Open access peer-reviewed chapter

Oxidative Stress and Iron Overload in β-Thalassemia: An Overview

Written By

Nadia Maria Sposi

Submitted: May 17th, 2019 Reviewed: November 14th, 2019 Published: December 16th, 2019

DOI: 10.5772/intechopen.90492

From the Edited Volume

Beta Thalassemia

Edited by Marwa Zakaria and Tamer Hassan

Chapter metrics overview

1,362 Chapter Downloads

View Full Metrics

Abstract

In β-thalassemia, the erythropoietic process is markedly altered, and the lack or reduced synthesis of β-globin chains induces an excess of free α-globin chains within the erythroid cells. Aggregation, denaturation, and degradation of these chains lead to the formation of insoluble precipitates causing damage to the red blood cell membrane. One of the major consequences in this genetic disorder is iron overload due to ineffective erythropoiesis and premature hemolysis in the plasma and in major organs such as heart, liver, and endocrine glands. The chapter describes the etiology of iron accumulation, the role of hepcidin in regulating increased iron absorption, and the pathophysiology resulting from excess of “free iron” and discusses new ways to decrease the iron overload and to neutralize its deleterious effects in the tissues other than iron chelation.

Keywords

  • oxidative stress
  • iron overload
  • β-thalassemia

1. Introduction

β-thalassemias are a group of hereditary blood disorders characterized by the reduced or absent synthesis of β-globin chains representing one of the most common autosomal recessive disorders worldwide. It is prevalent in the Mediterranean countries, the Middle East, and Southeast Asia, as well as countries along the Americas, coincidental with the occurrence of malaria. Carriers of β-thalassemia genes are considered relatively protected against malaria parasite. At present, because of vast population migration and intermarriage between different ethnic groups, β-thalassemia is also common in North and South America, Northern Europa, Australia, and the Caribbean. As a consequence of the reduced or absent synthesis of β-globin chains, there is an excess on α-globin chains that are instable and precipitate in red blood cell precursors causing abnormal cell maturation and their premature destruction in the bone marrow (ineffective erythropoiesis). Red blood cells that survive to reach the peripheral circulation are prematurely destroyed in the spleen. The break down products of Hb, heme, and iron catalyze chemical reactions that generate free radicals, including reactive oxygen species (ROS), which in excess are toxic, causing damage to vital organs such as the heart and liver and the endocrine system [1]. More than 300 different point mutations cause β-thalassemia. They are inherited in a multitude of genetic combinations responsible for clinical manifestations extremely diverse, spanning a broad spectrum from the transfusion-dependent state of thalassemia major (TM) to the asymptomatic state of heterozygous carriers for β0 or β+ (thalassemia trait). β-thalassemia intermedia requires only periodic blood transfusion, while β-thalassemia minor does not require a specific treatment. One of the major consequences in this genetic disorder is iron overload due to multiple blood transfusions, ineffective erythropoiesis, and premature hemolysis in the plasma. Cardiomyopathy is the most common cause of death in transfusion-dependent thalassemia patients as a consequence of iron overloading. Thanks to the significant improvement in therapy, patients with β-thalassemia may reach an advanced age. This is associated with clinical symptoms that are the consequence of the disease itself and the treatment modalities. The aim of this chapter is that to give a complete picture of current knowledge on the etiology of iron accumulation, the role of hepcidin in regulating increased iron absorption, and the pathophysiology resulting from excess of “free iron.” It will also be explored whether there are ways to decrease the iron overload and to neutralize its deleterious effects in the tissues other than iron chelation (for an extensive revision, see Refs. [1, 2, 3, 4, 5]).

Advertisement

2. Iron overload in β-thalassemia

In β-thalassemia, as well as in other acquired and hereditary hemolytic anemia, iron overload is a common and serious complication and represents a major cause of morbidity and premature mortality in these patients. Hemoglobin instability, frequent blood transfusion, and increased iron absorption from the gastrointestinal tract represent the main causes of iron overload in β-thalassemia. Iron deposition occurs in visceral organs (mainly in the heart, liver, and endocrine glands), causing tissue damage and ultimately organ dysfunction and failure. Iron homeostasis depends on a coordinated regulation of molecules involved in the import of this element and those exporting it out of the cells. In particular, the iron status reflects the balance among iron uptake from the diet, its storage and mobilization, and its utilization [1]. Normally, 1–2 mg of iron is absorbed from the diet per day, with an equivalent amount lost by the turnover of gastrointestinal tract epithelial cells. In β-thalassemia and other transfusion-dependent anemias, iron overload may accumulate in relatively short time because there are no physiologically regulated means of iron excretion. Iron is essential for several vital biological processes. It regulates enzymatic activity and oxidation-reduction reactions playing a pivotal role in proliferation and cell survival. Iron ensures the transport of oxygen and the catalysis of reactions involved in electron transfer, DNA synthesis, and nitrogen fixation. However, it is also highly toxic due to its ability to react with oxygen and catalyze the production of reactive oxygen species (ROS). In solution, iron can exit in two states of oxidation, Fe (II) and Fe (III), and is very poorly soluble at physiological pH, especially when it is in the oxidized form Fe (III). Living organisms have thus developed many proteins to carry iron in biological fluids and transport it through cellular membranes and to store it in a non-toxic and easily mobilizable form [2, 6, 7, 8]. Iron is bound to transferrin in the plasma, but the iron overload in β-thalassemia patients saturates the ability of the transferrin iron transport system, leading to nontransferrin bound iron (NTBI) and labile plasma iron (LPI) starting to circulate in plasma and subsequently becoming deposited inside the susceptible cells [9, 10]. Rather than using the transferrin receptor, NTBI enters cells by nontransferrin pathways [1, 11]. Long-term uptake and accumulation of NTBI and LIP, its redox active component, lead to increate levels of storage iron and labile cellular iron [12]. Tissues susceptible to iron accumulation by this mechanism include the liver, endocrine system, and myocardium [13]. When the magnitude of the cellular LIP exceeds the capacity of the cell to synthesize new ferritin molecule, a critical concentration is reached that can generate reactive oxygen species (ROS). ROS produced by the metabolism of NTBI play a central role in inducing cellular dysfunction, apoptosis, and necrosis [14]. A variety of ROS, most notably hydroxyl radicals, increase lipid peroxidation and organelle damage, leading to cell death and fibrogenesis mediated by transforming growth factor β-1 (TGF-beta-1) [15]. An underappreciated effect of iron overload is increased the infection risk that is a high cause of mortality in β-thalassemia patients [16]. The LIP has been suggested as a low-molecular-weight intermediate or transitory pool between extracellular iron and intracellular firmly bound iron [17]. The intracellular LIP is redox active, catalyzing the Fenton and Haber-Weiss reactions that generate ROS [18]. Excess ROS are cytotoxic through their interaction with cellular components, such as DNA, proteins, and lipids, causing damage to vital organs [19].

Advertisement

3. Strategies to remove iron in excess

β-thalassemia is a significant health problem in various areas of the world due to its frequency and severity. The standard treatment of β-thalassemia is currently based on transfusion therapy, iron chelation, and, in rare cases, splenectomy. This has led to an increased survival and amelioration of the quality of life, although many patients continue to be affected by cardiac disease and other clinical complications, e.g., developed endocrine failure and delayed pubertal maturation. The only approach that may lead to a definitive cure for β-thalassemia is represented by allogenic hemopoietic stem cell transplantation, but the need to control transplant-related complications and the requirement for matched donors make this option not available to most patients. Thus, the main therapeutic option for the majority of patients remains to be supportive care in the form of blood transfusion combined with chelation therapy [2]. The function of iron chelators is that to remove excess iron from the plasma and the cells by binding the labile and chelatable iron, thus facilitating its excretion through the urine and feces. Deferoxamine was the first iron chelator to be used clinically and is given by a slow, continuous, subcutaneous, overnight infusion through a portable pump. Its side effects are minimal, but its mode of administration results in low compliance [1]. Deferasirox presents several side effects [1, 2]. Neutropenia is the main potential complication of deferiprone, the first effective oral iron chelator in removing excess iron from the organs and from the heart. The use of a combination of chelators leads to an improvement in the efficacy of chelation therapy: deferiprone may mobilize iron from tissues into the circulation, while deferoxamine binds and facilitates its excretion in the urine (the “shuttle mechanism”) [1]. An additional potential approach to reduce iron overload is the downregulation of transferrin receptor 1 (TfR1) by administration of exogenous iron-free (apo) transferrin. In addition to free iron, some iron-containing compounds, due to hemolysis, are elevated in the plasma of β-thalassemia patients. They are free hemin and hemoglobin and are of considerable toxicity [1, 2]. These compounds are neutralized by their scavengers: hemopexin for free hemin and haptoglobin for free hemoglobin. These proteins are reduced in β-thalassemia patients, leaving free, un-neutralized hemin, and hemoglobin. The administration of hemopexin and haptoglobin may be suggested to reduce iron toxicity.

Advertisement

4. Strategies to modulate iron absorption

The discovery of hepcidin has led to an important advancement in the understanding of iron metabolism. Hepcidin is a key regulator of whole body iron homeostasis originally identified from urine as an antimicrobial peptide produced in the hepatocytes [20]. Mutations in the human HAMP gene or targeted deletion of the HAMP gene in mice result in massive iron overload [21]. Conversely, high levels of hepcidin lead to decreased iron absorption and iron-restricted anemias indicating that hepcidin is a negative regulator of iron transport into plasma. Many experimental data suggested that the hepcidin could be the regulator of iron absorption and recycling acting principally or solely by binding to ferroportin, the only known cellular iron exporter. The systemic iron homeostasis is controlled by hepcidin-ferroportin interaction: hepcidin binds to ferroportin and induces its internalization and degradation, thus regulating the distribution of iron in the body. When hepcidin concentration increases, hepcidin binds to ferroportin, causing its phosphorylation, internalization, ubiquitylation, sorting through the multivesicular body pathway, and degradation in lysosomes, and iron is retained within the cells in cytoplasmic ferritin [22, 23, 24, 25]. The expression of hepcidin is regulated by different stimuli at the transcriptional level: hypoxia, iron deficiency, erythroid expansion, and anemia are all negative regulators of hepcidin expression, while transferrin receptor 2 (TfR2), the membrane isoform of hemojuvelin (HJV), IL-6, iron, and the hemochromatosis protein HFE are all positive regulators of hepcidin transcription [2]. In β-thalassemia, in spite of iron overload, hepcidin production is generally low, and consequently, iron absorption is high. The process of differentiation and maturation of erythroid precursors is markedly altered in β-thalassemia (ineffective erythropoiesis). An excess of free α-globin chains within the red blood cells is the consequence of the reduced or lack synthesis of β-globin chains. Aggregation, denaturation, and degradation of these chains lead to the formation of insoluble precipitates that cause oxidative membrane damage within the red blood cell and developing erythroblasts (Figure 1A) [26]. Ineffective erythropoiesis is accompanied by a massive iron overload, due to an increase in iron absorption by the gastrointestinal tract and to frequent blood transfusions. Nevertheless, iron overload occurs also in patients who have not received transfusions such as patients suffering from thalassemia intermedia [27, 28]. If iron was a dominant regulator, patients with β-thalassemia should express very high levels of hepcidin in serum in order to decrease intestinal iron absorption. By contrast, the levels of hepcidin are very low in these patients, suggesting that the ineffective erythropoiesis alone is able to suppress the synthesis of hepcidin in spite of the presence of a severe iron overload [25, 29, 30, 31]. Transfusions of erythrocyte partially rerelieved suppression of hepcidin, but transfusions add large amounts of exogenous iron and lead to iron overload. Hepcidin mRNA expression in the HepG2 cell line by serum from β-thalassemia patients suggested the existence of a negative erythropoietic regulator of hepcidin expression [32]. The nature of this humoral factor is still uncharacterized but may include growth differentiation factor (GDF-15), twisted gastrulation protein homolog 1 (TWSG1), soluble transferrin receptor, and erythroferrone, which are all overproduced by the proliferating erythroid precursors (Figure 2). Controlling absorption of iron may be beneficial to the administration of synthetic hepcidin or of agents that increase its expression. Hepcidin agonists or stimulators of hepcidin production are being developed for the treatment or prevention of iron overload in hepcidin deficiency states, including hereditary hemochromatosis and β-thalassemia [33]. The rationale for the use of hepcidin agonists is justified by two principal observations: first, the phlebotomy is an expensive and effective treatment for iron overload that is acceptable to must but not all patients affected by hereditary hemochromatosis; second, iron-loading anemias cannot be treated in this way and require iron chelation therapy, which is not well tolerate by many patients. Hepcidin agonists are agents that replace hepcidin activity or stimulate its endogenous production and, in both hereditary hemochromatosis and iron loading anemia, could prevent iron accumulation by redistributing iron from parenchymal tissues to macrophages where iron is less toxic [34, 35].

Figure 1.

(A) Erythroid expansion and ineffective erythropoiesis represent oxidative events in the bone marrow. (B). Oxidative events in the circulation: (1) hemolysis leads to hemoglobin release in the plasma. Autoxidation of free hemoglobin produces ROS, free heme, and iron; (2) eryptosis and senescence: two different mechanisms of endocytosis of red blood cells (RBCs) by macrophages; and (3) membrane oxidative damage by ROS, free heme, and iron: activation of NF-κB and AP-1 by ROS and heme increases the production of pro-inflammatory cytokines (IL-1, IL-6, and TNFα) and adhesion molecules on the endothelium. Activated leucocytes generate more ROS by their NAPDH oxidase, creating a loop of oxidative stress and inflammation.

Figure 2.

Dysregulation of iron homeostasis in β-thalassemia disease. Ineffective erythropoiesis and premature death of red blood cells are the main cause of anemia in β-thalassemia patients. Erythropoietin production induced by anemia causes an increase in erythropoiesis activating secretion of erythroid factors such as GDF15, TWSG1, and ERFE. The suppression of hepcidin expression caused by an excess of eryhtroid factors leads to an increase in intestinal iron absorption, release of iron from the liver, and reticuloendothelial system. All these lead to iron overload. GDF15: Growth differentiation factor 15; TWSG1: Twisted-gastrulation 1; ERFE: Erythroferrone.

TMPRSS6 suppression could be an alternative approach to increase hepatic synthesis of hepcidin. It is a transmembrane serine protease (matriptase-2) that normally suppresses the synthesis of hepcidin by deactivating hemojuvelin (HJV) [36]. Data showed that the deletion of TMPRSS6 gene in mouse model increased hepcidin expression resulting in anemia improvement, ineffective erythropoiesis, and splenomegaly reducing and decreased iron loading [37]. An improvement in anemia and iron overload has been showed in mice and in preclinical studies using antisense oligonucleotides or small interfering RNAs (siRNA9 decreasing TMPRSS6) [38, 39]. The somministration of exogenous transferrin, through the downregulation of TfR1, increased erythroid precursor enucleation and improved terminal erythroid differentiation and maturation in β-thalassemic mice [40, 41]. Recently, a new iron metabolism regulating factor produced in erythroblasts in response to erythropoietin, ERFE (erythroferrone), was identified. In murine models with β-thalassemia intermedia, ERFE is highly expressed and mediates hepcidin suppression and contributes to iron overload. On the contrary, a deficiency of ERFE leads to an increase in hepcidin expression, a significant reduction in iron overload, and a slight improvement of erythropoietic indices [42]. All these data indicate that the inhibition of ERFE may be a future target with therapeutic potential in diseases with ineffective erythropoiesis and iron overload as β-thalassemia. Agents targeting hepcidin expression are more likely to be beneficial to patients with NTDT than those with TDT because transfusional iron overload is not mediated by low hepcidin levels. However, mini-hepcidins and TMRSS6 inhibitors can be evaluated for use in patients with TDT because improvement in erythropoiesis could potentially reduce transfusion requirements [43]. All discussed novel agents merit further evaluation of efficacy and safety in both preclinical and clinical development studies.

Advertisement

5. Oxidative stress in β-thalassemia

Oxidative stress plays a major role in pathophysiology of β-thalassemia, although it is not the primary etiology of disease. The cell oxidative status depends on the equilibrium between oxidants and anti-oxidants. The reactive oxygen species (ROS) are oxidants produced mainly as byproducts of cellular respiration, while reduced glutathione is an example of anti-oxidants. A balance between oxidants and anti-oxidants is crucial for normal physiology. ROS are utilized from the cells as regulators in many physiological processes, including proliferation and differentiation of the erythroid precursors. Oxidative stress ensues in many pathological processes when the balance between oxidants and anti-oxidants is broken, as it occurs in β-thalassemia. Excess ROS cause cytotoxicity by binding to cell components such as DNA, proteins, and membrane lipids [19]. In β-thalassemia, the main consequence of the unstable Hbs and iron overload is the oxidative stress. It mediates many of symptoms due to oxidative damage to red blood cells, leukocytes (recurrent infections), platelets (hypercoagulable state), as well as in heart, liver, and the endocrine glands (Figures 1A and B) [19, 44, 45, 46]. Endogenous and exogenous antioxidants may ameliorate the oxidative stress in β-thalassemia. They act scavenging and inactivating ROS and correcting their damage to cellular components. We introduce many antioxidants by nutrition. For example, a moderate wine consumption and a “Mediterranean diet” are thought to have a protective effect due to their high contents of antioxidants [47, 48]. Antioxidants can also be taken as food additives, or as crude extracts, such as preparation of papaya fermented and curcumin, either as pure compounds such as vitamins C and E and Q10 [49]. An improvement in many parameters of oxidative stress by using such additives in β-thalassemia was observed, but a clear clinical benefit, such as reducing transfusion dependence, was less successful. A combination of drugs affecting both the oxidative stress and the iron overload can give an effective outcome. Forkhead-box-O3 (Foxo3) is a critical transcription factor that protects the cell from oxidative stress by upregulating antioxidant enzymes during early stages of erythropoiesis [50]. At early stages, Foxo3 is phosphorylated by proteins of the EPOR-P13K/AKT/mTOR signaling pathway and is translocated out of the nucleus, where it remains inactivated. At late stages, Foxo3 is relocated into the nucleus, gets activated, and induces the production of antioxidants that neutralize ROS to allow efficient erythropoiesis [1, 36, 51, 52]. In mice with β-thalassemia intermedia, downregulation of Foxo3, as a result of persistent activation of EPOR-p13K/AKT/mTOR pathway, was observed. Inactivation of Foxo3 leads to oxidative damage in late erythroblasts and plays a significant role in the process of ineffective erythropoiesis [53]. β-thalassemia patients could be beneficial in improving anemia by activation of Foxo3 as a potential inducer of HbF. However, the function of Foxo3 in hemoglobinopathies has yet to be elucidated. A remarkable improvement in erythroid cell maturation, production of β-globin chains, and anemia has been observed following the use of rapamycin, an mTOR inhibition, in mice with β-thalassemia intermedia [53]. In another study, rapamycin increased α-globin expression and HbF production in cultured erythroid precursors from patients with β-thalassemia intermedia [54, 55]. Similar findings were reported with the use of another Foxo3 activating agent, resveratrol (3,5,4′-trihydroxy-trans-stilbene), a non-flavonoid polyphenol that upregulates antioxidant enzymes in mice with β-thalassemia intermedia [56]. Metformin, an approved drug for diabetes type 2 and a Foxo3 inducer, has been investigated as an HbF inducer in an ongoing phase 1 clinical trial in patients with sickle cell anemia and nontransfusion-dependent thalassemia (NTDT; NCT02981329) [57]. All these agents are in preclinical studies and need further evaluation. Then, further laboratory and clinical investigations are required in this field. A factor required for the initiation of translation through the binding of tRNA to the ribosomes is the eukaryotic initiation factor 2 (eIF2). It is regulated by a mechanism involving phosphorylation at its α-subunit by heme-regulated eIF2a kinase (HRI) in the erythroid precursors. Stress, as heme deficiency and oxidative stress during the late stage of erythroid differentiation, activates HRI that coordinates the synthesis of heme and globin. It was demonstrated that the phosphorylated α-subunit of eIF2 turned on the activating transcription factor 4 (ATF4) to diminish oxidative stress in erythroid precursors [58, 59, 60]. A selective inhibitor of eIF2aP dephosphorylation as salubrinal augmented the HRI signaling pathway and reduced the production of hemichromes in β-thalassemia erythroid precursors [59]. In another study, salubrinal increased HbF production with a concomitant decrease of HbA in differentiating human CD34 cells by a post-transcriptional mechanism [61]. Thus, manipulation of the HRI-eIF2aP signaling pathway could represent a new approach for the treatment of β-thalassemia.

An antioxidant protein that scavenges and inactivates ROS is the peroxiredoxin-2 (Prx2), essential during erythropoiesis. The expression of this protein is upregulated both murine and human β-thalassemia indicating that the oxidative stress induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis [62, 63]. Heme oxygenase (HO-1) is an enzyme that catalyzes the degradation of heme in response to stress, such as oxidative stress or hypoxia, both of which occur in β-thalassemia. In EPO-dependent fetal liver erythropoietic cells from β-thalassemic mice, the expression of HO-1 was augmented. The administration of tin protoporphyrin IX, an HO-1 inhibitor, improved ineffective erythropoiesis and Hb levels and decreased spleen size and liver iron [64, 65].

Advertisement

6. Potential role of antioxidants in β-thalassemia

Various antioxidant enzyme systems are activated by the oxidative stress to protect the body tissues from its damaging effects in β-thalassemia patients. These antioxidants include superoxide dismutase (SOD), catalase, glutathione (GSH), thioredoxin (Trx), and ferritin. Superoxide (O2 ) is the first reactive radical produced, and this radical can be neutralized by SOD. There are three distinct SODs: SOD1 (cu/Zn-SOD) is present in cytoplasm, whereas SOD2 (Mn-SOD) is present in the mitochondria, and SOD3 is almost exclusively extracellular [66, 67]. Each of these distinct SODs performs a specific function in human cells. In β-thalassemia, major patients higher levels of erythrocyte superoxide dismutase and glutathione peroxidase (GPx) as well as higher plasma malondialdehyde (MDA) were observed as compared to healthy controls [68]. Iron overload through repeated blood transfusions and subsequent oxidative stress produced by reactive oxygen species may be the cause of increased levels of MDA. The rise in SOD and glutathione peroxidase may occur as a result of compensatory mechanisms in response to oxidative stress [44]. Neutralization of O2 produces H2O2, which can be metabolized into nontoxic products by a catalase and glutathione peroxidase (GPx) in conjunction with glutathione. Location of GPx depends on the subtype, whereas catalase is present in peroxisomes [67]. The stability of the cellular and subcellular membranes depends mainly on glutathione peroxidase, and the protective antioxidant effect of glutathione peroxidase depends on the presence of selenium. In patients with β-thalassemia, major was confirmed the peroxidative status generated by iron overload and the high increase in serum ferritin, iron, plasmatic thiobarbituric acid reactive substances (TBARS), SOD, and glutathione peroxidase activity, while the vitamin E and zinc concentration decreased in these patients [44, 69]. Glutathione (GSH) is present in nearly all cells in the body and is present in high levels in organs with high oxygen consumption and energy production, e.g., the brain [67, 70]. Glutathione, in conjunction with its oxidized form (GSSG), plays a major role in controlling cellular redox state. The ubiquitous thioredoxin system also plays an important role in maintaining the cell’s redox state [67, 71]. Finally, ferritin is considered an endogenous antioxidant as it performs the important function of sequestering potentially toxic labile iron. When endogenous antioxidants are unable to neutralize oxidative stress, as in β-thalassemia, exogenous antioxidants can be used to augment the antioxidant system of the body. Iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Iron overload can affect redox state, and not only this condition can be restored to physiological conditions using iron chelation, but also the addition of antioxidants to these treatment regimens can be a viable therapeutic approach for attenuating tissue damage induced by oxidative stress (Table 1), (Figure 3, [72, 73, 74]). Vitamin A (β-carotene), vitamin C, vitamin E (α-tocopherol), polyphenols, and other bioactive plant-derived compounds are effective exogenous antioxidants that also regulate iron metabolism. At the transcriptional level, antioxidant enzymes are regulated by the transcription factor Nrf2, which binds to the antioxidant response element (ARE) in the target gene’s promoter region. Nrf2 is believed to be phosphorylated by protein kinase C (PKC), which causes the transcription factor to translocate to the nucleus, where it activates ARE-containing genes [67, 75], ultimately leading to the neutralization of free radicals and the attenuation of oxidative damage [76]. Table 1 summarizes the flavonoids and other antioxidants that regulate both iron homeostasis and redox state, in some cases via independent mechanisms. Flavonoids are present in a wide variety of plants and represent the most common class of polyphenols, organic chemicals that protect the plant from ultraviolet radiation, pathogens, and effects of oxidative stress, making them suitable for therapeutic purposes [77, 78]. Examples of flavonoids include quercetin, cathechins, curcumin, and kaempferol, which are abundant in fruits, vegetables, legumes, red wine, and green tea. Curcumin is a potent flavonoid antioxidant that can chelate iron in addition to modulating redox state [79]. A flavonoid-rich extract of orange and bergamot juice has been shown to chelate iron in iron-overload A549 cells and to activate the antioxidant enzyme catalase, leading to a decrease in ROS production and membrane lipid peroxidation [80]. It is a promising candidate for regulating both oxidative stress and iron homeostasis. Quercetin can reduce hepatic iron deposition in mice that were exposed to either ethanol or excess iron and increase BMP6, intranuclear SMAD4, SMAD4 binding to the HAMP promoter, and hepcidin expression, leading to decreased hepatic iron levels and reduced iron-related damage [81]. Another potent antioxidant is genistein. It reduces inflammation induced by ethanol and oxidative stress in mice [82] and, similar to quercetin, increases HAMP promoter activity in both zebrafish and human hepatocytes via Stat3- and Smad4-dependent process [83]. Silymarin, another flavonoid, is present in milk thistle plant extract and may have iron-chelating properties [84]. It is safe, well tolerated, cost-effective alternative to currently available iron chelation therapies for treating patients with β-thalassemia [84]. Ferulic acid is present in a wide variety of plants, and the antioxidant effects are believed to be mediated via the neutralization of free radicals [85]. The antioxidant effects of resveratrol may prevent adverse changes that lead to cardiovascular disease by modulating vascular cell function, low density lipoprotein (LDL) oxidation, and platelet aggregation, thereby reducing myocardial damage [86, 87]. Both vitamin A and vitamin C have well-established antioxidant properties that are mediated via the attenuation of oxidative damage [88]. Vitamin A and β-carotene increase hepcidin and TfR expression and intestinal iron absorption, reduce inflammatory signaling and ferroportin expression, increase intracellular ferritin levels, and release intracellular trapped iron [89, 90, 91]. Vitamin C reduces Fe3+ to Fe2+ and inhibits hepcidin expression [92]. In recent years, research for new therapies based on plant-derived compounds has developed considerably. This is to maximize the benefits of plant phytochemicals and avoid the adverse effects often associated with synthetic pharmaceutical agents [93]. Several plant extracts, such as tucum-do-cerrado, astragalus, Angelica sinensis, Caulis Spatholobi, Scutellaria baicalensis, and others, have been studied for their putative effects on iron homeostasis and oxidative stress. The results obtained are very promising (for esaustive review, see Ref. [76]).

Antioxidant Mechanisms of iron regulation Sources of antioxidants
Curcumin
  • Potent flavonoid antioxidant

  • Iron chelator

  • Redox state modulator

  • Decreased iron levels

  • Attenuated lipopolysaccharide (LPS)-induced oxidative stress-related inflammation

  • Activated hepatic IRPs and TfR1, repressed hepatic hepcidin and ferritin synthesis

Curcumin is a bright yellow chemical produced by Curcuma longa plants
Quercetin
  • Decreased hepatic iron levels

  • Reduced iron-related damage

  • Increased BMP6, intranuclear SMAD4, SMAD4 binding to the HAMP promoter, and hepcidin expression

Vegetables, leaves, grains, red onions, kale, red wine, and tea
Flavonoid-rich extract of orange and bergamot juice
  • Decreased ROS production and membrane lipid peroxidation by iron chelation in iron-overload A549 cells and activation of antioxidant catalase enzyme

Citrus fruits
Genistein
  • Reduced inflammation induced by ethanol and oxidative stress in mice

  • Increased HAMP promoter activity in both zebrafish and human hepatocytes via Stat3- and Smad4-dependent process

Lupin, fava beans, soy beans, kudzu, psoralea, Maackia amurensis, and Flemingia vestita
Silymarine
  • Iron-chelating properties

Silybum marianum extract
Ferulic acid
  • Decreased iron-induced oxidative stress, reduced liver injury, and ROS production

  • Increased hepatic antioxidant and mitochondrial membrane potential

Vegetables, popcorn, bamboo shoots, cereals (bran, wheat, and barley grain)
Resveratrol
  • Reduced myocardial damage by modulating vascular cell function, low density lipoprotein (LDL) oxidation, and platelet aggregation

Skin of grapes, blueberries, raspberries, mulberries, peanuts, and red wine

Table 1.

Mechanisms of iron regulation by antioxidants.

Figure 3.

Summary of the mechanisms regulating iron and oxidative stress by antioxidants. BMP6-SMAD-HAMP: Bone morphogenetic factor-mothers against decapentaplegic homolog-hepcidin antimicrobial peptide; GPx: Glutathione peroxidase;Nrf2-ARE: Nuclear factor erythroid 2-related factor 2-antioxidant response element; SOD: Superoxide dismutase.

Advertisement

7. Conclusions

Alteration in iron homeostasis is associated with oxidative stress and inflammation. Many bioactive antioxidants and plant-derived phytochemicals can regulate iron homeostasis, inflammation, and oxidative stress. Nevertheless, the majority of data collected to date are derived from in vitro and animal experiments, and further studies are needed in order to evaluate the efficacy of these phytochemicals as a natural substitute for pharmaceutical agents. This is very important because many pharmaceutical agents are associated with adverse side effects.

References

  1. 1. Fibach E, Rachmilewitz EA. Pathophysiology and treatment of patients with beta-thalassemia - an update. F1000Res. 2017;6:2156. DOI: 10.12688/f1000research.12688.1
  2. 2. Sposi NM. In: Munshi A, editor. Interaction between Erythropoiesis and Iron Metabolism in Human β-Thalassemia - Recent Advances and New Therapeutic Approaches, Inherited Hemoglobin Disorders. Rijeka: IntechOpen; 2015. DOI: 10.5772/61716
  3. 3. Galanello R, Origa R. Beta-thalassemia. Orphanet Journal of Rare Diseases. 2010;21:5-11. DOI: 10.1186/1750-1172-5-11
  4. 4. Weatherall DJ, Clegg JB, Higgs DR, Wood WG. The hemoglobinopathies. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Vogelstein B, editors. The Metabolic and Molecular Bases of Inherited Disease (OMMBID); Chapter 101. New York, NY: McGraw-Hill; 2002
  5. 5. Cao A, Galanello R. Beta-thalassemia. Genetics in Medicine. 2010;12(2):61-76
  6. 6. Beaumont C, Vaulont S. Iron homeostasis. Iron homeostasis. In: ESH Handbook on Disorders of Iron Metabolism. Chapter 20. 2009. pp. 488-511
  7. 7. Hentze MW, Muckenthaler MV, Andrews NC. Balancing acts: Molecular control of mammalian iron metabolism. Cell. 2004;117:285-297
  8. 8. Yun S, Vincelette ND. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis. Critical Reviews in Oncology/Hematology. 2015;95(1):12-25. DOI: 10.1016/j.critrevonc
  9. 9. Leecharoenkiat K, Lithanatudom P, Sornjai W, Smith DR. Iron dysregulation in beta-thalassemia. Asian Pacific Journal of Tropical Medicine. 2016;9(11):1035-1043. DOI: 10.1016/j.apjtm.2016.07.035
  10. 10. Hershko C. Pathogenesis and management of iron toxicity in thalassemia. Annals of the New York Academy of Sciences. 2010:1-9
  11. 11. Prus E, Fibach E. Uptake of non-transferrin iron by erythroid cells. Anemia. 2011;2011:945289. DOI: 10.1155/2011/945289
  12. 12. Cabantchik ZI. Labile iron in cells and body fluids: Physiology, pathology, and pharmacology. Frontiers in Pharmacology. 2014;5:45
  13. 13. Murphy CJ, Oudit GY. Iron-overload cardiomyopathy: Pathophysiology, diagnosis, and treatment. Journal of Cardiac Failure. 2010;16(11):888-900
  14. 14. Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules. 2015;5(2):808-847
  15. 15. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. Journal of Biological Chemistry. 2013;288(2):770-777
  16. 16. Telfer PT, Warburton F, Christou S, Hadjigavriel M, Sitarou M, Kolnagou A, et al. Improved survival in thalassemia major patients on switching from desferrioxamine to combined chelation therapy with desferrioxamine and deferiprone. Haematologica. 2009;94(12):1777-1778
  17. 17. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977;50(3):433-439
  18. 18. Jacobs A. An intracellular transit iron pool. CIBA Foundation Symposium. 1976;51:91-106
  19. 19. Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia. Current Molecular Medicine. 2008;8(7):609-619
  20. 20. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. Journal of Biological Chemistry. 2001;276:7806-7810
  21. 21. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:8780-8785
  22. 22. Cianetti L, Gabbianelli M, Sposi NM. Ferroportin and erythroid cells: an update. Advances in Hematology. 2010;2010:404173
  23. 23. Evstatiev R, Gasche C. Iron sensing and signaling. Gut. 2012;61:933-952
  24. 24. Fleming RE, Sly WS. Hepcidin: A putative iron regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:8160-8162
  25. 25. Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: From research to clinic. World Journal of Gastroenterology. 2009;15:538-551
  26. 26. Melchiori L, Gardenghi S, Rivella S. Beta-Thalassemia: HiJAKing Ineffective Erythropoiesis and Iron Overload. Advances in Hematology. 2010;2010:938640. DOI: 10.1155/2010/938640
  27. 27. Ribeil JA, Arlet JB, Dussiot M, Moura IC, Courtois G, Hermine O. Ineffective erythropoiesis in β-thalassemia. Hindawi Publishing Corporation. The Scientific World Journal. 2013;2013:394295
  28. 28. Visvader JE, Mao X, Fujiwara Y, Hahm K, Orkin SH. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(25):13707-13712
  29. 29. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783-788
  30. 30. Papanikolaou G, Tzilianos JI, Christakis JI, Bogdanos D, Tsimirika K, MacFarlane J, et al. Hepcidin in iron overload disorders. Blood. 2005;105:4103-4105
  31. 31. Kattamis A, Papassotiriou I, Palaiologou D, Apostolakou F, Galani A, Ladis V, et al. The effects of erythropoietic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica. 2006;91:809-812
  32. 32. Weizer-Stern O, Adamsky K, Amariglio N, Levin C, Koren A, Breuer W, et al. Downregulation of hepcidin and haemojuvelin expression in the hepatocyte cell-line HepG2 induced by thalassemic sera. British Journal of Haematology. 2006;135:129-138
  33. 33. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117:4425-4433
  34. 34. Ganz T, Nemeth E. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload. Hematology. American Society of Hematology. Education Program. 2011;2011:538-542
  35. 35. Gardenghi S, Ramos P, Marongiu MF, Melchiori L, Breda L, Guy E, et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. The Journal of Clinical Investigation. 2010;120:4466-4477
  36. 36. El-Beshlawy A, El-Ghamrawy M. Recent trends in treatment of thalassemia. Blood Cells, Molecules & Diseases. 2019;76:53-58
  37. 37. Nai A, Pagani A, Mandelli G, Lidonnici MR, Silvestri L, Ferrari G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia. Blood. 2012;119(21):5021-5029. DOI: 10.1182/blood-2012-01-401885
  38. 38. Guo S, Casu C, Gardenghi S, Booten S, Aghajan M, Peralta R, et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. The Journal of Clinical Investigation. 2013;123(4):1531-1541. DOI: 10.1172/JCI66969
  39. 39. Schmidt PJ, Toudjarska I, Sendamarai AK, Racie T, Milstein S, Bettencourt BR, et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. Blood. 2013;121(7):1200-1208. DOI: 10.1182/blood-2012-09-453977
  40. 40. Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer W, Hall CB, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nature Medicine. 2010;16(2):177-182. DOI: 10.1038/nm.2073
  41. 41. Li H, Choesang T, Bao W, Chen H, Feola M, Garcia-Santos D, et al. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice. Blood. 2017;129(11):1514-1526. DOI: 10.1182/blood-2016-09-742387
  42. 42. Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood. 2015;126(17):2031-2037. DOI: 10.1182/blood-2015-07-658419
  43. 43. Cappellini MD, Porter JB, Viprakasit V, Taher AT. A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Reviews. 2018;32(4):300-311. DOI: 10.1016/j.blre.2018.02.001
  44. 44. Shazia Q , Mohammad ZH, Rahman T, Shekhar HU. Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in Beta- thalassemia major patients: A review of the literature. Anemia. 2012;2012:270923. DOI: 10.1155/2012/270923
  45. 45. Pavlova LE, Savov VM, Petkov HG, Charova IP. Oxidative stress in patients with beta-thalassemia major. Prilozi. 2007;28(1):145-154
  46. 46. Ghone RA, Kumbar KM, Suryakar AN, Katkam RV, Joshi NG. Oxidative stress and disturbance in antioxidant balance in beta thalassemia major. Indian Journal of Clinical Biochemistry. 2008;23(4):337-340
  47. 47. Khemayanto H, Shi B. Role of Mediterranean diet in prevention and management of type 2 diabetes. Chinese Medical Journal. 2014;127(20):3651-3656
  48. 48. Hu X, Wang H, Lv X, Chu L, Liu Z, Wei X, et al. Cardioprotective effects of tannic acid on isoproterenol-induced myocardial injury in rats: Further insight into ‘French paradox’. Phytotherapy Research. 2015;29(9):1295-1303
  49. 49. Fibach E, Rachmilewitz EA. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Annals of the New York Academy of Sciences. 2010;1202:10-6. DOI: 10.1111/j.1749-6632.2010.05577.x
  50. 50. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. British Journal of Haematology. 2016;174(5):661-673
  51. 51. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. The Journal of Clinical Investigation. 2007;117(8):2133-2144
  52. 52. Wang H, Li Y, Wang S, Zhang Q , Zheng J, Yang Y, et al. Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochemical and Biophysical Research Communications. 2015;460(4):923-930
  53. 53. Zhang X, Campreciós G, Rimmelé P, Liang R, Yalcin S, Mungamuri SK, et al. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. American Journal of Hematology. 2014;89:954-963
  54. 54. Pecoraro A, Troia A, Calzolari R, Scazzone C, Rigano P, Martorana A, et al. Efficacy of rapamycin as inducer of Hb F in primary Erythroid cultures from sickle cell disease and β-thalassemia patients. Hemoglobin. 2015;39(4):225-229
  55. 55. Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R. Fetal hemoglobin inducers from the natural world: a novel approach for identification of drugs for the treatment of β-thalassemia and sickle-cell anemia. Evidence-based Complementary and Alternative Medicine. 2009;6(2):141-151. DOI: 10.1093/ecam/nem139
  56. 56. Franco SS, De Falco L, Ghaffari S, Brugnara C, Sinclair DA, Matte’ A, et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta thalassemic mice. Haematologica. 2014;99:267-275
  57. 57. Zhang Y, Weiss M, Sumazin P, Sheehan VA. Metformin induces FOXO3-dependent fetal hemoglobin production in primary erythroid cells [abstract]. Blood. 2016;128(22):321-333
  58. 58. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: Their structures and functions. Cellular and Molecular Life Sciences. 2013;70(19):3493-3511. DOI: 10.1007/s00018-012-1252-6
  59. 59. Chen JJ. Translational control by heme-regulated eIF2α kinase during erythropoiesis. Current Opinion in Hematology. 2014;21(3):172-178
  60. 60. Suragani RN, Zachariah RS, Velazquez JG, Liu S, Sun CW, Townes TM, et al. Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276-5284. DOI: 10.1182/blood-2011-10-388132
  61. 61. Hahn CK, Lowrey CH. Induction of fetal hemoglobin through enhanced translation efficiency of γ-globin mRNA. Blood. 2014;124(17):2730-2734. DOI: 10.1182/blood-2014-03-564302
  62. 62. De Franceschi L, Bertoldi M, De Falco L, Santos Franco S, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis. Haematologica. 2011;96(11):1595-1604. DOI: 10.3324/haematol.2011.043612
  63. 63. Matte A, De Falco L, Iolascon A, Mohandas N, An X, Siciliano A, et al. The interplay between Peroxiredoxin-2 and nuclear factor-Erythroid 2 is important in limiting oxidative mediated dysfunction in β-Thalassemic erythropoiesis. Antioxidants & Redox Signaling. 2015;23(16):1284-1297
  64. 64. Pittalà V, Salerno L, Romeo G, Modica MN, Siracusa MA. A focus on heme oxygenase-1 (HO-1) inhibitors. Current Medicinal Chemistry. 2013;20(30):3711-3732
  65. 65. Santos DG, Mikhael M, Rivella S, et al. Heme Oxygenase 1 plays a role In the pathophysiology of beta-thalassemia. Blood. 2015;122
  66. 66. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425-1428. DOI: 10.1080/15548627.2016.1187366
  67. 67. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. Journal of Inorganic Biochemistry. 2002;91:9-18. DOI: 10.1016/S0162-0134(02)00461-0
  68. 68. Filiz S, Gulyuz O, Sabri K, Deniz E, Alev H. Oxidant and antioxidant status in beta thalassemia major patients. Journal of Ankara University Faculty of. Medicine. 2005;58(1):34-38
  69. 69. Kassab-Chekir A, Laradi S, Ferchichi S, Haj Khelil A, Feki M, Amri F, et al. Oxidant, antioxidant status and metabolic data in patients with beta-thalassemia. Clinica Chimica Acta. 2003;338(1-2):79-86
  70. 70. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology & Medicine. 2002;33:337-349. DOI: 10.1016/S0891-5849(02)00905-X
  71. 71. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. The Journal of Nutrition. 2004;134:489-492
  72. 72. Grune T, Sommerburg O, Siems WG. Oxidative stress in anemia. Clinical Nephrology. 2000;53:S18-S22
  73. 73. Temple NJ. Antioxidants and disease: More questions than answers. Nutrition Research. 2000;20:449-459. DOI: 10.1016/S0271-5317(00)00138-X
  74. 74. Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One. 2014;9:e85115. DOI: 10.1371/journal.pone.0085115
  75. 75. Wongjaikam S, Kumfu S, Khamseekaew J, Sripetchwandee J, Srichairatanakool S, Fucharoen S, et al. Combined iron chelator and antioxidant exerted greater efficacy on cardioprotection than monotherapy in iron-overloaded rats. PLoS One. 2016;11:e0159414. DOI: 10.1371/journal.pone.0159414
  76. 76. Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017;9(7):E671. DOI: 10.3390/nu9070671
  77. 77. Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2:1106-1131. DOI: 10.3390/nu2111106
  78. 78. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2:270-278. DOI: 10.4161/oxim.2.5.9498
  79. 79. Niu Q , Mu L, Li S, Xu S, Ma R, Guo S. Proanthocyanidin protects human embryo hepatocytes from fluoride-induced oxidative stress by regulating iron metabolism. Biological Trace Element Research. 2016;169:174-179. DOI: 10.1007/s12011-015-0409-1
  80. 80. Galati G, O’brien PJ. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radical Biology & Medicine. 2004;37:287-303. DOI: 10.1016/j.freeradbiomed.2004.04.034
  81. 81. Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomedicine & Pharmacotherapy. 2016;83:302-313. DOI: 10.1016/j.biopha.2016.06.036
  82. 82. Zhao L, Wang Y, Liu J, Wang K, Guo X, Ji B, et al. Protective effects of genistein and puerarin against chronic alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. Journal of Agricultural and Food Chemistry. 2016;64:7291-7297. DOI: 10.1021/acs.jafc.6b02907
  83. 83. Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, et al. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology. 2013;58:1315-1325. DOI: 10.1002/hep.26490
  84. 84. MoayediEsfahani B, Reisi N, Mirmoghtadaei M. Evaluating the safety and efficacy of silymarin in β-thalassemia patients: A review. Hemoglobin. 2015;39:75-80. DOI: 10.3109/03630269.2014.1003224
  85. 85. Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnology Reports. 2014;4:86-93. DOI: 10.1016/j.btre.2014.09.002
  86. 86. Bradamante S, Barenghi VA. Cardiovascular protective effects of resveratrol. Cardiovascular Drug Reviews. 2004;22:169-188. DOI: 10.1111/j.1527-3466.2004.tb00139.x.
  87. 87. Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health—Promising therapeutic or hopeless illusion? Pharmacological Research. 2014;90:88-115. DOI: 10.1016/j.phrs.2014.08.001
  88. 88. McDowell LR, Wilkinson N, Madison R, Felix TL. Florida Ruminant Nutrition Symposium. Best Western Gateway Grand; Gainesville, FL, USA. Vitamins and minerals functioning as antioxidants with supplementation considerations2007. pp. 30-31
  89. 89. García-Casal MN, Layrisse M, Solano L, Barón MA, Arguello F, Llovera D, et al. β-Carotene can improve non heme iron absorption from rice, wheat and corn by humans. The Journal of Nutrition. 1997;128:646-650
  90. 90. Citelli M, Bittencourt LL, Da Silva SV, Pierucci AP, Pedrosa C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biological Trace Element Research. 2012;149:64-70. DOI: 10.1007/s12011-012-9397-6
  91. 91. Katz O, Reifen R, Lerner A. β-Carotene can reverse dysregulation of iron protein in an in vitro model of inflammation. Immunologic Research. 2015;61:70-78. DOI: 10.1007/s12026-014-8570-8
  92. 92. Chiu PF, Ko SY, Chang CC. Vitamin C affects the expression of hepcidin and erythropoietin receptor in HepG2 cells. Journal of Renal Nutrition. 2012;22:373-376. DOI: 10.1053/j.jrn.2011.09.007
  93. 93. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al. Are bioactive-rich fractions functionally richer? Critical Reviews in Biotechnology. 2016;36:585-593

Written By

Nadia Maria Sposi

Submitted: May 17th, 2019 Reviewed: November 14th, 2019 Published: December 16th, 2019