Structural-logical diagram of the method of 3D layer-by-layer stokes-polarimetry.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4648",leadTitle:null,fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",subtitle:null,reviewType:"peer-reviewed",abstract:"This edition is intended to provide better understanding of antibacterial drugs and their mechanism, the role of a few metal drug complexes as antibacterials, cross-checking of a few compounds and biomaterials against drug-resistant bacterial strains as well as a few alternative approaches using medicinal plant based formulations in the control of antibiotic-resistant bacteria. The information in this book provides clues for upcoming trends in treating antibiotic resistance problems with which one can explore new approaches in the treatment of common infections with drug-resistant strains.",isbn:null,printIsbn:"978-953-51-2232-6",pdfIsbn:"978-953-51-5417-4",doi:"10.5772/59522",price:119,priceEur:129,priceUsd:155,slug:"concepts-compounds-and-the-alternatives-of-antibacterials",numberOfPages:210,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"ba284c040146d00fdd709cabc4c8cb5a",bookSignature:"Varaprasad Bobbarala",publishedDate:"December 9th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4648.jpg",numberOfDownloads:19519,numberOfWosCitations:50,numberOfCrossrefCitations:38,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:92,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:180,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 20th 2014",dateEndSecondStepPublish:"November 10th 2014",dateEndThirdStepPublish:"February 14th 2015",dateEndFourthStepPublish:"May 15th 2015",dateEndFifthStepPublish:"June 14th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"90574",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala",profilePictureURL:"https://mts.intechopen.com/storage/users/90574/images/868_n.jpg",biography:"Dr. Varaprasad Bobbarala received his Ph.D. in Faculty of Science from Andhra University in 2008 under the direction of Professor K. Chandrasekhara Naidu and Professor G. Seshagiri Rao. Specialized in Biochemistry, Medicinal chemistry and Microbiology. He has published over 90 original research articles, reviews, book chapters, and edited three books. He is currently Editor In-Chief of International Journal of Bioassays (ISSN: 2278-778X), Associate Editor and member of the editorial boards as well as the reviewer of dozens of high-impact international periodicals. Dr. B. Varaprasad, previously served as the Chief Scientist of Research and Development (R & D) at Krisani Innovations Pvt. Ltd., before his current role as the Chief Scientist and Technical Director of Research and Development of Adhya Biosciences Pvt. Ltd., India. He is actively engaged in scientific research in the areas of Antimicrobial Resistance, Drug Discovery, Isolation of Bio-active metabolites and bio-efficacy studies.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"897",title:"Pharmaceutical Microbiology",slug:"pharmaceutical-microbiology"}],chapters:[{id:"48837",title:"Antibacterial Drugs — From Basic Concepts to Complex Therapeutic Mechanisms of Polymer Systems",doi:"10.5772/60755",slug:"antibacterial-drugs-from-basic-concepts-to-complex-therapeutic-mechanisms-of-polymer-systems",totalDownloads:3311,totalCrossrefCites:2,totalDimensionsCites:10,hasAltmetrics:0,abstract:"Infections caused by diverse bacteria represent a major problem that threats the health of humans. This stimulates the scientists to find new solutions for treating these diseases by clarifying the interactions of antibacterial compounds with the biological medium. In this context, the chapter presents some basic concepts regarding the antibacterial drugs. The synthesis routes of novel compounds and specific design techniques with polymer materials are described in correlation with the in vitro and in vivo activity of antibacterial substances. Essential data about the mechanism of action, selected in vivo efficacy and mechanisms of resistance to the most used antibacterial drugs are reviewed.",signatures:"Andreea Irina Barzic and Silvia Ioan",downloadPdfUrl:"/chapter/pdf-download/48837",previewPdfUrl:"/chapter/pdf-preview/48837",authors:[{id:"93800",title:"Dr.",name:"Silvia",surname:"Ioan",slug:"silvia-ioan",fullName:"Silvia Ioan"}],corrections:null},{id:"49219",title:"Perception and Resistance Mechanism of some Metal-drug Complexes and Their Roles as Antibacterial",doi:"10.5772/61033",slug:"perception-and-resistance-mechanism-of-some-metal-drug-complexes-and-their-roles-as-antibacterial",totalDownloads:1614,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Metal-based drugs have undergone much development and application for therapeutic and diagnostic purposes for many decades since the huge success of cisplatin and other successful metal-drug complexes in the clinical stages. Furthermore, this metal-based drug has come up with a lot of signs of resistance and side-effects in their uses. This review points to some of the resistance natures and mechanisms of previously synthesized complexes in the field of chemistry.",signatures:"Joshua A. Obaleye, Nzikahyel Simon, Olufunso O. Abosede, Mercy\nO. Bamigboye, Abiodun A. Ajibola, Uche B. Eke and Elizabeth A.\nBalogun",downloadPdfUrl:"/chapter/pdf-download/49219",previewPdfUrl:"/chapter/pdf-preview/49219",authors:[{id:"99498",title:"Prof.",name:"Joshua",surname:"Obaleye",slug:"joshua-obaleye",fullName:"Joshua Obaleye"}],corrections:null},{id:"49473",title:"Quinolone Compounds with Activity Against Multidrug- Resistant Gram-Positive Microorganisms",doi:"10.5772/60948",slug:"quinolone-compounds-with-activity-against-multidrug-resistant-gram-positive-microorganisms",totalDownloads:1731,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The emergence of resistance to antimicrobial agents is a global public health problem. Some microorganisms may develop resistance to a single antimicrobial agent (or related class of agent), while others develop resistance to several antimicrobial agents or classes. These organisms are often referred to as multidrug-resistant or MDR strains. Identification of new molecules that show activity against multidrug-resistant microorganisms and its development on a new antimicrobial drug, would be an important step in the fight against antimicrobial resistance. This paper presents experimental data regarding the synthesis of several quinolones. The novel compounds having quinolone structure were synthesized by Gould-Jacobs method. Their structure has been determined and confirmed by the following physicochemical methods: elemental analysis, IR spectral analysis, H-NMR, C-NMR, UV, thin layer chromatography. The new compounds have been evaluated for „in vitro” activity by determining minimum inhibitory concentration against a variety of bacteria Some of new quinolones, which showed a good activity, have been tested against 30 strains of methicillin resistant Staphylococcus aureus isolated in the Microbiology Laboratory of INBI Prof. “Dr. Matei Bals” during 2012 The minimum inhibitory concentration (MIC) of the isolates have been determined by agar plate Mueller Hinton (bioMerieux) dilution method using the reference strain Staphylococcus aureus ATCC 29213. The 30 strains of isolated have been also tested for susceptibility to ciprofloxacin, levofloxacin and imipenem by Etest method. Base on the “in vitro” studies, the quinolone FPQ-30 appears to be an promising compound, all strains isolates were inhibited at a concentration of 8 μg/ml.",signatures:"Pintilie Lucia",downloadPdfUrl:"/chapter/pdf-download/49473",previewPdfUrl:"/chapter/pdf-preview/49473",authors:[{id:"94504",title:"Dr.",name:"Lucia",surname:"Pintilie",slug:"lucia-pintilie",fullName:"Lucia Pintilie"}],corrections:null},{id:"49246",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",doi:"10.5772/61300",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4618,totalCrossrefCites:24,totalDimensionsCites:55,hasAltmetrics:0,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",signatures:"H. M. Ibrahim and E.M.R. El- Zairy",downloadPdfUrl:"/chapter/pdf-download/49246",previewPdfUrl:"/chapter/pdf-preview/49246",authors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}],corrections:null},{id:"48931",title:"Nisin",doi:"10.5772/60932",slug:"nisin",totalDownloads:2991,totalCrossrefCites:7,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Antimicrobial peptides (AMPs) are small cationic peptides which protect their hosts against bacteria, protozoa, viruses, and fungi. Bacterial AMPs are called bacteriocins, and are produced by both Gram-positive and Gram-negative bacteria. Because of their high potency and specificity, bacteriocins are considered as promising antimicrobial agents for different applications, including food preservation and infection treatment; specially the ones produced by acid lactic bacteria species (Gram-positive). Nisin is the most intensively studied and used bacteriocin, it is found commercially available and its use is regulated in over 50 countries. Therefore, special attention is given to this bacteriocin.",signatures:"Angela Faustino Jozala, Letícia Celia de Lencastre Novaes and\nAdalberto Pessoa Junior",downloadPdfUrl:"/chapter/pdf-download/48931",previewPdfUrl:"/chapter/pdf-preview/48931",authors:[{id:"82505",title:"Prof.",name:"Adalberto",surname:"Pessoa Jr.",slug:"adalberto-pessoa-jr.",fullName:"Adalberto Pessoa Jr."},{id:"84924",title:"Dr.",name:"Letícia",surname:"De Lencastre Novaes",slug:"leticia-de-lencastre-novaes",fullName:"Letícia De Lencastre Novaes"},{id:"174371",title:"Dr.",name:"Angela",surname:"Jozala",slug:"angela-jozala",fullName:"Angela Jozala"}],corrections:null},{id:"48961",title:"Natural Products as Antibacterial Agents — Antibacterial Potential and Safety of Post-distillation and Waste Material from Thymus vulgaris L., Lamiaceae",doi:"10.5772/60869",slug:"natural-products-as-antibacterial-agents-antibacterial-potential-and-safety-of-post-distillation-and",totalDownloads:2633,totalCrossrefCites:3,totalDimensionsCites:13,hasAltmetrics:1,abstract:"Medicinal plants have a long tradition of use in folk and conventional medicine. In recent years numerous studies confirm various bioactivities of natural products, among them antibacterial activity. Natural antibacterial agents such are essential oils and isolated compounds now represent a notable source for pharmaceutical and food industry and are widely used in cosmetology. They meet standards of 'green consumerism' together with excellent antibacterial activity. Aromatic plants such is Thymus vulgaris L. are the major sources of essential oils. Thyme essential oil, as well as dominant compounds thymol and carvacrol are generally recognised as safe and have been registered by European Commission for use as flavouring agents in foodstuffs. However, essential oil is present in very low amount (0,8-2,6%) in thyme leaves. Thus, the majority of plant material remains unused after the isolation. Nowadays, the biological potential of various plant waste materials are in focus of numerous studies. These investigations also include the antimicrobial activity considering the fact that waste material extracts represent the valuable source of different phenolic compounds. Regarding all this, the aim of the present study was to determine antibacterial potential of chemically characterised extracts obtained from waste material remaining after the preparation of drug (stems) and isolation of thyme essential oil (deodorised leaves, postdistillation decoction) on selected bacterial strains. Also, in order to determine safety of waste extracts their cytotoxicity was investigated. All extracts were prepared with maceration using 45% or 75% ethanol (EtOH) for 24 h at room temperature (1:10 w/v). Total phenolic compounds and flavonoids were determined spectrophotometrically. Extracts were chemically characterized by HPLC/DAD analysis. Antibacerial testing was done with broth dilution method against several bacterial strains (Staphylococcus aureus, Bacillus cereus, Salmonella infantis, Escherichia coli and Campylobacter jejuni). Cytotoxicity and cytoprotection studies were performed by XTT assay. Result of HPLC analysis showed that investigated extracts, especially those obtained from deodorised leaves represent a valuable source of rosmarinic acid and luteolin 7-O-glucuronide. Antibacterial testing indicated that all waste material extracts, except the extract T2, possess similar or even stronger bacteriostatic activity than T1. No cytotoxicity nor cytoprotection were determined. In conclusion, results of this study confirmed antibacterial potential investigated thyme extracts. High concentrations of rosmarinic acid and luteolin 7-O-glucuronide, which both have numerous pharmacological activities, were determined. This indicates that thyme postdistillation waste material extracts could be used for isolation of dominant compounds or as addities in pharmaceutical and food industry.",signatures:"Neda Gavarić, Jasna Kovač, Nadine Kretschmer, Nebojša Kladar,\nSonja Smole Možina, Franz Bucar, Rudolf Bauer and Biljana Božin",downloadPdfUrl:"/chapter/pdf-download/48961",previewPdfUrl:"/chapter/pdf-preview/48961",authors:[{id:"78766",title:"Dr.",name:"Biljana",surname:"Bozin",slug:"biljana-bozin",fullName:"Biljana Bozin"},{id:"174457",title:"Dr.",name:"Neda",surname:"Gavarić",slug:"neda-gavaric",fullName:"Neda Gavarić"},{id:"174458",title:"MSc.",name:"Nebojša",surname:"Kladar",slug:"nebojsa-kladar",fullName:"Nebojša Kladar"},{id:"174460",title:"MSc.",name:"Jasna",surname:"Kovač",slug:"jasna-kovac",fullName:"Jasna Kovač"},{id:"174461",title:"Dr.",name:"Aleksandra",surname:"Mišan",slug:"aleksandra-misan",fullName:"Aleksandra Mišan"},{id:"174462",title:"Prof.",name:"Sonja",surname:"Smole Možina",slug:"sonja-smole-mozina",fullName:"Sonja Smole Možina"},{id:"174463",title:"Prof.",name:"Franz",surname:"Bucar",slug:"franz-bucar",fullName:"Franz Bucar"}],corrections:null},{id:"49693",title:"Phytopharmaceutical Studies of Selected Medicinal Plants Subjected to Abiotic Elicitation (Stress) in Industrial Area",doi:"10.5772/61891",slug:"phytopharmaceutical-studies-of-selected-medicinal-plants-subjected-to-abiotic-elicitation-stress-in-",totalDownloads:2622,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Plants are a source of large amount of drugs comprising antispasmodics, emetic, Anti-cancer, anti microbial and anticancer activities etc. A large number of the plants are claimed to possess the antibiotic properties in the traditional system and today they are extensively used by the people and the metal Components in the plants grown in polluted area seemingly increase the concentration of phytochemicals. Recent times the flora and fauna of any region is directly or indirectly exposed to the all types pollutants which may result into adverse effects rarely the metal pollutants may trigger the production of phytochemicals. The present study deals with Industrial pollution of the area selected for study, metal up take, and their effect on phytochemical, antimicrobial and anticancer activities that explore the research on five medicinal plants namely Adhatoda vasica, Eucalyptus globulus, Hyptis suaveolens, Ricinus communis and Tinospora cordifolia that thrive well and grow luxuriantly in industrial polluted area and the same five plants from natural area of Visakhapatnam District. The aim of this study is to analyze the effect of Metal elements on phytochemical productivity and antimicrobial and anticancer activity of these medicinal plants. Metal analysis is done ICP-MS (PerkinElmer Sciex Instrument, model ELAN DRC II, USA). Alkaloids, flavanoids, terpenoids and phenols screening is done in solvents Hexane, Chloroform and methanol and checked for antimicrobial activity and anti-cancer activity of Eucalyptus globulus and Tinospora cordifolia were determined by XTT assay on MCF-7 cell lines. The results are discussed in comparison of Natural with pollutant grown plants. The plants that showed better production of phytochemicals due to the presence of metal elements could be recommended to phytopharmaceutical industries as they comparatively showed better production of phytochemicals further proposing a definite way to eliminate toxic metals from them.",signatures:"Sr. Prema Kumari Jonnada, Louis Jesudas and Varaprasad\nBobbarala",downloadPdfUrl:"/chapter/pdf-download/49693",previewPdfUrl:"/chapter/pdf-preview/49693",authors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"},{id:"176247",title:"Dr.",name:"Prema Kumari",surname:"Jonnada",slug:"prema-kumari-jonnada",fullName:"Prema Kumari Jonnada"},{id:"176248",title:"Prof.",name:"Louis",surname:"Jesudas",slug:"louis-jesudas",fullName:"Louis Jesudas"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2129",title:"A Search for Antibacterial Agents",subtitle:null,isOpenForSubmission:!1,hash:"1567c6402f459b018a6aabfd620aa3f7",slug:"a-search-for-antibacterial-agents",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/2129.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1406",title:"Antimicrobial Agents",subtitle:null,isOpenForSubmission:!1,hash:"716194563847e4c8e0f4a7c07ff858ed",slug:"antimicrobial-agents",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/1406.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8427",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",subtitle:null,isOpenForSubmission:!1,hash:"0fdedc9bf6c23241235a0ae011c0304c",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8427.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6978",title:"Antimicrobial Resistance",subtitle:"A Global Threat",isOpenForSubmission:!1,hash:"949e88946357845e5843b4d7fbc1701f",slug:"antimicrobial-resistance-a-global-threat",bookSignature:"Yashwant Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/6978.jpg",editedByType:"Edited by",editors:[{id:"79718",title:"Dr.",name:"Yashwant",surname:"Kumar",slug:"yashwant-kumar",fullName:"Yashwant Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4759",title:"Antimicrobial Resistance",subtitle:"An Open Challenge",isOpenForSubmission:!1,hash:"04be7bb9b8da174cdb838a38c75236b4",slug:"antimicrobial-resistance-an-open-challenge",bookSignature:"Maria Cristina Ossiprandi",coverURL:"https://cdn.intechopen.com/books/images_new/4759.jpg",editedByType:"Edited by",editors:[{id:"80691",title:"Prof.",name:"Maria Cristina",surname:"Ossiprandi",slug:"maria-cristina-ossiprandi",fullName:"Maria Cristina Ossiprandi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11500",leadTitle:null,title:"Multi-Objective Optimization",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"221a460c3b8962d71cab3475f0b22e93",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 27th 2021",dateEndSecondStepPublish:"October 18th 2021",dateEndThirdStepPublish:"December 17th 2021",dateEndFourthStepPublish:"March 7th 2022",dateEndFifthStepPublish:"May 6th 2022",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"79131",title:"New Trends of Optical Measurements",doi:"10.5772/intechopen.100589",slug:"new-trends-of-optical-measurements",body:'
Metrology is a field of scientific and technical research that has absorbed optical engineering and precision measurements, directions that intensively develop.
This is proclaimed by the world achievements in the creation of femtosecond lasers (John L. Hall and Theodor W. Hänsch “for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique”, Nobel Prize in Physics 2005), the making and successful operation of an optical fluorescence microscope with a record resolution of 10 nanometers (Eric Betzig, Stefan W. Hell and William E. Moerner “for the development of super-resolved fluorescence microscopy”, Nobel Prize in Chemistry 2014) [1], and the intensive research in the development and use of optical tweezers, manipulators, molecular motors, etc. (Arthur Ashkin “for the optical tweezers and their application to biological systems”, Nobel Prize in Physics 2018).
Using the opportunity of optical diagnostics, observation, and measurement, which are opening up thanks to the development of modern methods for the formation of various features of structured light [2], it has become possible to reach the verge of a picometer level resolution of measurements in a practically revolutionary way.
Already today, ways of implementing the measurement of optical field parameters in three-dimensional space [3, 4, 5] with nanometer resolution have been outlined. The appropriateness and importance of such measurements are strengthened in the case of study of polarized light transformations and the possibility of realization an ultra-high resolution in the optical range. In this sense, it is necessary to present some biomedical application and to notice the development and experimental testing of a new 3D Stokes-polarimetry method based on mapping of object fields of biological optically anisotropic layers [6, 7]. Here digital holographic layer – by – layer reconstruction of polarization elliptisity distributions is used, e.g. for express diagnosis and differentiation of samples of polycrystalline blood films of patients with prostate tumors [8, 9, 10].
The today’s state of physics and life sciences, in general, require expanding the abilities of optical systems by moving from the systems of the so-called millimeter-micrometer range to instruments and devices operating in the nano-, pico-, femto-meter ranges.
The implementation of such tasks is impossible without finding and discovering new technical and technological solutions, the creation of hybrid measurement systems that can simultaneously work in different spectral ranges, using different parameters of the optical radiation field for diagnostics, and evidently their interconnection.
A review of the state of research at this level is based on a platform that has been formed in a number of directions by the authors of this chapter.
So, the goal of this presentation is to analyze new trends of precision measurements in the picometer range, based largely on the results of own research by the authors.
A new unique tool that has appeared relatively recently and enables optical measurement to be carried out, is a set of methods for capturing, moving, manipulating, controlling of the micro- and nanoparticles motion. To this end, optical traps are created in which optical flows can be controlled using a set of field parameters, namely, amplitude, phase, or polarization.
Thus, various types of traps are formed for spatial capture and movement of nanoscale objects, creating active optical forces of the order of femtonewton [11, 12, 13].
Comprehensively considering the methods of creating micro- and nano-manipulators, tweezers and motors, as well as using mey elements, according to our work [11, 12, 13, 14], based on classical optical principles, but supplemented with new, and possibly fundamentally new technical and technological solutions for auxiliary devices, new technical problems for optical measurements of micro-, nano - pico femtosecond ranges are solved. Even in the fact that by the speed of microparticles rotation one can determine the absorption coefficient of a matter, the degree of anisotropy of the material, etc. Basically, it can be claimed that these solutions are built on differential, comparative principles and approaches.
Based on modern measurement approaches to achieve a nano (femto) units of optical measurements, the possibility for formation of various amplitude-phase, polarization field structures that can be used for manipulating micro- and nano-objects is shown in [12, 13, 14]. An interesting solution to this problem is that due to the use of birefringent crystals, it is possible to simultaneously work with various parameters of the optical field, creating a wide arsenal of traps based on one crystal.
Created traps, trapping nanoparticle by an optical field provide determination of nanoparticle parameters with an error of several percent [15].
So the use of birefringent crystals sets the formation of оptical fields with deep structure of the inner energy flows. Spread of a slightly divergent (conical) light beam with prescribed linear polarization generates a complicated optical field with spatially inhomogeneous distributions of intensity, phase and polarization that is accompanied by an intricate pattern of the transverse energy flows (Figure 1). Here the reader can estimate field distributions at the biaxial crystal output in the vicinity of the optical axis O. Both axes lie in the plane (
The scheme of intensity (a), polarization (b) and energy flow (a,b) distribution formed by a birefringent crystal.
Such fields offer a variety of possibilities for microparticles’ trapping and control, for example:
the intensity minima (maxima) form natural traps for absorbing (dielectric) particles due to the gradient force [16, 17];
phase singularities associated with the amplitude zeros (Figure 1) are coupled with the vortex-like orbital flows able to induce rotation of the trapped particle;
both the orbital and spin flows can induce definite motion of particles in the transverse plane (Figure 1a and b);
the density of spin angular momentum (Figure 1b) may induce controllable orbital motion of particles depending on their position within the beam cross section;
the output pattern of optical field distribution can be easily modified via the controllable input and output polarization, providing suitable means for delicate spatial positioning of the trapped particles.
Arrangement of an optical tweezer employing the above principles is shown in Figure 2. This optical arrangement based on a birefringent crystal consists from a laser (1) (650 nm, 200 mW), quarter-wave plate – 2, two polarizers – 3, 11, beam expander with spatial filtering – 4, mirror – 5, microobjectives – 6, 8, 13, 17, biaxial crystal with 3D rotating drive – 7, calcite plate – 9, calcite wedges with 2D shifting of one wedge – 10, beam-splitting dichroic cube – 12, sample – 14, white-light source – 15, condenser lenses −16, CCD-camera – 18, Personal Computer (PC) - 19.
Optical arrangement of tweezers based on a birefringent crystal.
On the other hand, as already noted, the use of nano and micro particles provides a diagnostic tool for optical fields. The optical forces arising in the optical field and acting on these particles are at the nano-, pico- femto- Newton, differing in accordance with the properties, shape and size of the particles. Accordingly, it becomes possible to spatially separate internal optical flows, both with respect to spin and orbitally one.
Our next achievements [11, 12, 13, 14] demonstrate the results obtained by separating the contribution of the orbital and spin angular momentum to the total picture of trapped particles motion in the optical field.
To identify the internal spin energy flows [12], it was necessary to analyze the mechanical action of the spin momentum by testing, selecting size and property of the particles. The spin momentum manifests itself “in its pure form” with all the specific properties in the situation of a symmetric superposition of circularly polarized plane waves and thus the formation of a circularly polarized field having inhomogeneous energy (Figure 3) [11, 13]. The mechanical action of the incident field on test particles, when including the scattering components, was carried out through the calculation of the Cartesian components of the force (Fx, Fy, Fz) acting on particles that are placed in the optical field. The longitudinal component of the force (Fz) represents the traditional action of light pressure, which direct the particles forward; the transverse y-component (Fy) corresponds to the gradient force (
The components of optical force distribution.
Despite the mechanical equivalence of spin and orbital energy flows, that is, their ability to cause translational or orbital motion of the particles under study, the quantitative features of spin-induced and orbital-induced motion, their dependence on the size and properties of the particles are significantly different. That is, the effect of spin and orbital flows can be experimentally distinguished by using test particles with specially selected size and properties. The following figure (Figure 4) [13] shows the dependence of the components’ value of the optical forces on the particle size for different types of particles. The calculations were performed for two types of spherical particles suspended in water (
A comparative picture of the mechanical action of the optical forces associated with the spin and orbital internal energy for different types of particle: a) metal and b) dielectric.
To eliminate the influence of the incident beam intensity and reduce the number of data presented, the obtained value of the force was normalized by dividing the calculated values by the total momentum of the incident flow over its cross section (P0). A comparative picture of the mechanical action of the optical forces associated with the spin and orbital internal energy is presented in Figure 4. To compare the optical force, the gradient force
The curves are made for particles of small size. Solid lines describe metal particles, dotted lines describe dielectric particles. Here ξ = ka is a dimensionless particle size parameter (
As can be seen from the results of estimating the values of spin and orbital flows shown in the figure, the quantitative features of spin-induced and orbital-induced motions and, accordingly, the generated optical forces, their relationship with the size and properties of the particles are significantly different. Following the main aim of this paper, conducting optical power measurement according to the evaluation results (Figure 4), we can note the measured quantity of optical force up to 10−15–10−25 degree for the spin-induced component of the optical force in accordance with the particle size. We managed to carry out experimental confirmation of the existence of a force of this units of Newton in a specially organized experiment [11, 12, 13]. The use of dielectric test particles of the Rayleigh light scattering mechanism made it possible to evaluate experimentally the action of spin and orbital flows. Particles are sensitive to optical forces caused both by spin and orbital flows.
Thus, the change of the measured component of the optical force leads to the change of the measurement range of: the value of the optical force associated with the spin internal energy as 10−25 to 10−10 Newton, for different types and size of particle, with the error of 10% and the value of the optical force associated with the orbital internal energy as 10−16 to 10−6 Newton with the error of 7%.
The value of the force is estimated at the pico-, femto- Newton, and in accordance to our experiments (Figure 5) [11] the obtained results can be considered as a proof of the mechanical action of the spin moment (spin energy flow) of the light beam on test particles of the chosen shape and properties. The experimental observation of the polarization-dependent orbital motion of test particles in a transversely inhomogeneous beam with circular polarization, where the rotational action of the orbital momentum density is absent or insignificant, is here demonstrated. Moreover, this demonstration of motion required an ultra-precise experiment, when the peculiarities of measured quantity of optical force of the femto units of Newton is taken into consideration.
Scheme of the experimental setup: (1), (2) - input beams; (3) objective lenses; (4) cuvette with test particles suspended in water.
In order to observe the action of optical flows on nanoparticles, an optical scheme was chosen in which the lens aperture was selected in order to avoid transforming conversion of spin and orbital flows. Significant numerical apertures do not allow one to study the action of the spin momentum density, since strict focusing of a circularly polarized beam causes a partial transformation of the output spin flow into an orbital one. And even if some mechanical action of the flow is observed, then it is impossible to definitely conclude about the spin or orbital momentum action. To avoid ambiguity, focusing should not be high: the spin-orbital transformation can be neglected (i.e., it does not exceed 1%) when using lenses with a numerical aperture <0.2 (angle θ ≈ 11°).
Such focusing leads to a certain loss of energy concentration; however, a substantial decrease of the spin action in the focal region can be avoided if the decrease in intensity is compensated by an increase of the beam inhomogeneity. The above experimental design made it possible to reproduce and record the action of the optical force at the femto units of Newton, which is a unique confirmation of the present measurements’ opportunity. The circulation of energy of a spin nature exists within each band, while the orbital momentum is completely radial and is associated with the beam divergence (Figure 6) [11]. This radial field momentum can be used to explain the mechanism of particle capture into the desired position outside the center, which allows one to observe the orbital motion associated with the density of the spin momentum.
The position of the captured particles within the center of the interference band at different moment of time with the change of the electric field vector circulation: A) clockwise, B) counterclockwise. The arrows indicate the direction of particle rotation.
In an inhomogeneous light field, any dielectric particle is exposed to the action of the gradient force that directs it to the maximum intensity, for example, to the axis of the beam, and vice versa. The radial density of the orbital momentum of the diverging beam creates a value of radial pressure that directs the particle away from the axis. As a result, both forces cancel each other out in certain areas of the interference pattern.
So, by changing the circulation of the electric field vector, the captured particle carries out orbital motion being it clockwise (Figure 6A) or counterclockwise (Figure 6B) rotational motion with respect to its own axis. Both the orbital and rotational motions stop when the polarization of the incident beam is linear. The possibility of particle transfer by the force induced by the influence of spin energy flows opens up new prospects for the creation of controlled optical micromachines, micromanipulators in which the regulation and switching are performed through polarization control without changing the beam intensity or its spatial profile. Such methods can be useful in many systems requiring high switching speed.
It should be kept in mind that a nanoparticle is a multifunctional nanoscale tool, playing the role of a separate probe for diagnosing the field structure in the zone of a complex field microdistribution. These nanoparticles are the means of delivering microdoses of drugs into cells, and the unique means of studying complex macrostructure of the optical field in almost real time. Such a possibility can be realized in water or other transparent solutions, when the concentration of nanoparticles in various areas of the complex optical field, their spatial distribution will provide information on the spatial distribution of the amplitude, polarization, and, as a result, the phase of the field. There is an expected forecast for the study of speckle fields by nanoparticles, when they are transferred to the points of field singularity by internal energy flows, making it possible to restore information about changes of macro and micro objects over time.
To talk about the influence of an optical field on nanostructures is necessary in order to distinguish the action of evanescent optical fields of a complex energy distribution, in particular to transfer of microdoses of drugs, providing precise accuracy of the transfer site and the transfer rate of hundreds of nanometers per second [18, 19, 20]. This situation becomes possible in the case of excitation of evanescent fields by linearly polarized beams with the azimuth of polarization of 45°. The evanescent field formed in such a way has a special distribution of spin and orbital momentum, it is elliptically polarized, in which the energy circulation is fixed in two planes - a plane parallel to the interface between the two dielectrics, where there is total internal reflection and in the plane perpendicular to it. A specific feature of the excitation of evanescent waves using a linearly polarized wave with azimuth of polarization of 45° is that the transverse spin component, which is responsible for the transverse component of the optical power appears.
In a paper [21], direct measurement of an optical momentum, which is called as extraordinary, and helicity dependent force directed perpendicularly to the Poynting vector propagation, being proportional to the ellipticity of the local polarization of the probing beam has been reported. Such a complex structure of optical force takes place for evanescent waves and other structured fields being associated with the spin-momentum part of the Poynting vector. The extraordinary transverse momentum has been measured using a femto-newton resolution nano-cantilever immersed in an evanescent optical field above the total internal reflecting glass surface.
In our, later proposed experiments [22, 23], we use a free-standing plate for detection of the influence of an evanescent wave. We demonstrate an optically transparent birefringent microplate motion, influenced by the optical forces generated at the plate plane due to the complex optical force action: caused by the canonical momentum directed along the wavevector and the transversal spin momentum [24] directed perpendicularly to the canonical momentum. In this case it is possible to observe the motion of the plate in the direction, which does not coincide with any of these directions. The surfaces of a birefringent plate are characterized by the negligible roughness. We deposed gold nanoparticles at plate’s upper surface to transfer the transverse momentum to the plate.
Elliptically polarized wave formed at a sup-surface layer enables us to estimate the longitudinal and transversal components of the force. Therefore, the vertical spin of an evanescent wave is the source of the last of them.
We simulate the spin and orbital momenta of an evanescent wave when a linearly polarized incidence wave (at second surface - boundary plate-air) with the azimuth of polarization 45° reaches the interface plate–air here undergoing total internal reflection (TIR). In this case, an evanescent wave that propagates in the z-direction, being damped in the x-direction, can be represented by [21, 24].
where
Here, v
In this case the spin momentum density has both longitudinal and transversal components [24].
Thus, the resulting momentum density in the z-direction possess both orbital and spin momentum density and is given by
The transversal momentum caused by the vertical spin is represented as.
We change the angle of incidence of a beam at the boundary plate-air. It leads to changing of the ellipticity of the evanescent wave above the plate surface. That is why one can suppose that the magnitude of the transversal spin momentum could be characterized by the different dependence towards to the resulting momentum in the longitudinal direction with the main contribution by the canonical momentum. We suppose that momentum is transmitted to the spherical surface S of the gold particles localized at the plate surface. Particle’s light-scattering is taken into account within the Mie approximation [24], giving
The ratio of optical force in the longitudinal and transversal directions (
As can be seen from the presented results, the transversal component of the optical force acting from the evanescent field on gold nanoparticles is experimentally fixed in our studies. Experimental study has shown that the motion of the birefrigent plate depends on the angle of incidence of the beam which generates the evanescent wave. The incidence angle influence both velocity and spinning of the plate, as well as the angle of deviation of the ahead motion from the z-axis.
Thus, our experiments [22, 23] demonstrate simultaneous plate rotation and forward plate motion. The rotation of the plate stops in the situation when the main optical axis of the plate coincides with the azimuth of polarization of the incident beam. The compensation of birefringence torques leads to vanishing of plate rotation. This is observed precisely for linearly polarized wave impinging onto the second surface of a plate at an angle ±45°. It is achieved for an angle of incidence of the probing beam about 58° which gives the azimuth of polarization of this beam at the first plate interface (boundary air-plate) equal to 62°. Therefore, rectilinear motion of the plate without its rotation is possible due to the action of the transversal component of the optical force generated above the plate. The angle between the motion direction and z-axis is 15°.
The use of these effects for evanescent waves [25, 26], in particular, is relevant for the development of nanotechnology, including molecular, especially for biomedicine, nano-therapy, transportation of medical products, bio-marking, cancer diagnosis, and bio-probing. All this provides a new tool to investigate the cell properties, i.e. mechanical or optical parameters and characteristics [26].
This brings about non-invasive methods for evaluating and analyzing pathological changes in tissues with the search for new opportunities for treating diseases and possible pathologies by non-traumatic, easily accessible methods.
The next step of our paper is to demonstrate one of the solutions for measurement and determining the absorption coefficient of low-absorbing microparticles by estimating the rotation speed of such objects in the field of a circularly polarized beam [27]. The uniqueness of the proposed experimental approach is that the measurement error in determining the optical parameter is of the order of femto units. It is a confirmation of the breakthrough in optical metrology and relies on the fact that modern experimental equipment and corresponding experimental approaches and measurements have gone out of the microrange to a new, more delicate level.
In particular, we present results obtained by studying the microscopic properties of liquids and various biological samples by complex optical fields [28, 29]. The optical field, acting on particles, transfers part of the momentum to them, thereby causing the spatial motion of the particles. The characteristics of this motion substantially depend on the optical constants of the studied micro- and nanoparticles.
Even the properties of complex solid samples containing, as impurities, various kinds of inclusions in the form of a fine-grained structure are determined by the optical properties of these micro and nanoparticles, thereby opening for applications. A change of the radiation propagation conditions substantially depends on the attenuation of the radiation, here determined by the absorption and scattering of radiation on these structures.
Traditionally, solutions to such problems are sought through using of Mie scattering theory, which allows one to determine mechanical ponderomotive factors (force and torque) which an optical field exerts on a particle. More importantly, the ponderomotive factors can be directly associated with the optical parameters of the particle, and this can be employed for their measurement.
In [27], the criterion of optical fields action on micro- and nano-particles is the rotational motion of the particle under the influence of a torque, which is inherent in an optical field of circular polarization with a spin angular momentum. The spinning motion of the particle is due to the field spin angular momentum absorbed by the particle, and its angular velocity Ω is related to the radiation torque by the equation
The absorption index κ of the particle suspended in water and trapped in the center of a focused Gaussian beam waist with radius w0 = 2 μm can be directly derived from the observed spinning velocity Ω exhibited by the particle in the beam with power P = 100 mW,
Schematic of the experimental setup.
As a result of the optical field action, the particle acquires a rotational motion, and the angular velocity of the particle corresponds to the part of the torque that is absorbed. As absorption increases, acceleration of rotational motion is observed. The measured value of the spinning velocity obtained in the experiment, e.g. for a gamboge particle is of about Ωe = 25.8 s−1, a measurement range of the spinning velocity is 25.8 s−1 ± 0.3 s−1, the standard measurement uncertainty is 0.13 s−1 with the normal probability distribution. The average measured value of the spinning velocity differs from the theoretically obtained spinning velocity and determines the error of about 20%.
Such an error can be explained by the longitudinal displacements of the particle with respect to the beam waist, heating of the cell with particles, changes in the properties of water inside the cell, and other reasons. The introduction of the normalization coefficient, obtained by comparing the theoretical and experimental results, made it possible to determine the value of the particle absorption coefficient, here for this type of particle, it was
Of course, the question arises about the measurement error of the proposed method for measurement the absorption index. The flexibility of this method is determined by the refractive properties of the particle, the density of the medium where the particles are dispersed, the characteristics of the irradiating beam, and the cross-section of the focused beam. Restrictions for the determination of the particle rotation speed of about 0.1 s−1 are formed. Then, with the introduction of transition coefficient (q), the error in estimating the absorption coefficient δ can be obtained in the range
Thus, the possibility of directly assessing the value of the index of light absorption by microparticles became possible thanks to the proposed approach, which uses the principles of capture and rotation of microparticles by internal energy flows. The current state of the development of technology for the manipulation of microobjects of various nature and properties makes the proposed method of measurement of optical properties encouraging and promising for many practical applications. The obtained results are the first step in developing of this kind of measurements. The high sensitivity of the absorption index measurement, the high accuracy of the estimation of the measured parameter, upon reaching the appropriate level of control for the measurement conditions, makes it possible to use this method to study weakly absorbing particles.
The above mentioned results on the involvement of the technique of micro and nanoparticles in the study of complex optical fields, the transition to control of the particle movement within a few angstroms with the acting force on the captured object at the femto Newton unit are opened the new possibilities of modern metrology. Such approaches are already used today to manipulate organelles in cells, to study viscoelastic properties, to build molecular motors and find their implementation among many other interesting applications.
The next step in presenting the results of research and development on the latest methods of optical metrology is diagnostic methods for processing extremely smooth surfaces with ultra-high precision accuracy [28, 29].
Two techniques for measurement of roughness, based on measurement of a phase variance of the boundary object field and on a transverse coherence function of a field, as well as the devices implementing these techniques were proposed in our papers [28, 29]. The following principles are lying in the base of the proposed techniques:
heights of surface microirregularities are less than wavelength of the probing radiation, (Rq < 0.1 mm), and the transversal scale of surface irregularities is larger than a wavelength, so that the specular component of the reflected radiation is present;
phase variance is measured at the boundary field (the sample surface is imaged at the plane of analysis); the transversal coherence function of a field can be measured at arbitrary zone;
statistical parameters of a field are measured with interferometric means, within the zero (infinitely extended) interference fringe.
The first technique (Figure 9) is used for measurement of surface roughness based on measurement of a phase variance of the boundary object field [30].
Experimental arrangement for measurement of the degree of low-reflectance surface roughness.
Here the experimental arrangement (Figure 9) consists from He-Ne - laser, T - telescope, BS1, BS2- beam-splitters, O1,O2 - objective lenses, S - sample, M - mirror, PM – piezo-ceramic modulator, PD - 2x2 position-sensitive photodetector array, VC- visualization channel, EM - electric motors, AU - automatic zero fringe adjustment unit, COM - comparator, CU - analogue
Using an interrelation among the height parameters of surface roughness and the phase parameters of the boundary object field, one obtains the following equation for an root mean square deviation (RMS) roughness:
This device could be used for measurement of the plane and spherical surfaces with the radius of curvature larger than 0.2 m in polishing machine tool for surface quality control during making of details. This device can be made as a stationary instrument.
The second one is a technique for measurement of surface roughness based on measurement of a field’s transverse coherence function (Figure 10) [29].
Experimental arrangement for measurement of the degree of arbitrary surface roughness.
For measurement of the degree of arbitrary surface roughness in the second technique we have proposed an experimental arrangement (Figure 10) with He-Ne - laser, T - telescope, PBS- polarizing beamsplitter, S - sample, W- calcite wedges; M - electromechanical modulator, A - analyzer; FD - field-of-view diaphragm; PD - photodetector, CU - analogue
Another method for measurement of the phase variance utilizes the relationship between the transverse coherence function
Two versions of the device for a surface roughness control based on measurement of the field’s transverse coherence function were displayed:
A stationary device that can be mounted on the processing tool. Device intended for measurement of the RMS height deviations of slightly rough surfaces over the range from 0.002 μm to 0.06 μm. Technical parameters are measured RMS range – 0.003 to 0.10 μm, measurement accuracy - 0.002 μ m. Update rate - one measurement per second. Fields of application are the following: the photochemical industry to analyze the quality of calendar shafts; arbitrarily shaped surfaces with the radius of curvature larger than 0.3 m; polishing machine tool; space industry to monitor the quality of mirrors fabricated by diamond micro-sharpening. This device was used for surface quality on-line control.
Portable device for control of large-area or small-area surfaces. Portable device intended for measurement of the RMS height deviations of slightly rough surfaces. Main technical parameters of the device are the measured RMS range – 0.005 to 0.10 μm, the measurement accuracy - 0.002 μm, the update rate - one measurement per second. This device provides the following field of application: device can be made either as a measuring head, or as a stationary instrument, depending on the size and the position of the object to be controlled; polishing machine tool, this device was used for the surface quality control during making of the detail;.
Sensitivity of the RMS height parameter of all these devices down to 10 Å was achieved. Roughness control of slightly rough (polished) surfaces with RMS deviation of a profile from a mean surface line ranging from 0.002 μm to 0.10 μm. The technique is applicable to metallic, insulator, semiconductor, and optical surfaces.
At last it would like to bring one more aspect of fine measurement related to the determination of such an optical parameter of the studied object as the refractive index of light-scattering liquid media. Here, a specific issue is polarization interferometry to find the refractive index of solutions, suspensions and gaseous media [31]. According to the proposed approach [31], a two-beam interferometer is used to determine the refractive index, in which a circularly polarized beam is formed in each channel. The measurement method consists in splitting the optical radiation into two components and forming mutually orthogonal circular polarizations of the field components. As a result of superposition of such beams, a uniform intensity distribution is seen in the interference plane. In this case, the formed field has some deterministic polarization. The resulting field is linearly polarized and is characterized by the azimuth of polarization α0. When the studied solution is located in the object channel giving rise to polarization change of the transmitted radiation.
As a result, a rotation of the azimuth of linear polarization is observed in the interference plane, which takes on the value α. That is, the difference in polarization azimuth
The azimuth of polarization of the resulting distribution is sensitive to variations in the path difference in the arms of the interferometer. Even with a change in the path difference between the orthogonal components by an amount less than λ, the polarization azimuth will change significantly. If the path difference between the orthogonal components is λ, then the polarization azimuth will change by 2π. The polarization azimuth can be measured with a measurement error of some seconds. As a result, the accuracy of path difference measurement (
Now we will try to present some last results on the development and experimental testing of a new 3D Stokes-polarimetry method for mapping the object fields of biological optically anisotropic layers [8, 9, 10]. Particular, we propose digital holographic layer-by-layer reconstruction of polarization elliptisity distributions to express diagnostic and differentiate of polycrystalline blood films samples of patients with prostate tumors. The structural-logical diagram and design of 3D layer-by-layer Stokes-polarimetry method are described by Table 1.
1 | Optical probing source | Gas helium-neon laser; Wavelength 0.6328 μm |
---|---|---|
2 | Block for forming the spatial structure of the optical probe | Optical collimator for forming a parallel laser beam with a cross section of 5 mm |
3 | Block for the formation of the polarization structure of the optical probe | System of formation of linear (0°, 90°, 45°) and right-circular polarization (linear polarizer. |
4 | Object block | Microscopic coordinate node |
5 | Formation block of microscopic image | Polarizing micro lens |
6 | Multichannel polarization filtering block | Transmission system of linearly (0°, 90°, 45°, 135°), right- and left-circularly polarized components |
7 | Reference wave formation block | Polarizing beam splitter |
8 | Block for the formation of the polarization structure of the reference coherent wave | Linear (0°, 90°, 45°) and right-circular polarization system |
9 | Polarization filtering block | Linear polarizer |
10 | Discritization block | Digital CCD camera |
11 | Block for computer processing of polarization interferometry data | Calculation algorithms:
|
Structural-logical diagram of the method of 3D layer-by-layer stokes-polarimetry.
The proposed optical scheme is shown in Figure 11.
Optical scheme of 3D Stokes-polarimetry for polycrystalline blood films microscopic images.
Collimator 2 forms a parallel (Ø = 2 × 103 μm) beam of He-Ne (
As a result, the topographic maps and histograms of statistical parameters and polarization ellipticity of layer-by-layer digital microscopic images of polycrystalline blood films of patients were measured and compared. It made possible to carry out a differential diagnostic of benign and malignant prostate tumors with different degrees of differentiation.
The results presented in this chapter provide an overview of the new approaches of measurements and results obtained by the authors of this chapter over the past decades, in the direction of ultra-sensitive precision measurements. In this chapter we have tried to present the metrological aspects of new optical measurements, that had made it possible to expand the range of measurement of such optical quantities as optical force and optical parameters of solid, liquid and gas up to femto and pico units. This improves the accuracy of optical measurements for the corresponding quantities by 3 orders of magnitude.
The sensitivity of the methods achieved by interference, polarization-interference when assessing the roughness of smooth surfaces, when measurement variations in the refractive index of aqueous solutions ranges from tens of angstroms to tens of nanometers.
The femto unit of optical forces, which occurs in complex optical fields with a rich morphology of the distribution of internal optical energy flows, interacts with micro- and nano-objects of various shapes and properties, but also control their spatial motion in optical traps, the nature of which can differ significantly in accordance with the trap formation mechanism. The optical forces of this physical nature and the values are used to determine the optical parameters of trapped particles, where the error of the determination is controlled at the nanoscale level.
The nature of the trap is different, but the original and new of our approaches are the use of biaxial crystals, which allowed us to form a complex distribution of internal energy flows and at the same time realize the conversion from phase-amplitude to polarization structures intended for nano-objects capture.
New polarimetric solutions for 3D Stokes mapping of microscopic images of polycrystalline blood films with digital holographic reproduction of layer-by-layer polarization maps of ellipticity with the success is shortly demonstrated in the given chapter.
It is clear that this review cannot be a complete analysis of new modern ultrathin methods of optical metrology. It is also worth recalling the ideas and principles of STED microscopy [32, 33], the physical principles of the operation of optical vortex coronographs [34], and much more. As an exclusive it could be noted the fundamentally achievable opportunity to operate and manipulate with atoms [2] - this is the ultimate fantasy for the optical range.
Rising energy demand due to population growth has led to the rapid consumption of fossil fuels and serious environmental problems [1]. Currently, most of the world’s energy comes from fossil fuels, which will eventually lead to its predictable depletion. The decline of fossil energy reserves and the urgency to reduce greenhouse gas emissions to alleviate climate warming is forcing us to seek a cleaner, more renewable, and sustainable alternative energy source [2, 3]. Hydrogen is considered as a future ideal energy carrier to replace fossil fuels due to its high gravimetric energy density and zero carbon emissions [4, 5, 6]. But the achievement of this clean energy scheme largely depends on economically efficient hydrogen production technologies. At present, the industrial production of hydrogen is mainly realized by the reforming of hydrocarbon steam in fossil energy or coal through reaction to fossil fuels under the control of steam, which is not only expensive but also causes large emissions [7, 8]. Therefore, the use of renewable energy to produce hydrogen is considered, despite challenges stand in the way [7, 9].
In recent years, solar energy has attracted much attention as the largest renewable energy source on the planet. If solar energy can be effectively used, it will provide a continuous supply of energy for future energy [10, 11]. However, the vision of solar power to provide a significant portion of the global infrastructure is far from being realized. The main challenge comes from not having a cost-effective way to store solar energy. Solar water splitting is a prospective, environmentally friendly, and sustainable method to achieve this beautiful vision [10, 12, 13]. There are three types of solar water decomposition systems, photovoltaic electrolysis (PV-E), photochemical (PC) systems, and photoelectrochemical (PEC) cells, as shown in Figure 1. PV-E is achieved by connecting the photovoltaic cell and water electrolyzer. The advantage of this strategy is its solar-hydrogen conversion efficiency of more than 10%, but it is still too expensive compared to traditional hydrogen production methods [14, 15, 16, 17, 18]. The maturity of PV-E technology also determines that it is difficult to improve efficiency, so it is particularly important to find economical and suitable solar-hydrogen conversion methods. PC is a simple and cost-effective solar-hydrogen conversion method, but its conversion efficiency is less than 1%. In addition, the potentially explosive hydrogen-oxygen mixture produced requires expensive equipment for separation to avoid reaction, which greatly increases production costs [19]. In this case, PEC provides considerable conversion efficiency at an affordable cost [20, 21]. PEC integrates the light absorption and electrochemical processes of PV-E into a single unit. Two gases generated separately at the anode and cathode avoid further separation, which is helpful for reducing costs. If the conversion efficiency can reach 10% and the life span reaches 5 years, PEC is expected to be a replacement for traditional hydrogen production methods [22, 23, 24].
Schematic of three types of solar water splitting system: PV-E, PC system, and PEC cell.
Basically, solar energy is converted into chemical energy stored in the form of hydrogen molecules by PEC devices [25, 26]. And a PEC device usually includes a metal electrode and a semiconductor photoelectrode. Ideally, semiconductors need to have a proper band gap and band structure to provide sufficient reaction potential and cover the solar spectrum as much as possible. In addition, excellent carrier transport performance and good physicochemical stability are also essential. Although a large number of semiconductor materials such as ZnO [27, 28], TiO2 [29, 30], WO3 [31, 32], and BiVO4 [33, 34] have been studied for photohydrolysis experiments, no dependent material meets all the critical conditions described above. Usually, overall water splitting consists of two half-reactions: oxidation of water and reduction of protons.
It can be seen from the equation that the minimum voltage for water splitting is 1.23 V, which requires that the energy absorbed by exciting an electron is not less than 1.23 eV. In order to meet this requirement, the photon energy absorbed by the photoelectrode must also be at least 1.23 eV. But in fact, the energy required due to the energy loss caused by the failure to reach the ideal structure is far more than 1.23 eV [35, 36].
In general, PEC water splitting includes the following processes:
Under light irradiation, carriers are generated in the semiconductor with a suitable band gap.
Photogenerated carriers separate and migrate to the surface of the semiconductor.
Redox reactions are induced by photogenerated carriers on semiconductor surfaces (Figure 2) [37, 38].
Schematic illustration of typical PEC water splitting.
The number of photogenerated carriers is determined by the absorption efficiency of the semiconductor, which also reflects the utilization of sunlight. The separation and migration processes of carriers are related to how many can reach the semiconductor surface. Unfortunately, some carriers are lost resulting from recombining on their way to the surface. And the carriers that reach the surface of the semiconductor want to trigger an efficient water splitting reaction, which must meet the following requirements. First, the conduction band edge potential of the semiconductor material should be lower than H2 evolution potential, while the valence band edge potential should be higher than O2 evolution potential [39]. This means that the band gap of the semiconductor should be greater than 1.23 eV. Semiconductor materials need to have stronger absorption in the solar spectrum to generate more photogenerated carriers. Although wide band gap semiconductor materials are likely to meet matching at the band edge positions, the absorption of sunlight is very limited [7, 9, 40]. Second, carriers need to be separated and transmitted quickly to reduce recombination, thereby improving the utilization efficiency of photogenerated carriers for PEC water splitting. Finally, materials used for PEC water splitting should be cost-effective and have good stability in the catalytic process [41].
Among semiconductor materials commonly used in PEC water splitting, gallium nitride (GaN) has been regarded as a promising candidate [42, 43]. GaN is likely to achieve self-driven overall water splitting because its band gap has good energy alignment with the water redox potential [43, 44]. In addition, GaN is inherently chemically inert even in a harsh environment, which guarantees the stability of the device [45, 46]. Furthermore, the band gap of GaN and its alloys can be tuned by alloying with Indium (In) to span nearly the entire solar spectrum [47, 48]. However, to achieve practical hydrogen production, GaN is still facing many challenges as an excellent photoelectrode material, including how to get a larger reaction area, how to enhance the absorption of light, and how to separate and transport photogenerated carriers more quickly and effectively [49, 50]. Correspondingly, many strategies have been proposed to address the mentioned drawbacks of GaN photoelectrode. Compared with thin-film and bulk counterpart, nanostructures have a smaller size and a larger surface area, which is helpful for shortening the transmission distance and promotes the separation of carriers. Thus the efficiency of carrier collection and utilization will be higher [51, 52, 53]. Doping is also one of the commonly used approaches to effectively improve the electrical and optical properties of GaN, which can directly tune the energy band structure and carrier transmission [54, 55]. Moreover, PEC water splitting kinetics can be promoted through the surface decoration of co-catalysts, which can enhance the transmission of carriers for water redox reaction [56, 57].
In this review, we summarize the recent progress of using GaN as photoelectrode for PEC water splitting and enumerate some commonly used strategies to improve the performance of photoelectrode. In the end, we also have a brief outlook of GaN for PEC water splitting.
In the introduction section, we briefly introduced the three types of solar water splitting. In this section, we will focus on the different structures of the PEC cell, which can be achieved by an n-type semiconductor as photoanode (or p-type semiconductor as photocathode) or connecting two different semiconductors.
For a semiconductor PEC cell with a half-reaction to occur on working electrode, a counter electrode is required to complete the other half-reaction circuit. Generally, a reference electrode is connected to the working electrode to characterize an externally applied voltage. If necessary, there are two compartments or ion exchange membranes between the working and counter electrodes to avoid product crossover. To overcome the thermodynamic obstacles of water splitting and the potential losses caused by the recombination process, the band gap of the working electrode is at least 1.6 eV [58, 59, 60]. However, the visible light absorption efficiency will be attenuated if the band gap is too wide. To solve this problem, that is, potential loss mechanisms that include reverse contact and overpotential caused by poor catalytic activity, the semiconductor material should be deposited on a highly conductive substrate to form a good ohmic contact, which allows most carriers to be quickly injected from the working electrode into the counter electrode [61, 62].
Obtaining enough photovoltage from a single photoelectrode to achieve solar water splitting is a challenge. It will be more favorable that combinates with dual semiconductors, because the second photoelectrode can replace the opposite electrode where the other half-reaction occurs and compensate for the lack of photovoltage [7]. To increase the light utilization, lighting should be irradiated from a larger band gap photoelectrode (transparent substrate) to a smaller band gap photoelectrode. In addition, these two semiconductors can form wireless back-to-back ohmic contacts, sharing a transparent conductive substrate [63]. By doing so, the potential loss in the electrolyte and the pH gradient between the two photoelectrodes can be reduced. Similarly, lighting should pass from a larger band gap material to a smaller band gap material. This series of battery structure is a relatively effective device [64].
Comparing onset potentials and photocurrent density (normalized to the projected surface area of the photoelectrode) at 1.23 V versus RHE (photoanode) and 0 V versus RHE (photocathode) is a well-known method to evaluate the performance of water splitting. Since the product of water splitting is hydrogen, solar-to-hydrogen (STH) is the most critical parameter of merit to evaluate the performance and the efficiency of PEC water splitting on the device. It is defined as the following equation: [65].
where
In general,
where
It is important to understand the efficiency of photons to convert electrons/holes at certain wavelengths of PEC water splitting. Therefore, the incident photon-to-current conversion efficiency (IPCE) or external quantum efficiency (EQE) is proposed and expressed as: [65].
where
where
Up to now, considerable efforts have been investigated on surface decoration to enhance PEC water splitting performance [66]. In this regard, various co-catalysts were studied by depositing on the surface of GaN to improve the efficiency of PEC water splitting. For instance, the quantum efficiency of the solid solution of GaN and ZnO for overall water splitting in the visible light region achieves the highest value of 2–3% after modified with a mixed oxide of Rh and Cr nanoparticles [67]. A Co-Pi catalyst photoelectron deposited on GaN thin-film photoelectrodes eliminated the anomalous two-plateau behavior and current spikes, which revealed that the Co-Pi catalyst is helpful for suppressing surface recombination and increases the photocurrent [47]. A similar but deeper achievement was carried out by Tricoli et al. for hybridizing highly transparent Co3O4 nano-island catalysts on GaN nanowire to enhance the water oxidation activity. The result shows that the per-metal turnover frequencies in 1 M NaOH aqueous solution are 0.34–0.65 s−1 at an overpotential of 400 mV, which is the best result of Co-based electrocatalysts until this report. This was attributed to Co3O4 that can play a role as hole scavenger, collecting photogenerated holes rapidly and suppressing carrier recombination [68]. Additionally, a size-controlled effect of poly-protected Rh nanoparticles on the photocatalytic activity of (Ga1 −
Apart from nanoparticles, core-shell heterostructure is another important approach for surface decoration. GaN-InGaN core-shell rod arrays as photoanode for visible light-driven water splitting were studied by Waag et al. The core-shell structure extends the use of sunlight to the visible light region, thereby greatly improving the efficiency of water splitting. The photocurrent density of (0.3 mA/cm2 at 1.35 V) GaN-InGaN was 10-fold higher than that of GaN (0.03 mA/cm2 at 1.35 V), as shown in Figure 3 [71]. Mi et al. employed GaN-InGaN core-shell nanowire for PEC water splitting, and the high incident photon-to-current conversion efficiency of up to ∼27% is obtained [72]. It is expected to achieve higher PEC activity by surface treatment of GaN. And as far as the current development is concerned, it is foreseeable that surface modification is still a good strategy to achieve efficient water splitting.
(a) Current density of 3D GaN-InGaN core-shell rod array (red) and 3D GaN rod array (blue) in 0.01 M H2SO4 solution under 100 mW/cm2 illumination using AM 1.5 filter [
As an important part of the PEC water splitting system, the morphology of semiconductor materials is very important. Different morphologies have a great influence on the efficiency of PEC water splitting. Many different morphologies of GaN for PEC water splitting have been proposed. Xi and co-workers used metal–organic chemical vapor deposition (MOCVD) to fabricate GaN nanowires, and it has obtained high photocurrent density value at an applied bias voltage from −1 to 1 V [73]. Its morphology was shown in Figure 4a. It can be found from Figure 4b that compared to the planar structure and other diameters, 300 nm has a stronger current density due to a larger body-to-surface ratio, thereby increasing the efficiency of PEC water splitting. GaN microwires still have problems such as low crystal quality and light absorption. To further improve the efficiency of PEC water splitting, Park et al. used the plasma-assisted molecular beam epitaxy (PAMBE) technique to grow InGaN/GaN multiple quantum wells (MQWs) grown on hollow n-GaN nanowires (Figure 4c) [74]. The hollow and InGaN/GaN multiple quantum well structures of the nanowires allow the incident light to be refracted multiple times, increasing the absorption of light. Figure 4d shows the incident photon-to-current conversion efficiency value of the device, which can be found that the highest IPCE value of the device is as high as 33.3% and 415 μmol of hydrogen gas was generated within 1 hour.
(a) SEM images of GaN nanowires, (b) linear sweep voltammetry of GaN nanowires with diameters of 60, 100, and 300 nm and planar GaN [
Nanopores, nanocones, and honeycombs are other nanostructures of GaN. Figure 5a shows the GaN nanopore structure [43], nanopore structure used electrochemical lateral etching and ICP etching to prepare laterally porous, vertically holes well-ordered GaN. This structure reduces the UV reflectivity. The ordered vertical holes not only help open the embedded channels to the electrolyte on both sides and reduce the migration distance of bubbles in the water splitting reaction but also help to modulate the light field. Incident light can be modulated and captured into the nanopore to enhance the absorption of light, so the saturation photocurrent was 4.5 times that of the planar structure, as shown in Figure 5d. Moreover, GaN with aligned nanopore structure had been fabricated by combining MOCVD using a lateral anodic etching, as shown in Figure 5b [75]. Laterally porous 3D hierarchical nanostructures not only provided a large contact area between the electrode and the electrolyte but also increased the absorption of light and provided a channel for the transmission of light and electrons. The device also achieved high values of photocurrent of 0.32 mA/cm2 by using etching voltages at 10 V (Figure 5e). Kim et al. had prepared GaN truncated nanocones [76], which was shown in Figure 5c. GaN truncated nanocones have concentrated incident light inside the nanostructure and enhanced the light trapping with reduced light losses from surface reflection. The relationship between current density and potential was shown in Figure 5f, which indicated that the photocurrent of GaN truncated nanocones was three times higher than the planar structure.
(a) [
The above structures are expected, and GaN can also have nanorods [77], nanocolumns [78], nano-pyramids [79], and so on. It can be known from the above results that changing the morphology of GaN influences the efficiency of PEC water splitting, which mainly affects the light absorption efficiency of GaN and reduces light reflection and loss. Therefore, it is very important to choose the appropriate semiconductor morphology for PEC water splitting system.
Doping is a commonly used and effective method to improve the performance of materials. It mainly adjusts the energy band of the material, so that the photogenerated electrons and holes are better transported and high efficiency of PEC water splitting is obtained. Zhou and co-workers doped ZnO-GaN (GZNO) solid solution with La, as shown in Figure 6a [80]. La-dopant incorporation is optimized to adjust the bending of the band gap, which increases the thickness of the space charge region, thereby improving the separation of photogenerated carriers. Figure 6c shows the photocatalytic performance of GZNO and 3% La GZNO. It can be clearly seen that the photocatalyst doped with La produces more hydrogen and oxygen under the same conditions, which indicates that the performance of the photocatalyst is significantly improved after doping. Figure 6b shows the schematic of Ni-doped AlN and two-dimensional GaN monolayers [81]. By controlling the doping content of Ni, it can adjust the band bending of GaN. Figure 6d displays the binding strength of GaN and AlN composites with different transition metals doped. It can be found that Ni doping is the best for OER because they have small OER overpotentials.
(a) TEM images of 3% La GZNO [
GaN doped with Mn [82], Mg [83], or CrO are also reported [84]. Doping is also a good method to improve the efficiency of PEC water splitting. It mainly adjusts the energy band of GaN through doping, thereby promoting the separation of photogenerated electrons and holes and effectively preventing the recombination of carriers. However, excessive doping will deteriorate the crystal quality of the material. So, it is important to choose the doping material and control dopant incorporation.
The solid solution is a wurtzite structure composite material composed of GaN and ZnO mixed in a certain proportion. It adjusts the doping content of ZnO to change the band gap of the solid solution and realizes PEC of water splitting under the visible light. This concept was first proposed by Maeda and co-workers [85]. And then, Ohno et al. used Rh2 −
(a) Curve of total hydrogen production over time [
The method of forming multiple-metal incorporation is similar to that of a solid solution. Different In content incorporation can change the band gap of GaN to widen the absorption spectrum range. Many different multiple-metal incorporations have been proposed [90, 91, 92, 93, 94]. AlOtaibi et al. grown InGaN/GaN core-shell nanowire arrays on Si substrate by catalyst-free MBE, as shown in Figure 8a [72]. It has a photoelectric conversion efficiency of up to 27% under ultraviolet and visible light irradiation. The photoelectrode continued to work for 10 hours, and the hydrogen production was consistent with the theoretical value (Figure 8d), which indicates that the photoelectrode has good stability and hydrogen production ability. And the quadruple-band InGaN nanowire arrays were integrated on a nonpolar substrate, which includes In0.35Ga0.65N, In0.27Ga0.73N, In0.20Ga0.80N, and GaN and exhibits a solar-to-hydrogen efficiency of ∼5.2% in a relatively stable state (Figure 8b) [95]. Multiband nanowire arrays enhance light absorption to improve the performance of PEC water splitting. Moreover, the multiband nanowire array photoelectrode has good stability and high photocatalyst efficiency for overall water splitting, as shown in Figure 8e. To improve the efficiency of the photolysis of water, InGaN heterostructures have been proposed. Kibria and co-workers have fabricated InGaN/GaN nanowire heterostructures, in which the internal quantum efficiency is about 13% [48]. The nanowire heterostructure is shown in Figure 8c. The combination of GaN and InGaN expands the light absorption range of GaN from ultraviolet light to visible light, which greatly improves the light absorption range and improves the efficiency of photolysis. The InGaN/GaN nanowire heterostructure photoelectrode also exhibits extremely high stability and high hydrogen production capabilities, as shown in Figure 8f. Moreover, nanowire arrays [96], tunnel junction nanowire [97], have also been reported.
(a) Schematic of the InGaN/GaN core-shell structure [
In summary, the multiple-metal incorporation can greatly improve the efficiency of PEC water splitting of GaN. The structures and In content will greatly affect the efficiency of PEC water splitting. So, it is important to choose a suitable structure and the In content while preparing the GaN-based photoelectrode.
This review mainly introduces the application of GaN in the PEC water splitting system and summarizes the methods to improve the efficiency of PEC water splitting. The methods to enhance efficiency are mainly carried out in the following four aspects, such as morphology, doping, surface modification, and composition of solid solution or multiple-metal incorporation. Up to now, GaN has made great progress in the application of PEC water splitting; the solar-to-hydrogen efficiency of 12.6% has already been obtained without any external bias [98], better than CoP catalyst electrodes (6.7%) reported recently [99], but it still not as excellent as TiO2 (18.5%) [100]. And its properties need to be further optimized to improve the absorption efficiency of visible light, increase the carrier migration speed, and facilitate carrier transport. The follow-up works are suggested from the following aspects:
At present, most water splitting processes are carried out in alkaline or acidic solutions. It should be considered how to ensure the stability and catalytic activity of metal nitrides for a long time.
Although the theory of water splitting is simple, the reaction process is still not clear, and in-depth study of the mechanism is helpful for the design of the catalyst.
Reasonable design of the composition and structure of the catalyst to adjust its electronic structure, band gap, band edge potential, and microstructure help to improve the catalytic performance. We believe that with the deepening of research, the efficiency of GaN for water splitting can be further promoted.
The authors declare no conflict of interest.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,11,14,15,17,20,22,24"},books:[{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:166},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"921",title:"Electrostatics",slug:"ceramics-electrostatics",parent:{id:"155",title:"Ceramics",slug:"ceramics"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:86,numberOfWosCitations:121,numberOfCrossrefCitations:58,numberOfDimensionsCitations:118,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"921",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5215",title:"Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"a062db03e5e21b64942d5d4dfd9b7bd2",slug:"piezoelectric-materials",bookSignature:"Toshio Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/5215.jpg",editedByType:"Edited by",editors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3272",title:"Piezoelectric Materials and Devices",subtitle:"Practice and Applications",isOpenForSubmission:!1,hash:"a41c5bb092cc30980df760d6bec44c20",slug:"piezoelectric-materials-and-devices-practice-and-applications",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/3272.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3218",title:"Piezoelectric Ceramics",subtitle:null,isOpenForSubmission:!1,hash:"835cbf1fbf213fbd3aeb4e4cbf1686c9",slug:"piezoelectric-ceramics",bookSignature:"Ernesto Suaste-Gomez",coverURL:"https://cdn.intechopen.com/books/images_new/3218.jpg",editedByType:"Edited by",editors:[{id:"12814",title:"Dr.",name:"Ernesto",middleName:null,surname:"Suaste-Gomez",slug:"ernesto-suaste-gomez",fullName:"Ernesto Suaste-Gomez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"11644",doi:"10.5772/9942",title:"Porous Piezoelectric Ceramics",slug:"porous-piezoelectric-ceramics",totalDownloads:5427,totalCrossrefCites:14,totalDimensionsCites:30,abstract:null,book:{id:"3218",slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Elisa Mercadelli, Alessandra Sanson and Carmen Galassi",authors:[{id:"12866",title:"Dr.",name:"Elisa",middleName:null,surname:"Mercadelli",slug:"elisa-mercadelli",fullName:"Elisa Mercadelli"},{id:"12886",title:"Dr.",name:"Alessandra",middleName:null,surname:"Sanson",slug:"alessandra-sanson",fullName:"Alessandra Sanson"},{id:"12887",title:"Dr.",name:"Carmen",middleName:null,surname:"Galassi",slug:"carmen-galassi",fullName:"Carmen Galassi"}]},{id:"11647",doi:"10.5772/9945",title:"Piezoelectric Material-Based Energy Harvesting Devices: Advance of SSH Optimization Techniques (1999-2009)",slug:"piezoelectric-material-based-energy-harvesting-devices-advance-of-ssh-optimization-techniques-1999-2",totalDownloads:3616,totalCrossrefCites:5,totalDimensionsCites:12,abstract:null,book:{id:"3218",slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Elie Lefeuvre, Mickail Lallart, Claude Richard and Daniel Guyomar",authors:[{id:"10041",title:"Dr.",name:"Mickaël",middleName:null,surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"},{id:"10042",title:"Prof.",name:"Daniel",middleName:"Jean",surname:"Guyomar",slug:"daniel-guyomar",fullName:"Daniel Guyomar"},{id:"12121",title:"Dr.",name:"Elie",middleName:null,surname:"Lefeuvre",slug:"elie-lefeuvre",fullName:"Elie Lefeuvre"},{id:"12927",title:"Pr",name:"Claude",middleName:null,surname:"Richard",slug:"claude-richard",fullName:"Claude Richard"}]},{id:"40134",doi:"10.5772/53117",title:"Acoustic Wave Velocity Measurement on Piezoelectric Ceramics",slug:"acoustic-wave-velocity-measurement-on-piezoelectric-ceramics",totalDownloads:3535,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"3272",slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Toshio Ogawa",authors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}]},{id:"11646",doi:"10.5772/9944",title:"Lead-Free Piezoelectric Transducers for Microelectronic Wirebonding Applications",slug:"lead-free-piezoelectric-transducers-for-microelectronic-wirebonding-applications-",totalDownloads:4906,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3218",slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"K.W. Kwok, T. Lee, S.H. Choy and H.L.W. Chan",authors:[{id:"12889",title:"Dr.",name:"K.W.",middleName:null,surname:"Kwok",slug:"k.w.-kwok",fullName:"K.W. Kwok"},{id:"12891",title:"Prof.",name:"H.L.W.",middleName:null,surname:"Chan",slug:"h.l.w.-chan",fullName:"H.L.W. Chan"}]},{id:"50639",doi:"10.5772/62630",title:"Piezoelectric-Layered Structures Based on Synthetic Diamond",slug:"piezoelectric-layered-structures-based-on-synthetic-diamond",totalDownloads:1194,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Results of theoretical, modeling, and experimental investigation of microwave acoustic properties of piezoelectric layered structure “Me1/AlN/Me2/(100) diamond” have been presented within a wide frequency band 0.5–10 GHz. The highest among known material quality parameter Q × f ~ 1014 Hz for the IIa type synthetic diamond at operational frequency ~10 GHz has been found. Conditions of UHF excitation and propagation of the bulk, surface, and Lamb plate acoustic waves have been established and studied experimentally. Frequency dependencies of the impedance and quality factor have been studied to obtain a number of piezoelectric layered structure parameters as electromechanical coupling coefficient, equivalent circuit parameters, etc. Results of 2D finite element modeling of a given piezoelectric layered structure have been compared with the experimental ones obtained for the real high-overtone bulk acoustic resonator. An origin of high-overtone bulk acoustic resonator’s spurious resonant peaks has been studied. Results on UHF acoustic attenuation of IIa-type synthetic single crystalline diamond have been presented and discussed in terms of Akhiezer and Landau–Rumer mechanisms of phonon–phonon interaction. Identification and classification of Lamb waves belonging to several branches as well as dispersive curves of phase velocities have been executed. Necessity of introducing a more correct Lamb-mode classification has been recognized.",book:{id:"5215",slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Boris P. Sorokin, Gennady M. Kvashnin, Arsenii V. Telichko, Sergey I. Burkov and Vladimir D. Blank",authors:[{id:"181306",title:"Prof.",name:"Boris",middleName:null,surname:"Sorokin",slug:"boris-sorokin",fullName:"Boris Sorokin"},{id:"185347",title:"Dr.",name:"Gennadiy",middleName:null,surname:"Kvashnin",slug:"gennadiy-kvashnin",fullName:"Gennadiy Kvashnin"},{id:"185348",title:"Dr.",name:"Arsenii",middleName:null,surname:"Telichko",slug:"arsenii-telichko",fullName:"Arsenii Telichko"},{id:"185349",title:"Dr.",name:"Sergey",middleName:null,surname:"Burkov",slug:"sergey-burkov",fullName:"Sergey Burkov"},{id:"185350",title:"Prof.",name:"Vladimir",middleName:null,surname:"Blank",slug:"vladimir-blank",fullName:"Vladimir Blank"}]}],mostDownloadedChaptersLast30Days:[{id:"51560",title:"Piezoelectric Energy Harvesting",slug:"piezoelectric-energy-harvesting",totalDownloads:2912,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The piezoelectric material selection and the circuit design in vibrational energy harvesting are discussed. The performances of the energy-harvesting unimorph devices that captured frequencies of 60 Hz by using piezoelectric PZT-based and BT-based ceramics were evaluated. Output voltages and power from the devices depend on the amplitude and the frequency of the oscillations, and depend on the load resistance. Generally, PZT-based ceramics are superior for piezoelectric energy-harvesting applications. The figures of merit of the materials are discussed in order to provide the guidelines of the piezoelectric material selections. Piezoelectric voltage coefficient, g31, is considered to be good parameter to predict the maximum voltages. On the other hand, d31g31/tanδ, k312Qm and d31g31 are close to the behavior of the maximum power. Combination of the piezoelectric unimorph and power management circuit produced the constant voltage output, which would be used as the power sources.",book:{id:"5215",slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Hiroshi Maiwa",authors:[{id:"27242",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Maiwa",slug:"hiroshi-maiwa",fullName:"Hiroshi Maiwa"}]},{id:"43265",title:"The Application of Piezoelectric Materials in Machining Processes",slug:"the-application-of-piezoelectric-materials-in-machining-processes",totalDownloads:4528,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3272",slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Saeed Assarzadeh and Majid Ghoreishi",authors:[{id:"162546",title:"Dr.",name:"Saeed",middleName:null,surname:"Assarzadeh",slug:"saeed-assarzadeh",fullName:"Saeed Assarzadeh"}]},{id:"50322",title:"Acoustic Wave Velocity Measurement on Piezoelectric Single Crystals",slug:"acoustic-wave-velocity-measurement-on-piezoelectric-single-crystals",totalDownloads:1821,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Sound velocities were measured in relaxor single-crystal plates and piezoelectric ceramics including lead free using an ultrasonic precision thickness gauge with high-frequency pulse generation. Estimating the difference in the sound velocities and elastic constants in the single crystals and ceramics, it was possible to evaluate effects of domain and grain boundaries on elastic constants. Existence of domain boundaries in single crystal affected the decrease in Young’s modulus, rigidity, Poisson’s ratio, and bulk modulus. While existence of grain boundaries affected the decrease in Young’s modulus and rigidity, Poisson’s ratio and bulk modulus increased. It was thought these phenomena come from domain alignment by DC poling and both the boundaries act as to absorb mechanical stress by defects due to the boundaries. In addition, the origin of piezoelectricity in single crystals is caused by low bulk modulus and Poisson’s ratio, and high Young’s modulus and rigidity in comparison with ceramics. On the contrary, the origin of piezoelectricity in ceramics is caused by high Poisson’s ratio by high bulk modulus, and furthermore, low Young’s modulus and rigidity due to domain alignment.",book:{id:"5215",slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Toshio Ogawa",authors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}]},{id:"50728",title:"Piezoelectric Materials in RF Applications",slug:"piezoelectric-materials-in-rf-applications",totalDownloads:2148,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"The development of several types of mobile objects requires new devices, such as high‐performance filters, microelectromechanical systems and other components. Piezoelectric materials are crucial to reach the expected performance of mobile objects because they exhibit high quality factors and sharp resonance and some of them are compatible with collective manufacturing technologies. We reviewed the main piezoelectric materials that can be used for radio frequency (RF) applications and herein report data on some devices. The modelling of piezoelectric plates and structures in the context of electronic circuits is presented. Among RF devices, filters are the most critical as the piezoelectric material must operate at RF frequencies. The main filter structures and characterisation methods, in accordance with such operating conditions as high frequencies and high power, are also discussed.",book:{id:"5215",slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Philippe Benech and Jean‐Marc Duchamp",authors:[{id:"4490",title:"Dr.",name:"Philippe",middleName:null,surname:"Benech",slug:"philippe-benech",fullName:"Philippe Benech"},{id:"182052",title:"Dr.",name:"Jean-Marc",middleName:null,surname:"Duchamp",slug:"jean-marc-duchamp",fullName:"Jean-Marc Duchamp"}]},{id:"11639",title:"Piezoelectric Thin Film Deposition: Novel Self-Assembled Island Structures and Low Temperature Processes on Silicon",slug:"piezoelectric-thin-film-deposition-novel-self-assembled-island-structures-and-low-temperature-proces",totalDownloads:4049,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3218",slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Sharath Sriram, Madhu Bhaskaran and Arnan Mitchell",authors:[{id:"12171",title:"Dr.",name:"Sharath",middleName:null,surname:"Sriram",slug:"sharath-sriram",fullName:"Sharath Sriram"},{id:"12172",title:"Dr.",name:"Madhu",middleName:null,surname:"Bhaskaran",slug:"madhu-bhaskaran",fullName:"Madhu Bhaskaran"},{id:"12173",title:"Prof",name:"Arnan",middleName:null,surname:"Mitchell",slug:"arnan-mitchell",fullName:"Arnan Mitchell"}]}],onlineFirstChaptersFilter:{topicId:"921",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/79131",hash:"",query:{},params:{id:"79131"},fullPath:"/chapters/79131",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()