Main effects of IFN-β in circulating immune cells in MS.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"1994",leadTitle:null,fullTitle:"Advances in Spacecraft Systems and Orbit Determination",title:"Advances in Spacecraft Systems and Orbit Determination",subtitle:null,reviewType:"peer-reviewed",abstract:'"Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems.',isbn:null,printIsbn:"978-953-51-0380-6",pdfIsbn:"978-953-51-6169-1",doi:"10.5772/2408",price:119,priceEur:129,priceUsd:155,slug:"advances-in-spacecraft-systems-and-orbit-determination",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"005b6f7fa0ad6e582e7b37bee4ce88be",bookSignature:"Rushi Ghadawala",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1994.jpg",numberOfDownloads:32283,numberOfWosCitations:17,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:23,numberOfDimensionsCitationsByBook:4,hasAltmetrics:0,numberOfTotalCitations:42,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 18th 2011",dateEndSecondStepPublish:"June 15th 2011",dateEndThirdStepPublish:"October 20th 2011",dateEndFourthStepPublish:"November 19th 2011",dateEndFifthStepPublish:"March 18th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"103175",title:"Dr.",name:"Rushi",middleName:null,surname:"Ghadawala",slug:"rushi-ghadawala",fullName:"Rushi Ghadawala",profilePictureURL:"https://mts.intechopen.com/storage/users/103175/images/3602_n.jpg",biography:"Dr. Rushi Ghadawala is involved with the space industry since last couple of years. He has started his career as technical expert in Aerospace and gradually expanded his expertize over the space sector in different areas including life sciences and policy issues. His foundation, Aryavarta Space Organization is enhancing the capacity building and exploring the opportunities in R&D of Indian Space Sector. Through his organization, he is leading India on private space market on a global platform with the operations in India, UK and USA. He has also taken active part of many high level meetings and policy making working groups at international level, representing India in Space Sector. He is actively involved in various projects related to Space Debris, Energy & Cost Efficient Space Transportation System, Space Security & Global Concerns, Remote Sensing Applications in Disaster Management and preparing strategic recommendations for national space policy of India.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Aryavarta Space Organization",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"683",title:"Aeronautics",slug:"aeronautics"}],chapters:[{id:"33680",title:"The Middle Atmosphere: Discharge Phenomena",doi:"10.5772/36124",slug:"the-middle-atmosphere-discharge-phenomena",totalDownloads:2427,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Cheng Ling Kuo",downloadPdfUrl:"/chapter/pdf-download/33680",previewPdfUrl:"/chapter/pdf-preview/33680",authors:[{id:"107159",title:"Dr.",name:"Cheng-Ling",surname:"Kuo",slug:"cheng-ling-kuo",fullName:"Cheng-Ling Kuo"}],corrections:null},{id:"33681",title:"Physics-Based Control Methods",doi:"10.5772/36128",slug:"physics-based-control-methods",totalDownloads:3225,totalCrossrefCites:0,totalDimensionsCites:12,hasAltmetrics:0,abstract:null,signatures:"T. A. Sands",downloadPdfUrl:"/chapter/pdf-download/33681",previewPdfUrl:"/chapter/pdf-preview/33681",authors:[{id:"258189",title:"Prof.",name:"Timothy",surname:"Sands",slug:"timothy-sands",fullName:"Timothy Sands"}],corrections:null},{id:"33682",title:"Spacecraft Relative Orbital Motion",doi:"10.5772/37354",slug:"-spacecraft-relative-orbital-motion",totalDownloads:3993,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Daniel Condurache",downloadPdfUrl:"/chapter/pdf-download/33682",previewPdfUrl:"/chapter/pdf-preview/33682",authors:[{id:"112362",title:"Prof.",name:"Daniel",surname:"Condurache",slug:"daniel-condurache",fullName:"Daniel Condurache"}],corrections:null},{id:"33683",title:"Research on the Method of Spacecraft Orbit Determination Based the Technology of Dynamic Model Compensation",doi:"10.5772/37939",slug:"research-on-the-method-of-spacecraft-orbit-determination-based-the-technology-of-dynamic-model-compe",totalDownloads:2565,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Pan Xiaogang, Wang Jiongqi and Zhou Haiyin",downloadPdfUrl:"/chapter/pdf-download/33683",previewPdfUrl:"/chapter/pdf-preview/33683",authors:[{id:"11126",title:"Dr.",name:"Jiong Qi",surname:"Wang",slug:"jiong-qi-wang",fullName:"Jiong Qi Wang"},{id:"114859",title:"Dr.",name:"Pan",surname:"Xiaogang",slug:"pan-xiaogang",fullName:"Pan Xiaogang"},{id:"115851",title:"Prof.",name:"Zhou",surname:"Hai-Yin",slug:"zhou-hai-yin",fullName:"Zhou Hai-Yin"}],corrections:null},{id:"33684",title:"Modularity and Reliability in Low Cost AOCSs",doi:"10.5772/38264",slug:"modularity-and-reliability-in-low-cost-aocss",totalDownloads:2286,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Leonardo M. Reyneri, Danilo Roascio, Claudio Passerone, Stefano Iannone, Juan Carlos de los Rios, Giorgio Capovilla, Antonio Martínez-Álvarez and Jairo Alberto Hurtado",downloadPdfUrl:"/chapter/pdf-download/33684",previewPdfUrl:"/chapter/pdf-preview/33684",authors:[{id:"5267",title:"Mr.",name:"Claudio",surname:"Passerone",slug:"claudio-passerone",fullName:"Claudio Passerone"},{id:"107260",title:"Prof.",name:"Leonardo",surname:"Reyneri",slug:"leonardo-reyneri",fullName:"Leonardo Reyneri"},{id:"116295",title:"MSc.",name:"Danilo",surname:"Roascio",slug:"danilo-roascio",fullName:"Danilo Roascio"},{id:"117864",title:"MSc.",name:"Juan Carlos",surname:"De Los Rios",slug:"juan-carlos-de-los-rios",fullName:"Juan Carlos De Los Rios"},{id:"117865",title:"MSc.",name:"Jairo Alberto",surname:"Hurtado",slug:"jairo-alberto-hurtado",fullName:"Jairo Alberto Hurtado"}],corrections:null},{id:"33685",title:"Coordination Control of Distributed Spacecraft System",doi:"10.5772/36133",slug:"coordination-control-of-distributed-spacecraft-system",totalDownloads:2196,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Min Hu, Guoqiang Zeng and Hong Yao",downloadPdfUrl:"/chapter/pdf-download/33685",previewPdfUrl:"/chapter/pdf-preview/33685",authors:[{id:"107226",title:"Dr.",name:"Min",surname:"Hu",slug:"min-hu",fullName:"Min Hu"},{id:"142653",title:"Prof.",name:"Guoqiang",surname:"Zeng",slug:"guoqiang-zeng",fullName:"Guoqiang Zeng"},{id:"143011",title:"Dr.",name:"Hong",surname:"Yao",slug:"hong-yao",fullName:"Hong Yao"}],corrections:null},{id:"33686",title:"Design of Sliding Mode Attitude Control for Communication Spacecraft",doi:"10.5772/38114",slug:"sliding-mode-control-of-a-satellite",totalDownloads:3762,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Erkan Abdulhamitbilal and Elbrous M. Jafarov",downloadPdfUrl:"/chapter/pdf-download/33686",previewPdfUrl:"/chapter/pdf-preview/33686",authors:[{id:"115633",title:"Dr.",name:"Erkan",surname:"Abdulhamitbilal",slug:"erkan-abdulhamitbilal",fullName:"Erkan Abdulhamitbilal"}],corrections:null},{id:"33687",title:"Adaptive Fuzzy Sliding-Mode Attitude Controller Design for Spacecrafts with Thrusters",doi:"10.5772/38189",slug:"adaptive-fuzzy-sliding-mode-attitude-controller-design-for-spacecrafts-with-thrusters",totalDownloads:2357,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Fu-Kuang Yeh",downloadPdfUrl:"/chapter/pdf-download/33687",previewPdfUrl:"/chapter/pdf-preview/33687",authors:[{id:"115912",title:"Dr.",name:"Fu-Kuang",surname:"Yeh",slug:"fu-kuang-yeh",fullName:"Fu-Kuang Yeh"}],corrections:null},{id:"33688",title:"Design and Optimization of HVAC System of Spacecraft",doi:"10.5772/36134",slug:"design-and-optimization-of-hvac-system-of-spacecraft",totalDownloads:4217,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Xiangli Li",downloadPdfUrl:"/chapter/pdf-download/33688",previewPdfUrl:"/chapter/pdf-preview/33688",authors:[{id:"107228",title:"Dr.",name:"Xiangli",surname:"Li",slug:"xiangli-li",fullName:"Xiangli Li"}],corrections:null},{id:"33689",title:"Autonomous Terrain Classification for Planetary Rover",doi:"10.5772/37453",slug:"autonomous-terrain-classification-for-planetary-rover",totalDownloads:1856,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Koki Fujita",downloadPdfUrl:"/chapter/pdf-download/33689",previewPdfUrl:"/chapter/pdf-preview/33689",authors:[{id:"112824",title:"Dr.",name:"Koki",surname:"Fujita",slug:"koki-fujita",fullName:"Koki Fujita"}],corrections:null},{id:"33690",title:"Resolving the Difficulties Encountered by JPL Interplanetary Robotic Spacecraft in Flight",doi:"10.5772/36875",slug:"resolving-the-difficulties-encountered-by-jpl-interplanetary-robotic-spacecraft-in-flight",totalDownloads:3401,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Paula S. Morgan",downloadPdfUrl:"/chapter/pdf-download/33690",previewPdfUrl:"/chapter/pdf-preview/33690",authors:[{id:"110221",title:"Dr.",name:"Paula",surname:"Morgan",slug:"paula-morgan",fullName:"Paula Morgan"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1992",title:"Recent Advances in Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"67fa903d68a094013f66d01b38882107",slug:"recent-advances-in-aircraft-technology",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/1992.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"623",title:"Global Navigation Satellite Systems",subtitle:"Signal, Theory and Applications",isOpenForSubmission:!1,hash:"cf4b30bc55fec41acdfe8c1203e1de62",slug:"global-navigation-satellite-systems-signal-theory-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/623.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"215",title:"Aeronautics and Astronautics",subtitle:null,isOpenForSubmission:!1,hash:"311199eb39821f7f12a19ca1efc3fd7f",slug:"aeronautics-and-astronautics",bookSignature:"Max Mulder",coverURL:"https://cdn.intechopen.com/books/images_new/215.jpg",editedByType:"Edited by",editors:[{id:"10586",title:"Prof.",name:"Max",surname:"Mulder",slug:"max-mulder",fullName:"Max Mulder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"54",title:"Advances in Flight Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"186a12a4766d19cae77a730fa648982a",slug:"advances-in-flight-control-systems",bookSignature:"Agneta Balint",coverURL:"https://cdn.intechopen.com/books/images_new/54.jpg",editedByType:"Edited by",editors:[{id:"18768",title:"Dr.",name:"Maria Agneta",surname:"Balint",slug:"maria-agneta-balint",fullName:"Maria Agneta Balint"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1704",title:"Future Aeronautical Communications",subtitle:null,isOpenForSubmission:!1,hash:"0b8e37964820587b229361f22d299b29",slug:"future-aeronautical-communications",bookSignature:"Simon Plass",coverURL:"https://cdn.intechopen.com/books/images_new/1704.jpg",editedByType:"Edited by",editors:[{id:"72892",title:"Dr.",name:"Simon",surname:"Plass",slug:"simon-plass",fullName:"Simon Plass"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"614",title:"Automatic Flight Control Systems",subtitle:"Latest Developments",isOpenForSubmission:!1,hash:"7e37ca326991ca149dd8f812475df8de",slug:"automatic-flight-control-systems-latest-developments",bookSignature:"Thomas Lombaerts",coverURL:"https://cdn.intechopen.com/books/images_new/614.jpg",editedByType:"Edited by",editors:[{id:"19892",title:"Dr.",name:"Thomas",surname:"Lombaerts",slug:"thomas-lombaerts",fullName:"Thomas Lombaerts"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4476",title:"Satellite Positioning",subtitle:"Methods, Models and Applications",isOpenForSubmission:!1,hash:"0f1cb6a7a18e2391d2308b6ac1d423b0",slug:"satellite-positioning-methods-models-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/4476.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"315",title:"Advances in Satellite Communications",subtitle:null,isOpenForSubmission:!1,hash:"97497fa8021416773088969c2c9219cb",slug:"advances-in-satellite-communications",bookSignature:"Masoumeh Karimi and Yuri Labrador",coverURL:"https://cdn.intechopen.com/books/images_new/315.jpg",editedByType:"Edited by",editors:[{id:"13481",title:"Dr.",name:"Masoumeh",surname:"Karimi",slug:"masoumeh-karimi",fullName:"Masoumeh Karimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6150",title:"Flight Physics",subtitle:"Models, Techniques and Technologies",isOpenForSubmission:!1,hash:"fa5828a4ee518adf719c68c1e533f3b7",slug:"flight-physics-models-techniques-and-technologies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6150.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5136",title:"Recent Progress in Some Aircraft Technologies",subtitle:null,isOpenForSubmission:!1,hash:"6855bfb94011b56313a07020fa05ead6",slug:"recent-progress-in-some-aircraft-technologies",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/5136.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"47331",slug:"correction-to-the-cultural-reinforcers-of-child-abuse",title:"Correction to: The Cultural Reinforcers of Child Abuse",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/47331.pdf",downloadPdfUrl:"/chapter/pdf-download/47331",previewPdfUrl:"/chapter/pdf-preview/47331",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/47331",risUrl:"/chapter/ris/47331",chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]}},chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]},book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11207",leadTitle:null,title:"Carbon Nitride",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book deals with three hot topics related to the synthesis, applications, and technologies of carbon nitride. The introductory chapter deals with the synthesis and Photocatalytic properties of graphitic carbon nitride. The other chapters will cover many topics, such as Graphitic carbon nitride for high capacity hydrogen storage and synthesis and characterization of carbon nitride as coating and activation materials for organic pollutants degradation. In addition, the book will cover, Nano Composites of graphitic carbon nitride for luminescence and photocatalytic applications, Graphitic carbon nitride as catalyst support in fuel cells and water electrolyzers, and Graphitic carbon nitride composite as semiconductors and photocatalytic fibers. The new approaches such as graphitic carbon nitride-based nanocomposites, graphitic carbon nitride from melamine and uric acid, and synthesis of metal-free ultrathin graphitic carbon nitride sheet will be the synthesis for photocatalytic degradation of organic dyes. This book will encourage readers, researchers, and scientists to look further into the frontier topics of carbon nitride and open new possible research paths for further novel development.
",isbn:"978-1-80355-973-5",printIsbn:"978-1-80355-972-8",pdfIsbn:"978-1-80355-974-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"cbd79ae48d049da3e433c845d5b1ab31",bookSignature:"Prof. Nasser S Awwad and Dr. Saleh S. Alarfaji",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11207.jpg",keywords:"Graphitization, Carbon Nitride, Synthesis and Characterization, Coating and Activation, Nano Composites, Luminescence, Graphitic Carbon Nitride, Catalyst Support, Semiconductors, Photocatalytic Fibers, Synthesis, Photocatalytic",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 18th 2021",dateEndSecondStepPublish:"March 3rd 2022",dateEndThirdStepPublish:"May 2nd 2022",dateEndFourthStepPublish:"July 21st 2022",dateEndFifthStepPublish:"September 19th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Prof. Awwad is Head of the Scientific Research and International Cooperation Unit, Faculty of Science, King Khalid University. He is a permanent member of the American Chemical Society and member of the Arab Society of Forensic Sciences and Forensic Medicine.",coeditorOneBiosketch:"Dr. Saleh S. Alarfaji is the chairman of the chemistry department at King Khalid University (KKU). He got his MSc in computational chemistry from Murray State University (MSU, USA) and Ph.D. from the University of Nottingham.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad",profilePictureURL:"https://mts.intechopen.com/storage/users/145209/images/system/145209.jpg",biography:"Dr. Nasser Awwad received his Ph.D. in inorganic and radiochemistry in 2000 from Ain Shams University . Nasser Awwad was an Associate Professor of Radiochemistry in 2006 and Professor of Inorganic and Radiochemistry in 2011. He has been a Professor at King Khalid University, Abha, KSA, from 2011 until now. Prof Awwad has edited four books (Uranium, New trends in Nuclear Sciences, Lanthanides, and Nuclear Power Plants) and he has co-edited two books (Chemistry and Technology of Natural and Synthetic Dyes and Pigments and Biochemical Analysis Tools). He has also published 137 papers at ISI journals. He has supervised 4 Ph.D. and 18 MSc students in the field of radioactive and wastewater treatment. He has participated in 26 international conferences in South Korea, the USA, Lebanon, KSA, and Egypt. He has reviewed 2 Ph.D. and 15 MSc theses. He participated in 6 big projects with KACST at KSA and Sandia National Labs in the USA. He is a member of the Arab Society of Forensic Sciences and Forensic Medicine. He is a permanent member of the American Chemical Society, and a rapporteur of the Permanent Committee for Nuclear and Radiological Protection at KKU. He is Head of the Scientific Research and International Cooperation Unit, Faculty of Science, King Khalid University.",institutionString:"King Khalid University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}}],coeditorOne:{id:"342121",title:"Dr.",name:"Saleh",middleName:"S.",surname:"Alarfaji",slug:"saleh-alarfaji",fullName:"Saleh Alarfaji",profilePictureURL:"https://mts.intechopen.com/storage/users/342121/images/15243_n.jpg",biography:null,institutionString:"King Khalid University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440212",firstName:"Elena",lastName:"Vracaric",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440212/images/20007_n.jpg",email:"elena@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6303",title:"Uranium",subtitle:"Safety, Resources, Separation and Thermodynamic Calculation",isOpenForSubmission:!1,hash:"4812c0bc91279bd79f03418aca6d17c5",slug:"uranium-safety-resources-separation-and-thermodynamic-calculation",bookSignature:"Nasser S. Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/6303.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7287",title:"New Trends in Nuclear Science",subtitle:null,isOpenForSubmission:!1,hash:"2156d3fb99aa1fd640aabf95d1ca9f4c",slug:"new-trends-in-nuclear-science",bookSignature:"Nasser Sayed Awwad and Salem A. AlFaify",coverURL:"https://cdn.intechopen.com/books/images_new/7287.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7512",title:"Lanthanides",subtitle:null,isOpenForSubmission:!1,hash:"f7bcbda594eacb5a3bd7149e94628753",slug:"lanthanides",bookSignature:"Nasser S. Awwad and Ahmed T. Mubarak",coverURL:"https://cdn.intechopen.com/books/images_new/7512.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"77779",title:"Germinal Matrix-Intraventricular Hemorrhage: Current Concepts and Future Direction",doi:"10.5772/intechopen.99275",slug:"germinal-matrix-intraventricular-hemorrhage-current-concepts-and-future-direction",body:'The germinal matrix (GM) is a specialized layer of glial and neuronal precursor cells in the periventricular region of the brain with high metabolic activity, which is strongly dependent on its rich vascularity and rapid angiogenesis [1]. The dense and fragile vasculature makes GM selectively vulnerable to hemorrhage. Germinal matrix – intraventricular hemorrhage (GM-IVH) is the most common type of intracranial hemorrhage in preterm infants. A combination of increased perinatal stress, poor cerebral autoregulation, and inherent fragility of the nascent vessels in the germinal matrix increases the likelihood of the development of GM-IVH in preterm infants. Also, there is evidence of occurrence in-utero and among full-term infants, however, such cases are rare [2]. The germinal matrix disappears by 36–37 weeks of gestation (wg), so GM-IVH is more likely in preterm infants than full term.
The global incidence of GM-IVH among preterm infants ranges from 14.7% to 44.7%, with variations across gestational age groups, countries, and antenatal and neonatal care [3]. The widespread use of cranial ultrasonography since the early 1980s, increasing knowledge of risk factors, antenatal steroid usage, and improved intensive care have improved incidence, survival, and morbidity of GMH [4]. However, GMH continues to remain a significant healthcare issue in preterm infants and a recognizable cause of long-term neurological and behavioral issues in survivors.
Developmentally, GM is located in the ganglionic eminence of the brain and is most pronounced in the caudate nucleus. The thickness and density of GM vasculature are higher than other brain areas and begin to decrease after 24 weeks of gestation (wg) and almost disappear at 36–37 wg with increasing fetal maturity [1, 5]. A significant bleed in the highly vascular GM breaks the associated ependyma to involve the lateral cerebral ventricle constituting intraventricular hemorrhage (IVH) [6, 7]. The incidence of GMH-IVH increases with decreasing gestation age at birth in preterm infants [8, 9, 10].
The pathogenesis of GM-IVH is complex and heterogeneous. The blood–brain barrier (BBB) associated with GM vasculature is distinct from the remaining areas in the brain due to diminished: 1) pericytes, 2) fibronectin in the basal lamina, and 3) GFAP (glial fibrillary acidic protein) in astrocyte endfeet (Figure 1). The paucity of three essential components of the BBB leads to the altered structural integrity of GM vasculature. First, pericytes play an essential role in BBB development, especially in early angiogenesis, extracellular matrix production, and endothelial maturation [11]. The paucity of pericytes in GM is associated with diminished levels of TGF-β [12] and predisposition to hemorrhage in dilatated blood vessels in experimental models [13]. Second, fibronectin, a high molecular weight glycoprotein, is selectively deficient in the GM basement membrane [14]. Fibronectin polymerizes to provide structural integrity to blood vessels and is dependent on TGF-β for its upregulation. While other basement membrane components, including Collagen I, II, IV, laminin, and perlecan, are similar to other components in the human brain [14, 15]. Third, astrocytes provide vascular integrity by sheathing the predominance of the BBB with their GFAP rich extensions (endfeet). Autopsy studies in premature infants show decreased GFAP expressing astrocyte endfeet in GM than cerebral cortex and white matter [16]. These make the blood–brain barrier fragile and more susceptible to hemorrhage.
Diagrammatic representation of the coronal section of a preterm brain to highlight the factors contributing to the labile structure of the blood brain barrier in the germinal matrix and pathogenesis of the GM-IVH.
Microscopically the GM vasculature has been described as circular in coronal sections, compared to elongated and flat vessels in other areas of the brain, representing the immaturity of the vessels from rapid angiogenesis and high endothelial turnover [17]. In addition, immunofluorescence and electron microscopy have shown a paucity of pericytes in the GM vascular environment [12].
Finally, fluctuations in cerebral blood flow precipitate into hemorrhage in the delicate GM. In addition, defects in the hemostatic mechanisms expectantly promote hemorrhage [6, 7].
Germinal matrix cells being metabolically active precursor neuronal and glial cells in the early stages of maturation demand a specialized and rich blood supply. This requirement is met by accelerated angiogenesis dependent on high levels of vascular endothelial growth factors (VEGF) and angiopoietin-2 and low expression of TGF-β [1]. Also, the GM is in a state of relative hypoxia, a driving force for continuous angiogenesis [6, 7]. Intriguingly, this may explain the near absence of GM-IVH after over 3–5 days of birth irrespective of the duration of gestation. Likely, higher oxygenation following birth inhibits rapid angiogenesis. Thus, a labile combination of metabolically active immature/precursor cells with a rich but “structurally weak” vasculature provided a high-risk background for bleeding, especially with high-velocity cerebral blood flow.
Among many factors associated with alteration in cerebral blood flow, severe respiratory distress syndrome, patent ductus arteriosus, high central venous, and hypercarbia are most prominent. While autoregulation maintains constant cerebral blood flow, this mechanism is impaired in premature infants with lower birth weight. Thus, changes in blood volume or pressure are more likely to affect cerebral circulation. Interestingly, the results of studies directly comparing impaired autoregulation with GMH-IVH have been mixed [18, 19, 20] and provide an opportunity for further research in this direction. As seen in pneumothorax and mechanical ventilation (on high mean airway pressure mode), high central venous pressure stands out as a solid contender to contribute to IVH. This is also concordant with the venous nature of GM-IVH [21]. Interestingly, mechanical ventilation in synchronized and intermittent mandatory mode prevents higher velocity/turbulence of cerebral blood than fixed frequency/pressure modes.
Significant other risk factors affecting include prolonged labor, maternal chorioamnionitis, early-onset sepsis, development of respiratory distress, recurrent tracheal suctioning (supportive care especially during mechanical ventilation), and hypoxia. While most of these factors impact cerebral blood flow, infectious and hypoxic etiologies alter the GM microvasculature. The role of hypotension and rapid sodium bicarbonate infusion in the causation of IVH are inconclusive.
Clinical manifestations of GM-IVH include asymptomatic to subtle alterations in consciousness, limb and eye movement, and changes in muscular tone following IVH. Further, severe cases may be associated with cardiorespiratory distress and progression to seizures, hypotonia, or decerebrate posturing [22].
Cranial ultrasound (CUS) remains the most practical and well-utilized approach for diagnosing and monitoring GM-IVH evolution. Newer ultrasound devices with high-frequency transducers allow for enhanced evaluation. Epidemiologically, surviving infants born preterm at 24 weeks have a higher incidence (10–25%) of high-grade GM-IVH (grade 3–4) as compared to preterm infants born after 28 weeks (<5%) [8, 9, 10]. Almost half the cases of postnatal GM-IVH present on the first day of life, with nearly ~90% presenting within the first 72 hours. As discussed in pathogenesis, increased oxygenation after birth likely stabilizes the GM-BBB and makes infants almost resistant to GM-IVH after the first week of life irrespective of gestational age [23]. Therefore, regular CUS schedules have been recommended based on the gestational age at birth and when otherwise clinically indicated [24].
Traditionally, GM-IVH had been graded into four categories based on the extent of hemorrhage beginning in the venule that drains into the subependymal collector veins: grade-1 representing subependymal hemorrhage; grade-2 with limited (filling <50% of normal-sized ventricles) IVH; and grade-3 with extensive IVH. Grade-4 was defined as IVH with parenchymal extension [25]. However, the latter was better identified as parenchymal venous infarction (PVI), though parenchymal extension does also rarely occurs [26]. Interestingly, PVI may occur in all, including lower grades (1 and 2) of GM-IVH [22]. Since PVI is associated with long-term complications and risk of mortality (based on location and extent), a three-stage grading with an additional description of PVI has been recommended [22, 24] (Figure 2). In addition, early GMH may alter local neuronal and glial precursors with neurological consequences, description of location of bleed in addition to grade is suggested.
GMH/IVH: Origin and grading. GMH starts in a venule that drains into lateral subependymal collector veins; it extends into white matter by virtue of venous compression and infarction; bottom row: T2-weighted MRI of GMH with limited IVH and limited venous infarct. (Derived from Parodi et al. [
On CUS, grade 1 GMH is subependymal, hyperechoic, and globular. Evaluation in both coronal and sagittal planes helps distinguish a small GMH from choroid plexus on an initial diagnostic scan. Also, echogenicity at the caudothalamic groove (usual site for GMH) in the late neonatal period likely represents hyperechoic germinolysis and not late GMH [27]. Distinguishing pure subependymal bleed from IVH may be challenging on CUS. Indirect signs of hyperechoic ependymal changes, which usually occur 2 to 4 weeks after IVH, and insonation through mastoid fontanelle are helpful in this distinction [24] and aid prognostication and counseling. Clot changes overtime should also be recorded. A subacute clot or clot remnants early after birth may represent an antenatal hemorrhage.
PVI typically is identified as a triangular echo density in the periventricular white matter adjacent to the GMH. The infarct may not touch the GMH initially and may or may extend into the GMH depending on severity. Infarcts eventually evolve into cavitary lesions, and porencephaly ensues in 1–2 months [24]. This cavitation is asymmetric, unilateral, and permanent in contrast to cysts of periventricular leukomalacia (symmetric, bilateral, and transient) [22].
A quarter of infants with GM-IVH develop posthemorrhagic ventricular dilatation (PHVD) due to imbalanced production and resorption of CSF. This dilatation occurs a few days to weeks after IVH and is followed by subsequent regression [28]. PHVD is more common in higher grades but can occur in all cases with IVH. Thus, serial CUS is recommended in IVH cases until term-equivalent age. While a subset of cases resolves spontaneously, balancing the complications of compression versus those of surgical management (tapping, shunt) remains a challenge [29]. PVHD, as expected, is associated with a poor neurological outcome in the long term.
Thrombophilic genotype is frequently associated with a subset of severe GM-IVH patients with atypical clinical presentation. The atypical presentation includes periventricular hemorrhagic infarction presenting within 6 hours of birth or after four days of birth, in the absence of secondary inciting factors like sepsis. Factor V Leiden mutation was the most common genetic alteration, frequently with mothers being carriers. Prothrombin mutations and polymorphism of the
Mutations of the
Experimental models have shown tropomyosin receptor kinase B (TrkB) to influence the inflammatory status in the microenvironment following GMH by influencing the phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt)/forkhead box protein O1 (FoxO1) pathway [35].
Overall, genetic alteration in components of vascular structure, coagulation mechanism, and inflammatory pathways have been described in a subset of GM-IVH. The authors believe that recent progress in inflammation and growing knowledge of inflammasome complex may be employed towards further research in this direction.
Our understanding of IVH due to a structurally labile and immature vasculature in the germinal matrix and alterations in cerebral blood flow in premature infants forms the focus of most strategies to prevent GM-IVH. In principle, delay of preterm birth relies on decreasing GM vascular density with advanced gestational age. Moreover, high postnatal oxygen levels in the infant mediate the stabilization of the GM blood vasculature and ensure freedom from IVH in 3–5 days after birth, highlighting the critical importance of timeliness in management and prevention.
Steroids (glucocorticoids) like dexamethasone and betamethasone are administered to pregnant women in premature labor under 34 wg. Glucocorticoids cause a selective inhibition of blood vessels in the GM- BBB that lack adequate pericyte coverage, inhibit angiogenesis, and subsequently stabilize vasculature [12, 14, 36]. In addition, prenatal corticosteroid assists in development lungs surfactant and protect against respiratory distress syndrome. The latter effect also prevents turbulent cerebral blood flow. Prenatal corticosteroid usage is one of the rare factors that has consistently been associated with a reduction in occurrence and severity of IVH [37, 38].
Indomethacin is a non-selective cyclooxygenase (COX) inhibitor and reduces severe IVH, especially in males [39, 40]. Indomethacin is employed for closure of patent ductus arteriosus that in turn prevents altered cerebral blood flow. It also suppresses angiogenesis by COX-2 inhibition [1]. Although indomethacin can decrease IVH in the short term, its usage is not associated with reducing long-term neurological complications such as cerebral palsy, deafness, and blindness [41, 42, 43]. Hence, indomethacin has limited acceptance and is based on regional preferences.
Prenatal care and transport: It is recommended that pregnant mothers be given adequate antenatal care and those in preterm labor be transported (while pregnant) to tertiary care units better equipped to manage both mother and child. Transportation of extremely premature infants has long been associated with the increased occurrence and severe IVH [44].
It is beneficial to note that antenatal phenobarbital and magnesium, vitamin-K, and fresh frozen plasma did not influence the occurrence of IVH [45, 46, 47, 48, 49].
Intriguing preclinical studies show time-sensitive windows for therapeutic pharmacological targeting of the GM “weakened” BBB by altering the integrin-β8 and TGF-β pathways [50].
Currently, there is a paucity of active treatment strategies for the management of established GM-IVH. Maintaining blood pressure levels and respiratory status, with judicious use of IV fluids, blood transfusions, and respiratory support (if needed), might prevent the progression of hemorrhage. Electroencephalogram (EEG) monitoring should be done in the presence of seizures [3]. Apart from supportive treatment, emphasis is laid on the preservation of cerebral perfusion and the prevention of complications. Monitoring twice weekly with CUS for four weeks (or similar) and then weekly till term equivalent age recommended to evaluate GMH and post hemorrhage hydrocephalus (PHH).
Multiple trials and observational studies have focused on the relative head position of premature infants soon after birth in relation to IVH. These positional strategies focus mainly on maintaining adequate cerebral blood flow.
While previous studies on the effect on neutral head position found no significant association with the occurrence of IVH [51], these studies were also limited by small sample size [52]. More recently, efficient, supportive nursing intervention in premature infants during the first 72 hours of birth has been associated with decreased incidence and progression of GM-IVH [53]. This four-pronged approach includes midline head position, head elevation of the incubator, and slow vascular flushing/withdrawal of blood, and sudden elevation of the legs. First, the head in midline position ensures adequate venous drainage. Head rotation impedes jugular venous outflow on the ipsilateral side and may cause congestion, relative hypoxia and eventually aid GMH [54]. Second, incubator head lift (15–30 degrees) enhances gravitational cerebral venous drainage [55]. Third, sudden elevation of legs, as in to change diapers, may result in increased venous return, increase cardiac preload, thereby altering cerebral perfusion. Finally, avoiding rapid (lasting <30 seconds) vascular flushing/blood collection can avoid a transient though significant alteration in cerebral blood flow [56]. The effect of the intervention was stronger in infants born before 27 wg [53]. While previous studies on the effect on neutral head position found no significant association with the occurrence of IVH [51], these studies were limited by small sample size [52]. A more recent meta-analysis showed the limited utility of supine midline head position for the prevention of GM-IVH. However, midline head position with an elevation of incubator head was associated with lower mortality [57]. Overall, concomitant intervention with neutral head position, the elevation of incubator head, and avoidance of sudden leg elevation and sudden vascular volumetric changes provide evidence for a better outcome.
The survivors of severe GMH frequently develop post-hemorrhagic hydrocephalus (PHH). A subset of these cases requires surgical shunting, which is not without its complications, including infections, obstruction, and displacement [58]. In addition, the cerebroventricular dilatation causes physical pressure on the brain parenchyma and is associated with neurological impairment in the long term. Mechanism of PHH: Obstruction of the cerebral aqueduct, foramina of Luschka and Magendie, and subarachnoid outflow passages by blood clots/microthrombi may cause PHH. Historically, fibrinolytic therapy has not been successful in the management of PHH.
The tissue macrophage system responds to intracranial hemorrhage similar to other locations in the body. Red blood cells (RBCs) are phagocytosed by macrophages (erythrophages), and subsequently, hemoglobin is degraded. Iron mainly converts to coarse, irregular hemosiderin granules and porphyrin rings into bilirubin. In exceptional circumstances with closed compartments and lower oxygen tension, such as intracranial bleed, hematoidin, a crystalline, reduced biliverdin product may be formed. Post hemorrhagic components are frequently encountered on light microscopic evaluation of the cerebrospinal fluid (CSF), as early as 1–2 days after bleeding [59, 60]. In addition to the erythrophagocytosis, cellular components of the ventricular lining (ependymal cells and choroid plexus cells) and rarely, precursor germinal matrix cells (due to close proximity with disrupted ventricular lining) may be identified in CSF analysis [61, 62, 63].
Superficial siderosis (SS) is the deposition of hemosiderin in the subpial layers of CNS, resulting in sensorineural hearing loss and cerebellar ataxia in most adults cases [64]. Susceptibility weighted imaging (SWI), an MRI sequence, identified SS in the ependymal layer, brain stem, cerebellum with vermis, and Sylvian fissures. Interestingly the depth of SS correlated with the increasing grade of GM-IVH. Also, brain stem and cerebellar SS appear to relate more to IVH than cerebellar hemorrhage [65].
A review of scientific literature shows the following current trends exploring the management of GMH and prevention of complications.
Experimental models have shown the role of iron (from red blood cells) to develop brain edema and acute ventricular dilatation [66]. As proof of principle, iron chelation with deferoxamine has showed reduced long term PHH after GMH in neonatal rats [67, 68]. Another group found biliverdin reductase to enhance CD36 expression in scavenging microglia and hematoma resolution through NOS/TLR4 pathway [69]. Additionally, iron overload has been associated with increased aquaporin-4 expression [70]. However, diuretic treatment has not been found to be beneficial.
Along similar lines, “normal appearing” white matter in preterm infants with severe GM-IVH, at term equivalent age, showed paramagnetic (positive magnetic) susceptibility, likely due to diffusion of iron into the periventricular white matter [71]. This radiological finding may be employed as an innovative methodology for future research focusing on the spatial impact of iron deposition on long-term neurological consequences.
Post GMH levels of pro-inflammatory markers like TNFα are elevated. In response to hemorrhage and associated tissue injury, resident microglia are activated in an inflammatory process [72, 73, 74]. Additional experimental models have shown microglial proliferation surrounding the clot with phosphorylated ERK. Minocycline and cannabinoid receptor-2 agonists have also shown promise to curb down inflammation [75]. CD200Fc inhibits inflammation following GMH likely by mediating CD200R1/Dok1 pathway [76]. IVH has been shown to cause a TLR4 and NF-κβ based inflammatory pathway mediated increase in CSF production in the choroid plexus. As a proof of principle, amelioration of these mediators was associated with control of CSF production and improvement in PHH [77]. The role of M2 microglia stimulation through the PPARγ and CD36 scavenger receptor for short-term resolution of hematoma has also shown promising results for further clinical evaluation [78]. NT-4 controls neuroinflammation by interacting with TrkB to induces PI3K-Akt pathway and inhibits downstream FoxO1 in experimental models [35]. These results promise potential for clinical utility in the management of PHH.
Extracellular matrix (ECM), especially components fibronectin and vitronectin, are elevated post-GMH and are hypothesized to deposit (like microthrombi), potentially causing CSF obstruction [75, 79, 80, 81]. TGF-β may be induced by thrombin and promotes the production of ECM, especially TGF-β1 isoform whose levels have been elevated in studies after GMH. It’s inhibition has been associated with attenuated PHH and neurological decline [75, 81]. While GFAP expression is markedly increased in experimental IVH models, umbilical cord mesenchymal stem cell infusion has been associated with a decline in GFAP expression and subsequent PHH development [82]. The role of GFAP and astrocytes in gliosis post IVH requires further attention. More recently, astrogliosis was associated with redistribution of aquaporin-4 and altered CSF dynamics. Olomoucine controlled scarring and attenuated PHH by inhibition of cyclin-dependent kinase (CDK) [83]. Secukinumab, monoclonal IgG1κ targeting IL17a, is protective against reactive astrogliosis following GMH, partly by regulating IL-17RA/(C/EBPβ)/SIRT1 pathways [84].
While neurological complications in survivors of high-grade GM-IVH are well documented, the impact of low-grade IVH currently continues to be better understood. Low-grade IVH was associated with moderate to severe neurodevelopmental impairment (NDI) and without association with cerebral palsy [85]. A case-controlled retrospective study using CUS found no significant impact of low-grade GM-IVH on neurological complications of cerebral palsy and neurodevelopmental delay evaluated during 18–30 months after birth [86]. Both these studies were limited in power and in analysis by more sensitive MR-based techniques [87]. A more recent MR-based study has revealed microstructural impairment of white matter related to neurodevelopmental impairment at 24 months in early GMH [88]. Similarly, magnetic resonance with 3D pseudo-continuous arterial spin-labeling (pCASL) perfusion sequence-based study has shown consistently lower CBF in the posterior cortical and subcortical gray matter regions in preterm neonates with low grade IVH [89]. This regional susceptibility also requires correlation with long term studies. From a developmental perspective, neurological alterations are not incompatible with low-grade IVH. GMH may lead to altered myelination in the white matter since ganglionic eminence is the seat of oligodendroglial precursor cells that migrate to cerebral white matter areas to produce myelin later in the third trimester [90]. Besides, GM is involved in the development of GABAergic interneurons significant for high-level cognitive function [91].
Germinal matrix intraventricular hemorrhage is the most common intracranial hemorrhage in newborns, particularly preterm neonates. Improvements in obstetric and neonatal care have led to increased survival of preterm infants. Despite extensive research and preventive measures, the incidence of associated complications and mortality remains high. The GM is highly susceptible to hemorrhage due to a combination of delicate vasculature and fluctuations of cerebral perfusion, uncontrolled by autoregulatory mechanisms. Genetic factors and coagulation disorders may factor in if present. Obstetric and neonatal clinicians should use the available knowledge to prevent the occurrence of and progressions of hemorrhages. Therapeutic options for the management of GM-IVH are predominantly limited to supportive care and monitoring. Shunts have proven to be effective in challenging cases of PHH. Current and ongoing improvement in the molecular understanding of GM-IVH and its complications using multi-omics investigations is essential to develop biomarkers and therapeutic strategies.
The authors thank Mr. Fredrik Skarstedt for his immense support with digital image preparation.
The authors declare no conflict of interest.
Around 2.8 million people are diagnosed with multiple sclerosis (MS) worldwide. MS is an autoimmune demyelinating disease of the central nervous system (CNS) of unknown etiology. Hallmarks of MS include focal inflammatory infiltrates, demyelinating plaques, reactive gliosis, and axonal damage [1, 2].
The mechanism of MS pathology involves complex interactions between systems and cell types including neurons, glia, and immune cells, accompanied by permeability of the blood–brain barrier (BBB). Autoreactive T cells activated outside the CNS cross the BBB and are reactivated by local antigen-presenting cells. Secretion of proinflammatory cytokines stimulates microglial cells and astrocytes, recruits additional inflammatory cells, and induces antibody production by plasma cells [3].
Recombinant interferon-β (IFN-β) remains the most widely prescribed treatment for relapsing–remitting MS (RRMS) and a valid approach because of its good benefit/risk profile. Despite widespread use of IFN-β, its therapeutic mechanism is still partially understood. The efficacy of IFN-β treatment has been shown by a decreased annual relapse rate, disability progression and inflammatory brain lesions resulting in the approval of different IFN-β preparations [4].
IFN-β is a highly pleiotropic cytokine which antagonizes the proinflammatory milieu by inhibiting expression of proinflammatory molecules, while increasing production of anti-inflammatory factors. It inhibits leukocyte trafficking, regulates the adhesion molecule expression and inhibits matrix metalloproteinase activity. The mechanism of action of IFN-β is complex and multifactorial but has been shown to reduce the biological activity of RRMS in several clinical class I trials [5].
The identification of peripheral markers that could reflect the clinical course of MS and the efficacy of treatment is a stimulating field of research and debate. An ideal biomarker is characterized by high sensitivity and specificity as well as a simple, cost effective, reproducible, and non-invasive detection method [6]. For instance, there are reports focusing molecules and autoantibodies as potential biomarkers in the MS disease course. Our focus in this chapter is on circulating leucocytes that can be considered during the follow of RRMS patients in remission
MS is an autoimmune disease of the brain and the spinal cord characterized by chronic inflammation, demyelination, gliosis and neuronal loss. The demyelination consists of the damage of the myelin sheath surrounding nerves, consequently affects the function of the nerves. The pathological hallmark of chronic MS is the demyelinated plaque or lesions, which consists of a well-demarcated hypocellular area characterized by the loss of myelin sheaths or oligodendrocytes, relative preservation of axons, and the formation of astrocytic scars [1].
The etiology of MS remains elusive, with a complex multifactorial system implicated, in which environmental factors are hypothesized as interacting with genetically susceptible individuals. MS causes a heterogeneous array of symptoms and signs because of the differential involvement of motor, sensory, visual and autonomic systems with serious physical disability in young adults, especially women [2, 4, 7].
The CNS is frequently described as an immune-privileged site, evidence supports the notion that the CNS receives limited immune surveillance by peripheral lymphocytes under physiological conditions. New findings provide a mechanism by which large particles and immune cells can drain from the brain and interface directly with the peripheral immune system [8, 9].
MS is triggered in the periphery or in the CNS. The CNS-extrinsic (peripheral) model is the most widely accepted and is consistent with the method used to induce experimental autoimmune encephalomyelitis (EAE), the animal model for neuroinflammation. The autoreactive T cells from MS patients may become activated in the periphery as a result of a molecular mimicry, gain access to the CNS, and T cells generated against non-self-epitopes (viral or microbial antigens) cross-react with self-myelin epitopes of similar sequence [10, 11, 12].
85% of patients present a RR form of MS, characterized by discrete episodes of neurological dysfunction (relapses) separated by clinical stable periods with lack of disease progression (remissions). More than 30% remain in the RRMS form of the disease into old age [7, 11, 12, 13].
Relapse is the clinical result of an acute inflammatory focal lesion and is typically discernible using magnetic resonance imaging. Relapse is defined as newly appearing neurological symptoms in the absence of fever or infections that last for more than 24 hours and are separated from the previous event by at least one month. The frequency of relapses can vary widely among patients as well as during different periods during an individual patient’s disease. The relapse tends to be present for a limited time – days or weeks – and can lead to full recovery or can leave sequelae. At present time, no clinical features or biomarkers that are predictive of relapse rates have been identified. The signs and symptoms that occur during relapses are also diverse and unpredictable [3, 8, 11].
Immunological characteristics of MS lesions have been reflected in circulating immune cells of MS patients. Peripheral blood provides a ‘window’ into the immunopathogenesis of MS. The immunological disturbances that underlie MS can be observed not only in the CNS, but also through examination of peripheral immune cells [14].
IFN-β and glatiramer acetate have been used as first-line disease-modifying therapy for RRMS. More than two decades have passed since IFN-β was found to be effective in the management of MS. IFN-β treatment efficacy has been shown by a decrease in the annual relapse rate, in disability progression and in inflammatory brain lesions, resulting in the approval of different IFN-β preparations [15, 16, 17].
IFNs are naturally occurring cytokines, secreted by various cells such as fibroblasts, NK cells, leukocytes, and epithelial cells in response to pathogens such as bacteria, viruses, parasites, and tumor cells, as well as other foreign substances. They have a wide range in anti-inflammatory processes, regulation of cell growth and modulation of immune responses [18, 19].
IFN-β binds to the interferon receptor, activates the Janus kinase/signal transducer and the activator of transcription (STAT) pathway to phosphorylate STAT1 and STAT2. The activation of interferon-stimulated genes leads to the production of antiviral, antiproliferative, and antitumour products. The effectiveness of IFN-β in the treatment of MS may rely on both anti-viral and immunomodulatory aspects [26, 27].
IFN-β was the first immunomodulatory therapy approved by the U.S. Food and Drug Administration and is the most widely prescribed treatment for MS; it is generally well tolerated and overall reduces the relapse rate by 30% in patients with RRMS [4].
Several IFN-β preparations have been approved with differing structures (glycosylated IFN-β-1a vs. non-glycosylated IFN-β-1b), formulation (lyophilized vs. liquid), used excipients (e.g., containing serum albumin or not), modification (pegylation), dosage (protein load and bioactivity), route of administration (subcutaneous vs. intramuscular), or frequency of injection (ranging from bi-weekly to every other day). IFN-β shows high tissue distribution; however, it is not supposed to cross the BBB and exerts its immunomodulatory mechanism in the peripheral compartment. IFN-β is cleared via renal and hepatic pathways, in which catabolism seems to be important rather than simple excretion [15].
The therapeutic benefit of IFN-β in MS has been proven in several large clinical trials, with the effect of IFN-β therapy being more studied on T and B cells [20]. In spite of this, it is known that the biological functions of IFN-β act in both innate and adaptive immune responses and may influence phenotype and functions of all MS-relevant immune cells [21].
A biomarker is defined as a characteristic that can be objectively measured and evaluated and serves as an indicator of normal biological processes, pathological processes or pharmacological reactions to therapy. An ideal biomarker is characterized by high sensitivity and specificity as well as a simple, cost effective, reproducible, and non-invasive detection method [6].
In this section we synthesize and integrate the most relevant data regarding the characteristics of the selected immune cells that could be considered as IFN-β treatment-related biomarkers. The main goal of this work is an attempt to help researchers to perform a good assessment of immune cells in future studies. The presented data is a result of a compilation of several studies and findings.
Antigen presenting cells (APCs) are considered key players in the immune surveillance of CNS and, at the same time, they are critically involved in the pathogenesis of CNS autoimmune diseases. They are a morphologically and functionally diverse group of cells that links the innate and adaptive immune responses. These cells are specialized in the presentation of antigens to lymphocytes, particularly T cells. Included among such cells are dendritic cells (DCs), monocytes and macrophages (derived from monocytes that migrated from the blood stream to tissues). B lymphocytes that specifically capture antigens via their clonally expressed membrane immunoglobulin can also function efficiently as APCs to T cells [22].
In humans, DCs comprise two major subsets: plasmacytoid DCs (pDCs) and myeloid (mDCs). Through nucleic acid-sensing, pDCs activate toll-like receptors (TLR), such as TLR7 and TLR9, rapidly producing type I IFN. mDCs are dedicated APCs that have a characteristic dendritic morphology, express high levels of MHC class II molecules and recognize pathogen-derived lipids, proteins and nucleic-acids by TLR2, TLR4 and TLR3 respectively [23].
The DCs subsets may be helpful as biomarker between remission and relapse of RRMS patients treated with IFN-β. The circulating mDCs subset reduces in remission and increase in relapse RRMS patients. On the other hand, the pDCs frequency are maintain across the different phases of disease. Usually, these subsets present a low frequency in systemic circulation, so the mDCs/pDCs ratio is a good representative of the alteration observed in the DCs subsets. The mDCs/pDCs decreases in remission RRMS patients and is re-established in relapse RRMS patients, constituting a potential peripheral biomarker [24, 25].
The involvement of DCs in MS arises from studies that demonstrate the abundant presence of these cells in the inflamed CNS lesions and in the CSF of MS patients [21].
One of the immunomodulatory effects of IFN-β in the EAE model is the reduction in antigen presentation, particularly myelin-specific antigens, leading to reduced T-cell responses [23, 30]. In contrast with these effects, in remission phase it was observed that the DCs subsets increase the expression of HLA-DR and decrease in the relapse phase. The variation in HLA-DR expression is more evident in the mDCs subset. The same subset reduce the mRNA gene expression of CX3CR1; fractalkine is known to be upregulated and released in response to pro-inflammatory stimuli and induces adhesion, chemoattraction, and activation of leukocytes [25].
The activation status of the mDCs subset could discriminate between RRMS phases. This subset shown a highest activated status in remission than in relapse phase, through the increased HLA-DR expression and a reduced migratory capability, since reduce the mRNA gene expression of CX3CR1.
Monocytes represent a heterogeneous population of primary immune effector cells with distinct phenotypical and functional characteristics; their differential roles in steady-state immune surveillance and the pathogenesis of human CNS disease are poorly understood [26].
The differential expression of CD14 (part of the receptor for lipopolysaccharide) and CD16 (also known as FcγRIII) allows monocytes to be segregated into three subsets. The major subset designated “classical” monocytes (CD14++CD16−, cMo), corresponds to 80–90% of circulating monocytes. CD16 expressing monocytes are divided into a named “intermediate” monocyte (CD14++CD16+, iMo) and a subset classified as “non-classical” monocytes (CD14+CD16++, ncMo); each of these subsets corresponds to 5–10% of circulating monocytes [27, 28].
Patients with MS display high levels of monocyte-secreted inflammatory molecules in serum compared to healthy individuals, demonstrating a role for peripheral monocytes in the progression of the disease. Increased levels of serum tumor necrosis factor (TNF) α and β have been reported in MS relapse. Monocytes and microglia are known to act as major effectors in the demyelinating process through direct interaction and the production of proinflammatory cytokines and mediators (e.g., IL-1b, nitric oxide). CD16+ monocytes may contribute to the breakdown of the BBB by facilitating T cell trafficking into the CNS [22, 26, 29].
Research performed on monocyte pool in RRMS patients is scarce and ambiguous. A recent work achieved a significant decrease of the ncMo subset in both phases of RRMS patients, although in a higher extension in remission patients [25].
The frequency of monocytes subsets does not allow us to identify different phases of RRMS, but the HLA-DR expression could constitute a potential important biomarker between remission and relapse phases. A significant increase in HLA-DR expression in all monocyte subsets in the remission group when compared with healthy and relapse groups, has been described [25]. IFN-β enhances HLA-DR expression in circulating monocytes, but inside the CNS, one prominent model is based on the observation that IFN-β inhibits the IFNγ upregulation of MHC class II molecules on cell surface of macrophages and glial cells and therefore diminishes antigen presentation [30]. In the periphery, Kantor et al. report that the increase of MHC Class II expression in monocytes induced by IFN-β may contribute to the positive immunomodulatory effect in MS [31]. These findings were reinforced by the observation that when IFN-β-stimulated monocytes were used to stimulate autologous T cells, there was an increased secretion of anti-inflammatory cytokine IL-13 [32].
T cells are central regulators of the adaptive immune response, they help B lymphocytes to produce antibodies and secrete cytokines that provide efficient protection against pathogens. Distinct T helper (Th) cell subsets, producing one or more lineage-defining cytokines and expressing master transcription factors and homing receptors. Th subsets are differentiated from naive CD4+ T cells in response to a specific class of pathogenic microorganisms and to the cytokine milieu. This occurs in peripheral lymph nodes by mature DCs that present pathogen-derived peptides associated to MHC class II. With the involvement of their costimulatory molecules, DCs promote T cell proliferation and produce polarizing cytokines. In turn T cell was differentiated in distinct Th cell subsets, such as Th1, Th2, Th17, regulatory T (T reg) and T follicular helper (Tfh) [33].
The CD4+ T cells have been the most studied in the pathogenesis of MS, although CD8+ T cells are the dominant lymphocyte population in all stages of disease and lesions of MS patients. Naive CD8+ T cells follow a similar differentiation programme of CD4+ T cells [34, 35].
Th1 cells are described as being the pathogenic subset of T cells, whereas Th2 cells are reported to exert inhibitory effects [5]. Previous studies have pointed to a reduction in pro-inflammatory capability promoted by IFN-β therapy, consisting of a reduction of the expression of Th1-induced cytokines while enhancing Th2 responses [18]. Concerning the T cytotoxic (Tc) subsets, it has been reported the same behavior, in remission a downregulation of pro-inflammatory Tc1 responses and up-regulation of anti-inflammatory Tc2 with a beneficial effect on disease activity [36]. This dichotomy Th1, Th2 subsets and Tc1, Tc2 subsets could contribute to discriminate between remission and relapse phases.
The identification of Th17 cells helped to resolve some in adequacies of the original Th1/Th2 concept that had dominated T cell immunology research filed for almost 20 years. For a long time, it was thought that the IL-12/IFNγ pathway and Th1 cells were central to the development of autoimmune disease [37].
Both Th1 and Th17 cells have been implicated in the initiation and progression of disease in RRMS and its experimental model EAE [19]. The link between Th17 cells, IL-17 and MS relapses comes from the observation that in humans, Th17 cells are able to cross the BBB in MS lesions, enhancing neuroinflammation. In vitro studies have revealed that IL-17 blocks the differentiation and reduces the survival of oligodendrocyte lineage cells. In EAE model, it has been suggested that Th17 cells interact directly with neurons, forming antigen-independent, immune, synapse-like contacts [7, 38].
It is assumed that the inhibition of Th17 cells in RRMS patients attenuates the disease, however conflicting data have been published. Axtell et al. reported that IFN-β treatment effectively blocked disease symptoms in mice with EAE induced with Th1 cells. Otherwise, in EAE induced with Th17 cells the IFN-β treatment worsened disease [19].
In RRMS patients, it is not clear whether a more specific blockade of the Th17 pathway has beneficial effects in MS patients. Treatment with an antibody directed against IL-12p40 and therefore neutralizing both IL-12 and IL-23 did not result in a significant reduction of disease activity [39].
A meta-analysis pointed out several limitations across studies that assess the levels of peripheral Th17 cells and serum Th17-related cytokines. Like the severities of the disease and clinical subtypes in MS patients; the disease duration from relapse; and that the MS treatments were not consistent; and it was postulated that most studies selected MS patients with high disease activity. There were differences in experimental methods between studies and a lack of detailed standardized methods to identify the Th17 cells and Th17-related cytokines [40].
A recent in vivo study observed an increased frequency of circulating Th17 and Tc17 cells, accompanied by increased serum levels of IL-17 in remission RRMS patients treated with IFN-β [41]. This contradiction underlines the need to clarify the role of the IL-17-producing T cells in RRMS patients.
It has been demonstrated that a significant proportion of Th17 cells convert into IFN-γ-producing T cells and have chemokine receptors from both Th17 and Th1 subtypes, referred as Th17.1 cells. The enhanced potential of Th17.1 cells to infiltrate the CNS was supported by their predominance in CSF of early MS patients and their preferential transmigration across human brain endothelial layers [42, 43]. In remission RRMS patients, it was observed that Th17 and Tc17 cells exhibited a higher degree of Th1 plasticity since there were higher frequencies of those cells simultaneously producing intracellular IL-17 and IL-2 or IFNγ or TNFα [41].
Another subset of T cells, the Tregs, are characterized by high expression of CD25 and the transcription factor
In MS patients, both reduced or normal frequency of Tregs was observed. Libera et al. described a significant decrease in Treg cells in remission RRMS patients [45]. Haas et al. state that the frequency of Treg cells was normal in MS patients but with a lower suppressive function on autoreactive T cells [46]. Venken et al. described that RRMS patients treated with IFN-β showed restored naive Treg numbers as compared with age- and disease-duration-matched untreated patients [47].
Recently identified, the Tfh subset expresses the chemokine receptor CXCR5 as well as CD279 [48], is specialized in helping B cells to produce antibodies in the face of antigenic challenge and plays a crucial role in orchestrating the humoral arm of adaptive immune responses. Tfh cells have the unique ability to migrate into follicles in secondary lymphoid organs where they colocalize with B cells to deliver contact-dependent and soluble signals that support survival and differentiation of the latter cells. There is no complete and thorough understanding of how naïve Th cells differentiate into mature Tfh [49, 50].
Tfh cell levels are elevated in the blood of MS patients and this population is positively correlated with the progression of disability. One potential mechanism through which Tfh cells can contribute to disease is promoting the inflammatory B-cell activities, suggesting that Tfh cells cooperate with Th17 cells to induce inflammatory B cell responses in the CNS and increase disease severity [49].
The increased frequencies of Th1 cells, activated Tfh- and B-cells parallel findings from pathology studies, along with the correlation between activated Tfh- and B-cells, suggest a pathogenic role of systemic inflammation in progressive MS [51].
A similar frequency of Tfh cells between RRMS patients and healthy subjects was reported. However, this subset tend to exhibit a more proinflammatory activity, since higher frequencies of TNF-α+ Tfh cells have been observed [41]. It is well known that Tfh cells play an important role in T/B interactions in germinal centres (GC) and one potential mechanism through which Tfh cells can contribute to MS is in promoting inflammatory B-cell activities [49]. The Tfh subset and others follicular like T cells subsets, like Treg/follicular cells, are promising targets in the study of T cells in pathophysiology of MS.
γδ T cells develop in the thymus together with αβ T cells but rearrange a different TCR, consisting of a TCR-γ and TCR-δ chain. One of the most striking characteristics of γδ T cells is their inherent ability to secrete pro-inflammatory cytokines very rapidly, which influences adaptive immunity, they carry out immediate effector functions as well as mounting a memory response upon microbial reinfection. This fast response can be explained by γδ T cells exiting the thymus already with the functional competence to produce cytokines with no need of APCs cells [52, 53].
In MS, their potential importance is increased by the finding that γδ T cells accumulate in demyelinating CNS MS plaques; these cells show evidence of oligoclonal expansion indicating a local response to currently unknown antigens. γδ T cells have been shown to be present in both MS lesions and in CSF, and sequencing studies have shown that the major γδ T subsets present in the lesion differ from those in the CSF, suggesting specific functions for these cells in lesion development. In more chronic lesions, γδ T cells may become the most prevalent type of T cell in the lesion. γδ T cells isolated from the CNS can be expanded but only in patients with relapse disease, not chronic MS patients, suggesting that these cells may have differential roles during various phases of the disease [54, 55].
The frequency, the migratory pattern, the activation status of γδ T cells in RRMS patients are unclear. Between remission and relapse RRMS patients, the γδ terminally differentiated effector memory T cells (TEMRA) and the CCR5+ γδ TEMRA decrease in relapse when compared with remission RRMS patients [56], constituting a good biomarker between phases of the disease. Probably as a result of the migratory pattern describe for this phase of MS, preferentially toward RANTES and MIP-1α, whose expression is increased during relapses [57, 58].
The decrease of Eomesodermin and granzyme B mRNA expression in CD27− γδ T cells suggests a reduction in the cytotoxic potential of the circulating pool of γδ T cells, particularly in relapsing RRMS patients [56].
The most consistent immunodiagnostic feature and hallmark immunologic finding in MS patients is the presence of oligoclonal bands (OCB) in the CSF and their absence in peripheral circulation. Consequently, the pathogenic function of B cells in MS has been traditionally associated with antibody production. However, B cells have three putative biological roles: production of proinflammatory or regulatory cytokines, function as APCs and antibody production [59].
In MS, the memory B cells, plasmablasts and plasma cells preferentially cross the BBB and migrate into the CNS, where they dominate the B cell pool and exert different effector functions. B cells seem to be abnormally polarized toward a more proinflammatory phenotype [60].
More recent, somatic hypermutation studies have demonstrated that identical B cell clones can be shared between the CNS and the periphery in individual patients. These studies provide evidence of bidirectional trafficking of distinct B cell clones (both into and out of the CNS). The patterns suggest that B cells can travel back and forth across the BBB and commonly re-enter GC (in the meninges or cervical lymph nodes) to undergo further somatic hypermutations. These findings change our view of lymphocytic surveillance of CNS tissue and underline that B-cell trafficking is an important topic for future research and therapy strategies [60, 61, 62]. This news about recirculation of B cells through the BBB alters the perception of the role of B cells in MS.
B cells are released in the peripheral blood, recirculate between the secondary lymphoid tissues, and dying after a few days. According to phenotypic profile of B cell subsets, which also reflects their functional abilities and behavior, four major maturation-associated subsets can be identified in the human peripheral blood: immature/transitional, naive, memory and plasmablast [63].
In remission RRMS patients submitted to IFN-β, the percentage of immature/transitional B cells increases. This increase can be seen as an attempt to increase anti-inflammatory cytokines. Meanwhile, a decrease in the proportion of circulating class-switched memory B cells was reported [64, 65].
The relapsing RRMS patients exhibited distinct changes in B cell subsets homeostasis, resulting in a decrease in the total population of B cells, including a decrease of the immature/transitional and naïve B cell subsets when compared with remission RRMS patients. On the other hand, the plasmablast B cell subset presented an increase in relapse RRMS patients. The ratio between immature/transitional B cells and plasmablasts can thus be considered as a potential biomarker between phases of RRMS patients. The remission RRMS patients and the healthy subjects presented a similar ratio, and the relapse RRMS patients present a decreased ratio [66].
According to the new and recent data about the recirculation of B cells in RRMS, it seems that the increase of plasmablasts in circulation of relapsing episodes may be due to a migration of these cells from cervical lymph nodes and/or from B cell aggregates described in the meninges of MS patients to the blood marrow in an attempt to promote the immune response [67].
An ever-expanding body of literature, sometimes difficult to integrate, defines the intricate pathways by which IFN-β mediates its broad effects. To resume the effects of IFN-β in circulating immune cells a table listing the relevant studies and findings was performed (Table 1).
Effects of IFN-β | |
---|---|
Antigen presenting cells |
|
T cells |
|
B cells |
|
Main effects of IFN-β in circulating immune cells in MS.
A major role for IFN-β is the induction of a priming state through which production and regulation of mediators, including cytokines, are affected by synergistic or antagonistic interactions. In the treatment of MS, the most important IFN-β mechanisms of action appear to be mediated mainly by the increased expression and concentration of anti-inflammatory agents, in turn, down-regulating the inflammatory state observed in the patients both in the periphery and in the brain tissue (Figure 1) [21].
Main effects of IFN-β in RRMS patients (a) remission phase and (B) relapse phase. mDC – Myeloid dendtitic, pDC – Plasmacytoid dendtitic cell, cMO – Classical monocytes, iMo – Intermediate monocytes, ncMo – Non-classical monocytes.
The work from our group started with the selection of the RRMS patients and collected blood from each one after assigned an informed consent. By flow cytometry performed direct immunofluorescence membrane and intracytoplasmic staining protocols to identify and characterize the circulating subsets. To functional assessment of the cells was measured intracellular cytokines at single cell level, after in vitro stimulation. To evaluation of gene expression, RNA isolation and quantitative real-time reverse transcriptase-polymerase chain reaction was performed.
In our group publications, one can be find the flow strategy with the description of the antibodies used and the mRNA gene expression studies performed in APCs [25], in T cell subsets [41], in γδ T cells [56] and in B cell subsets [66].
The literature search was performed using the PubMed electronic bibliographic database. The search was restricted to English and publications between 2010 and 2021. The keywords used were: multiple sclerosis, IFN-β, antigen presenting cells, T cells and B cells alone or in conjugation. The bibliographies of retrieved articles and previous review articles were hand searched to obtain additional articles.
In demyelinating diseases, mainly in relapse phase of RRMS, the BBB suffer a profound disturbance, so as the exchanges and ultimately the CNS itself. Despite CNS suffered an immune response, immune abnormalities could be found in the peripheral immune compartment.
The periphery assumes an extremely important role in the study of MS. In remission phase is establish an equilibrium between CNS and systemic circulation. In this chapter we have attempted to contribute to highlight the more relevant data regarding circulating cell subsets that could potentially be considered as peripheral biomarkers in RRMS patients treated with IFN-β.
Some circulating immune cells assume differences between the remission and relapse phases of RRMS. These differences may be used as disease activity biomarkers to measure inflammatory and/or neurodegenerative components of disease and helpful to discriminate between phases of RRMS.
Technological advances of flow cytometry have greatly increased the strength of analysis achievable at the single-cell level. These developments can be applied to understand more clearly the immunopathology of MS and the identification of consistent, safe and reproducible biomarkers in the periphery.
This work was financed by the Foundation for Science and Technology (FCT), through funds from the State Budget, and by the European Regional Development Fund (ERDF), under the Portugal 2020 Program, through the Regional Operational Program of the Center (Centro2020), through the Project with the reference UIDB/00709/2020.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12511},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"title"},books:[{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11981",title:"3D Reconstruction",subtitle:null,isOpenForSubmission:!0,hash:"62acebc6779b029903545246e02b4c32",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11981.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12147",title:"Abiotic Stress in Plants",subtitle:null,isOpenForSubmission:!0,hash:"f3d8c31029650b7ce536da7ab9d7a5a0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12147.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12039",title:"Advances in 3D Printing",subtitle:null,isOpenForSubmission:!0,hash:"fe8827f28fcc56e13b3f0cb6ffda2b71",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12039.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12040",title:"Advances in Lean Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"280b436c389c11cac34db042d0ea4f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12040.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11986",title:"Advances in Nanosheets",subtitle:null,isOpenForSubmission:!0,hash:"dcc5e4b27db4514b2dd77680e0467793",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11986.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12164",title:"Advances in Probiotics",subtitle:null,isOpenForSubmission:!0,hash:"cc0a28c4126b8d6fd1a5ebead8a0421f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12164.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12089",title:"Advances in Research on Bipolar Disorder",subtitle:null,isOpenForSubmission:!0,hash:"cad499685041c605784198bafb7382b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12089.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11927",title:"Advances in Slope Engineering",subtitle:null,isOpenForSubmission:!0,hash:"8c95af4aadac4c83fe8e8fa4a0876858",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11927.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11941",title:"Advances in Turbomachinery",subtitle:null,isOpenForSubmission:!0,hash:"fe2c693976d70c5d0cc5f8003e6e73c5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11941.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12068",title:"Advances in Virtual Reality",subtitle:null,isOpenForSubmission:!0,hash:"d6a4f0e27fd3a464f9d95f1deab17858",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12068.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:14},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:7},{group:"topic",caption:"Medicine",value:16,count:64},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:280},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"72",title:"International Economics",slug:"international-economics",parent:{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:60,numberOfWosCitations:38,numberOfCrossrefCitations:49,numberOfDimensionsCitations:77,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"72",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10117",title:"Foreign Direct Investment Perspective through Foreign Direct Divestment",subtitle:null,isOpenForSubmission:!1,hash:"1210eb12e74d4f16ca704e75ec892600",slug:"foreign-direct-investment-perspective-through-foreign-direct-divestment",bookSignature:"Anita Maček",coverURL:"https://cdn.intechopen.com/books/images_new/10117.jpg",editedByType:"Edited by",editors:[{id:"142587",title:"Dr.",name:"Anita",middleName:null,surname:"Maček",slug:"anita-macek",fullName:"Anita Maček"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6487",title:"Trade and Global Market",subtitle:null,isOpenForSubmission:!1,hash:"7f1afebc7552003672f0c62b354538be",slug:"trade-and-global-market",bookSignature:"Vito Bobek",coverURL:"https://cdn.intechopen.com/books/images_new/6487.jpg",editedByType:"Edited by",editors:[{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5492",title:"International Trade",subtitle:"On the Brink of Change",isOpenForSubmission:!1,hash:"f64d7edf6aef7b32784cc01a18836699",slug:"international-trade-on-the-brink-of-change",bookSignature:"Anita Macek",coverURL:"https://cdn.intechopen.com/books/images_new/5492.jpg",editedByType:"Edited by",editors:[{id:"142587",title:"Dr.",name:"Anita",middleName:null,surname:"Maček",slug:"anita-macek",fullName:"Anita Maček"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2355",title:"International Trade from Economic and Policy Perspective",subtitle:null,isOpenForSubmission:!1,hash:"8fe6804794ddc1a7f4202db20aed5985",slug:"international-trade-from-economic-and-policy-perspective",bookSignature:"Vito Bobek",coverURL:"https://cdn.intechopen.com/books/images_new/2355.jpg",editedByType:"Edited by",editors:[{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"38487",doi:"10.5772/48103",title:"A Perspective on Remanufacturing Business: Issues and Opportunities",slug:"a-perspective-on-remanufacturing-business-issues-and-opportunities",totalDownloads:4193,totalCrossrefCites:10,totalDimensionsCites:20,abstract:null,book:{id:"2355",slug:"international-trade-from-economic-and-policy-perspective",title:"International Trade from Economic and Policy Perspective",fullTitle:"International Trade from Economic and Policy Perspective"},signatures:"Mosè Gallo, Elpidio Romano and Liberatina Carmela Santillo",authors:[{id:"11826",title:"Prof.",name:"Elpidio",middleName:null,surname:"Romano",slug:"elpidio-romano",fullName:"Elpidio Romano"},{id:"11827",title:"Prof.",name:"Liberatina",middleName:null,surname:"Santillo",slug:"liberatina-santillo",fullName:"Liberatina Santillo"},{id:"138996",title:"PhD.",name:"Mosè",middleName:null,surname:"Gallo",slug:"mose-gallo",fullName:"Mosè Gallo"}]},{id:"58969",doi:"10.5772/intechopen.72953",title:"Corruption, Causes and Consequences",slug:"corruption-causes-and-consequences",totalDownloads:27407,totalCrossrefCites:11,totalDimensionsCites:13,abstract:"Corruption is a constant in the society and occurs in all civilizations; however, it has only been in the past 20 years that this phenomenon has begun being seriously explored. It has many different shapes as well as many various effects, both on the economy and the society at large. Among the most common causes of corruption are the political and economic environment, professional ethics and morality and, of course, habits, customs, tradition and demography. Its effects on the economy (and also on the wider society) are well researched, yet still not completely. Corruption thus inhibits economic growth and affects business operations, employment and investments. It also reduces tax revenue and the effectiveness of various financial assistance programs. The wider society is influenced by a high degree of corruption in terms of lowering of trust in the law and the rule of law, education and consequently the quality of life (access to infrastructure, health care). There also does not exist an unambiguous answer as to how to deal with corruption. Something that works in one country or in one region will not necessarily be successful in another. This chapter tries to answer at least a few questions about corruption and the causes for it, its consequences and how to deal with it successfully.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Štefan Šumah",authors:[{id:"228073",title:"Mr.",name:"Stefan",middleName:null,surname:"Sumah",slug:"stefan-sumah",fullName:"Stefan Sumah"}]},{id:"61175",doi:"10.5772/intechopen.75812",title:"Trade Openness and Economic Growth: Empirical Evidence from Transition Economies",slug:"trade-openness-and-economic-growth-empirical-evidence-from-transition-economies",totalDownloads:3424,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"The relationship between trade openness and economic growth is ambiguous from both theoretical and empirical point of view. The theoretical propositions reveal that while trade openness leads to a greater economic efficiency, market imperfections, differences in technology and endowments may lead to adverse effect of trade liberalisation on individual countries. In this chapter, we re-examine the empirical evidence pointing to the benefits of trade liberalisation and bring theoretical issues on possible adverse effect of openness to the fore. It has been argued that ‘passive’ trade liberalisation may not necessarily lead to positive economic outcomes, particularly in less advanced transition economies. Considering the empirical work on the matter, a lot of controversies are related to measurement issues. We find that openness measured by trade intensity indicators may lead to misleading conclusions about the trade growth nexus. Hence, the discussion of policy implications regarding the positive influence of trade barriers on economic growth goes well beyond the context of transition.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Sabina Silajdzic and Eldin Mehic",authors:[{id:"233162",title:"Associate Prof.",name:"Sabina",middleName:null,surname:"Silajdzic",slug:"sabina-silajdzic",fullName:"Sabina Silajdzic"},{id:"233367",title:"Prof.",name:"Eldin",middleName:null,surname:"Mehic",slug:"eldin-mehic",fullName:"Eldin Mehic"}]},{id:"38485",doi:"10.5772/48151",title:"Transboundary Animal Diseases and International Trade",slug:"transboundary-animal-diseases-and-international-trade",totalDownloads:3952,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"2355",slug:"international-trade-from-economic-and-policy-perspective",title:"International Trade from Economic and Policy Perspective",fullTitle:"International Trade from Economic and Policy Perspective"},signatures:"Andrés Cartín-Rojas",authors:[{id:"139628",title:"Ms.",name:"Andrés",middleName:null,surname:"Cartín-Rojas",slug:"andres-cartin-rojas",fullName:"Andrés Cartín-Rojas"}]},{id:"38482",doi:"10.5772/48342",title:"A Comparative Analysis of the Economic Effects of Cross-Border Mergers and Acquisitions in European Countries",slug:"a-comparative-analysis-of-the-economic-effects-of-cross-border-mergers-and-acquisitions-in-european-",totalDownloads:3479,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"2355",slug:"international-trade-from-economic-and-policy-perspective",title:"International Trade from Economic and Policy Perspective",fullTitle:"International Trade from Economic and Policy Perspective"},signatures:"Anita Maček",authors:[{id:"142587",title:"Dr.",name:"Anita",middleName:null,surname:"Maček",slug:"anita-macek",fullName:"Anita Maček"}]}],mostDownloadedChaptersLast30Days:[{id:"58969",title:"Corruption, Causes and Consequences",slug:"corruption-causes-and-consequences",totalDownloads:27407,totalCrossrefCites:11,totalDimensionsCites:13,abstract:"Corruption is a constant in the society and occurs in all civilizations; however, it has only been in the past 20 years that this phenomenon has begun being seriously explored. It has many different shapes as well as many various effects, both on the economy and the society at large. Among the most common causes of corruption are the political and economic environment, professional ethics and morality and, of course, habits, customs, tradition and demography. Its effects on the economy (and also on the wider society) are well researched, yet still not completely. Corruption thus inhibits economic growth and affects business operations, employment and investments. It also reduces tax revenue and the effectiveness of various financial assistance programs. The wider society is influenced by a high degree of corruption in terms of lowering of trust in the law and the rule of law, education and consequently the quality of life (access to infrastructure, health care). There also does not exist an unambiguous answer as to how to deal with corruption. Something that works in one country or in one region will not necessarily be successful in another. This chapter tries to answer at least a few questions about corruption and the causes for it, its consequences and how to deal with it successfully.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Štefan Šumah",authors:[{id:"228073",title:"Mr.",name:"Stefan",middleName:null,surname:"Sumah",slug:"stefan-sumah",fullName:"Stefan Sumah"}]},{id:"61175",title:"Trade Openness and Economic Growth: Empirical Evidence from Transition Economies",slug:"trade-openness-and-economic-growth-empirical-evidence-from-transition-economies",totalDownloads:3424,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"The relationship between trade openness and economic growth is ambiguous from both theoretical and empirical point of view. The theoretical propositions reveal that while trade openness leads to a greater economic efficiency, market imperfections, differences in technology and endowments may lead to adverse effect of trade liberalisation on individual countries. In this chapter, we re-examine the empirical evidence pointing to the benefits of trade liberalisation and bring theoretical issues on possible adverse effect of openness to the fore. It has been argued that ‘passive’ trade liberalisation may not necessarily lead to positive economic outcomes, particularly in less advanced transition economies. Considering the empirical work on the matter, a lot of controversies are related to measurement issues. We find that openness measured by trade intensity indicators may lead to misleading conclusions about the trade growth nexus. Hence, the discussion of policy implications regarding the positive influence of trade barriers on economic growth goes well beyond the context of transition.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Sabina Silajdzic and Eldin Mehic",authors:[{id:"233162",title:"Associate Prof.",name:"Sabina",middleName:null,surname:"Silajdzic",slug:"sabina-silajdzic",fullName:"Sabina Silajdzic"},{id:"233367",title:"Prof.",name:"Eldin",middleName:null,surname:"Mehic",slug:"eldin-mehic",fullName:"Eldin Mehic"}]},{id:"59359",title:"Analysis of the Role of Exchange Rate Volatility in Monetary Policy Conduction in OECD Countries: Empirical Evidence from Panel-VAR Models",slug:"analysis-of-the-role-of-exchange-rate-volatility-in-monetary-policy-conduction-in-oecd-countries-emp",totalDownloads:1503,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"In this study, panel vector autoregression (PVAR) models are employed to examine the relationships between industrial production growth rate, consumer price inflation, short-term interest rates, stock returns and exchange rate volatility. More specifically, I explored the consequences of the dynamics detected by the models on monetary policy implementation for 10 OECD countries. This study indicates that factors that may cause a rise in short-term interest rates with respect to the USA can lead to volatility in exchange rates and thus macroeconomic instability. It is also implied that sustaining macroeconomic growth and decreasing inflation can result in increased export performance, which in turn provides the amount of US dollars to curb volatility in US dollar quotations. Accordingly, this study reveals that high importance should be given to both monetary and non-monetary factors in the open-economy framework to detect the possible impacts on trade and capital flows by dynamic stochastic general equilibrium (DSGE) models. Due to their exchange rate risk of economic agents, I also suggest that the economic policy makers of these countries had better create a theoretical framework including financial frictions, economic agents’ preferences and different shocks to smooth the variations in exchange rates and minimise the negative outcomes of Brexit.",book:{id:"6487",slug:"trade-and-global-market",title:"Trade and Global Market",fullTitle:"Trade and Global Market"},signatures:"Oguzhan Ozcelebi",authors:[{id:"226325",title:"Prof.",name:"Oguzhan",middleName:null,surname:"Ozcelebi",slug:"oguzhan-ozcelebi",fullName:"Oguzhan Ozcelebi"}]},{id:"53827",title:"Malaysia and China: The Trade Balances, Foreign Exchanges and Crises Impacts",slug:"malaysia-and-china-the-trade-balances-foreign-exchanges-and-crises-impacts",totalDownloads:2047,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"China appears as the biggest trading partner for ASEAN economies, but it is inconclusive whether the complementarities between China and regional economies offset China’s competitive threat. This study tries to assess if real exchange fluctuations and the demand-supply channels determine the Malaysia-China trade balances in the global crises era, 1997–2010. The finding generally supports the complementary role of China in the Malaysia-China bilateral trading. However, despite the long-run effect of real exchange on trade balances, the Keynesian demand channel was not uphold during and after the global financial crisis—due to the contractionary effect on Malaysian output. The Chinese inflation impact is also not evident following the foreign exchange shocks. Meanwhile, currency devaluation for exports gains is insufficient to sustain Malaysia output expansion against China. Further productivity growth in real and tradable sectors is essentially needed.",book:{id:"5492",slug:"international-trade-on-the-brink-of-change",title:"International Trade",fullTitle:"International Trade - On the Brink of Change"},signatures:"Tze-Haw Chan",authors:[{id:"191390",title:"Dr.",name:"Chan",middleName:null,surname:"Tze-Haw",slug:"chan-tze-haw",fullName:"Chan Tze-Haw"}]},{id:"53059",title:"Brazil in the Twenty-First-Century International Trade: Challenges and Opportunities",slug:"brazil-in-the-twenty-first-century-international-trade-challenges-and-opportunities",totalDownloads:1731,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"This chapter discusses the impacts of globalization on international trade patterns and the required shifts in trade policies. Highlighting the effects of production fragmentation, geographic dispersion and the expansion of global value chains (GVCs), the chapter outlines the Brazilian experience to illustrate the difficulties that various countries face in acknowledging this economic reality and providing appropriate policy responses. It draws on the global value chains literature to analyze Brazil’s foreign trade policies implemented during the recent ruling of the Labor Party (PT) presidents Lula da Silva and Dilma Rousseff (2003 to 2015), discussing the Brazilian strategy (or the lack of one) to integrate into global value chains. Results of this exercise have led to the conclusion that a non–GVC-oriented trade policy has allowed Brazil to integrate only superficially into globalized international production and commercial flows. The chapter concludes providing an outlook on the policy shifts required for increasing Brazil’s insertion into global value chains and boosting a more prominent role in international trade.",book:{id:"5492",slug:"international-trade-on-the-brink-of-change",title:"International Trade",fullTitle:"International Trade - On the Brink of Change"},signatures:"Susan Elizabeth Martins Cesar de Oliveira",authors:[{id:"191481",title:"Dr.",name:"Susan",middleName:"Elizabeth Martins Cesar De",surname:"Oliveira",slug:"susan-oliveira",fullName:"Susan Oliveira"}]}],onlineFirstChaptersFilter:{topicId:"72",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"