the company manages to create and exploit these new resources, it will be able to develop sustainable competitive advantages [41].
Signaling theory [42] also provided an argument for the positive impact of CSR on financial performance. Thus, through their social achievements and especially through their disclosure, companies will try to send a positive signal in order to obtain a positive response from the market.
On an empirical level, several researchers have concluded a positive link between CSR and financial performance. Laskar [43] detected a positive relationship between CSR scores (based on content analysis) and Market-to-Book Value (MBV) on a sample of 119 large Southeast Asian companies over the period 2009–2014. By adopting the same approach, Nguyen [44] established a positive link between CSR scores and ROA on a sample of 31 Vietnamese commercial banks. Choi et al. [45] were also able to conclude that there is a positive link between philanthropic commitment (as an indicator for measuring CSR) and ROA; their research focused on 11,000 observations over the period 2002–2014 in Korea.
In Europe, Rodríguez-Fernández [46] constructed a social behavior index to show the existence of a positive relationship between this index and financial performance apprehended by both ROA, ROE and Tobin’s Q; their study focused on a sample of 107 companies listed on the Madrid stock exchange. Adeneye and Ahmed [47] also found a positive link between CSR scores and market to book value (MBV) on a sample of 500 British companies. More recently, in a recent second-order Meta analysis, covering 25 primary Meta analyzes, 1274 empirical researches, or nearly one million observations, Busch and Fried [10] concluded that a positive and highly significant relationship between CSR and financial performance.
Based on theoretical justifications, empirical literature and our research questions, we make the following central hypothesis (H1):
Firm visibility describes the extent to which companies are observed by their stakeholders. It can be viewed as a unique attribute that reflects the exposure and attractiveness of a firm [48]. Visibility is a concept close to reputation. However, it is necessary to make a distinction: if the reputation reflects the image stakeholders have of the firm (good or bad), visibility mainly reflects the presence and ‘observability’ within the community and it is related to the level of ‘stakeholder recognition’ [49].
Such presence can be affected by size, brand, impact on the natural environment, employability, presence in the media but also by various scandals within which firm may well be involved. Firm visibility could be the source of an “excess” of pressure and oversight on the part of stakeholders, since they have more information on corporate social responsibility. Thus, companies with high visibility are more likely to obtain more positive responses from their external stakeholders prompting them to improve their social performance, with more effort in terms of innovation. On the other hand, companies with high visibility can attract more attention from investors. Additionally, visibility may be a recognizable attribute that can help customers differentiate them from other businesses [50]. In keeping with Pfeffer and Salancik [51], external stakeholders are more curious about visible firms which affect the intensity of the pressures they are subjected to. Visible firms would be under more public scrutiny. Hörisch et al. [52, 53] noted that the more exposed position lead to higher public pressure and more CSR activities.
Firm visibility also can reduce information asymmetry degree between companies and their stakeholders and amplify the information disclosed by companies [54]. Thus, companies with higher visibility are more likely to elicit adverse reactions from their stakeholders. For example, within the case of high firm visibility of companies, violations of environmental regulations are going to be particularly pronounced [55], to which investors react strongly negatively. Additionally, a high firm visibility can even allow customers to understand their environmental irresponsibility [56]. Wu et
Finally, the active CSR behaviors of companies are much easier to know by governments allowing them to access preferential policies, like access to bank loans, tax deductions and market access that stimulate social innovation [33]. Therefore, we make the subsequent assumption:
Our sample consists of French SBF120 listed firms from the year 2008 to 2017. The final sample includes 88 French companies. We are base on a balanced panel dataset of 880 firm-year observations. We used secondary data drawn from the Thomson Reuters Inc. database on the French companies in our sample.
The choice of the period analysis coincides with the adoption of the Grenelle1 law which makes the production of annual CSR report mandatory for all large companies. This period also coincides with the dissemination of the main codes of governance in France. Furthermore, the analysis period of 10 years makes it possible to constitute a fairly large panel which enriches the results and improves the estimates and econometric tests. The SBF120 index includes the 120 largest companies in terms of market capitalization and trading volumes on the Euronext Paris market. These large companies, mostly groups, remain very “visible” when it comes to their societal achievements and are subject to permanent “monitoring” by societal rating organizations, media, and investors. It should be noted that companies with a lot of missing data were also removed from the sample.
There are many ways to measure Firm Financial Performance. However, in this study, we use the return on assets (
Given the multidimensional nature of CSR and taking into consideration that the weights of its various dimensions must consider cross-sectoral specificities and socio-cultural differences, we retain in this research a measure including three fundamental dimensions of CSR (Environmental, Societal, and Governance: ESG). ESG score is based on a company’s performance in the environmental (E), social (S) and governance (G). In this study we use the Thomson Reuters/S-Network which attributes a specific weight to very indicator on the basis of selected considerations and their relative importance. ESG ratings provided by the Thomson Reuters Asset4 are widely employed in the literature as a CSR measure [59].
Visibility is a concept that remains difficult to measure. Previous research has tried to develop own measures. For example, firm citations in the specialized press [60]; firm size [61], the distinction between B2B and B2C companies [49] or even the media coverage [62] were used as proxies of the visibility of the firm. Firm visibility (
Following prior-related studies, we control for a variety of variables that may affect CSR-FFP link.
According to Waluyo [65], firm age affects CSR since mature firms are more experienced and pay more attention to social issues and reputation. Moreover, mature firms are likely to invest significantly more in CSR. Indeed, the predictability of income allows mature companies to invest more in CSR; on the opposite hand, younger companies with less predictable income may pursue survival and growth-oriented strategies and subsequently run out of funds to invest in CSR activities. This hypothesis is criticized by other authors. For instance, Withisuphakorn and Jiraporn [66] who argue that mature companies, enjoy a reputation regardless of their CSR engagement. Otherwise, Age can affect the general public firm’s visibility [67, 68]: On one hand, older firms are speculated to be “known” by the public through patronage and sponsorship, on the other hand, young firms would even be tempted to ascertain a brand image with the public by an increased media presence. In this study, we measure firm age (AGE) by Natural logarithm of the number of years since the inception of the firm.
On the other side, considering that large companies are alleged to have more resources to commit to CSR initiatives [27] and that larger firms have more exposed position lead to higher public pressure and more CSR activities [52, 53], SIZE, measured by Natural logarithm of total assets is introduced into the model as a control variable. Following pervious researches [69, 70], we also control by leverage (LEV). Indeed, we would expect companies with high levels of leverage to have less cash available to engage in CSR actions. On the other hand, excessive leverage could negatively impact financial performance. In this study, we used the total debt ratio by dividing the sum of financial debts (regardless of their horizons) by total assets as a measure of leverage.
Finally, we integrate innovation (RDI) measured by R&D expenditures divided by total annual sales, as a control variable to the extent that it is theoretically accepted that innovation often allows dissipating a competitive advantage and improving profitability [41, 71, 72]. On the other hand, there is empirical evidence that the degree of innovation has an impact on firm social performance [73, 74]. McWilliams and Siegel [75] highlighted that innovation is important for the understanding of the CSR influence on financial performance. According Luo and Du [76], CSR can be a catalyst for innovation.
In this study, we aim at examining the effect of CSR on REM and the moderating role of firm visibility on this relationship. For this purpose, we proceed by two steps. We start first by estimating the following equation:
In order to examine the moderating effect of firm visibility on the CSR-FFP relationship described in our basic model, we regress FFP on the CSR variable, visibility variable and the interaction between both of these variables.
In Eq. (1),
The research design is presented in
Firm financial performance | FFP | Return On Assets ratio |
Corporate Social Responsibility | CSR | ESG global score |
Firm Visibility | VBL | Advertising expenses to sales ratio |
Firm Age | AGE | Natural logarithm of the number of years since the inception of the firm |
Firm Size | SIZE | Natural logarithm of total assets (in millions of Euros) |
Leverage | LEV | Total debt to total assets ratio |
R&D expenditure Intensity | RDI | R&D expenditures divided by total annual sales |
Variables description.
We consider the GMM equations for panel data to estimate models. The GMM estimator has the advantage of controlling for endogeneity between variables and unobservable heterogeneity. For this purpose, the following two models have been specified by using random-effects panel regression.
Table 2 presents the descriptive statistics. It shows the minimum value, maximum value, average and standard deviation. The dependent variable, ROA, has an average value of 0.398 with a standard deviation of 0.0689. Thus, on average result before taxes and interest represent 3.98% of total assets of companies of our study. The average firm visibility variable equals 5.69% with a standard deviation of 0.1466 suggesting high dispersion between the companies of our sample. The averages of the control variables are 3.670 for firm age, 9.996 for firm size, 0.7328 for leverage and 0.0486 for R&D intensity.
Obs | Mean | SD | Min | Max | |
---|---|---|---|---|---|
FFP | 880 | 0,0398 | 0.0689 | −0.3374 | 0.5571 |
CSR | 880 | 0.5785 | 0.1855 | 0.3220 | 0.9300 |
VBL | 880 | 0.0569 | 0.1466 | 0.01251 | 0.2501 |
AGE | 880 | 3.670 | 1.080 | 0.101 | 5.815 |
SIZE | 880 | 9.996 | 1.902 | 8.887 | 16.570 |
LEV | 880 | 0. 7328 | 0.2281 | 0.2531 | 0.9768 |
RDI | 880 | 0.0486 | 0.1113 | 0.004 | 0.1994 |
The mean value of overall ESG score for all the companies in our sample over the period studied is 0.5787 with a standard deviation of 0.1852. This score did not change significantly over the analysis period with a maximum recorded in 2015 (65.91%) and a minimum of 49.43% in 2011. For international comparison, the average ESG score observed on a sample of 94 Korean companies listed on the KOSPI (Korea Stock Exchange) over the period 2008–2014 is close to 46%. According to the rating agency Novethic, the average ESG score of European companies is 45.4% in 2017.
Table 3 shows the Pearson correlation matrix. All correlation coefficient are less than the acceptable limit (0.5). Therefore, there are no multicoliniarity problems in our study.
Variable | FFP | CSR | VBL | AGE | SIZE | LEV | RDI |
---|---|---|---|---|---|---|---|
FFP | 1 | ||||||
CSR | 0.0458 | 1 | |||||
VBL | 0.1147 | 0.4331 | 1 | ||||
AGE | 0.0341 | 0.0137 | 0.1372 | 1 | |||
SIZE | −0.0746 | 0.0568 | 0.0557* | 0.0965** | 1 | ||
LEV | −0.2844 | −0.0124 | −0.0788 | 0.0299** | −0.1550*** | 1 | |
RDI | 0.1864 | −0.0174 | 0.0936 | 0.1748 | 0. 1562 | 0. 0514 | 1 |
Pearson correlation matrix.
Note: For description of variables see Table 1
The superscripts
The correlation coefficient shows that visibility has a high positive correlation with CSR variable at a significance level of 5%. This is can be in accordance with the hypothesis that more visibility should create incentives for a firm to engage in social initiatives and to divulgate their social performance and is additionally in line with the results of previous researches [62, 77, 78]. There is also a significant positive correlation between visibility and firm age. This is expected as old firms should have more visibility and access to media. Visibility also has strong correlations with R&D intensity [72, 79]. In fine, significant correlation was reported between CSR and firm leverage in our sample. This is consistent with the literature up to this point which has supported a strong positive correlation between leverage and CSR [80]. Indeed, firms that participate in more CSR initiatives are more likely to be less leveraged. This is often expected as firms that are highly leveraged should find it tougher to participate in “non-essential” spending [34].
The main objective of this research was to study the link between CSR and FFP and the moderating effect of firm visibility on CSR and firm performance relationship. Table 4 presents the results. The findings of the first model demonstrate that CSR have a positive and significant relationship with firm performance. Our first hypothesis H1 is accepted. These findings are in line with previous studies [81, 82, 83] which have determined that greater CSR activities enhance firm performance.
Dependant variable: Financial Firm Performance measured by ROA | ||||
---|---|---|---|---|
Model 1 | Model 2 | |||
Coef. | p-value | Coef. | p-value | |
CSR | 0.0141 | 0.021 | 0.0056 | 0.041 |
VBL | 0.1109 | 0.501 | 0.1158 | 0.480 |
CSR x VBL | — | — | 0.0150 | 0.022 |
AGE | −0.0771 | 0.377 | −0.0903 | 0.511 |
SIZE | −0.2240 | 0.050 | −0.3221 | 0.047 |
LEV | −0.0389 | 0.001 | −0.0851 | 0.000 |
RDI | −0.7909 | 0.390 | −0.939 | 0.324 |
Wald χ2 | 73.01 | 79.33 |
Multivariate regression analysis.
The superscripts *, ** and *** indicate significance at the 5%, 1% and 0.01% levels, respectively.
With the second model, we employed Aguinis’s [84] Moderate Multiple Regression (MMR) model by creating a new variable (product between the two predictors). The effect of interaction variable (CSR × VBL) is positive on firm performance (coef. 0.0137, p-value = 0.022) and significant at 5 percent level. Our second hypothesis H2 is accepted which suggests that firm visibility moderates the link between CSR and FFP. This indicates that as a firm is more visible, the positive effect of CSR on ROA becomes stronger. Thus, increased visibility would encourage more commitment and disclosure of societal achievements that can be valued by stakeholders and leading to better financial performance. Our results are also supported by Park [85] who demonstrated that visibility moderates the correlation between CSR and reputation, which mediates the CSR-FFP relationship in the long run. These results are also in accordance with those of Madsen and Rodgers [86] who underlined the role of firm visibility and “stakeholder attention” when studying CSR-FFP link.
Regarding the control variables, firm leverage was found to be negatively and significantly related to firm performance in both models. This finding is congruent with that observed in researchers carried out in the same context (see, for example, [87]).
Firm size has negative and statistically significant effect on firm performance within the two models at a 5 percent level. The results are in line with those of prior studies [88, 89]. Finally, the coefficients of firm age and R&D intensity are negative but not significant.
Over the past decades there has been growing interest, both in academic literature and within the business world, in CSR and its impact on the actions and results of companies. The empirical research carried out to date does not seem to be sufficient to draw a stable and definitive conclusion about the existence, direction and stability of CSR-FFP link, to give for investigations about contingent variables which could affect this relationship. In this research, we essentially mobilized legitimacy theory to advance that the firm’s response to several pressures exerted thereon by the various stakeholders could vary consistently with its degree of visibility and therefore the attention given by the community. The empirical validation on a sample of large French firms allowed us to conclude that visibility plays the role of a positive moderator on the link between CSR and financial performance. Indeed, we have demonstrated the existence of a positive and significant relationship between ESG scores (CSR measure) and the return on assets (firm financial performance measure) to validate our first hypothesis. Likewise, we have demonstrated the existence of a positive relationship between visibility level and CSR to argue that visibility increases the company’s exposure to implicit complaints can therefore lead to higher CSR. This study showed significant positive relationships between visibility and CSR demonstrated by correlation and multivariate analyzes.
This research also made for an interesting finding that might be the topic of further investigations: the chosen visibility indicator has a significant positive relationship with the ESG scores. This observation is in step with that revealed by other studies carried out in other contexts [85, 90, 91]. French companies with high visibility seem to support CSR issues to manage social expectations and reinforce their legitimacy. These results match in particular with what was revealed by Aouadi and Marsat [92] who found that ESG scores are positively related to company value for highly visible companies after using a large sample of over 4,000 companies from 58 countries between 2002 and 2011.
The results of this study have practical implications; they can be interesting and useful for managers in their decision making since they indicate that decision makers should be aware of the importance of visibility to gain legitimacy. Indeed, this research shows that the visibility positively moderates the correlation between CSR and financial performance. This moderating effect would most likely be exerted through the firm’s reputation, suggesting that companies should pay more attention to visibility when implementing and disclosing their CSR programs.
The main limitation of this study is related to the visibility metric, future research may well be inquisitive about further developing indicators for firm visibility measures based, for instance, on media coverage or on the interest given to the company by social networks or Internet search engines. Comparative studies with other countries would be possible. Finally, in this research, we used an overall ESG score; it would be interesting to perform the effect of specific ESG components on financial performance.
The authors declare no conflict of interest.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{"hasNoEditors=0&sort=-dateEndThirdStepPublish&src=S-T-0":null},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1236",title:"Quantum Theory",slug:"quantum-theory",parent:{id:"231",title:"Quantum Physics",slug:"quantum-physics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:20,numberOfWosCitations:46,numberOfCrossrefCitations:18,numberOfDimensionsCitations:32,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1236",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3527",title:"Ferromagnetic Resonance",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"5018d38d6945912cc51b5733fff95ea7",slug:"ferromagnetic-resonance-theory-and-applications",bookSignature:"Orhan Yalcin",coverURL:"https://cdn.intechopen.com/books/images_new/3527.jpg",editedByType:"Edited by",editors:[{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",slug:"dr.-orhan-yalcin",fullName:"Dr. Orhan Yalçın"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"45527",doi:"10.5772/56134",title:"Ferromagnetic Resonance",slug:"ferromagnetic-resonance",totalDownloads:11499,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Orhan Yalçın",authors:[{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",slug:"dr.-orhan-yalcin",fullName:"Dr. Orhan Yalçın"}]},{id:"45530",doi:"10.5772/56058",title:"Microwave Absorption in Nanostructured Spinel Ferrites",slug:"microwave-absorption-in-nanostructured-spinel-ferrites",totalDownloads:3938,totalCrossrefCites:5,totalDimensionsCites:7,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Gabriela Vázquez-Victorio, Ulises Acevedo-Salas\nand Raúl Valenzuela",authors:[{id:"167617",title:"Prof.",name:"Raul",middleName:null,surname:"Valenzuela",slug:"raul-valenzuela",fullName:"Raul Valenzuela"},{id:"167618",title:"MSc.",name:"Gabriela",middleName:null,surname:"Vazquez",slug:"gabriela-vazquez",fullName:"Gabriela Vazquez"},{id:"167619",title:"Dr.",name:"Ulises",middleName:null,surname:"Acevedo Salas",slug:"ulises-acevedo-salas",fullName:"Ulises Acevedo Salas"}]},{id:"45526",doi:"10.5772/56615",title:"FMR Measurements of Magnetic Nanostructures",slug:"fmr-measurements-of-magnetic-nanostructures",totalDownloads:6355,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Manish Sharma, Sachin Pathak and Monika Sharma",authors:[{id:"166931",title:"Dr.",name:"Manish",middleName:null,surname:"Sharma",slug:"manish-sharma",fullName:"Manish Sharma"},{id:"166932",title:"Dr.",name:"Sachin",middleName:null,surname:"Pathak",slug:"sachin-pathak",fullName:"Sachin Pathak"},{id:"166933",title:"Dr.",name:"Monika",middleName:null,surname:"Sharma",slug:"monika-sharma",fullName:"Monika Sharma"}]},{id:"45524",doi:"10.5772/55962",title:"Detection of Magnetic Transitions by Means of Ferromagnetic Resonance and Microwave Absorption Techniques",slug:"detection-of-magnetic-transitions-by-means-of-ferromagnetic-resonance-and-microwave-absorption-techn",totalDownloads:3014,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"H. Montiel and G. Alvarez",authors:[{id:"165241",title:"Dr.",name:"Guillermo",middleName:null,surname:"Alvarez",slug:"guillermo-alvarez",fullName:"Guillermo Alvarez"},{id:"165798",title:"Dr.",name:"Herlinda",middleName:null,surname:"Montiel",slug:"herlinda-montiel",fullName:"Herlinda Montiel"}]},{id:"45531",doi:"10.5772/56069",title:"Instrumentation for Ferromagnetic Resonance Spectrometer",slug:"instrumentation-for-ferromagnetic-resonance-spectrometer",totalDownloads:6477,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Chi-Kuen Lo",authors:[{id:"165561",title:"Prof.",name:"Chi-Kuen",middleName:null,surname:"Lo",slug:"chi-kuen-lo",fullName:"Chi-Kuen Lo"}]}],mostDownloadedChaptersLast30Days:[{id:"45527",title:"Ferromagnetic Resonance",slug:"ferromagnetic-resonance",totalDownloads:11499,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Orhan Yalçın",authors:[{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",slug:"dr.-orhan-yalcin",fullName:"Dr. Orhan Yalçın"}]},{id:"45531",title:"Instrumentation for Ferromagnetic Resonance Spectrometer",slug:"instrumentation-for-ferromagnetic-resonance-spectrometer",totalDownloads:6477,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Chi-Kuen Lo",authors:[{id:"165561",title:"Prof.",name:"Chi-Kuen",middleName:null,surname:"Lo",slug:"chi-kuen-lo",fullName:"Chi-Kuen Lo"}]},{id:"45532",title:"Unusual Temperature Dependence of Zero-Field Ferromagnetic Resonance in Millimeter Wave Region on Al-Substituted ε-Fe2O3",slug:"unusual-temperature-dependence-of-zero-field-ferromagnetic-resonance-in-millimeter-wave-region-on-al",totalDownloads:3356,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Marie Yoshikiyo, Asuka Namai and Shin-ichi Ohkoshi",authors:[{id:"23211",title:"Prof.",name:"Shin-Ichi",middleName:null,surname:"Ohkoshi",slug:"shin-ichi-ohkoshi",fullName:"Shin-Ichi Ohkoshi"},{id:"167506",title:"BSc.",name:"Marie",middleName:null,surname:"Yoshikiyo",slug:"marie-yoshikiyo",fullName:"Marie Yoshikiyo"},{id:"167507",title:"MSc.",name:"Asuka",middleName:null,surname:"Namai",slug:"asuka-namai",fullName:"Asuka Namai"}]},{id:"45526",title:"FMR Measurements of Magnetic Nanostructures",slug:"fmr-measurements-of-magnetic-nanostructures",totalDownloads:6355,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Manish Sharma, Sachin Pathak and Monika Sharma",authors:[{id:"166931",title:"Dr.",name:"Manish",middleName:null,surname:"Sharma",slug:"manish-sharma",fullName:"Manish Sharma"},{id:"166932",title:"Dr.",name:"Sachin",middleName:null,surname:"Pathak",slug:"sachin-pathak",fullName:"Sachin Pathak"},{id:"166933",title:"Dr.",name:"Monika",middleName:null,surname:"Sharma",slug:"monika-sharma",fullName:"Monika Sharma"}]},{id:"45528",title:"Optical Properties of Antiferromagnetic/Ion-Crystalic Photonic Crystals",slug:"optical-properties-of-antiferromagnetic-ion-crystalic-photonic-crystals",totalDownloads:2308,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"3527",slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Shu-Fang Fu and Xuan-Zhang Wang",authors:[{id:"165669",title:"Dr.",name:"Shufang",middleName:null,surname:"Fu",slug:"shufang-fu",fullName:"Shufang Fu"}]}],onlineFirstChaptersFilter:{topicId:"1236",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031RJmlQAG/Profile_Picture_1600760167494",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung in Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture in college. Dr. Chen's research interests are bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published over 60 research papers, reviewed over 260 manuscripts, and edited at least 150 papers in international peer-review journals.",institutionString:null,institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Bacterial Infectious Diseases",value:3,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"81272",title:"Pain Identification in Electroencephalography Signal Using Fuzzy Inference System",doi:"10.5772/intechopen.103753",signatures:"Vahid Asadpour, Reza Fazel-Rezai, Maryam Vatankhah and Mohammad-Reza Akbarzadeh-Totonchi",slug:"pain-identification-in-electroencephalography-signal-using-fuzzy-inference-system",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"78549",title:"Language as the Working Model of Human Mind",doi:"10.5772/intechopen.98536",signatures:"Amitabh Dube, Umesh Kumar, Kapil Gupta, Jitendra Gupta, Bhoopendra Patel, Sanjay Kumar Singhal, Kavita Yadav, Lubaina Jetaji and Shubha Dube",slug:"language-as-the-working-model-of-human-mind",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77731",title:"A Brief Summary of EEG Artifact Handling",doi:"10.5772/intechopen.99127",signatures:"İbrahim Kaya",slug:"a-brief-summary-of-eeg-artifact-handling",totalDownloads:244,totalCrossrefCites:2,totalDimensionsCites:4,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76953",title:"Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System Using Wavelet Features and Various Machine Learning Methods",doi:"10.5772/intechopen.98335",signatures:"Ebru Sayilgan, Yilmaz Kemal Yuce and Yalcin Isler",slug:"evaluating-steady-state-visually-evoked-potentials-based-brain-computer-interface-system-using-wavel",totalDownloads:205,totalCrossrefCites:4,totalDimensionsCites:4,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77059",title:"Entropy and the Emotional Brain: Overview of a Research Field",doi:"10.5772/intechopen.98342",signatures:"Beatriz García-Martínez, Antonio Fernández-Caballero and Arturo Martínez-Rodrigo",slug:"entropy-and-the-emotional-brain-overview-of-a-research-field",totalDownloads:161,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76863",title:"Therapeutic Effect of Infra-Low-Frequency Neurofeedback Training on Children and Adolescents with ADHD",doi:"10.5772/intechopen.97938",signatures:"Horst Schneider, Jennifer Riederle and Sigrid Seuss",slug:"therapeutic-effect-of-infra-low-frequency-neurofeedback-training-on-children-and-adolescents-with-ad",totalDownloads:238,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77069",title:"Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback",doi:"10.5772/intechopen.98343",signatures:"Jen A. Markovics",slug:"training-the-conductor-of-the-brainwave-symphony-in-search-of-a-common-mechanism-of-action-for-all-m",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76834",title:"Brain Computer Interface Drone",doi:"10.5772/intechopen.97558",signatures:"Manupati Hari Hara Nithin Reddy",slug:"brain-computer-interface-drone",totalDownloads:245,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"74227",title:"Multivariate Real Time Series Data Using Six Unsupervised Machine Learning Algorithms",doi:"10.5772/intechopen.94944",signatures:"Ilan Figueirêdo, Lílian Lefol Nani Guarieiro and Erick Giovani Sperandio Nascimento",slug:"multivariate-real-time-series-data-using-six-unsupervised-machine-learning-algorithms",totalDownloads:549,totalCrossrefCites:1,totalDimensionsCites:2,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics;