Preventive effect of various fungicides for anthracnose on Japanese pear.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5168",leadTitle:null,fullTitle:"Alkali-ion Batteries",title:"Alkali-ion Batteries",subtitle:null,reviewType:"peer-reviewed",abstract:"This book covers selected topics in different aspects of science and technology of alkali-ion batteries written by experts from international scientific community. Through the 9 chapters, the reader will have access to the most recent research and development findings on alkali-ion batteries through original research studies and literature reviews. This book covers inter-disciplinary aspects of alkali-ion batteries including new progress on material chemistry, micro/nano structural designs, computational and theoretical models and understanding of structural changes during electrochemical processes of alkali-ion batteries.",isbn:"978-953-51-2396-5",printIsbn:"978-953-51-2395-8",pdfIsbn:"978-953-51-6655-9",doi:"10.5772/61429",price:119,priceEur:129,priceUsd:155,slug:"alkali-ion-batteries",numberOfPages:200,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2ffb06f3e5dbad9167428c4c443e3a5e",bookSignature:"Dongfang Yang",publishedDate:"June 1st 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5168.jpg",numberOfDownloads:20161,numberOfWosCitations:16,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:24,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:50,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 29th 2015",dateEndSecondStepPublish:"October 20th 2015",dateEndThirdStepPublish:"January 24th 2016",dateEndFourthStepPublish:"April 23rd 2016",dateEndFifthStepPublish:"May 23rd 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/177814/images/system/177814.jpg",biography:"Dongfang Yang received his Ph.D. in Physical Chemistry from the University of Guelph in 1995. He joined the National Research Council Canada in London Ontario in 2001 and is now a Senior Research Officer. His current research interests include laser materials processing; pulsed laser, sputtering and e-beam deposition of thin films; new materials development for energy storage devices; chemical and optical sensors development; and electrochemical studies of organic adsorption and self-assembly monolayer. He is currently serving as an editor or editorial board member for ten scientific journals and was listed among the top 2% most-cited scientists according to a Stanford study in 2020. He also holds an adjunct professorship at Western University, Ontario, Canada.",institutionString:"National Research Council Canada",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"National Research Council Canada",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"756",title:"Power Electronics",slug:"power-electronics"}],chapters:[{id:"50608",title:"Carbon Nanofiber-Based Materials as Anode Materials for Lithium-Ion Batteries",doi:"10.5772/63235",slug:"carbon-nanofiber-based-materials-as-anode-materials-for-lithium-ion-batteries",totalDownloads:2570,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Considerable efforts have been devoted to the research of high-performance and long-lifespan lithium-ion batteries (LIBs) for their applications in large-scale power units. As one of the most important components in LIBs, anode plays an important role in determining the overall performance of LIBs. Nowadays, graphite has been the most successfully commercialized anode material. However, its limited theoretical capacity (372 mA h g−1) and limited power density seems insufficient for the next-generation LIBs. To overcome these problems, new materials with fundamentally higher capacity and higher power density are urgently needed. Recently, there is an ever-increasing interest in developing novel carbonaceous nanomaterials to replace graphite as the anode materials for LIBs. Such materials have included carbon spheres, carbon nanotubes, carbon nanofibers (CNFs), porous monoliths, and graphene. Among these alternative forms of carbon, CNFs and its morphological-controlled derivatives (such as porous or hollow CNFs) have attracted much attention due to their unique and interesting properties such as one-dimensional (1D) nanostructure, good electronic conductivity, and large surface areas. Moreover, these CNFs can be used to encapsulate various second phases to form some functional composite, meeting further requirements including higher energy density, higher power density or flexible requirements, for the advanced LIB operation.",signatures:"Yunhua Yu, Yuan Liu and Xiaoping Yang",downloadPdfUrl:"/chapter/pdf-download/50608",previewPdfUrl:"/chapter/pdf-preview/50608",authors:[{id:"46392",title:"Prof.",name:"Xiaoping",surname:"Yang",slug:"xiaoping-yang",fullName:"Xiaoping Yang"},{id:"179242",title:"Prof.",name:"Yunhua",surname:"Yu",slug:"yunhua-yu",fullName:"Yunhua Yu"},{id:"185629",title:"Dr.",name:"Yuan",surname:"Liu",slug:"yuan-liu",fullName:"Yuan Liu"}],corrections:null},{id:"50410",title:"Capacity Optimization Nanotechnologies for Enhanced Energy Storage Systems",doi:"10.5772/62319",slug:"capacity-optimization-nanotechnologies-for-enhanced-energy-storage-systems",totalDownloads:1786,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Rechargeable lithium-ion battery (LIB) cathodes consist of transition metal oxide material, which reversibly (de)intercalates lithium at a high potential difference versus a carbon anode. Manganese oxide cathode material offers lower cost and toxicity than the normally used cobalt. However, LiMn2O4 suffers from capacity fading, Mn dissolution at high temperatures, and poor high rate capability. Its ultimate performance, however, depends on the morphology and electrochemical properties. In this work, Au alloyed with Fe, Pd, and Pt, respectively, was synthesized and used to improve the microstructure and catalytic activities by functionalizing LiMn2O4 via a coprecipitation calcination method. The pristine LiMn2O4 and modified materials were examined using a combination of spectroscopic and microscopic techniques along with in-detail galvanostatic charge–discharge tests. Microscopic results revealed that the modified composite cathode materials had high phase purity, highly crystallized particles, and more regular morphological structures with narrow size distributions. Galvanostatic charge–discharge testing indicated that the initial discharge capacities of LiMxMn2-xO4 at 0.1 C for M0.02=PtAu, FeAu, and PdAu were 147, 155.5, and 160.2 mAh g−1, respectively. The enhancement of the capacity retention and higher electrode coulombic efficiency of the modified materials were significant, especially at high C rate. At enlarged cycling potential ranges, the Li(M)0.02Mn1.98O4 samples delivered relevant discharge capacities (70, 80, and 90 mAh g-1) compared to LiMn2O4 (45 mAh g-1).",signatures:"Natasha Ross and Emmanuel I. Iwuoha",downloadPdfUrl:"/chapter/pdf-download/50410",previewPdfUrl:"/chapter/pdf-preview/50410",authors:[{id:"178638",title:"Dr.",name:"Natasha",surname:"Ross",slug:"natasha-ross",fullName:"Natasha Ross"}],corrections:null},{id:"50231",title:"Cathode Materials for Lithium Sulfur Batteries: Design, Synthesis, and Electrochemical Performance",doi:"10.5772/62439",slug:"cathode-materials-for-lithium-sulfur-batteries-design-synthesis-and-electrochemical-performance",totalDownloads:3260,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"With the rapid development of electronic devices, portable electronics, and electric vehicles, the energy density and cycle life of LIBs are insufficient for the demands. Based on the reaction mechanisms, lithium-sulfur (Li-S) batteries have a high specific capacity of 1672 mAh/g, with a theoretical energy density up to 2600 Wh/Kg. However, the sulfur cannot serve as cathode individually because of its isolation nature and soluble compounds, which necessitates a second component as a conducting matrix and sulfur host. Thus, sulfur cathodes have diversified through microstructure designing with various materials, including inorganic compounds, polymers, carbon materials, and their hybrids, which should be satisfied several essential requirements, such as high stable incorporation with sulfur, high electrical conductivity of electrode materials, and loose framework to suffer the volume expansion of cathode during charge-discharge process. These investigations may provide the effective routes to prepare different new cathode materials with unique structures and morphologies for Li-S batteries, which improve cycling stability, coulombic efficiency, and rate capacity of the electrode at higher current density.",signatures:"Lianfeng Duan, Feifei Zhang and Limin Wang",downloadPdfUrl:"/chapter/pdf-download/50231",previewPdfUrl:"/chapter/pdf-preview/50231",authors:[{id:"178385",title:"Dr.",name:"Lianfeng",surname:"Duan",slug:"lianfeng-duan",fullName:"Lianfeng Duan"},{id:"184768",title:"Mrs.",name:"Feifei",surname:"Zhang",slug:"feifei-zhang",fullName:"Feifei Zhang"},{id:"184769",title:"Prof.",name:"Limin",surname:"Wang",slug:"limin-wang",fullName:"Limin Wang"}],corrections:null},{id:"50432",title:"Metal Hydride-Based Materials as Negative Electrode for All- Solid-State Lithium-Ion Batteries",doi:"10.5772/62866",slug:"metal-hydride-based-materials-as-negative-electrode-for-all-solid-state-lithium-ion-batteries",totalDownloads:2031,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The recently developed metal hydride (MH)-based material is considered to be a potential negative material for lithium-ion batteries, owing to its high theoretical Li storage capacity, relatively low volume expansion, and suitable working potential with very small polarization. However, it suffers from the slow kinetics, poor reversibility, and unfavourable cyclability in conventional organic liquid electrolyte systems, which enormously limit its practical application. In this chapter, we describe an all-solid-state battery system consisting of MH working electrode, LiBH4 solid electrolyte, and Li metal counter electrode. The electrochemical properties of MgH2 and TiH2 composites are investigated, which showed much better performances using LiBH4 as solid-state electrolyte than using conventional organic liquid electrolyte.",signatures:"Liang Zeng, Koji Kawahito and Takayuki Ichikawa",downloadPdfUrl:"/chapter/pdf-download/50432",previewPdfUrl:"/chapter/pdf-preview/50432",authors:[{id:"17495",title:"Dr.",name:"Takayuki",surname:"Ichikawa",slug:"takayuki-ichikawa",fullName:"Takayuki Ichikawa"},{id:"181644",title:"Dr.",name:"Liang",surname:"Zeng",slug:"liang-zeng",fullName:"Liang Zeng"},{id:"185433",title:"Mr.",name:"Koji",surname:"Kawahito",slug:"koji-kawahito",fullName:"Koji Kawahito"}],corrections:null},{id:"50232",title:"Intercalation of Poly[Oligo(Ethylene Glycol) Oxalate] into Vanadium Pentoxide Xerogel: Preparation, Characterization and Conductivity Properties",doi:"10.5772/62441",slug:"intercalation-of-poly-oligo-ethylene-glycol-oxalate-into-vanadium-pentoxide-xerogel-preparation-char",totalDownloads:1656,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"We report, for the first time, the intercalation of poly[oligo(ethylene glycol) oxalate] (POEGO) and POEGO lithium salt (LiCF3SO3) complex (POEGO-LiCF3SO3) into vanadium pentoxide xerogel (V2O5nH2O). The effect of changing the polymer concentration on the interlayer expansion of the layered host was studied, and the optimal intercalation ratio was determined to be 1:2. The intercalates were characterized by powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and AC impedance spectroscopy.",signatures:"Evans A. Monyoncho, Rabin Bissessur, Douglas C. Dahn and Victoria Trenton",downloadPdfUrl:"/chapter/pdf-download/50232",previewPdfUrl:"/chapter/pdf-preview/50232",authors:[{id:"30882",title:"Prof.",name:"Rabin",surname:"Bissessur",slug:"rabin-bissessur",fullName:"Rabin Bissessur"},{id:"39937",title:"Dr.",name:"Douglas",surname:"Dahn",slug:"douglas-dahn",fullName:"Douglas Dahn"},{id:"184826",title:"Dr.",name:"Evans A.",surname:"Monyoncho",slug:"evans-a.-monyoncho",fullName:"Evans A. Monyoncho"},{id:"184827",title:"Ms.",name:"Victoria",surname:"Trenton",slug:"victoria-trenton",fullName:"Victoria Trenton"}],corrections:null},{id:"50575",title:"Highly Functionalized Lithium-Ion Battery",doi:"10.5772/63491",slug:"highly-functionalized-lithium-ion-battery",totalDownloads:2113,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Future energy demand is an important issue that requires consideration. Lithium-ion batteries (LIB) are one of the most popular types of rechargeable battery for portable electronic devices, such as mobile phones, cameras, and laptop computers, and have led to other applications being commercialized. Distributed power generation using renewable energy sources, such as solar photovoltaic (PV), can efficiently supply electricity according to on-site demand. If the electrodes of a LIB could function as a solar cell, the storage device could provide electricity without an electric power supply.",signatures:"Hiroki Nagai and Mitsunobu Sato",downloadPdfUrl:"/chapter/pdf-download/50575",previewPdfUrl:"/chapter/pdf-preview/50575",authors:[{id:"148259",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"},{id:"148920",title:"Dr.",name:"Hiroki",surname:"Nagai",slug:"hiroki-nagai",fullName:"Hiroki Nagai"}],corrections:null},{id:"50515",title:"Stress Analysis of Electrode Particles in Lithium-Ion Batteries",doi:"10.5772/62577",slug:"stress-analysis-of-electrode-particles-in-lithium-ion-batteries",totalDownloads:1804,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This chapter reviews several theoretical models that are used to compute the stress fields inside the electrode particles of lithium-ion batteries during discharging/charging process and provides a guideline for researchers to choose the appropriate models. Due to the limitation of the existing models, a general electrochemo-mechanical framework is presented to model the concentration and stress fields of the electrode during the phase transformation. The interaction between stresses fields and phase transformation is addressed, which is a novel discovery in the research of lithium-ion batteries. The electrodes with different sizes and geometries are compared. The structural and electrochemical advantages of hollow core-shell structure particles are highlighted. The present work could help to accurate predict stress profile in electrode particles with different sizes, geometries, and charging operations and contributes to finding the optimal electrode. Therefore, this chapter is helpful for the material and structure design of electrodes of lithium-ion batteries.",signatures:"Yingjie Liu and Huiling Duan",downloadPdfUrl:"/chapter/pdf-download/50515",previewPdfUrl:"/chapter/pdf-preview/50515",authors:[{id:"179267",title:"Dr.",name:"Huiling",surname:"Duan",slug:"huiling-duan",fullName:"Huiling Duan"},{id:"179433",title:"MSc.",name:"Yingjie",surname:"Liu",slug:"yingjie-liu",fullName:"Yingjie Liu"}],corrections:null},{id:"50130",title:"High-Voltage Cathodes for Na-Ion Batteries: Sodium– Vanadium Fluorophosphates",doi:"10.5772/62317",slug:"high-voltage-cathodes-for-na-ion-batteries-sodium-vanadium-fluorophosphates",totalDownloads:2737,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:"This chapter analyses the main advances made in the field of sodium–vanadium fluorophosphates as cathodes for Na-ion batteries and tries to clarify some discrepancies and common errors published about these compounds. The sodium–vanadium fluorophosphate family can be divided in two main members: Na3V2(PO4)2F3 (V+3 extreme phase) and Na3V2O2(PO4)2F (V4+ extreme phase). Na3V2O2x(PO4)2F3-2x, where 0 < x < 1 would correspond to intermediate V3+/4+ mixed valence phases. Among them, the V3+ extreme has demonstrated to be difficult to isolate, whereas the V4+ and mixed valence phases can be more easily prepared by different synthesis methods and from different vanadium sources. In terms of electrochemical performance, mixed valent compound provides good performance, with high specific capacity at moderate/high cycling rates, and long cycle life. The future perspectives for this family of compounds are discussed in terms of raw materials availability, price, and performance relative to other cathode systems for Na-ion batteries.",signatures:"Paula Serras, Verónica Palomares and Teófilo Rojo",downloadPdfUrl:"/chapter/pdf-download/50130",previewPdfUrl:"/chapter/pdf-preview/50130",authors:[{id:"74085",title:"Dr.",name:"Verónica",surname:"Palomares",slug:"veronica-palomares",fullName:"Verónica Palomares"},{id:"178437",title:"Dr.",name:"Paula",surname:"Serras",slug:"paula-serras",fullName:"Paula Serras"},{id:"184796",title:"Prof.",name:"Teofilo",surname:"Rojo",slug:"teofilo-rojo",fullName:"Teofilo Rojo"}],corrections:null},{id:"50411",title:"Vanadium Pentoxide (V2O5) Electrode for Aqueous Energy Storage: Understand Ionic Transport using Electrochemical, XRay, and Computational Tools",doi:"10.5772/62759",slug:"vanadium-pentoxide-v2o5-electrode-for-aqueous-energy-storage-understand-ionic-transport-using-electr",totalDownloads:2207,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this book chapter, we have discussed the recent results on vanadium oxide-based materials for energy storage applications. Primarily, we present the new results from our own research group on V2O5-layered nanostructures that are made from a facile wet chemistry synthesis. By fine control of the synthetic condition, the morphology, crystallinity, and layer-to-layer distance of V2O5 nanostructures can be tuned. Particularly, highly disordered V2O5 nanolayers which have an interplanar distance up to 1.1 nm, offering a fast transport of K-ion between layers in an aqueous electrolyte and hence the high-energy storage capacity and power density. Uniqueness of our results includes materials characterization and measurements using multiple spectroscopic tools, including synchrotron X-ray pair distribution function (PDF) analyses and in situ X-ray diffraction (XRD). Combined with half-cell and button-cell electrochemical measurements, the complementary results provide insight on the ionic transport of ions between the layers of V2O5 nanostructure.",signatures:"Daniel S. Charles and Xiaowei Teng",downloadPdfUrl:"/chapter/pdf-download/50411",previewPdfUrl:"/chapter/pdf-preview/50411",authors:[{id:"24478",title:"Prof.",name:"Xiaowei",surname:"Teng",slug:"xiaowei-teng",fullName:"Xiaowei Teng"},{id:"179204",title:"Mr.",name:"Daniel",surname:"Charles",slug:"daniel-charles",fullName:"Daniel Charles"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6426",title:"Titanium Dioxide",subtitle:"Material for a Sustainable Environment",isOpenForSubmission:!1,hash:"5626c0fe0b53330717e73094946cfd86",slug:"titanium-dioxide-material-for-a-sustainable-environment",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6426.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5376",title:"Applications of Laser Ablation",subtitle:"Thin Film Deposition, Nanomaterial Synthesis and Surface Modification",isOpenForSubmission:!1,hash:"7ea5104a7037f15e68fcc05be277fa37",slug:"applications-of-laser-ablation-thin-film-deposition-nanomaterial-synthesis-and-surface-modification",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5376.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"848",title:"Lithium Ion Batteries",subtitle:"New Developments",isOpenForSubmission:!1,hash:"004acb03be77776b99046c8ce75985e0",slug:"lithium-ion-batteries-new-developments",bookSignature:"Ilias Belharouak",coverURL:"https://cdn.intechopen.com/books/images_new/848.jpg",editedByType:"Edited by",editors:[{id:"68750",title:"Dr.",name:"Ilias",surname:"Belharouak",slug:"ilias-belharouak",fullName:"Ilias Belharouak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5186",title:"Energy Management of Distributed Generation Systems",subtitle:null,isOpenForSubmission:!1,hash:"8163ec5236e181f2439394b698a33a40",slug:"energy-management-of-distributed-generation-systems",bookSignature:"Lucian Mihet-Popa",coverURL:"https://cdn.intechopen.com/books/images_new/5186.jpg",editedByType:"Edited by",editors:[{id:"28225",title:"Prof.",name:"Lucian",surname:"Mihet-Popa",slug:"lucian-mihet-popa",fullName:"Lucian Mihet-Popa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1860",title:"Fourier Transform",subtitle:"Signal Processing",isOpenForSubmission:!1,hash:"b8f6c94b687a4f0351f2e8d961e35275",slug:"fourier-transform-signal-processing",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/1860.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"69",title:"Electric Machines and Drives",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"electric-machines-and-drives",bookSignature:"Miroslav Chomat",coverURL:"https://cdn.intechopen.com/books/images_new/69.jpg",editedByType:"Edited by",editors:[{id:"17405",title:"Dr.",name:"Miroslav",surname:"Chomat",slug:"miroslav-chomat",fullName:"Miroslav Chomat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3634",title:"Lithium-ion Batteries",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"lithium-ion-batteries",bookSignature:"Chong Rae Park",coverURL:"https://cdn.intechopen.com/books/images_new/3634.jpg",editedByType:"Edited by",editors:[{id:"7013",title:"Lithium-ion Batteries",name:"Chong Rae",surname:"Park",slug:"chong-rae-park",fullName:"Chong Rae Park"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5187",title:"Wireless Power Transfer",subtitle:"Fundamentals and Technologies",isOpenForSubmission:!1,hash:"2a20c1dde39792560dab996742f0e73c",slug:"wireless-power-transfer-fundamentals-and-technologies",bookSignature:"Eugen Coca",coverURL:"https://cdn.intechopen.com/books/images_new/5187.jpg",editedByType:"Edited by",editors:[{id:"5766",title:"Dr.",name:"Eugen",surname:"Coca",slug:"eugen-coca",fullName:"Eugen Coca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5835",title:"Development and Integration of Microgrids",subtitle:null,isOpenForSubmission:!1,hash:"f7816bff39f3662d16a4df91841e2b5b",slug:"development-and-integration-of-microgrids",bookSignature:"Wen-Ping Cao and Jin Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5835.jpg",editedByType:"Edited by",editors:[{id:"174154",title:"Prof.",name:"Wenping",surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67321",slug:"corrigendum-to-clinical-approach-in-the-diagnosis-of-acute-appendicitis",title:"Corrigendum to: Clinical Approach in the Diagnosis of Acute Appendicitis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67321.pdf",downloadPdfUrl:"/chapter/pdf-download/67321",previewPdfUrl:"/chapter/pdf-preview/67321",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67321",risUrl:"/chapter/ris/67321",chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]}},chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]},book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11557",leadTitle:null,title:"Chemometrics - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tChemometrics, generally speaking, is the art of extracting useful information from experimental data. Although chemometric techniques are specifically applied in analytical chemistry, they can also be exploited for solving both descriptive and predictive problems in other interdisciplinary fields (e.g. biomedical, forensic, food, and pharmaceutical sciences). This branch of science has been rapidly evolving over the last two decades due to the modernization of computer science and technology. It does create a favorable condition for broadening the application areas of chemometrics, in particular as big data sets become more and more commonly available at the laboratory level. Because it is a data-driven discipline, the development of chemometric methods can undoubtedly improve analytical methodology and instrumentation.
\r\n\r\n\tThus, this book is intended for post-graduate students and scientists, who want to constantly update their state-of-the-art knowledge on chemometrics. We welcome original, unpublished manuscripts (both research and review) with the emphasis on recent advances, new perspectives, and applications of chemometrics.
",isbn:"978-1-80356-153-0",printIsbn:"978-1-80356-152-3",pdfIsbn:"978-1-80356-154-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"222ff7b2f5bcb28e4e2a2612ba115b67",bookSignature:"Associate Prof. Vu Dang Hoang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11557.jpg",keywords:"Factorial Designs, Central Composite, Peak Shapes, Digitisation, Noise, Linear Filters, Correlograms, Principal Component Analysis, Factor Analysis, Univariate, Multiple Linear Regression, Neural Networks",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 1st 2022",dateEndSecondStepPublish:"April 8th 2022",dateEndThirdStepPublish:"June 7th 2022",dateEndFourthStepPublish:"August 26th 2022",dateEndFifthStepPublish:"October 25th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Vu Dang Hoang completed his Ph.D. in Pharmaceutics at the University of Strathclyde, UK, in 2005 and conducted Postdoctoral research at the École nationale d'ingénieurs des techniques des industries agricoles et agroalimentaire, France, in 2006. His research interests include physicochemical characterization of topical drug delivery systems and chemometrics-based methods for the analysis of drugs in pharmaceutical dosage forms and biological fluids.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",middleName:null,surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang",profilePictureURL:"https://mts.intechopen.com/storage/users/199907/images/system/199907.jpg",biography:"Vu Dang Hoang completed his Ph.D. in Pharmaceutics at the University of Strathclyde, UK, in 2005 and conducted Postdoctoral research at the Ecole Nationale d'Ingenieurs des Techniques des Industries Agricoles et Alimentaires, France, in 2006. He has been lecturing at the Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, Vietnam, since 2007. He became an associate professor in the field of drug quality control in 2015. His research interests include physicochemical characterization of topical drug delivery systems and chemometrics-based methods for the analysis of drugs in pharmaceutical dosage forms and biological fluids.",institutionString:"Hanoi University of Pharmacy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Hanoi University of Pharmacy",institutionURL:null,country:{name:"Vietnam"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6697",title:"Chemometrics and Data Analysis in Chromatography",subtitle:null,isOpenForSubmission:!1,hash:"513cf51c1f8851d3a5fde73daa281571",slug:"chemometrics-and-data-analysis-in-chromatography",bookSignature:"Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/6697.jpg",editedByType:"Edited by",editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6023",title:"Advances in Titration Techniques",subtitle:null,isOpenForSubmission:!1,hash:"524754234974864053665bb3d4a892a3",slug:"advances-in-titration-techniques",bookSignature:"Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/6023.jpg",editedByType:"Edited by",editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70237",title:"Emergence of Benzimidazole- and Strobilurin-Quinone Outside Inhibitor-Resistant Strains of Colletotrichum gloeosporioides sensu lato, the Causal Fungus of Japanese Pear Anthracnose, and Alternative Fungicides to Resistant Strains",doi:"10.5772/intechopen.90018",slug:"emergence-of-benzimidazole-and-strobilurin-quinone-outside-inhibitor-resistant-strains-of-em-colleto",body:'A sudden and severe outbreak of Japanese pear anthracnose (JPA) occurred in July 1999 on the Japanese pear cultivars “Housui” and “Niitaka” (
JPA was first reported in Japan by Kurosawa in 1910 [3]. He observed JPA in Fukuoka prefecture which is adjacent to Saga prefecture in June 1910. The infection caused black spots on the leaves and severe defoliation. Disease incidence and severity differed among varieties. It was severe on “Doitsu,” moderate on “Nijusseiki,” and mild on “Chojuro.” Morphological analyses indicated that the causal organism was
In 1974, severe JPA infestations on the “Yakumo” cultivar were reported in Fukushima prefecture of the Tohoku region, which is located in northeastern Japan. The outbreak caused severe defoliation. Ochiai et al. monitored the progress of the outbreak and isolated the causal organism [6]. Ochiai and Hayashi discussed the pathogenicity of isolated
In 1987 and 1998, severe incidences of JPA were reported in Kochi prefecture in Shikoku Island, located in southwestern Japan. Morita et al. reported the symptoms and transition of the outbreak. They documented the efficacy of thiophanate-methyl/maneb wettable powder (WP), maneb WP, and benomyl WP at controlling this disease [11]. There was also a report of an outbreak of moderately benzimidazole-resistant strains in 1998 [12].
Probably because JPA happened sporadically over a long time period and in small and isolated geographical areas, there was a very limited effort to identify fungicides that are effective against JPA. Therefore, no registered fungicides were available for JPA when the major JPA outbreak occurred in Saga prefecture in 1999.
In JPA-affected orchards in Saga prefecture, Japanese pear cultivars “Housui” and “Niitaka” developed minute black spots formed on the leaf laminae and petioles starting in mid-June. The leaves appear as though they have been stabbed with a fine needle. The perforations are visible when the leaves are held up to the sunlight. Since the lesions are very small, it is difficult for the grower to notice the initial disease symptoms unless the leaves are inspected very closely. The initially tiny black dots then expand into small curved black spots 0.5–1 mm in diameter. Certain lesions may develop into large blackish-brown spots ∼2 cm in diameter. By that time, the leaves rapidly turn yellow and abscise (Figure 1).
Black spots on anthracnose-infected petioles and leaves caused by
When the JPA outbreaks were observed in 1999, JPA caused a severe defoliation by mid-July and markedly reduced tree vigor. The intense defoliation caused new leaves to emerge soon after the event; however, these new leaves were quickly and fatally infested with JPA. In addition, defoliation triggered flowering in autumn which leads to a fewer number of flowers in the next spring, which caused serious yield loss in the following year (Figure 2).
Defoliation in summer and flowering in autumn caused by
Fungal cultures were isolated from the large dark brown lesions on leaves and smaller lesions on petioles of the ‘Housui’ and “Niitaka” Japanese pear cultivars. Morphologically, these isolates were identical. The isolates formed light salmon flesh-colored conidial masses on spore-inducing media (K2HPO4 1 g, MgSO4 0.5 g, peptone 5 g, lactose 10 g, agar 30 g, and distilled water 1000 mL) (Figure 3). Foliar spray inoculation of a conidial suspension (105 mL−1) on ‘Housui’ reproduced disease symptoms similar to those observed in the orchards (Figure 3). The inoculated fungi were re-isolated to confirm Koch’s postulates [1, 2].
Causal pathogen of Japanese pear (
The conidia are cylindrical with an average size of 15.8 μm × 5.0 μm (Figure 3). The mycelia from these isolates grow at 10–35°C with an optimum at 28°C. PCR using primer CgInt [13] to detect Cgsl disclosed a band at ∼450 bp similar to that obtained by using Cgsl as a control.
Based on its morphological characteristics, a similar foliar disease observed on “Kousui” in Akita prefecture in the Tohoku region of Japan was thought to be anthracnose caused by
In China,
The
On the other hand, the compendium makes no reference to foliar anthracnose in pear or Asian pear [21], which occurs on leaves and causes severe defoliation. Since this disease may be unique to Asian and Japanese pear, further investigations of its causal pathogens using molecular diagnostic tools are required.
Our aim was to select efficacious fungicides at the Fruit Tree Experiment Station in Saga prefecture [1, 28]. The JPA fungicide spray timing was the same as that for Japanese pear ring rot caused by
Benzimidazole fungicides, which inhibit β-tubulin assembly during mitosis, were introduced ca. 1970. This group includes thiophanate-methyl, carbendazim, and benomyl. Benomyl (methyl [1-(butylcarbamoyl)benzimidazole-2-yl]carbamate) was registered under the brand name Benlate (50% wettable powder) by DuPont in Japan in 1971. Sumitomo Chemical Co., Ltd. (Tokyo, Japan) acquired the business in 2002. Thiophanate-methyl, dimethyl 4,4′-(o-phenylene) bis(3-thioallophanate), was registered in Japan in 1971 under the brand name Topsin-M (70% wettable powder; Nippon Soda Co., Ltd., Tokyo, Japan).
Initially, benomyl and thiophanate-methyl were considered as broad-spectrum fungicides with low phytotoxicity, and these materials controlled the diseases caused by
Benomyl WP and thiophanate-methyl WP have been used since 1975 to prevent Asian pear scab (APS) caused by
Benzimidazoles are very effective at suppressing ring rot [38] and powdery mildew [39] caused by
We conducted preventive application screening using “Housui” leaves and using fungicides registered for Japanese pears in Japan. Fungicide suspensions were diluted to predetermine concentrations and sprayed onto the leaves on branches excised from the “Housui” tree. The leaves were air-dried and sprayed with a Cgsl spore suspension (∼105 mL−1). The inoculated leaves were maintained in humid conditions at 25°C for 2 days. The lesions on the leaves were counted 7 days after inoculation.
Propyneb WP, dithianon FL, fluazinam FL, organic copper FL, azoxystrobin FL, kresoxim-methyl DF, captan WP, and mancozeb WP had excellent preventive efficacies (Table 1). In contrast, the benzimidazoles, benomyl, and thiophanate-methyl which were previously considered effective against anthracnose caused by Cgsl [11] were significantly less efficacious against both strains than the best treatment (Table 1), indicating the presence of benzimidazole-resistant strains.
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | Rate applied (mg L−1)1 | Control (%)2 | |
---|---|---|---|---|---|---|
Strain C-17 | Strain C-25 | |||||
Benomyl | Benlate WP | 1 | 50.0 | 250 | 0 | 90.2 |
Thiophanate-methyl | Topsin-M WP | 1 | 70.0 | 700 | 6.8 | 93.6 |
Fluazinam | Frowncide SC | 29 | 39.5 | 198 | 100 | 100 |
Dithianon | Delan FL | M9 | 42.0 | 420 | 98.9 | 99.1 |
Propineb | Antracol WG | M3 | 70.0 | 1400 | 100 | 100 |
Kresoxim-methyl | Storoby DF | 11 | 50.0 | 250 | 100 | 98.6 |
Azoxystrobin | Amistar 10 FL | 11 | 10.0 | 100 | 99.6 | 99.8 |
Oxyquinoline copper | Quinondo FL | — | 35.0 | 350 | 98.5 | 96.8 |
Captan | Orthocide WP 80 | M4 | 80.0 | 1000 | 93.8 | 94.3 |
Captan/oxyquinoline copper | Oxyrane WP | M4/− | 20.0/30.0 | 400/600 | 74.1 | 70.1 |
Captan/benomyl | Caplate WP | M4/1 | 60.0/10.0 | 1000/167 | 86.8 | 91.6 |
Iminoctadine tris(albesilate) | Bellkute WP | M7 | 40.0 | 400 | 53.1 | 46.4 |
Mancozeb | Zimandithane WP | M3 | 80.0 | 2000 | 95.1 | 96.1 |
Hexaconazole | Anvil FL | 3 | 2.0 | 20 | 33.8 | 28.6 |
Difenoconazole | Score WG | 3 | 10.0 | 25 | 36.3 | 40.0 |
Fosetyl | Aliette WP | P7 | 80.0 | 1000 | 7.4 | 8.1 |
Mepanipyrim | Frupica FL | 9 | 40.0 | 200 | 0 | 0 |
Preventive effect of various fungicides for anthracnose on Japanese pear.
Standards on the use of pesticide in agricultural chemical regulation law of Japan.
Control (%) = (1 – average lesion number per leaf with fungicide application/average lesion number per control leaf) × 100.
Based on the results of the previous study (Table 1), we investigated the susceptibility of 122 Cgsl strains to benomyl. The strains were isolated from infected leaves collected in 1999 from nine orchards known to have frequent outbreaks of this disease. Before the experiment, the pathogenicity of these strains was confirmed by inoculation tests. The strains were divided into those with minimum inhibitory concentration (MIC) ≤ 0.39 mg L−1 and those with MIC ≥ 1600 mg L−1 (Table 2). The former were deemed susceptible. The latter were considered highly resistant and were prevalent at all nine orchards investigated (Table 2). These highly resistant strains were also highly resistant to thiophanate-methyl, which are very similar to benomyl in the mode of action (Table 3). When “Housui” leaves were sprayed with benomyl (250 mg L−1) and then inoculated with the highly resistant Cgsl strains, the treated leaves became severely diseased, i.e., benomyl did not suppress JPA (Table 4).
Source orchard | Variety | Number of strains | Number of strains for each MIC (mg L−1) range | ||
---|---|---|---|---|---|
0.78 | 25–100 | >1600 | |||
Minamihata-1 | Housui | 13 | 0 | 0 | 13 |
Minamihata-2 | Housui | 15 | 4 | 0 | 11 |
Minamihata-3 | Housui | 14 | 0 | 0 | 14 |
Minamihata-4 | Niitaka | 13 | 0 | 0 | 13 |
Okawa-1 | Housui | 10 | 0 | 0 | 10 |
Okawa-2 | Housui | 10 | 1 | 0 | 9 |
Okawa-3 | Housui | 12 | 0 | 0 | 12 |
Okawa-4 | Housui | 22 | 4 | 0 | 18 |
Okawa-5 | Niitaka | 13 | 3 | 0 | 10 |
Total | 122 | 12 (9.8)1 | 0 (0.0) | 110 (90.2) |
Benomyl sensitivity of
Values in parentheses are the percentage of the total for each category.
Strain | Location of isolation1 | Year of isolation | EC50 (mg L−1) values of | |
---|---|---|---|---|
Benomyl | Thiophanate-methyl | |||
SCG-25 | Minamihata town | 1999 | 0.151 | 0.151 |
SCG-30 | Ohkawa town | 1999 | 0.166 | 0.206 |
SCG-64 | Ohkawa town | 1999 | 0.155 | 0.186 |
SCG-08 | Minamihata town | 1999 | 485 | 2856 |
SCG-17 | Minamihata town | 1999 | 481 | 2386 |
SCG-72 | Ohkawa town | 1999 | 491 | 3211 |
Effect of benomyl and thiophanate-methyl on the mycelial growth of benzimidazole-sensitive (SCG-25, SCG-30, and SCG-64) strains and highly benzimidazole-resistant (SCG-08, SCG-17, and SCG-72) strains of C. gloeosporioides obtained from lesions of Japanese pear anthracnose.
Minamihata town and Ohkawa town are both in the Imari area of Saga prefecture.
Strain | Benomyl (250 mg L−1) sprayed trees | Control trees | Control (%)2 | ||
---|---|---|---|---|---|
Tested leaves | Lesions/leaf | Tested leaves | Lesions/leaf | ||
SCG-25 | 27 | 14.6a | 26 | 126.8a | 88.5a |
SCG-30 | 28 | 6.3a | 24 | 98.6a | 93.6a |
SCG-17 | 26 | 152.5b | 21 | 142.3a | 0b |
SCG-72 | 22 | 96.5b | 24 | 106.8a | 9.6b |
Control efficacy of benomyl against benzimidazole-sensitive (SCG-25 and SCG-30) strains and highly benzimidazole-resistant (SCG-17 and SCG-72) strains of
The Japanese pear variety “Housui” (2-year-old trees) was sprayed with wettable powder of benomyl and thoroughly dried. Conidial suspensions (approx. 105 mL−1) of each strain (benzimidazole-sensitive strains, SCG-25 and SCG-30; highly benzimidazole-resistant strains, SCG-17, SCG-72) were then inoculated. Seven days after inoculation, the development of symptoms was assessed. Values followed by different letter differ significantly in a multiple comparison based on the Tukey–Kramer HSD test (P < 0.05).
Control (%) = (1 – average lesion number per leaf on the trees with benomyl application/average lesion number per leaf on the control trees) × 100.
Benzimidazole-resistant Cgsl that occurred at a high frequency over a wide range in the Japanese pear-growing areas of Saga prefecture caused benzimidazoles to be no longer effective against JPA. In addition, benzimidazole-resistant Cgsl was also confirmed in Chiba, Oita, and Kochi prefectures. Only highly resistant strains were observed in Chiba prefecture [44], a mixture of highly and moderately resistant strains was detected in Oita prefecture [45], and only moderately resistant strains were confirmed for Kochi prefecture [12].
To determine the changes in detection frequency of benzimidazole-resistant strains, Cgsl strains from orchards where benzimidazoles were discontinued were challenged with benomyl in 1999, 2000, 2001, and 2004. The discontinuation of benzimidazole fungicides in each orchard was confirmed from fungicide spray records. The frequency of benzimidazole-resistant strain ranged from 81 to 88% during the study, and there was no indication of a reduction over time (Figure 4). Therefore, reintroduction of benzimidazoles to the pear-producing areas of this region was not recommended.
Change in detection frequency of highly benzimidazole-resistant strains after discontinuing benzimidazoles.
The proportion of benzimidazole-resistant Cgsl strains causing JPA did not decrease even 4 years after discontinuation. Pathogen populations in abscised leaves may be carried over to the following year, and pathogen latently infected with twigs may remain viable for several years [46]. Also, both the resistant and sensitive strains may have similar levels of competitiveness or fitness.
Impacts on the detection frequency of benzimidazole-resistant isolates after the discontinuation were highly variable for other crops and pathogens. The discontinuation of benzimidazole immediately reduced the ratios of highly resistant
To ensure effective pathogen control, it is important to know the length of time fungicidal efficacy persists after product application. Experiments were conducted to determine the period of residual fungicidal activity against JPA. Each fungicide was sprayed onto “Housui” trees in Japanese pear orchards where JPA had never been previously detected. Branches with their leaves intact were excised and brought to the laboratory. A conidial suspension (∼105 mL−1) was sprayed onto the leaves. Relative product efficacy was scored based on the number of foliar lesions. Duration of efficacy after product application was also evaluated. Two experiments, where each had different sets of treatments, were conducted in late July and mid-September 2002. In each treatment, 100 leaves from new branches were examined.
For the late July experiment, a mean % disease control (=% suppression of the mean disease incidence relative to the mean disease incidence of the positive control) of >70% was taken as the threshold of satisfactory disease control. The disease control sustainability was measured as days post-application. Dithianon FL and azoxystrobin FL continued to suppress disease onset for 14 days after application (Table 5). Satisfactory disease control was observed for fluazinam FL, kresoxim-methyl DF, and captan/benomyl WP until 7 days after application. However, at 14 days after the application, the disease control effect (%) dropped to 69 and 68% for fluazinam FL and captan/benomyl WP, respectively, and 15% for kresoxim-methyl DF. Thus, these fungicides, especially kresoxim-methyl DF, had comparatively shorter disease control durations.
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | Rate applied (mg L−1) | Changes of control (%)1 | ||
---|---|---|---|---|---|---|---|
7 days after | 14 days after | 21 days after | |||||
Azoxystrobin | Amistar 10 FL | 11 | 10.0 | 100 | 84 | 78 | 45 |
Kresoxim-methyl | Storobi DF | 11 | 50.0 | 250 | 75 | 15 | 20 |
Dithianon | Delan FL | M9 | 42.0 | 420 | 83 | 90 | 50 |
Fluazinam | Frowncide SC | 29 | 39.5 | 198 | 77 | 69 | 39 |
Captan/benomyl | Caplate WP | M4/1 | 60.0/10.0 | 1000/167 | 98 | 68 | 46 |
Residence period of sprayed fungicides against anthracnose on the Japanese pear “Housui” (1).
Control (%) = (1 – mean ratio of diseased leaves of trees with fungicide application/mean ratio of diseased leaves of trees without fungicide application) × 100.
In the mid-September experiment, dithianon FL presented with satisfactory disease control efficacy until 14 days after application as in the previous experiment (Table 6). The efficacies of the other fungicides were inferior to that of dithianon FL, and none of the treatment achieved the mean % disease control of >70%. Propineb WG showed no disease control efficacy whatsoever.
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | Rate applied (mg L−1) | Changes of control (%)1 | ||
---|---|---|---|---|---|---|---|
7 days after | 14 days after | 21 days after | |||||
Dithianon | Delan FL | M9 | 42.0 | 420 | 92 | 83 | 41 |
Fluazinam | Frowncide SC | 29 | 39.5 | 198 | 59 | 0 | 0 |
Captan/oxyquinoline copper | Oxyrane WP | M4/− | 20.0/30.0 | 400/600 | 67 | 57 | 0 |
Copper (II) sulfate | IC Bordeaux 48Q | M1 | 31.2 | 10,400 | 69 | 70 | 0 |
Propineb | Antracol WG | M3 | 70.0 | 1400 | 0 | 0 | — |
Residence period of sprayed fungicides against anthracnose on the Japanese pear “Housui” (2).
See Table 5.
The JPA pathogen propagates and infects during rainfall. The amount of rain determines the degree of attenuation of the fungicide spray on the pear leaves. Thus, the establishment of the rainfastness of various fungicides helps develop an efficient and successful disease control program.
Several fungicide treatments were tested on pot-grown “Housui” trees in 2002. One day after fungicide application, a rainfall treatment of 17 mm h−1 and 50 mm d−1 was conducted using an artificial rainfall machine (DIK-6000; Daiki Rika Kogyo Co., Ltd., Tokyo, Japan). The leaves were excised from each tree and inoculated with a pathogen conidial suspension (2 × 105 conidia mL−1 and 4.0 mL leaf−1) before treatment application, at 100, 200, 300, and 400 mm cumulative rain. The efficacy of the fungicide was visually assessed to estimate % disease control.
The level of JPA suppression was high when the leaves received no rainfall, resulting in 100% disease control (=no disease development). As expected, disease control efficacy decreased with increasing cumulative rainfall. For azoxystrobin FL and dithianon FL, the disease control was ≥70% at 200 mm cumulative rainfall after fungicide application (Figure 5). Fluazinam FL and kresoxim-methyl DF achieved ≥70% disease control at 100 mm cumulative rainfall, but the disease control efficacy fell to <70% at 200 mm cumulative rainfall. For captan/oxyquinoline-copper WP and captan/benomyl WP, the mean disease control efficacy was 90% and >60% at 100 mm cumulative rainfall but sharply declined to 0 and 23%, respectively, at 200 mm cumulative rainfall (Figure 5).
Reduction of the control effect of various fungicides on Japanese pear anthracnose associated with artificial rainfall after spraying; error bar, 95% confidence interval.
In the “Housui” orchard, an experiment was conducted over three seasons to determine the efficacy of preventive fungicide application against JPA. Two experiments were conducted in late June 2000. Trees were sprayed at 10- to 14-day intervals. When the cumulative rainfall after the previous application was >200 mm, the trees were immediately resprayed to compensate for the product washed off by the rain. Experiments were conducted in mid-June 2001 and mid-May 2002 using a slightly modified spray guideline. The treatments were applied either 20 days after the previous treatment or when the post-application cumulative rainfall was 200 mm. Several heavy rain events increased the cumulative rainfall to >200 mm, but all fungicide treatments were applied before the cumulative rainfall reached 300 mm.
As with the previous experiments, 70% control was set as the efficacy threshold. For all 3 years, preventive azoxystrobin FL and dithianon FL application provided >70% disease control (Table 7). Both treatments resulted in consistently high disease control efficacy as they did in the residual efficacy and rainfastness tests (Tables 5 and 6).
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | Rate applied (mg L−1) | Control (%)2 | |||
---|---|---|---|---|---|---|---|---|
In 2000 | In 2001 | In 2002 | ||||||
Experiment 1 | Experiment 2 | |||||||
Benomyl | Benlate WP | 1 | 50.0 | 250 | 3 | — | — | — |
Fluazinam | Frowncide SC | 29 | 39.5 | 198 | 75 | — | 85 | |
Dithianon | Delan FL | M9 | 42.0 | 420 | 82 | 99 | 93 | 95 |
Propineb | Antracol WG | M3 | 70.0 | 1400 | 80 | — | — | — |
Kresoxim-methyl | Storobi DF | 11 | 50.0 | 250 | 61 | 79 | 69 | 87 |
Azoxystrobin | Amistar 10 FL | 11 | 10.0 | 100 | 81 | 87 | 91 | 88 |
Oxyquinoline copper | Quinondo FL | — | 35.0 | 350 | 26 | — | — | |
Captan/benomyl | Caplate WP | M4/1 | 60.0/10.0 | 1000/167 | 65 | — | 72 | 67 |
Hexaconazole | Anvil FL | 3 | 2.0 | 20 | 29 | — | — | — |
Ratio of diseased leaves in control | 67.0% | 70.5% | 38.3% | 63.0% |
Kresoxim-methyl DF demonstrated >80% disease control efficacy in one of the residual activity experimental runs in 2000 and 2002, but the results were not consistent among three trials (Table 7). In the other trials, the mean % disease control of kresoxim-methyl DF varied from 15 to 75% in the residual efficacy test (Table 5), and the mean % disease control efficacy dropped very sharply to below 70% in the rainfastness test at 200 mm cumulative rain fall (Figure 5). Thus, the environmental conditions, especially the amount of precipitations, may negatively impact kresoxim-methyl DF to be effective.
Fluazinam showed good levels of disease control (75%) in this experiment (Table 7), but it did not perform well with the residual tests (Tables 5 and 6), and the mean % disease control dropped at 200 mm cumulative rainfall (Figure 5). A trend with propineb was similar where 80% mean disease control was observed in this experiment, but it did not provide any level of control in the residual efficacy test (Table 6). We need to investigate more to determine what created these differences.
The lack of disease prevention efficacy for benomyl WP was expected as benzimidazole-resistant strains were detected in this orchard (Table 7). The disease prevention efficacy of captan/benomyl WP was ∼70% in all 3 years, possibly because of benzimidazole-resistant strains and low rainfastness of captan, which is also shown in the rainfastness test (Figure 5). Thus, captan probably needs to be applied with a non-benzimidazole material, and if sprayed with captan alone, it should be applied using a 100 mm cumulative rainfall threshold.
Fungicide application on a 10- to 14-day schedule from the first cover until harvest is the main disease control method that growers use. JPA is very difficult to control after the leaves have been infected with it. Dithianon, fluazinam, strobilurin-quinone outside inhibitor (ST-QoI) fungicides, and captan/benomyl WP provide good disease control when they are applied preventively.
We evaluated fungicide efficacy against Japanese pear ring rot because spray application timing was the same as that for JPA [2]. The ST-QoIs azoxystrobin and kresoxim-methyl were highly efficacious against ring rot (Table 8). Captan/benomyl also showed high efficacy. In contrast, the efficacy of dithianon against ring rot was highly variable (from 100 to 0% control) during the years it was tested. Fluazinam provided unsatisfactory disease control efficacy against ring rot.
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | Rate applied (mg L−1) | Control (%)2 | ||
---|---|---|---|---|---|---|---|
In 2000 | In 2001 | In 2002 | |||||
Benomyl | Benlate WP | 1 | 50.0 | 250 | 32 | — | — |
Fluazinam | Frowncide SC | 29 | 39.5 | 198 | 30 | 37 | — |
Dithianon | Delan FL | M9 | 42.0 | 420 | 19 | 0 | 100 |
Kresoxim-methyl | Storobi DF | 11 | 50.0 | 250 | 39 | 70 | 54 |
Azoxystrobin | Amistar 10 FL | 11 | 10.0 | 100 | 47 | 73 | 100 |
Oxyquinoline copper | Quinondo FL | — | 35.0 | 350 | 0 | — | — |
Captan/benomyl | Caplate WP | M4/1 | 60.0/10.0 | 1000/167 | 17 | 69 | 78 |
Ratio of diseased leaves in control | 45.0% | 40.6% | 10.9% |
Before the 1999 JPA outbreak, the main disease to control in Japanese pear cultivation was Asian pear scab (APS). Sterol demethylation inhibitor (DMI), belonging to sterol biosynthesis inhibitors (SBIs), was the product most frequently used to control this disease. Iminoctadine tris(albesilate), captan/oxyquinoline copper, and captan were applied for APS a few times. Benzimidazoles were applied three to four times to control ring rot and powdery mildew. However, by 2000, benzimidazoles were no longer recommended in Japanese pear production due to its resistance issue. In their place, local systemic fungicides such as strobilurins (azoxystrobin and kresoxim-methyl) and protective fungicides such as dithianon and fluazinam were applied.
Dithianon FL, fluazinam FL, ST-QoI fungicides (azoxystrobin FL, kresoxim-methyl DF), captan/oxyquinoline copper WP, and captan/benomyl WP were effective against JPA, APS, and ring spot, and all except dithianon were efficacious against powdery mildew. Therefore, these materials were incorporated into the spray calendar with heavy reliance on DMIs, which were popular at that time. As a result, JPA incidence was drastically reduced.
Although Dithianon FL has high JPA control efficacy, it has a 60-day pre-harvest interval (PHI) in Japan. Thus, it cannot be used after mid-June which is a critical JPA control period. The PHI of fluazinam SC was 30 days, so it could be applied until mid-July. Captan/oxyquinoline copper WP has a very short PHI of only 3 days. On the other hand, it leaves visible residues on the fruit and may not be sprayed too soon before harvest.
In contrast, the ST-QoIs (azoxystrobin FL, kresoxim-methyl DF, and pyraclostrobin with boscalid WP in a pre-mix) showed excellent anti-JPA efficacy [28, 44, 54]. These fungicides have a 1-day PHI and can, therefore, be applied up until the day before harvest. Moreover, they leave no visible residues on the fruit. Consequently, the application frequency of ST-QoIs against JPA increased.
ST-QoIs or strobilurins were first used in the 1990s and became one of the most important fungicides of the past 25 years. They inhibit ubiquinol oxidation at the quinone outside (Qo) binding site on the cytochrome bc1 complex in the inner mitochondrial membranes of fungi [55]. At the time of introduction, ST-QoIs showed very high efficacy against many different pathogen-crop combinations; however, ST-QoI fungicides are highly prone to inducing resistance in target pathogens that can lead to reduced field efficacy. The ST-QoI resistance risk has been rated high by the Fungicide Resistance Action Committee (FRAC) [56]. ST-QoI-resistant strains have been detected in ∼60 fungal and oomycete pathogen species worldwide including powdery and downy mildews, gray mold,
In Japan, ST-QoI resistance has emerged in cucumber powdery mildew (
Over nearly a decade in the Saga and Oita prefectures, ST-QoIs were sprayed three to four times annually between June and early August as countermeasures against JPA and APS. That is, many growers heavily depended on ST-QoIs, especially late in the season because ST-QoIs are phytotoxic to Japanese pear leaves at their early growth stage. In addition, ST-QoIs were also highly efficacious against APS [78, 79].
The alternative material, thiuram FL, has a 30-day PHI; therefore, it cannot be used after mid-July. The other options, such as iminoctadine tris(albesilate)/captan WP, have a relatively shorter PHI (14 days), and captan WP has a 3-day PHI. Captan/oxyquinoline copper WP (3-day PHI), captan WP (3-day PHI), and iminoctadine tris(albesilate)/captan WP (14-day PHI) showed adequate efficacy against JPA [28, 44, 54, 80]. However, the ST-QoIs were preferred over these choices by growers as they were more effective than these; in addition, the common component of these materials, captan, tends to cause stains on the fruit.
As JPA became very prevalent in 2010–2011 in the Oita and Saga prefectures where above-mentioned spraying system. We assessed ST-QoI sensitivity in Cgsl isolates by placing mycelial discs on potato dextrose agar (PDA) containing 100 μg mL−1 azoxystrobin and 1000 μg mL−1 salicylhydroxamic acid (SHAM). Mycelial elongation was measured 4 days post-inoculation [81]. Isolates from Saga [80] and Oita [45] prefecture grew on the PDA containing azoxystrobin (Table 9, Figure 6).
Source orchard | Number of tested strains | Number of resistant strains1 |
---|---|---|
Imari district in Saga prefecture | 61 | 20 (32.8%)2 |
Hita district in Oita prefecture | 254 | 49 (16.2%) |
Azoxystrobin sensitivity of
Number of strains that grew on PDA with 1000 μg mL−1 SHAM and 100 μg mL−1 azoxystrobin cultured 4 days at 25°C.
Values in parentheses are the percentage of the resistant strains.
Effect of azoxystrobin on the mycelial growth of azoxystrobin-resistant and azoxystrobin-sensitive strains of
To determine the effect of ST-QoI pretreatment on JPA development, conidial suspensions were sprayed on “Housui” leaves previously exposed to azoxystrobin FL. The appearance of JPA lesions caused by the sensitive strain was nearly zero (99.6% control). In contrast, the two resistant strains induced many lesions, and there was a very low rate of disease control (Table 10).
Strain2 | Azoxystrobin (100 mg L−1) sprayed trees | Control trees | Control (%)3 | ||
---|---|---|---|---|---|
Tested leaves | Lesions/leaf | Tested leaves | Lesions/leaf | ||
1–7 | 5 | 0.2 | 5 | 56.8 | 99.6 |
3–1 | 5 | 24.8 | 5 | 26.8 | 7.6 |
3–2 | 4 | 5.6 | 4 | 16.3 | 65.5 |
Control efficacy of azoxystorobin against azoxystrobin-sensitive (1–7) strains and azoxystrobin-resistant (3–1 and 3–2) strains of
The Japanese pear variety “Housui” (2-year-old trees) were sprayed with wettable powder of azoxystrobin and thoroughly dried. Conidial suspensions (approx. 105 mL−1) of each strain (azoxystrobin-sensitive strains, 1–7; azoxystrobin-resistant strains, 3–1, 3–2) were then inoculated. Seven days after inoculation, the development of symptoms was assessed.
All strains was isolataed at Hita city of Oita prefecture in 2011.
Control (%) = (1 – average lesion number per leaf on the trees with azoxystrobin application/average lesion number per leaf on the control trees) × 100.
Products containing captan provide a sufficient level of disease control, but they blemish the fruit to reduce its quality. We investigated the application of spreaders such as Makupika (polyoxyethylene methylpolysiloxane 93.0%; Ishihara Bio-Science Co., Ltd., Tokyo, Japan) and Santokuten 80 (polyoxyethylene dodecyl ether 80.0%; Sumitomo Chemical Co., Ltd., Tokyo, Japan). We also tested the adjuvant squash (sorbitan fatty acid ester 70.0% and polyoxyethylene resin acid ester 5.5%; Maruwa Biochemical Co., Ltd., Tokyo, Japan). These agents render the spray spots inconspicuous by lowering droplet surface tension. All the three agents reduced the visibility of the captan residues on the plant surfaces. There is a concern that the addition of the spreader can decrease the amount of fungicide that attached to the host plant [82, 83]. However, the mixture had nearly the same efficacy levels as captan alone in the field trial [80].
By 2014, pear producers had fully recognized the presence of benzimidazole- and ST-QoI-resistant pathogen strains and stopped relying on ST-QoI to manage JPA. The current recommended JPA management protocol for Japanese pear is dithianon FL in early June; thiuram FL, captan/oxyquinoline copper, and iminoctadine tris(albesilate)/captan WP from mid-June to early July; and captan WP with a spreader several times after mid-July. The occurrence of JPA has abated as growers are now comparatively less dependent on ST-QoI fungicides [80].
We also advocate proper spray coverage. For example, we recommend every-row spray over alternate-row spray with an air-blast sprayer (Figure 7), because of better fungicide coverage achieved by the former. It has been shown in one of our studies that JPA is more effectively controlled when fungicides are sprayed onto all rows [84]. Moreover, infected and abscised leaves should be promptly removed from orchards to reduce the inoculum pool [85].
Fungicide application by air-blast sprayer in the Japanese pear orchard.
Our test results of 1999 and the data obtained at the experiment stations in other prefectures promoted the registration of additional fungicides to control this disease. In 2019, 11 products were registered for use against JPA in Japan (Table 11). This step provides a wider selection of fungicides to control or manage this disease.
Generic name | Trade name in Japan | FRAC code | Active ingredient (%) | LPHI2,4 | MNAPS3,4 | Rate applied (mg L−1)4 | Resistered year in Japan | References |
---|---|---|---|---|---|---|---|---|
Dithianon | Delan FL | M9 | 42.0 | 60 | 4 | 420 | 2003 | [28, 44, 54, 80] |
Kresoxim-methyl | Storoby DF | 11 | 50.0 | 1 | 3 | 250 | 2003 | [28, 54] |
Azoxystrobin | Amistar 10 FL | 11 | 10.0 | 1 | 5 | 100 | 2006 | [28, 54] |
Thiuram | Thionoc FL | M3 | 40.0 | 30 | 5 | 800 | 2008 | [44, 80] |
Thiuram | Trenox FL | M3 | 40.0 | 30 | 5 | 800 | 2008 | [44, 80] |
Pyraclostrobin/boscalid | Naria WDG | 11/7 | 6.8/13.6 | 1 | 3 | 34/68 | 2008 | [44] |
Captan/oxyquinoline copper | Oxyrane WP | M4/M1 | 20.0/30.0 | 3 | 9 | 400/600 | 2009 | [44, 54, 80] |
Captan | Orthocide WP 80 | M4 | 80.0 | 3 | 9 | 1000 | 2011 | [44, 80] |
Iminoctadine tris(albesilate)/captan | Dyepower WP | M7/M4 | 20.0/45.0 | 14 | 5 | 200/450 | 2012 | [44] |
Pyribencarb | Fantasista WDG | 11 | 40.0 | 1 | 3 | 133.3 | 2013 | [44] |
Captan/penthiopyrad | Fruitguard WDG | M4/7 | 70.0/7.5 | 3 | 3 | 700/75 | 2019 | — |
Registered fungicides for Japanese pear anthracnose in Japan.1
2019 confirmed on September 1, 2019.
Legal pre-harvest interval.
The maximum number of application per season.
Standards on the use of pesticide in agricultural chemical regulation law of Japan.
Pyribencarb (methyl{2-chloro-5-[(1E)-1-(6-methyl-2-pyridylmethoxyimino)ethyl]benzyl} carbamate) was formulated by Kumiai Chemical Industry Co., Ltd. and Ihara Chemical Industry Co., Ltd. in Japan. It is a novel benzylcarbamate-type QoI fungicide (BC-QoI) and is active against a wide range of fungal plant pathogens [86]. Pyribencarb is both preventive and curative [87], and its chemical structure resembles that of ST-QoIs such as kresoxim-methyl and azoxystrobin. However, it has a substitution of the carbonyl moiety on the benzene ring [88]. The binding site of pyribencarb on cytochrome b may be slightly different from that of the ST-QoIs [89].
Pyribencarb more effectively controlled ST-QoI-resistant gray mold isolates than other ST-QoI fungicides [90]. It also had relatively higher efficacy against ST-QoI-resistant
Since pyribencarb has an excellent effect on JPA [44], it has been recommended to use it in orchards where ST-QoI-resistant strains are present or ST-QoI effects are reduced. However, there have been no reports of the effects of pyribencarb in an orchard where ST-QoI-resistant strains exist. Moreover, the risk of fungal pathogen resistance development of pyribencarb is high [91]. Therefore, it is necessary to take careful approaches to prevent the similar mistake we made with ST-QoIs. The number of pyribencarb application must be limited, and the application should be mixed with another broad-spectrum protective fungicide with a different mode of action.
Pyribencarb may be used less than three times per season on Japanese pear (Table 11). The Japan Fungicide Resistance Action Committee (Japan FRAC) guidelines recommend that QoIs be used up to twice annually on Japanese pear [92]. But we believe that it should be used only once between mid-June and early July which is the most critical disease control period of JPA and JPS for proper fungicide resistance management. In addition, pyribencarb must always be co-applied with the protective (multisite) fungicide such as captan, thiuram, iminoctadine tris(albesilate), and iminoctadine tris(albesilate)/captan to reduce the resistant risk. This treatment protocol may enhance disease control efficacy, lower pathogen density, and delay resistant strain development. In the future, comparative field trials would help validate the efficacy of the current treatment recommendations.
Fludioxonil is a benzodioxole that affects the signal transduction in the target fungal pathogen. These agents are also known as phenylpyrroles or PP-fungicides. According to the FRAC, the risk of pathogen resistance to this chemical class is low to medium [91]. Fludioxonil had extremely strong efficacy against JPA [93]. As of 2019, however, it has not yet been registered for use on Japanese pear in Japan. Data from field trials are being compiled for fludioxonil registration, and it is hoped that products containing fludioxonil will soon be available so that they may be integrated into our JPA management strategies.
Highly efficacious fungicides tend to be used the most. At the same time, the risks of fungicide-resistant fungal pathogen strains against the heavily used fungicide increase with the usage in the field. Fungicides that are prone to inducing pathogen resistance must be used properly by targeting the correct pathogens, applying the agents only at the appropriate times during the season, reducing application frequency, and mixing with other fungicides that are at low risk of inducing pathogen resistance. A mathematical model-based study suggested that the efficacy of high-risk fungicides may be substantially extended if they are mixed with low-risk fungicides [94]. This hypothesis should be validated by field trials, which are costly, time-consuming, and labor-intensive. On the other hand, these field-based data are invaluable in the development of effective measures against fungicide-resistant plant pathogens.
We conceptualized a series of efforts to develop the best plant disease control practice at agricultural sites as an evidence-based control (EBC) [95, 96, 97, 98, 99, 100, 101, 102, 103]. The management of plant diseases needs to be developed based on the accumulated evidences, but not anecdotal observations. To gather useful evidence, the data need to be collected from the combination of field, controlled environment, and lab experiments, and then these data must be statistically validated to come up with repeatable and reliable information.
In this chapter, we demonstrated the use of EBC using the development of JPA management strategies against recent outbreaks as an example. JPA outbreak in 1999 and a detection of benzimidazole-resistant Cgsl strains [1, 28] triggered us to investigate alternatives such as fungicides ST-QoI, dithianon, and fluazinam, which were registered for use on Japanese pear [1, 2, 28, 54]. We also established the residual efficacy and rainfastness of these alternative fungicides [54]. We also obtained the evidence of long-term retention of benzimidazole-resistant strains in the field. Based on these results, an effective fungicide spray program without the use of benzimidazoles was established, and JPA was effectively controlled 2 years after the outbreak [1, 28].
However, JPA became conspicuous in 2006 and 2007 in two geographically distant regions, Kyushu (southeast) and Kanto (central). Outbreaks were reported in Oita prefecture in the Kyushu region in 2006 [45] and in Chiba and Kanagawa prefectures in the Kanto region in 2007 [44, 104]. Also a resurgence of JPA was reported around 2011 in Saga prefecture where the 1999 outbreak occurred [80]. Excessive dependence on ST-QoI fungicides induced ST-QoI-resistant Cgsl strains in Oita and Saga prefecture, which contributed to these new outbreaks [45, 80]. In Chiba and Kanagawa prefecture, the occurrence of QoI-resistant strains has not been investigated, but we suspect that the situation is very similar to Oita and Saga prefectures.
In order to increase the number of options to be used in late-season JPA management, we tested the efficacy of adjuvants to reducing visible chemical residues on fruits. Information from these experiments enabled us to determine appropriate and effective combinations of fungicides against JPA without relying on either the benzimidazole or ST-QoI. We intend to keep conducting similar holistic evidence-based approaches to develop effective management strategies for other pathosystems.
We appreciate the collaboration and information exchange with Dr. Yohei Kaneko of the CAFRC. In addition, we sincerely thank Dr. Kayo Manabe of Nippon Steel Eco-tech Corporation for assisting in the collection of references and Ms. Noriko Orihara and Mr. Makoto Suzuki of the Kanagawa Agricultural Technology Center for providing photos of JPA outbreak. Moreover, for implementation of the study, we sincerely thank the staff members of the Plant Protection Laboratory of Saga Prefectural Fruit Tree Experiment Station including Ms. Hisako Fukumoto, Setsumi Morinaga, and Hatsumi Nakayama and students of Saga Prefectural Agricultural College Fruit Tree Branch School.
A safe, reliable, and sustainable operation of an industrial plant is in the best interest of all the involved stakeholders. The sizes of modern hazardous process plants as well as their potential failure consequences can be enormous. One major challenge in their integrity risk management are the multiple equipment units experiencing specific operational and damage conditions, that is, one storage tank’s corrosion damage is different from another due to different contents, one truck chassis cracking progress is different from another due to traveling on different roads, and one crane structure fatigue damage is different from another due to different histories of these cargo cycles. These examples explain the term “individual” equipment and render a batch reliability data or, especially, the “big data” not well applicable to them due to unit-specific load and damage spectra acting in a real operation.
Historically, the first approach to safeguarding equipment integrity was reactive: failures were rectified as they happen, but it was not a responsible strategy for hazardous equipment. A transition to proactive maintenance occurred over the automotive industry development, as we are familiar from the time/mileage-based car servicing. That solution obviously improved the reliability, but its cost control efficiency in practice can vary. In parallel, statistical quality control principles were implemented in manufacture to ensure a uniform endurance of production batches and facilitate the reliability theory [1] applications.
In contrast, there was not such a scientific breakthrough in the domain of static equipment, which is hardly maintainable or replaceable, nonredundant, and not suitable for collecting failure statistics due to high consequences thereof. The static equipment integrity is traditionally addressed via time-based (fixed interval) diagnostics, often using visual in-service inspections, as in the oil and gas industry. In this way, an inspector takes responsibility for the equipment fail-safe operation during a future fixed term, while no in-depth analysis is actually done for a scope damage potential (mostly a form of corrosion and cracking or, more occasionally, metallurgical changes and material properties degradation).
The potential of missing or misinterpreting a damage condition was effectively alleviated by adopting the risk-based inspection (RBI) principles two decades ago. The main idea of RBI is proportioning the risk control efforts to the individual risk levels, that is, prioritizing the equipment units for reinspections according to their relative risks across the plant. But how to measure risk levels without excessive analysis budgets in a context of a large plant? The widely adopted robust solution is the semiquantitative (Semi-Q) RBI, which uses corporate risk matrices to unify and compare relative failure risks unit by unit:
where LoF is the likelihood of failure and the CoF is the consequence of failure.
The size of the risk matrices is usually 5×5, and the LoF and CoF enter Eq. (1) as dimensionless multipliers ranging from 1 to 5; thus, the product risk varies from 1 to 25. CoF ratings are mapped from considering safety, financial, and environmental impacts of the unit failure, which are confidently assigned using plant operations’ personnel knowledge. LoF ratings are mapped from the anticipated “remnant life” (RL). In corrosion problems, RL is calculated from dividing a corrosion allowance CA by a corrosion rate CR:
It is paramount that the risk ratings from Eq. (1) are dimensionless, and their evolution in the future remains unknown. This simplification disables a numeric cost/benefit analysis in terms of dollars and fatalities, and, thus, the asset management aspirations. In turn, it provides no justification for implementing advanced nondestructive testing (NDT) tools, as the figures entering Eq. (2) are available from basic and low-cost ultrasonic thickness (UT) gauge inspections. A numeric comparison of risk control options is not supported either.
Other fitness-for-service (FFS) problems [2], such as fatigue life, crack propagation intervals, tolerance to mechanical defects and imperfections in a wide spectrum of stress, and environmental conditions, all involve some form of stress field measurement or modeling. Stress modeling can be done using finite-element analysis (FEA), with an added benefit of reducing an uncertainty in stress concentration factors (SCF) and of performing a relatively quick analysis even for very complex geometries. But again, FFS and FEA studies often output constant figure “remnant lives”; thus, the above limitations apply.
As a matter of big picture, there are many advanced integrity assessment technologies developed to date, but they are not well aligned to each other or to the common umbrella of the asset management concept [3], by the major reason of providing single-figure outputs. Namely, a single-figure “remnant life” does not exist. What exists in reality is an individual probability of failure (PoF), which grows over time due to the mechanical damage accumulation. This applies to corrosion, fatigue, and other mechanical strength problems. Next examples show how a simple transition from the single figure to the PoF(
Over the past century, machinery has become much more powerful and high speed. More power leads to more energy losses, which are dissipated mostly in the forms of heat, vibration, and noise. Mechanical excitation from reciprocating machinery is not the only vibration source in a modern plant. Acoustically induced vibration (AIV) and flow-induced vibration (FIV) also occur in power circuits of compressors and pumps. An excellent overview of these vibration mechanisms is given in the UK Energy Institute Guidelines [4]. FIV and AIV often occur at no flow piping branches, such as small bore fittings (SBF) (Figure 1), designed for process probes, ancillary access, or for draining and venting purposes.
A small bore fitting (SBF) and its FEA model.
Real-life case: High vibration levels were measured on SBFs of 11 compressor pulsation bottles during a gas plant commissioning. AIV velocities of up to 29.5 mm/sec root mean square (RMS) at 150 Hz were recorded using portable vibration equipment. These figures were screened using the chart of [4] and, accordingly, classified as a “concern” region. The commissioning was continued, and all 11 pulsation bottles failed within 500 hours (Table 1).
Unit | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
TTF [hours] | 341 | 382 | 188 | 385 | 373 | 505 | 449 | 290 | 50 | 299 | 455 |
SBF failure statistics; TTF stands for time to failure.
In this example, the SBF tends vibrating at its natural frequency about the zero mean (M) level harmonically, and its displacement peaks follow the Gaussian probability distribution. The RMS vibration displacement (of 31 micron here) is equal to one standard deviation (SD) of this random displacement. This displacement can be converted into the weld root bending stress amplitude (see the red spot in Figure 1) even manually—using simple beam theory of materials strength in view of this particular geometry simplicity. The nominal stress amplitude of 12.2 MPa RMS was estimated, and the whole stress spectrum was reconstructed analytically to obey a zero-mean Gaussian law having this very SD value.
The nominal bending stress formulation is compatible with the BS 7608 [5] standard material fatigue data (category F), which data were formerly obtained from large-scale testing or real weld details. Other standards (ASME VIII [6] and EN 13445 [7]) require more complex stress formulations, which would normally involve finite-element analysis.
In the risk owner’s context, the problem is: “How long will it last?” Answers can vary:
Using constant stress amplitude (such as 1·SD, 2·SD or 3·SD) with single-figure standard fatigue data is here typical, but an incorrect approach. Material fatigue analysis does not tolerate simplifications and/or factors due to the high nonlinearity of the fatigue life in function of the stress level. If a structure is subjected to a spectrum of stresses, then each tower of the stress histogram has to be input into the fatigue analysis, and the total damage should be calculated as a sum of contributions from each tower according to the Miner’s rule [see Eq. (4)].
Using the whole stress spectrum (as suggested just above) is a step forward indeed, but in conjunction with a single-figure fatigue strength value, it will lead us to the same pitfall: a single-figure remnant life output with an unknown risk evolution in time. The solution is found in the fatigue damage physics: Material strength is a random variable statistically independent from the live stress spectrum it experiences, as illustrated by the two probability density functions (PDFs) in Figure 2. This simple schematic of the load and resistance interaction can be found in reliability theory textbooks (such as [1]) and is often called “bell shape” curves.
Since these two variables,
In this example, the reconstruction of the Gaussian stress spectrum enabled the use of the whole red “camelback” shape from Figure 2. The spread of fatigue strength properties is naturally available from specimens testing data and manifests itself as a change in a fatigue curve position as the number of standard deviations (SDs) around mean (M) is varied. Thus, replacing the green shape in Figure 2 by a histogram of discrete
The above solution for the analysis upgrade is not only reflecting the damage physics more precisely (than a “single-figure” route), but also enables seamless cost/benefit considerations made from converting the PoF(
According to Figure 2, the stress histogram was used with fatigue curves at seven (M ± i·SD) levels of the weld detail fatigue strength results with the output shown in Table 2.
Some final remarks to this study can also be useful for other practical applications:
Particulars of fatigue methodologies vary across the standards, as shown on the right in Figure 3. A benchmarking study has been done for this problem and published on the ResearchGate network [9]. It has concluded that the BS 7608 [5] standard in conjunction with its simple input data requirements performed best in this particular problem, showing slightly conservative outputs. Notably, if two standards output different figures, then one would be closer to the reality and another further away from it. The benchmark in Figure 3 quantifies this example effect. The reasons for fatigue methodology differences across similar application domain standards were earlier investigated in yet another ResearchGate paper [10].
The mean time to failure (TTF) in this example is 338 hours at 150-Hz frequency, that is, 1.8×108 stress cycles, or a “gigacycle fatigue” (GCF) regime. The term “gigacycle” was introduced by the fundamental research published in [11, 12]. Its major conclusion was that a “
“Bell shape” curves showing the product of probabilities.
SBF-estimated PoF(
BS 7608 | 1.4% | 2.3% | 16% | 50% | 84% | 97.7% | 98.6% |
---|---|---|---|---|---|---|---|
Predicted | 29 | 61 | 112 | 219 | 431 | 982 | 2276 |
Example of PoF(
Strain gauges [13] (left in Figure 4) can be attached to structures to record mechanical strains and further convert them into material stresses. This technique provides the most reliable information on the live stress spectra in real operation of industrial equipment. Care should be taken to ensure that the recorded process is representative of the dominant operation.
Strain gauges attached to a pressure vessel nozzle and its FEA model.
This real-life example deals with temperature- and pressure-induced stresses in a glycol pump pulsation dampener nozzle. The pump run-up cycle stresses were strain gauged in a typical pump “mission,” as shown in Figure 5.
Nozzle stresses recorded during the glycol pump run-up cycle.
Accordingly, the bending stress range of up to 56 MPa occurs in each run-up/shut-down cycle due to the increase in pressure by 112 barg and the piping heating up from 27°C to 70°C, which is representative for this particular plant process. There is one major stress cycle of this magnitude occurring during each run-up event; thus, the stress spectrum (Figure 2) collapses into a single vertical red line in lieu of the whole red bell shape
Statistical variation of the material (SA 106 B) properties still needs to be considered. This is done similarly to the previous example via usage of fatigue curves corresponding to varying probability levels of the material fatigue strength (green vertical lines in Figure 2).
One nuance here is that strain gauges cannot be positioned exactly on stress “hot spots” as the latter usually occur at structural discontinuities visible in Figure 4. The pressure vessel design code EN 13445 [7] contains a provision for stress extrapolation in such cases using readings from two locations of strain gauges (or of an FEA mesh). The above measurement had only one strain gauge at each location; however, an FEA model of the dampeners (right in Figure 4) provided the figures of stress gradient along the nozzle length helpful for such an extrapolation. It is evident from Figure 4 that the stress concentration effect in this case does not exceed 1.25, and thus, the extrapolated stress range should not be more that 70 MPa (zero to peak). The weld detail classifies as the Category 32 (fillet and partial penetration welds) fatigue curve given in [7]. By varying the number of standard deviations (SDs) of the CAT 32 fatigue data, we get the varying number of cycles to failure straight away.
Since the frequency of the pump run-up/shutdown cycles is no more often than once a day, the number of cycles in Table 3 maps directly into the number of days, that is, 288 years at the lower bound failure probability. Hence, the equipment should not fail by the nozzle fatigue mechanism until the end of the offshore platform life, providing that the recorded constant amplitude conditions were representative for the whole operation of the pump.
EN 13445 PoF | 0.0135 (M – 3·SD) | 0.023 (M – 2·SD) | 0.156 (M – 1·SD) | 0.50 (M – 0·SD) |
---|---|---|---|---|
Cycles to failure | 1.07e5 | 1.24e5 | 1.5e5 | 1.2e6 |
PoF(
This example simplicity is due to the actual constant amplitude loading. It shows how the probabilistic integrity analysis unambiguously supports the asset management decision-making process. One remaining safeguard is performing a penetrant inspection (PI) of the nozzle to ensure that there are no cracks from other reasons (transportation, impacts, etc.).
This example illustrates a more complex situation where strain gauging provided a true stress spectrum for a mining truck tray hot spot. A total of 18 potential hot spots were strain gauged using triaxial rosettes during a typical truck mission involving: loading rocks in the tray, travel, emptying, and returning to mine site several times during a 7-hour-long shift. The most critical location of the tray was identified as a result and is shown in Figure 6.
Mining truck tray and its critical location identified from strain gauging.
Signal processing software was used for the analysis, and the output fatigue damage spectrum is shown in the left of Figure 7. The maximum principal stress range was used, as the fatigue crack growth is governed by the maximum stress component opening the crack.
Tray damage spectrum accumulated during one shift and the PoF(
The majority of fatigue damage in the left of Figure 7 occurred in the low-stress area; however, few spikes up to 290 MPa were recorded infrequently during the tray loading. The whole damage spectrum is a good illustration of a variable amplitude fatigue loading, and the damage introduced by each stress range
where
Unlike the previous example where the stress field extrapolation was required by the standard [7], the present example used BS 7608 fatigue data [5]. The philosophy of the latter is slightly different: real weld details were tested for fatigue with the output of nominal structural stresses. In turn, nominal stresses are used with the fatigue curve of [5], e.g., those stresses reasonably away from hot spots, as it was attempted to collect by placing rosettes at a small distance from the stress raisers (refer Figure 6). The BS 7608 detail Category G Class 5.5 fatigue data were used at two levels of its probability (Table 4).
BS 7608 PoF | 0.05 (M – 2·SD) | 0.50 (M – 0·SD) |
---|---|---|
Time to failure [hours] | 2374 | 5150 |
PoF(
Material testing data for the M and M – 2·SD levels can be found in technical literature most often, and these two points can be used to approximate the PoF(
The vendor’s guarantee on the tray life was 20,000 hours, and this worst-case location was recommended for reinforcement as an outcome from the above analysis. A self-explanatory picture of the PoF(
The term fitness for service (FFS) is used where damage in excess of a design tolerance has already been found in the equipment, and this analysis aims at replying two questions:
How critical is the defect at the moment of its characterization?
How long will that equipment last in view of this defect future growth?
The first question triggers a pass/fail or a screening-type output, and the second drives a fixed “remnant life” figure in many studies. While the FFS methods do use empirical methods (such as crack growth laws), applications of FFS analysis are unfortunately narrow. This is mostly due to their complexity and timing, while risk owners need prompt decisions in such critical situations. The same upgrade idea can be used to output the damaged equipment PoF versus time and add more value through visualizing the risk evolution.
Port cranes (left in Figure 8) showed three failures by fracture of the boom top shelf (right in Figure 8), which resulted in catastrophic consequences. Since then, the manufacturer has reinforced the boom design. However, a life extension decision was required in the late 1990s, and that decision needed a scientific substantiation in view of potential failure implications.
Port crane structure and an FEA model of its cargo boom.
As it was mentioned in the introduction, cranes are highly individual structures in the sense of their loading, and a screening using a conventional fatigue theory showed that a “generic” port crane has a life expectancy of 25 years ± 30 years spread, which outcome is not practical.
The solution was in adopting the damage tolerance approach: cracking inspections to be implemented at individual intervals. If cracks are not found, then it is assumed that a crack of a nondetectable length (less than 5 mm) is nevertheless present. A life extension is then warranted for a safety factored period needed by that crack to grow to a critical size. This scenario required only basic visual inspections, but had a good potential to control the risk. An earlier application of a similar method for bridges life extension can be found in [15].
The relevant science apparatus is the fracture mechanics empirical laws of crack growth detailed for example in the BS 7910 FFS standard [2]. Since this theory is a rather uncommon specialist knowledge, a simplistic introduction follows here.
In function of the material, temperature, and the strain rate, there is a variable-size plastic zone at a crack tip. Thus, the stresses there are singular, and the fatigue theory term “stress range” is not straight applicable to predict the crack growth rate. Instead, a stress intensity factor (SIF) range
where
Cracks grow nonlinearly; they accelerate as they grow starting from microns per cycle and ending with a catastrophic growth rate. The empirical Paris law approximates this process:
where the left-side derivative is the crack growth rate,
Using mathematical transformations, the system of Eqs. (6) and (7) yields the crack length increase (from size
Eq. (8) is suitable for simulating the crack growth cycle by cycle using the Monte Carlo method. Nuances are numerous, but two of them are sometimes overlooked in practice:
Cracking often initiates in heat-affected zones (HAZ) of welds, where residual tensile stresses originate from welding and do affect the crack tip opening.
Structural stress gradients affect the nominal stress range
To include these stress gradients, a cycle-by-cycle Monte Carlo simulation has been performed, and the results compared with the output of the simplified equations below, which estimate the total (e.g., integral) number of stress cycles
where
where
The Monte Carlo validation proved Eqs. (9) and (10) being correct and underestimated the crack propagation life by some 30% compared to the stress gradients included. The equivalent nominal stress range
Crane boom PoF(
Now, let us enrich this research project from the early 2000s by considering two probability levels of the steel fracture resistance parameters
P(fracture properties) | 5% (original study) | 50% (present study) |
---|---|---|
5.97e–11 | 1.44e–14 | |
2.25 | 4.72 |
Carbon Steel (St38b2) fracture resistance parameters at two levels of their probability.
The account of material properties variation also gives an order of magnitude change in life predictions, resulting in 112 shifts using the mean properties, as opposed to 22 shifts resulted from the lower bound data (taken for the worst-case cargo cycle—the brown curve in the left of Figure 9). Similarly, manual fitting of an S-shaped curve to these two data points produces a smooth PoF(
Multiplying the PoF(
Getting back to the FFS scope of problems [2], in majority of cases, these are:
Fatigue and crack propagation governed damage (addressed above)
Creep (empirical analysis apparatus generally similar to the present fracture mechanics example, which is suitable for a similar probabilistic analysis approach)
Corrosion and/or erosion driven material wastage (discussed in next section)
Gross defects affecting the distribution of loads and strains (modeled by FEA and then analyzed versus operational stress spectra similarly to examples in Section 3).
Thus, the majority of operational damage cases can be quantified using the PoF(
The problem of corrosion failures, surprisingly, is the most technically challenging for estimating the PoF(
The most natural and straightforward corrosion risk analysis methodology was outlined in the introduction to this chapter and is called “Semi-Q” risk-based inspection (RBI) planning. It is very robust for large plants and does output a relative risk ranking. However, the dimensionless risk levels are not aligned with a numeric cost/benefit analysis and personnel safety demonstration in this context and, thus, require an upgrade.
Another popular RBI methodology API RP 581 (refer [16] for technical background) is used in most RBI software. For a simplistic explanation, their POF values originate chiefly from
where
The meaning of
The recent API 581 editions change from second to third refined the
using generic constant frequencies
using a single “worst-case” corrosion location, thus neglecting the rest of them.
The latter is a clear indication of distorting an actual PoF because a pool of thickness readings did contain the intrinsic corrosion distribution information. This information cannot be restored if it was collapsed into a “worst-case” data point; hence, an analysis done from a single location will not produce a true PoF, as one of probabilistic distributions was ignored.
Quite apart stands the DnV-RP-G101 [17] RBI methodology, which extensively uses PoF terms for age-related (time-driven) and non-age-related (process-parameter-driven) damage mechanisms. The terms are linked to the quantitative consequence assessment, and three levels of assessment detail are recognized too. One major simplification, again, is using generic PoF varied by a damage mechanism type there. PoF data in [17], thus, enables PoF estimates with no inspection data involvement whatsoever. This is useful for design, but quite confusing for assessment purposes. We observe the same attempt of generalizing failure probabilities for individual equipment and neglecting the true spatial distribution the damage. Hence, same as above pitfalls 1) and 2) apply in the DnV-RP-G101 method too.
Perhaps, the most comprehensive statistical treatment of corrosion data is outlined in Appendix B of the Nonintrusive Inspection guideline DnV-RP-G103 [18]. This guideline resulted from the HOIS Joint Industry Project to assist implementation of advanced NDT tools (such as large coverage corrosion mapping) in the oil and gas industry. It introduces the extreme value analysis (EVA) [19] applications to large samples of corrosion data. In brief, the data points
Finally, a “worst-case” reading is found from the survivor function at a target level of its occurrence probability, say 1%. Thus, the whole data are collapsed into a single point again.
Seemingly, there is psychological antagonism in such a scenario: advanced NDT providers aim supplying more and better data, but collapse it to a single value, as they are asked by the risk owner to produce a “worst location.” This is because RBI methods require a single location for a corrosion assessment, and thus, advanced NDT applications add little more value.
The solution proposed here (and previously reported at few industrial conferences) is using the same bell shape curves product principle (right in Figure 10) for corrosion risk assessments. In contrast to the above methods, it retains all the relevant inspection data points and uses the corrosion damage distribution “as is” (left in Figure 10), without any fixed value extrapolation or user factoring involved:
Product of probabilities in corrosion problems.
The brown points are the corrosion data “as measured” with a Gumbel distribution fitted (dashed line), and the green curve is the cumulative density function (CDF) of this individual corrosion distribution. The probability of failure in this case is also a product of two events:
The probability of failure at a certain thickness level is also equipment individual. It can be quantified as in the above examples or even more simplistically. The PoF in Eq. (14) is instantaneous at the moment of inspection. To assess the PoF(
A PoF(
Corrosion PoF(
A surprisingly common confusion is that inspections affect PoF or risks. This is not the case until actual risk controls have been implemented following the inspection and do physically minimize or mitigate risks, similarly to the resource restoration in the reliability theory [1].
The dashed-dotted line depicts the cost of all inspections done, totaled toward the end of equipment life, in function of the variable inspection interval (horizontal axis). The sum of the solid and dashed-dotted lines is the total cost (of risk and inspections), which has a minimum at 6 years since the last inspection here. It should be used to reinspect or set other relevant risk controls (replacement, barriers, and process changes), providing that they occur prior to the safety limit breach at 7.5 years in this example. Otherwise, the safety limit must prevail.
The cost/benefit plotting shown on the right of Figure 11 is especially useful for building effective asset management frameworks, as it facilitates an unambiguous budget allocation made from the numeric figures of risk exposure and their comparison with mitigation costs.
The above material illustrates an integrity analysis upgrade potential resulting from the new strategic premise that every operational integrity assessment should output PoF(
The asset management concept [3] offers a common umbrella for all integrity risk control decision-making, including the adoption of advanced condition monitoring (CM) tools and digitalization technologies on the basis of their cost and safety control efficiency. In turn, the latter is assisted by providing an adequate level of data analysis using the PoF(
The methodology is regarded complete as the following has been achieved to date:
The concept of estimating PoF(
The shown real-life examples of all the output predictions were consistent with operational experience and were well agreed upon by experienced professionals in this field, e.g., inspection and integrity engineers responsible for those particular problems troubleshooting. No artificial factors were used, but these studies have output very sensible figures. This reinforces the validity of the methodology.
The transition to the cost of risk and safety exposure tolerance was made using likely consequences of failure. Estimating CoF is usually done at ease by the relevant site personnel. A further refinement of CoF is feasible using a Layers of Protection Analysis (LOPA) if this is warranted by risk levels and control systems.
The rightful concept of risk-based integrity control was applied to all the studied problems. In other words, the level of analysis should be proportional to the problem criticality. The PoF(
The methodology also does not contradict with any modern inspection and risk analysis standards, but supplements their capabilities via more advanced data analysis and aligns the particular data collection and analysis apparatus with the asset management aspirations of cost and risk control.
The implementation of the method does not demand for an instant step change in condition monitoring tools, as wide spread technologies (spot check UT, strain gauging, and vibration accelerometers [13]) are sufficient to support its initial implementation as shown above. In turn, this implementation will provide a numeric cost/benefit basis for advanced CM tool implementation consideration.
The PoF(
Finally, the upgrade is not too cumbersome technically, as the most labor in static equipment operational integrity assessments is spent on measuring and modeling the damage phenomena, while the addition of multi-PoF analysis only requires repeating certain calculations few times and visualizing the new results.
And the way forward is obviously to expand trials of this methodology across industries, work through particular nuances where required, and validate its application benefits. The concept implementation now became feasible thanks to the cross-industry adoption of precise measurement techniques applicable to integrity problems, although not yet fully realized.
One misconception found in practice is applying design premises to operational integrity assessments. The “design life” concept has another purpose, and it is still open for further improvements [15] via evidential data. Reliable data originate from
To conclude, the following quote from Galileo Galilei outlines the general research concept eventually reinforced here: “
The author is sincerely grateful to his teachers who guided his work on the thesis (section 4.1). He also very much appreciates the hard work of field engineers, who were collecting the live data (Sections 2 and 3) during his times at SVT Engineering Consultants (Perth). The R&D work on implementing the PoF(
None exist.
The information in this chapter aims at highlighting a big picture of the probabilistic analysis process and its implementation potential made in a simple language. It does not show all the nuances or technical details of these examples. Since the scope problems are individual, the above data and simplified equations should not be applied to other individual equipment cases. We disclaim any liability resulting from an application of this information by others.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12142",title:"Prunus",subtitle:null,isOpenForSubmission:!0,hash:"30b850eaa9714914bf001664c9b324be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12142.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12146",title:"Cellulose",subtitle:null,isOpenForSubmission:!0,hash:"b1196cf20a9e42db795c2d647681aa9d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12146.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12147",title:"Abiotic Stress in Plants",subtitle:null,isOpenForSubmission:!0,hash:"f3d8c31029650b7ce536da7ab9d7a5a0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12147.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12148",title:"Cucurbitaceae",subtitle:null,isOpenForSubmission:!0,hash:"0029e5c84528142bf2eff0cbd5b14fa2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12148.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12149",title:"Solanum tuberosum",subtitle:null,isOpenForSubmission:!0,hash:"39bdc8ce8b54bc666a3ab765a29c6edd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12149.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12151",title:"Poultry Farming",subtitle:null,isOpenForSubmission:!0,hash:"acd89c676ce6c3da7af23d64e30828f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12151.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12154",title:"Organic Fertilizers",subtitle:null,isOpenForSubmission:!0,hash:"8634d6ecdb6fc207336d8b95a169e400",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12154.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12156",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"a97becd6aa14a480ce28c05a3116f639",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12156.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:68},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"252",title:"Digital Image Processing",slug:"physical-sciences-engineering-and-technology-robotics-digital-image-processing",parent:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:1,numberOfWosCitations:79,numberOfCrossrefCitations:46,numberOfDimensionsCitations:89,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"252",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3595",title:"Vision Systems",subtitle:"Applications",isOpenForSubmission:!1,hash:null,slug:"vision_systems_applications",bookSignature:"Goro Obinata and Ashish Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/3595.jpg",editedByType:"Edited by",editors:[{id:"131538",title:"Prof.",name:"Goro",middleName:null,surname:"Obinata",slug:"goro-obinata",fullName:"Goro Obinata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"358",doi:"10.5772/4994",title:"A Practical Toolbox for Calibrating Omnidirectional Cameras",slug:"a_practical_toolbox_for_calibrating_omnidirectional_cameras",totalDownloads:4405,totalCrossrefCites:16,totalDimensionsCites:22,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Davide Scaramuzza and Roland Siegwart",authors:null},{id:"370",doi:"10.5772/5006",title:"Stereo Vision Based SLAM Issues and Solutions",slug:"stereo_vision_based_slam_issues_and_solutions",totalDownloads:4816,totalCrossrefCites:11,totalDimensionsCites:13,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"D.C. Herath, K.R.S. Kodagoda and G. Dissanayake",authors:null},{id:"367",doi:"10.5772/5003",title:"Algebraic Reconstruction and Post-Processing in Incomplete Data Computed Tomography: from X-rays to Laser Beams",slug:"algebraic_reconstruction_and_post-processing_in_incomplete_data_computed_tomography__from_x-rays_to_",totalDownloads:3267,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Alexander B. Konovalov, Dmitry V. Mogilenskikh, Vitaly V. Vlasov and Andrey N. Kiselev",authors:null},{id:"352",doi:"10.5772/4988",title:"3D Cameras: 3D Computer Vision of Wide Scope",slug:"3d_cameras__3d_computer_vision_of_wide_scope",totalDownloads:4419,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Stefan May, Kai Pervoelz and Hartmut Surmann",authors:null},{id:"349",doi:"10.5772/4985",title:"ViSyR: a Vision System for Real-Time Infrastructure Inspection",slug:"visyr__a_vision_system_for_real-time_infrastructure_inspection",totalDownloads:2568,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Francescomaria Marino and Ettore Stella",authors:null}],mostDownloadedChaptersLast30Days:[{id:"364",title:"New Types of Keypoints for Detecting Known Objects in Visual Search Tasks",slug:"new_types_of_keypoints_for_detecting_known_objects_in_visual_search_tasks",totalDownloads:2159,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Andrzej Sluzek and Saiful Islam",authors:null},{id:"357",title:"Methods of the Definition Analysis of Fine Details of Images",slug:"methods_of_the_definition_analysis_of_fine_details_of_images",totalDownloads:2797,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"S.V. Sai",authors:null},{id:"349",title:"ViSyR: a Vision System for Real-Time Infrastructure Inspection",slug:"visyr__a_vision_system_for_real-time_infrastructure_inspection",totalDownloads:2568,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Francescomaria Marino and Ettore Stella",authors:null},{id:"362",title:"Omnidirectional Vision-Based Control from Homography",slug:"omnidirectional_vision-based_control_from_homography",totalDownloads:2122,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Youcef Mezouar, Hicham Hadj Abdelkader and Philippe Martinet",authors:null},{id:"367",title:"Algebraic Reconstruction and Post-Processing in Incomplete Data Computed Tomography: from X-rays to Laser Beams",slug:"algebraic_reconstruction_and_post-processing_in_incomplete_data_computed_tomography__from_x-rays_to_",totalDownloads:3267,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"3595",slug:"vision_systems_applications",title:"Vision Systems",fullTitle:"Vision Systems: Applications"},signatures:"Alexander B. Konovalov, Dmitry V. Mogilenskikh, Vitaly V. Vlasov and Andrey N. Kiselev",authors:null}],onlineFirstChaptersFilter:{topicId:"252",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:6,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:26,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/70237",hash:"",query:{},params:{id:"70237"},fullPath:"/chapters/70237",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()