\r\n\tThus, we call for research and review papers on the chemistry and physics of dyes, pigments, and their intermediates, including chemical constituents, spectroscopic aspects, surface, solution, crystal formation, photochemical, and ecological or biological properties. The book will be of interest to a wide variety of researchers worldwide whose work involves various fields of activity such as dyes and pigment synthesis, imaging, sensor, energy, medicine, polymers, food product, toxicological properties, etc.
",isbn:"978-1-83768-114-3",printIsbn:"978-1-83768-113-6",pdfIsbn:"978-1-83768-115-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"fcd069956c2e931195925b19a74ce9a3",bookSignature:"Dr. Brajesh Kumar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12081.jpg",keywords:"Heterocycles Pigments, Azo, Nitro, Indigo, Alizarin, Chromophores, Chromophores, Photochemical, Sulphonation, Diazotisation, UV-Vis Spectroscopy, Metal-Ligand",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"19 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Brajesh Kumar has worked as a faculty member in various universities in India, Ecuador, and South Korea. He has published numerous SCI/SCIE/Scopus research articles and is an active reviewer of more than 50 Journals. Dr. Kumar is a member of the American Chemical Society, the Indian Society of Chemists and Biologists, and the Indian Science Congress Association and holder of two registered patents. He is included in the top 2% of the scientist list prepared by experts at Stanford University,",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar",profilePictureURL:"https://mts.intechopen.com/storage/users/176093/images/system/176093.JPG",biography:"Dr. Brajesh Kumar is currently working as an Assistant Professor and Head in the Post Graduate Department of Chemistry, TATA College, Chaibasa, India. He received a Ph.D. in Chemistry from the University of Delhi, India. His research interest is in the development of sustainable and eco-friendly techniques for (a) nanoparticles synthesis and their applications for environmental remediation, (b) active films of organic solar cells, (c) nanomedicine, (d) sensors, (e) natural product extraction, purification, and analysis,(f) natural polymers, (g) peptide chemistry, (h) microwave and ultrasound-assisted organic synthesis and (i) organic synthesis. Dr. Brajesh Kumar has been credited for different national and international fellowships and he has also worked as a faculty member in various universities of India, Ecuador, and South Korea. He has also published numerous SCI/ SCIE/ Scopus research articles (h index = 28, Citations 2690) and is also an active reviewer of more than 50 Journals. He is also included in the top 2% of the scientist list prepared by experts at Stanford University, USA.",institutionString:"TATA College, Kolhan University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70125",title:"The Enteric Glial Network Acts in the Maintenance of Intestinal Homeostasis and in Intestinal Disorders",doi:"10.5772/intechopen.89170",slug:"the-enteric-glial-network-acts-in-the-maintenance-of-intestinal-homeostasis-and-in-intestinal-disord",body:'The enteric nervous system (ENS), also known as second brain, innervates our gastrointestinal tract from the esophagus to the rectum including the pancreas and gallbladder, controlling its functions. The ENS develops from the neural crest cells (NCCs). At the vagal (at the level of somites 1–7) and sacral (posterior to somite 28) regions of the anteroposterior axis, some of NCCs, the enteric neural crest cells (ENCCs), enter the rudimental digestive system, proliferate, and migrate to colonize the primitive gut [1].
The differentiation of enteric neurons starts prior to the enteric glial cells (EGCs). Behind the migratory wavefront, the first neurons arise at E10–E10.5 in the foregut level. Genes of multipotent ENCCs, such as Sox10, FoxD3, and P75, are downregulated, and cells begin to express specific neuronal markers, such as βIIItubulin, RET, HuC/D, and peripherin. Subsequently, at E11.5, the glial differentiation takes place, and the ENCCs downregulate RET expression, while markers such as Sox10, FoxD3, and P75 continue to be expressed. Additionally, other genes that are known to be specifically expressed in EGCs appear, including S100B, glial fibrillary acidic protein (GFAP), and proteolipid protein 1 (PLP1). The development of the mature ENS network is not complete at birth, and the neuronal differentiation is extended to up to 2 weeks after birth (for a detailed description of enteric neurons and glial cells development, [1]).
Initially, ENCCs migrate as intersections of narrow chains of cells. Later on, as development progresses further, these cells aggregate into numerous ganglia that are connected by neuronal projections and EGCs (Figure 1). The role of bone morphogenetic proteins (BMPs)-2 and (BMPs)-4 in the neural cell adhesion molecule (NCAM) regulation that are differentially expressed by the cells to form these ganglion-like aggregates is already known [2, 3, 4, 5, 6]. The growth factor endothelin3 (EDN3) is important to keep ENS progenitors cells in a proliferative state. It inhibits reversibly the commitment and differentiation of these cells, and in this way it is involved in the correct migration of enteric neural crest cells to colonize the gut [4]. Lack of EDN3 leads to aganglionosis of the distal bowel [5]. It is well known that thyroid hormone 3,5,3′-triiodothyronine (T3) plays an important role in CNS development, and also appears to play a role in the development of the ENS. In vitro, T3 inhibits cell proliferation and stimulated neurite growth of differentiating murine enteric neural crest cells [6]. But, interestingly, this work also showed that spheres of neonate mice ENS progenitor cells increased EDN3 expression by more than 3-fold after T3 treatment, demonstrating a likely crosstalk between these signalling pathways [6]. In the adult mammalian, the ENS is organized into the myenteric and submucosal ganglionated plexuses composed of neurons and EGCs and non-ganglionated plexuses, composed of EGCs that tightly follow neuronal projections that reach all regions of the intestines, including the mucosa. The myenteric plexus (or Auerbach’s plexus) is located between the outer longitudinal and circular muscle layers, and the submucosal plexus (or Meissner’s plexus) lies in the submucosal region (between the mucosa and the muscular layers) [1].
(A) Transverse section of mouse embryo gut at embryonic day (E)14.5 stained for the glial marker P75. The cells are not yet organized in ganglia. (B) Longitudinal muscle with the adherent myenteric plexus (LMMP) of adult mouse colon. The enteric glial network is evidenced by GFAP staining. Scale bars: 50 μm.
EGCs are distributed across all layers of the intestine and are currently classified into four different subtypes based on their location and morphology. Intraganglionic EGCs (type I) present numerous short and irregular processes and resemble the protoplasmic astrocytes of the central nervous system (CNS); the interganglionic EGCs surround neuronal projections that connect multiple ganglia (type II); the mucosal EGCs (type III) are found around neuronal projections located in the mucosal region and present long and branched processes; and intramuscular EGCs (type IV) are bipolar and elongated and accompany the nerve fibers that cross the muscle layers [7, 8]. In fact, their wide distribution reflects on their performance in different physiological aspects of the gastrointestinal (GI) tract. Indeed, EGCs were shown to participate in the homeostasis of the intestinal epithelial barrier (IEB), to coordinate the GI motility taking part in neurotransmission, and also to modulate inflammation and immune responses.
In the first studies about enteric glia, the ultrastructure of the glial cell of myenteric plexus was described as a small cell body with many processes. It was suggested that the star-like morphology, as well as the anatomical relation to neurons, resembles astrocytes from the CNS rather than Schwann cells [9]. Jessen et al. [10] showed that intraganglionic EGCs express the characteristic marker of an astrocytic cell, glial fibrillary acidic protein (GFAP), corroborating the assumption that ENS glial cells are analogous to CNS astrocytes [11, 12], although they have different embryological origins.
EGCs and astrocytes exhibit molecular similarities in their electrophysiological properties [13] and express the same group of proteins, including the GFAP [14], and the S100β-linked binding pathway [15]. However, not all properties of the EGCs are similar to astrocytes. They have different embryological origins, for example, astrocytes coming from neuroepithelium and EGCs from neural crest. During the embryonic stages, neuregulin signaling via the ErbB3 receptor is critical for the development of the EGCs, whereas astrocytes do not require such signaling [16]. Unlike astrocytes, EGCs do not express the protein of the aldehyde dehydrogenase 1 L1 (Aldh1L1) [8] but express the transcription factor Sox10 [17] and the protein PLP1, implicated in myelin production and most commonly found in oligodendrocytes and Schwann cells. In fact genic signature of EGCs seems to be more similar to that of oligodendrocytes and Schwann cells than to astrocytes [18].
Similar to astrocytes, EGCs interact with and modulate the performance of different cell types, as we will see throughout this chapter. In addition to interacting with neurons, EGCs establish multidirectional communication with other cell types, such as intestinal mucosal epithelial, muscle, mesenchymal, and immune cells [19].
Yet during development, EGCs begin to form a network of interconnected cells that permeate the entire gut (Figure 1).
Gabella noted that a striking feature of EGC is the presence of numerous intramembrane particles on its surface [20], and a small part are gap junctions. These intramembrane particles are believed to be hemichannels. It has recently been found that, as astrocytes, enteric glial hemichannels are connexin-43 (Cx43) compounds [21]. Cx43 hemichannels are Ca2+−permeable channels that are also controlled by Ca2+ [21].
Like astrocytes, activated EGCs have excitability mediated by transitory intracellular Ca2+ elevations, considered central to many functions. Most of the enteric glial receptors for neuroactive compounds are G-protein-coupled receptors, and most of these leads to activation of downstream effectors that elevate intracellular Ca2+. As mentioned by Gulbransen in his book (2014, p. 28) [22], being able to detect the increase in Ca2+ levels was essential to establish that neuron-glial communication occurs in ENS and to identify involved mediators. The study realized by McClain et al. [21] also showed the role of Cx43 hemichannels in the propagation of “calcium waves” through the enteric glia network and in the regulation of GI motility [21]. It was shown that glial “calcium waves” activated by extracellular ATP or ADP were disrupted by glial specific loss of Cx43 and result in aberrant ENS network activity and GI dysmotility.
Cx43 expression in EGCs is also related to inflammatory process. Neuronal loss is one of the intestinal inflammation characteristics caused by purinergic receptor activation [23]. Recently, inhibition or genetic ablation of Cx43 in EGCs prevented inflammation-induced neuronal death [24]. This is interesting because it shows that ATP released by EGCs, through Cx43 hemichannels, is involved in both inflammation and motility [21], as mentioned above.
It is possible that Cx43 expression in EGCs is also related to regulation of the intestinal epithelium barrier (IEB). Animals with ablated Cx43 in EGCs also exhibited an increased fluid content in stools [21]; this may imply a role of Cx43 in regulating the IEB, since EGCs have protective effects on enterocytes. A co-culture study showed that EGCs induced in enterocytes an increase in transcription of genes involved in cell-to-cell and cell-to-matrix adhesion and also an increase in cell adhesion [25]. Some of the glia-derived factors, for example, ATP and prostaglandins, could be released through the Cx43 hemichannels [26]. The other effects may come from cell-to-cell contact. EGCs and enterocytes express Cx43 [27], so they may perhaps be joined by Cx43 gap junctions. In fact, the membrane potential of differentiating enterocytes becomes more positive exclusively when they migrate away from the crypt-villous junction [28], possibly due to gap junctions with EGCs (they have higher membrane potential) in this region [29].
In addition to the Cx43 hemichannels, EGCs also have sodium, potassium, and aquaporin-4 channels, whose presence and subtypes vary among their subtypes. Aquaporin channels, for example, are expressed in EGCs within the plexus, but not in extraganglionic EGCs [22].
Even in autism, it has been speculated that inadequate Cx43 expression in EGC could affect GI motility, which is in fact altered in some patients. Some monogenetic autism spectrum disorders are caused by mutations in genes that encode transcriptional or epigenetic factors, for example, methylCpG2-binding protein (MeCP2) in Rett syndrome or TCF4 in Pitt-Hopkins syndrome. These mutations could affect the transcription machinery required for proper expression of Cx43 in EGCs [30].
Thus, EGCs act largely through the release of different molecules, which can happen through the Cx43 hemichannels.
As already mentioned, EGCs are located throughout intestinal layers and interact with different cell types within the gut. Thus, this cell type is expected to play a number of important roles in the coordination of gut functions. In fact, studies using genetic tools to abrogate GFAP expressing cells resulted in disruption in epithelial integrity, extensive intestinal necrosis, and inflammation, followed by degeneration of enteric neurons [31, 32], evidencing the importance of EGCs for intestinal homeostasis.
EGCs exert their function through the release of important molecules. In the intestine, glial-derived neurotrophic factor (GDNF) is released by EGCs and acts as an anti-apoptotic factor to epithelial cells, neurons, and EGCs [33, 34, 35, 36]. GDNF inhibits epithelial cell apoptosis by the activation of GFRα1–GFRα3 receptors and RET co-receptor and the activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/serine–threonine kinase (PI3K/AKT) signaling pathways [37, 38]. GDNF also inhibits apoptosis of EGCs in an autocrine manner [34]. Mu opioid receptor activation by morphine in EGCs decreases their GDNF synthesis, with consequent IEB disruption [39]. Moreover, GDNF has been shown to increase the integrity of the IEB via ZO-1 upregulation [38].
Among neuroactive molecules, ATP is the most well-characterized molecule released from EGCs. ATP is released through the opening of Cx 43 hemichannels [21, 40]. More specifically, the released ATP modifies adjacent glia, triggering intercellular Ca2+ waves and influencing adjacent neurons. The ATP released by EGCs may induce neuronal cell death, as discussed above (topic 2). Nitric oxide (NO), a key inhibitory neurotransmitter in the ENS and a factor that drives oxidative stress in disease, is also produced by EGCs [41, 42]. This molecule is produced by the enzyme inducible nitric oxide synthase (iNOS). Under pathological stimuli, EGCs express iNOS and produce large amounts of NO, which may be protective or deleterious depending on the circumstances. Some evidence, however, suggest that EGCs may constitutively express iNOS and that NO plays a physiological role by modulating epithelial ion transport [41].
The data above have suggested that EGCs play an essential role in neuronal support and neurotransmission. Indeed, EGCs actively participate in neurotransmission. Intraganglionic EGCs provide enteric neurons with essential precursors for the synthesis of neurotransmitters such as NO [43, 44], glutamate, and γ-aminobutyric acid (GABA) [45]. In health, EGCs provide antioxidants, like reduced glutathione [46, 47], and growth factors (e.g., GDNF) [48] to neurons. In addition, EGCs support neurotransmission by regulating the bioavailability of neuroactive substances in the extracellular environment. EGC enzymes are essential for the removal of neuroactive compounds surrounding enteric neurons. Moreover, glial potassium channels maintain neurotransmission and prevent the death of excitotoxic neurons by regulating and buffering potassium [13, 49].
A poorly understood question is how EGCs interpret and process the signals they receive from enteric neurons to eventually play their presumptive roles in neurons and GI function.
Little is known about EGCs activating ligands, but the Ca2+ transients probably trigger different modes of gliotransmission, such as Ca2+−dependent exocytosis or factor release through the Cx43 hemichannels [50].
Boesmans et al. [51] demonstrated that enteric neurons can communicate with adjacent EGCs, releasing purines through their panexin channels. In fact, ATP and purines are the most ubiquitous signaling molecules involved in the enteric transmission of neurons to glia in vitro [52, 53] and in situ [21, 23, 54, 55, 56], but EGCs also have other receptors that allow glia to initiate responses to neurotransmitters released by neurons and other neuroactive substances, including receptors to norepinephrine, glutamate, thrombin, lipid signaling molecules, serotonin, bradykinin, histamine, and endothelin [22].
As mentioned before, it is already known that in vitro propagation of Ca2+ responses between EGCs depends on ATP release through hemichannels [40]. And later it was seen that substances released by Cx43 hemichannels mediate intercellular communication between EGCs [21].
How other populations of EGCs outside the enteric ganglia interact with enteric neurons is currently unknown.
The ENS has a significant ability to adapt to microenvironmental influences throughout life, either by inflammatory bowel diseases or by changes in eating habits [57]. The mechanisms of cellular communication involved in the plasticity of EGCs are not yet fully understood. Understanding how EGCs act and especially how they perform the role of progenitor cell and differentiate into neuron is of paramount importance for a better understanding of how the ENS performs its complex functions.
It has already been shown that numerous neural crest-derived stem cells are found in different locations in the adult organism, including the intestine [58]. When isolated by flow cytometry for p75 markers [59] or integrin-α2 [60], or also through dissociation for in vitro cultivation of neurospheres [61, 62], EGCs can give rise to a large number of other cells including glial cells, neurons, and even myofibroblasts. Following transplantation of these cells into intestinal explants, EGCs differentiate into glial and neuronal cells [61, 63]. These data underscore the plastic potential of EGCs that, when transplanted into the CNS, are able to function as oligodendrocytes and astrocytes [26]. It is noteworthy that under different physiological conditions and after injury [60], EGCs proliferate and differentiate into neuron only upon specific injury situations [64, 65]. Liu and colleagues have shown that it is possible to induce neurogenesis in the myenteric plexus in vivo by activating the serotonin receptor upon administration of the 5-hydroxytryptamine 4 (5-HT 4) agonist [66]. Indeed, other studies in postnatal bowel suggest that serotonin also promotes ENS repair and neurogenesis via 5-HT4 receptor [67, 68]. Moreover, studies have shown that mouse and human EGCs undergo neurogenesis after colitis [65, 69].
Under chemical injury with benzalkonium chloride detergent (BAC), it was possible to observe neurogenesis in vivo. About 3 months after injury, EGCs adjacent to the aganglionic area give rise to sox10-positive glial cells expressing the neuronal marker HuC/D [64]. It has been proposed that interruption of contact between cells (ganglion structure dissociation) may initiate neurogenesis from precursor cells expressing EGCs markers (sox10, p75, S100β, GFAP). These studies suggest that tissue dissociation to establish cell culture, as well as that observed in chemical injury, could activate the neurogenic potential of EGCs.
A recent work, however, suggested that constitutive neurogenesis occurs in the gut [70], contrasting with data obtained by other groups that suggest that intestinal neurons are not easily replaced under healthy conditions [71, 72, 73]. Moreover, this study highlighted a population of nestin-positive adult progenitor cells that give rise to new neurons, different from that of GFAP-positive EGCs. These data contrast with previous works that had shown nestin and GFAP co-expression by EGCs [60]. Furthermore, nestin-expressing intestinal NSCs cells give rise to neurosphere-derived neurons and glia in vitro. Besides these cells can differentiate into glial, neuronal, and mesenchymal lineages in vitro and also generate neurons in vivo [74].
EGCs do not produce extracellular matrix (ECM). However, their processes contact basal lamina proteins including heparan sulfate proteoglycan, type IV collagen, and laminin [11, 75, 76]. This suggests that the microenvironment is also a factor of great relevance for the function of EGCs and neurons. Recent data demonstrate that EGCs in vitro, in absence of appropriate substrates were stimulated to initiate neuronal differentiation. Therefore, it seems that the contact of adult EGCs with laminin plays a crucial role in inhibiting their potential for neuronal differentiation (Veríssimo et al., 2009).
The importance of the correct neuron-glial communication is evidenced in a situation of intestinal inflammation and neurodegeneration, when EGCs act as a direct mediator of neuronal cell death.
Chronic inflammation in the GI tract can cause important changes in the ENS, as demonstrated by several studies in patients with IBD, such as ulcerative colitis (UC) and Crohn’s disease (CD)[77, 78]. Both UC and CD are characterized by inflammation, which is accompanied by the release of a range of pro-inflammatory cytokines, following intestinal dysmotility [79, 80].
An increase in GDNF and GFAP immunolabeling was observed in EGCs in inflamed colonic mucosa of patients with UC, CD, and
In intestinal injury, reactive gliosis is a response of EGCs to protect the neuronal network during intestinal inflammation [86]. However, depending on the degree of inflammation, this event may cause damage to neurons and to EGCs themselves due to a deregulated response of these cells to the virulence factors of pathogenic bacteria or pro-inflammatory mediators released by immune cells, neurons, or EGCs. This dual effects may have an important effect in the instability of the release of protective and dangerous factors, such as GDNF, an anti-apoptotic factor, and S100B, a pro-inflammatory cytokine, by EGCs [34, 35].
A strong upregulation in levels of GDNF was reported in the intestinal crypts and in the myenteric and submucosal plexuses in patients with CD. In UC, GDNF immunoreactivity was reported to be less pronounced than CD. However, no alteration in GFR-1 was evidenced in patients with CD and UC. GFR-1 is a receptor for GDNF binding that is predominantly found at the basolateral parts of the human colonic epithelium [37].
The EGCs regulate the epithelial barrier function and inflammation through the release of S-nitrosoglutathione (GSNO), a potent nitric oxide donor. Interestingly, EGCs are the main source of GSNO within the intestine. It has been shown that the levels of GSNO are reduced in CD and UC [35]. GSNO regulates the intestinal permeability by stimulating in enterocytes the upregulation of proteins of tight junctions, such as occludins and ZO-1, and inhibiting the increase of phosphorylated myosin light chain (PMLC), as well as improving the location of these proteins [87].
EGCs from human colonic tissues with Crohn’s disease have reduced 15-hydroxyeicosatetraenoic (15-HETE) synthesis. As GSNO, 15-HETE controls the paracellular permeability of the IEB by inhibiting adenosine monophosphate-activated protein kinase (AMPK) and regulating ZO-1 expression [88].
The major virulence factors of
The first studies on changes in the ENS evoked by
A recent study demonstrated increased cell population expressing both HuC/D and SOX2 in inflamed colonic tissues in patients with CDI [65]. So, these EGCs are important for generating new neurons after intestinal injury.
A study of 447 and 444 patients with
It was demonstrated that TcdB stimulates morphological alteration and apoptosis in EGCs
It has been demonstrated that EGCs are involved in decreased infection foci and IL-8 secretion and in the inhibition of alterations in IEB resistance in infection by
Antineoplastic drugs, such as 5-FU, irinotecan, and oxaliplatin, have been currently used to treat several types of cancer, including breast and colorectal cancer. Mucositis and diarrhea are common side effects of these antineoplastic drugs [108]. Many cells are stimulated to release inflammatory mediators during intestinal mucositis, and persistent GI over-contractility has also been demonstrated, even after inflammation has resolved, suggesting that chemotherapy might affect gut neuronal and EGC function [109].
During intestinal mucositis induced by oxaliplatin, reduced GFAP and increased S100B protein expression were evidenced, as well as reduced co-localization of GFAP and S100B in ileal myenteric plexus of mice [110].
In fact, increased S100B release by EGCs has been shown to be a mediator in charge of causing neuronal death, as well as reactive gliosis, epithelial damage, and inflammatory response (release of IL-6, TNFα, and NO) during 5-FU-induced intestinal mucositis via S100B/RAGE/NFκB [84].
As we will deepen later, EGCs can be stimulated by immune cells during intestinal inflammation. A recent study showed that mediators released by mast cells cause reactive gliosis and neuronal death together with the intestinal mucositis induced by irinotecan [85].
Figure 2 shows a schematic highlighting how EGCs are affected by and participates on intestinal inflammation.
Mediator release by EGCs during intestinal inflammation and their role in the pathogenesis of intestinal inflammatory diseases. During intestinal inflammation promoted by ulcerative colitis, Crohn’s disease, colitis induced by
Due to its great interaction with neurons and modulation of neuronal responses, it is possible to imagine that EGCs play a central role in neurodegenerative diseases. Indeed, the role of EGCs seems to be compromised in many neurodegenerative diseases, and this is true for both CNS and ENS.
Enteric neurodegeneration is a common marker for a group of diseases classically known as enteric neuropathies. The changes found present as alterations in enteric smooth cells and/or compromised functioning of the ENS—often impacting in GI motility [111]. The neuropathies chronic intestinal pseudo-obstruction (CIPO) and slow transit constipation (STC) are characterized by neurodegeneration affecting the lower GI tract. Moreover, it has already been shown that enteric glia is implicated in Parkinson’s disease (PD), and participation in Alzheimer’s disease (AD) is speculated [111].
CIPO is a condition characterized by failure of GI motility without apparent mechanical lesion [112]. Histological patterns show different classes of the disease depending on the cell type involvement (enteric neurons, smooth muscle cells, and interstitial cells of Cajal). Enteric neuron degeneration promotes intestinal neuromuscular disorders [111, 113]. In chronic idiopathic intestinal pseudo-obstruction (CIIP), EGC infection by JC virus (polyomavirus) has been described suggesting a role of enteric glia in this enteric neuropathy [114].
Constipation is a common functional GI disorder characterized by infrequent bowel motions and/or incomplete defecation [115]. Studies on the neuronal subtypes involved in the STC pathogenesis are still very uncertain. It was pointed that excessive production of NO in the colonic myenteric plexus of STC patients would inhibit propulsive contraction. Results about other neurotransmitters as VIP, substance P, and serotonin were contradictory [113]. Besides the decrease of enteric neurons and interstitial cells of Cajal, STC also presents a significant decrease of EGCs [116], and some discussion has emerged about constipation being a neuro-gliopathy [79]. Several reports showed that different conditions presenting constipation have a feature: loss of EGCs, and it points to a pathophysiological meaning since the EGC directly regulates enteric neurons and interstitial cells of Cajal through neurotrophic factors [116, 117] and ATP signaling [79, 118].
In the last years, the literature has shown that some pathological conditions, such as PD, classically described to compromise the CNS are now recognized as multicentric neurodegenerative processes since they affect different systems such as the ENS [119, 120, 121, 122]. A number of non-motor symptoms in PD have been identified, and many of them manifest early, even before the clinical stage of the disease (characterized by emergence of the classic motor features) when the diagnosis can be made [123]. They found lesions in autopsies of patients by identifying the presence of intraneuronal inclusions called Lewy bodies/neuritis, which are described as protein agglomerates where α-synuclein is the main constituent. The areas primarily affected were olfactory structures, the dorsal motor nucleus of the vagus nerve and the ENS [124, 125]. According to Braak’s hypothesis, there could occur a migration of the ENS lesion via the vagus nerve to the CNS [124]. Indeed, Lewy neurites are detectable in the presymptomatic stage of PD along the autonomic pathways and in the GI tract [126]. Besides, analysis of human colon biopsies obtained 2 to 5 years before PD onset showed the presence of pathologic α-synuclein in neurodegeneration sites, suggesting that colonic α-synuclein staining can be considered a biomarker of premotor PD symptoms [127].
GI symptoms are the most debilitating PD non-motor features and are present in almost every patient at some stage of the disorder [124, 128, 129]. The symptoms commonly reported by patients are weight loss, dysphagia, decreased frequency of intestinal peristalsis, and difficulty in defecation [130]. Recent evidences indicate that PD pathological alterations in the gut involve EGCs and probably impairment of their critical role in GI physiology. In fact, colonic biopsies of PD patients showed an increased expression of GFAP both at the transcript and protein levels [131, 132] as well as a reduction in GFAP phosphorylation. These features strongly suggest that reactive gliosis may be associated with degenerative diseases [131].
In PD colon biopsies the upregulation of GFAP was accompanied by an increase in the expression of pro-inflammatory cytokines, mainly TNF-α, IFN-γ, IL-1β, and IL-6 [132]. These data suggest a link between glial dysfunction and enteric inflammation in the colon of PD patients.
Alterations in IEB have been observed in patients and animal models of PD [133, 134]. Modifications in protein levels and protein distribution that compose the barrier (e.g., occludin) were documented [128]. In agreement with this, PD patients show fecal biomarkers of inflammation as calprotectin and also increased intestinal permeability as alpha-1-antitrypsin [134]. It is known that the IEB is strongly regulated by EGCs [37, 38, 39]. Since EGCs is sensitized in PD patients and modulates all these processes, it is speculated that IEB could be impaired by altered glial signaling which could contribute to the inflammatory process.
Intestinal dysmotility is the symptom that affects directly patient’s quality of life and is shared among PD patients. Constipation is the most common non-motor symptom manifested in both prodromal and clinic phases of PD [135, 136, 137]. Recently, constipation was included as a criterion for prodromal PD diagnostic, and discussion about the validation of constipation as a risk factor for the development of PD has been recurrent [138]. As already discussed, impairments in EGCs activity produce constipation due to a loss in the neural control of gut motility [21].
However, despite the evidence, there is still no direct demonstration of how enteric glia is involved in PD, either in the cause of the disease or its consequences.
In this way, the suggestion that PD could onset in the gut emerges from the identification of activated EGCs, local inflammation, impaired IEB, aggregation of α-synuclein in neurons, and GI disorders in a window prior to the appearance of classic motor deficits. Recently, Seguella et al. suggest that EGCs could be the “missing link” that connects the ENS to the CNS [139]. The authors called attention to enteric glial cell-mediated inflammatory response, which could reach the CNS by the gut-brain axis and lead to neuronal cell death and disruption of synaptic interactions [139, 140]. Thus, EGCs would function as an “entrance door” to noxious stimuli from the intestinal lumen that could damage the CNS. However, the mechanisms by which the pro-inflammatory glial mediators rise to the CNS still remains to be clarified [139].
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting people in the world. The neurodegeneration causes a progressive cognitive decline and loss of working memory [141]. Among the non-cognitive symptoms of AD are the GI symptoms which point to a role of ENS in AD [142]. In fact, the brain biomarker of AD, the extracellular plaques containing β-amyloid, has already been described in the intestinal submucosa of patients [143] which is in agreement with the expression of amyloid precursor protein in enteric neurons and also EGCs [144]. The discussion of the peripheral immune response has been widely debated as the pathogenic pattern of AD that contributes to central neurodegeneration [145, 146]. In this context, some discussion has been raised about EGC possibly acting as a peripheric coordinator of immune differentiation of T cells [139] since EGCs express the major histocompatibility complex II and T-cell costimulatory molecules [147, 148, 149]. As mentioned above, EGCs are able to respond to an inflammatory environment contributing to the process, activate enteric neurodegenerative mechanisms, and immunomodulate the IEB. All these features could contribute to an inflammatory peripheral state and sensibilization of CNS through the blood–brain barrier [139]. It is still speculative to relate these glial interactions to AD, but there are indications of an immunomodulatory relevance of this cell in the GIT, as will be discussed again below.
Recently, insightful and essential findings have shed light in the field of neuroimmunology, especially with the development of high solution technological approaches to underlie neuroimmune communications. It has been proposed that the immune and the nervous systems interact in health and disease and are expected to function alongside to promote tissue homeostasis [150]. More specifically, neuroimmune interactions have been suggested by understanding the relative anatomical positioning of cell types and their dynamics within the tissue in homeostasis and response to insults. Moreover, the expression of corresponding ligands and receptors by immune and nervous cells, for instance, may determine physiological interactions between the two systems. However, efforts to identify mechanisms to decipher how immune and neural cells interact in a steady-state environment and respond to genetic and epigenetic cues are still a challenge to be addressed.
Because the GI tract is the connection between the external with the internal environments of the body, the ENS is continuously exposed and expected to interact with the extrinsic (dietary and microbiota-derived metabolites) and intrinsic (immune system and stromal cells) environments of the gut. The strategical anatomical positioning of ENS and immune cells throughout the GI wall and their physiological features are crucial to defeat pathogens and maintain the intestinal homeostasis. Emerging studies have identified two distinct types of tissue-resident macrophages within the intestinal wall that are closely associated with ENS cells [150]. Lamina propria macrophages (LpMs) preferentially display pro-inflammatory phenotype and are the most abundant cell group located just beneath the intestinal epithelium. These cells, together with neuronal processes and mucosal EGCs, form tight physical and functional barriers that protect the intestines against pathogens, although the mechanisms that underlie those interactions are still to be further explored [150].
At the level of the myenteric plexus, muscularis macrophages (MMs) are closely associated with neuron cell bodies and fibers and EGCs and present a tissue-protective phenotype. Similar to microglia in the CNS, MMs can phagocyte neuronal debris during homeostasis [70]. Another population of gut self-maintaining macrophages (gMacs) was described to be fundamental for ENS homeostasis since the genetic depletion of those macrophages led to a loss of enteric neurons resulting in reduced intestinal function [151]. Moreover, enteric neurons and innate lymphoid cells type 2 (ILC2) functionally integrate to initiate type 2 immune responses. The integration between neuron-ILC2 units is necessary for cytokine production and inflammation repair upon worm infection [152, 153].
EGCs also appear to participate in immune responses, but so far, its impact on immune cells is still relatively unexplored under homeostasis. However, an exciting study has recently discussed that GDNF secreted by EGCs activates IL-22-producing ILC3 via Ret signaling [154]. Interestingly, Ret signaling regulates Peyer’s patches organogenesis, underlining the prospective role of EGCs in orchestrating innate immune functions in the gut [155]. Furthermore, experiments performed in the submucosal plexus (SMP) from patients with functional dyspepsia (FD) showed that morphological alterations both in EGCs and neurons are due to increased numbers of eosinophil and mast cell within ganglionic structures [156]. This also suggests that EGCs and the immune system work together to maintain the intestinal homeostasis.
It is known that EGCs protect T lymphocytes from cell death by upregulating the expression of IL-7 after exposure to pro-inflammatory cytokines such as IL-1β and TNFα [157]. Moreover, EGCs were suggested to have immunosuppressive characteristics in CD by inhibiting T-cell proliferation [158]). Nonetheless, the cellular and molecular mechanisms that govern the role of EGCs in intestinal pathologies remain unclear. EGCs express MHCII [148] that is upregulated under inflammatory conditions [149, 159], conferring an immunological feature to these cells in a pathological environment. Moreover, EGCs can secrete and respond to IL-1β, IL-6, and IL-10 and nitric oxide in vitro, as already mentioned, suggesting another property of these cells in the mediation of inflammatory responses [24, 160, 161]. Although, it is plausible that EGCs have an important function in modulating neuroimmune interactions, understanding their specific contributions to the maintenance of the gut homeostasis would be useful to decipher their roles in inflammatory disorders.
This would possibly suggest an immune protective role of EGCs to maintain the mucosal barrier. However, those studies failed in showing direct evidence that EGCs are necessary for intestinal barrier function. On the other hand, studies in which EGCs were disrupted but not entirely ablated did not show any noticeable signs of inflammation. In contrast, disruption in EGC homeostasis culminated in changes in mucosal function as well as in neurochemical coding, leading to alterations in enteric neurons and consequently in motor activity [162, 163, 164]. Thus, taken together, the immunological roles of EGCs protecting the intestinal environment from damage remain contentious by using genetic tools to ablate/disturb these cells.
As we could notice in this chapter, there are still many unexplained aspects of the EGCs physiology. Although we have already found interesting studies that show their relation with neurons or alterations in cases of inflammation, the exact mechanisms by which EGCs activates neurons to control GI motility are still unknown. Little is known about their interaction with the immune system, for example, or their participation in neurodegenerative diseases that affect both ENS and CNS. Recently, Seguella et al. suggest that EGCs could be the “missing link” that connects the ENS to the CNS [139]. EGCs in the context of disease could be an important target for diagnosis and therapy of many intestinal and neurological disorders.
Taken together, these evidence show the importance of EGCs for the maintenance of intestinal homeostasis and that disturbance of glial functions could alter GI physiology through the modulation of neurotransmission and of the responses of the different cellular types or even activation of cellular signals to enter the neuronal differentiation processes in specific situations.
Global energy consumption has increased gradually in recent years due to population growth, and economic development and industrialization. Also, global warming and environmental pollution worsened everyday too much of automobile vehicles and industrialization. Hence, the development of renewable energy sources became increasingly important. Hydrogen is one the most promising clean and sustainable energy sources because it emits only water as a byproduct and generates no carbon emissions [1]. Hydrogen has a quality of high energy carrier including high energy density that is more than ordinary petroleum and diesel fuel [2]. At the moment, global hydrogen production is estimated to over 500 billion cube meters per year [3]. It can be used in much industrial application including fertilizer, petroleum refining operation, fuel cell, chemical industries [4]. Hydrogen can be generated from variety of renewable and non-renewable sources like water and fossil fuels [5], oil reforming [6], coal gasification [7], biomass [8], water electrolysis [9].
Many approaches for manufacturing hydrogen are currently available however water electrolysis is one of the most capable methods for producing hydrogen as a product and oxygen as a by-product. At the moment, only 4% of hydrogen can be obtained by electrolysis of water [10]. Water electrolysis also provides a number of advantages, such as high cell efficiency and a greater hydrogen generation rate with excellent purity, making it a better method for converting water to electrical energy via low-temperature fuel cells. The water molecule is the reactant in the electrolysis process, and under the influence of electricity, it is split into hydrogen (H2) and oxygen (O2). Based on the electrolyte, operating conditions, and ionic agents (OH−, H+, O2−), water electrolysis is separated into four categories: alkaline water electrolysis (ii), solid oxide electrolysis (SOE), microbial electrolysis cells (MEC), and PEM electrolysis of water [11]. The phenomenon was first described by Troostwijk and Diemann in 1789 [12], and it is a well-established technique for commercial hydrogen production up to the megawatt range in the world.
The hydroxyl ions (OH−) flow through the porous diaphragm to the anode under the effect of the electrical circuit between anode and cathode, where they are discharged to 12 molecules of oxygen (O2) and one molecule of water (H2O). Alkaline electrolysis is performed at lower temperatures, such as 30–80°C, with an aqueous solution (KOH/NaOH) as the electrolyte and a 20–30% concentration. Alkaline water electrolysis uses an asbestos diaphragm and nickel materials as electrodes [13]. In the 1980s, Donitz and Erdle proposed solid oxide electrolysis (SOE). Solid oxide electrolysis has attracted a lot of interest since it converts electrical energy into chemical energy while also producing ultra-pure hydrogen with a higher efficiency. Solid oxide electrolysis runs at high pressures and temperatures of 500–850°C and consumes water in the form of steam. Nickel/zirconia is commonly utilized as an O2 conductor in solid oxide electrolysis [14].
Microbial electrolysis cell (MEC) technology may produce hydrogen from organic matter such as renewable biomass and wastewaters. MEC technology is similar to microbial fuel cells (MFCs), however the operational concept is reversed [15]. In 2005, two independent research institutions, Penn State University and Wageningen University in the Netherlands, established the first Microbial electrolysis cell (MEC) method. Electrical energy is turned into chemical energy in microbial electrolysis cells (MECs). Under the influence of an electric current, MECs created hydrogen from organic molecules. Microbes oxidize the substrate at the anode side of the microbial electrolysis process, producing CO2, protons, and electrons. The electrons move to the cathode side via the external circuit, while the protons travel to the cathode via a proton conducting membrane (electrolyte), where the protons and electrons combine to form hydrogen [15]. However, this MEC technology is still in the early stages of development, and various issues like as high internal resistance, electrode materials, and intricate design must be addressed before the technology can be commercialized [16].
In the early 1950s, Grubb achieved the first PEM water electrolysis, and General Electric Co. was created in 1966 to overcome the drawbacks of alkaline water electrolysis. PEM water electrolysis technique, which is similar to PEM fuel cell technology [17], used solid poly sulfated membranes (Nafion®, fumapem®) as an electrolyte (proton conductor). Lower gas permeability, strong proton conductivity (0.1 0.02 S cm−1), thinness (20–300 m), and high-pressure functionality are all advantages of these proton exchange membranes. In terms of sustainability and environmental impact, PEM water electrolysis is one of the most environmentally benign methods for converting renewable energy to high purity hydrogen. Another prospective PEM water electrolysis device has a small footprint, high current density (over 2 A cm−2), high efficiency, fast responsiveness, and operates at lower temperatures (20–80°C) while producing ultrapure hydrogen as a byproduct [17].
Fuel cell technology is gaining popularity in the automotive industry due to its ease of use, quiet operation, high efficiency, and modular structure. According to Mustafa et al., recent investigations have showed that the usage of fuel cells in vehicles has expanded rapidly, causing a revolution, and will be an alternative to conventional vehicles in the future (2021). Configuration, system components, control/management, technical obstacles, marketing, and future aspects are all categories for fuel cell cars. Based on chemical characteristics and operating temperature, fuel cells are classed as proton exchange membrane FCs, solid oxide FCs, direct methanol FCs, alkaline FCs, molten carbonate FCs, and phosphoric acid FCs. FCs are used in both commercial and research & development applications. Common stack size, theoretical cell voltage, operating temperature, electrical efficiency, benefits, and downsides are used to classify FC features [18]. In this environment, FCs are used in distributed generation, mobile power, backup power, military, space, and vehicle applications. Low temperature and pressure PEMFCs are the most used FCs in vehicle applications because of their high power density, lower working temperature (60–80°C), and reduced corrosion than other FCs [18].
In the construction of fuel cell hybrid electrical vehicles (FCEVs), fuel cell vehicles (FCs) are coupled to electric motors via controlled electronic interfacing components [19]. The basic components of traditional FCEVs are a voltage regulation converter, motor drive, electric motor, and auxiliary energy generation units [20]. For interfacing components and energy management algorithms, FCEVs vehicles have a variety of configuration topologies [21]. The powertrain structures, voltage regulation topologies, motor drive converters, and energy management technologies can all be used to classify FCEVs. In the operation of FCEVs, the FC stack feeds energy to the dc-bus and maintains the required DC bus voltage [22]. The FC is then connected directly to the Unidirectional DC-DC converter (UDC) as a system element to maintain the dc-bus voltage and send the energy generated for vehicle propulsion to the motor drive converter. A DC-AC converter checks the motor speed and torque for safe operation. Finally, the drive controller is in charge of monitoring the electric motors as they convert electrical energy into kinetic energy [23].
FCs have a higher energy density and efficiency than other power sources such as photovoltaics, batteries, ultra capacitors, and super conducting magnetic energy storage. Because of its modular design, FCs are also suitable for electric vehicle applications. Furthermore, FC has a 20–30 year lifespan [24]. As a portable/rechargeable energy storage system, the battery is also a preferred power source for FCEV hybridization. However, it has a short lifespan and is only useful for a short length of time [25]. Ultra capacitors (UC) are a type of storage element that can be used in FCEV applications to increase the dynamic response of the system. Photovoltaic (PV) is a gadget that generates energy, however it is too large to carry. The output of super conductive magnetic energy storage (SMES) generates a lot of power, however it has a low energy density. Short-duration energy storage is also included in SMES, albeit at a high expense [26]. Based on this, several hybridization topologies are recognized in the literature. Full FC, partial FC, and hybrid FC cars are classified as FC + battery hybridization, FC + UC hybridization, FC + battery + UC hybridization, FC + battery + PV, FC + flywheel hybridization, and FC + SMES [18]. FC + battery + PV, FC + battery + PV, FC + flywheel hybridization, and FC + SMES are all examples of FC-powered cars.
The FCEV scheme clearly shows that this topology’s energy generation is exclusively dependent on the FC stack. It simple construction includes a fuel tank, FC stack, DC-DC power converter, inverter, and electric motor [27]. These cars feature a long driving range, a fast charging time, high efficiency, cold start capabilities, silent operation due to the lack of mechanical components, energy supply continuity, and low emissions [27]. Full FCEVs are a suitable fit for low-speed vehicles including forklifts, busses, airline vehicles, trams, and marine vehicles. The combination of FC + battery units is the most common topology in FCEV hybridization [18]. A unidirectional DC-DC converter (UDC) connects FC to the DC bus, while a bidirectional DC-DC converter connects the battery to the DC bus. In the operating procedure of FC + battery hybridization, an initial start-up with the battery is provided to avoid the FC running in the low-efficiency zone. As a result, a huge amount of current is generated to start the electric motor [25]. When the car is turned on for the first time, the FC is activated to keep the electric motor going. After then, the battery is charged according to the charge status criteria. The UC only allows FC to be utilized in emergency situations to meet transient power demands. UC, on the other hand, has a low energy density and is not used to give energy on a long-term basis [28].
In contrast to earlier hybridization topologies, FC + battery + UC hybridization has a primary energy source (FC) and two secondary energy sources (battery and UC) (battery and ultra capacitor). In this design, the FC is connected to the DC bus through a one-way DC-DC converter. The energy storage units, battery and UC, are connected to the DC bus by bidirectional DC-DC converters (BDCs). This architecture combines the advantages of FC + battery and FC + UC systems to provide continuous energy while also boosting FC dynamic response during transient events [29]. In recent years, PV panels have been incorporated with FC-based electric vehicles for hybridization. In FC + battery + PV hybridization, PV panels generate DC voltage that is coupled to the DC bus via a unidirectional converter. The FC is the primary energy source in an FC + battery + PV system, with the PV panel acting as a backup. Both the FC and PV busses are connected to the DC bus by unidirectional converters. PV panels generate varying amounts of power based on the intensity of solar radiation, the temperature, and the sun’s direction. As a result, the PV electricity generated is fed directly into the electric motor or is used to charge the battery [30].
FC+ flywheel hybridization is similar to the preceding approach in that the FC serves as the major energy source and the flywheel, rather than batteries, serves as an energy storage method. Flywheels and generators are connected to store energy mechanically with a high rotating speed and transform that mechanical energy into electricity when EM requires a lot of it. Flywheels have a faster charging capability, higher efficiency, and higher power rating than batteries [30]. Flywheels are also environmentally friendly, as they operate over a wide temperature range, have a big energy storage capacity, and have a long lifespan [66]. There are three types of static FC models accessible in the literature. Chamberlin-Kim and Amphlett, Larminie, and Dicks models [31] are examples. The most common static model published in the literature is the Amphlett model, which is based on Nernst and Tafel equations. This model takes into account physical parameters like as pressure, temperature, and concentration. The other static model is the Larmine and Dicks model. This model calculates the FC voltage–current characteristic using empirical equations. This model yields the FC voltage versus current amplitude curve. Three zones can be found in this curve. The three zones are electrochemical activation, linear part, and gas diffusion kinetics [32]. The third static FC model is the Chamberlin-Kim model. In this approach, the FC voltage is described in terms of current density. In addition, the fuel-oxidant rate, local temperature, and humidity all affect five factors in this model [32].
Dynamic modeling of FC is described in the literature such as the impedance model, Becherif-Hissel model, and Dicks-Larminie model have been reported [33]. Layer capacitance, diffusion impedance, and ions transport, membrane, and contact resistances are all included in the impedance model [34]. The Nernst voltage, ohmic polarization, concentration, and activation are all modeled in the Dicks-Larminie model. A voltage supply, two resistances, and a capacitor make up this model. The Nernst voltage is demonstrated via the voltage source. The resistances represent electron-hydrogen flow and activation-concentration losses. The charge layers are represented by the capacitance. The pneumatic feature is taken into account in the Becherif-Hissel model to obtain the comparable model for electrical components. The conservation of mass, energy, and charge is taken into account in pneumatic properties [35].
Conventional diesel engine running on petroleum and diesel fuel emits more oxides of nitrogen (NOx), oxides of carbon (COx) and particulate matter (PM) around the world. Low-temperature combustion (LTC) technology in engine development has dropped the environmental effects by providing better combustion efficiency, and increased the engine efficiency and fuel economy. Several low-temperature combustion strategies are available such as homogeneous charged compression ignition (HCCI), premixed charged compression ignition (PCCI), and reactive controlled compression ignition (RCCI). Before combustion, the entire air and fuel is premixed in the LTC combustion mode. The combustion is controlled by a predetermined equivalency ratio and cylinder temperature which leads to reduce the soot formation, PM, and NOx emissions. In LTC mode, the combustion temperature could be maintained between 1800 and 2200 K, which means no NOx emissions are produced in the rich mixing region and no soot is formed below 1800 K in the lean mixing by Hoekman and Robbins.
The homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of both SI and CI engines in an IC engine. The fuel is premixed in the HCCI engine in the same in SI engines, and the fuel is auto-ignited to start the combustion in the same way in CI engines. Before combustion begins, the fuel is vaporized and homogeneously premixed with air. Due to lean-burn combustion, the HCCI has the ability to reduce NOx emissions and increased the brake thermal efficiency. The in-cylinder temperature is reduced via lean-burn combustion, resulting in decreased NOx emissions as observed by Komninos and Rakopoulos [36]. In addition, due to the increased displacement capacity, HCCI combustion improves brake thermal efficiency by 50%, while emitting less smoke than conventional diesel combustion. The HCCI engine’s compression ratio and premixed fuel combustion has improved the brake thermal efficiency of engine and lower the smoke emissions as noticed by Desantes et al. [37]. The multi-zone auto ignition and spontaneous combustion of the entire mixture is promoted by the homogenous mixture and uniform equivalence ratio in the cylinder. Furthermore, flame propagation has little effect on combustion in the HCCI mode [38].
The unanticipated pressure rise and cycle to cycle variation are exacerbated by multi-zone combustion and unexpected ignition location. Also, knocking is caused by high oscillation frequency and unanticipated pressure surge as noticed by Ganesh and Nagarajan [39]. Contino et al. [40] reported that some of the techniques such as early direct injection, early multiple injection, water injection, port fuel injection, external cold EGR, variable valve timing, variable compression ratio, air preheating, and alcohol injection are commonly employed in HCCI to control combustion and emission. The biofuel auto ignition temperature and viscosity are higher than diesel hence a higher compression ratio was used in HCCI engine. The compression ratio for the various loads can be adjusted to enhance the combustion efficiency as noticed by Zhang, et al. [41]. By modifying the spark timing and spark plug placement, the spark aided HCCI engine was able to achieve combustion phasing and emission reduction [42]. The key factors that have been employed to detect the combustion phenomena in the HCCI engine are the pressure increase rate, combustion noise, and ringing intensity. In a real-time combustion application, the ringing intensity is primarily employed to detect the combustion noise for the needed cylinder pressure [43].
Because of the increased stroke volume, the higher compression ratio HCCI engine improves brake thermal efficiency by achieving the auto-ignition temperature of the fuel. High to low octane fuels can be utilized as a port fuel to solve knocking and NOx formation. In HCCI engine, keeping the inlet charge temperature is critical. Similarly, the HCCI engine’s compression ratio could be maintained effectively between 10:1 and 28:1. Compression ratios of 10:1 were favored for higher cetane fuels like n-heptane, and 28:1 were preferred for high octane fuels like iso-octane. For biodiesel, the intermediate compression ratio was favored [44]. Alternative method for achieving lower emission in HCCI engine includes use of alcoholic fuels such as ethanol, n-butonal, and methanol. Due to oxygen enrichment, alcohol fuel accelerated premixed burning and complete oxidization of fuel. Also, because of the latent heat of vaporization is higher, it lowers the combustion temperature, enhancing the quenching effect [41]. The HCCI combustion’s power output is mostly determined by the equivalency ratio and fuel intake. For the higher power production, the equivalence ratio should remain at 1 as noticed by Vinod Babu et al. [45].
Too early injection of fuel with a higher injection pressure can result in premixed charge compression ignition. Due to early fuel injection, the time between commencement of injection and start of combustion has been extended, considerably improving the homogeneity of the air-fuel mixture prior to combustion [41]. With a slightly higher intake charge temperature maintained at 170°C, the PCCI engine may operate from a minimal air-fuel ratio of 34:1 to an excessively lean air-fuel ratio of 80:1 [46]. In comparison to a standard SI engine, the PCCI combustion strategy uses lean-burn technology and operates on a higher compression ratio engine. After all of the fuel had been injected, the PCCI began to burn. Also, unlike traditional combustion, the combustion events are primarily identified by chemical kinetics and do not follow the diffusion mixed combustion and speed of burning. As a result, the injection pattern and fuel combustion do not overlap, reducing the odds of direct combustion control [47]. To achieve the premixed charge in the PCCI combustion, a single stage fuel injection pattern with an earlier start of injection was adopted. However, starting the injection too early causes wall impingement and wall wetness, resulting in incomplete combustion and higher HC and CO emissions. The fuel injection pattern has been adjusted with a split and multiple injection method to alleviate these issues. Despite the fact that the period of the many injections is completed before combustion begins. Controlling auto ignition by early injection is also a critical job in PCCI combustion. To manage the auto ignition and lengthen the ignition delay interval, a higher amount of EGR is used. EGR also aids in lowering in-cylinder temperature and NOx generation due to the dilution of a fresh charge mixture [48].
PCCI combustion has performed better than HCCI combustion due to the stability of the combustion by partially premixed charge and controlled auto ignition rage and temperature. The phasing of combustion in the PCCI is mostly determined by chemical kinetics, but it can also be influenced by altering the inlet charge temperature, EGR rate, and fuel injection time and pressure. PCCI combustion has used a variety of fuel patterns, including early single pulse injection, port fuel injection, advanced multiple injections, and advanced injection with a tiny amount of late injection. In the previous section, the effects of early and late injection timings were explored. The modest amount of late injection is mostly used to reduce smoke emissions [49]. The spray angle of 70° was employed to atomize the fuel within the combustion chamber in order to eliminate wall wetness during advanced injection [49]. To avoid the generation of HC and CO emissions, the compression ratio of the PCCI engine was kept at the same level as that of a regular diesel engine. Due to the low volatility and strong flammability of the fuel, PCCI combustion has several limitations, according to a few studies [50].
For low volatile fuels like kerosene, diesel, and biofuels, spark assisted PCCI combustion has been applied. When compared to conventional CI combustion, the use of low-quality cetane fuel in the spark aided PCCI strategy engine enhanced engine performance [51]. The partially premixed combustion mixture is generated in PCCI-DI dual-mode combustion by injecting a large volume of fuel in the intake port or early pilot injection, followed by conventional direct injection of the same or another fuel. Due to the ignition delay interval, the combustion phasing of the PCCI-DI dual-mode combustion is primarily determined by the pilot fuel quantity, and the combustion rate is determined by the pilot fuel ratio [31]. For premixed compression ignition low-temperature combustion, port fuel injection is preferred (PCI-LTC). To create a premixed mixture with a proper air-fuel ratio, single fuel or dual fuel port injection is employed. Dual fuel premixed LTC has a better brake thermal efficiency than single fuel LTC and has achieved a significant reduction in NOx and soot emissions. The single fuel premixed LTC has a higher cycle to cycle variance due to the low temperature and lean air-fuel ratio [52, 53]. Reactivity controlled compression ignition (RCCI) is the name given to the dual-fuel premixed LTC, and a thorough description of the RCCI will be given in the following sections.
Partially premixed charge compression ignition is related to the PCCI method, which is a hybrid of traditional diesel and HCCI combustion. However, for low cetane fuels, PPCI combustion is favored. Similar to the PCCI combustion method, a longer ignition delay period and improved air-fuel mixing can be accomplished. Few studies have shown that improved and delayed injection strategies can result in extended ignition delay in PPCI combustion. To achieve a longer ignition delay, low and moderate compression ratio were used, as well as moderate to high EGR dilution. The key benefit of PPCI mode over HCCI mode is that it releases less particulate matter and NOx while providing better combustion phasing. PPCI is divided into two categories: early injection PPCI and late injection PPCI. The fuel is injected at the middle of the compression stroke in early injection PPCI, and at the end of the compression stroke in late injection PPCI. The fuel-injection gases of the early injected PPCI variant are denser and cooler due to partial compression. Similarly, in the late injected PPCI model, the fuel-injected gases are colder and denser due to injection occurring on the expansion cycle, which lowers the temperature in the later stage [54]. Due to incomplete oxidation and non-optimal combustion phasing, the PPCI combustion used slightly more fuel than standard diesel combustion [55].
At low load, a greater EGR rate and a delayed injection time reduce the power output of both low and higher power engines. In EGR assisted PPCI combustion, the advanced injection method was used to avoid a reduction in power output. Another disadvantage of PPCI combustion is that it produces more HC and CO because the amount of non-oxidized fuel in the piston bowl and high-pressure squish region increases [56]. The addition of gasoline to the PPCI is another way to achieve lower NOx and soot emissions without using EGR. The main benefits of adding gasoline to the PPCI are that it reduces HC and CO emissions by reducing residual products in the cylinder [57]. For longer ignition delay times, most of the premixed heat release phase was seen, resulting in higher peak cylinder pressure and noise levels. When the ignition delay periods shorten, the diffusion heat release phase occurs, resulting in a state similar to that of ordinary diesel combustion [58].
HCCI, PCCI, and RCCI are examples of sophisticated low-temperature combustion technology that have recently been created. RCCI, for example, increases research focus due to its versatility. By achieving low-temperature combustion, HCCI and PCCI improve engine efficiency and reduce pollutants, according to previous studies. These two technologies, however, have considerable limits, and they are not ideal for low and high load settings due to knocking, misfire, and a faster rate of pressure rise. Fuel alteration is required in the HCCI and PCCI combustion to overcome the difficulties [59, 60]. They also stated that combustion quality had improved across a broad range of engine operations (Bessonette et al. [61] investigated the effect of a partially mixed gasoline/diesel charge in a CI engine from low to high load. Raw diesel is favored for the lowest load situation, while a higher percentage of gasoline blend is suited for the highest load condition, according to them. In a subsequent stage, this dual fuel PCCI operation is referred to as RCCI combustion [62]. Adjusting the low to high reactive fuel ratio and the injection pattern of the high reactive fuels to achieve the NOx to smoke trade-off and higher efficiency. Reactivity stratification in RCCI combustion can also be influenced by fuel qualities such as viscosity, volatility, and ignite ability.
Biodiesel has been tested in a variety of engines and under a variety of operating circumstances all around the world. Due to the presence of oxygen in the biodiesel fuel, NOx emissions were higher for the engine [63, 64]. The RCCI engine driven by gasoline/biodiesel was mathematically analyzed by Li et al. [65]. When comparing raw biodiesel to gasoline/biodiesel, the study found decreased NOx emissions in the gasoline/biodiesel operation. As a result, using biodiesel under the RCCI method may be a better alternative for reducing NOx pollution than using biodiesel-powered diesel engines. Hanson et al. [58] study the RCCI combustion utilizing direct-injected diesel and biodiesel mixture (B20) as a direct-injected fuel and gasoline, E85 (85% ethanol and 15% diesel blend), and E20 as a port fuel. In the RCCI combustion, the findings of the E20/diesel mixture show that maximum pressure and HRR dropped, allowing the peak load to increase by 2 bar (from 8 bar to 10 bar BMEP). The usage of E20 improves combustion efficiency while lowering the heat release rate and exhaust leakage. The combustion efficiency of gasoline/B20 RCCI operation was also increased by lowering the UHC, albeit with a greater CO. Fuel efficiency also improved, resulting in a 1.68 percent increase in BTE. In comparison to the RCCI gasoline/diesel operation, E85/B20 allowed the RCCI operation to increase the BTE from 40 to 43%. The use of biodiesel as a pilot fuel has improved the stability of the cyclic operation of RCCI engine powered by natural gas/biodiesel, according to Gharehghani et al. [66]. This is due to the fact that biodiesel contains oxygen, which raises the cetane number. In comparison to natural gas/diesel, the mixture of natural gas/biodiesel produced 1.6% higher BTE as noticed by Gharehghani et al. [66].
The combustion temperature in the LTC mode was always lower than the combustion temperature in a regular diesel engine. There are primarily two strategies to achieve low-temperature combustion: one is to operate the engine with higher EGR, and the other is to operate with an excess air ratio 0 greater than 1 [67]. Fuel combusted and oxidized at higher temperatures under stoichiometric operating conditions, resulting in more NOx production. Also, due to a reduction in oxygen availability in the fuel spray periphery, maximum soot emission was observed under the stoichiometric condition compared to normal diesel combustion [68]. Higher fuel injection pressure is usually a viable approach for overcoming the aforementioned concerns. Higher fuel injection pressure promotes atomization, mixing, and vaporization. However, the key duty to be remedied in modern injection technology in low-temperature combustion is the wall impingement of fuel caused by spray tip penetration at increased fuel injection pressure [69]. Furthermore, improved injection strategies such as high-pressure injection and CRDI approaches reduce the ignition delay period and boost premixed phase combustion, resulting in increased NOx emissions. The ignition delay and combustion phasing will be lengthened by using a higher level of cold EGR, lowering the compression ratio, and using variable valve timing control to advance the exhaust valve opening. Increased ignition delay enhances air-fuel mixing, resulting in increased homogeneity in the air-fuel combination. Higher EGR rate and lower compression ratio reduce the cylinder peak pressure and temperature, which has a major impact on engine performance and higher fuel consumption.
Getting LTC mode to work in real-time settings with heavy engine load is difficult. It is impossible to manufacture engines with a larger amount of EGR. In addition, the engine’s higher BTE should compensate for the increased EGR. In the LTC condition, an external charge booster is necessary to produce higher BTE [70]. When the engine is running at a higher RPM, moderate EGR with an intake charge booster raises the cylinder peak pressure. The combustion process changes depending on the engine load, and it is influenced by the different equivalency ratio and fuel mixing zone, making the engine demanding and difficult to modify the operating state for each load [71]. The real-time modern diesel engine employs dual fuel technology, multiple injection method, and negative valve overlapping. However, these technologies are costly and difficult to implement across the board. By increasing the premixed charge quantity while lowering peak pressure and temperature, these innovations reduce the fuel-rich zone [72].
This study provides a comprehensive overview of hydrogen production techniques and fuel cell vehicle also described about the low-temperature combustion (LTC) techniques and how it is improve the reliability and fuel efficiency of the CI engine combustion cycle with low emissions and noise. The important findings are presented in this review can be summarized below:
Even though fuel cells have demonstrated and shown to be a very promising fuel, there are still a number of limitations that prohibit them from being used on a bigger scale than other fuels. The following are some of the most pressing issues that must be addressed right now: Compared to other kinds of energy, the FC has lower overall efficiency. The material and fabrication of the FC have high production costs.
One of the most pressing concerns is the cost of hydrogen, as well as its storage. Because hydrogen is a relatively light and dangerous gas, it must be stored in special containers. Thermal management in the case of high-temperature fuel cell like solid oxide fuel cell is a type of fuel cell in which the temperature is higher than the ambient temperature.
The size and weight of current fuel cell systems must be further reduced to meet the packaging requirements for automobiles. This applies not only to the fuel cell stack, but also to the ancillary components and major subsystems.
PCCI combustion efficiently decrease the CO and HC emission as compared to the HCCI engine, but NOx and soot emissions were significantly increased with increase in premixed charge percentage. However, the smoke and NOx emissions were identified as minimum level when compared with conventional diesel engine combustion.
Higher cycle-to-cycle variation, unpredictable pressure rise, combustion noise and knocking were occurred in the HCCI mode of combustion due to higher homogeneity and unpredictable auto-ignition zone.
RCCI combustion is preferable for higher load condition due to combustion phase control and higher brake thermal efficiency than PCCI and HCCI modes. The use of natural gas as a reactive fuel was extending the load limit and attained the efficient, clean combustion which significantly decreases the NOx and soot emission as compared to other techniques.
The double injection of high reactive fuel in the RCCI combustion decreases the peak pressure and ringing intensity which efficiently decrease the smoke and NOx emission. The advanced second injection in the RCCI increases the reactive controlled combustion and late second injection increase the mixed controlled combustion.
The combustion efficiency was increased while using the B20 as the high reactive fuel. Due to the oxygen availability in the biodiesel promotes the oxidization process, which decreases the HC and CO emission as compared to the diesel/gasoline RCCI combustion.
Many experiments have extensively demonstrated that there is a wide and unexploited scope for improving low-temperature combustion using different fuel injection parameter and different reactive fuel injection. The overall study infers that depending on the operating condition, engine configuration parameters, fuel injection mechanism and fuel mixing method influenced more on the engine performance and emission characteristics. Hence, further research work will be needed to the trade-off between the NOx and soot emission with improvement in the engine performance.
The authors would like to thank King Mongkut’s University of Technology North Bangkok (Grant Contract No. KMUTNB-KNOW63-28, KMUTNB-Post-65-09, KMUTNB-Post-65-05) for financial support during this work.
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
",metaTitle:"Open Access Publishing Fees",metaDescription:"Open Access Publishing Fees",metaKeywords:null,canonicalURL:"/page/OA-publishing-fees",contentRaw:'[{"type":"htmlEditorComponent","content":"As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\nThe Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\nOAPF Publishing Options
\\n\\nDuring the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\nServices included are:
\\n\\nWhat isn't covered by the Open Access Publishing Fee?
\\n\\nIf your manuscript:
\\n\\nYour Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\nOpen Access Funding
\\n\\nTo explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\nFor Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\nAdded Value of Publishing with IntechOpen
\\n\\nChoosing to publish with IntechOpen ensures the following benefits:
\\n\\nBenefits of Publishing with IntechOpen
\\n\\nAs a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\nThe Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\nOAPF Publishing Options
\n\nDuring the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\nServices included are:
\n\nWhat isn't covered by the Open Access Publishing Fee?
\n\nIf your manuscript:
\n\nYour Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\nOpen Access Funding
\n\nTo explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\nFor Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\nAdded Value of Publishing with IntechOpen
\n\nChoosing to publish with IntechOpen ensures the following benefits:
\n\nBenefits of Publishing with IntechOpen
\n\n\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,annualVolume:11970,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,annualVolume:11971,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!0,annualVolume:11972,editor:{id:"203609",title:"Associate Prof.",name:"Hanna",middleName:null,surname:"Gorska-Warsewicz",slug:"hanna-gorska-warsewicz",fullName:"Hanna Gorska-Warsewicz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSD9pQAG/Profile_Picture_2022-06-14T11:58:32.jpeg",biography:"Hanna Górska-Warsewicz, Ph.D. is Associate Professor at Warsaw University of Life Sciences and Head of Department of Food Market and Consumption Research. She specializes in the subject of brands, brand equity, and brand management in production, service, and trade enterprises. She combines this subject with marketing and marketing management in both theoretical and practical aspects. Prof. Hanna Górska-Warsewicz also analyzes brands in the context of trademarks, legal regulations and the protection of intangible. She is an author or co-author of over 200 publications in this field, including 8 books. She works with the business sector and has participated in projects for the Ministry of Agriculture and Rural Development and the Ministry of Education and Science in Poland.",institutionString:null,institution:{name:"Warsaw University of Life Sciences",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:99,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:158,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:203,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/70125",hash:"",query:{},params:{id:"70125"},fullPath:"/chapters/70125",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()