Some dietary antioxidants and examples of their sources.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8011",leadTitle:null,fullTitle:"Natural Hazards - Risk, Exposure, Response, and Resilience",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",reviewType:"peer-reviewed",abstract:"Natural Hazards - Risk, Exposure, Response, and Resilience demonstrates advanced techniques to measure risks, exposures, responses, and solutions to hazards in an array of communities. Eleven original research reports by international scholars on hazard assessment and management are organized into four sections: studies assessing risk using in-depth modeling and technological detection to provide insight into problems associated with earthquakes, torrential rains, and nuclear power plant safety; studies revealing the spatial distributions of exposure and impacts from an assortment of hazards; studies examining human response to increased awareness of the patterns of hazard; and a study demonstrating assessment of resilience of sociotechnological systems to natural hazards. This volume contributes new conceptual and practical commentaries to assess, mitigate, and plan for disasters.",isbn:"978-1-78984-086-5",printIsbn:"978-1-78984-085-8",pdfIsbn:"978-1-78985-441-1",doi:"10.5772/intechopen.77841",price:119,priceEur:129,priceUsd:155,slug:"natural-hazards-risk-exposure-response-and-resilience",numberOfPages:276,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"43ca8c43ab0963f6c43350764f696b63",bookSignature:"John P. Tiefenbacher",publishedDate:"August 28th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",numberOfDownloads:11376,numberOfWosCitations:3,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:15,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:26,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 12th 2018",dateEndSecondStepPublish:"October 3rd 2018",dateEndThirdStepPublish:"December 2nd 2018",dateEndFourthStepPublish:"February 20th 2019",dateEndFifthStepPublish:"April 21st 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher, Ph.D., is a Professor of Geography and Environmental Studies at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the US–Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to adaptation to climate change, spatial responses of wine growing to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes, and disability as vulnerability to global warming-induced hazards in the Arctic.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"106",title:"Natural Disaster",slug:"natural-disaster"}],chapters:[{id:"65054",title:"Assessing Seismic Hazard in Chile Using Deep Neural Networks",doi:"10.5772/intechopen.83403",slug:"assessing-seismic-hazard-in-chile-using-deep-neural-networks",totalDownloads:905,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:1,abstract:"Earthquakes represent one of the most destructive yet unpredictable natural disasters around the world, with a massive physical, psychological, and economical impact in the population. Earthquake events are, in some cases, explained by some empirical laws such as Omori’s law, Bath’s law, and Gutenberg-Richter’s law. However, there is much to be studied yet; due to the high complexity associated with the process, nonlinear correlations among earthquake occurrences and also their occurrence depend on a multitude of variables that in most cases are yet unidentified. Therefore, having a better understanding on occurrence of each seismic event, and estimating the seismic hazard risk, would represent an invaluable tool for improving earthquake prediction. In that sense, this work consists in the implementation of a machine learning approach for assessing the earthquake risk in Chile, using information from 2012 to 2018. The results show a good performance of the deep neural network models for predicting future earthquake events.",signatures:"Francisco Plaza, Rodrigo Salas and Orietta Nicolis",downloadPdfUrl:"/chapter/pdf-download/65054",previewPdfUrl:"/chapter/pdf-preview/65054",authors:[{id:"53436",title:"Dr.",name:"Rodrigo",surname:"Salas",slug:"rodrigo-salas",fullName:"Rodrigo Salas"},{id:"191915",title:"Dr.",name:"Orietta",surname:"Nicolis",slug:"orietta-nicolis",fullName:"Orietta Nicolis"},{id:"288047",title:"MSc.",name:"Francisco",surname:"Plaza",slug:"francisco-plaza",fullName:"Francisco Plaza"}],corrections:null},{id:"65277",title:"Strong Rainfall in Mato Grosso do Sul, Brazil: Synoptic Analysis and Numerical Simulation",doi:"10.5772/intechopen.83735",slug:"strong-rainfall-in-mato-grosso-do-sul-brazil-synoptic-analysis-and-numerical-simulation",totalDownloads:746,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Heavy rainfall and strong winds occurred in the South of Mato Grosso do Sul State, Brazil on 5 December 2015. In this study the synoptic conditions responsible for the storms and their social consequences are analyzed. Also, the state-of-art model (WRF) was used to simulate the atmospheric conditions in this severe event. The results showed that the storm had harmful consequences both in the cities of the region and in the interior of the state, with floods, threw down trees and impacts on the energy distribution. The synoptic analysis showed that over the Mato Grosso do Sul State at high levels occurred a region of wind difluence which was associated with convective clouds of large vertical development. This event was responsible for the heavy rainfall and strong winds in the region. The model results showed that the simulations were in good agreement with the observations. Thus, numerical weather forecast using the model may be extremely useful to obtain important information to mitigate the possible adverse effects of future severe weather events. This study forms part of a cooperative Project between National Institute for Space Research and Energy Power Company aimed to mitigate the impacts of severe events.",signatures:"Sergio H. Franchito, Manoel A. Gan and Julio P. Reyes Fernandez",downloadPdfUrl:"/chapter/pdf-download/65277",previewPdfUrl:"/chapter/pdf-preview/65277",authors:[{id:"279025",title:"Dr.",name:"Sergio H.",surname:"Franchito",slug:"sergio-h.-franchito",fullName:"Sergio H. Franchito"},{id:"279029",title:"Dr.",name:"Manoel",surname:"Gan",slug:"manoel-gan",fullName:"Manoel Gan"},{id:"279030",title:"Dr.",name:"Julio P.",surname:"Reyes Fernandez",slug:"julio-p.-reyes-fernandez",fullName:"Julio P. Reyes Fernandez"}],corrections:null},{id:"65438",title:"Natural Hazards and Nuclear Power Plant Safety",doi:"10.5772/intechopen.83492",slug:"natural-hazards-and-nuclear-power-plant-safety",totalDownloads:1388,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The safety of nuclear power plants with respect of natural hazards can be ensured by adequate characterization of hazards and proven design solutions to cope with natural hazard effects. Design and severe accident management require characterization of very rare event. The events identified for the design basis and for the safety analysis are with annual probability 10−4–10−5 and 10−7, respectively. In this chapter, a brief insight into the actual issues of natural hazard safety of nuclear power plants and related scientific challenges is provided. The state of the art of ensuring safety of nuclear power plants with respect to natural hazard is briefly presented with focus on the preparedness to the accident sequences caused by rare natural phenomena. The safety relevance of different hazards and vulnerability of NPPs to different hazards are discussed. Specific attention is made to the non-predictable phenomena with sudden devastating effects like earthquakes and fault ruptures. Post-event conditions that affect the on-site and off-site accident management activities are also considered. The “specific-to-nuclear” aspects of the characterization of hazards are discussed. This is a great challenge for the sciences dealing with hazard characterization. The possibility for ensuring nuclear safety is demonstrated presenting cases when the nuclear power plants survived severe natural phenomena.",signatures:"Tamás János Katona",downloadPdfUrl:"/chapter/pdf-download/65438",previewPdfUrl:"/chapter/pdf-preview/65438",authors:[{id:"10716",title:"Dr.",name:"Tamás János",surname:"Katona",slug:"tamas-janos-katona",fullName:"Tamás János Katona"}],corrections:null},{id:"66711",title:"Estimation of Shear Wave Velocity Profiles Employing Genetic Algorithms and the Diffuse Field Approach on Microtremors Array: Implications on Liquefaction Hazard at Port of Spain, Trinidad",doi:"10.5772/intechopen.85129",slug:"estimation-of-shear-wave-velocity-profiles-employing-genetic-algorithms-and-the-diffuse-field-approa",totalDownloads:789,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This book chapter explains the methodology to determine the shear wave velocity VS profile employing microtremors array data at Port of Spain, Trinidad, and its implication in the seismic amplification and liquefaction hazard in the city. We divide this study into five sections; firstly, we introduce a description of the spectral autocorrelation method and the genetic algorithm schemes to retrieve the Vs and thickness of soil layers. Secondly, we validate the soil profiles via inspection of the ellipticity pattern at such sites; we also compared the observed horizontal-to-vertical spectral ratios (H/V) with the synthetic ones derived by the Diffuse Field Approach and 1D theoretical SH wave amplification functions. Thirdly, we compute the shear wave velocity in the first 30 m obtained from our genetic inversion and compared with the ones estimated by the empirical formulas based on geomorphological conditions. Fourthly, we present a preliminary liquefaction hazard map based on the level of H/V microtremor ratios and the fundamental period of vibration. Finally, we conclude with further recommendations for planning purposes in the city of Port of Spain.",signatures:"Walter Salazar, Garth Mannette, Kafele Reddock and Clevon Ash",downloadPdfUrl:"/chapter/pdf-download/66711",previewPdfUrl:"/chapter/pdf-preview/66711",authors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"},{id:"291937",title:"BSc.",name:"Garth",surname:"Mannette",slug:"garth-mannette",fullName:"Garth Mannette"},{id:"291938",title:"BSc.",name:"Kafele",surname:"Reddock",slug:"kafele-reddock",fullName:"Kafele Reddock"},{id:"291939",title:"BSc.",name:"Clevon",surname:"Ash",slug:"clevon-ash",fullName:"Clevon Ash"}],corrections:null},{id:"66859",title:"Long-Wave Generation due to Atmospheric-Pressure Variation and Harbor Oscillation in Harbors of Various Shapes and Countermeasures against Meteotsunamis",doi:"10.5772/intechopen.85483",slug:"long-wave-generation-due-to-atmospheric-pressure-variation-and-harbor-oscillation-in-harbors-of-vari",totalDownloads:849,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"First, the generation and propagation of long ocean waves due to the atmospheric-pressure variation have been simulated using the numerical model based on the nonlinear shallow water equations, where the atmospheric-pressure waves of various pressure-profile patterns travel eastward over East China Sea. Before the oscillation attenuation in Urauchi Bay, Japan, the incidence of long waves can continue owing to an oscillation system generated between the main island of Kyushu and Okinawa Trough. Second, the simple estimate equations are proposed to predict both the wave height and wavelength of long waves caused by an atmospheric-pressure wave, using atmospheric-pressure data above the ocean. Third, numerical simulation has been generated for the oscillation in the harbors of C-, I-, L-, and T-type shapes, as well as Urauchi Bay with two bay heads like a T-type harbor. Finally, we discuss disaster measures, including the real-time prediction of meteotsunami generation, as well as both the structural and the nonstructural preparations.",signatures:"Taro Kakinuma",downloadPdfUrl:"/chapter/pdf-download/66859",previewPdfUrl:"/chapter/pdf-preview/66859",authors:[{id:"183830",title:"Dr.",name:"Taro",surname:"Kakinuma",slug:"taro-kakinuma",fullName:"Taro Kakinuma"}],corrections:null},{id:"65377",title:"Identification and Assessment of Hazard of Development in Gypsum Karst Regions: Examples from Turkey",doi:"10.5772/intechopen.83684",slug:"identification-and-assessment-of-hazard-of-development-in-gypsum-karst-regions-examples-from-turkey",totalDownloads:838,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This study includes natural hazards and environmental problems caused by gypsum on and near the soil, water, and structures. These are karst-specific deformations (caves, fractures, cracks) naturally occurring in gypsum areas, and the problems of salinization, corrosion, erosion, soil and water pollution that occur as a result of dissolution caused by the contact of gypsum with water. In particular, it has been determined that various transfer routes/lines that facilitate human life cause problems on substructures/superstructures resulting from their passage in gypsum areas or on substructures/superstructures (road, buried pipe, building) resulting from the spread of urbanization on this unit, and these have various risks. As a result of these events that have been proven by various studies, it has also been observed that gypsum causes natural hazards and has environmental impacts on human/plant/animal life and living environments and it has also been determined that the quality and sustainability of life/living environment decreased. Therefore, in this study, it has been put forward that gypsum areas pose a risk for the life of all kinds of living beings and that the choice of gypsum areas in the site selection for urbanization will always be risky with respect to natural hazards and environmental problems.",signatures:"Sevda Özel",downloadPdfUrl:"/chapter/pdf-download/65377",previewPdfUrl:"/chapter/pdf-preview/65377",authors:[{id:"276119",title:"Dr.",name:"Sevda",surname:"Özel",slug:"sevda-ozel",fullName:"Sevda Özel"}],corrections:null},{id:"66052",title:"Dam Retirement and Decision-Making",doi:"10.5772/intechopen.84392",slug:"dam-retirement-and-decision-making",totalDownloads:750,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Reservoir is an important part of water conservancy engineering system and an important infrastructure for economic and social development. However, with the increase of operating time, as well as the change of social demand and operating environment, the safety, function, benefit, cost, and other characteristics of the reservoir are also changing. Like living things, reservoirs also have a life cycle of “birth, old age, illness, and death.” The retirement of a dam is an inevitable stage in the life cycle management, as well as a means of resource readjustment and rational utilization. Combined with dam retirement cases that caused severe impacts in history, generalized dam removal eco-environment influence factors are obtained from aspects of materializing, ecology, society, and economy. Based on economic rationality theory and flood consequence assessment, two decision-making methods of dam retirement are put forward. The flood consequence method is applied on the case of Heiwa reservoir; key evaluation indexes are compiled from the aspects of ecology, economy, and society; and the evaluation system based on single index is constructed.",signatures:"Zhao Xueying, Zhang Shunfu and Zhao Xiaoqiu",downloadPdfUrl:"/chapter/pdf-download/66052",previewPdfUrl:"/chapter/pdf-preview/66052",authors:[{id:"277534",title:"Ph.D.",name:"Xueying",surname:"Zhao",slug:"xueying-zhao",fullName:"Xueying Zhao"},{id:"310102",title:"Dr.",name:"Zhang",surname:"Shunfu",slug:"zhang-shunfu",fullName:"Zhang Shunfu"},{id:"310103",title:"Dr.",name:"Zhao",surname:"Xiaoqiu",slug:"zhao-xiaoqiu",fullName:"Zhao Xiaoqiu"}],corrections:null},{id:"66811",title:"Seismic Hazard of Viaduct Transportation Infrastructure",doi:"10.5772/intechopen.85700",slug:"seismic-hazard-of-viaduct-transportation-infrastructure",totalDownloads:853,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Prestressed concrete viaduct structures are used for the construction of many highways and railways. The objective of this study was to clarify the inelastic response behavior of partially prestressed concrete viaduct structures during severe earthquake excitations. A study that includes experimental and analytical phases was carried out. Small-scaled models were employed so as to represent actual viaduct structures. Specimens representing the PC girders of the viaduct structures were tested experimentally. The first technique was statically reversed cyclic loading test to study the inelastic response behavior of the PC girders and to obtain the hysteretic-load deformational characteristics. The sub-structured pseudo-dynamic testing technique was implemented as the second testing technique. During the sub-structured pseudo-dynamic test, the PC girder was tested experimentally, and the RC columns of the viaduct structure were simulated analytically. An amplified excitation of the 1995 Hyogo Ken Nanbu earthquake was used. Response analyses for the viaduct model were carried out. A comparison between the experimental results and results obtained from response analyses was made. An agreement between the experimental and analytical results was found. The study revealed that not only the RC columns but also the PC girders may undergo extensive damage during severe earthquake excitations.",signatures:"Wael Zatar",downloadPdfUrl:"/chapter/pdf-download/66811",previewPdfUrl:"/chapter/pdf-preview/66811",authors:[{id:"139672",title:"Prof.",name:"Wael",surname:"Zatar",slug:"wael-zatar",fullName:"Wael Zatar"}],corrections:null},{id:"66646",title:"Determinants of Coping Strategies to Floods and Droughts in Multiple Geo-Ecological Zones",doi:"10.5772/intechopen.84571",slug:"determinants-of-coping-strategies-to-floods-and-droughts-in-multiple-geo-ecological-zones",totalDownloads:1077,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Floods and droughts—the most frequent water-related hazards are negatively impacting livelihoods across the world, particularly in Sub-Saharan African countries, where poverty remains endemic. Naturally, victims adopt different coping strategies against burgeoning hydro-meteorological hazards. Contemporary research on determinants for coping decisions in SSA has been largely driven by isolated case studies, of little relevance for broad-based policy making. We analyze the determinants for coping with floods and droughts across multiple geo-ecological zones in Cameroon. Quantitative data primarily obtained from 2024 flood and drought household victims in the Western Highlands and Sudano-Sahelian Upland geo-ecological zones are analyzed alongside qualitative data obtained through 31 FGDs and 99 IDIs using descriptive statistics and regression analysis in MS Excel 2013 and SPSS 20 for the questionnaires and content analysis in Nvivo 11 for the unstructured interviews. Results reveal government policy, socio-cultural, economic and educational factors, and hazard experience as major shapers of coping decisions, irrespective of hazard type, timing and geo-ecology (P = 0.05). In contrast to the state-of-the-art, we observed livelihoods improvement after some hazardous events. The policy implications for long-term coping and resilience building are then discussed.",signatures:"Theobald Mue Nji and Roland Azibo Balgah",downloadPdfUrl:"/chapter/pdf-download/66646",previewPdfUrl:"/chapter/pdf-preview/66646",authors:[{id:"278981",title:"Ph.D. Student",name:"Theobald",surname:"Mue Nji",slug:"theobald-mue-nji",fullName:"Theobald Mue Nji"},{id:"278989",title:"Dr.",name:"Roland",surname:"Azibo Balgah",slug:"roland-azibo-balgah",fullName:"Roland Azibo Balgah"}],corrections:null},{id:"68124",title:"Emergency Communications Network for Disaster Management",doi:"10.5772/intechopen.85872",slug:"emergency-communications-network-for-disaster-management",totalDownloads:1445,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In recent years, from the majority of field experiences, it has been learned that communications networks are one of the major pillars for disaster management. In this regard, the exploitation of different space technology applications to support the communications services in disasters plays an important role, in the prevention and mitigation of the natural disasters effects on terrestrial communications infrastructures. However, this chapter presents the design and implementation of an emergency communications network for disaster management, based on a topology that integrates communications satellites with remote sensing satellites into an emergency communications network to be activated in disaster events, which affect public or private terrestrial communications infrastructures. Likewise, to design the network, different technical and operational specifications are considered; among which are: the emergency operational strategies implementation to maneuver remote sensing satellites on orbit for optimal images capture and processing, as well as the payload and radio frequencies characterization in communications satellites to implement communications technology tools useful for disaster management. Therefore, this emergency communications network allows putting in operation diverse communications infrastructures for data and images exchange, making available the essential information to accomplish a fast response in disasters or to facilitate the communications infrastructures recuperation in emergencies situations.",signatures:"Carlos Alberto Burguillos Fajardo",downloadPdfUrl:"/chapter/pdf-download/68124",previewPdfUrl:"/chapter/pdf-preview/68124",authors:[{id:"279799",title:"M.Sc.",name:"Carlos Alberto",surname:"Burguillos Fajardo",slug:"carlos-alberto-burguillos-fajardo",fullName:"Carlos Alberto Burguillos Fajardo"}],corrections:null},{id:"65462",title:"Interview of Natural Hazards and Seismic Catastrophe Insurance Research in China",doi:"10.5772/intechopen.84159",slug:"interview-of-natural-hazards-and-seismic-catastrophe-insurance-research-in-china",totalDownloads:884,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In order to solve the increasingly serious threat of natural disasters in western Pacific coastal region, a new life-cycle cost analysis method is presented to evaluated the possible loss of natural disasters in the future in China. At the same time the research also lays a foundation for the promotion and establishment of earthquake catastrophe insurance in China. The estimation of earthquake losses for example RC buildings and industrial buildings based stochastic method models is the focus of the research. An assembly-based mixture fragility framework is firstly adopted for modeling and seismic loss estimation. The damage of the structural and non-structural which connected into response of the structures under given stochastic motions use nonlinear incremental time-history analysis to estimate in a detailed. Description of the uncertainty of all parameters in life-cycle cost (LCC) research through appropriate probability distributions to reach quantification of the LCC expected value. Moreover, the study is also to give the expected seismic catastrophe insurance premium (CIP) for two types of typical buildings in high seismic intensity areas of China based probabilistic seismic risk assessment in its service lifetime.",signatures:"Jian Zhu",downloadPdfUrl:"/chapter/pdf-download/65462",previewPdfUrl:"/chapter/pdf-preview/65462",authors:[{id:"278411",title:"Dr.",name:"Jian",surname:"Zhu",slug:"jian-zhu",fullName:"Jian Zhu"}],corrections:null},{id:"65456",title:"Multiset-Based Assessment of Resilience of Sociotechnological Systems to Natural Hazards",doi:"10.5772/intechopen.83508",slug:"multiset-based-assessment-of-resilience-of-sociotechnological-systems-to-natural-hazards",totalDownloads:859,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The chapter describes multiset-based approach to the assessment of resilience/vulnerability of the distributed sociotechnological systems (DSTS) to natural hazards (NH). DSTS contain highly interconnected and intersected consuming and producing segments, and also resource base (RB), providing their existence and operation. NH impacts may destroy some local elements of these segments, as well as some parts of RB, thus initiating multiple chain effects, leading to negative consequences far away from the NH local strikes. To assess DSTS resilience to such impacts, multigrammatical representation of DSTS is used. A criterion of DSTS sustainability to NH, being generalization of similar criterion, known for industrial (producing) systems, is proposed. Application of this criterion to critical infrastructures is considered, as well as solution of the reverse problem, concerning subsystems of DSTS, which may stay functional after NH impact.",signatures:"Igor Sheremet",downloadPdfUrl:"/chapter/pdf-download/65456",previewPdfUrl:"/chapter/pdf-preview/65456",authors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74251",slug:"corrigendum-to-enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and",title:"Corrigendum to: Enhancing Soil Properties and Maize Yield through Organic and Inorganic Nitrogen and Diazotrophic Bacteria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74251.pdf",downloadPdfUrl:"/chapter/pdf-download/74251",previewPdfUrl:"/chapter/pdf-preview/74251",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74251",risUrl:"/chapter/ris/74251",chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]}},chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]},book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11546",leadTitle:null,title:"Smart and Sustainable Transportation",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tRecent years have witnessed enormous growth in the rate of motorization and, consequently, traffic congestion. It has also brought alarming environmental concerns in the form of increased greenhouse gas emissions. Driver frustration, anxiety, and increased safety concerns have also become more common. These issues may be significantly mitigated by adopting smart and sustainable mobility solutions. The emergence of new vehicle technologies such as connected and automated vehicles (CAVs), electric vehicles (EVs), and shared mobility options can offer unprecedented opportunities to achieve smart and sustainable urban mobility. This book aims to cover the latest research topics on the role of various emerging and new mobility solutions from the perspectives of their public acceptance and willingness to adopt, traffic operations and congestion, highway safety, and their environmental impacts. Applications of various state-of-the-art econometric and artificial intelligence techniques in transportation data analysis are also welcome.
",isbn:"978-1-83768-275-1",printIsbn:"978-1-83768-274-4",pdfIsbn:"978-1-83768-276-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"88ccbca0fb32b8f905e4307bfe485862",bookSignature:"Dr. Arshad Jamal",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",keywords:"Shared Mobility, Travel Behavior, Traffic Congestion, Autonomous Vehicles, Electric Vehicles, Highway Safety, Traffic Control, Traffic Operations, Active Mobility, Pedestrians, Bicycles, Electric Bikes",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2022",dateEndSecondStepPublish:"June 29th 2022",dateEndThirdStepPublish:"August 28th 2022",dateEndFourthStepPublish:"November 16th 2022",dateEndFifthStepPublish:"January 15th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A researcher in transportation engineering,",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"339925",title:"Dr.",name:"Arshad",middleName:null,surname:"Jamal",slug:"arshad-jamal",fullName:"Arshad Jamal",profilePictureURL:"https://mts.intechopen.com/storage/users/339925/images/system/339925.jpg",biography:"N/A",institutionString:"King Fahd University of Petroleum and Minerals",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"King Fahd University of Petroleum and Minerals",institutionURL:null,country:{name:"Saudi Arabia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69876",title:"Leadership Styles in Nursing",doi:"10.5772/intechopen.89679",slug:"leadership-styles-in-nursing",body:'“Leadership is not only about individuals, but also about teams” [1].
Nowadays, leadership in health services is an important issue that aims to protect and improve human health. Rapid changes and developments in the health sector increase the importance of developing managership and leadership skills for health managers [2]. Regional and national health systems tend to redesign their functions and priorities by making structural changes in social and economic terms to cope with the increasing health problems [3]. The inclusion of complex technology and intense human relations in hospital services, which constitute a significant part of health care services, leads to the emergence of important managerial problems [4]. The existence of effective, creative, visionary, motivated, knowledgeable, principled leaders for the development of the institution is important to eliminate various problems in health services. To be able to do this, it is necessary to determine the qualifications that can contribute to the effective leadership of corporate managers [2, 5].
Leadership in health services is of great importance in terms of following innovations and adapting to existing situations [6]. Leadership can be defined as a multidimensional process, which means that a person motivates others to direct their activities and develop their skills under certain circumstances [3, 7]. The leader is the person who sets the goals of his group and who influences and directs the members of the group in line with these goals [8]. In addition, a good leader must be dynamic, passionate, have a motivational effect on other people, be solution oriented, and try to inspire others. Nurses, who work together with other health personnel in hospitals, constitute an important group in leadership. Nursing, which is a key force for patient safety and safe care, is a human-centered profession, and therefore leadership is a key skill for nurses at all levels. The leadership styles of nurse managers are believed to be an important determinant of job satisfaction and job commitment of nurses. Nurses who are mobilized and empowered to perform specific personal or group goals by a good leader nurse are willing to implement evidence-based practices and are highly motivated, well informed, and committed to organizational goals. Therefore, they perform patient care in a more effective and planned process. It has become imperative to examine the role of leadership styles of nurse managers on staff outcomes after miscarriage of health workforce, which is a global nursing problem, increasing health care costs and workload [9, 10].
There is a limited number of articles in the literature about the leadership styles of nurses. In these studies, the importance of leadership styles and practices on patient outcomes and patient safety, health service power and corporate culture were determined [3]. However, Cummings [10] stated that most styles can be grouped under relational leadership or task-focused leadership. Relational leadership styles focus on people and relationships. It includes transformational, emotional intelligence, resonance, and participatory leadership. These styles are positively associated with staff satisfaction, organizational commitment, improved staff health welfare, stress reduction, job satisfaction, productivity increase, effective study, and positive patient outcomes. However, task-focused leadership is focused on completion of works, deadlines, and directives. Task-focused leadership styles include operational, autocratic, and laissez-faire leadership [10].
Relational leadership styles focus on people and relationships and include transformational, emotional intelligence, resonance, and participatory leadership [11]. These leadership styles are associated with increased employee satisfaction, organizational commitment, improved staff health and well-being, stress reduction, job satisfaction, increased productivity, effective work, and positive patient outcomes [10].
Transformational leadership is considered the gold standard of leadership [11]. Transformational leadership is at the center of nursing because it has an impact on patient outcomes, employee satisfaction, and safety culture. Transformational nurse leaders first perform nursing, communicate effectively with their audiences, and become effective role models [12]. Such leaders are motivated and empowering, encouraging and following their audience for organizational goals and individual goals [13, 20]. In addition, it is explained how the transformational leaders have four characteristics that affect their audience. These characteristics are charisma, inspirational, intellectual thinking, and individual attention [42].
It is thought that the transformational leaders fascinate their audience with the charisma feature. This fascination is sometimes associated with the physical characteristics of the leader as well as communication skills and vision. The inspiring character of transformational leaders supports and motivates their followers with encouraging speeches in case of hard work and crises [14].
Transformational leaders, with their intellectual characteristics, encourage their followers to think innovatively and to think about how we can do it better. At the same time, these leaders do not prefer their followers to accept their thoughts as they are [14]. Finally, the transformational leaders, who are interested in their followers individually, advise them in line with their individual needs. In addition, leaders appreciate their followers within the team.
When considered with a general assessment, transformational leaders think that their followers should be evaluated individually and the needs and characteristics of the followers may change with the influence of the leader. Therefore, with the mentoring of the leader, the development of the followers increases at the same rate.
Resonance leadership is based on emotional intelligence and awareness, including being open and sensitive to judgment [15]. Resonance leaders have emotional intelligence features. These are self-awareness, self-management, social awareness, and relationship management [16]. According to these characteristics, resonance leaders are effective in managing and solving conflict, democratic, collaborative, and can find solutions to problems.
Emotional intelligence was first described as a feature of transformational and resonant leadership in the 1980s. Leaders with emotional intelligence have four important structures: self-awareness, self-management, social awareness, and social skills. Emotionally intelligent leaders are sensitive to the well-being, emotions, and emotional health of themselves and their followers, and develop effective personal relationships while directing followers to common business goals. Emotionally intelligent leaders manage and reflect their emotions, making rational decisions to ensure teamwork and collaboration. Emotionally intelligent leaders are also effective in conflict resolution because they have the ability to see the situation from others’ perspective and manage work stress [11].
In participatory leadership, the views of individuals and groups are taken into consideration. Knowledge, experience, skills, and innovation are of great importance in the decision-making process, with a wide range of expertise and participation in engagement. In 2016, WHO called for participatory leadership to replace hierarchical leadership models of health leadership, suggesting that inclusiveness and the involvement of various stakeholders would strengthen health services [17].
The task-focused leadership style involves planning business activities, clarifying roles within a team or a group of people, as well as a set of objectives, and continuous monitoring of processes and performance. Task-focused leaders focus on completion of jobs, deadlines, and directives [10]. Task-focused leadership is significantly associated with high-level patient satisfaction [18].
This concept, which is referred to as “transactional leadership” in English literature, is used as “interactionist,” “operational,” or “transactional” leadership in different sources. Transactional leadership is a leadership style that provides short-term goals and motivates viewers through the fulfillment of individual needs in exchange for high performance toward organizational goals [19]. Leaders in transactional leadership act as exchanges managers by exchanging followers who lead to improvement in production, and are interested in processes rather than shared values with forward-thinking ideas [18, 20].
Transactional leadership style emerges in two basic forms as “management with exceptions” and “conditional rewarding” [21, 22]. The form management with exceptions is divided into two as active and passive. The active leader monitors the performance of the team followers and intervenes to correct these errors when he/she detects errors. The passive leader expects the followers’ mistakes to draw their attention before giving negative feedback or any warning [23]. In conditional rewarding, transactional leaders clearly explain to their followers what their duties are, how they will be made, and how they will be rewarded if the desired tasks are fulfilled satisfactorily [21, 24].
Transactional leaders are cultural carriers who maintain the existing order and act in line with traditions and past [25]. In crises where an explicit orientation is required, the transactional leadership approach is an effective style. Transactional leadership can be the best leadership style for the direction of critical events [18, 26]. This leadership style can be effective in emergency situations such as cardiac arrest, by enabling nurses to focus on the task as a whole on the patient [27].
In the literature, transactional leadership and transformational leadership are explained together and comparisons are made. Besides, unlike the transformational leadership, leaders who adopt an interactive approach want to maintain the same things instead of changing the future, and they are less concerned with the creative and innovative aspects and focus on concepts such as efficiency and quality [28]. Bass emphasizes the use of interactive leadership as a conditionally rewarding performance, especially among followers and leaders [29]. While transformational leadership results in a performance beyond expected, interactive leadership focuses on the expected results [30]. According to the transactional leadership, leadership is seen as a simple mutual exchange between leaders and followers based on economic or political reasons, while transformational leadership states that leaders and followers influence each other in order to achieve higher levels of motivation and morale [31].
Another type of transactional leadership is autocratic leadership. Autocratic leaders are defined as directives, controlling, power-oriented, and closed-minded. The leader describes the “what, when, why, and how” of the task. He/she emphasizes obedience, loyalty, and strict adherence to the rules. Followers do what the autocratic leader says [32]. The autocratic leadership style can be considered ideal in emergencies because he or she takes all decisions himself/herself, regardless of the views of the leading staff [3]. Because information is seen as power, critical information can be hidden from the team. Mistakes are not tolerated and individuals are accused rather than erroneous operations. Rewards are given for compliance, but disobedience is punished [18, 32]. In addition, autocratic leaders can create fear among staff and often make decisions without consulting the team [32]. These leaders motivate their subordinates by using their “legal powers,” “rewarding powers,” and “coercive forces.” Autocratic leaders may not be welcome by their team, but this can be transformed into appreciation and devotion when the positive results of their leadership emerge. Although staff do not like autocratic leaders, they often work well on their orders [18, 32]. This leadership approach can be useful at the moment when it is necessary to make quick decisions or to mobilize uneducated and less-motivated followers in the short term by pressure and fear [6, 33, 34]. The positive aspect of this style is that it works perfectly in emergencies or chaotic situations with little time for discussion.
Schoel et al. found that very popular leaders were perceived as ineffective, while unpopular leaders could be perceived as effective [35]. According to the results of Uysal et al., the perception of the behavior of hospital managers as autocratic by followers decreases the productivity of the work [6], because autocratic leadership is perceived negatively by the followers; the reason is that the authoritarian attitude does not give the employee the right to speak, and that the awards and punishments are precise and clear.
The style of leadership recognizing full freedom is also referred to as “laissez-faire” in the literature and is expressed as “let them do it.” This kind of a leader advises the process by not participating in the process, encourages followers to generate ideas, offers suggestions when asked by followers, and declares opinions. [31]. Leadership that recognizes full freedom is a style in which the leader provides little or no orientation or control, and prefers a practical approach. Fully free leadership style includes a leader who does not decide, and acts without staffing or supervision [3]. The main task of the leader is to provide resources. Such leaders dissipate responsibilities and retreat and refrain from taking decisions [31]. The leader only gives his/her opinion when asked about his/her opinion on any subject, but this view is not binding on his/her followers [36].
Leadership that recognizes full freedom is an authoritative, task-focused leadership style, because it involves the regulation of tasks in times of crisis, so it shows reactive leadership. This style of leadership is often used by inexperienced leaders or those who are about to vacate their leadership positions, who prefer to give up their followers or others to change their positions, such as those who would like to give up their job [18]. The leader leaves the followers on their own. Followers do what they think is the best. Followers are trained to find the best solution to their problems. Whenever he/she sees it necessary, a person can form a group with whom he/she wants to solve problems, try new ideas, and make the decisions that he/she thinks are most appropriate for him/her [37, 38].
There are positive and negative aspects of the leadership style that gives full freedom. The first positive aspect of this leadership style is the determination and implementation of the goals, plans, and policies of employees or members of the organization, and it mobilizes the creativity of each member or employee [39]. The second positive aspect is that employees are motivated to train themselves and find the most appropriate solution to the problems. When the individual deems it necessary, he/she creates a group with the people he/she wants, solves the problems, tries new ideas, and reaches the most appropriate decisions [40]. The negative aspects of leadership, which gives full freedom, are the emergence of turmoil within the organization and the fact that everyone leads to the targets he/she wants and even toward opposing targets. Another disadvantage is the significant decrease in organizational success, independent of personal achievements.
Skogstad et al. state that the type of leadership recognizing full liberty reinforces the role conflict and role ambiguity experienced by the individual, and increases the conflicts with colleagues [40]. Hinkin et al. also state that leadership behaviors that recognize full liberty harm the punitive and rewarding roles of the leader and decrease leaders’ effectiveness [41]. Chaudhry and Javed state that fully free leadership has no effect on the motivation of the followers compared to other types of leadership [42]. Şentürk et al. reveals that fully free leadership does not have a reinforcing effect on innovative behaviors but rather reduces it [31]. According to the results of Uysal et al., the perception of the behavior of hospital managers as autocratic by followers decreases the productivity of the work [6]. Because autocratic leadership is perceived negatively by the followers. The reason is that the authoritarian attitude does not give the employee the right to speak, and that the awards and punishments are precise and clear.
Instrumental leadership focuses on choosing an appropriate strategy along with appropriate resources to achieve business goals, and it is vital for sustainable corporate performance [43, 44]. This leadership style is part of the spectrum of transformational and interactive leadership styles. Instrumental leaders can be effective managers because they ensure efficiency protection. Thus, jobs are completed in line with the resources, strategic vision, and time constraints of the health facility [45]. In current leadership approaches, the strategy and task-focused developmental functions of the leaders are not taken into account; however, strategy and task-focused functions, which are instrumental forms of leadership, are essential for organizations and followers to ensure sustainable performance. Instrumental leadership is based on neither ideals nor swap relationships. Instrumental leadership includes ensuring harmony between the organization and the environment, developing strategies, preparing task and strategy tables, using resources effectively, and providing performance feedback [44]. The most prominent feature of the instrumental leadership type is the determination of the subordinates’ path by the leader [34]. The instrumental leader is mainly concerned with the timely completion of the work related to the desired goal; it focuses on functions such as setting goals, organizing group members, setting up the communication system, and determining work-related times [46]. Akyurt et al. found that instrumental and interactive leadership have a statistically significant and positive effect on job satisfaction and organizational commitment [21]. Tengilimoglu and Yigit, in their study on 355 state hospital workers in order to determine the effect of leadership behavior in hospitals on job satisfaction of the employees, found that the leadership style with the highest job satisfaction were participatory, instrumental, success-oriented, and supporting leadership, respectively [34].
As the health sector is in a process of change, new leadership approaches need to be implemented to effectively manage this new structure [46]. Developments in the field of management-organization and organizational behavior and new concepts have also led to the emergence of new leadership styles in leadership [4]. Leadership is important for every organization as well as for health organizations, because the success of an organization is a good leader [47]. For effective leadership, it is important to focus on the dynamic relationships between guidance, leadership values, culture, talent, and organizational context [48]. Effective leaders in health care services consider safe, qualified, and friendly care as the top priority. Effective leadership is critical to facilitate quality care, patient safety, and positive staff development. Leaders make the voice of patients continuous; they continuously monitor their patient experiences, concerns, needs, and feedback [49]. Nurses, the largest workforce in a health institution and a dynamic profession, play an important role in health leadership and policy-making, while maintaining their traditional care skills [50]. The leadership style of executive nurses plays an important role in the provision of job satisfaction and motivation of nurses, development of institutional commitment, and effective management of conflicts [51, 52, 53]. In addition, effective leadership styles can increase the quality of health care outcomes. In addition, leadership in health facilities is considered as an important factor in ensuring quality health services, patient satisfaction, and financial performance.
Nurses are responsible for guiding the community because of their responsibilities in health care. Patient care and education, effective communication, and clinical management are the most important tasks. These tasks are closely related to leadership behavior. Nurses who exhibit leadership behavior will be pioneers in bringing the profession to a professional level. The goal of future health care institutions should be to influence the quality of patient care through a good nursing leadership. Future research should focus on the development, applicability, and implementation of robust leadership style models in different health environments. These studies should include multidisciplinary professional teams; strengthen the role of nurses and other health professionals; and address organizational parameters and individual wishes, preferences, and expectations for quality of life and health care.
We thank everyone who provided scientific guidance.
The authors declare no conflict of interest.
The major drive of recent developments in food processing and storage activities is, undoubtedly, to produce food products that have the potential of providing required nutrients and bioactive compounds in order to reduce increasing lifestyle diseases like cancers, cardiovascular, diabetes, and others. Bioactive compounds are non-essential biomolecules that have biological values beyond their calorie content found in foods that are capable of modulating metabolic processes resulting in the promotion of better health [1]. Antioxidants are bioactive compounds contained in foods, though not considered as part of nutrients, but by their antioxidative activities, are capable of enhancing the foods’ keeping quality or promoting the consumers’ health. Sardarodiyan and Sani [2] posit that antioxidants have become an indispensable group of food additives mainly because of their unique properties of extending the shelf-life of food products without any adverse effect on their sensory or nutritional qualities. Studies about antioxidants have shown that they are chemical compounds that are capable of hindering the generation of reactive species and their derivatives, either in the food systems or in the human body. They are categorized into two major groups which include synthetic and natural antioxidants, based on their sources. Natural antioxidants are produced by natural molecular formations in plants, animals, mushrooms, microorganisms like algae and bacteria and are thus extracted directly from organic sources such as fruits, vegetables, grains, and meat. Synthetic antioxidants are artificially synthesized by combinations of some chemical compounds in laboratories for use, mainly, in the preservation of foods. Though both categories of antioxidants are assumed to perform the same function in food systems, they have a distinct effect. According to the literature, in terms of zero tolerance to side effects and contribution to delay or prevention of occurrence of chronic diseases, natural antioxidants are more effective; while in terms of preservation of high lipid food products synthetic antioxidants are more effective. Morton et al. [3] corroborated with this assertion by reporting preference in the use of synthetic antioxidants in preserving foods with high rancidity levels to natural antioxidants usable in preserving hydrogenated oils with lower rancidity levels.
Antioxidants are substances that prevent or retard oxidative activities in foods or body systems. Halliwell [4] and Arun and Abdul Azeez [5] reported that they are usually present in relatively small concentrations but are capable of frustrating oxidative activities in the systems. Tuberoso et al. [6] and Atta et al. [7] mentioned them as resources for use in preventing or greatly retarding the oxidation of easily oxidizable materials such as fats (and or peroxidation of lipids in food products and cells of the body systems. They are also defined as substances that engage harmful forms of oxygen to prevent them from harming the cells of either the food products or those of the body of food consumers. Kebede and Admassu [8] stated that antioxidants are capable of slowing down the autoxidation process of other compounds or neutralize free radicals. Although Becker et al. [9] and Halliwell [10] specified the above definition in the context of the biological system, Atta et al. [7] alluded to it as a broader definition encompassing many vulnerable macromolecules (e.g. DNA, lipids and proteins) that can be affected by oxidation. Such broad definition means that compounds that inhibit specific oxidizing enzymes, react with oxidants before they damage molecules, sequester dangerous metal ions or even repair systems such as iron transport proteins, can fit into the definition [7]. Ihekoronye and Ngoddy [11] defined them as substances that retard the rate of oxidation which serve two principal functions: breaking the oxidation chain by containing free radicals or acting as hydrogen donors and facilitating the breakdown of peroxides into stable substances that inhibit further oxidation. Atta et al. [7] referred to the above description as the mechanistic definition of antioxidants. The definition considers radical scavenging capacity or amount of free radical captured by antioxidant food components [12]. Asimi et al. [13] considers antioxidants as compounds or systems that can safely interact with free radicals generated in the food products or by metabolic activities to prevent them from reacting with the cells and cause damages, in the case of the body. Their affinity with the free radicals facilitates their disposition to mop up the radicals generated by metabolic processes to protect the cells. Antioxidants, indeed, are substances that at low concentrations retard the oxidation of easily oxidizable biomolecules [14] such as lipids and proteins either in food products or in living cells of the body system to discourage adverse effects of oxidation. Antioxidants act at different levels in the oxidative sequence involving lipid molecules [2]. Bontempo et al. [15] reported several ways they function including reducing oxygen concentration, intercepting singlet oxygen (1O2), scavenging initial radicals like hydroxyl radical to avoid initiation of first-chain reaction, binding metallic ion catalysts, decomposing primary products of oxidation to non-radical species and breaking chain reactions to prevent continued hydrogen abstraction from substrates. The necessity to produce healthier foods to discourage occurrences of lifestyle diseases and their associated increasing intake of drugs propels consideration for replacing synthetic antioxidants with the natural ones in the food system.
The reduction or stoppage of oxidative processes by antioxidants, in any system, follows two principal mechanisms of action. Kebede and Admassu [8] reported a chain-breaking mechanism as the first action in which primary antioxidants donate electrons to the free radicals present in the system. The ways they achieve this include stoppage of formation of free radicals, providing electrons to the existing free radicals to stabilize them and checkmating their reactivity. A free radical can be defined as, “any molecular species capable of independent existence that contains an unpaired electron in an atomic orbital and capture electrons from other substances in order to neutralize themselves” [16]. Atta et al. [7] referred to this action as neutralization of free radicals and identified two major pathways through which this is accomplished to include chain-breaking and preventive processes. In chain-breaking free radicals release or abstract electron to form second radical which does the same thing to the third molecule to continue to generate unstable products to propagate the chain of reactivity and oxidation processes. The free radical has the ability to donate or to accept an electron from other molecules [17]. This stabilizes the free radical at the beginning but starts to produce another in the process [14]. The moment a chain reaction begins, thousands of free radical reactions can occur within a few seconds on the primary reaction [18].
Antioxidants readily donate an electron to the free radicals to get them stabilized. This assertion is in agreement with the report of Brewer [19] that the propagation of free radical chain reaction can be minimized by the donation of hydrogen from the antioxidants and the metal chelating agents. The preventive pathway of antioxidants entails the removal or scavenging of free radicals to prevent their interaction with food substrate. The view of Nawar [20] about the mechanisms of antioxidants indicated that antioxidants scavenge species that initiate peroxidation, chelate metal ions, and disable their potential to generate reactive species or decompose lipid peroxides, quench or prevent the formation of peroxides, break the autoxidative chain reaction, and/or reducing localized O2 concentration. This assertion described by Kebede and Admassu [8] as the second mechanism of action of antioxidants, entails quenching chain initiator mechanisms that incidentally eliminates initiators of reactive oxygen species (ROS) and reactive nitrogen species (RNS). It is worthy to mention here, according to Pisochi and Pop [21] and Perez and Aguilar [22], that free radicals are derived from oxygen, nitrogen, and fsulfur molecules and, hence the free radicals constitute groups of molecules called reactive oxygen species, reactive nitrogen species, and reactive sulfur species. Atta et al. [7] stated that free radicals of ROS include superoxide anion (O2−•), perhydroxyl radical (HO2•), hydroxyl radical (·OH), nitric oxide and other species such as hydrogen peroxide (H2O2), singlet oxygen (O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO–). According to them, whereas RNS are products of the reaction of nitric oxide with O2−• to form ONOO–; RSS is derived from the reaction of thiols with ROS.
The mechanisms of antioxidants are further explicable with identification of three stages of mechanisms of chain reactions which according to the reports of Rosenblat and Aviram [23], Polumbryk et al. [24], and Kebede and Admassu [8] include: initiation, propagation, and termination stages. In the initiation stage, the abstraction of the hydrogen atom from the system generates free radicals to initiate chemical reactions of oxidation activities. The presence of antioxidants inhibits the formation of free radicals to delay or disable the start of initiation or propagation of the chain reaction. Below is a typical initiation stage of a system RH, a free radical R* formed as a result of the abstraction of a hydrogen atom H*.
The propagation of free radical chain reaction is occasioned by the ability of free radicals or the reactive species to react with a molecule of oxygen from the environment, resulting in the formation of peroxides and peroxy radical ROO* in the propagation stage [8] shown below. Also, the presence of antioxidants frustrates the intermediates from propagating free radicals, which according to Brewer [19] and Atta et al. [7] could be by the donation of hydrogen from the antioxidants. The propagation stage is represented below.
In the terminal stage shown below, either two free radicals combine to form a stabilized or nonradical species or the antioxidants donate hydrogen atom (H*) to radicals to terminate the chain reaction. Brewer [19] stated that the free radicals of antioxidants may then form a stable peroxy-antioxidant compound.
Although based on the mode of production antioxidants are majorly classified into natural and synthetic antioxidants, the cellular level as the targeted site of free radicals’ damage and defensive approach of antioxidants, was also mentioned by Anwar et al. [25] as a criterion for further classifying the antioxidants into enzymatic and nonenzymatic ones. However, the classification reported by Kebede and Admassu [8], Akbarirad et al. [26] and Anbudhasan et al. [14] highlighted the mode of the provision of antioxidants to the body system; and mentioned exogenous, endogenous, and dietary antioxidants, as classes of antioxidants, subsumes the forgoing classification. Lastly, classification based on the course of action was equally mentioned by Manessis et al. [27] in their report on the classification of antioxidants. Some of them will be discussed briefly.
Natural antioxidants are, at times, considered as extra nutritional components that occur in small quantities in food materials, especially if such food materials contain compounds like vitamins C or E that dually serve as providers of nutrients and bioactive compounds. Grozea [28] stated that they are found in natural sources, such as fruits, vegetables, and meats. They are also found in all plants parts like nuts, seeds, leaves, roots, and barks [26]. Table 1 shows some natural antioxidants that are increasingly applied in food systems. Though natural antioxidants are products of animals, plants, mushrooms, and algae. Kebede and Admassu [8] reported that natural antioxidants that are mainly used in the food system are mostly synthesized by plants (e.g. vitamins and other naturally occurring chemical compounds in food). Yadav et al. [30] corroborated with the foregoing and mentioned antioxidants commonly found in everyday foods to include vitamin C (ascorbic acid), vitamin E (tocopherols), vitamin A (carotenoids), various polyphenols including flavonoids, anthocyanins, lycopene (a type of carotenoid), and coenzyme Q10, also known as Ubiquitin, which is a type of protein. Some of these antioxidants and others highlighted in Table 1 are significantly sourced from plant-based foods. Natural antioxidants are found in most fresh foods [14]; with fruits, vegetables, and medicinal herbs being the richest sources of antioxidant compounds such as vitamins A, C, and E, ß-carotene, and important minerals [31]. Mohdali [32] reported different variations in phenolic contents not only among different fruits or vegetables but also reports of different authors even for the same fruits or vegetables. Also, two major groups, enzymatic antioxidants and non-enzymatic antioxidants constitute the human antioxidant [33, 34].
Exogenous antioxidants | Dietary sources |
---|---|
Vitamin C (ascorbic acid/ascorbate) | Bell peppers, strawberries, kiwi, Brussels sprout, broccoli, most fruits (particularly citrus fruits), some vegetables, tomatoes. |
Vitamin E (tocopherol, tocotrienols) | Vegetable oil (olive, sunflower, safflower) and its derivatives (margarine, salad dressing, nuts and seeds, cereal grains, broccoli, Brussels sprouts, cauliflower, almonds, hazelnuts |
Carotenoids(carotene, zeaxanthin, lutein, lycopene, ᵦ-cryptoxanthin, etc.) | Orange and red vegetables and fruits (carrots, tomatoes, apricots, plums) and green leafy vegetables (spinach and kale), dark leafy vegetables, sweet potatoes, yams, citrus fruits, kale, papaya |
Polyphenols (flavonols, flavanols, catechins, anthocyanins, isoflavones, phenolic acids | Fruits (apples, berries, grapes, citrus), vegetables (celery, kale, onions, lettuce, eggplants, peppers, cruciferous vegetables, onions) legumes (beans, soybeans, nuts), wine, tea, cocoa, oilseeds, black tea |
Trace elements(selenium, zinc) | Seafood, red meat, chicken, and whole grains |
Dietary antioxidants are a complex mixture of micronutrients and bioactive phytochemicals in the diets that exhibit a range of antioxidant functions, and also according to Da Costa et al. [29], play an important role in the defense against stress. They are sufficiently supplied to the body system by the consumption of balanced diets, fruits, and vegetable-based diets. Hence, they are as well, part of exogenous antioxidants. Young et al. [35] indicated that the members of the Food and Nutrition Board of the National Research Council in the United States, described dietary antioxidants as components of food that significantly mitigate the adverse effects of reactive oxygen species and reactive nitrogen species in normal physiologic function in humans. And typical dietary antioxidants are ascorbate, tocopherols, carotenoids, and bioactive plant phenols. The potential of fruits and vegetables to promote human health, according to the literature, is due to the presence of antioxidant inclined vitamins, and the large number of phytochemicals having antioxidant properties. The most widely studied dietary antioxidants, according to Yadav et al. [30], are Vitamin C, vitamin E, ß-carotene, and other carotenoids and oxycarotenoids, e.g., lycopene and lutein. They have the potential, to reduce reactive oxygen species and reactive nitrogen species and their associated adverse effects on the body [36]. Dietary antioxidants, at times, referred to as exogenous antioxidants are derived from food eaten to complement or strengthen the activities of the endogenous antioxidants. Hence, they are either sourced from synthetic antioxidants or natural ones. Percival [37] mentioned vitamins, flavonoids, anthocyanins, and some mineral compounds as some of the naturally sourced dietary antioxidants. Table 1 highlights some of these antioxidants and their sources. Yadav et al. [30] reported that there is an increasing interest in the application of antioxidants as food preservatives, particularly dietary antioxidants intended to prevent the presumed deleterious effects of free radicals in the human body, as well as the deterioration of fats and other constituents of foodstuffs. The report of Sardarodiyan and Sani [2] indicated that vitamins C and E, carotenoids, stilbenes, phenolic acids such as benzoic and hydroxybenzoic acids, cinnamic and hydroxycinnamic acid derivatives and flavonoids—flavonols, flavones, flavanones, flavanols, flavones, and anthocyanidins (as the aglycones of anthocyanins) and others are the main dietary antioxidants. Table 1 indicates that trace elements such as selenium and zinc usually sourced from seafood, meat, and whole grains; are part of exogenous antioxidants. Although, synthetic antioxidants are not among the dietary antioxidants in Table 1, Butylated hydroxyanisole (BHA) and BHT (butylated hydroxytoluane that are frequently applied as food preservatives are examples of exogenous antioxidants (see Table 1). They are not deliberately added as food ingredients but are used as preservatives, hence are involuntarily consumed with foods and are observed to play some roles in the body system.
Synthetic antioxidants are synthesized artificially by combinations of some chemical substances in the laboratory. They are widely used as food additives to prevent rancidification, owing to their high performance and wide availability [14]. They are chemically synthesized compounds since they do not occur in nature and are added to food as preservatives to help prevent lipid oxidation [7]. The instability of the natural antioxidants occasioned their involvement as preservatives for food products. According to the literature, the predominant applications of synthetic antioxidants as food preservatives are due to their high reactivity and more efficiency and effectiveness in preserving foods. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) were originally developed to protect petroleum from oxidative gumming [38]. However, these compounds have been used as antioxidants in human foods since 1954 and are perhaps the most common antioxidants used in those foods today [39]. Though they are predominantly used, the food industry is pushing for their replacement with natural antioxidants because of the consumers’ increasing preference for natural antioxidants which in addition, not only are more affordable but are eco-friendly. However, their usage is regulated by the established authorities to protect food consumers like the Nigerian Food and Drugs Administration (NAFDAC) and Standard Organization of Nigeria (SON), Food and Drug Administration (FDA) of the USA, European Food Safety Agency etc. Rashmi et al. [40] reported that the level of antioxidants permitted for use in food is usually determined by the fat content of the recipient food item, and is limited to 0.02% total antioxidants. Table 2 shows synthetic antioxidants commonly used as food preservatives and their recommended levels of usage, based on the legislations of FDA, European Food Safety Agency (EFSA), Joint FAO/WHO Expert Committee on food additives etc (Table 2).
Compound name | Limit in foods | Morphology/solubility | Food matrix |
---|---|---|---|
BHA (butylated hydroxyanisole) | < 200 mg/kg* | White waxy flakes, soluble in fat, insoluble in water | Cereals, chewing gum, potato chips, vegetable oils, biscuits, cakes pastries, sugar honey, meat products, spices, milk products, etc |
BHT (butylated hydroxytoluane | < 100 mg/kg* | White crystalline compound /soluble in fat, insoluble in water | Vegetable oil, meat products, potato sticks, chicken soup base, chewing gum, sugar, honey, spices, milk products, etc. |
PG (Propyl Gallate) | < 200 mg/kg* | White crystalline powder sparingly soluble in water | Vegetable oil, meat products, potato sticks, chicken soup base, chewing gum, sugar, honey, spices, milk products, etc. |
OG (Octyl Gallate) | < 200 mg/kg* | White to creamy white crystalline solid, insoluble in water | Oils and fats, cereals, snack foods, dairy produce, sugar, honey, meat products, etc |
DG (Dodecyl Gallate) | < 200 mg/kg* | White to creamy white Crystalline solid, insoluble in water | Oils and fats, cereals, snack foods, dairy produce, meat products, etc. |
EDTA | 75ppm** | Slowly soluble in water | Salad dressing, margarine, sandwich spreads, mayonnaise, processed fruits and vegetables, canned shellfish, soft drinks |
TBHQ (tertiary butylhydroquinone) | 120 mg/kg* | Beige colored powder, soluble in fats | Milk, milk products like cheese, meat and meat products, chewing gum, fish & Fish products, sea food, sugar, honey, spices, etc. |
Typical synthetic antioxidants used as preservatives, their legal limits in the foods.
US FDA.
Source: Rashmi et al. [40].
Manessis et al. [27] further classified antioxidants based on the way they act in the biological system into the following; (i) primary antioxidants, (ii) oxygen scavengers, (iii) secondary antioxidants, (iv) enzymatic antioxidants, and (v) chelating agents. According to them, primary antioxidants donate electron or hydrogen to terminate free-radical chain reactions and some antioxidants in this group include phenolic compounds, tocopherols; and synthetic antioxidants such as alkyl gallates, BHA, BHQ , and TBHQ; (ii) oxygen scavengers are groups of antioxidants that remove oxygen to reduce their chance of furthering oxidative activities and they include vitamin C, ascorbyl palmitate, erythorbic acid, and its sodium salt; (iii) secondary antioxidants are group of antioxidants that breakdown lipid hydroperoxides into stable end-products such as dilauryl thiodipropionate and thiodipropionic acid; (iv) enzymatic antioxidants act by removing oxygen like glucose oxidase and removing ROS by such enzymes like superoxide dismutase, catalase etc. and (v) chelating agents act to remove metallic ions like iron and copper, known to catalyze lipid oxidation. Common chelating agents, according to, Pokorný [41] and Hudson [42] are citric acid, ethylenediaminetetraacetic acid (EDTA), and amino acids.
Antioxidants, depending on the category they belong, differ in their delivery or operation in checkmating undesirable oxidation and their derivatives to mitigate food deterioration. Variation in effectiveness of antioxidants is connected with several factors which include the system of operation, type or the group the antioxidant belongs to, aspect of functionality etc. The literature mentioned the use of antioxidants as food preservatives, and the differences in potency observed between synthetic and natural antioxidants. For instance, Rasmi and Disha [40] reported the differences in the potency of natural and synthetic antioxidants as food preservatives and stated how both differ in performance levels. The ascertainment of performance levels of both synthetic and natural antioxidants, according to Rasmi and Disha [40], depending on the number of peroxides formed in lipids over time and what they referred to as carry-through properties i.e. the ability of the antioxidant to provide stability under different processing conditions like heat (such as frying or baking), varying solubility, etc. According to the literature, the application of antioxidants as food preservatives depend on the nature or class of food being preserved and overall price consideration. For instance, preservation of foods with high rancidity levels is better achieved by using synthetic antioxidants since these are more potent and hence, have high-performance levels, while natural antioxidants with lower potency and performance levels can suffice for hydrogenated oils with lower rancidity levels [3]. However, the effectiveness of antioxidants may be measured based on the extent to their utilization promotes food safety, in terms of promoting the health of the consumers, with respect to disabling occurrences of degenerative diseases in vivo, and in terms of preventing or minimizing lipid peroxidation which produces toxic compounds that enhance deterioration of flavor, color, texture, and nutritional values [43] which incidentally lead to overall depreciation of food quality and its consumer acceptability [44]. Also, studies carried out on the applications of natural antioxidants, according to Fernades et al. [45] showed their promotion of the palatability of food products, that is, the appetizingness of such products. The effectiveness of natural antioxidants in stabilizing food products in a manner equivalent to that of synthetic antioxidants and their contribution to longer shelf-life to meat products was, as well, reported by Jung et al. [46]. The strong correlation between diet and disease prevention instigated by applications of antioxidants in the food system which pushes industrial trend toward the development of functional food products [47] is leading to increasing adoption of many dietary and technological techniques that facilitate the use of these antioxidants in maintaining the quality of food products like meat and its derivatives [45]. The type of such technological strategy was reported by Velasco and Williams [48] to be the inclusion of plant ingredients having high bioactive potential in packaging materials or incorporation of dietary supplements in animal feeds. Hence, whereas synthetic antioxidants are considered to be more potent or effective as preservatives because of their readiness to donate electrons to food substrates, the increasing preference of consumers to natural antioxidants and the associated inclination of the food industry to satisfy the consumers’ demands; is factored on the following: their good bioactive health potential, their perceived functional properties and increasing demand for healthy food products.
Also, in terms of the involvement of food in promoting the consumers’ health, food processors are increasingly producing food products containing prerequisite antioxidants (natural ones) to discourage the high incidence of degenerative diseases and improve food safety. Voutilainen [49] reported the important role nutrition play in preventing many chronic diseases such as cardiovascular diseases (CVD), cancers, and degenerative brain diseases. This assertion was corroborated by Atta et al. [7] who stated that consumption of dietary antioxidants such as β-Carotene prevents muscular degeneration and cataracts. The potency of natural antioxidants in this regard overrides that of synthetic antioxidants. The overriding contributions of natural antioxidants in checkmating occurrences of lifestyle diseases aforementioned are well reported in the literature. Though the use of synthetic antioxidants in maintaining the quality of ready-to-food products has gained prominence, the increasing demand for food products that guarantee the safety of consumers has instigated the food industry to seek their replacement with natural antioxidants [50]. According to Anbudhasan et al. [14], food products containing natural antioxidants were more functional in promoting shelf-life and health of their consumers when compared with those ones whose antioxidants were removed during processing. The above reports indicated that natural antioxidants are the kernels of involvement of foods in minimizing chronic diseases, promoting health and incidentally reducing intake of drugs taken for healing, which also generate adverse side effects. Whereas synthetic antioxidants have the advantages of being readily available and affordable and are more reactive when compared with natural antioxidants, the preference of consumers for food products processed with natural antioxidants, is increasingly demeaning their applications as food preservatives.
Antioxidants are part of food additives used in the food systems primarily to infringe oxidation of lipids and proteins to elongate the keeping quality of food products, thus enhancing the shelf-life of food products. Antioxidant compounds present in food systems help to reduce the number of lifestyle diseases which may reduce the amount of drugs consumed by people who suffer from these diseases. Atta et al. [7] agreed with the above assertion with a report that antioxidants are widely used as an ingredient in a dietary supplement for promoting good health. Recent developments in food processing are indicating that food could be used as preventive and curative channels to discourage increasing occurrences of chronic diseases such as cardiovascular diseases, high blood pressure, diabetes, cancers etc. being witnessed among people. This may enliven the intention of replacing synthetic antioxidants with natural ones that have the potential to elongate food quality and enhance the health of food consumers. The use of antioxidants as a preservative and in enhancing the flavor, aroma, and color of food products is reported in the literature [8]. The addition of antioxidants to food items as preservatives can be during many different stages of food production [51], but since the antioxidants have no potential to reverse already oxidized food products; their application during the early stage of the manufacturing process may give better results. Some practical applications of antioxidants in the food system include their addition to fats and oils used in food production [14], in the preservations of vegetables and vegetable products; fruits and fruit products [52]; cereals and bakery products; milk and milk products like cheese; meat, fish and their products; spices; and other dry foods like sugar, honey, beverages, and chewing gum [53].
Also, apart from being used as preservatives, antioxidants could be utilized to enhance the benefits of food to man. Aside from the provision of nutrients, the inclusions of antioxidants or the use of antioxidant-containing ingredients in food processing improve the productivity of food processing and its products. Their use could bring about an added value to food products by giving them the potential to provide nutrients and bioactive compounds and hence, promote the tendency of food consumed to checkmate lifestyle diseases and intake of drugs occasioned by occurrences of the diseases.
The use of antioxidants in food systems is bringing up novel food products designed to take care of both the nutritional and health aspects of human life. Before now, food products were produced to provide mainly nutritional needs of the consumers with little or no attention given to using food to address the increasing occurrence of degenerative diseases and to incidentally discourage the intake of drugs because of their associated side effects.
Also, the reports of the literature have indicated that the inclusion of plants parts with a high concentration of antioxidants is more effective than the use of extracted antioxidants as food supplements, either in terms of prolongation of shelf-life or particularly of promoting health orientations of food products in the food system [54]. Anbudhasan et al. [14] corroborated the foregoing by implying that processing impacts negatively on the potency of the antioxidants. And incidentally, the literature is replete with information that most antioxidants are concentrated in the areas of plants, like the seed/seed-coat, peels, etc. as in mango fruits; usually generated as wastes/byproducts discarded as pollutants to the environment by processing operations. Kebede and Admassu [8] confirmed this assertion by stating that wastes and by-products of fruits and vegetables in the food processing industry are abundant sources of antioxidant polyphenols or phenolic compounds. This means reintegration of these components as constituents of the food system could boost the strength of food in providing required antioxidants. The exploration of antioxidants may, therefore, likely reduce the quantity of wastes/by-products generated to promote eco-friendly food processing. Some studies have already been done on by-products, which could be potential sources of antioxidants [32]. Agricultural and industrial residues are attractive sources of natural antioxidants [55]. The use of waste as a source of polyphenols and antioxidants may have considerable economic benefits to food processing industries. Therefore, a cheap, efficient, and environmentally sound utilization of these huge agro-industrial wastes is needed [56].
The use of antioxidants in the food system depends on the conditions of food processing operations applied. According to Reddy et al. [57], processing (including preparation) of food is designed to make food healthier, safer, tastier, and more shelf-stable. This is achieved by inactivating disease-causing microorganisms (pathogens) and enzymes to reduce moisture content and concentrate nutrients and bioactive compounds in processed foods, or to soften the outer tissue to separate fruit/vegetable skin [58]. This incidentally causes several changes including appearance, composition, nutrition, and sensory properties which occur during processing in terms of color, texture, and flavor. Generally, food-processing procedures are recognized as one of the major factors responsible for the destruction or changes of natural phytochemicals, which may affect the antioxidant capacity in foods [59]. Processing conditions either boost nutrients and antioxidants or reduce them depending on many factors. The conditions that are generally considered in food processing include temperature, time, the level of antioxidants in the ingredients/raw material; but for antioxidants, it is reported that genetics, environment, growing conditions (moisture, fertilization, pests, and disease burden, etc.) of the fruits and vegetables from which they are extracted, as well as processing methods and storage conditions affect the level of antioxidant activity of phytochemicals [60, 61, 62]. The understanding that over-processing or some severe processing conditions and environment could eliminate most of the antioxidants are inducing processors to explore processing techniques capable of producing food products containing assured levels of nutrients and antioxidants. One of the techniques, as shown by the recent development in food processing, is the enclosure or entrapment of antioxidants within a material or substance reported in the literature as encapsulation technology. Trifkovic et al. [63] reported on different encapsulation technologies applicable in food processing for antioxidants to include spray drying, spray chilling, spray cooling spray-drying, spray-chilling, spray-cooling, melt injection, fluidized bed coating etc. Encapsulation according to Pattnaik et al. [64], protects sensitive antioxidants from being destabilized by severe processing conditions or environment, improves their bioavailability, masks their identifiable astringent flavors, enhances their delivery in active forms to the targeted site or appropriate release in the gastrointestinal tracts.
Furthermore, apart from the use of encapsulation technology for the retention of nutrients and antioxidants in food products, the interplay of processing conditions is another way to optimize the availability of nutrients and antioxidants. Nayak et al. [58] reported that the application of kinetic models in the thermal processing of foods is important to assessing and predicting the influence of processing operations on critical quality parameters to minimize the undesirable changes and to optimize the quality of specific foods. Thus foods could be processed to provide the required nutrients and antioxidants.
Food being one of the basic needs of man must always be available as and when needed at an acceptable condition or quality. This means preserving natural or processed food products, ensuring retention of the characteristics of the foods that constitute acceptable quality to consumers. The application of antioxidants in the food system was widely reported in the literature to checkmate undesirable oxidative reactions, identified as one of the major causatives of food deterioration; in order to maintain the quality of foods. Antioxidants have become an indispensable group of food additives mainly because of their unique properties of extending the shelf-life of food products without leaving any adverse effect on their sensory or nutritional qualities [2]. Atta et al. [7] also, reported the use of antioxidants to prevent the oxidation process in foods which leads to rancidity and browning. The major segment of antioxidants, natural and synthetic antioxidants, are involved as ingredients in food systems, mainly as preservatives and then recently as the promoter of health orientation of foods. Anbudhassan et al. [14] mentioned the involvement of both aspects of antioxidants, especially the recent drastic increase in the application of natural antioxidants at the expense of synthetic ones in the food system, because of concern for the safety of food consumers. Before now, synthetic antioxidants were highly involved in the food system because they were adjudged to be more reactive and effective as food preservers than natural ones. While the use of synthetic antioxidants (such as butylated hydroxytoluene and butylated hydroxyanisole) to maintain the quality of ready-to-eat food products has become commonplace, consumer concern regarding their safety has motivated the food industry to increasingly apply more natural antioxidants [50].
Thus, the friendliness of natural antioxidants, in comparison to synthetic ones, to the body system could be the reason for increasing interest in replacing synthetic with natural antioxidants, as food preservers, in food systems. Though Anbudhassan et al. [14] reported that synthetic antioxidants are widely used as food additives to prevent rancidification, owing to their high performance and wide availability, the public opinion that natural compounds are safer and more health-beneficial per se, has motivated the meat industry, for instance, to exploit plant-derived additives in meat systems with the objective of replacing synthetic antioxidants [65]. Whereas the literature is replete with increasing replacement of natural antioxidants with synthetic ones, it is necessary to elucidate implications of this in the food system. The increasing use of natural antioxidants will promote health orientation of foods, bring up new food products, enhance food quality, promote processing of composite food product, improve safety with assured attainment of food security, improve the circular economy of nations that invest in it, ameliorate occurrences of chronic diseases and their associated reduction in drug intake and many other benefits that are discussed hereunder.
Food is an indispensable resource to a man taken to provide nutrients required for the growth of the body cells with little or no consideration for its inclination to health aspects of life. The recent development in the food systems which targets the use of food to prevent chronic diseases as afore-mentioned seem to be widening the scope of benefits uses or productivity of food to man. In recent years, considerable research has been carried out, evaluating natural substances as antioxidative additives in food products, leading to novel combinations of antioxidants and the development of novel food products. The natural antioxidants have, in addition, shown a supportive effect to the human body with documented health benefits [8]. The targets of food processors, in the recent development, are to provide food products made up of required nutrients and antioxidants to ensure that foods have added value of promoting health of the consumers [66]. Antioxidants have important preventive roles not only on undesirable changes in the flavor and nutritional quality of food but also on tissue damage in various human diseases [8]. They are potentially effective in the prevention of degenerative illnesses, such as different types of cancers, cardiovascular and neurological diseases, cataracts, and oxidative stress dysfunctions [67, 68]. Chronic diseases such as arteriosclerosis and cancer, which are the leading causes of death in the Western world, are likely to be mediated by free radical and lipid peroxidation mechanisms [69], but could be remedied with increasing consumption of dietary antioxidants processed into food products. Antioxidants have been investigated and reported to play a specific role in the prevention of these diseases/disorders [68]. In the last decades, several epidemiological studies have shown that dietary intake of foods rich in natural antioxidants was correlated with a reduced risk of coronary heart disease [70, 71]. Dietary and natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic or health effects [72, 73]. While processing food to provide required nutrients, food processors should also consider other health-related aspects of their additives and products. The quality parameters for acceptance of food should widen to include adequate availability of antioxidants in addition to those characteristics for which food quality is measured.
The attempt to include the required availability of antioxidants in food as a measure of food quality characteristics is undoubtedly throwing up a novel or new products in food systems globally. Kedebe and Admassu [8] reported changes in human lifestyle and his view of food which are occasioning shift from one nature of food to another, e.g. from convenient foods to ready to eat food products category. The deadliness of chronic diseases and the understanding that consumption of the right foods could prevent or end their occurrences may broaden the demands of consumers of inclusion of antioxidants at the required levels in food products. In a bid to meet this dynamic demands of consumers, food processors are increasingly developing new food products processed to provide nutritive and healthy values to consumers.
The contributions of antioxidants to the enhancement of food quality are well reported in the literature. Anbudhassan et al. [14] mentioned the involvement of antioxidants, both natural and synthetic in accentuating the shelf-life and appearance of many food products to buttress the disposition of antioxidants toward promoting food quality. While the use of synthetic antioxidants (such as butylated hydroxytoluene and butylated hydroxyanisole) to maintain the quality of ready-to-eat food products has become commonplace, consumer concern regarding their safety has motivated the food industry to seek natural antioxidants [50]. The antioxidants obtained from plants are more functional toward improving the shelf life of food products and providing healthier promotion when compared to materials whose antioxidants have been removed during processing [14]. Orientating foods toward promoting the health of consumers, in addition to their nutritional roles emphasizes the widening contributions of natural antioxidants to the maintenance of food quality. Kebede and Admassu [8] alluded to the effectiveness of natural antioxidants in preventing undesirable changes in the flavor and nutritional quality of food and tissue damage that occasion incidence of various human diseases; and asserted that nutritional importance, promotion of health, and prevention against damages caused by free radicals can lead to the potential applications of antioxidants in food industries in more intensified approaches. The applications of natural antioxidants in the food system will undoubtedly improve keeping quality of foods in the food systems. This is in agreement with reports of Arshiya et al. [50] and Singh et al. [68] on natural antioxidants such as vitamins (ascorbic acid [AA] and α-tocopherol (E306)), many herbs and spices (rosemary, thyme, oregano, sage, basil, pepper, clove, cinnamon, and nutmeg), and plant extracts (tea and grape seed) applied on meat products as preservatives. The supremacy of natural antioxidants over synthetic ones in the functionality of antioxidants as enhancers or enablers of increasing shelf-life of foods is indeed incontrovertible as attested to with the report of Kebede and Admassu [8], which stated that the antioxidants obtained from plants are more functional toward improving the shelf life of food products and providing health promotion.
The increasing applications of natural antioxidants will incidentally boost or signify a circular economy since most the antioxidants are derived from by-products/wastes generated during food processing or utilization. The literature is replete with the involvement of food by-products or wastes in the extractions of natural antioxidants or their recycling for their use as ingredients in the processing of some foods. Bartosz et al. [74] associated the use of food by-products/wastes as raw materials in the production and or commercialization of natural antioxidants as well as in the advancement of the circular economy. The circular economy is a regenerative system that, unlike the linear economy, involves recycling or reuse of wastes generated in the food system to boost values derivable from the food processing system. The circular economy is all about minimizing waste generation in the food system by the re-use of food, conversion of by-products, and wastes into usable products, recycling nutrients, and adopting changes in diet toward more diverse and more efficient food patterns [75]. The identification of food wastes as reservoirs of antioxidants, and increasing inclination to eco-friendly food processing culture will purvey strategies and projects required to encourage upstream waste recovery, leading to the production of downstream value-added ingredients (e.g. natural antioxidants), based on a sustainable economy, i.e. circular economy. In the concept of a circular economy, recovery and valorization of wastes allow materials to be reused and be recycled into the supply chain, allowing economic growth from environmental losses [76]. Thus increase in applications of natural antioxidants will incidentally translate to an increase in the utilization of food wastes or adoption of eco-friendliness in food processing, the purveyor of the sustainable or circular economy.
Antioxidants are substances that minimize or disable oxidative activities in food and body systems to preserve them from being damaged. Two major types of antioxidants, based on their mode of synthesis applicable in the food system for food preservation are natural and synthetic antioxidants. Though synthetic antioxidants, from the inception of food processing, are predominantly used as food preservatives to maintain the keeping quality and appearance of many foodstuffs; some reports about their carcinogenicity and mutagenicity and hence, the concern of consumers’ health have motivated the food industry to seek for their replacement with natural antioxidants. The replacement is necessary because of the increasing demands of consumers for health-promoting foods globally. The use of natural antioxidants, either in the form of extracts and or parts of natural resources that contain concentrations of antioxidants; in food processing and preservation, may encourage consumption of healthy foods. Also, the discovery that natural antioxidants are mostly concentrated in the parts of raw resources usually removed as wastes during food processing and, the efforts to reintegrate the wastes into the food system, seemingly included promotion of eco-friendly food processing and a guaranteed sustainable/circular economy; as one of the implications of replacing synthetic antioxidants with natural ones in the food system. The use of plant parts, as food ingredients instead of extracted antioxidants as food supplements, heightens the effectiveness of natural antioxidants in the food system either in terms of prolonging shelf-life or promoting health orientations of food products. The replacement of synthetic antioxidants with natural ones will, thus, boost sensory, safety, and other quality parameters as well as health orientations of food products and incidentally, the values of food to man.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,isOpenForSubmission:!0,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",slug:null,bookSignature:"Dr. Kavitha Palaniappan",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12127",title:"The Psychology of Sports",subtitle:null,isOpenForSubmission:!0,hash:"4bf52abfe589a320744c40ca5fe41a89",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12127.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12135",title:"Parenting",subtitle:null,isOpenForSubmission:!0,hash:"5fcfe3872ea161c9c879e0667a220ca8",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:14},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"133",title:"Environmental Pollution",slug:"environmental-pollution",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:18,numberOfSeries:0,numberOfAuthorsAndEditors:652,numberOfWosCitations:560,numberOfCrossrefCitations:383,numberOfDimensionsCitations:883,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"133",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",isOpenForSubmission:!1,hash:"f5b1589f0a990b6114fef2dadc735dd9",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9653",title:"Light Pollution, Urbanization and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"b1e5d120ec03412f5e22b7cd0d7c69f8",slug:"light-pollution-urbanization-and-ecology",bookSignature:"Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/9653.jpg",editedByType:"Edited by",editors:[{id:"10864",title:"Dr.",name:"Levente",middleName:null,surname:"Hufnagel",slug:"levente-hufnagel",fullName:"Levente Hufnagel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8863",title:"Hydrocarbon Pollution and its Effect on the Environment",subtitle:null,isOpenForSubmission:!1,hash:"25243b6684e6a441a6bf1f854d49f9e8",slug:"hydrocarbon-pollution-and-its-effect-on-the-environment",bookSignature:"Muharrem Ince and Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/8863.jpg",editedByType:"Edited by",editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7547",title:"Monitoring of Marine Pollution",subtitle:null,isOpenForSubmission:!1,hash:"4700c71016d4ab73a99b22cee68da2fe",slug:"monitoring-of-marine-pollution",bookSignature:"Houma Bachari Fouzia",coverURL:"https://cdn.intechopen.com/books/images_new/7547.jpg",editedByType:"Edited by",editors:[{id:"95997",title:"Dr.",name:"Houma",middleName:null,surname:"Bachari Fouzia",slug:"houma-bachari-fouzia",fullName:"Houma Bachari Fouzia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6975",title:"Air Pollution",subtitle:"Monitoring, Quantification and Removal of Gases and Particles",isOpenForSubmission:!1,hash:"ba35a5093e6aa0bf13500c37a23976f6",slug:"air-pollution-monitoring-quantification-and-removal-of-gases-and-particles",bookSignature:"Jorge Del Real Olvera",coverURL:"https://cdn.intechopen.com/books/images_new/6975.jpg",editedByType:"Edited by",editors:[{id:"166103",title:"Dr.",name:"Jorge",middleName:null,surname:"Del Real Olvera",slug:"jorge-del-real-olvera",fullName:"Jorge Del Real Olvera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7224",title:"Persistent Organic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"06c3095a17bf790c56c71013cc5e3ad6",slug:"persistent-organic-pollutants",bookSignature:"Stephen Kudom Donyinah",coverURL:"https://cdn.intechopen.com/books/images_new/7224.jpg",editedByType:"Edited by",editors:[{id:"26196",title:"Dr.",name:"Stephen Kudom",middleName:null,surname:"Donyinah",slug:"stephen-kudom-donyinah",fullName:"Stephen Kudom Donyinah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,isOpenForSubmission:!1,hash:"cd61e407dc2dc5a74ffe354b294f71a8",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6644",title:"Emerging Pollutants",subtitle:"Some Strategies for the Quality Preservation of Our Environment",isOpenForSubmission:!1,hash:"9e03aeca8b09510ef11fcf3621a2a996",slug:"emerging-pollutants-some-strategies-for-the-quality-preservation-of-our-environment",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/6644.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5356",title:"Air Quality",subtitle:"Measurement and Modeling",isOpenForSubmission:!1,hash:"4a7d0d06a1f8d925fcfa9d8b79858729",slug:"air-quality-measurement-and-modeling",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/5356.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4572",title:"Current Air Quality Issues",subtitle:null,isOpenForSubmission:!1,hash:"86ac538cdf00ceeb823842ebdef2997c",slug:"current-air-quality-issues",bookSignature:"Farhad Nejadkoorki",coverURL:"https://cdn.intechopen.com/books/images_new/4572.jpg",editedByType:"Edited by",editors:[{id:"71481",title:"Associate Prof.",name:"Farhad",middleName:null,surname:"Nejadkoorki",slug:"farhad-nejadkoorki",fullName:"Farhad Nejadkoorki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"64674",doi:"10.5772/intechopen.81869",title:"Nitrogen and Phosphorus Eutrophication in Marine Ecosystems",slug:"nitrogen-and-phosphorus-eutrophication-in-marine-ecosystems",totalDownloads:2598,totalCrossrefCites:18,totalDimensionsCites:41,abstract:"Nitrogen (N) and phosphorus (P) eutrophication in marine ecosystems is a global problem. Marine eutrophication has a negative impact on food security, ecosystem health and economy through disruptions in tourism, fisheries and health industries. Both N and P have known point and non-point sources. Control of point sources has been easier than non-point sources particularly agricultural sources for both N and P as well as fossil fuel combustion for N, which remains a major challenge. Implementing mitigation strategies for N has been reported to be effective for P mitigation; however, the converse is not true due to mobility and volatility of N. Excessive N and P cause algae blooms, anoxic conditions, and ocean acidification with these conditions leading to dead zones, fish kill, toxin production, altered plant species diversity, food web disruption, tourism disruption and health issues. Management of N and P pollution includes reduction of leaching from farms through crop selection, timely and precise application of fertilizer and building artificial wetlands, proper management of animal waste, reduction of fossil fuel N emission, mitigating N and P from urban sources and restoration of aquatic ecosystem. Mitigation measures need to focus on dual nutrient strategy for successful N and P reduction.",book:{id:"7547",slug:"monitoring-of-marine-pollution",title:"Monitoring of Marine Pollution",fullTitle:"Monitoring of Marine Pollution"},signatures:"Lucy Ngatia, Johnny M. Grace III, Daniel Moriasi and Robert Taylor",authors:[{id:"246475",title:"Dr.",name:"Lucy",middleName:null,surname:"Ngatia",slug:"lucy-ngatia",fullName:"Lucy Ngatia"},{id:"256676",title:"Prof.",name:"Robert",middleName:null,surname:"Taylor",slug:"robert-taylor",fullName:"Robert Taylor"},{id:"266289",title:"Dr.",name:"Daniel",middleName:null,surname:"Moriasi",slug:"daniel-moriasi",fullName:"Daniel Moriasi"},{id:"269661",title:"Dr.",name:"Johnny",middleName:null,surname:"Grace III",slug:"johnny-grace-iii",fullName:"Johnny Grace III"}]},{id:"48145",doi:"10.5772/59749",title:"Health Effects of Metals in Particulate Matter",slug:"health-effects-of-metals-in-particulate-matter",totalDownloads:2605,totalCrossrefCites:13,totalDimensionsCites:32,abstract:null,book:{id:"4572",slug:"current-air-quality-issues",title:"Current Air Quality Issues",fullTitle:"Current Air Quality Issues"},signatures:"T.I. Fortoul, V. Rodriguez-Lara, A. Gonzalez-Villalva, M. Rojas-Lemus,\nL. Colin-Barenque, P. Bizarro-Nevares, I. García-Peláez, M. Ustarroz-\nCano, S. López-Zepeda, S. Cervantes-Yépez, N. López-Valdez, N.\nMeléndez-García, M. Espinosa-Zurutuza, G. Cano-Gutierrez and\nM.C. Cano-Rodríguez",authors:[{id:"38601",title:"Dr.",name:"Vianey",middleName:null,surname:"Rodriguez-Lara",slug:"vianey-rodriguez-lara",fullName:"Vianey Rodriguez-Lara"},{id:"38603",title:"MSc.",name:"Adriana",middleName:null,surname:"Gonzalez-Villalva",slug:"adriana-gonzalez-villalva",fullName:"Adriana Gonzalez-Villalva"},{id:"38609",title:"Dr.",name:"Marcela",middleName:null,surname:"Rojas-Lemus",slug:"marcela-rojas-lemus",fullName:"Marcela Rojas-Lemus"},{id:"63230",title:"Dr.",name:"Isabel",middleName:null,surname:"García-Peláez",slug:"isabel-garcia-pelaez",fullName:"Isabel García-Peláez"},{id:"172360",title:"Dr.",name:"Teresa",middleName:null,surname:"Fortoul-van der Goes",slug:"teresa-fortoul-van-der-goes",fullName:"Teresa Fortoul-van der Goes"},{id:"172724",title:"MSc.",name:"Patricia",middleName:null,surname:"Bizarro-Nevares",slug:"patricia-bizarro-nevares",fullName:"Patricia Bizarro-Nevares"},{id:"172725",title:"Dr.",name:"Martha",middleName:null,surname:"Ustarroz-Cano",slug:"martha-ustarroz-cano",fullName:"Martha Ustarroz-Cano"},{id:"172726",title:"Ms.",name:"Sofía",middleName:null,surname:"López-Zepeda",slug:"sofia-lopez-zepeda",fullName:"Sofía López-Zepeda"},{id:"172727",title:"Ms.",name:"Silvana",middleName:null,surname:"Cervantes-Yépez",slug:"silvana-cervantes-yepez",fullName:"Silvana Cervantes-Yépez"},{id:"172728",title:"MSc.",name:"Nelly",middleName:null,surname:"López-Valdez",slug:"nelly-lopez-valdez",fullName:"Nelly López-Valdez"},{id:"172729",title:"Ms.",name:"Nayeli",middleName:null,surname:"Meléndez-García",slug:"nayeli-melendez-garcia",fullName:"Nayeli Meléndez-García"},{id:"172730",title:"Ms.",name:"Maribel",middleName:null,surname:"Espinosa-Zurutuza",slug:"maribel-espinosa-zurutuza",fullName:"Maribel Espinosa-Zurutuza"},{id:"172731",title:"Dr.",name:"Gumaro",middleName:null,surname:"Cano-Gutierrez",slug:"gumaro-cano-gutierrez",fullName:"Gumaro Cano-Gutierrez"},{id:"172733",title:"Dr.",name:"Laura",middleName:null,surname:"Colín-Barenque",slug:"laura-colin-barenque",fullName:"Laura Colín-Barenque"},{id:"173263",title:"Dr.",name:"María Concepción",middleName:null,surname:"Cano-Rodríguez",slug:"maria-concepcion-cano-rodriguez",fullName:"María Concepción Cano-Rodríguez"}]},{id:"64603",doi:"10.5772/intechopen.81657",title:"Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies",slug:"detection-and-monitoring-of-marine-pollution-using-remote-sensing-technologies",totalDownloads:4488,totalCrossrefCites:15,totalDimensionsCites:29,abstract:"Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters.",book:{id:"7547",slug:"monitoring-of-marine-pollution",title:"Monitoring of Marine Pollution",fullTitle:"Monitoring of Marine Pollution"},signatures:"Sidrah Hafeez, Man Sing Wong, Sawaid Abbas, Coco Y. T. Kwok,\nJanet Nichol, Kwon Ho Lee, Danling Tang and Lilian Pun",authors:[{id:"225316",title:"Dr.",name:"Sawaid",middleName:null,surname:"Abbas",slug:"sawaid-abbas",fullName:"Sawaid Abbas"},{id:"259861",title:"Ms.",name:"Sidrah",middleName:null,surname:"Hafeez",slug:"sidrah-hafeez",fullName:"Sidrah Hafeez"},{id:"259890",title:"Prof.",name:"Man Sing",middleName:null,surname:"Wong",slug:"man-sing-wong",fullName:"Man Sing Wong"}]},{id:"35057",doi:"10.5772/33720",title:"Surface Water Quality Monitoring in Nigeria: Situational Analysis and Future Management Strategy",slug:"surface-water-quality-monitoring-in-nigeria-situational-analysis-and-future-management-strategy",totalDownloads:13259,totalCrossrefCites:14,totalDimensionsCites:27,abstract:null,book:{id:"1998",slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"A.M. Taiwo, O.O. Olujimi, O. Bamgbose and T.A. Arowolo",authors:[{id:"96826",title:"Prof.",name:"Toyin",middleName:null,surname:"Arowolo",slug:"toyin-arowolo",fullName:"Toyin Arowolo"},{id:"138905",title:"Mr.",name:"Adewale Mathew",middleName:null,surname:"Taiwo",slug:"adewale-mathew-taiwo",fullName:"Adewale Mathew Taiwo"},{id:"138908",title:"Mr.",name:"Olanrewaju Olusoji",middleName:null,surname:"Olujimi",slug:"olanrewaju-olusoji-olujimi",fullName:"Olanrewaju Olusoji Olujimi"},{id:"138915",title:"Prof.",name:"Olukayode",middleName:null,surname:"Bamgbose",slug:"olukayode-bamgbose",fullName:"Olukayode Bamgbose"}]},{id:"17390",doi:"10.5772/17734",title:"Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece",slug:"spatial-interpolation-methodologies-in-urban-air-pollution-modeling-application-for-the-greater-area",totalDownloads:3532,totalCrossrefCites:11,totalDimensionsCites:25,abstract:null,book:{id:"193",slug:"advanced-air-pollution",title:"Advanced Air Pollution",fullTitle:"Advanced Air Pollution"},signatures:"Despina Deligiorgi and Kostas Philippopoulos",authors:[{id:"29291",title:"Prof.",name:"Despina",middleName:null,surname:"Deligiorgi",slug:"despina-deligiorgi",fullName:"Despina Deligiorgi"},{id:"38634",title:"MSc.",name:"Kostas",middleName:null,surname:"Philippopoulos",slug:"kostas-philippopoulos",fullName:"Kostas Philippopoulos"}]}],mostDownloadedChaptersLast30Days:[{id:"64603",title:"Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies",slug:"detection-and-monitoring-of-marine-pollution-using-remote-sensing-technologies",totalDownloads:4488,totalCrossrefCites:15,totalDimensionsCites:29,abstract:"Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters.",book:{id:"7547",slug:"monitoring-of-marine-pollution",title:"Monitoring of Marine Pollution",fullTitle:"Monitoring of Marine Pollution"},signatures:"Sidrah Hafeez, Man Sing Wong, Sawaid Abbas, Coco Y. T. Kwok,\nJanet Nichol, Kwon Ho Lee, Danling Tang and Lilian Pun",authors:[{id:"225316",title:"Dr.",name:"Sawaid",middleName:null,surname:"Abbas",slug:"sawaid-abbas",fullName:"Sawaid Abbas"},{id:"259861",title:"Ms.",name:"Sidrah",middleName:null,surname:"Hafeez",slug:"sidrah-hafeez",fullName:"Sidrah Hafeez"},{id:"259890",title:"Prof.",name:"Man Sing",middleName:null,surname:"Wong",slug:"man-sing-wong",fullName:"Man Sing Wong"}]},{id:"52206",title:"Particulate Matter Sampling Techniques and Data Modelling Methods",slug:"particulate-matter-sampling-techniques-and-data-modelling-methods",totalDownloads:3450,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"Particulate matter with 10 μm or less in diameter (PM10) is known to have adverse effects on human health and the environment. For countries committed to reducing PM10 emissions, it is essential to have models that accurately estimate and predict PM10 concentrations for reporting and monitoring purposes. In this chapter, a broad overview of recent empirical statistical and machine learning techniques for modelling PM10 is presented. This includes the instrumentation used to measure particulate matter, data preprocessing, the selection of explanatory variables and modelling methods. Key features of some PM10 prediction models developed in the last 10 years are described, and current work modelling and predicting PM10 trends in New Zealand—a remote country of islands in the South Pacific Ocean—are examined. In conclusion, the issues and challenges faced when modelling PM10 are discussed and suggestions for future avenues of investigation, which could improve the precision of PM10 prediction and estimation models are presented.",book:{id:"5356",slug:"air-quality-measurement-and-modeling",title:"Air Quality",fullTitle:"Air Quality - Measurement and Modeling"},signatures:"Jacqueline Whalley and Sara Zandi",authors:[{id:"188593",title:"Associate Prof.",name:"Jacqueline",middleName:null,surname:"Whalley",slug:"jacqueline-whalley",fullName:"Jacqueline Whalley"},{id:"188594",title:"Ms.",name:"Sara",middleName:null,surname:"Zandi",slug:"sara-zandi",fullName:"Sara Zandi"}]},{id:"72766",title:"Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation",slug:"industrial-air-emission-pollution-potential-sources-and-sustainable-mitigation",totalDownloads:920,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Air of cities especially in the developing parts of the world is turning into a serious environmental interest. The air pollution is because of a complex interaction of dispersion and emission of toxic pollutants from manufactories. Air pollution caused due to the introduction of dust particles, gases, and smoke into the atmosphere exceeds the air quality levels. Air pollutants are the precursor of photochemical smog and acid rain that causes the asthmatic problems leading into serious illness of lung cancer, depletes the stratospheric ozone, and contributes in global warming. In the present industrial economy era, air pollution is an unavoidable product that cannot be completely removed but stern actions can reduce it. Pollution can be reduced through collective as well as individual contributions. There are multiple sources of air pollution, which are industries, fossil fuels, agro waste, and vehicular emissions. Industrial processes upgradation, energy efficiency, agricultural waste burning control, and fuel conversion are important aspects to reducing pollutants which create the industrial air pollution. Mitigations are necessary to reduce the threat of air pollution using the various applicable technologies like CO2 sequestering, industrial energy efficiency, improving the combustion processes of the vehicular engines, and reducing the gas production from agriculture cultivations.",book:{id:"10178",slug:"environmental-emissions",title:"Environmental Emissions",fullTitle:"Environmental Emissions"},signatures:"Rabia Munsif, Muhammad Zubair, Ayesha Aziz and Muhammad Nadeem Zafar",authors:[{id:"251787",title:"Dr.",name:"Muhammad",middleName:null,surname:"Zubair",slug:"muhammad-zubair",fullName:"Muhammad Zubair"},{id:"318519",title:"Ms.",name:"Rabia",middleName:"Jathol",surname:"Munsif",slug:"rabia-munsif",fullName:"Rabia Munsif"},{id:"320637",title:"Ms.",name:"Ayesha",middleName:null,surname:"Aziz",slug:"ayesha-aziz",fullName:"Ayesha Aziz"},{id:"320675",title:"Dr.",name:"Muhammad Nadeem",middleName:null,surname:"Zafar",slug:"muhammad-nadeem-zafar",fullName:"Muhammad Nadeem Zafar"}]},{id:"48090",title:"Biological Contamination of Air in Indoor Spaces",slug:"biological-contamination-of-air-in-indoor-spaces",totalDownloads:2751,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"4572",slug:"current-air-quality-issues",title:"Current Air Quality Issues",fullTitle:"Current Air Quality Issues"},signatures:"Anca Maria Moldoveanu",authors:[{id:"25924",title:"Prof.",name:"Anca",middleName:"Maria",surname:"Moldoveanu",slug:"anca-moldoveanu",fullName:"Anca Moldoveanu"}]},{id:"64537",title:"Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment",slug:"degradation-pathways-of-persistent-organic-pollutants-pops-in-the-environment",totalDownloads:2068,totalCrossrefCites:8,totalDimensionsCites:19,abstract:"Persistent organic pollutants (POPs) are resistant to most of the known environmental degradation processes. Because of their persistence, POPs bioaccumulate in animal tissues and biomagnify along food chains and food webs with potential adverse impacts on human and wildlife health and the environment. Although POPs are resistant to most of the environmental degradation processes, there are some environmental processes mostly microbial degradation that can degrade POPs to other forms that are not necessarily simpler and less toxic. The Stockholm Convention on Persistent Organic Pollutants adopted in 2001 was meant to restrict the production and use of these toxic chemicals in the environment.",book:{id:"7224",slug:"persistent-organic-pollutants",title:"Persistent Organic Pollutants",fullTitle:"Persistent Organic Pollutants"},signatures:"James T. Zacharia",authors:[{id:"28551",title:"Dr.",name:"James T.",middleName:null,surname:"Zacharia",slug:"james-t.-zacharia",fullName:"James T. Zacharia"}]}],onlineFirstChaptersFilter:{topicId:"133",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"