List of gas path measured parameters of the engine selected as test case.
Abstract
Monitoring systems to predict the remaining lifetime of gas turbine engines are a major field of investigation, in particular, the monitoring systems that allow an online prediction. This chapter introduces and analyzes a new approach to develop mathematical models to estimate unmeasured parameters in an engine lifetime monitoring system; these models in contrast to previously developed models allow an online monitoring of unmeasured parameters, which are necessary to perform an online lifetime prediction. The blade of a highpressure turbine (HPT) of a twospool free turbine power plant is the test case. Several candidate models are developed for each unmeasured parameter; the best models are selected by their accuracy and robustness using the instrumental and truncation error as criteria. Ten faulty engine conditions are considered to analyze the model robustness. Two methods for model developing are compared; the first method uses physicsbased models (proposed in this chapter), and the second method develops the models using the similarity concept (reference methodology). The results of the comparison show that the physicsbased models are more robust to engine faults and overall they deliver a significantly more accurate prediction of the engine lifetime.
Keywords
 gas turbine
 lifetime prediction
 model developing
 thermodynamic relations
 unmeasured parameters
1. Introduction
Lifetime monitoring systems are an effective way to perform condition base maintenance of gas turbine engines [1, 2, 3]; this allows a better use of the available lifetime and improvement of the engine’s reliability.
Several approaches exist to predict the remaining lifetime, such as neural networks [4, 5, 6, 7], finite element analysis (FEA) [8, 9, 10], and statistical methods [11]; however, in order to significantly enhance the accuracy of the lifetime prediction, it is necessary to estimate the lifetime in real time (online prediction) using actual conditions [12, 13]. All of the previously cited approaches require a large amount of computing resources, making them not suitable for an online application; another limitation is that none of the cited approaches take into consideration the existing enginetoengine differences and the performance deterioration.
Oleynik proposes in a study [14] an approach to perform online lifetime prediction of engine component condition (Figure 1); he proposes to use simple models to estimate the temperature and stresses at critical points. A major advantage of this approach is the use of actual engine operating and atmospheric conditions as input data. The methodology has been proven by practical application in monitoring of some Ukrainian engines.
As shown in Figure 1, one of the blocks performs the thermal condition (TC) monitoring, while the second block, the stress condition (SC) monitoring.
Inside the block of TC, it is necessary to set the thermal boundary conditions (gas temperature around the critical element and the heat transfer coefficient between the gas and metal), which are not measured parameters; the author [14] proposed a methodology to develop mathematical models based on the theory of similarity to estimate these boundary conditions.
In this chapter a new approach to develop physicsbased models to estimate the unmeasured parameters is proposed and analyzed. This new approach emphasizes the accuracy of the models regardless of the enginetoengine differences, taking into consideration a healthy and faulty engine condition.
With the help of the thermodynamic model of the engine chosen as test case, all the necessary data for model developing and validation is simulated; the simulation of the engine’s component degradation is widely used in gas turbine monitoring and diagnostics [15, 16].
A comparison between the physicsbased models and the reference method based on the theory of similarity proposed by [14] is conducted to validate the accuracy of the methods.
Finally, the influence of the accuracy in the prediction of the thermal boundary conditions on the errors of the engine lifetime prediction is evaluated.
2. Test case
It is wellknown that the thermomechanical stresses in gas turbine hot elements are very high, particularly in the turbine blade having a significant effect on the safety and economics of the fleet operation [17]. For this reason, a turbine blade with three cooling channels has been chosen as the test case; the blade is mounted in the first stage of the highpressure turbine (HPT) of a twospool free turbine engine.
In Table 1 the seven measured gas path parameters of the engine chosen as test case are listed.
Designation  Gas path parameter 


Fuel consumption 

Compressor discharge temperature 

Compressor discharge pressure 

HPT discharge temperature 

HPT discharge pressure 

Lowpressure turbine (LPT) discharge temperature 

Rotational speed of the highpressure (HP) rotor 
Experience has shown that it is sufficient to consider a twodimensional analysis of the midspan section of the blade in order to save computing time; however, the same methodological approach can be applied for a threedimensional geometry.
The finite element model of the midspan turbine blade section was built with the help of FEA software. After setting all the necessary boundary conditions, the distribution of the temperature and stresses was obtained. The critical points with the smallest safety factor were found as well; as shown in Figure 2, the critical points correspond to the numbers 101, 102, 103, and 69.
Three critical points are located at the leading edge of the blade and one critical point at the trailing edge. For an easier analysis, the four critical points are organized into two groups: group a (GA) contains the critical points 101, 102, and 103, and group b (GB) contains the critical point number 69.
The thermodynamic model of the engine chosen as test case [18] is used to generate all the data for model developing and validation.
3. Engine lifetime monitoring system
A brief description of the lifetime monitoring system proposed by the author [14] is presented to have a better understanding. As shown in Figure 1, the block to perform the TC contains the subblock named “thermal boundary conditions” (unmeasured parameters). The new approach for model developing proposed in this chapter focuses all the efforts in improving the accuracy in this subblock, as improving the efficiency in the prediction of the thermal boundary conditions directly affects the accuracy of the whole monitoring system.
In the following subsection, the simple mathematical models used to estimate the blade temperature and the thermal stress at the critical points are explained.
3.1 Turbine blade thermal and stress monitoring models
In [19] an analysis of the models proposed by [14] to estimate the blade temperature and stress applied to the same turbine blade and critical points was conducted. As a result, it was concluded that the best model to calculate the blade temperature at the critical points is:
Here
Here
The model to estimate the thermal stress at critical points is:
Here
The dimensionless parameters
The parameters
4. Model developing methodology
As mentioned in the introduction, a new approach for model developing is proposed. Since the models will be used in an online monitoring system, it is necessary to meet the following requirements:
The models must be developed on physicsbased relations, such as thermodynamic and kinematic relations and others.
All models must use the gas path measured parameters as input data.
The structure of the models must be simple.
The measuring error of the gas path parameters, which are the input data of the models, must be taken into account.
The models must have high robustness to the influence of engine’s component deterioration.
Taking into account the main requirements, the following general dependence for any unmeasured parameter is proposed:
Here
As shown in Eq. (4), such dependence is not possible to be used in an online monitoring system since it includes the vector
Besides, all the parameters are corrected to standard atmosphere to take into account the influence of atmospheric conditions [20]. After rewriting Eq. (4), the general dependence for any unmeasured parameter is:
Figure 3 shows the algorithm to estimate the unmeasured parameters using the previously presented model developing methodology.
4.1 Model verification
The best models are selected during the model verification process. The total mean square error (MSE) is the main criteria to select the best models; the MSE consists of two components, a truncation error and an instrumental error:
Here
4.1.1 Truncation error
The mean square truncation error is:
Here
The average truncation error in percentage for any engine health conditions is obtained by:
Here
4.1.2 Instrumental error
The MSE for the instrumental error for a healthy engine condition is calculated as follows:
Here
The average instrumental error in percentage is obtained by:
Here
4.1.3 Model robustness analysis
Engine health conditions in real life are different from engine to engine; therefore, it is necessary to take into account these shifts from the ideal engine. For the model robustness analysis, the truncation error is calculated for several engine health conditions. In [21] the most common engine faulty conditions of a twospool free turbine engine were analyzed; as a result, 10 faulty engine conditions were selected.
In Table 2 the 11 engine conditions considered for analysis are listed. The deteriorated engine condition represents a 3% shift from engine health condition.
Designation  Fault parameter  Deteriorated condition 

C1  —  Healthy engine 
C2 

Compressor efficiency decrease 
C3 

Compressor airflow decrease 
C4 

Combustion chamber (CC) efficiency decrease 
C5 

Decrease in the CC total pressure 
C6 

HPT efficiency decrease 
C7 

HPT nozzle box (NB) area increment 
C8 

Decrease in the total pressure between HPT and LPT duct 
C9 

LPT efficiency decrease 
C10 

LPT NB area increment 
C11 

Increment of the air bleed for gas pumping needs 
5. Developing and verification of models for unmeasured parameters for the test case
As shown in SubSection 3.1, it is necessary to calculate the input data for Eqs. (1) and (3). For our particular test case, the selected thermal boundary conditions are shown in Table 3.
Cooling temperature 

Heating temperature 

Relation of heat transfer coefficients for hot gases 

Relation of heat transfer coefficients for cooling air 

It is necessary to develop alternative models for each one of the selected thermal boundary conditions. Although the compressor discharge temperature is a measured gas path parameter for our test case (Table 1), it is of particular interest to analyze the effect of its inclusion or exclusion from the list of gas path measured parameters in the overall lifetime prediction.
Since many alternative models were developed, only one example will be shown in order to save available text space; for more details consult [21].
5.1 Model developing
Let us consider the gas temperature at the inlet of the turbine
Here
Let us take into account that:
Here
Solving Eq. (11) for
All the unmeasured parameters in Eq. (14) will be described with the help of the internal model
Let us remember that all the internal models will be calculated as a polynomial functions using one of the available gas path measured parameters as argument.
Finally, after making the correction to standard atmospheric conditions of Eq. (14), we arrive at the following expression:
Here
Several models can be developed for the same unmeasured parameter based on different source equations (alternative models). Figure 4 shows the general scheme for the developing of alternative models.
Using the scheme shown in Figure 4, a total of 31 models were developed for our test case (see reference [21]). A name is given to each developed model for easier identification, for example, the model shown in Eq. (16) is named MTG1. The names and arguments for each alternative developed model are shown in Figure 5.
5.2 Model verification
Let us consider the model MTG1 shown in Eq. (16), which includes the internal model
All of the necessary data for the analysis was obtained using the thermodynamic model of the engine selected as test case [18]. A total of 245 engine operating modes for a healthy engine condition were simulated; these operating modes describe the whole range of the engine operating conditions.
The generated data was randomly divided into two sets. The first set of 123 operating points is used as reference. The second set of 122 operation modes is for model validation. Using the data from the reference set, the coefficients for the polynomial functions were obtained using the least square method.
The polynomial degree was changed from 1 to 4 using each one of the gas path measured parameters (see Table 1) as argument in the polynomial.
Once all the polynomial coefficients describing the internal model
The total error (see Eq. (6)) was the main criteria to assess the accuracy of the developed models. A total of 11 engine conditions (Table 2) were considered for the model validation (model robustness analysis).
Figure 6(a) depicts the total error in the prediction of
Figure 6(b) shows that it is sufficient to use a thirddegree polynomial as further increment does not reduce the total error in the prediction.
From this analysis the polynomial degree and the gas path measured parameter to be used as argument in Eq. (17) are selected:
The selection of the argument in the
6. Comparative analysis for the model accuracy
Let us conduct a comparative analysis between two approaches for model developing: the first approach for model developing [14] uses the theory of similarity (reference model), and the second approach is proposed in this chapter and uses a physicsbased methodology.
6.1 Thermal boundary condition prediction
The thermal boundary conditions for our test case (see Table 3) were calculated using models developed with both methodologies.
The total error was calculated according to Eq. (6), and the model robustness analysis took into account the 11 engine health conditions listed in Table 2. It is of particular interest to analyze the model robustness, since such analysis for the reference methodology does not exist.
In Figure 8 the truncation errors for the thermal boundary condition prediction are presented.
From Figure 8, it is clear that the models developed using the approach introduced in this chapter are more robust; it means that the models are less sensitive to the deviations from a healthy engine condition. This is a major advantage compared to the reference methodology based in the theory of similarity [14].
6.2 Prediction of the thermalstress condition and engine lifetime
The thermalstress engine condition was calculated using Eqs. (1) and (2). The prediction of the turbine blade lifetime is a very complex process, which involves different factors; however, a conservative lifetime prediction will be enough to assess the impact that a new model developing methodology has on the accuracy of the lifetime prediction. According to the author [22], a practical way to predict lifetime is the LarsonMiller relation:
Here
As mentioned in Section 5, it is of particular interest to analyze what is the influence of the inclusion or exclusion of the compressor temperature
6.2.1 Prediction of the thermalstress condition and engine lifetime when the compressor temperature is not measured
Figure 9 presents the total error in the prediction of TC, SC, and lifetime
From this analysis, it is clear that the methodology used for developing the models of the unmeasured parameters has a great impact in the final accuracy of the lifetime
6.2.2 Prediction of the thermalstress condition and engine lifetime when the compressor temperature is measured
We repeated the calculation, but this time the value of the compressor temperature is measured. Figure 9(b) shows that the total error in the prediction of TC for both groups is still better when using physicsbased models.
Figure 9(d) shows that the accuracy in the prediction of the SC is not significantly affected. From Figure 9(f) it is clear that the improvement in the prediction of TC has a significant impact in the prediction of the lifetime
We can conclude that the accuracy in the prediction of the lifetime is highly improved when the temperature after the compressor is a measured parameter.
7. Conclusions
A new approach for model developing to estimate the unmeasured parameters in an engine lifetime monitoring system was introduced. This is an effort to increase the accuracy of the lifetime prediction.
All the developed models have a very simple structure and are physicsbased, making them ideal to be applied in an online lifetime monitoring system.
A turbine blade mounted on the first stage of the highpressure turbine of a twospool free turbine power plant is the test case.
Several alternative models were developed using different basic equations. Some of the models include in their structure an internal model, which characterizes the thermodynamic properties of the working fluid, such as efficiencies, pressure loss factors, and others. The internal models were defined by a polynomial function. The best measured parameter used as argument in the polynomial and the degree of the polynomial function were selected using the mean square error as criteria.
All the necessary data for model developing and validation was generated with the engine thermodynamic model.
The truncation and instrumental error are the main criteria to select the best models. Ten engine faulty conditions were considered for the robustness analysis of the models.
A comparative analysis between two model developing methodologies was conducted: physicsbased methodology (proposed in this chapter) and models developed on the theory of similarity (reference). The results show that the physicsbased models are less sensitive to shifts from the engine healthy condition.
It was found that the use of the proposed model developing methodology provides a better estimation of the thermal boundary conditions, which leads to a significantly better prediction of the lifetime.
It was proven that the compressor temperature has a great impact in the lifetime prediction. If this parameter is not measured, then the accuracy of the lifetime prediction is significantly worse compared to the results obtained when the compressor temperature is measured.
The obtained results show that it is possible to use the proposed model developing methodology in real applications; however, it is necessary to take into account a proper interpretation of the results obtained in this chapter. The reference data, which was used to determine the accuracy of the models, is simulated data; therefore, it is possible that the errors of the lifetime monitoring under real conditions will grow. To avoid such inconvenience, it is possible to replace the data generated with the help of the engine thermodynamic model with real data. This approach is valid, since the engine thermodynamic model is not part of the proposed model developing methodology. In order to obtain the necessary real data, it will be necessary to use additional instrumentation under engine test bed conditions.
Nomenclature
Subscripts  
a  air 
cor  corrected parameter 
cr  critical point 
C  compressor 
CC  combustion chamber 
CH  channel 
f  fuel 
g  gas 
H  atmospheric conditions 
HP  high pressure 
HPT  highpressure turbine 
i  iengine mode 
INS  instrumental error 
j  jengine health condition 
LPT  lowpressure turbine 
m  value calculated with the help of models, mechanical 
NB  nozzle box 
ref  reference engine mode 
ST  gas pumping station 
S1  cooling 
S2  heating 
t  thermal 
T  turbine 
TR  truncation error 
TT  total mean square error 
W  relative velocity 
Designations  
G  consumption 
T  temperature 
p  pressure 
n  rotational speed, number of engine health conditions 
t  blade temperature 
k  coefficient, isentropic factor 
S ¯  dimensionless parameter 
z  unmeasured parameter 
Y  gas path measured parameters 
W  unmeasured parameters describing thermodynamic properties of the working fluid 
A  internal model 
x  measured parameter, argument of polynomial 
p 0  standard atmospheric pressure (101.3 KPa) 
T 0  standard atmospheric temperature (288.15 K) 
y  measured parameter 
N  sample size (number of engine operation modes), power 
C  engine condition, coefficient 
L  thermodynamic work 
Cp  specific heat at constant pressure 
A  coefficient 
Re  Reynolds number 
Kα  relation of heat transfer coefficient at current and at a reference operation mode 
tr  lifetime 
Greek symbols  
*  stagnation parameter 
α  heat transfer coefficient 
Θ  dimensionless parameter 
σ  stress, mean square error, total pressure conservation 
η  efficiency 
δ  shift from healthy engine condition 
μ  dynamic viscosity 
References
 1.
Jin H, Lodwen P, Pistor R. Remaining life assessment of power turbine disks. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: GT200851010; 2008  2.
Alexander V. Gas turbine plant thermal performance degradation assessment. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: GT200850032; 2008  3.
Phillip D, David D. Remaining life assessment technology applied to steam turbines and hot gas expanders. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada: GT201145324; 2011  4.
Parthasarathy G, Menon S, Richardson K. Neural network models for usage based remaining life computation. In: Proceedings of ASME Turbo Expo 2006: Power for Land, Sea and Air. Barcelona, Spain: GT200691099; 2006  5.
Yoon J, Kim T, Lee J. Simulation of performance deterioration of a microturbine and application of neural network to its performance diagnosis. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: GT200851494; 2008  6.
Fast M, Assadi M, De S. Condition based maintenance of gas turbines using simulation data and artificial neural networks: A demonstration of feasibility. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: GT200850768; 2008  7.
Palme T, Breuhaus P, Assadi M. Early warning of gas turbine failure by nonlinear feature extraction using an autoassociative neural network approach. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada: GT201145991; 2011  8.
Blumenthal R, Hutchinson B, Zori L. Investigation of transient CFD methods applied to a transonic compressor stage. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada: GT201146635; 2011  9.
Weiss J, Subramanian V, Hall K. Simulation of unsteady turbomachinery flows using an implicitly coupled nonlinear harmonic balance method. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada: GT201146367; 2011  10.
Jeromin A, Eichler C, Noll B. Full 3D conjugate heat transfer simulation and heat transfer coefficient prediction for the effusioncooled warm of a gas turbine combustor. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. Berlin, Germany: GT200850422; 2008  11.
Giuseppe F, Carlevaro F. Gas turbine maintenance policy: A statistical methodology to prove interdependency between number of starts and running hours. In: Proceedings of ASME Turbo Expo 2002: Power for Land, Sea and Air. Amsterdam, Netherlands: GT200230281; 2002  12.
Eshati S, Abdul Ghafir M, Laskaridis P, Li Y. Impact of operating conditions and design parameters on gas turbine hot section creep life. In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK: GT201022334; 2010  13.
Maccio M, Rebizzo A, Traversone L, Bordo L. Rotor components life evaluation validated by field operation data. In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK: GT201022741; 2010  14.
Oleynik A. Concepts and development of methods for lifetime monitoring based on the identification of the dynamics of the thermalstress conditions of aviation GTE critical components [thesis]. National Aerospace University of Ukraine; 2006  15.
Jiang L, Eli H, HeeKoo M. 3D rams prediction of gasside heat transfer coefficients on turbine blade and end wall. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. Vancouver, Canada: GT201146723; 2011  16.
Abubakar M, Reyad A, Gordon E, John E. Conjugate heat transfer CFD predictions of impingement heat transfer: Influence of the number of holes for a constant pitch to diameter ratio X/D. In: Proceedings of ASME Turbo Expo 2014: Power for Land, Sea and Air. Dusseldorf, Germany: GT201425268; 2014  17.
Wieslaw B, Zhong Z, David D, Chen W, Wu X. Residual life assessment of a critical component of a gas turbine – Achievements and challenges. In: Proceedings of ASME Turbo Expo 2014: Power for Land, Sea and Air. Dusseldorf, Germany: GT201426423; 2014  18.
Yepifanov S, Kuzmenko B, Ryumshin N. Synthesis of Turbine Engine Control and Diagnosing Systems. Kiev, Ukraine: Technical Publishing; 1998  19.
Maravilla C, Yepifanov S, Loboda I. Improved turbine blade lifetime prediction. In: Proceedings of ASME Turbo Expo 2015: Power for Land, Sea and Air. Montreal, Canada: GT201543046; 2015  20.
Kulagin B. Theory and Design of Aircraft Engines and Power Pants. Moscow: Mashinostroenie; 2003. p. 616  21.
Maravilla C. Improvement in the prediction of the thermal boundary conditions in a turbine blade monitoring system [thesis]. National Aerospace University of Ukraine; 2016  22.
Krykonov D. Handbook of Engine Lifetime Prediction. Kharkiv, Ukraine: National Aerospace University of Ukraine; 2005. p. 67