Summary of the research sites.
\r\n\tEven though video surveillance systems have been part an integral part of the public and security sectors for decades, there is a significant interest in them outside of those industries. This interest is largely due to increased crime rates and security threats all around the globe, which are driving a continuous growth of the video surveillance market. According to a recent report, the video surveillance market was valued at $29.98 billion in 2016 and is expected to reach a value of $72.19 billion by 2022. This market potential is also propelled by recent advances in Artificial Intelligence and Computer Vision research fields—boosting the intelligence, scalability, and accuracy of intelligent video surveillance solutions.
\r\n\r\n\tThe book's goal is to provide a game-changing and cross-disciplinary forum that brings together experts from academia, industry, and government to advance the frontiers of theories, methods, systems, and applications.
",isbn:"978-1-80356-342-8",printIsbn:"978-1-80356-341-1",pdfIsbn:"978-1-80356-343-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"4d13a124dd9eb965b2e6958786b710cb",bookSignature:"Dr. Pier Luigi Mazzeo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11548.jpg",keywords:"Hardware and Software Architectures, Privacy in Surveillance, Cybersecurity for Surveillance, Biometrics, Activity and Interaction Analysis, Cognitive Dynamic Systems and Bio-Inspired Methods, Human-Computer Interfaces, Visualization Algorithms, Classification and Recognition, Sensors, Communications and Networked Sensing, Distributed Camera Networks and Smart Cameras",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"March 17th 2022",dateEndThirdStepPublish:"May 16th 2022",dateEndFourthStepPublish:"August 4th 2022",dateEndFifthStepPublish:"October 3rd 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Artificial Intelligence and Computer Vision enthusiastic researcher at Institute of Applied Science and Intelligent Systems in Lecce (Italy) with more than one hundred publications in his referred research fields.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",middleName:null,surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo",profilePictureURL:"https://mts.intechopen.com/storage/users/17191/images/system/17191.jpeg",biography:"Pier Luigi Mazzeo obtained an MSc in Computer Science from the University of Salento, Lecce, Italy, in 2001. Since then, he has been working on several research topics regarding artificial intelligence and computer vision. Dr. Mazzeo joined the Italian National Research Council of Italy (CNR) as a researcher\nin 2002. He is currently involved in projects for algorithms for video object tracking, face detection and recognition, facial expression recognition, deep neural networks, and machine learning. He has authored and co-authored 100 publications, including more than fifteen papers published in international journals and book chapters. He has also co-authored five national and international patents. Dr. Mazzeo acts as a reviewer for several international journals and for some book publishers. He has been regularly invited to take part in the scientific committees of national and international conferences.",institutionString:"Italian National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8725",title:"Visual Object Tracking with Deep Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"e0ba384ed4b4e61f042d5147c97ab168",slug:"visual-object-tracking-with-deep-neural-networks",bookSignature:"Pier Luigi Mazzeo, Srinivasan Ramakrishnan and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/8725.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10390",title:"Deep Learning Applications",subtitle:null,isOpenForSubmission:!1,hash:"5cc6cd7972551be6cfc4d3c87bf8fb5c",slug:"deep-learning-applications",bookSignature:"Pier Luigi Mazzeo and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/10390.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"76889",title:"Environmental Impacts of the Oil Palm Cultivation in Cameroon",doi:"10.5772/intechopen.97862",slug:"environmental-impacts-of-the-oil-palm-cultivation-in-cameroon",body:'In recent years, many developing countries worldwide have been tapping renewable resources for food security. Such a tendency has been spurred by high demand in some commodities and also and increasing concerns in agriculture feedstock. Agriculture is one of the main causes of the degradation of natural ecosystems [1, 2]. It accounts for 24% of global greenhouse gas emissions [3]. The resulting climate changes affect the whole humanity [4]. Agriculture is also the primary anthropogenic cause of deforestation and desertification. It greatly participates in the degradation of water resources with the increased use of chemical inputs [5]. These negative impacts are mainly attributable to industrial agriculture, practised over large areas and without taking into account the basic principles of sustainability. Artisanal agriculture also presents unsustainable practices such as shifting slash-and-burn agriculture [1, 6]. Among the most incriminated is oil palm cultivation [2, 7]. This plant, which is native to the Gulf of Guinea, has experienced strong expansion around the World [8, 9]. It is planted for its oil, which is currently the first vegetable oil seconded by soybean oil [10]. Southeast Asia (Malaysia and Indonesia) accounts for 80% of world production of palm oil [11]. Effort to render palm oil production sustainable (Round Table on Sustainable Palm Oil and Belgian Alliance for Sustainable Palm Oil) has led to 19% of its worldwide production certified as organic [12]. In recent years, Africa has consolidated its position as the Third production pole. There is increasing rush for its production by national and international investors, attracted by the availability of land [13]. Such a rush raises concerns captured by this paper such as reconciling increasing production of palm oil and preserving the forest and biodiversity for the sustainability of the oil palm sector in Cameroon.
WWF report estimates that palm oil supplies 35% of the world’s vegetable oil on just 10% of the land. In Cameroon, oil palm exploitation is taking a global scale. Since economic crisis of the year 1990s, Cocoa and coffee have already lost ground while the rubber tree is floundering. The palm oil is reassuring, because of its many uses.
People are getting more involved in the activity because of its economic importance (money like cash crop at any time, cultural uses and benefit, etc.). Estimations on oil palm plantations reach 375 000 ha shared between agro-industries, elites and small farmers. Annual palm oil production increased from 270,000 tons in 2013 to 413,000 tons in 2018 against a demand that peaked at 1.179 million tons in 2018 [14]. Oil palm expansion in Cameroon has been driven by rising global demand for vegetable oils for consumption and cosmetics. While making a significant contribution to national economies, the expansion of oil palm plantations is a cause for environmental concerns.
Most plantations, as well as CPO productive basins, are located in the rainiest area of the country, being South West, Littoral and some part of the Centre and South regions. Between 2000 and 2020, more than 10,000 ha of oil palm plantations were established annually. Gradually, new lands available were allocated for industrial plantations while concerns on deforestation were raised up.
This paper assesses and analyzes the environmental impacts and risks associated with this activity. The main assumption is that oil palm cultivation generates ecological and socio economic impacts which put its sustainability to question. The approach is based on field surveys carried out in various production basins, particularly in the South-West, Littoral and Centre Regions. The study reviewed resolutions of various workshops bringing together stakeholders on the matter of sustainability in the oil palm sector in Cameroon. It emerges that impacts are assessed in four domains: ecological, economic, social and institutional. The latter implies a better articulation of the tensions between development and environmental issues.
Within the oil palm production basins of Cameroon, three main sites were chosen to drive this study namely Sanaga Maritime Division in 2013–2014, Ngwéi (2016–2018) and Ekondo-Titi (2016) Subdivisions (Figure 1). The diversity of the biophysical environment favours the cultivation of a wide variety of food (cassava, maize, millet, macabo, rice, etc.), and cash (sugar cane, cotton, palm oil, rubber, cocoa, etc.) crops (Tchindjang et al. 2015–2016). Regarding oil palm, it develops preferentially in the coastal area qualified as the “elaeisfarming” belt of Cameroon (Figure 1). Administratively, oil palm plantations and concessions are set up in the maritime facades of the southern, coastal and southwestern regions [10, 15, 16].
“Elaeiscultivation” areas, oil pam farms and industries of Cameroon.
As shown by Tchindjang et al. [17] and Ndjogui [18], oil palm belt offers suitable conditions for the development of oil palm: low altitude (less than 500 m); sufficient rainfall (more than 1800 mm/year); favorable temperature between 22 and 30°C; low thermal amplitude; rich and deep soils; etc. Agro-industries are also common in this area and constitute the major producers of palm oil (Table 1). At the edge of this “elaeisfarming” belt, there are a few small marginal farms both on the vast southern Cameroonian plateau and in the Western Highlands where oil palm could be grown with limited success.
Parameters | Sanaga Maritime | Ngwéi | Ekondo-Titi |
---|---|---|---|
Area in sq. km | 9311 | 848 | 652 |
Number of Protected areas | 3 (179,661 ha) | 0 | 0 |
Number of agro industries | 3 | 1 | 2 |
Name of agro industries | SAFACAM, SPFS, SOCAPALM | SOCAPALM | PAMOL and CDC |
Planted areas (ha) | 30,000 | 5,000 | 25,000 |
Labor regime | Workers and farmers | Workers and farmers | Workers and farmers |
Number of Elite oil palm owners | 5 | 1 | 2 |
Number of Small holders | 3000 | 398 | 550 |
Type of Soils | Oxisoils, yellow ferralitic soils | Oxisoils, yellow ferralitic soils | Volcanic soils and peat lands |
Land cover | Primary and secondary forest | Primary and secondary forest | Primary, secondary forests and mangroves |
Number of Landsat satellite images processed | 9 Landsat, 5 Spot, 3 Ikonos, 1 Geoeye | 3 Landsat, 1 Google Earth 1 map box 1 Geoye | 3 Landsat, 1 Google Earth, 1 map Box |
Summary of the research sites.
This work constitutes an analytical and conclusive synthesis of the research carried out, participative field investigations and works undertaken in production basins since 2013 (from 2013 to 2018) under the framework of the palm and forest project of Cameroon (PALMFORCAM-IRD) as well as Oil palm Adaptative Landscape (OPAL). The main missions included:
Investigations carried out within the framework of the PALMFORCAM project funded by IRD, took place in 2013–2014 [5]. The objective was to monitor by remote sensing the impact of the development of village oil palm plantations on the forest cover in the Sanaga Maritime Division. The methodological activities set up concerned: (1) Carrying out an inventory of the palm plantations in the Sanaga Maritime with collection of GPS waypoints, without forgetting to identify the types of owners and the sizes of the plantations; (2) Diachronic mapping (Landsat, SPOT, IKONOS and GEOEYE images) of land use in the Sanaga Maritime Division in 1975, 2000 and 2013.
The OPAL project drive us to study the environmental impact of village/elitist palm plantations on deforestation in Sanaga Maritime and in the Ndian basin: the case of Ngwéi and Ekondo-Titi subdivisions. This study, carried out between October 2016 and March 2017 by an interdisciplinary team (geographers, botanists, environmentalists and geomatician specialists), highlighted the impact of oil palm cultivation on the landscape and the range of tools used during this study are resumed in Table 2.
Methods | Operational work |
---|---|
Satellite image processing | LANDSAT image processing (MSS, TM, ETM+ & 8 de 1975 to 2015), MAP Box images (1.5 m resolution) |
Botanical Survey on quatrates and transects | Two quadrates and two transects in each palm plantation visited on the field (village, elitist et industrial); a quadrates in the dense forest. |
Environmental impacts assessment | Interaction matrix and impact sheet per receiving environment |
Questionnaire Survey | 330 questionnaires in Sanaga Maritime (2013) 290 and 260 copies of questionnaires administered in Ngwéi and Ekondo-Titi Sub-divisions respectively (2016) |
Landscape methods | Application of the SEPL exercises in these areas. |
Methods used in assessing the impact of oil palm plantation in the environment.
The quadrate method is advantageous because it helps in studying the dynamics of the fauna and flora in a quantitative and qualitative approaches. As flora recording is concerned for the analysis of the impact of oil palm farming on plant biodiversity, experimental plots were applied on four types of vegetation’s namely: a village or smallholders oil palm plantations, an elitist oil palm plantations, an industrial palm plantation and a forest area. To this effect, the team realised an experimental plot where recorded plant species were immediately identified.
Criteria such as the nature, probability of occurrence, scope or extent, magnitude or intensity, reversibility and duration of the identified impacts were combined for an appropriate impact assessment. The rating grid of Leduc and Raymond [19] was used for impact assessment. Ratings from 1 to 5 were assigned to the indicators (Table 3) depending on the degree of impact. The absolute importance represents the average of the impact ratings over the total number of rated indicators. The nature of an impact can be positive (+)
Value | Occurrence of the impacts | Territorial scope (extent) of the impacts | Duration of the impacts | Intensity of the impacts | Reversibility of the impacts | Final rafting |
---|---|---|---|---|---|---|
1 | Very unlikely | Very reduced space (10%) | Very short | Very weak | Immediately reversible | 1–2 non significant or negligible |
2 | Unlikely | Reduced space 15–20% | Temporary | Low | Quickly reversible | |
3 | Likely | Fairly extensive 25–40% | Long enough | intermediary | Reversible | 2.1–2.9 insignificant |
4 | Certain | Extended 50% | Long | High | Little reversible | 3–4 significant |
5 | Very certain | Very extensive 60–100% | Very long | Very high | Irreversible | 4.1–5 very significant |
Impact assessment indicators and rating of their impacts.
The absolute importance or significance of the impacts is determined by calculation by taking the product of all the ratings assigned to each indicator over the total number of indicators. This is illustrated by the following equation:
After rating the impacts were qualified according to the results obtained.
The rating between [1–2] represents the insignificant or negligible impacts;
The rating between [2.1–2.9] represents the insignificant impacts;
The rating between [3–4] represents the significant impacts;
The rating between [4.1–5] represents very significant impacts.
The critical impact threshold is established when the rating value is greater than or equal to the average of the grid: 3.
To complete methodology and tools used, it is worth mentioning that oil palm is one of the most studied agricultural speculations in Cameroon today. Its cultivation and oil production are of interest to economists, sociologists and anthropologists because of its income-generating character and the by-products are used in traditional pharmacopoeia. With further investigations carried out in the Sanaga-Maritime oil production basin (2018–2020), under the coordination of WWF and EPFL Switzerland, three work packages have been developed since 2018 till 2020 on the intercropping of oil palm:
Analysis of the conversion of forests into “elaeisfarming” agrosystems, dynamics of the oil palm in this new environment.
Analysis of the impacts of palm plantation management on soil fertility.
Socio-economic impacts of the management of palm plantation in the main “elaeisfarming” production basins of Cameroon.
This study also take into account various meetings held with the actors of the Africa Palm Oil Initiative (APOI), whose objective is to seek and support the transition to a sustainable palm oil not linked to deforestation in Central and West Africa.
Paragraphs below allow to address the main impacts identified into the oil palm sector being ecological, economic, social or institutional. Fieldwork observations show that most of the components of the biophysical environment are affected by this activity. Globally, it is noticed the clearing of the forest for the establishment of new plots, the erosion of the land during exploitation, the pollution of air and water during processing as well as relative poverty and inequality among peasants. One can include grievances related to the distribution of benefits and the development of neighboring.
There are so many ecological impacts of oil palm identified namely deforestation, loss of biodiversity, erosion as well as soils and water pollution or contamination.
Ecology of the oil palm shows that the forest area has the suitable conditions (soil, rainfall, temperature, relief and insolation) for its development. It is in this vein that all old and new palm plantations (from all actors being agro industries, small farmers and elites) are located in forest areas. This is because forest milieu guarantees them a sustained production over a long period while others areas like fallows and abandoned farms do not bring the expected results (Figure 2).
Type of land use chosen for the creation of oil palm plantations in the main production basins (Source: field survey 2013–2020).
It is worth notice that agro industrial palm plantations/concessions and properties are 100% created on forests. The areas of industrial oil palm producers increased from 46,850 ha in 2009 to 63,200 ha in 2014 and more than 176,600 ha in 2019. It means 35% increase in about 5 years and 73% in 10 years. Similarly, remote sensed data in Ngwéi and Ekondo-Titi Sub-divisions show that more than 83% of smallholders palm plantations were created in both primary and secondary forests. Increase in smallholders palm plantations is estimated at more than 50% in 10 years between 2000 and 2010. The latter do no longer used fallow land and other abandoned fields. Because there are so many smallholders actors more than 90% for only 15% of area, the accelerated deforestation process by atomizing the forest. Atomization of the forest by unsustainable oil palm worsen practices (construction or building, clearing, palm plantations and wasteland) contributes enormously to the decline of the forest which is suffocated. Any parcel of forest located between two or more of these plots is doomed to disappearance.
The threat of palm plantations on the original forest is all the more serious as certain industrial concessions granted in recent years are adjacent to protected areas. This is the case of Sithe Global Sustainable Oils Cameroon (SGSOC); a subsidiary of the American multinational Herakles Farms. The concession acquired by the latter is located near protected areas (Korup and Mounts Barossa national parks, Rumpi hill reserve and Banyang-Mbo fauna sanctuary) recognized as High conservation value forests (HCV) and also endemic for its biodiversity. The same situation was observed in the Greenfil case whose palm plantations are located very close to the Ebo forest which plays host to a wide variety of wild animals, especially the western gorilla, the Nigeria-Cameroon cross boarder chimpanzees, drills and several other primates as well as many endemic plant species. Another case is the 2019 de-gazettement of Forest Management Unit (FMU) number 09–025 near the famous Campo Ma’an National park for its transformation into oil palm (60,000 ha) plantation by CAMVERT. This National Park is recognized as Model forest and Biosphere Reserve. The proposed declassified area encompasses two blocks covering 40,000 ha to the north and 20,000 ha to the south bordering Dipikar Island (Campo Ma’an National Park) where there is a gorilla habituation project ongoing.
Deforestation caused through palm planting also fragments the habitat of endangered species and disturbs wildlife corridors usually used by forest elephants. Such a situation bring confusion and more and more anger, disappointment and land conflicts due to ambiguous governance of the forest. This issue is discussed in the following paragraph.
As the ecological impacts are concerns, there is a high degree of confidence that the expansion of palm oil cultivation has resulted in deforestation. Numerous authors and reports have emphasizes on oil palm as a driver of deforestation and land-use change in tropical countries [20]. Globally, oil palm crop development is responsible for less than 0.5% of deforestation, but in parts of the tropics this figure can reach 50% [21]. For Indonesia, the proportion of direct and indirect deforestation linked to the expansion of elaeis farming is estimated to be between 11% (2000 to 2010) and 16% (1990 to 2005). At the same time, in 2016, in the same country, 45% of oil palm plantations were on land which, in 1989, was forests [22, 23]. This phenomenon is very marked in Malaysia and Indonesia because they are the two largest palm oil producers in the world. With an average forest loss of 350,000 hectares annually, deforestation is particularly dramatic on the island of Borneo, where about half of the deforestation between 2005 and 2015 was directly linked to industrial oil palm plantations [21, 24]. As shown by [25], 2/3 of deforestation in the South-West region of Cameroon during the same period was caused by the expansion of oil palm farms and the installation of new actors. The peculiarity of oil palm basins areas compared to the rest of Cameroon is that they host most of the agro-industrial activities (oil palm, rubber, plantain and sugar cane). To this should be added the share of deforestation generated by small producers, which is still unclear. In addition, oil palm plantations are responsible for significant greenhouse gas emissions.
The establishment of palm plantations generally involves the almost total clearing of the forest. This leads to the loss of species, including those that are endogenous in certain areas of high conservation value. Oil palm is generally grown in pure culture. It doesn’t tolerate association with other commodities. The other species found in palm plantations are generally the ombrophilous grasses. Table 4 built with quadrates and transects methods, shows the numbers of species, families, and individuals recorded in the oil palm cultivation basins of Ngwéi and Ekondo-Titi compare to those of protected areas bordering these basins. One can observed that less than half of the species present in humid forests are present in industrial plantations. It is the same for the number of families which decreases between the mangroves and different forms of palm plantations. From the table below, smallholders palm plantations conserve their biodiversity better than industrial one. This is explained by the solicitation of other ecosystem services such as traditional pharmacopoeia and the harvesting of non-timber forest products by populations.
Type of area | Number of species | Number of families | Number of individuals |
---|---|---|---|
Ekondo-Titi – 2016 | |||
Dense and humid forest | 48 | 18 | 162 |
Mangrove | 37 | 20 | 178 |
Smallholders’ plantations | 45 | 24 | 76 |
Elites plantations | 38 | 25 | 159 |
Industrial plantation | 21 | 15 | 78 |
Ngwéi – 2016 | |||
Dense and humid forest | 50 | 26 | 142 |
Smallholders’ plantations | 31 | 19 | 39 |
Elites plantations | 60 | 32 | 88 |
Kribi, Campo, Douala areas – 2020 | |||
Campo Ma’an National Park | 108 | 36 | 98 |
Kribi Marine Park | 72 | 26 | 65 |
FMU 09–025 | 69 | 27 | 60 |
Douala Edéa National Park | 59 | 31 | 54 |
Floristic diversity between palm plantation and forest of Ngwéi and Ekondo Titi subdivisions and some protected areas around Kribi and campo.
Fieldworks quadrates and transects Survey 2016 & 2020.
From the Table 4 above, out of the 18 families in moist and dense forest and 20 families in the mangrove, only 5 families are found in all palm plantations (village, elitist and industrial). These include
Conclusively, the clearing of hundreds or thousands of hectares of land for oil palm cultivation is one of the most important factors in the destruction of vegetation cover and consequently of biological diversity. Deforestation and degradation are the root cause of a considerable loss of flora species, fragmentation and disturbance of the natural habitat in these areas. The original evergreen natural forest has disappeared in favour of the mono-specific oil palm plantations, which occupy three-tenth of the territory, but catalyse deforestation. Also, aggressions on forests and fallow lands for oil palm establishment create enormous pressure on traditional and modern land reserves and protected areas.
The measurements from quadrates and transects allow to calculated many indices. The Simpson index which measures rare species is roughly equal across the four project sites. The equitability of Pielou, which provides information on the distribution of species, is approximately equal in the different sites sampled. The Shannon index, which takes into account floristic diversity, is higher in PNCM (4.01) and similar in PMK, PNDE and UFA (Table 5). The Shannon index (Table 5) shows significant biological diversity for dense forests and for mangroves (0.28). The Shannon index is also high for the industrial palm plantation of Ekondo-Titi, relatively less for the village palm and elitist palm plantations. The Simpson index is 0.08–0.09 in mangrove, moist and dense forest compared with 0.07 in the industrial and elitist palm plantations of Ekondo-Titi against 0.01 in the smallholders and elitist palm plantations of Ngwéi. Simpson index shows the degree of land use in the two districts. This is due to the fact that ecosystems are profoundly affected by agricultural practices and especially by oil palm cultivation (and even cocoa farming with exotic species), which reduces density and specific diversity locally.
Types of land use | Shannon index | Equitability of Pielou | Simpson index |
---|---|---|---|
Wet and dense forest | 0.27 | 0.01 | 0.08 |
Mangrove | 0.28 | 0.01 | 0.09 |
Smallholders palm plantations | 0.20 | 0.00 | 0.02 |
Agro industries palm plantations | 0.27 | 0.01 | 0.07 |
Elitist palm plantations | 0.25 | 0.01 | 0.06 |
Wet and dense forest | 0.28 | 0.01 | 0.09 |
Smallholders oil palm plantations | 0.21 | 0.01 | 0.01 |
Elitist oil palm plantations | 0.18 | 0.00 | 0.01 |
Kribi Marien Park | 3.56 | 0.83 | 0.95 |
Campo Ma’an National Park | 4 | 0.85 | 0.96 |
Douala-Edéa National Park | 3.56 | 0.87 | 0.96 |
FMU 09–025 | 3.57 | 0.84 | 0.95 |
Biological diversity index.
Before concluding this section, it would be important to highlight the variation in floristic and wildlife biodiversity from natural environments to oil palm plantations. This would give and idea of the real impact of oil palm plantations on the biodiversity decrease within the landscapes studied. Taking the floristic level, Tables 4 and 5 show that biodiversity in terms of species and families is so important in protected areas and dense forest than anywhere else. This is quite conspicuous in Campo Ma’an National Park. Hence the advantage of avoiding installing oil palm plantations next to protected areas or in dense forests because they considerably reduce biodiversity.
As fauna is concerned, the survey show that forest degradation is one of the major infringements to the loss and decline of wildlife for more than 50% of the surveyed population. It happens through the clearing of hectares of forest land which drive to the destruction of wildlife habitats and the disappearance of species. There are almost any game (porcupines, monkeys, antelopes, etc.) and some species have already completely disappeared from the area (such as the elephant that disappeared from Njock-Loumbe,
Biodiversity impacts is the most documented facet of environmental oil palm effects. Land clearance for oil plantations removes, fragments and damages important wildlife habitats, leading to a high loss of species. The species these forests support are highly adapted to rainforest habitats and are often unique. Clearing tropical forests for oil palm results in strong local and regional biodiversity declines [21]. It is link to the fact that oil palm is commonly produced in monocultures which affect the habitat of great mammals and their biodiversity declines from 47 to 90% [26] or 65–90% [23]. Also, the mammal diversity in oil palm strongly depends on the proximity of natural forests [21, 26]. In Cameroon, great APES are endangered by the spread of oil palm plantations around protected areas like Campo Ma’an, Ebo, Korup etc. And in other areas, due to oil palm expansion, elephant have disappear like in Njockloumbe village at Ngwéi. The IUCN Red List of Threatened Species documents 321 species for which oil palm is a reported threat [21]. Meijaard et al. [26] added that species those threatened are made up 3.5% of the taxa threatened by annual and perennial non-timber crops (9,088 species) and 1.2% of all globally threatened taxa (27,159 species) in 2019.
As we saw on Table 4, the highest diversity of animal species in oil palm areas, however, is generally found in the wider landscape that includes remnant patches of native vegetation. Factors that are likely to positively influence biodiversity values in both industrial-scale and smallholder plantations include higher landscape heterogeneity, the presence of large forest patches and connectivity among these and the plant diversity and structure of undergrowth vegetation.
It is clear that oil palm becomes the source of deforestation and land degradation. The statistics compute from image processing help calculating the deforestation rate in the main studying sites. In Sanaga Maritime, from 1986 to 2013, deforestation rate is estimated at 23.61%. Ngwéi deforestation is estimated at 45.94% in 38 or 40 years, with an overall rate of 697.22 ha/year between 1975 and 2013. Deforestation in Ekondo-Titi is accessed at a rate of 22.74% in 37 years, i.e. 0.61% per year and especially 150.34 ha/year of Atlantic forests against 67.07 ha/year for mangroves. Let’s take the detail case of both Ekondo-Titi and Ngwéi subdivisions to illustrate the results of images processing (Figures 3 and 4).
Land cover and land use in Ekondo-Titi between 1978 and 2016 thanks to Landsat (1978), Map Box images (1.5 m resolution) and Google Earth (2016). The original forest and mangrove has disappeared everywhere apart from the North western part of the map. Smallholders’ farms are spreading north western wards.
Land cover and land use in Ngwéi District between 1975 and 2016 from Landsat (1975) and Google Earth image. A small portion southwards and a great areas northwards of the images remains intact and need to be preserved. Numerous smallholders’ farms oil palm widespread and scattered in the central part of the image show that the Ngwéi District is the hold almost more than 30% of the areas producing red oil within the Sanaga Maritime Division.
Table 6 emphasizes the synthesis of deforestation linked to the expansion of oil palm. The estimate of total deforestation varies according to administrative units and the dynamics of elaeis cultivation, and in this sense, the Ngwéi landscape appears to be more threatened.
Parameters | Sanaga Maritime | Ngwéi | Ekondo-Titi |
---|---|---|---|
Area in sq. km | 9311 | 848 | 652 |
Total deforestation rate | 28% in 40 years | 45,94% in 40 years | 22,74% in 37 years |
Mean annual rate | 0,7% per year | 1.15% per year | 0,61% per year |
Net deforestation (ha) | 121,043 ha | 11,872 | 7,882 |
Deforestation due to oil palm (ha) | 65,177 | 7,632 | 3,977 |
Time span projected for the disappearance of the forest | 50–70 years | 37–50 years | 125–189 years |
% Oil palm expansion occurring at the expense of the forest | 70% | 90% | 60% |
Deforestation and oil palm expansion in the three sites.
Table 7 summarizes the perception of the populations in terms of ecological impacts. This shows the illusion that the people of Sanaga Maritime and Ngwéi have of thinking that the situation is not changing and of underestimating the deforestation linked to palm oil. However, they have clearly seen the decrease in wildlife. On the other hand, Ekondo-Titi recognizes the impact of oil palm cultivation both on the forest and wildlife.
Area | Sanaga Maritime (n = 335) | Ngwéi (n = 290) | Ekondo-Titi (n = 260) | ||||||
---|---|---|---|---|---|---|---|---|---|
Impact | N | No change | P | N | No change | P | N | No change | P |
Threat on forest | 44.5 | 33.4 | 22.1 | 33.2 | 43.2 | 23.6 | 20.39 | 28.85 | 50.77 |
Economic | 15 | 7 | 78 | 5 | 5 | 90 | 7 | 3 | 90 |
Animal BD | 65.51 | 23.24 | 11.25 | 47.52 | 33,28 | 19.2 | 58.53 | 25 | 16.47 |
Perception of livelihood ecological impacts through questionnaire and landscape methods.
Table 8 below shows negligible positive impact (3.5%) on fauna and NTFPs with overwhelming negative impact (55) (96.5%), meaning that oil palm cultivation largely undermines the resilience of the natural environment. The impact is more on surface water, flora and fauna (biodiversity), soils, natural habitats and non-timber forest products (NTFPs).
Component of the affected environment | Activities sources of impacts | Impacts | Characterization parameters and rafting | Final assessment | |||||
---|---|---|---|---|---|---|---|---|---|
Nature | Occurrence | Intensity | Spatial extent | Duration | Reversibility | Importance | |||
Air | Land clearing/deforestation Storage & preparation of nut Oil extraction | Degradation of air quality | 3 | 2 | 1 | 1 | 2 | 1,8 | |
Surface water | Land clearing/deforestation Oil extraction Waste management | Degradation of water quality / contamination, pollution | 3 | 3 | 4 | 4 | 4 | 3,6 | |
Underground water | Land clearing/deforestation Oil extraction Storage & preparation of nut | Contamination, water table attack, pollution | 3 | 2 | 1 | 3 | 3 | 2,4 | |
Soil | Land clearing/deforestation Staking, hole punching Planting Storage & preparation of nut Oil extraction | Degradation of soil quality Contamination, pollution | 4 | 4 | 2 | 3 | 4 | 3,8 | |
Naturel habitat | Land clearing/deforestation Staking, hole punching | Fragmentation, destruction of natural habitats | 3 | 3 | 4 | 5 | 5 | 4 | |
Flora | Land clearing/deforestation Plant maintenance Harvesting bunch Felling old palm plants | Deforestation, fragmentation | 5 | 5 | 4 | 5 | 4 | 4,6 | |
Fauna | Land clearing/deforestation Staking, hole punching Plant maintenance | Fauna habitat disturbance Migration and loss of fauna species | 4 | 3 | 3 | 5 | 5 | 4 | |
Non-timber forest products (NTFPs) | Felling old palm plants | Increase /decrease in NTFPs Loss of medicinal species | 3 | 2 | 2 | 5 | 5 | 3,4 |
Absolute importance of the impacts of the oil palm cultivation on the biophysical milieu.
Based on remote sensing techniques, one can deduce that in the various literature, the case of Indonesia and Malaysia have been well identified compared to African countries producers like Nigeria, Ghana, Ivory Coast and Cameroon. Remote sensing studies of a subset of plantations in 20 countries suggests that around 45% of oil palm plantations in Southeast Asia came from areas that were forests in 1989. The estimates vary from one region to another being at 31% in South America, 7% in Africa and 2% in Central America. For Indonesia and Malaysia, the estimates were 54% and 40% respectively [22, 26, 27]. Another estimation gave during the last 40 years, 47% and 16% of total deforestation by oil palm in Malaysia and Indonesia, respectively [21, 28]. Those statistics could be compared to what we observed in Ngwéi (45,94%) and Ekondo Titi (22,74%) as well as Sanaga maritime (23,61%) productive basins. According to Ordway et al. [25], oil palm expansion dynamics in sub-Saharan Africa have been overlooked. They proved that 67% of oil palm expansion from 2000 to 2015 occurred at the expense of forest in the Southwest region of Cameroon.
Coincidentally, these are priority areas often safeguarded by the policies of the World Bank and the African Development Bank (ADB), because they are elements of the natural heritage of a country.
Water samples were collected upstream, at the spillway and downstream of the palm oil extraction sites in Ngwéi and Ekondo Titi. Chemical and bacteriological analyses were carried out on 09 water samples. The results revealed contamination and pollution, including even groundwater. Overall the surface waters analyzed are basic with pH values all above the recommendations of the WHO standard for drinking water. Chemical oxygen demands are high and reflect pollution. Suspended matters are present in all samples. In addition, two Ekondo-Titi samples have concentrations of ammonium (NH4 +) ions relatively higher than the recommended value (≤0.50). At the microbiological level, six (06) samples showed concentrations of fecal coliforms not complying with guideline values (0UFC/100 ml). As a result, these waters would be under the influence of a major source of pollution, making them unfit for human consumption without prior treatment. Well water and groundwater are also contaminated.
Also, field surveys show that waste oils emanating from SOCAPALM and PAMOL mills flow into rivers and streams close to village dwellings. These rivers and streams remain the most fishing and living places estimated by local populations (consumption, bathing, etc.). As a result of these liquid waste, local populations are not only deprived of much of their fishing resources, but they are also exposed to health risks. Another negative aspect is the environmental impact of artisanal mill units whose process is polluting because the discharges are not treated. Finally, deforestation exposes the soil surface and accentuates its leaching. The oil palm plantation establishment modifies the soil texture as well as its biological characteristics, which is often partly responsible for the degradation of plant diversity in oil palm plantations. This degradation of soil quality is at the origin of the loss/fragmentation of the wildlife natural habitat as well as the destruction of the soil micro-fauna.
Unfortunately, the issue in water and soil pollution, is the mostly poor assessed aspects in many studies. However, greenhouse gas emissions occur from mill and plantation activities, and especially from Palm Oil Mill Effluent (POME), a liquid waste from the initial processing of fresh fruit bunches. Little is known about the pollution of waterways by fertilizers, pesticides and other chemicals used in oil palm plantations, as well as their impact on human health, aquatic species and fisheries [21]. Qaim et al., [29] found that forest conversion to oil palm plantations also affects ecosystem functions. Among others, the functions affected include carbon storage, nutrient cycles, soil regeneration, and air and water purification. Releasing POME into waterways harms aquatic ecosystems by creating highly acidic environments or causing eutrophication and this is in line with our results.
Landscapes dynamics have been assessed through the populations rating. The synthesis is shown by Table 9 interpreted the lines after.
Area | ↑ steep upward | ↗ slow increase | → no change | ↘ slow decrease | ↓steep downward | Total |
---|---|---|---|---|---|---|
% synthesis Ekondo Titi | ||||||
% synthesis Ngwéi | ||||||
% synthesis Sanaga Maritime | 9.25 | 18.15 | 40.75 | 22.57 | 9.28 | 100 |
Landscapes trend arrows and scores in Ekondo-Titi, Ngwéi and Sanaga Maritime.
The high score (34.62) for the “slow increase” trend in Ekondo Titi reflects the illusion of the population’s margin for maneuvering the resources of their territory (sea, Atlantic forest, dense forest and mangrove) in Ekondo-Titi. It is worth mentioning that the fallacy of the people of Ngwéi and Sanaga Maritime, of whom approximately 2/5 believe that the landscape has not changed (43.20 & 40.75). However, they objectively acknowledge (23.4 & 22.57%) that negative changes (landscape degradation, resource depletion, poverty) are more significant than positive changes (15.4 & 18.15%). This means forest depletion is a reality even though if people succeed in getting a cash benefit from oil palm activities.
In Sanaga Maritime, 51% of the population admitted that oil palm enable them to validly meet their existential needs [5]. For the elite, this is a sector where people invest to earn extra income or prepare for retirement. In the elaeisfarming areas of Cameroon, an abundance of direct or indirect activities linked to this sector makes it possible to more or less effectively rule out the specter of unemployment and poverty. In terms of employment and the local economy, results show that oil palm has a positive impact with scores ranking from 3.6 to 4 despite its overwhelming negative biophysical impact (Table 10).
Component of the affected environment | Activities sources of impacts | Impacts | Characterization parameters and rafting | Final assessment | |||||
---|---|---|---|---|---|---|---|---|---|
Nature | Occurrence | Intensity | Spatial extent | Duration | Reversibility | Importance | |||
Local economy | Harvesting bunch Packaging and sale | Development of economic activities Increase in income | 3 | 3 | 3 | 5 | 4 | 3, 6 | |
Employment And income level | Land clearing/deforestation Staking, hole punching Planting Plants maintenance Storage & preparation of nut Oil extraction Packaging and sale | Job creation | 4 | 4 | 5 | 4 | 3 | 4 |
Absolute importance of impacts of the oil palm on the economy.
Jobs and revenues generated by the various activities related to the establishment, maintenance and operation of a palm plantation (planting and plant maintenance, transport of FFB and oil extraction) constitute the most visible face of its socio-economic impacts able to boost the local economy if the sustainability conditions are fulfilled. Several aspects of this positive impact are to be noticed (1): the sale of FFB by farmers and elites to agro-industries; (2) the establishment of modern mills; (3) Significant induced impacts linked to a flowering of secondary processing industries in Cameroon (soap factories, cosmetics); (4) The sale of artisanally or semi-mechanically extracted oil to soap factories, on local and regional markets or at the roadside; (5) the development of income-generating activities and petty trade in these villages thanks to the oil palm cultivation; and (6) the development of cooperatives based on existing CIGs will constitute the final stage of this economic facet observed in both districts. The population perception is resumed in Table 11. One can observe better results in income level, Job creation and welfare while quality of social network and social infrastructure remain lukewarm.
Area | Sanaga Maritime (n = 335) | Ngwéi (n = 290) | Ekondo-Titi (n = 260) | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | N | No change | P | N | No change | P | N | No change | P |
Income level | 15 | 10 | 75 | 13 | 8 | 79 | 10 | 9 | 81 |
Quality of social network | 25 | 10 | 65 | 27 | 5 | 68 | 15 | 10 | 75 |
Job creation | 5 | 15 | 85 | 7 | 5 | 88 | 5 | 5 | 90 |
Social infrastructure | 45 | 35 | 20 | 55 | 25 | 20 | 55 | 30 | 25 |
Welfare | 10 | 10 | 80 | 5 | 5 | 90 | 4 | 6 | 90 |
Perception of livelihood economic impacts through questionnaire and landscape methods.
From an economic standpoint, the benefits of oil palm cultivation are undeniable. This profitability explains the rapid development of the “red gold”. Nevertheless, the contribution of the palm plantation to the local economy and to the well-being of neighboring populations does not always meet expectations. The benefits for the national economy must also be optimized. Palm oil being a source of financial evasion, it is necessary to ensure the autonomy of Cameroon in order, as much as possible, to avoid imports.
On the economic point of view,
As observed on the field, social impacts must include social protection, collective bargaining, inclusive dialogue, conflict resolution, health risk, corporate social responsibility and environmental justice. These questions variably challenge the agro-industrial and artisanal sub-sectors. In the wake of agro-industrial activities (SOCAPALM, SAFACAM, CDC, PAMOL), more or less, there is a slight satisfaction with the social protection of employees even if controversies regularly emerge on related issues, for example at the level of wages. The fact remains that the latter are regularly paid and for the most part and benefit from some social security. Conversely, almost all of these agro-industrial companies do not adapt well to syndicate activities, especially when tackling economically sensitive issues such as salary increases, health care, paid leave, security, social benefits of family members of employees, etc. Dictatorship and dismissal are common practices without any prospects for inclusive dialogue and concerted negotiation within companies. The social situation between the owners of the elite palm plantations and the local populations is tense at Ngwéi. Because the impacts are so important (Table 12), it is necessary to give sustainable compensation to populations whose land has been occupied by agro-industries in the expected standards. One can add the fact that the health risk is high in agro-industries because health infrastructures are under-equipped and obsolete. The housing conditions of workers are deplorable with overpopulation, dilapidated camps, non-functional water pumps, frequency of energy power cuts, etc.
Component of the affected environment | Activities sources of impacts - | Impacts | Characterization parameters | Final assessment | |||||
---|---|---|---|---|---|---|---|---|---|
Nature | Occurrence | Intensity | Spatial extent | Duration | Reversibility | Importance | |||
Conflicts | Plant Care Storage and preparation of palm nuts Fruit bunches harvest Packaging and sales | Land dispute, Agression, violence Intimidation, threat Tense social climate | 4 | 4 | 1 | 4 | 2 | 3 | |
Human health | Plant Care Storage and preparation of palm nuts | Degradation of workers human health of injury | 4 | 3 | 2 | 4 | 2 | 3 | |
Insecurity | Plant Care Storage and preparation of palm nuts | Injuries Food deficit, social conflicts | 3 | 3 | 2 | 3 | 3 | 2.8 | |
Noise | Storage and preparation of palm nuts | Noise | 3 | 2 | 2 | 2 | 1 | 2 | |
Odour | Storage and preparation of palm nuts Waste management | Degradation of air quality | 3 | 2 | 2 | 1 | 1 | 1.8 | |
Cultural heritage | Craft production of palm kernel oil | Traditional Pharmacopoeia | 3 | 3 | 5 | 4 | 3 | 3.6 | |
Landscape aesthetics | Creation of new nurseries | Landscape embellishing | 2 | 2 | 1 | 1 | 1 | 1.4 |
Absolute importance of impacts of the oil palm on the social environment.
Over the 83 impacts of the table, 37.35% are positive while 62.65% are negative signifying that on social domain, oil palm can be seen as a threat. Thus, the social and economic impacts of oil palm cultivation are numerous and sometimes contradictory. It may be overshadowed by the employment and income impacts, but the social consequences of this activity remain numerous.
In the field of the artisanal sub-sector, local populations working in oil production sites take no measures to protect their health. The gloomy observations draw by such a situation are: disorganization of the sector and the market, lack of social security for smallholders, land disputes, conflicts with agro-industries (Table 12), lack of personal protective equipment against heat & smell, etc. The question is that of a sector that will be fully organized, where the players remain scattered and whose activities sufficiently demonstrate a collective lack of consideration of social sustainability.
The oil palm provides local communities with many material, social and cultural uses ranging from food to traditional pharmacopoeia through decoration and construction materials, contributing to their well-being and their socio-cultural development. For the traditional pharmacopoeia, red palm oil is an antidote to poisons, palm kernel oil is useful for skin care in both new-borns and adults. Lastly, palm wine appears inescapable in all traditional ceremonies and rites concerning enthronement, weddings, deaths and funerals.
Insecurity impacts can be perceived from many angles: bodily risks, lack of safety measures and injuries and accidents’ risks during clearing, hole digging, cleaning and maintenance of the palm plantation; and above all, oil palm harvesting and the pruning of the palm trees. Food insecurity is caused by low consideration in subsistence or food crops for the benefit of oil palm. Food production have decreased for almost 45, 55 and 57% of the respondents in Ngwéi, Ekondo Titi and Sanaga Maritime. There are also, land tenure (97% in Ngwéi and Sanaga Maritime and 74% in Ekondo-titi) and water resources conflicts among smallholders’ farmers as well as between them and hunters.
Finally, cumulative impacts (physical and human environment) affect habitat fragmentation, degradation and loss of biodiversity, deforestation coupled with the rubber and cocoa single-crop farming or the merchant crop including plantain; food insecurity; social conflicts; social protection and collective bargaining. The population perception, shown in Table 13, revealed relative better access to food and social infrastructure, increase in quality of housing and better access to drinking water (due to the multiplication of drilling), but significative increase in water pollution as well as insecurity and conflicts.
Area | Sanaga Maritime (n = 335) | Ngwéi (n = 290) | Ekondo-Titi (n = 260) | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | N | No change | P | N | No change | P | N | No change | P |
Access to food | 45 | 20 | 35 | 50 | 20 | 30 | 60 | 15 | 25 |
Quality of Housing | 12 | 18 | 70 | 10 | 15 | 75 | 20 | 15 | 65 |
Access to land | 22 | 10 | 68 | 12 | 16 | 72 | 5 | 15 | 80 |
Access to social infrastructure | 50 | 10 | 40 | 50 | 15 | 35 | 40 | 15 | 45 |
Access to drinking water | 20 | 8 | 72 | 12 | 10 | 78 | 38 | 12 | 50 |
Water pollution | 68 | 20 | 12 | 72 | 18 | 10 | 70 | 15 | 15 |
Insecurity and conflicts | 75 | 10 | 15 | 83 | 10 | 7 | 85 | 5 | 10 |
Perception of livelihood social impacts through questionnaire and landscape methods.
At the socioeconomic level, there are enormous discrepancies depending on the category of actor. The oil palm value chain seems in fact to benefit more to agro-industrial actors and operators of second and third palm oil transformations. On the contrary, smallholders, because they are not sufficiently taken into account in sectorial policies, are poorly organized, which does not allow them to take the best advantage of the still artisanal oil palm exploitation. The quantitative economic numbers therefore drown the realities.
Socially, the results above demonstrated many negative externalities, thus raising the issue of many social impacts that many authors have addressed. Is palm oil a driver of development or a driver of inequality? [7]. Because almost 70% of the elaeisfarming areas belong to Asian or European firms, Bouron [7] considered oil plantation as “the archetype of the large capitalist plantation”. Indeed, the proportion of palm oil produced by smallholders has steadily increased in Cameroon from 10 to 26% today. In Indonesia and Malaysia, smallholders account for roughly 40% of the total area of planted oil palm and as much as 33% of the output, due to lower yields, on average. There is significant variation in the way that smallholder oil palm cultivation is organized [22]. It is clear that almost 50% of the oil palm land is managed by smallholders worldwide [28]. Though, it is known that oil palm is profitable for rural households and communities in terms of new employment and opportunities, farm profits, and improved rural infrastructure [28, 32, 35]. Nevertheless, this profit is not to be applied to all households and communities [36]. There are many new jobs and employment created by oil palm for landless laborers and rural households in Indonesia, in Mexico and Guatemala [37]. For some countries like Ghana and Guinea, there is a relative stable incomes and higher levels of food security [30, 38]. Migrations is another aspect underlined by [39]. Despite, employment, jobs, rural migrations, wage incomes, linked to the palm oil sector, it does not necessarily improve welfare in terms of food security, and other non-income dimensions, land conflicts, [7, 40, 41],
Some of the negative social consequences of this “oil rush” include land grabbing, large deforestation and the spoliation of indigenous peoples land rights together with unclear land property rights and laws [7, 28, 42, 43] by the large corporations and agro industries. Moreover, the educational level and financial capacities of these agro industries and corporations are also clearly higher than those of the “average” peasants, allowing them not only all the imaginable corruptive drifts (towards the administration, the traditional chiefs) but, above all, giving them an advantage in negotiation [16]. Notwithstanding efforts in developing and implementing forest protection measures, progress has been weak towards achieving this sustained goal and alleviates poverty. This has resulted in Cameroon maintaining palm oil exploitation close to protected areas. The desirability of future agricultural land to be conquered outweighs the desire to cover the forests still standing. According to data from the World Bank [44], Indonesia only granted protected area status to 12% of its vast territory, behind other comparable countries such as the DRC (13.8%) or Colombia (14.8%) and far behind Brazil (29.4%). Malaysia does better with 19.1%. In Cameroon, almost 25% of the territory is devoted to protected areas. But, the government policy can mask a great diversity of situations on the ground. Thus, the State granted 15,000 ha to Greenfil agro industry in 2014 and 50 000 ha to Camvert in 2019 near protected areas of HCV forest while de-gazetted FMU 09–025.
Such a situation shows not only the poor forest and land governance, but also, the weakness of the means of control which leads to illegal clearing, including within protected areas [45].
Outside the national framework, publics institutions seems not adapt to the local context of oil palm cultivation. Smallholder’s access to land is not guarantee. This lack of good governance is a treat that can’t favor sustainability of the whole sector. In addition, securing the elaeisfarming basins, prey to attacks by armed groups, is also seen as a necessity for Cameroon. An integrated and sustainable management approach in the oil palm sector takes into account all stakeholders. Governance requires having at least a national oil palm strategy still awaiting, then fighting against deforestation, approving selling prices, rationalizing production and reducing imports. Cameroon has a national strategy for sustainable development of the palm oil sector which is pending validation. This strategy identifies a set of actors and hierarchical decision-making bodies for the governance of the sector. The national steering committee is responsible for monitoring the implementation of the strategy. To this body, one can add programs and projects, professional organizations (inter-professional organizations, cooperatives and unions), consular chambers and national and regional consultation frameworks.
Overall, this analysis summarizes direct, indirect and cumulative impacts.
Institutional impacts are the most neglected aspects of the oil palm governance in African countries. First of all, very few countries have legislation specifically related to forest degradation and land use change and the government gives privilege on land to foreign investors and agro industries being local and not [20]. Unfortunately, without appropriate policies, smallholder production is not necessarily more rainforest-preserving, as smallholders are also significantly involved in deforestation [25, 33]. Strategies that aim at including smallholders in palm oil need to take into account: securing of land titles, access to credit, and technical support while accounting for the existing heterogeneity [46, 47]. Djouma et al. [48] propose a win-win partnerships between agro-industries and smallholders to boost the development of the national palm oil sector. Meijaard et al. [26] emphasize on certification as it is the case in Malaysia an Indonesia while African countries could not. But it is true that high carbon stock and high conservation value approaches are part of international concerns related to deforestation and oil palm environmental impacts [26, 45].
Finally, how to produce while limiting negative externalities as much as possible, one can ask? The answer can be found on several international programs launched for many agricultural crops taken individually or in groups. In the cocoa sector, for example, there are ISO 34101 standards for a sustainable and traceable cocoa bean [49]. To these initiatives must be added the certifications (like RSPO, Global Gap, Fairtrade, etc.) which give advantages on the market to producers respecting certain sustainability rules [21, 50].
The objective of this article was to assess the environmental impacts of the palm oil sector in Cameroon. The methods used gathered field observations, satellite images processing and participative survey among population through landscape perception methods. Three main production basins (Sanaga Maritime, Littoral and Southwest) were chosen.
The results revealed that the oil palm cultivation has many negative consequences on the environment such as deforestation and various forms of pollution. On deforestation Ngwéi account for 45.94% in 40 years (i.e. 1.20% per year), Sanaga Maritime, 23.61% (i.e. 0.87% yearly) and Ekondo-Titi, 22.74% (0.61% per year). The perception of rural populations confirms the results obtained on deforestation with 44.5, 33.6 and 20.39 in Sanaga Maritime, Ngwéi and Ekondo Titi respectively. The same with animal biodiversity which gave 65.81%, 47.54% and 58.53% in Sanaga Maritime, Ngwéi and Ekondo Titi respectively. Ecological impact in the matrix is 96.5% negative against 3.5 positive. The biodiversity declines and Simpson index are low in area of oil palm plantations than in other with 0.20–0.21 for Shannon index against 0.01–0.02 for Simpson index.
Economically, the sector is still dominated by small producers whose methods significantly impaired profitability. Economic impacts are 51% positive and the score varies by items with 75%, 79 and 81 for income in the Sanaga Maritime, Ngwéi and Ekondo Titi respectively; 95, 88 and 90% for Job in Sanaga Maritime, Ngwéi and Ekondo Titi respectively, also 80, 90 and 90% in Sanaga Maritime, Ngwéi and Ekondo Titi respectively for welfare.
Social impacts are diverse with 37.35% overall impacts positive against 62.65% negative. In social way, only housing (70, 75 and 65%,) access to water (72, 78 and 50) access to land (68, 72 and 80) for Sanaga Maritime, Ngwéi and Ekondo Titi respectively are 45, 50 and 60) and water pollution (68, 72 and 70) insecurity and conflicts (75, 83, 85%) are negative. At the social level, wage employment in the field is not well organized and corporate social responsibility is not applied among agro-industries and other large farmers (elites) who nevertheless deserve to be encouraged in this direction if we want to give the local riparian populations the opportunity to benefit from it.
At institutional level, governance is not well perceived apart from policies proposed to increase smallholders’ areas under cultivation.
The above results revealed that the main objective of the research were fulfilled. The novelty brought by the present study lays on the effort to involve populations in the participatory assessment of their oil palm growing landscape in order to better understand the issues. Also analyzing water pollution that have not really encountered in the documents consulted. The study has equally focused on the impacts of the institutional side, little criticized in previous research in Africa, because the laws on the land are enacted by the governments which do not often hold the customary laws of the populations who are the first occupants of these territories. Indeed, already poorly organized, they are not sufficiently taken into account in sectorial policies. With regard to the environment or more specifically ecology, it is necessary to limit deforestation and the pollution induced by the palm oil sector through energetic measures, because we are witnessing a permanent granting of concessions (Greenfil SA allotted in 2014 and CAMVERT in 2019) for oil palm despite warnings and actions from environmental organizations like WWF and Rainforest. Also, it becomes necessary to respect the sustainability values, improve the agricultural yields and the livelihood, contribute to local development, and protect High Conservation Value (HCV) areas around the oil palm belt as well as preserving the environment.
Methodologically, the techniques used (transects and quadrates for biodiversity assessment, carbon assessment, remote sensing, landscape approach) without forgetting the surveys carried out with 40 students in the field made it possible to familiarize them with the impacts practices. A database has been established on the socioeconomic determinants of oil palm. In addition, the populations were made aware of how to take their landscape into account and questions of spatial justice.
The limitation aspects of this study rely on the links between climate change and oil palm plantations which have been little addressed. The same is true of the systematic census of animal species in oil palm cultivation areas. Nevertheless, the high academic contributions of the study is linked to multidisciplinary team invested (biologist, botanist, agronomist, ecologist, geographer, economist) to lead to the understanding of the socio-spatial and socio-economic and ecological changes that have occurred in Cameroon for about 30 years. The team was able to articulate questions of environmental and climatic spatial justice (subject of a current thesis) and validate the theory of the anthropocene. Practically, the impact analysis carried out reveals the need to review cultivation techniques and even agricultural policies in Cameroon, particularly the national oil palm strategy, which stills pending. A special attention is to be paid to several aspects of land management methods, availability of seeds and plant material, technical support for small growers, and awareness of the challenges of sustainable development and biodiversity conservation.
The florivorous flies are the most importante guild of insects feeding on daisis’s flowers in Brazil. They belong to the subfamilies Agromyzinae (Agromyzidae), and Tephritinae (Tephritidae). Those flies, in their larval stage, feeds in Asteraceae inflorescences (flower heads).
Asteraceae is the bigest family of Angiospermae with around 24,000 species of plants worldwide, being characterized by herbs and shrubs that coevolved with several taxa of endophagous insects, which found in their flower heads ideal conditions for food, breeding site and shelter. As pointed out by Lewinsohn [1], several other taxa on Insecta has been reported on the Asteraceae flower heads, beyound florivore flies, such as Apionidae (Coleoptera), Miridae (Hemiptera), Blastobasidae, Gelechiidae, Pterophoridae, Pyralidae, and Tortricidae (Lepidoptera), as well their parasitoids, mainly Hymenoptera.
In Neotropical Region, the species of Asteraceae, depending on the biome evaluated, use to be the first or sencond plant Family in the rank of species richness, as pointed out for the Atlantic Forest on Espirito Santo state, Brazil [2]. The studies about the florivore insects are important for both: to expand scientific knowledge, as well as to solve environmental problems in food production systems. By now, at least 38 species and their subspecies of invasive Asteraceae have been the target of biological control programs around the world. About 21 species of Tephritidae have been manipulated to control Asteraceae species. The most significant biological control programs for such plants with florivorous flies are underway in Australia, Canada, USA, New Zealand and South Africa [3], and West Africa, where the stem-gall tephritid
Chaco is an international biome, distributed by four South American countries: Argentina, Paraguay, Bolivia and Brazil. The total area of this biome is spread over the four above countries: Paraguay (230,000 km2), Bolivia (90,000 km2), Argentina (520,000 km2), and Brazil (Mato Grosso do Sul = MS, with around 9,000 km2), in the center of South America. The word Chaco, derives from the indigenous term: “Quechua chaku” – that mean hunting territory or steppe savanna. The Brazilan Chaco is restricted to the municipality of Porto Murtinho, located in the south of the Pantanal, state of MS, where it is characterized as the humid Chaco. This sedimentary plain is covered by natural vegetation of Steppe Savanna and occupy the central region of South America, called Gran Chaco or simply Chaco. It’s covered by the most extensive continuous dry forest in the American continent, and represents the only one subtropical dry forest of the world. The Chaco region, with approximately 1,000,000 km2 (Gran Chaco), covers North Argentina (46%), West of Paraguay (32%), Southeast of Bolivia (15%), and a significant portion (7%) in the Midwest of Brazil (Porto Murtinho, Mato Grosso do Sul), separated from the biome matrix by the Paraguay river [5, 6].
The Chaco Biome is home to a great diversity of environments: mountains, savannas, floodplains, swamps, wetlands and saltpans, with a great extension and diversity of flora and fauna. The ecosystems that are part of the Chaco have high rates of endemism and diversity of plant and animal species, compared to other arid, semi-arid and sub-humid environments. Nowadays, Chaco faces great anthropic pressure, due to the advances of agriculture that has increased, exploiting its phyto ecological regions. The high biodiversity of the Brazilian Chaco, and its rates of endemismo [5, 6], suggest that native fruit plants are potential hosts for some frugivorous and florivorous fly species there.
Tephritidae is the most important, and the second family in species richness (behind Cecidomyiidae) of the phytophagous Diptera, with around 5,000 species, being known mainly due the economic importance of their pest species upon fruit and vegetables [7]. But there are another face of these flies: those species that feed on plants, but don’t cause economic loss. By other hand, they are of great economic importance due to their phytophagy, destroying seeds of undesirable Asteraceae species in agrosilvipastoral systems. These florivorous flies (Tephritinae), the bigest Subfamily of Tephritidae - near 2,000 species, were subject of our research [8], and will be presented in this e-book chapter. We evaluated the diversity of its host Asteraceae, species richness and abundance of florivore’s fly species in each species of Asteraceae evaluated, as well as the co-occurrence of other taxons of florivorous dipterans and their respective parasitoids in the Brazilian Chaco.
1. To Report the species of florivore flies (FF), their host plants, and their parasitoids, in flower heads of Asteraceae from the Brazilian Chaco. 2. To quantify abundance, species richness and diversity of the FF in three phytophysiognomies in the Brazilian Chaco.
Sampling was carried out in the municipality of Porto Murtinho-MS, Brazil, in three different phytophysiognomies of the Brazilian Chaco. Flower heads of Asteraceae were collected at: Eldorado Farm (21 ° 42′20.9 “S 57 ° 47’45.6” W, altitude 82 m); Santa Carmem Farm (21 ° 50′23.2 “S 57 ° 49’13.6” W, altitude 78 m), and in a transect along the Highway MS-457 (altitude 124 m).
At the Eldorado farm, the predominant phytophysiognomy is of the type Wooded Steppe Savanna (WSS), and at the farm Santa Carmem the type is Park Steppe Savanna (PSS), subtype locally named
The flower heads of all Asteraceae species found in the field were collected, preferably 200 in pre-anthesis per species. The flower heads were inserted in plastic bags, identifying the species of plant and the area. The collection carried out monthly and during from May 2017 to April 2018. Exsiccates from all Asteraceae evaluated were prepared.
The climate of the region in the Brazilian Chaco is considered tropical Aw by the Köppen classification, with hot and rainy summer and dry and milder winter. The rainfall varies between 1,100 mm and 1,800 mm. The vegetation in the Chaco is made up of shrubs, deciduous, microphiles and spinach. The soil is highly saline, with little water drainage, which is why in rainy season it generates temporary floods characteristic of the Pantanal.
The Asteraceae inflorescences collected were taken to the Laboratory of Systematic and Taxonomy of Tephritidae (LabTaxon), Universidade Federal da Grande Dourados (UFGD), where the flower heads were counted and placed in 500 ml plastic cups, with the juxtaposed openings forming a cage. The cups were attached with adhesive tape, forming a closed container that made it possible to contain and obtain species of florivorous flies and their parasitoids. After emergence of florivorous flies and/or their parasitoids, they remained alive for a period of 48 hours to acquire the chromatic pattern of the body and wings. They were subsequently conserved in 92% ethyl ethanol. After 20 days without any fly’s emergence, inspections on the containers were stopped, and the remaining material discarded.
The exsiccates of the sampled Asteraceae were sent for identification of the species by Professor Dr. Jimi Naoki Nakajima (Universidade Federal de Uberlândia), specialist in Asteraceae. The duplicates of the identified Asteraceae were deposited at the CGMS Herbarium of the Biodiversity Museum-FCBA/UFGD in Dourados-MS, as the specimens voucher.
Statistical analyzes: Infestation rates were calculated using the equation: Number of FF/Number Flower heads x 100, being N the number FF (= number of Florivorous flies) divided by the Number of Flower heads (total of Flower heads/Asteraceae species). Were analysed the diversity in each phytohysiognomy. The diversity index (Shannon-Weaner) (H), Species Richness Index (Margalef), (Alpha), and Uniformity or Equitability Index (E) were calculated.
Twenty-five species of Asteraceae of two subfamilies (Cichorioideae and Asteroideae), and 9 tribes (Vernonieae, Senecioneae, Astereae, Inuleae, Plucheae, Neurolaeneae, Heliantheae, Targeteae, Eupatorieae) were sampled in three phytophysiognomies: Grassy-Woody Steppe Savana, Park Steppe Savanna, and Wooded Steppe Savanna from the Brazilian Chaco at Porto Murtinho-MS, Brazil (Table 1).
Asteraceae taxa (subfamilies, tribes and species) | Host status | Environments (Phytophysiognomies) |
---|---|---|
Host | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Host | Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Wooded Steppe Savanna (WSS) | |
Nonhost | Wooded Steppe Savanna (WSS)a | |
Nonhost | Wooded Steppe Savanna (WSS) Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-woody Steppe Savanna (GWSS) | |
Host | Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Host | Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS) Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS)b | |
Nonhost | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Grassy-Woody Steppe Savanna (GWSS) | |
Host | Wooded Steppe Savanna (WSS) Park Steppe Savanna (PSS)c Grassy-Wood Steppe Savanna (GWSP) | |
Host | Wooded Steppe Savanna (WSS) Grassy-Woody Steppe Savanna (GWSS) | |
Nonhost | Wooded Steppe Savanna (WSS) Grassy-Woody Steppe Savanna (GWSS) |
Status of Asteraceae species for florivorous flies Tephritinae (Tephritidae, and/or
a Wooded Steppe Savanna (WSS) = Fazenda Eldorado (= Eldorado Farm);
b Grassy-Woody Steppe Savanna (GWSS), Access to Rio Apa waterfall (Border with Paraguay), and Transition to the Brazilian Cerrado;
c Park Steppe Savanna (PSS) = Fazenda Santa Carmen (= Santa Carmen Farm), “Carandazal Phytophysiognogmy”.
A total 472 adults of florivorous flies from two families and 15 species (9 of Tephritidae and 6 of Agromyzidae) were recovered, being 163 agromyzids (
Asteraceae Taxa | N° of Flower Heads | Agromyzidae | Tephritidae | * I.L.FF/F.H. (%) | Parasitoids (Hymenoptera) |
---|---|---|---|---|---|
50 | 0 | 0 | 0 | 0 | |
128 | 3 | 0 | 2.34 | 0 | |
85 | 6 | 0 | 7.05 | 0 | |
2,500 | 0 | 0 | 0 | 0 | |
211 | 0 | 0 | 0 | 0 | |
1,100 | 0 | 166 | 15.09 | 21 | |
2,299 | 12 | 18 | 1.30 | 5 | |
424 | 0 | 1 | 2.12 | 38 | |
1,245 | 0 | 0 | 0 | 0 | |
139 | 48 | 0 | 34.53 | 0 | |
320 | 62 | 29 | 28.43 | 4 | |
73 | 0 | 0 | 0 | 0 | |
1,019 | 23 | 3 | 2.55 | 12 | |
256 | 3 | 0 | 1.17 | 0 | |
290 | 0 | 0 | 0 | 5 | |
1,280 | 0 | 0 | 0 | 0 | |
210 | 0 | 0 | 0 | 0 | |
50 | 0 | 0 | 0 | 0 | |
1,123 | 0 | 17 | 1.51 | 2 | |
925 | 0 | 16 | 1.72 | 4 | |
1,343 | 3 | 51 | 4.02 | 7 | |
120 | 3 | 0 | 2.50 | 0 | |
995 | 0 | 2 | 0.20 | 2 | |
585 | 0 | 6 | 1.02 | 4 | |
250 | 0 | 0 | 0 | 0 | |
17,000 | 163 | 309 | 104 |
Abundance Florivorous flies and parasitoids (Hymenoptera) associated with flower heads of Asteraceae species in three phytophysionomies in the Brazilian Chaco (at Porto Murtinho-MS) (May 5, 2017 to April 5, 2018).
I.L.FF/F.H. = Infestation Level of Florivorous Flies by the number of Flower heads in Asteraceae species.
Among the 16 species of Asteraceae that host florivorous flies or their parasitoids, five were associated only with agromizids:
Herein, for the first time we present the several associations of florivorous fly species with their Asteraceae (flower heads) host species in the Brazilian Chaco. The trophic interactions established here were the following:
The highest rates of infestation by florivorous flies in Asteraceae in the Brazilian Chaco were reported in the following species:
Species of Asteraceae | Species of Tephritinae | Abundance |
---|---|---|
146 | ||
20 | ||
17 | ||
1 | ||
23 | ||
6 | ||
3 | ||
17 | ||
16 | ||
51 | ||
2 | ||
6 |
Species of Asteraceae infested by tephritine species (Tephritidae) and their absolute abundance in their flower heads sampled in the Brazilian Chaco (May 5, 2017 to April 5, 2018).
Characteristics of trophic interactions between florivorous flies and Asteraceae as a function of the Chaquean phytophysiognomies: Only the species
Florivorous Flies | Wooded Steppe Savanna | Park Steppe Savanna | Grassy-woody Steppe Savanna |
---|---|---|---|
0 | 0 | 146 | |
0 | 23 | 0 | |
0 | 6 | 0 | |
0 | 0 | 2 | |
0 | 0 | 6 | |
3 | 16 | 1 | |
31 | 33 | 3 | |
8 | 7 | 3 | |
0 | 0 | 20 | |
3 | 81 | 87 | |
45 | 166 | 268 | |
4 | 6 | 8 | |
19 | 50 | 27 |
Abundance of endophagous insects associated with Asteraceae chapters in three phytophysiognomies in the Brazilian Chaco (Porto Murtinho-MS) (May 5, 2017 to April 5, 2018).
The phytophysiognomy with highest species richness (S = 6), and abundance of Tephritinae (268) was GWSS. The highest abundance of parasitoids (50) was found in the phytophysionomy Park Steppe Savanna (PSS). PSS presented the highest diversity by the Shannon (H) index, despite it haven’t the greatest species richness (S). Probably this is due to the fact that this index takes into account the homogeneity of species in the environment. In the Grassy-Wood Steppe Savana (GWSS) the highest value of diversity was registered for the Margalef index. This index consider the sample size, which can be explained by the high abundance of the florivore fly
Phytophysiognomies | H | ALFA | E | S |
---|---|---|---|---|
Wooded Steppe Savanna (WSS) | 0.7285 | 0.5351 | 0.6631 | 3 |
Park Steppe Savanna (PSS) | 1.4163 | 0.9077 | 0.88 | 5 |
Grassy-Woody Savana (GWS) | 1.3084 | 0.9077 | 0.7302 | 7 |
Three combined Phytophysionomies | 1.6927 | 1.4063 | 0.7302 | 9 |
Indices of Shannon (H), Margalef (A), equitability (E) and species richness (S) for Tephritinae (Diptera: Tephritidae) associated with flower heads of Asteraceae in three phytophysionomies from the Brazilian Chaco (Porto Murtinho -MS) (May 5, 2017 to April 5, 2018).
Applying the rarefaction method in the samples (“curve of collector”), it was possible to obtain estimates of the species richness of Tephritinae from the Chaquenha community. It indicated that the samples were insufficient to reach the asymptote of curve of collector. This means that the sampling effort was not enough to detect all species of florivorous flies present in the Brazilian Chaco. Due to the mosaic of phytophysiognomies in this biome, the few sampling points proved to be insufficient, to estimate the total species richness of florivorous flies in the Brazilian Chaco, even doing repetitions in the four year seasons (Figure 1).
Curve of species accumulation of Tephritinae (Diptera: Tephritidae) in three phytophysiognomies: General Panorama (GP), Grassy-Woody Steppe Savanna (GWS), Park Speppe Savanna (PSS), and Wood Speppe Savanna (WSS), in the Brazilian Chaco (Porto Murtinho-MS) (May 5, 2017 to April 5, 2018).
The Brazilian Chaco presented a lower florivorous species richness than other neighboring Neotropical biomes already evaluated. Eighteen genera of Tephritinae (Tephritidae) and 80 species occurring in Brazil were reported by Prado [9]. In the Cerrado Biome, 12 genera are listed [10], and 10 genera have already been cataloged in the Atlantic Forest [11].
This research represents the first inventory of florivorous flies (Tephritidae and Agromyzidae) feeding in Asteraceae flower heads in the Chaco. Associations of
Due to the lack of keys for several taxa of Neotropical Tephritinae, many publications were unable to perform specific identification of florivorous flies. Species of
In the Brazilian Chaco, the abundance of tephritids was higher than that of agromyzids, as well as the species richness (9 Tephritinea spp. against 6 probable species of
The Brazilian Chaco presented 16 trophic interactions between 15 species of florivorous flies and their Asteraceae species. In the Cerrado Biome, 49 species of Asteraceae are reported as hosts of florivore dipterans [10]. Herein,
The low diversity of florivorous flies recorded in the Brazilian Chaco can be explained by the low diversity of Asteraceae species there or by insufficient sampling effort. Probably, the species richness of florivorous flies is positively correlated with the species richness of sampled Asteraceae in the Chaco. Biomes richer in Asteraceae show a greater diversity of these trophic interactions. The Cerrado presents a high diversity of Asteraceae and associated species of Tephritinae, as has pointed out by other inventories [9, 11, 12].
The Brazilian Chaco presented 25 species of Asteraceae, which apparently represents 92% of the species cataloged for this Biome [15]. However, many of the species recorded in this study do not appear in the floristic inventories of the Brazilian Chaco and vice-versa. New floristic studies must answer if there is a subsampling or if it is the result of the divergent interpretation among different authors about the characterization of phytophysiognomies truly Chaqueans.
Herein,
The Wood Steppe Savanna (WSS) presented pioneer plants such as
In this study, the occurrence of
Herein, we added new data about biodiversity of Tephritinae (Tephritidae) and Agromyzinae (Agromyzidae), presenting essential information to fight for environmental preservation, as well as contribute to the catalog of flora and fauna from Chaco. Human-caused phenomena, such as global warming and habitat destruction, have increasingly threatened the planet’s biodiversity. Endemic species are the most susceptible to disappear, due to their ecological sensitivity. As there is a dependence on florivorous flies for their host Asteraceae, a relationship extremely species-specific, both taxa have a greater chance of co-extinction. The savannas are at high risk of species extinction, due to the loss of habitat being much greater than the conservation efforts by human community and political authorities.
Finally, in the Brazilian Chaco:
In the Brazilian Chaco do occur at least 15 florivore fly species, nine of Tephritinae (Tephritidae), from five different genera, and six species of
The Grassy-Woody Savanna is the Chaquean phytophysiognomy that harbored higher species richness;
Some florivore fly (Tephritinae and Agromyzinae) species needs to better studied to employ in programs of biological control for invasive Asteraceae in the Neotropical Region.
We thank the
The authors declare no conflict of interest.
More sampling points are needed to represent the real diversity of florivorous flies in the Brazilian Chaco, as well as, to quantify and qualify the endophagous insect interactions with Asteraceae on the Chaco Biome (Argentina, Bolivia and Paraguay).
To have a better understanding and a refined quantifications and qualification on the relationships between florivorous fly species, their natural enemies and Asteraceae, is important individualize capitulum samples to obtain the infesting insects or their respective parasitoids.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12514},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12177",title:"Epigenetics",subtitle:null,isOpenForSubmission:!0,hash:"185b00910074e8beeedd2276900a911a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12177.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12214",title:"Phagocytosis",subtitle:null,isOpenForSubmission:!0,hash:"79d7747d6e3aa6a3623ab710a7634588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12214.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12216",title:"Cell Proliferation",subtitle:null,isOpenForSubmission:!0,hash:"d5e37e8c90c4c6cb33c25d4445574ac0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12216.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12217",title:"Protein Interactions",subtitle:null,isOpenForSubmission:!0,hash:"8514f8e3d3dd0e22e87b0c4c84a6cc3a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12217.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12218",title:"Phytochemicals",subtitle:null,isOpenForSubmission:!0,hash:"8cb2e6bb3d9c717bb8dc44e35ed774c2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12218.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"721",title:"Fuzzy Control Systems",slug:"fuzzy-control-systems",parent:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:88,numberOfWosCitations:40,numberOfCrossrefCitations:55,numberOfDimensionsCitations:83,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"721",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9976",title:"Fuzzy Systems",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"5c4c0d41cf25d2e8fda944450ac46d95",slug:"fuzzy-systems-theory-and-applications",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/9976.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7485",title:"Applied Modern Control",subtitle:null,isOpenForSubmission:!1,hash:"c7a7be73f7232e08867ed81bdf9850c6",slug:"applied-modern-control",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/7485.jpg",editedByType:"Edited by",editors:[{id:"180550",title:"Dr.",name:"Le",middleName:null,surname:"Anh Tuan",slug:"le-anh-tuan",fullName:"Le Anh Tuan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6806",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"fedf4479b910cbcee3025e391f073417",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",bookSignature:"Ali Sadollah",coverURL:"https://cdn.intechopen.com/books/images_new/6806.jpg",editedByType:"Edited by",editors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"39",title:"Fuzzy Controllers",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"fuzzy-controllers-theory-and-applications",bookSignature:"Lucian Grigorie",coverURL:"https://cdn.intechopen.com/books/images_new/39.jpg",editedByType:"Edited by",editors:[{id:"18103",title:"Dr.",name:"Teodor Lucian",middleName:null,surname:"Grigorie",slug:"teodor-lucian-grigorie",fullName:"Teodor Lucian Grigorie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62600",doi:"10.5772/intechopen.79552",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1893,totalCrossrefCites:31,totalDimensionsCites:52,abstract:null,book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"13968",doi:"10.5772/13466",title:"Extended Kalman Filter for the Estimation and Fuzzy Optimal Control of Takagi-Sugeno Model",slug:"extended-kalman-filter-for-the-estimation-and-fuzzy-optimal-control-of-takagi-sugeno-model",totalDownloads:2505,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"39",slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Agustín Jiménez, Basil M.Al-Hadithi and Fernando Matía",authors:[{id:"6013",title:"Dr.",name:"Basil M.",middleName:null,surname:"Al Hadithi",slug:"basil-m.-al-hadithi",fullName:"Basil M. Al Hadithi"},{id:"16314",title:"Prof.",name:"Agustin",middleName:null,surname:"Jimenez",slug:"agustin-jimenez",fullName:"Agustin Jimenez"},{id:"16315",title:"Prof.",name:"Fernando",middleName:null,surname:"Matia",slug:"fernando-matia",fullName:"Fernando Matia"}]},{id:"13973",doi:"10.5772/13879",title:"Fuzzy Maximum Power Point Tracking Techniques Applied to a Grid-Connected Photovoltaic System",slug:"fuzzy-maximum-power-point-tracking-techniques-applied-to-a-grid-connected-photovoltaic-system",totalDownloads:3869,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"39",slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Neson Diaz, Johann Hernández and Oscar Duarte",authors:[{id:"16158",title:"BSc.",name:"Nelson",middleName:null,surname:"Diaz",slug:"nelson-diaz",fullName:"Nelson Diaz"},{id:"18354",title:"PhD.",name:"Oscar",middleName:null,surname:"Duarte",slug:"oscar-duarte",fullName:"Oscar Duarte"},{id:"18355",title:"MSc.",name:"Johann",middleName:null,surname:"Hernandez",slug:"johann-hernandez",fullName:"Johann Hernandez"}]},{id:"63709",doi:"10.5772/intechopen.80424",title:"Energy Efficient Speed Control of Interior Permanent Magnet Synchronous Motor",slug:"energy-efficient-speed-control-of-interior-permanent-magnet-synchronous-motor",totalDownloads:1244,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"In this chapter, methods for the structural realization of a speed control system for the interior permanent magnet synchronous motor (IPMSM) using the “maximum torque per ampere” (MTA) and “maximum torque per volt” (MTV) optimal control strategies are considered. In the system in constant torque region, is a technique for adapting the speed controller to the presence of the reactive motor torque component, which improves the quality of the transient processes, is proposed. It is also recommended to approximate the dependence of the flux-forming current component on the motor torque by the “dead zone” nonlinearity, which will simplify the optimal control algorithm and avoid solving the fourth-degree algebraic equation in real time. For the speed control with field weakening technique, a novel system is recommended. In this system, the control algorithms are switched by the variable of the direct stator current component constraint generated in accordance with the MTA law: the upper limit is calculated in accordance with the “field weakening control” (FWC) strategy, and the lower limit in accordance with the MTV strategy. The steady-state stator voltage constraint is implemented through the variable quadrature stator current component limitation. The effectiveness of the proposed solutions is confirmed by the simulation results.",book:{id:"7485",slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Olga Tolochko",authors:[{id:"249845",title:"Dr.",name:"Tolochko",middleName:null,surname:"Olga",slug:"tolochko-olga",fullName:"Tolochko Olga"}]},{id:"62036",doi:"10.5772/intechopen.78786",title:"Development of a Genetic Fuzzy Controller and Its Application to a Noisy Inverted Double Pendulum",slug:"development-of-a-genetic-fuzzy-controller-and-its-application-to-a-noisy-inverted-double-pendulum",totalDownloads:761,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Fuzzy logic is used in a variety of applications due to its universal approximator attribute and non-linear characteristics. The tuning of the parameters of a fuzzy logic system, viz. the membership functions and the rulebase, requires a lot of trial and error. This process could be simplified by using a heuristic search algorithm like genetic algorithm (GA). In this chapter, we discuss the design of such a genetic fuzzy controller that can control an inverted double pendulum. GA improves the fuzzy logic controller (FLC) with each generation during the training process to obtain an FLC that can bring the pendulum to its inverted position. After training, the effectiveness of the FLC is tested for different scenarios by varying the initial conditions. We also show the effectiveness of the FLC even when subjected to noise and how the performance improves when the controller is tuned with noise.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Anoop Sathyan and Kelly Cohen",authors:[{id:"200834",title:"Dr.",name:"Kelly",middleName:null,surname:"Cohen",slug:"kelly-cohen",fullName:"Kelly Cohen"},{id:"243285",title:"Dr.",name:"Anoop",middleName:null,surname:"Sathyan",slug:"anoop-sathyan",fullName:"Anoop Sathyan"}]}],mostDownloadedChaptersLast30Days:[{id:"75699",title:"Data Clustering for Fuzzyfier Value Derivation",slug:"data-clustering-for-fuzzyfier-value-derivation",totalDownloads:276,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The fuzzifier value m is improving significant factor for achieving the accuracy of data. Therefore, in this chapter, various clustering method is introduced with the definition of important values for clustering. To adaptively calculate the appropriate purge value of the gap type −2 fuzzy c-means, two fuzzy values m1 and m2 are provided by extracting information from individual data points using a histogram scheme. Most of the clustering in this chapter automatically obtains determination of m1 and m2 values that depended on existent repeated experiments. Also, in order to increase efficiency on deriving valid fuzzifier value, we introduce the Interval type-2 possibilistic fuzzy C-means (IT2PFCM), as one of advanced fuzzy clustering method to classify a fixed pattern. In Efficient IT2PFCM method, proper fuzzifier values for each data is obtained from an algorithm including histogram analysis and Gaussian Curve Fitting method. Using the extracted information form fuzzifier values, two modified fuzzifier value m1 and m2 are determined. These updated fuzzifier values are used to calculated the new membership values. Determining these updated values improve not only the clustering accuracy rate of the measured sensor data, but also can be used without additional procedure such as data labeling. It is also efficient at monitoring numerous sensors, managing and verifying sensor data obtained in real time such as smart cities.",book:{id:"9976",slug:"fuzzy-systems-theory-and-applications",title:"Fuzzy Systems",fullTitle:"Fuzzy Systems - Theory and Applications"},signatures:"JaeHyuk Cho",authors:[{id:"329648",title:"Prof.",name:"JaeHyuk",middleName:null,surname:"Cho",slug:"jaehyuk-cho",fullName:"JaeHyuk Cho"}]},{id:"62600",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1893,totalCrossrefCites:31,totalDimensionsCites:52,abstract:null,book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"63216",title:"The Design and Development of Control System for High Vacuum Deoxygenated and Water-Removal Glove Box with Cycling Cleaning and Regeneration",slug:"the-design-and-development-of-control-system-for-high-vacuum-deoxygenated-and-water-removal-glove-bo",totalDownloads:1034,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This study proposed a high vacuum deoxygenated and water removal glove box control system. Through parameter setting, the system can automatically perform various glove box cleaning operations and quickly reach the micro-oxygen and micro-water concentration requirements. In addition, two sets of reaction tanks are built in the system, and the hardware pipeline switching design and monitoring software control are used to provide two sets of reaction tanks to execute the cycling cleaning and cycling regeneration operation procedures synchronously, which can effectively solve the problem of interruption of the experimental process, improve the efficiency of its cleaning operations, and greatly reduce the manpower and material costs of the glove box operation. In addition, the system can automatically record the relevant data during various operations for the analysis of glove box monitoring effectiveness.",book:{id:"7485",slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Ming-Sen Hu",authors:[{id:"248986",title:"Associate Prof.",name:"Ming-Sen",middleName:null,surname:"Hu",slug:"ming-sen-hu",fullName:"Ming-Sen Hu"}]},{id:"63072",title:"Fuzzy Controller-Based MPPT of PV Power System",slug:"fuzzy-controller-based-mppt-of-pv-power-system",totalDownloads:1894,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The power demand has been increasing day by day due to population growth, new industrial development, etc. Meeting power demand is one of the challenge factors for fossil fuel-based power generation alone as well as the environmental issue of carbon footprint. Consequently, there is a need to concentrate on alternate energy sources to meet the power demand. In this chapter, the photovoltaic (PV) cell operation under various weather conditions is analysed, and based on the performance, the MPPT controller is developed by using fuzzy logic controller. The proposed system has been modelled in MATLAB environment, and the system performance has been analysed. Finally, the simulation results are evaluated and compared with IEEE 1547 standard for proving the effectiveness of the proposed system.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"M. Venkateshkumar",authors:[{id:"243101",title:"Dr.",name:"M",middleName:null,surname:"Mven",slug:"m-mven",fullName:"M Mven"}]},{id:"62654",title:"Fuzzy Information Measures with Multiple Parameters",slug:"fuzzy-information-measures-with-multiple-parameters",totalDownloads:937,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Information theory deals with the study of problems concerning any system. This includes information processing, information storage, information retrieval and decision making. Information theory studies all theoretical problems connected with the transmission of information over communication channels. This includes the study of uncertainty (information) measures and various practical and economical methods of coding information for transmission. In this chapter, the introduction of a new generalised measure of fuzzy information involving two real parameters is given. The proposed measure satisfies all the necessary properties of being a measure. Some additional properties of the proposed measure have also been studied. Further, the monotonic nature of generalised fuzzy information measure with respect to the parameters is studied and validity of the same is checked by constructing the computed tables and plots on taking different fuzzy sets and different values of the parameters. Also, a new generalised fuzzy information measure involving three parameters has been introduced.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Anjali Munde",authors:[{id:"254393",title:"Dr.",name:"Anjali",middleName:null,surname:"Munde",slug:"anjali-munde",fullName:"Anjali Munde"}]}],onlineFirstChaptersFilter:{topicId:"721",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11667",title:"Marine Pollution - Recent Developments",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",hash:"e524cd97843b075a724e151256773631",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 20th 2022",isOpenForSubmission:!0,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",hash:"cf1ee76443e393bc7597723c3ee3e26f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81159",title:"Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products",doi:"10.5772/intechopen.103933",signatures:"Rose Daphnee Ngameni Tchonkouang, Maria Dulce Carlos Antunes and Maria Margarida Cortês Vieira",slug:"potential-of-carotenoids-from-fresh-tomatoes-and-their-availability-in-processed-tomato-based-produc",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"80902",title:"Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs",doi:"10.5772/intechopen.103130",signatures:"Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik",slug:"computational-chemistry-study-of-natural-apocarotenoids-and-their-synthetic-glycopeptide-conjugates-",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Norma",surname:"Flores-Holguín"},{name:"Daniel",surname:"Glossman-Mitnik"},{name:"Juan",surname:"Frau"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, A