\r\n\tThe proposed subtitles are \r\n\t• Municipal Solid waste landfills \r\n\t• Industrial waste landfills \r\n\t• Hazardous waste landfills \r\n\t• Global approaches and technologies \r\n\t• Legal and economic aspects
",isbn:"978-1-83768-352-9",printIsbn:"978-1-83768-351-2",pdfIsbn:"978-1-83768-353-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"94513c9322631c6de257373b093d7d3a",bookSignature:"Dr. Suriyanarayanan Sarvajayakesavalu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12042.jpg",keywords:"Landfills, Generation, Recycling, Disposal, Liquid, Gaseous, Radioactive, Methods, Techniques, Practices, Solid Waste Generation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 8th 2022",dateEndSecondStepPublish:"July 6th 2022",dateEndThirdStepPublish:"September 4th 2022",dateEndFourthStepPublish:"November 23rd 2022",dateEndFifthStepPublish:"January 22nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 hours",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Active researcher and academician specialized in Environmental Monitoring.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"237021",title:"Dr.",name:"Suriyanarayanan",middleName:null,surname:"Sarvajayakesavalu",slug:"suriyanarayanan-sarvajayakesavalu",fullName:"Suriyanarayanan Sarvajayakesavalu",profilePictureURL:"https://mts.intechopen.com/storage/users/237021/images/system/237021.png",biography:"Prof. Dr. Suriyanarayanan Sarvajayakesavalu, MSc, MPhil, Ph.D., is Deputy Director Research of Vinayaka Mission's Research Foundation (VMRF) - Deemed to be University. Prior to this position, Dr. Suriyanarayanan served as a post-doctoral fellow at the University of Turin, Italy, and a project coordinator, faculty, and head (I/c) at the Department of Water and Health, JSS Academy of Higher Education and Research (formerly Jagadguru Sri Shivarathreeshwara University), Mysuru, India. He also served as a science officer for SCOPE Beijing office, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, from April 2015 to March 2017. He also serves as a Nodal Officer for SCOPE India activities under the JSS Academy of Higher Education and Research. He has research experience in the areas of environmental monitoring, radiation ecology, and environmental microbiology. He is a recipient of the Young Scientist research grant award from the Science and Research Board (SERB), Department of Science and Technology, Government of India. He also secured the prestigious visiting scientist fellowship from the Chinese Academy of Sciences in 2016–2017. He is an Associate Editor of Environmental Development Journal by Elsevier.",institutionString:"Vinayaka Missions University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69091",title:"Cyber-Physical System Architecture for Minimizing the Possibility of Producing Bad Products in a Manufacturing System",doi:"10.5772/intechopen.88461",slug:"cyber-physical-system-architecture-for-minimizing-the-possibility-of-producing-bad-products-in-a-man",body:'\n
\n
1. Introduction
\n
The new industry 4.0 requires high levels of digitalization in order to process all the information that is generated in virtual representations or cyber versions of the physical processes. This cybernetic level will produce massive information stored in servers that can be used for future digital analyses that intelligent algorithms will use as an input to optimize the process and monitor the system (e.g., detecting anomalies). Thus, decision-making can be produced automatically by the intelligent algorithms implemented or by means of the collaboration of human experts depending on the type of engineering process.
\n
Moreover, the new smart industry must have the capability of reacting to new changes in the market or to different requirements from the customers. This is where the concept of agile manufacturing [1] is used in order to generate new adaptations to the manufacturing process, keeping high quality in the products in shorter times or producing just in time.
\n
Otherwise, lean manufacturing is the set of resources that help to eliminate waste. Waste is understood as all operations that do not add value to the finished product, to the service offered or different processes. The elimination of waste seeks to REDUCE production costs, material, human resources, stock, inventory, overproduction, lead time/waiting time, transport, and movements in order to INCREASE efficiency production tasks, quality, and overall customer satisfaction. Lean manufacturing can be summarized in four blocks:
Minimize waste.
Increase quality.
Produce flexibly.
Offer a system of continuous improvement.
\n
Nowadays, there is the possibility of integrating these lean manufacturing operations with cyber-physical systems (CPS) to optimize the process. This integration is used in the new industry 4.0 for providing high levels of optimization.
\n
The advantage of industry 4.0 is to revolutionize the management of systems to improve their application in a smart manner. The CPS is used to intercommunicate machine-machine or human-machine taking advantage of the possibility of managing a broad set of useful data in decision-making. This enables the system to be intelligent and flexible in different contexts.
\n
This chapter proposes a cyber-physical system architecture that can be used in the applications of industry 4.0 that automates and improves the effectiveness of concepts such as Just-in-Time methodology. Additionally, seven types of waste (mudas in Japanese) are analyzed and offer ten possible actions to help its implementation.
\n
The structure of the chapter is as follows. Section 2 presents basic concepts about the type of waste and according to the most relevant definitions. Section 3 presents a literature review about the architectures of cyber-physical systems and the general contribution of the CPS proposed. Section 4 presents the proposed actions of the CPS architecture proposed. Finally, conclusions and future work are presented in Section 5.
\n
\n
\n
2. Types of waste
\n
In manufacturing, “waste” or mudas is defined as any activity that consumes resources without adding any value to the manufactured product [2]. There are seven types of mudas: (1) overproduction, (2) inventory, (3) overprocess, (4) reprocess, (5) wait, (6) transportation, and (7) movement.
\n
These mudas belong to the Just-in-Time (JIT) methodology. Just-in-Time is a method that tries what its name indicates. It can be summarized as an effective system in terms of times that take into account the capacity of workers/machines, workload, and resources. Moreover, it is used to organize workers and tools, and it is responsible for reducing waste [2].
\n
\n
2.1 Overproduction and inventory
\n
The first muda is overproduction. There are times when companies need to meet an established program, even when there are setbacks. “Overproduce” implies producing above the needs of the market. Many companies overproduce to ensure they do not run out of stock in the face of any setback. In this way, they always comply with the specifications of the program.
\n
Producing requires spending on raw materials and energy and spending on time and expenditure on storage. Therefore, overproduction spends all this, but in a less justified way. According to the seven mudas of lean manufacturing, efficient means to produce at a rate coinciding with the demand [3]. When it occurs at a time higher than the demand, unjustified extra hours may be necessary. It is not a solution to produce at a lower rate than the demand because when this happens, it could produce possible waiting times.
\n
The second muda is the inventory. An “inventory” is defined as the number of materials or information that is above the minimum necessary for production. The purpose of lean manufacturing is to save inventory of finished parts because these parts cause storage, cleaning, and maintenance expenses unnecessarily. Quality errors are quite common when inventory levels are high [4].
\n
\n
\n
2.2 Overprocess and rework
\n
Overprocessing and reprocessing are additional production activities or services. It is understood as additional what the client does not perceive and, therefore, does not confer value to the manufactured product [2].
\n
Repeated activities and processes cause temporary expenditure. This expense can be avoided by reorganizing, grouping, or simplifying repeated activities and operations. For this, it is necessary to make a global analysis of the manufacturing plant. Lean manufacturing usually uses the value stream mapping system (VSM) to visualize the entire process. The objective is to detect those unnecessary activities or processes [5].
\n
It is recommended to generate a database that includes all available machines and resources, as well as to collect information about the number of operators, productivity, cycle time, batch change, efficiency of machinery, loss of efficiency in operations, production plans, time that a piece is in the factory since it is raw material until it is terminated, previous and next process being analyzed, flow of information among machines, and data on maintenance.
\n
With this information, a map is produced that offers a global analysis of the activities or processes. This map is called the initial VSM. Through this map, it can locate and solve problems effectively and propose a new map as a final VSM.
\n
\n
\n
2.3 Waiting
\n
Waiting is the time lost while waiting for the pieces from one department to another, especially during automatic production. This lost time affects mainly in the worker’s activity. This effect can be detected during the VSM and can be removed by SMED or the method of total productive maintenance (TPM) [6].
\n
TPM seeks to guarantee confidence in the processes by offering an activity with zero defects, zero accidents, or zero waste. In order to do this, prevention actions are analyzed and determined. This analysis should be done with the help of the operators through the free maintenance of the machine. This maintenance includes data about cleaning, dirt prevention, identification of anomalies, possible problems, etc. to solve any defect and lengthen the life of the machine.
\n
The SMED method recommends changing the matrix in a single minute. Its objective is to reduce the preparation times of processes to reduce manufacturing and delivery times, which can lead to delays. This method observes and separates internal operations from external operations. Internal operations are those that can only be carried out with the machine stopped. These operations are unlocking, changing, and locking a mold or a tool. External operations are those that can be performed with the device turned on. These operations are, for example, to approach materials, consumables, or parts to a machine and other pre-adjustment actions, such as checking the states of the machines [6]. As it happens with the VSM, for the SMED a study is needed for analyzing the time invested in each activity or process and the type of operation.
\n
\n
\n
2.4 Transport and movement
\n
Although the tasks of transport and movement are considered almost fundamental in a manufacturing company, there are times when they are not essential. It is necessary to minimize the expense of transportation and mobility of parts when they do not add value to the process because it implies a temporary loss and unnecessary fatigue to the operators.
\n
\n
\n
\n
3. Literature review of cyber-physical systems
\n
Actually, there are cyber-physical system (CPS) architectures [7, 8] that include five stages or levels such as (1) connection, (2) conversion, (3) cyberspace, (4) cognition, and (5) configuration. Another CPS architecture for manufacturing processes can be seen in [9] that contains also five levels such as (1) measurement, (2) acquisition, (3) signal processing, (4) decision support, and (5) loop control. In this architecture, the levels from two to five use data cloud services to process each level. The problem with this architecture is that real-time applications are not recommended to control devices directly from the cloud because the network can generate delays and consequently perturbations in real-time control.
\n
Another example of CPS architecture is proposed by [10] for a CNC system. This CPS uses as well five layers such as (1) equipment, (2) sensing, (3) network, (4) cognitive, and (5) control. The three first layers represent the physical space, and the last two layers represent the cyberspace (cognitive and control).
\n
According to these architectures, we propose also a cyber-physical system architecture based on five levels as it is shown in Figure 1.
\n
Figure 1.
Cyber-physical architecture that includes five levels.
\n
The first level starts with the level of connection that is important among different machines. The communication can use machine-machine (MM) protocols (e.g., MQTT protocol) and requires connections plug and play [7] and plug and produce that can be connected automatically. This level can use also other ways to identify people like what is proposed in [11] for human collaboration.
\n
This communication can be used in the second level of conversion of data. In this level, several mechanisms can be used to convert the data into information in order to perform intelligent analysis of the data. Some mechanisms are developed for the forecast and management of the health of the machine, while others are used to analyze the degradation and prediction of performance and also to perform some correlation of multidimensional data.
\n
The third level is created to generate virtual copies or cyber copies of the real physical systems. This level acts as central information where information is sent from each connected machine in a “virtual network of machines.” This module will produce massive information or big data. This information should be stored for being analyzed to extract additional information that provides a better understanding of the status of the individual fleet machine.
\n
These analyses provide the machines with a self-comparison capability, where the performance of a single machine can be compared and qualified among the fleet. On the other hand, the similarities between the performance of the machine and the previous assets (historical information) can be measured to predict the future behavior of the machinery. The historical information generated represents the memory that is accumulated over time of the data generated to identify any variation of the machine.
\n
The fourth level is the level of intelligence and decision-making that provides an adequate presentation of the analytical information so that expert humans and algorithms can decide in the production process. This analytical information can be viewed remotely so that the operator can access the analyses and make the pertinent decisions using human-machine interfaces (HMI) for industry 4.0.
\n
It also has the function of a collaborative diagnosis for maintenance processes, which can be easily determined due to the availability of comparative information and the status information of an individual machine.
\n
The fifth level is the high level of the CPS where a configuration is made with the feedback from the cybernetic part to the physical part. This level performs supervisory control to make the machines self-configured and self-adaptive. It acts as the resilience control system (SCR) to apply the corresponding controls to the decisions made at the level of cognition. Its typical functions are self-configuration for resilience (ability to recover from a disturbance), automatic adjustment for variation, and self-optimization against disturbances.
\n
This architecture proposes three levels of control for avoiding perturbations in real-time control applications: high-level, middle-level, and low-level.
\n
The high-level control can be implemented in levels 4 and 5. These control modules can use cloud services, while the middle level of control can be the level 3 that can use a virtual model of the process and control the real-time system as a master-slave control, where the master device is the cyber version and the slave device is the real-time controller for low-level control. Thus, this system cannot generate delays and interruptions in communication among cloud services and low-level control.
\n
\n
\n
4. Proposed actions for the CPS
\n
Ten actions are proposed for minimizing the possibility of producing bad products in a manufacturing system that can be implemented in the cyber-physical system proposed; these actions are described below:
The first proposed action consists of producing intelligent connections by means of a plug and play and plug and produce concept, in a similar way as the rest of CPS architectures [12]. With this smart connection, it is expected to foresee the demand, the delivery time, and the number of warehouses or intermediaries in the sale through machine learning from the cognitive module. It is proposed to implement a customer relation management (CRM) system, which collects demand data, automates and personalizes sales processes, creates databases with information, and carries out a commercial follow-up. It is also proposed to implement an enterprise resource planning (ERP) system in the cognitive module that integrates the inventory among many types of modules. In this case, it is convenient to manage the manufacturing, human resources, sales, and supply chain modules.
The second proposed action involves converting the extracted data and solving the formula. The conversion aims to use the data obtained during the connection, first action, to measure the characteristics of critical problems and predict possible problems. Next, a state of each operation is created. The purpose is to raise awareness of the machines and analyze the data extracted in the connection. In this case, it is intended to solve the demand formula. For this, it is expected to calculate the required inventory by multiplying the demand (e.g., the weekly order) by the delivery time, by the number of locations required during the process, and by the level of demand variation (standard deviation of the demand).
Third proposed action. The systems can be autoconfigured based on the results of the cognition and of the criteria of priority that the company grants them. For example, if it is considering that the inventory level is high depending on the existing demand, an expert should skip an alert to warn during production and minimize tasks. In any production process, it is recommended to apply a manufacturing execution system (MES) that documents raw materials and finished products. MES allows controlling of resources, analyzing the production, and establishing data on the life cycle of the product. If this information fuses negative or contradicts the objectives of the company, this data could be decisive in decision-making. It is also proposed to establish a system of ERP. It involves making an inventory that collects information about the available machines and tools and connects both the company and the suppliers.
The fourth proposed action requires automating the control of the data of the virtual machines generated at the cyber level. Therefore, it is recommended to perform Key Performance Indicators (KPI), which monitors the data collected in each of the activities or processes that require a machine. The objective is to perform a self-comparison that predicts possible problems to try to improve the times recorded during the data collection. Thus, the data interaction among all the machines can be analyzed at different times for predicting performances, efficiencies, and behaviors of each machine.
Fifth proposed action. The data analyzed by the cognitive level will do self-evaluations to the collected content and forecasting problems. Therefore it is required to establish algorithms that improve the efficiency in the value flow of the analyzed machines, that is, to develop the final VSM. This algorithm will depend on many factors, so it cannot be established generically. Each manufacturing company must attend to its own needs. For example, since cycle times are being monitored, alerts can be automated if these cycles are too long. These alerts can implement mechanisms for solving known problems. It is also recommended to apply a CMM that controls the flow of data, optimize the actual production times, automatically update the configuration of the machines, centralize the data, and store the data so that the cognitive modules can follow up.
The sixth proposed action is useful for the connection, conversion, cognition, and configuration levels to take care of the monitoring of the machines by means of self-detection about their behavior and their state. The conversion measures the collected data and the characteristics of the possible problems to offer the database a self-evaluation. Through the configuration, the machine can be reconfigured according to the requirements that have been established.
\n
Thus, an alert system could be designed to notify the workers of possible faults of the machines. This warning can be directed to the expert worker by means of advanced HMI 4.0 that can help to visualize the situation and make decisions. Moreover, these warnings can detect in addition when some machines will provide a damaged part or can cause health hazards.
\n
Therefore, the records of the cyber copies of the physical system will be useful to register existing anomalies describing the cause of the defect and a description of the hazard. Thus, a maintenance improvement process can be implemented [13], where the TPM is served with these actions.
The seventh proposed action. For the SMED, a link is needed to automate the data collection of the times, numbering each operation and detecting whether it has been considered an internal or external operation. With this data, it intends to offer cognition through a CPS. As the purpose of this methodology is to convert internal processes to external processes as much as possible, algorithms must be proposed to decide when this is possible. For the design of these algorithms, it is necessary to take note of all the real dangers in each machine, if an operator works on it while it is working. These dangers are numerous and depend on the device, so the design of the algorithm must be customized. There are activities that cannot be performed such as unlocking or changing a mold with a machine on because it is dangerous. Therefore, it is necessary to analyze the possibility of carrying out activities with the engine in motion that is currently carried out with a stopped machine without danger to the worker [14]. Augmented reality can be used in these types of activities, showing in real time the analysis of the machine.
The eighth proposed action (automation, CMM, and SCM) is to invest in automation systems and robotization processes. Digitization can help to increase load volumes without the need to increase time or strength. In addition, it minimizes movements. It is proposed to apply blockchain technology to transform the value chain of the production process. Another useful tool in automated systems is CMM measurements. These measurements allow efficiency during production, and this increases the quality of the products. It is about connecting the already configured machines to a blockchain network to record data and share them. The objective is to verify that everything works correctly. It is also recommended to manage the supply chain (SCM) by tracking the products, linking the company with the suppliers and consumers. This methodology is not incompatible with the ERP, but if ERP is established at a time of production, it will not be necessary to repeat it. For that reason, it is not applied as a recommendation in this action.
The ninth proposed action consists of implementing a statistical module based on the Six Sigma (σ) method in the cognitive level. Six Sigma is a statistical method implemented by engineer Bill Smith when he worked at the Motorola Company [15].
It is an efficient method to solve a problem with the aim of reducing the number of products with defects. In terms of measurements of positions from sensors, machines or robots could be used to optimize the process. This methodology will result in increased production quality, increased revenue, and increased customer satisfaction.
The objective is to reduce the defects produced reaching a maximum threshold of 3.4 Defects per Million of Opportunities (DPMO). Therefore, the use of Six Sigma can be considered as a process objective, where processes not only find fewer defects, but they do so with low variability and more consistently. Therefore, Six Sigma reduces the variation, so that the analyzed data can be delivered as expected reliable.
Moreover, some alarms can be implemented in the software to alert the maximum limits that the system can accept. Thus, the cyber level can generate data that can be processed, and prevention algorithms can be implemented to minimize defects in the measurements. Therefore, during the historical information, the analysis can prevent bad conditions of sensors, machines, or robots.
The tenth proposed action. This action is for helping to increase the level of adaptability in the cases of agile production. In order to react in a better way with the existing hardware of the plant that uses flexible manufacturing (i.e., robots, CNC, automated systems, among others), it is advisable that the cognitive level of the cyber-physical system may have modules of supervised learning, deep learning, and reinforcement learning. The combination of these three levels of learning could be useful to readapt the position of robotic arms to a new path that is required for producing a new task or product.
\n
Supervised learning [16] is essential for the normal operation of the system. For example, a system that uses visual recognition can detect the patterns with the information that has been trained, but it is not robust to recognize objects with different conditions. However, deep learning tries to model high-level abstractions in data using architectures composed of multiple nonlinear transformations [17]. Therefore, deep learning could be used for detecting a variety of patterns and generating new adaptations.
\n
Optimization algorithms are important for defining new optimal paths where optimal results can be validated by algorithms that contain intelligent observers or intelligent agents for a particular task. For example, this methodology can be used in the generation of new trajectories of a robotic arm that manipulates and grasps different objects adaptively.
\n
On the other hand, reinforcement algorithms [18] can be used to generate rewards when an action is performed well. Here, expert operators can take also part in the decision-making process to validate or discredit an action. In this way, the overall process can be adapted to new situations, allowing the system to readapt the decision inside of the constraints of time that the task requires.
\n
\n
\n
5. Conclusions
\n
The new smart industry of industry 4.0 requires the integration of different technologies, methodologies, and cyber-physical systems in order to improve the level of efficiency and capability of adaptation in the manufacturing process.
\n
High levels of digitalization are required to analyze the big data produced in the cyber level. Therefore, intelligent algorithms can use this information to minimize risks and efforts of the operator in human-machine collaboration and optimize the overall system, maximizing the value of the manufactured product.
\n
The operations that initially give priority to an automated process are the start and stop services of the equipment, operations that detect defects, operations that add effort to the operator (such as loading or transport activities), and feeding operations. However, these concepts are not new because, in the eighteenth century, the Jidoka methodology emerged, which was initially called Autonomation. This method is very close to automation, and its objective was to provide intelligence to machines without the need for human supervision [19]. However, as the fourth revolution advances, companies have understood that the human being is always necessary and the one that brings logic to the cognition of systems. Even if the automation is full, the system needs a previous configuration [20].
\n
An example of collaboration among humans and robots can be seen with the implementation of collaborative robots (cobots). These cobots can be used with humans to collaborate in tasks where the validation of the operator is necessary. Moreover, another type of collaboration is when humans can take decisions from the results of the cognitive modules where the operator has to validate the results or to provide a hybrid decision using the human intelligence and the results of the intelligent algorithms.
\n
In this chapter, ten actions have been proposed that can be used in a typical cyber-physical architecture of five levels but oriented toward manufacturing with the objective to eliminate the seven mudas of the JIT. Many companies use ERP systems that can be benefited to integrate the actions described before and use the combination of other cognitive modules to analyze the information in multidimensional channels.
\n
Moreover, the last action is suitable for agile manufacturing where some processes can be adapted to new strategy tasks by means of learning methods. Therefore, the time that requires the new adaptation will be an important constraint to consider for producing new optimal strategies. Thus, the system will require initial training with the objective to become an intelligent expert system with the validation of reinforcement algorithms.
\n
Moreover, high levels of security are required to be implemented in the cyber-physical system in all levels of communication. This situation is very important because cloud services, servers, embedded systems, sensors, and programmable logic controllers (PLCs), among others, are used to communicate information, store the data, and analyze the data in the high levels of the CPS. Therefore, it is really important that all the information produced could be generated without noise and errors and the integrity of the data cannot be accessed for non-authorized people.
\n
The collaboration among operators and machines must have high protocols of security in the decision-making process and reinforcement learning and avoid external attacks in the network of the CPS.
\n
Finally, future developments will consist of analyzing new architectures for deep learning processes based on vision systems where the vision system in combination with intelligent agents can predict anomalies in the production and make corrections in real time.
\n
\n\n',keywords:"cyber-physical systems, industry 4.0, lean manufacturing, agile production, increase of quality",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/69091.pdf",chapterXML:"https://mts.intechopen.com/source/xml/69091.xml",downloadPdfUrl:"/chapter/pdf-download/69091",previewPdfUrl:"/chapter/pdf-preview/69091",totalDownloads:919,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:35,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"April 11th 2019",dateReviewed:"July 8th 2019",datePrePublished:"September 19th 2019",datePublished:"March 18th 2020",dateFinished:"September 16th 2019",readingETA:"0",abstract:"The new industry 4.0 requires the implementation of several cyber-physical systems to increase the level of productivity in a manufacturing system. This chapter proposes an architecture of a generic manufacturing system that requires the use of techniques of agile production, lean manufacturing, and statistical approaches. The combination of the previous techniques will be implemented in the architecture proposed for minimizing the possibility of producing bad products. Thus, the cyber-physical system architecture proposed will optimize the overall system thanks to the implementation of intelligent modules and control strategies. Moreover, 10 proposed actions will be described in detail. These actions can be implemented in cyber-physical systems that take into account five levels.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/69091",risUrl:"/chapter/ris/69091",book:{id:"7529",slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing"},signatures:"Salvador Cobos Guzman, Maria Dolores Cima Cabal, Francisco Machio Regidor and Lucia Alonso Virgos",authors:[{id:"301684",title:"Prof.",name:"Salvador",middleName:null,surname:"Cobos Guzman",fullName:"Salvador Cobos Guzman",slug:"salvador-cobos-guzman",email:"salvador.cobos@unir.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidad Internacional De La Rioja",institutionURL:null,country:{name:"Spain"}}},{id:"301685",title:"Dr.",name:"Lucia",middleName:null,surname:"Alonso Virgos",fullName:"Lucia Alonso Virgos",slug:"lucia-alonso-virgos",email:"lucia.alonso.virgos@unir.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidad Internacional De La Rioja",institutionURL:null,country:{name:"Spain"}}},{id:"319173",title:"Dr.",name:"Maria Dolores",middleName:null,surname:"Cima Cabal",fullName:"Maria Dolores Cima Cabal",slug:"maria-dolores-cima-cabal",email:"kbfioeurg@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"319175",title:"Dr.",name:"Francisco",middleName:null,surname:"Machio Regidor",fullName:"Francisco Machio Regidor",slug:"francisco-machio-regidor",email:"gikeghie@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Types of waste",level:"1"},{id:"sec_2_2",title:"2.1 Overproduction and inventory",level:"2"},{id:"sec_3_2",title:"2.2 Overprocess and rework",level:"2"},{id:"sec_4_2",title:"2.3 Waiting",level:"2"},{id:"sec_5_2",title:"2.4 Transport and movement",level:"2"},{id:"sec_7",title:"3. Literature review of cyber-physical systems",level:"1"},{id:"sec_8",title:"4. Proposed actions for the CPS",level:"1"},{id:"sec_9",title:"5. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Stachowiak A, Oleśków-Szłapka J. Agility capability maturity framework. Procedia Manufacturing. 2018;17:603-610. DOI: 10.1016/j.promfg.2018.10.102'},{id:"B2",body:'Pérez Rave J, La Rotta D, Sánchez K, Madera Y, Restrepo G, Rodríguez M, et al. Identificación y caracterización de mudas de transporte, procesos, movimientos y tiempos de espera en nueve pymes manufactureras incorporando la perspectiva del nivel operativo, Ingeniare. Revista Chilena de Ingeniería. 2011;19(3):396-408. DOI: 10.4067/s0718-33052011000300009'},{id:"B3",body:'Anderson D, Carmichael A. Essential Kanban Condensed. Seattle, Wash: Lean Kanban University Press; 2016'},{id:"B4",body:'Chhatrawat RS, Dixit A. Lean production system: A review. International Journal of Advance Engineering and Research Development. 2016;3(3):452-457. DOI: 10.21090/ijaerd.030375'},{id:"B5",body:'Lacerda A, Xambre A, Alvelos H. Applying value stream mapping to eliminate waste: A case study of an original equipment manufacturer for the automotive industry. International Journal of Production Research. 2015;54(6):1708-1720. DOI: 10.1080/00207543.2015.1055349'},{id:"B6",body:'Sacristán F. Reducción de los tiempos. Tecnica Industrial. 2019. Available from: http://www.tecnicaindustrial.es/tiadmin/numeros/66/77/a77.pdf [Accessed: June 10, 2019]'},{id:"B7",body:'Ahmadi A, Cherifi C, Cheutet V, Ouzrout Y. A review of CPS 5 components architecture for manufacturing based on standards. In: Proceedings of the 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2017); December 2017; Colombo, Sri Lanka. ffhal-01679977'},{id:"B8",body:'Bagheri B, Yang S, Kao H, Lee J. Cyber-physical systems architecture for self-aware machines in industry 4.0 environment. IFAC-Papersonline. 2015;48(3):1622-1627. DOI: 10.1016/j.ifacol.2015.06.318'},{id:"B9",body:'Morgan J, O’Donnell G. Enabling a ubiquitous and cloud manufacturing foundation with field-level service-oriented architecture. International Journal of Computer Integrated Manufacturing. 2017;30(4-5):442-458. DOI: 10.1080/0951192X.2015.1032355'},{id:"B10",body:'Chen J, Yang J, Zhou H, Xiang H, Zhu Z, Li Y, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering. 2015;1(2):247-260. DOI: 10.15302/j-eng-2015054'},{id:"B11",body:'Liu X, Cao J, Yang Y, Jiang S. CPS-based smart warehouse for industry 4.0: A survey of the underlying technologies. Computers. 2018;7(13):1-17. DOI: 10.3390/computers7010013'},{id:"B12",body:'Lee J, Bagheri B, Kao H. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters. 2015;3:18-23. DOI: 10.1016/j.mfglet.2014.12.001'},{id:"B13",body:'Sekine K, Arai K. TPM for the Lean Factory: Innovative Methods and Worksheets for Equipment Management. Portland, OR: Productivity Press; 2017'},{id:"B14",body:'Sabadka D, Molnar V, Fedorko G. The use of lean manufacturing techniques—SMED analysis to optimization of the production process. Advances in Science and Technology Research Journal. 2017;11(3):187-195. DOI: 10.12913/22998624/76067'},{id:"B15",body:'Remembering Bill Smith, Father of Six Sigma, iSixSigma. 2019. Available from: https://www.isixsigma.com/new-to-six-sigma/history/remembering-bill-smith-father-six-sigma/. [Accessed: June 10, 2019]'},{id:"B16",body:'Iosifidis A. Extreme learning machine based supervised subspace learning. Neurocomputing. 2015;167:158-164. DOI: 10.1016/j.neucom.2015.04.083'},{id:"B17",body:'Chen LC, Schwing AG, Yuille AL, Urtasun R. Learning deep structured models. In: Francis Bach and David Blei, (Eds.), Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML\'15). Vol. 37. 2015. JMLR.org 1785-1794'},{id:"B18",body:'Vafashoar R, Meybodi M. Reinforcement learning in learning automata and cellular learning automata via multiple reinforcement signals. Knowledge-Based Systems. 2019;169:1-27. DOI: 10.1016/j.knosys.2019.01.021'},{id:"B19",body:'Baudin M. Working with Machines: The Nuts and Bolts of Lean Operations with Jidoka. New York: Productivity Press; 2007'},{id:"B20",body:'Åhlström P. Jidoka, wiley encyclopedia of management. Chichester, UK; 2015. DOI: 10.1002/9781118785317.weom100183'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Salvador Cobos Guzman",address:"salvador.cobos@unir.net",affiliation:'
Universidad Internacional de la Rioja, Escuela Superior de Ingeniería y Tecnología (ESIT), Logroño, La Rioja, Spain
Universidad Internacional de la Rioja, Escuela Superior de Ingeniería y Tecnología (ESIT), Logroño, La Rioja, Spain
'},{corresp:null,contributorFullName:"Lucia Alonso Virgos",address:null,affiliation:'
Universidad Internacional de la Rioja, Escuela Superior de Ingeniería y Tecnología (ESIT), Logroño, La Rioja, Spain
'}],corrections:null},book:{id:"7529",type:"book",title:"Industry 4.0",subtitle:"Impact on Intelligent Logistics and Manufacturing",fullTitle:"Industry 4.0 - Impact on Intelligent Logistics and Manufacturing",slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",publishedDate:"March 18th 2020",bookSignature:"Tamás Bányai, Antonella Petrilloand Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/7529.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-453-4",printIsbn:"978-1-83969-004-4",pdfIsbn:"978-1-78985-454-1",reviewType:"peer-reviewed",numberOfWosCitations:11,isAvailableForWebshopOrdering:!0,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"},coeditorTwo:{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"289"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"69144",type:"chapter",title:"Introductory Chapter: Industry 4.0 and Its Impact on Logistics - A Retrospective Review",slug:"introductory-chapter-industry-4-0-and-its-impact-on-logistics-a-retrospective-review",totalDownloads:871,totalCrossrefCites:0,signatures:"Tamás Bányai",reviewType:"peer-reviewed",authors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",fullName:"Tamás Bányai",slug:"tamas-banyai"}]},{id:"62794",type:"chapter",title:"Advantages of Learning Factories for Production Planning Based on Shop Floor Simulation: A Step towards Smart Factories in Industry 4.0",slug:"advantages-of-learning-factories-for-production-planning-based-on-shop-floor-simulation-a-step-towar",totalDownloads:885,totalCrossrefCites:0,signatures:"Montoya Andrés, Guarín Álvaro and Mora Julián",reviewType:"peer-reviewed",authors:[{id:"258109",title:"Mr.",name:"Andrés",middleName:null,surname:"Montoya",fullName:"Andrés Montoya",slug:"andres-montoya"},{id:"258110",title:"Dr.",name:"Álvaro",middleName:null,surname:"Guarín",fullName:"Álvaro Guarín",slug:"alvaro-guarin"},{id:"258111",title:"MSc.",name:"Julián",middleName:null,surname:"Mora",fullName:"Julián Mora",slug:"julian-mora"}]},{id:"70417",type:"chapter",title:"Impact of Industry 4.0 on Inventory Systems and Optimization",slug:"impact-of-industry-4-0-on-inventory-systems-and-optimization",totalDownloads:1424,totalCrossrefCites:7,signatures:"Xue-Ming Yuan",reviewType:"peer-reviewed",authors:[{id:"301728",title:"Prof.",name:"Xue-Ming",middleName:null,surname:"Yuan",fullName:"Xue-Ming Yuan",slug:"xue-ming-yuan"}]},{id:"69091",type:"chapter",title:"Cyber-Physical System Architecture for Minimizing the Possibility of Producing Bad Products in a Manufacturing System",slug:"cyber-physical-system-architecture-for-minimizing-the-possibility-of-producing-bad-products-in-a-man",totalDownloads:919,totalCrossrefCites:0,signatures:"Salvador Cobos Guzman, Maria Dolores Cima Cabal, Francisco Machio Regidor and Lucia Alonso Virgos",reviewType:"peer-reviewed",authors:[{id:"301684",title:"Prof.",name:"Salvador",middleName:null,surname:"Cobos Guzman",fullName:"Salvador Cobos Guzman",slug:"salvador-cobos-guzman"},{id:"301685",title:"Dr.",name:"Lucia",middleName:null,surname:"Alonso Virgos",fullName:"Lucia Alonso Virgos",slug:"lucia-alonso-virgos"},{id:"319173",title:"Dr.",name:"Maria Dolores",middleName:null,surname:"Cima Cabal",fullName:"Maria Dolores Cima Cabal",slug:"maria-dolores-cima-cabal"},{id:"319175",title:"Dr.",name:"Francisco",middleName:null,surname:"Machio Regidor",fullName:"Francisco Machio Regidor",slug:"francisco-machio-regidor"}]},{id:"63309",type:"chapter",title:"Leveraging Internet-of-Things to Support Circular Economy Paradigm in Manufacturing Industry",slug:"leveraging-internet-of-things-to-support-circular-economy-paradigm-in-manufacturing-industry",totalDownloads:1123,totalCrossrefCites:0,signatures:"Giuseppe Pacelli, Enrico Ferrera, Rosaria Rossini, Ilaria Bosi and Claudio Pastrone",reviewType:"peer-reviewed",authors:[{id:"255380",title:"M.Sc.",name:"Enrico",middleName:null,surname:"Ferrera",fullName:"Enrico Ferrera",slug:"enrico-ferrera"},{id:"266931",title:"MSc.",name:"Giuseppe",middleName:null,surname:"Pacelli",fullName:"Giuseppe Pacelli",slug:"giuseppe-pacelli"},{id:"266932",title:"MSc.",name:"Ilaria",middleName:null,surname:"Bosi",fullName:"Ilaria Bosi",slug:"ilaria-bosi"},{id:"266933",title:"MSc.",name:"Claudio",middleName:null,surname:"Pastrone",fullName:"Claudio Pastrone",slug:"claudio-pastrone"},{id:"266934",title:"Dr.",name:"Rosaria",middleName:null,surname:"Rossini",fullName:"Rosaria Rossini",slug:"rosaria-rossini"}]},{id:"69121",type:"chapter",title:"Parallel Genetic Algorithms with GPU Computing",slug:"parallel-genetic-algorithms-with-gpu-computing",totalDownloads:1145,totalCrossrefCites:3,signatures:"John Runwei Cheng and Mitsuo Gen",reviewType:"peer-reviewed",authors:[{id:"305784",title:"Dr.",name:"John Runwei",middleName:null,surname:"Cheng",fullName:"John Runwei Cheng",slug:"john-runwei-cheng"},{id:"305786",title:"Prof.",name:"Mitsuo",middleName:null,surname:"Gen",fullName:"Mitsuo Gen",slug:"mitsuo-gen"}]},{id:"63861",type:"chapter",title:"Digital Twin Technology",slug:"digital-twin-technology",totalDownloads:1524,totalCrossrefCites:8,signatures:"Zongyan Wang",reviewType:"peer-reviewed",authors:[{id:"255874",title:"Dr.",name:"Zongyan",middleName:null,surname:"Wang",fullName:"Zongyan Wang",slug:"zongyan-wang"}]},{id:"64012",type:"chapter",title:"The Role of Spin-Off Companies in the Technology Transfer and IS Management Potential in Developing a Sharing Economy",slug:"the-role-of-spin-off-companies-in-the-technology-transfer-and-is-management-potential-in-developing-",totalDownloads:968,totalCrossrefCites:0,signatures:"Mária Pomffyová, Mária Rostašová and Vladimír Krajčík",reviewType:"peer-reviewed",authors:[{id:"7712",title:"Ing., PhD.",name:"Maria",middleName:null,surname:"Pomffyova",fullName:"Maria Pomffyova",slug:"maria-pomffyova"},{id:"210046",title:"Prof.",name:"Vladimír",middleName:null,surname:"Krajčík",fullName:"Vladimír Krajčík",slug:"vladimir-krajcik"},{id:"216184",title:"Prof.",name:"Mária",middleName:null,surname:"Rostašová",fullName:"Mária Rostašová",slug:"maria-rostasova"}]}]},relatedBooks:[{type:"book",id:"9555",title:"Green Supply Chain",subtitle:"Competitiveness and Sustainability",isOpenForSubmission:!1,hash:"7a403c686a47c5af28a8568d40dfd94a",slug:"green-supply-chain-competitiveness-and-sustainability",bookSignature:"Tamás Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/9555.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"77922",title:"Introductory Chapter: Disciplinarity Aspects in Green Supply Chain Design and Operation",slug:"introductory-chapter-disciplinarity-aspects-in-green-supply-chain-design-and-operation",signatures:"Tamás Bányai and Ireneusz Kaczmar",authors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",fullName:"Tamás Bányai",slug:"tamas-banyai"},{id:"427677",title:"Dr.",name:"Ireneusz",middleName:null,surname:"Kaczmar",fullName:"Ireneusz Kaczmar",slug:"ireneusz-kaczmar"}]},{id:"72142",title:"Green Supply Chain Management Practices and Firm Characteristics: Evidence from Cameroon",slug:"green-supply-chain-management-practices-and-firm-characteristics-evidence-from-cameroon",signatures:"Manfred Kouty",authors:[{id:"314910",title:"Dr.",name:"Manfred",middleName:null,surname:"Kouty",fullName:"Manfred Kouty",slug:"manfred-kouty"}]},{id:"72772",title:"Green Transportation in Green Supply Chain Management",slug:"green-transportation-in-green-supply-chain-management",signatures:"Raeda Saada",authors:[{id:"318992",title:"Dr.",name:"Raeda",middleName:"Jamal",surname:"Saada",fullName:"Raeda Saada",slug:"raeda-saada"}]},{id:"73926",title:"Green Supply Chain in Solid Waste Management: Case Study of EcoCare H2H Waste Collection, Goaso, Ghana",slug:"green-supply-chain-in-solid-waste-management-case-study-of-ecocare-h2h-waste-collection-goaso-ghana",signatures:"Jackson Nyarko, Frank A. Yeboah, Felix A. Yeboah, Isaac S. Larbi and Maxwell Osei-Bonsu",authors:[{id:"320888",title:"Mr.",name:"Jackson",middleName:null,surname:"Nyarko",fullName:"Jackson Nyarko",slug:"jackson-nyarko"},{id:"326906",title:"Mr.",name:"Frank",middleName:null,surname:"Amponsah Yeboah",fullName:"Frank Amponsah Yeboah",slug:"frank-amponsah-yeboah"},{id:"326948",title:"Mr.",name:"Felix",middleName:null,surname:"Ankamah Yeboah",fullName:"Felix Ankamah Yeboah",slug:"felix-ankamah-yeboah"},{id:"326949",title:"Mr.",name:"Isaac",middleName:null,surname:"Sarfo Larbi",fullName:"Isaac Sarfo Larbi",slug:"isaac-sarfo-larbi"},{id:"326950",title:"Mr.",name:"Maxwell",middleName:null,surname:"Osei-Bonsu",fullName:"Maxwell Osei-Bonsu",slug:"maxwell-osei-bonsu"}]},{id:"74081",title:"Green Initiatives in Supply Chain Management Drives Enterprises’ Competitiveness and Sustainability",slug:"green-initiatives-in-supply-chain-management-drives-enterprises-competitiveness-and-sustainability",signatures:"Ken Mathu",authors:[{id:"331507",title:"Dr.",name:"Ken",middleName:null,surname:"Mathu",fullName:"Ken Mathu",slug:"ken-mathu"}]},{id:"77061",title:"The Impact of Industry 4.0 on the Future of Green Supply Chain",slug:"the-impact-of-industry-4-0-on-the-future-of-green-supply-chain",signatures:"Tamás Bányai and Mohammad Zaher Akkad",authors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",fullName:"Tamás Bányai",slug:"tamas-banyai"},{id:"419731",title:"Dr.",name:"Mohammad",middleName:null,surname:"Zaher Akkad",fullName:"Mohammad Zaher Akkad",slug:"mohammad-zaher-akkad"}]}]}],publishedBooks:[{type:"book",id:"7529",title:"Industry 4.0",subtitle:"Impact on Intelligent Logistics and Manufacturing",isOpenForSubmission:!1,hash:"3a750fbddad49434288a89b9eb40a893",slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",bookSignature:"Tamás Bányai, Antonella Petrilloand Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/7529.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:null,name:"Daniel A.",surname:"Marinho",slug:"daniel-a.-marinho",fullName:"Daniel A. Marinho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"7529",title:"Industry 4.0",subtitle:"Impact on Intelligent Logistics and Manufacturing",isOpenForSubmission:!1,hash:"3a750fbddad49434288a89b9eb40a893",slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",bookSignature:"Tamás Bányai, Antonella Petrilloand Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/7529.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"77486",title:"Oil Palm Fatal Yellowing (FY), a Disease with an Elusive Causal Agent",doi:"10.5772/intechopen.98856",slug:"oil-palm-fatal-yellowing-fy-a-disease-with-an-elusive-causal-agent",body:'
1. Introduction
The African oil palm (Elaeis guineensis Jacq.) is a palm tree originally from the West Coast of Africa and currently distributed in three regions of the equatorial tropics; Africa, Southeast Asia, and Central and South America, where it exists in the wild, semi-wild, and cultivated form [1]. Among the oilseeds, it is the one with the highest average yield, producing 4 to 6 tonnes per year of vegetable oil [2]. The fruit palm oil (mesocarp) and the palm kernel oil (almond) are the raw material for several products in the food industry, in the cosmetic and personal hygiene industry, and the biofuels industry [3, 4]. Palm oil provides 36% of the global supply of vegetable oils with a considerable increase, from crude palm oil (CPO) production from 5.3 million tonnes in 1981 to 71.45 million tonnes in 2018 [2].
The Asian continent concentrates most of the CPO production, led by Indonesia and Malaysia, which together accounts for 85% of the world’s CPO production [4]. However, the limited availability of areas for cultivation in Southeast Asia has opened new frontiers for expansion, culminating in the growth of Latin America’s share in the global production of oil palm [5]. Latin America has the largest suitable area for oil palm cultivation, notably led by Brazil (2,283,000 km2), Peru (458,000 km2), and Colombia (417,000 km2) [5]. Among Latin countries, Colombia is the world’s fourth-largest producer of CPO and the first in the Americas, with an estimated production of 1.67 million tonnes in 2020, followed by Guatemala with 852 thousand tonnes and Honduras with 580 thousand tonnes [4].
Unfortunately, oil palm plantations in this geographical area are affected by a wide variety of pests and diseases that negatively affects productivity and discourage investment in this sector [1]. Notably, “bud-rot type” diseases pose the greatest threat to oil palm plantations in Latin America [6]. Among them, Pudrición del Cogollo (PC) and Fatal Yellowing (FY) are the diseases that cause most of the damage, both presenting a common symptom: rotting of the spear leaf that evolves until reaching the apical meristem system leading to the death of individuals [6, 7]. By far, the FY exhibits the most dramatic scenario because, in contrast to PC, its causal agent remains unknown, hindering effective sanitary control practices [8].
Fatal Yellowing was first identified by Reiking in 1928 in oil palm plantations in Panama, with cases reported in Colombia, Ecuador, Peru, Costa Rica, Venezuela, Suriname, Nicaragua, and, reportedly, in Central Africa, after that [6]. In Brazil, it was only in 1974 that the first symptomatic individuals were identified and, from the epidemiological explosion that occurred in the 1980s, FY started to represent the greatest threat to oil palm in the country [9]. As a result, several studies began to search for the possible biotic causal agent behind it and its putative vectors [8]. However, the research efforts made for more than 30 years have not exactly pointed out organisms directly linked to FY\'s cause [10, 11, 12, 13, 14, 15, 16]. Some studies also looked for possible abiotic causes, with inconclusive results so far [17, 18, 19]. Recently, techniques such as metabolomics, proteomics, and metagenomics started to be applied to provide insights into the possible FY etiology, initiating a new phase in the process to solve this problem [20, 21, 22].
Although Brazil has more than 30 million hectares with an aptitude for oil palm production, it currently has less than 1% of this area destined for this purpose [23]. Fatal Yellowing is the main contributor to hinder the expansion of the oil palm industry in Brazil, and the attempts to control the emergence of sick plants have not been successful, and its nature remains a mystery [10]. This review intends to analyze descriptively the studies carried out to investigate the FY problem in Brazil, besides pointing out new strategies employed for understanding the development of the disease, confirm the real cause behind it, and develop tools for early diagnostics.
2. The oil palm industry: social and economic importance
2.1 In the world
Oil palm is originally from West Africa and adapted to the intertropical areas of Africa, Asia, South and Central America [1]. It is the most profitable oil crop, as it presents a higher yield with a lower production cost [24]. Its oil yield is of the order of 4-6 tonnes per hectare per year of CPO, much higher than that presented by other crops, such as rapeseed (0.69 t), sunflower (0.69 t), and soybeans (0.44 t) [3]. Another positive point is that this crop uses only 6% of the area to produce 36% of the global oil supply, while soy, for example, occupies 40% of the land to generate 26% [4, 24]. Because of that, oil palm stands out as a player fundamental to help the world meet the growing global demand for vegetable oil in 2050 that will be around 240 million tonnes [25, 26].
The expansion of the oil palm industry has been strongly encouraged by governments and private sectors in Southeast Asia [27]. It is by far the most productive region in the world, supplying 85% of the CPO produced, reflecting the rapid expansion of the cultivated area that started in the middle of the last century [25]. The commercial oil palm plantations in Indonesia, for instance, went from 70 thousand hectares in 1961 to 6.78 million hectares in 2018, with a considerable increase of 9.582% during this period [2]. As a result, Southeast Asia production rose to 63.26 million tonnes in 2018, or a 22,378% increase in the period [2, 3].
Africa has not seen an expansion of the oil palm industry as significant as Southeast Asia in the last 60 years [3, 28]. The area occupied by oil palm increased from 3.55 million hectares in 1961 to 4.55 million hectares in 2018 in the African continent, representing an increase of only 33% (Figure 2) [2]. Meanwhile, the Americas now occupy 6% of the international market, producing around 4.89 million tonnes of palm oil in 2018, a 273% increase in the last two decades [2].
The considerable increase in oil palm production was supported mainly by the advances in genetic breeding programs that increased oil productivity more than 2 folds since 1960 [1].
Most of the CPO and its derivatives produced stays in the Asian markets that absorb 51% of the total, led by India, which imports 19.4%, and China 13.0% [29]. The European markets, which import 26%, have the Netherlands (6.1%) and Italy (4.3%) as the leading importers [23]. Africa (12%), the Middle East (4%), and Latin and North America (7%) also have a consumer market for vegetable oils, and palm oil from Southeast Asia helps to supply the demand [29]. The global vegetable oil market allocates 70% of total production to food and 30% to non-food industrial purposes, such as, for example, the production of cosmetics and personal hygiene products (24%) and as a raw material for the production of biofuels (5%) [26].
2.2 In Latin America
The increase in global palm oil production in the 21st century is due mainly to new plantations in producing countries, especially in Malaysia and Indonesia [27]. However, due to a reduction in the areas available for expanding cultivation in Southeast Asia, an opportunity opened up to expand to new frontiers to meet the growing global demand for palm oil [5]. As a result, Latin America became one of the most promising regions for oil palm cultivation, as it has one of the largest areas suitable for cultivation, notably represented by Brazil, Peru, and Colombia [5].
Brazil, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, Peru, and Venezuela produce together 4.65 million tonnes of palm oil, representing 6% of world production in 2020 [2]. Colombia is the largest oil palm producer in this region and ranks 4th in the World, with 1.61 million tonnes produced in 2018, or 33% from the annual palm oil of Latin America (Figure 1) [2, 30]. Guatemala produced a total of 875 thousand tonnes in 2018 what places the country in the 2nd position in Latin America [2, 31]. Honduras is in the 3rd, followed by Ecuador, Brazil, Costa Rica, and Venezuela [2].
Figure 1.
Land use for oil palm cultivation in central and South America since 1980, in hectares. Source: adapted from our wold in data [2].
2.3 In Brazil
The first oil palm plants arrived in Brazil in the 16th century, adapting very well to the Northeast region of the country [32]. The oil palm industry in Brazil stayed as a small industry until 1960, when, due to increasing demand for oil for cooling steel sheets in the national steel park, it started to experience significant growth [33]. In 1967, the oil palm cultivation expanded to the Pará State, in the North region of Brazil, with the first commercial-scale plantations comprising about 3.000 hectares [32].
Driven by technical advances and growth in demand for vegetable oils, there was a significant increase in the cultivated area of oil palm in Brazil, which went from 11 thousand hectares in 1980 to more than 236 thousand hectares in 2008 [3]. Brazil has large areas with the aptitude for oil palm production, favored by climatic conditions similar to the most productive regions in the world [1]. However, until 2014, less than 1% of this area was occupied by commercial plantations [34, 35]. Brazil’s position as the 13th, and 23rd, in palm oil production and on the productivity scale, respectively, in the world, is due mainly to this under-utilization of available areas [3, 32].
Oil palm production is concentrated in Pará state, which accounts for 97.19% of the cultivated area and 97.99% of the national palm oil production, followed by Bahia (1.98%), Roraima, and Amazonas [36]. The expansion of cultivation to already deforested areas in the Amazon and other regions in Brazil is an opportunity to reduce pressure on forests and supply the palm oil demand from the food and energy sectors [35]. To make the plantations more environmentally sustainable, the Brazilian Government launched the agro-ecological zoning (ZAE) program in 2010, a legal mechanism to delimit the oil palm cultivation area [37]. This area include Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima and Tocantins, part of Maranhão and five municipalities in Goiás state, comprising about 59% of the Brazilian territory [35].
3. The fatal yellowing (FY) disease
3.1 History in the world
Several fatal syndromes of bud-rot severely affect plantations of oil palm in South and Central America [6, 38]. Bud-rot type disease was reported for the first time on oil palm plantations in Suriname in the 1920s, followed by another incidence in Panama reported by Reinking in 1927 [6]. In general, symptoms of bud-rot type diseases initiate with chlorosis of the youngest leaves and later necrosis that rapidly reach immature tissues of the meristem, causing a collapse of the spear leaf and plant death [9]. Bud rot diseases can take two forms: a lethal form found in Ecuador, Brazil, and in certain zones of Colombia and Suriname, and a non-lethal one, with a high recovery rate, found mainly in the Colombian Llanos [6]. The disease is synonym to a few other names such as “pudrición del cogollo” (PC) in most Spanish speaking countries, “PC típica” (PCt) or “PC diversa” (PCd) in the plantation Palmeras del Ecuador (PDE) in Eastern Ecuador, “amarelecimento fatal” (AF) in Brazil, “spear rot “in Suriname [1, 6, 7].
The first large-scale bud rot damage on oil palm plantations in Latin America was due to the PC disease in northern Colombia, where a field of 2,800 hectares located in the Turbo region was virtually devastated by PC in 1965 [9]. In Suriname, the spear rot was first registered in the Victoria region in 1976 on four-year-old oil palms in a plantation of 1,700 hectares. Despite the phytosanitary practices applied to control the disease, an exponential progression reduced the original area by 85% [39]. In Ecuador, the first PC cases happened in 1976 on four-year-old oil palms on the Pacific slopes of the Ecuadorian cordillera [1], and, like other regions, the plantation was decimated by the disease in a few years [6]. Recently Martinez et al. [7] carried out a study in Colombia to isolate microorganisms and reproduce PC in healthy oil palm plants and, in conclusion, they postulate that the oomycete Phytophthora palmivora is associated with the emergence of PC.
Fatal yellowing exhibits, by far, the most dramatic scenario among the bud-rot type diseases of oil palm in the Americas. The factors linked to the emergence of this disease in some countries remain unknown after experiencing more than 50 years of outbreaks in Brazil, Ecuador, Panama, Suriname, Costa Rica, Nicaragua, Honduras, Peru, and Venezuela [6, 9, 10].
3.2 History in Brazil
The FY disease first appeared in Brazil in 1974, with sporadic occurrences in a field established in 1967 near Benevides, a city in the Pará State [8, 12]. The disease progressed slowly in the following years, from 25 symptomatic plants in 1978 to 125 in 1981. In 1984, ten years after the first report, the number of plants diagnosed with FY was 465 [11]. In the first ten years after its first appearance, the disease progressed in a linear model, and the numbers of affected plants remained more or less the same per unit of time. This mode of progress indicated that the contamination did not occur from plant to plant. However, the numbers of affected plants rose to 9,968 in 1986 and 32,673 in 1987, starting a period of exponential increase [11]. In the first two decades after its first occurrence in Brazil, approximately 100 thousand oil palm trees died from this disease, resulting in the loss of entire plantations [11, 40].
Roguing was then put in place to maintain the source of the inoculum of a possible pathogen to a minimum, eliminating all plants showing symptoms up to one month after the discovery [40, 41]. The oil palm industry promoted training on the fast and precise recognition of FY symptoms to guarantee the effectiveness of this phytosanitary measure [42]. Despite it, the disease kept on occurring in plants between the 15th and the 16th year after planting, making FY one of the main problems of this crop in Brazil. Not surprisingly, this discouraged the expansion of oil palm cultivation in the affected regions [11]. As the inability to identify the causal agent and promote effective control of FY persists, the oil palm industry remains in a state of insecurity to expand in the regions affected by FY [42].
3.3 Symptomatology and diagnosis
Proper and early disease diagnosis is vital for applying control practices at the right moment. Without an efficient and effective early diagnosis of the disease and the disease-causing agent, any control measures will be inefficient [43]. Until the FY etiology is known and diagnostic systems developed, the only way to find out that a plant has this disease is by checking for characteristic symptoms and signs. Once a plant is diagnosed with FY, it must undergo roguing. In Brazil, symptoms identification in the field is still the only diagnostic system used for FY [8, 12].
An oil palm plant affected by FY shows necrosis or dryness of the spear leaf that evolves towards the base, then the region of the meristem rots, and a foul odor is felt in some cases (Figure 2) [12, 44]. The process of rotting of the meristem region, frequently observed in rainy seasons, motivated the initial designation of the disease as spear leaf rot [8, 40]. After losing the spear leaf, there is a general decline leading to plant death; however, some individuals during this process may temporarily re-issue a new one [12, 18]. In plants affected by FY, chlorosis appears in leaflets at the base of the intermediate leaves, which advances towards the extremity, followed by necroses frequently observed in younger leaves [6]. There is no synchronism between the spear leaf necrosis and the chlorosis of the leaflets. The FY symptoms always begin with leaflets chlorosis, which led to the Fatal Yellowing disease name [1]. In Brazil, the oil palm tree usually dies 7 to 10 months after the onset of the first symptoms, but it can vary depending on the region [41].
Figure 2.
Fatal yellowing (FY) disease in oil palm. (a) Oil palm plantation affected by FY; (b) individual showing signs of yellowing and necrosis of the intermediate leaves; (c, d, e) evolution of yellowing and dryness of the spear leaf with the presence of necrotic tissue, and (f) root section of an individual with signs of rot. Source: by authors.
Once the oil palm plant gets affected by FY, the developed bunches can reach the maturation stage and are not affected. However, the immature ones rot, and the inflorescence abort [40, 41]. The root system is visibly affected, and emission of new primary roots reduced, leading to a total cease of roots growth. FY kills the tips of the roots generating new false primary ones. In addition, the root tissue is usually necrotic at the beginning of the appearance of symptoms in the aerial part [45, 46]. On the other hand, no apparent internal symptoms are observed, such as rot or necrosis of the stipe and vascular system, a characteristic that is also seen in PC [41].
4. A genetic source of resistance to FY
The causal agent of FY is still unknown, but a possible genetic solution for this problem exists. This genetic solution resides upon the fact that the American oil palm (Elaeis oleifera (Kunth) Cortés) and the interspecific hybrids between this species and the African oil palm are considered resistant to this disease [47].
The genus Elaeis (from the Greek Elaion that means oil) belongs to the class Liliopsida (Monocotyledones), order Arecales (Palmales), family Arecaceae (Palmae), subfamily Arecoideae, tribe Cocoseae (Cocoinaea) and, subtribe Elaeidinae [48, 49]. This genus consists of two species, E. guineensis and E. oleifera, with a pantropical distribution and two distinct diversity centers, Nigeria and South America, respectively [50, 51, 52]. The former is the African oil palm, the predominant species in commercial plantations Worldwide, and known in Brazil as “Dendê”; and the latter is the American oil palm, which originated from Central and South America, and is known as “Caiaué” [53].
The American oil palm is endemic to Equatorial America, with natural populations distributed from Central America to northern South America, including the countries of Brazil, Colombia, Costa Rica, Ecuador, French Guiana, Honduras, Mexico, Nicaragua, Panama, Peru, Suriname, and Venezuela [1]. In Surinam, there are dense stands on poor, sandy soil, while in Colombia, it can grow in damp or even swampy situations near or on the banks of rivers [1].
The American oil palm also has a history of use as a source of vegetable oils and other products, but its most important value to the oil palm industry is its capacity to hybridize with the African oil palm [1]. The interest in the germplasm of this species is due to valuable characteristics for breeding programs of the African oil palm, such as slow growth, oil quality (mainly unsaturated oil) [54], and disease resistance, including FY [47].
These two species can sexually cross and generate fertile interspecific hybrids with intermediate characteristics to the two parental species [55]. Some interspecific hybrids between these species are already commercially available, and the Brazilian genetic group of E. oleifera is parental to most of them — Manicoré (BRS Manicoré from Embrapa, and [Mangenot × Manicoré] × La Mé from PalmElit SAS), Manaus (Amazon from ASD Costa Rica), and Coari (Coari × La Mé, Coari × Yangambi) [47].
Independent whether the origin of FY is biotic or abiotic, or a combination of both, once it is finally known, new studies will be necessary to confirm this genetic resistance and gain insights on possible strategies to transfer this resistance to the African oil palm more efficiently and effectively, besides the use of interspecific crosses followed by backcrosses.
5. The search for the causal agent
5.1 Biotic stress
5.1.1 Insects
After the epidemiological explosion of FY in 1986, Embrapa (the Brazilian Agricultural Research Corporation) started conducting studies on insects as a possible vector of the FY causal agent [8]. As the spread of the disease followed the direction of the prevailing winds, while natural barriers - such as roads, rivers, and glades - were not sufficient to prevent it supported this hypothesis [8, 56]. This hypothesis on a possible entomological role in the spread of FY also resided in the fact that this disease has similarities with the lethal yellowing-type disease that affects other palms. This disease that affects several other palms is due to insect-transmitted phytoplasmas [57]. Initially, from inventory obtained in plantations affected by FY in the municipalities of Alvaraes, in the Amazonas State, and Benevides, in the Pará State, the main insects suspected of being responsible for the transmission corresponded to Persis sp. and Myndus crudus because they are commonly found in oil palm plantations and depend on palm oil for nutrition [15].
Initially, an inventory of insects captured directly on the oil palm plantations located inside and outside areas with FY occurrence was generated. Healthy oil palm plants, isolated in cages made of wood and nylon canvas, received populations of the inventoried insects, and the plants monitored for symptoms appearance. After using almost one million insects in the FY transmission test, no symptomatic plant appeared, and there was no relationship between the affected areas with the collected insect fauna [15, 58]. Additional studies have attempted to establish a link between the insects Contigucephalus sp., Omolicna sp., and Myndus crudus and this disease, but they all gave negative results. Consequently, the authors discarded a Homoptera as the FY vector and suggested new studies on possible very active and rare insect species [8, 56].
Another study attempted to investigate the relationship between the presence of homopterans in the vegetation cover in oil palm plantations and the occurrence of FY [12]. No relation between the vegetation cover and FY occurrence appeared as the disease manifested itself either in an area covered with Pueraria spp. as in areas where there were grasses, especially Brachiaria spp. [25]. Studies using a series of chemicals in areas where FY occurs - such as insecticides, fungicides, and bactericides - did not reduce the appearance and development of FY [40].
5.1.2 Phytoplasmas
Phytoplasmas are prokaryotes of the Class Mollicutes that cause diseases in several plant species, including several economically important ones [59]. As biotrophic parasites, they colonize the elements riddled with the phloem and can also be found inside the vectors [60]. These organisms are responsible for Lethal Yellowing (LF), a fatal disease that affects the coconut (Cocos nucifera L.) and at least 36 other palm species in the Americas [61, 62].
Insects from the Homoptera order, popularly known as leafhoppers, are the vectors for most phytoplasmas causing disease in plants [63]. Biological characteristics, symptoms, and specificity of the insect vector were the focus of the first studies aiming to associate phytoplasmas with plant diseases [64, 65]. Later, new and more accurate DNA-based techniques started to dominate these studies, leading to the production of specific oligonucleotides for diagnosis [65].
Transmission electron microscopy was, for many years, the tool used for the detection and study of the cytological interaction between phytoplasmas and the hosts [66]. Studies using this tool were not successful in associating phytoplasma with FY, been replaced by new molecular techniques for the same purpose [8]. Studies carried out by Brioso et al. [67, 68] using nested-PCR in oil palm plants symptomatic for FY found just a very few samples positives for the presence of phytoplasmas from the SrI and 16SrI groups, which do not allow to associate these phytoplasmas to FY. An attempt to reproduce the disease was carried out by grafting intermediate leaf tips with FY into healthy seedling petioles and, during the period of two years, healthy individuals did not show symptoms characteristic of FY and, thus, the hypothesis proposing phytoplasma as the causal agent was discarded [12].
5.1.3 Fungi, bacteria, and nematodes
In the attempt to establish a causal relationship between plant pathogenic fungi, bacteria, and nematodes with FY, some studies tried to reproduce the symptoms in healthy young and adult oil palm plants inoculated with some of these microorganisms previously isolated from symptomatic plants [69, 70].
A pathogenicity test focused on studying the growth, reproductive and developmental habits of microorganisms, included one-year-old nursery plants with individual inoculations and a mixture of three fungi (Fusarium sp., Pythium sp., and Coprinus sp.) isolated from symptomatic plants; and again, the inoculum was unable to reproduce the disease in healthy oil palm trees [69]. The possibility of mechanical transmission between symptomatic and asymptomatic individuals by some microorganisms was also tested, with no success [69]. The chemical control attempts using fungicides or antibiotics failed to link fungi and bacteria to FY in oil palm [11].
Interestingly, some authors have observed similarities between the disease PC in Colombia and FY in Brazil. Furthermore, the oomycete Phythophtora palmivora was reported to be the PC causal agent [7]. The strategy used by Martinez et al. [7] was to remove tissue from oil palm plants exhibiting early symptoms of PC disease to inoculate fruit traps. Once microbial growth was observed in the fruits, tissue was transferred to culture media and pure cultures were obtained. Using the DNA isolated from the pure culture, amplification of the ITS region was performed and sequence analysis showed 99.9% homology to P. palmivora. The same study reported pathogenicity tests where sporangia were inoculated into the base of the spear of 150 oil palm nursery plants. After 3 to 4 days, the first symptoms of PC were observed in 85% of the plants [7]. However, full PC symptom development occurred in 15% of inoculated oil palm plants, and depended on environmental conditions. In another experiment, 20 immature spear leaves were inoculated with P. palmivora, and 3 days later all tissues were disintegrated, displaying a characteristic odor. Microscopy experiments showed the presence of P. palmivora in these tissues, and it was re-isolated using the fruit trap technique.
Nematodes are typically wormlike invertebrates able to live in the soil or inside plant structures such as roots, stems, leaves, and flowers and can cause morphological and developmental changes in their hosts [71]. The hypothesis of a nematode as a causative agent of FY came from observations of FY and the red ring disease - caused by the nematode Bursaphelenchus cocophilus - in the same area. Ferraz [72] did not observe this nematode in necrotic tissues or young leaves. Some studies found nematodes in the spear leaf rake and young leaves of symptomatic plants and the soil of oil palm plantations with a history of FY but were unable to link it to the appearance of this disease [24, 72].
5.1.4 Viruses and viroids
Other plant pathogens studied as potential causal agents of FY in oil palm were viruses and viroids. Several methods, including mechanical transmission, grafting, pollen-mediated dispersion, transmission electron microscopy, nested RT-PCR, RCA - rolling circle amplification, and electrophoresis, were used to test the hypothesis of a virus or a viroid as the causal agent of FY, without success [8, 10].
Lin et al. [73] evaluated extracts from plants with and without FY using the polyacrylamide gel electrophoresis technique, and the band patterns generated in both samples did not reveal any apparent difference. The same author also carried out a study to purify virus particles via separation with a fractional density gradient with no success [74]. Kitajima [75] evaluated ultrafine tissues from roots, leaves, and spear leaf of symptomatic and asymptomatic individuals by transmission electron microscopy, but no pathogen could be associated with FY.
Other studies have directed their efforts towards viroids, which are the smallest known phytopathogens, consisting basically of a single-stranded, circular RNA molecule not encapsulated [76, 77]. Beuther et al. [13] searched for viroids and viroid-like RNAs in oil palm plants using two-dimensional gel electrophoresis and return gel electrophoresis of nucleic acid extracts, with no success in showing a link between this type of pathogen and FY.
5.2 Abiotic stress
The initial pieces of evidence of a possible abiotic cause for FY came from observations made about the indefinite dissemination pattern in affected areas, with an exponential growth form not observed in the case of biotic stresses [78, 79]. Among the possible abiotic causes linked to the appearance of FY, there are lower and higher amounts of water, high or low temperature, high content of soluble salts in the soil, soil pH unsuitable for oil palm, nutritional deficiencies or excesses, presence of toxic organic compounds and intensity and balance of nutrients [78].
The regions with oil palm plantations and FY occurrence located in the North region of Brazil have soils with patches of quartz sand interspersed with patches of lateritic concretions and are subject to prolonged floodings, 5 to 6 months per year [41]. Thus, studies started aiming to understand the composition of the soil and its influence on FY emergence.
The concentrations of Cu, Fe, Mn, and Zn in the leaves of healthy and symptomatic oil palm plants and resistant interspecific hybrids were determined and found out that their concentrations were below the ideal range, suggesting their involvement in the appearance of FY [80]. Compact soils that stay temporarily saturated by rainfall suffer oxidation by anoxia, making it impossible for plants to absorb Fe [80]. Based on these observations, applications of ferrous sulfate were carried out on plants under different stages of FY, but after 120 days of the experiment, there was no regression of the disease in the evaluated oil palms [80].
The physical properties of the soil from areas with the occurrence of FY revealed that they were naturally well-drained and deep but had a thickening or compacting between the depths of 30 cm and 60 cm, as well as the occurrence of speckles in this depth, which results in soil saturation in the superficial layer during the rainfall season [81]. Bernardes [82] carried out chemical analysis on roots of symptomatic plants, and the results did not allow to pinpoint any element imbalance that could be responsible for FY. Another fact that needs consideration as possibly linked to a potential cause for the disease is the fact that at the moment when the first symptoms appear in the aerial part, the root system is severely impaired, which explains the plants’ lack of response to fertilization and other interventions [82].
A series of field observations made in the heart of the oil palm production area in Brazil led to new hypotheses for a possible abiotic cause for FY [83]. The main field observations taken into consideration were: a higher occurrence of flooding in oil palm plantations, in comparison to the previous level, observed under native vegetation cover; the layers close to the soil surface without vegetation cover or with oil palm tend to stay close to water saturation for periods much longer than in the native forest; the presence of mottled-iron reduction in the profile of the oil palm plantations, and the redox-potential values (Eh) below −200 mV; and the presence of reduced iron ions on the soil surface in oil palm plantations during periods of intense rain [83].
The new hypotheses were brought together and summarized as: Deficient aeration reduces the potential for oxy-reduction in the soil, causing changes in the ionic composition of the soil solution (reduction of Fe3+ ions; NO3+; Mn3+). The soil solution with a high concentration of reduced ions initially causes damage to the root system (Figure 3) predisposing the oil palm plant to physiological disturbances (passive poisoning and attacks of secondary pathogens) whose symptoms are known as FY [84].
Figure 3.
Oil palm plant showing reduction of the root system in hypoxia conditions (A), and soil clouds showing the typical reductimorphic or oximorphic color mottles caused by stagnating soil environment (B). Source: Wenceslau Teixeira.
To gain insights into the idea of oxygen deficiency (hypoxia) in the origin of FY, a study by Encinas [85] evaluate the influence of land use and temporal variations on the dynamics of nutrients in the solution of soil and water at an oil palm plantation and a nearby area still with primary forest. Another by Muniz [83] compared the changes in water flow at an oil palm plantation and a nearby area still with native vegetation cover and evaluated its effects on iron dynamics and the structure of the soil. These two studies gathered additional shreds of evidence to further support this hypothesis, such as the electrical conductivity increased during a long flooding period (95 days), indicating that ions from the aggregates migrate to the solution; the soil pH increases after the initial flooding period, reaching values close to neutrality, with a subsequent reduction, but above the values found in aerated soil; the soil redox potential decreases during the flooding period, forming a highly reducing environment; the total carbon contained in the macroaggregates reduced after flooding for a period of 11 days; the iron contained in the aggregates of Yellow Latosols with medium texture migrates to the soil solution under flooding conditions; there is a high negative correlation between the iron in the flooding solution and the DMG of the aggregates in the Yellow Latosols, and flooding for a period of 11 days promotes the destabilization of aggregates of Yellow Latosols with medium goethite texture.
6. New technologies to gain insights on the FY causal agent
The so-called ‘omics’ techniques (Figure 4) provide new opportunities to study oil palm FY. To get insights on FY possible causal agent, different research groups in Brazil have used metagenomics, metabolomics, and proteomics analysis [20, 21, 22]. To our knowledge, no work focusing on transcriptomics and FY has been published yet. The most commonly used approach in these studies is to compare healthy plants (without symptoms of FY) to those showing disease symptoms at different stages of progression. In contrast to more traditional non-molecular studies of FY, these techniques provide a global glimpse of the organism by looking at the associated microbiota (metagenomics), the complete protein content (proteomics), or metabolite content (metabolomics) of cells.
Figure 4.
Schematic showing a healthy oil palm tree (green leaves) and another one (yellow leaves) showing fatal yellowing (FY) symptoms. Different molecular techniques such as metagenomics, metabolomics and proteomics can be used to compare these contrasting biological situations. Metagenomics is a culture-independent technique that can be used to identify the microorganisms present. Metabolomics can used to identify and quantify cellular metabolites. Proteomics allows the identification of differentially expressed proteins. These ‘omics’ techniques are important high throughput tools that have been used to understand the biology of oil palm when challenged by FY disease. (credit: Clarissa Kruger).
6.1 Metagenomics
Koch’s postulate was fundamental to the identification of disease-causing microorganisms [86]. In short, the strategy of isolating and cultivating the potential pathogen, and inoculating it into a healthy organism to confirm the symptoms of the disease, brought many advances to the study of infectious diseases [87]. More recently, due mainly to the advent of next-generation sequencing (NGS) technologies, the frontiers of microbiology expanded to those microorganisms that we cannot cultivate by classical microbiology techniques. That has opened the possibility to test the hypothesis that a microorganism not grown in vitro easily is the cause of FY [88]. If this is the case, metagenomics would be the technique to study FY.
Metagenomics is a culture-independent approach to study microbial communities. A metagenomics strategy allows one to skip the step of isolation and cultivation of microbial species. Metagenomics studies can contribute to elucidate the identity and/or the genetic and metabolic capabilities of the microorganisms present in a sample, including any that are potentially pathogenic [89].
In this sense, metagenomics complements the classic techniques of isolation and cultivation of microorganisms, and one can apply it to study different classes of microorganisms (e.g., viruses, bacteria, fungi, archaea) [22, 90, 91, 92]. Metagenomics protocols begin with the extraction of total DNA from the sample of interest, which contains microorganisms. Samples can be many different ones, such as soil or plant parts with FY disease symptoms. There are distinct ways to study the microbial community from this DNA. Many studies in different plants use the ribosomal RNA (rRNA) gene or ITS amplification approach (i.e., PCR amplification with specific primers) to identify the microorganisms present, including a potential pathogen [93, 94, 95].
16S rRNA gene-specific primers amplify bacterial and archaeal sequences (16S rDNA). Similarly, the 18S rRNA gene and the ITS-specific primers amplify fungal sequences. The ITS refers to the internal transcribed spacer, the DNA situated between the small-subunit ribosomal RNA and large-subunit rRNA genes. The 16S rDNA, 18S rDNA, and the ITS regions are highly polymorphic, thus allowing taxonomical identification of the microorganisms present in a sample. The PCR-amplified DNA is then sequenced and submitted to bioinformatics analysis to compare the obtained sequences with sequence databanks, leading to a putative microorganism. In summary, this metagenomics approach that combines PCR amplification with NGS allows identifying microorganisms present in the community [96].
The first metagenomics work to use ITS amplification and high throughput NGS to study FY in Brazil was performed by Costa et al. [22], who evaluated fungal communities associated with leaves of oil palm plants, with and without symptoms of FY. Leaves from health plants and from plants showing FY symptoms in three different disease stages (stages 2, 5, and 8) were obtained. Because of the similarities between PC and FY, using primers specific to the genus Phythophtora, the authors attempted PCR-amplification of oil palm leaf samples showing symptoms of FY. Weak amplification was obtained in only one sample. Thus, this study provided preliminary evidence that DNA of the genus Phytophtora may not be commonly present in Brazilian FY, contrary to what has been reported in Colombia [7]. However, further experiments with more samples, and additional controls are needed to clarify the validity of this initial observation.
The Costa et al. [22] study reported the analyses of fungal diversity using the ITS region. Results showed that the fungal community in different healthy asymptomatic oil palm leaves are more similar to each other than those presenting FY disease symptoms. The fungal communities were not the same among all the symptomatic samples, and were not consistent even between samples at the same stage of FY disease. Importantly, no fungal taxon had its relative proportion increased in leaves across all the FY diseased oil palm plants. It was hypothesized that the changes observed in the fungal community composition could be a secondary effect of FY disease. Similar metagenomic studies to analyze the viral, bacterial and archaeal communities associated with FY are needed.
A less common metagenomic approach that can also be used to study plant disease is to assemble genomes from the metagenome obtained from plants showing symptoms of disease. In this case, instead of using PCR to amplify a specific gene, one can completely sequence the DNA extracted from the samples of interest, and use bioinformatics tools to assemble genomes (metagenome-assembled genomes) of the microorganisms present. This type of methodology allows, in addition to identifying microorganisms present, access to their genomes. This creates the possibility of studying the genetic relationship among the species present, and predicting metabolic capabilities as well as the interactions between the organisms of the community [97]. One limitation to this method, however, is that the plant host genome sequence needs to be available and subtracted in silico from microbial community sequences. If possible, it is useful to find a way to selectively extract microbial DNA from the samples before sequencing to avoid or reduce the presence of the plant host DNA [98]. It should be noted that if the complexity of the microbial community is high or if a lot of host DNA is present in the sequenced samples, inadequate sequencing depth might be an important limitation to this method. To our knowledge this approach has not been used yet to search for the causal agent of FY.
6.2 Proteomics and metabolomics
Proteome designates the set of proteins expressed by a cell, tissue, or organism at any given time [99]. Proteomic tools make it possible to obtain a protein profile with precision and sensitivity with the aid of electrophoresis, chromatography, mass spectrometry, and bioinformatics [99]. Proteomics is more and more used nowadays to understand plant responses to different biotic and abiotic stress conditions [100, 101].
In this context, and based on the hypothesis that the primary stress behind FY was abiotic and present in the soil, proteomics was applied to study this disease [21]. This hypothesis is based on observations regarding symptoms seen in the root system before they appeared in the aerial part [83]. Soil compaction, which hinders drainage and subject the roots to long periods of flooding in a hypoxia condition, would be in the origin of the stress [83].
Nascimento et al. [21] carried out a proteomic analysis to compare the protein profiles from symptomatic and asymptomatic oil palm plants, employing the mass spectrometry technique. The study looked for proteins linked to tolerance induction to relate the different areas collected and the distinct stages of the disease, analyzing the roots of symptomatic plants in early, intermediate, and final stages.
Proteins involved in the metabolism of phenylpropanoids and lignins, with a recognized role in reducing the effects of biotic and abiotic stress, were negatively regulated in symptomatic individuals, aggravating FY symptoms. In asymptomatic plants, enzymes such as S-adenosylmethionine - with a crucial role in methionine’s biosynthetic metabolism - showed a recognized action in response to the stress. Plants with FY symptoms showed some pathogen-related proteins positively regulated, implying a progression of infection by biotic agents [21].
The hypothesis of a possible physiological dysfunction caused by factors present in the soil was reinforced by the large accumulation of antioxidant proteins in asymptomatic individuals [21]. The participation of the antioxidant system may indicate some level of resistance, considering that this system is vital for plants in conditions of soil flooding [102]. In addition, the accumulation of aldehyde dehydrogenase may indicate that the root system is under an anaerobic condition as it converts the acetaldehyde, promoting plant survival in this condition [21, 103]. Thus, these results indicate that plants affected by FY are in abiotic stress conditions and, with the damages done to the roots, it becomes a gateway for several opportunistic organisms [21].
In contrast to proteomics, metabolomics refers to a comprehensive analysis to identify the set of metabolites present in a sample with the aid of analytical techniques, such as liquid chromatographies or liquid–gas, associated or not with mass spectrometry, among others [104].
Rodrigues-Neto et al. [20] performed the first metabolomics work to study FY in Brazil using an untargeted metabolomics strategy to prospect metabolites differentially expressed in the leaves of FY symptomatic and asymptomatic plants. A high throughput method based on metabolic fingerprinting MS, using UHPLC coupled to high-resolution mass spectrometry (HRMS), was employed, and chemometric analysis, PCA and PLS-DA, were used to evaluate metabolic differences. This study aimed at prospecting a biomarker for FY early diagnosis, besides gaining insights on pathways responsive to this disease valuable for future improvement studies.
Nine secondary metabolites were detected in a higher concentration in the healthy plants in comparison to the FY affected ones: Glycerophosphorylcholine, arginine, asparagine, paniculatin or apigenin 6,8-di-C-hexose, tyramine, Chlorophyllide, 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, proline, malvidin 3-glucoside-5-(6″-malonylglucoside) or kaempferol 7-methyl ether 3-[3-hydroxy-3-methylglutaryl-(1–> 6)]-[apiosyl-(1–> 2)-galactoside]. These metabolites made possible to identify different metabolic pathways that have been affected by the FY, such as the glycerophospholipid metabolism, the isoquinoline alkaloid biosynthesis, the flavonoid biosynthesis, the tetrapyrrole biosynthesis and citrate cycle derivatives pathways.
Unfortunately, due to the fact that these metabolites are already described in the literature as linked to other types of stress, they are not good candidate for biomarkers; except for two of them, glycerophosphorylcholine and 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine [20].
7. Final considerations
Fatal yellowing disease represents a threat of great magnitude to the Brazilian oil palm industry. For decades, several studies attempted to identify its causal agent without success. As a result, no measures used today can effectively reduce the economic loss for the oil palm industry due to this disease. The only glimpse of hope in solving this problem still resides in the genetic resistance found in the American oil palm. However, the road to transfer this resistance through interspecific crosses and backcrosses is very long and has many uncertainties.
The search for the primary stress leading to FY must go on, whether it is of biotic or abiotic origin - or the combination of both. Only then might be able to block its occurrence, or, if not possible to do that, develop early diagnostic tools to reduce its spread to a minimum.
Recent studies using single omics analysis have shown that these new technics can take the etiological studies regarding FY in oil palm to another level. We postulate that transcriptomics should be the next step in using omics to gain further insights regarding this disease. Even more, we believe that it should be done under the scope of a multi-omics integration (MOI) strategy, together with metabolomics, proteomics, and ionomics, at least.
Acknowledgments
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The grant (01.13.0315.00 - DendêPalm Project) for this study was awarded by the Brazilian Innovation Agency - FINEP.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"Elaeis guineensis, palm oil, epidemiology, tropical diseases, etiology, abiotic stress, biotic stress",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/77486.pdf",chapterXML:"https://mts.intechopen.com/source/xml/77486.xml",downloadPdfUrl:"/chapter/pdf-download/77486",previewPdfUrl:"/chapter/pdf-preview/77486",totalDownloads:168,totalViews:0,totalCrossrefCites:0,dateSubmitted:null,dateReviewed:"June 11th 2021",datePrePublished:"July 9th 2021",datePublished:"March 16th 2022",dateFinished:"July 9th 2021",readingETA:"0",abstract:"Fatal yellowing disease (FY) is a bud rot-type disease that severely affects oil palm plantations in Latin America. Since 1974, when it was first reported in Brazil, this disorder has been responsible for severe economic losses in the oil palm industry; and, for nearly 50 years, several studies have tried to identify its causal agent, without success. The etiological studies regarding FY in oil palm explored either biotic and abiotic stress scenarios, in a single or combined manner. Most recently, the hypothesis in favor of one biotic cause has lost some grounds to the abiotic one, mainly due to new insights regarding deficient aeration in the soil, which reduces the potential for oxy-reduction, causing changes in the ionic composition of the soil solution. This review presents an overview of the history of this disease and the several efforts done to fulfill Koch’s postulates over the last 40 years, besides discussing recent studies that revisited this subject using some omics technics. We conclude by discussing further uses of omics via a multi-omics integration (MOI) strategy to help finally find out what is really behind the genesis of FY. Finding this elusive causal agent of FY out will allow either the development of a more efficient diagnostic tool and the advance in studies trying to find out the source of the genetic resistance hidden in the genome of the American oil palm.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/77486",risUrl:"/chapter/ris/77486",signatures:"Cleiton Barroso Bittencourt, Philippe de Castro Lins, Alessandra de Jesus Boari, Betania Ferraz Quirino, Wenceslau Geraldes Teixeira and Manoel Teixeira Souza Junior",book:{id:"10557",type:"book",title:"Elaeis guineensis",subtitle:null,fullTitle:"Elaeis guineensis",slug:"elaeis-guineensis",publishedDate:"March 16th 2022",bookSignature:"Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-762-0",printIsbn:"978-1-83962-755-2",pdfIsbn:"978-1-83962-769-9",isAvailableForWebshopOrdering:!0,editors:[{id:"225957",title:"Dr.",name:"Hesam",middleName:null,surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"346967",title:"Ph.D.",name:"Manoel",middleName:null,surname:"Teixeira Souza Junior",fullName:"Manoel Teixeira Souza Junior",slug:"manoel-teixeira-souza-junior",email:"manoel.souza@embrapa.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"423584",title:"Dr.",name:"Cleiton Barroso",middleName:null,surname:"Bittencourt",fullName:"Cleiton Barroso Bittencourt",slug:"cleiton-barroso-bittencourt",email:"dummy+423584@intechopen.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"423585",title:"Dr.",name:"Philippe",middleName:null,surname:"de Castro Lins",fullName:"Philippe de Castro Lins",slug:"philippe-de-castro-lins",email:"dummy+423585@intechopen.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"423586",title:"Dr.",name:"Alessandra",middleName:null,surname:"de Jesus Boari",fullName:"Alessandra de Jesus Boari",slug:"alessandra-de-jesus-boari",email:"dummy+423586@intechopen.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"423587",title:"Dr.",name:"Betania Ferraz",middleName:null,surname:"Quirino",fullName:"Betania Ferraz Quirino",slug:"betania-ferraz-quirino",email:"dummy+423587@intechopen.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"423588",title:"Dr.",name:"Wenceslau Geraldes",middleName:null,surname:"Teixeira",fullName:"Wenceslau Geraldes Teixeira",slug:"wenceslau-geraldes-teixeira",email:"dummy+423588@intechopen.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The oil palm industry: social and economic importance",level:"1"},{id:"sec_2_2",title:"2.1 In the world",level:"2"},{id:"sec_3_2",title:"2.2 In Latin America",level:"2"},{id:"sec_4_2",title:"2.3 In Brazil",level:"2"},{id:"sec_6",title:"3. The fatal yellowing (FY) disease",level:"1"},{id:"sec_6_2",title:"3.1 History in the world",level:"2"},{id:"sec_7_2",title:"3.2 History in Brazil",level:"2"},{id:"sec_8_2",title:"3.3 Symptomatology and diagnosis",level:"2"},{id:"sec_10",title:"4. A genetic source of resistance to FY",level:"1"},{id:"sec_11",title:"5. The search for the causal agent",level:"1"},{id:"sec_11_2",title:"5.1 Biotic stress",level:"2"},{id:"sec_11_3",title:"5.1.1 Insects",level:"3"},{id:"sec_12_3",title:"5.1.2 Phytoplasmas",level:"3"},{id:"sec_13_3",title:"5.1.3 Fungi, bacteria, and nematodes",level:"3"},{id:"sec_14_3",title:"5.1.4 Viruses and viroids",level:"3"},{id:"sec_16_2",title:"5.2 Abiotic stress",level:"2"},{id:"sec_18",title:"6. New technologies to gain insights on the FY causal agent",level:"1"},{id:"sec_18_2",title:"6.1 Metagenomics",level:"2"},{id:"sec_19_2",title:"6.2 Proteomics and metabolomics",level:"2"},{id:"sec_21",title:"7. Final considerations",level:"1"},{id:"sec_22",title:"Acknowledgments",level:"1"},{id:"sec_25",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Corley RHV, Tinker PB. The oil palm. 5th ed. Chichester: Wiley Blacwell; 2016. 1299 p. DOI: 10.1002/9781118953297'},{id:"B2",body:'Our World in Data. Oil palm. [Internet]. 2020. Available from: https://ourworldindata.org/palm-oil [Accessed: 2021-03-02]'},{id:"B3",body:'FAOSTAT. Food and agriculture organization of the United Nations. 2018. [Accessed: 2021-03-01]'},{id:"B4",body:'IndexMundi. 2020. Palm Oil Production by Country in 1000 MT. 2020. Available from: https://www.indexmundi.com/agriculture/?commodity=palm-oil. [Accessed: 2021-03-01]'},{id:"B5",body:'Furumo PR, Aide TM. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environmental Research Letters. 2017; 12(2):024008. DOI: 10.1088/1748-9326/aa5892'},{id:"B6",body:'Franqueville H. Oil palm bud rot in Latin America. Experimental Agriculture. 2003; 39(3): 225-240. DOI: 10.1017/S0014479703001315'},{id:"B7",body:'Martínez G, Sarria GA, Torres GA, Aya HA, Ariza JG, Rodríguez J. Phytophthora sp. es el responsable de las lesiones iniciales de la Pudrición del cogollo (PC) de la Palma de aceite en Colombia. Revista Palma. 2008; 29(3):31-41'},{id:"B8",body:'Boari ADJ. Estudos realizados sobre o amarelecimento fatal do dendezeiro (Elaeis guineensis Jacq.) no Brasil. Embrapa Amazônia Oriental-Documentos (INFOTECA-E). 2008'},{id:"B9",body:'Benítez É, García C. The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana. 2014; 32(3):390-398. DOI: 10.15446/agron.colomb.v32n3.46240'},{id:"B10",body:'Boari AJ, Teixeira WG, Venturieri A, Martorano L, Tremacoldi CR, Carvalho KB. Avanços nos estudos sobre o amarelecimento fatal da palma de óleo (Elaeis guinnensis Jacq.). In Embrapa Solos-Artigo em anais de congresso (ALICE). Tropical Plant Pathology, Brasília, DF, v. 37, ago. 2012. Suplemento. Edição dos Resumos do 45 Congresso Brasileiro de Fitopatologia, Manaus, 2012'},{id:"B11",body:'Van Slobbe WG. Amarelecimento Fatal (A.F.) at the oil palm estate Denpasa, Brazil. In: International Seminar on the Identification and Control of the Organism(s) and/or Other Factor(s) Causing the Spear Rot Syndrome in Oil Palm, Paramaribo (Suriname) 8-12 Mar 1988; Paramaribo (Suriname). Ministry of Agriculture; 1991. p. 75-80'},{id:"B12",body:'Trindade DR, Poltronieri LS, Furlan Júnior J. Abordagem sobre o estado atual das pesquisas para a identificação do agente causal do amarelecimento fatal do dendezeiro. In: Poltronieri LS, Trindade DR, Santos IP. (Ed.). Pragas e doenças de cultivos amazônicos. Belém, PA: Embrapa Amazônia Oriental; 2005. p. 439-450'},{id:"B13",body:'Beuther E, Wiese U, Lukáacs N, Van Slobbe WG, Riesner D. Fatal Yellowing of Oil Palms: Search for Viroids and Double-Stranded RNA. Journal of Phytopathology. 1992;136(4);297-311. DOI: 10.1111/j.1439-0434.1992.tb01312.x'},{id:"B14",body:'Brioso PST, Montano HG, Figueiredo DV, Poltronieri LS, Furlan Junior J. Amarelecimento fatal do dendezeiro: sequenciamento parcial do fitoplasma associado. Summa Phytopathologica. 2006; 32;50'},{id:"B15",body:'Celestino FP, Louise C, Lucchini F. Estudos de transmissão do amarelecimento fatal do dendezeiro (Elaeis guineensis, Jacq), com insetos suspeitos. In: Congresso Brasileiro de Entomologia, 14., 1993, Piracicaba, SP. Resumos. Piracicaba: SEB; 1993. 807 p. p.194'},{id:"B16",body:'Louise C. Inventory of Homoptera and Heteroptera in relation to the amarelecimento fatal disease. Spear rot of oil palm in tropical America. Proceedings.1990; 36-46'},{id:"B17",body:'Viégas I, Frazão D, Furlan Júnior J, Trindade D, Thomaz M. Teores de micronutrientes em folhas de dendenzeiros sadios e com sintomas de amarelecimento fatal. In: Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: XXV Reunião brasileira de fertilidade do solo e nutrição de plantas; VIII Reunião Brasileira Sobre Micorrizas; VI Simpósio Brasileiro De Microbiologia Do Solo; III Reunião Brasileira De Biologia Do Solo. 24-26, october 2000; Santa Maria, RS. Fertbio; 2000'},{id:"B18",body:'Silveira RI, Veiga AS, Ramos EJA, Parente JR. Evolução da sintomatologia do amarelecimento fatal a adubações com omissão de macro e micronutrientes. Belém, PA: Denpasa; 2000'},{id:"B19",body:'Baena ARC. Propriedades físicas do solo em áreas de ocorrência do amarelecimento fatal do dendezeiro. Embrapa Amazônia Oriental-Séries anteriores (INFOTECA-E). 1999; 1-3'},{id:"B20",body:'Rodrigues-Neto JC, Correia MV, Souto AL, Ribeiro JAA, Vieira LR, Souza MT, Abdelnur PV. Metabolic fingerprinting analysis of oil palm reveals a set of differentially expressed metabolites in fatal yellowing symptomatic and non-symptomatic plants. Metabolomics. 2018;14(10):1-16. DOI: https://doi.org/10.1007/s11306-018-1436-7'},{id:"B21",body:'Nascimento SVD, Magalhães MM, Cunha RL, Costa PHDO, Alves RCDO, Oliveira GCD, Valadares RBDS. Differential accumulation of proteins in oil palms affected by fatal yellowing disease. PloS one. 2018;13(4):e0195538. DOI: 10.1371/journal.pone.0195538'},{id:"B22",body:'Costa OYA, Tupinambá DD, Bergmann JC, Barreto CC, Quirino BF. Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PloS one. 2018;13(1):e0191884. DOI: 10.1371/journal.pone.0191884'},{id:"B23",body:'Kuss VV, Kuss AV, Rosa RG, Aranda DA, Cruz YR. Potential of biodiesel production from palm oil at Brazilian Amazon. Renewable and Sustainable Energy Reviews. 2015; 50:1013-1020. DOI: 10.1016/j.rser.2015.05.055'},{id:"B24",body:'Carter C, Finley W, Fry J, Jackson D, Willis L. Palm oil markets and future supply. European Journal of Lipid Science and Technology. 2007;109(4):307-3014. DOI: 10.1002/ejlt.200600256'},{id:"B25",body:'Barcelos E, Rios SDA, Cunha RN, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. Oil palm natural diversity and the potential for yield improvement. Frontiers in plant Science. 1990;6. DOI: 10.3389/fpls.2015.00190'},{id:"B26",body:'Corley RHV. How much palm oil do we need? Environmental Science & Policy. 2009;12(2):134-139. DOI: 10.1016/j.envsci.2008.10.011'},{id:"B27",body:'Sheil D, Casson A, Meijaard E, Van Noordwijk M, Gaskell J, Sunderland-Groves J, Wertz K, Kanninen M. The impacts and opportunities of oil palm in Southeast Asia: What do we know and what do we need to know? Center for International Forestry Research. 2009; 51:1-80. DOI: 10.17528/cifor/002792'},{id:"B28",body:'Carrere, R. Oil palm in Africa: Past, present and future scenarios. WRM series on tree plantations. 2010. 5:111'},{id:"B29",body:'Pacheco P, Gnych S, Dermawan A, Komarudin H, Okarda B. The palm oil global value chain: Implications for economic growth and socialand environmental sustainability. Working Paper 220. Bogor, Indonésia. CIFOR; 2017. 55 p. DOI: 10.17528/cifor/006405'},{id:"B30",body:'Castiblanco C, Etter A, Aide TM. Oil palm plantations in Colombia: a model of future expansion. Environmental science & policy. 2013;27:172-83. DOI: 10.1016/j.envsci.2013.01.003'},{id:"B31",body:'GREPALMA. Palma of Guatemala. Available from: https://www.grepalma.org/en/development-for-guatemala/ [Accessed: 2021-03-02]'},{id:"B32",body:'Silva FL, Homma AK, Pena HWA. O cultivo do dendezeiro na Amazônia: promessa de um novo ciclo econômico na região. Embrapa Amazônia Oriental-Artigo em periódico indexado (ALICE). 2011; 158: 1-24'},{id:"B33",body:'Homma AKO, Furlan-Júnior J, Carvalho RAD, Ferreira CAP. Bases para uma Política de Desenvolvimento da Cultura do Dendezeiro na Amazônia. In: Viegas, I., Muller, A. (eds), A Cultura do Dendezeiro na Amazônia Brasileira, 1 ed., cap. 1. Belém, Pará, 2000'},{id:"B34",body:'Bentes EDS, Homma AKO. Importação e exportação de óleo e palmiste de dendezeiro no Brasil (2010-2015). In Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER); 14-17 Agosto 2016; Universidade Federal de Alagoas – UFAL. Maceió. 2016. p. 1-16'},{id:"B35",body:'Ramalho Filho A, Da Motta P, Freitas P, Teixeira W. Zoneamento agroecológico, produção e manejo para a cultura da palma de óleo na Amazônia. 1st ed. Embrapa Solos; 2010. 216 p'},{id:"B36",body:'Sistema IBGE de Recuperação Automática – SIDRA. Produção agrícola. Available from: https://sidra.ibge.gov.br/pesquisa/pam/tabelas/. 2019. [Accessed: 2021-03-02]'},{id:"B37",body:'Motta PEF, Naime UJ, Goncalves A, Baca J. Zoneamento agroecológico do dendezeiro para as áreas desmatadas do Estado de Rondônia. In Embrapa Solos-Artigo em anais de congresso (ALICE). In: XXXII CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO; 2-7 agosto 2009; Fortaleza: SBCS. 2009'},{id:"B38",body:'Brazilio M, Bistachio NJ, Cillos Silva V, Nascimento DD. O Dendezeiro (Elaeis guineensis Jacq.) - Revisão. Bioenergia em Revista: Diálogos. 2012; 2(1): 27-45'},{id:"B39",body:'Van de Lande HL. Studies on the Epidemiology of Spear Rot in Oil Palm (Elaeis guineensis Jacq.) in Suriname. Proefschrift Landbouwuniversiteit, Wageningen, the Netherlands. 1993'},{id:"B40",body:'Trindade DR, Furlan Júnior J. Amarelecimento fatal do dendezeiro. In: Muller AA; Furlan Júnior J. (Ed.). Agronegócio do dendê: uma alternativa social, econômica e ambiental para o desenvolvimento sustentável da Amazônia. Belém, PA: Embrapa Amazônia Oriental; 2001. p. 145-152'},{id:"B41",body:'Van Slobbe WG. Amarelecimento fatal: final report. Belém, PA: Denpasa, 1991. 100 p'},{id:"B42",body:'DENPASA. Amarelecimento Fatal. 2021. Available from: http://denpasa.com.br/pt-br/amarelecimento-fatal-af/ [Accessed: 2021-02-15]'},{id:"B43",body:'Riley MB, Williamson MR, Maloy O. Plant disease diagnosis. The Plant Health Instructor. 2002; 3. DOI: 10.1094/PHI-I-2002-1021-01'},{id:"B44",body:'Kastelein P, Van Slobbe WG, De Leeuw GTN. Symptomatological and histopathological observations on oil palms from Brazil and Ecuador affected by fatal yellowing. Netherlands Journal of Plant Pathology. 1990;96(2):113-117. DOI: 10.1007/BF02005135'},{id:"B45",body:'Ayala LS. Relatório de visita à Denpasa. In: DENPASA. Pesquisa sobre amarelecimento fatal do dendezeiro. Belém, PA. 2001. 319 p'},{id:"B46",body:'Bernardes MSR. Relatório de visitas à plantação de Paricatuba, na Denpasa, visando à identificação das causas do AF (1999). In: DENPASA. Pesquisa sobre amarelecimento fatal. Belém, PA, 2001'},{id:"B47",body:'Rios SDA, da Cunha RNV, Lopes R, da Silva EB. Recursos genéticos de palma de óleo (Elaeis guineensis Jacq.) e caiuaé (Elaeis oleifera (HBK) Cortes). Embrapa Amazônia Ocidental-Documentos (INFOTECA-E);2012'},{id:"B48",body:'Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. A new phylogenetic classification of the palm family, Arecaceae. Kew Bulletin. 2005;559-569'},{id:"B49",body:'Eiserhardt WL, Pintaud JC, Asmussen-Lange C, Hahn WJ; Bernal R; Balslev H; Borchsenius F. Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. Taxon. 2011; 60(2):485-498. DOI:10.1002/tax.602016'},{id:"B50",body:'Bakoumé C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N. Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genetic Resources and Crop Evolution. 2015;62(3):349-360. DOI:10.1007/s10722-014-0156-8'},{id:"B51",body:'Maizura I, Rajanaidu N, Zakri AH, Cheah SC. Assessment of Genetic Diversity in Oil Palm (Elaeis guineensis Jacq.) using Restriction Fragment Length Polymorphism (RFLP). 2006;53(1):187-195. DOI:10.1007/s10722-004-4004-0'},{id:"B52",body:'Ithnin M, The CK, Ratnam W. Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication’s for germplasm utilization and conservation. BMC Genetics. 2017; 18(1):18-37. DOI:10.1186/s12863-017-0505-7'},{id:"B53",body:'Junior RAG, Lopes R, Cunha RNV, Abreu-Pina AJ, Quaresma CE, Campelo RD, Resende MDV. Ganhos de seleção para produção de cachos em híbridos interespecíficos entre caiaué e dendê. Pesquisa Agropecuária Brasileira. 2019;54(X): e00819-x. DOI: 10.1590/S1678-3921.pab2019.v54.00819'},{id:"B54",body:'España MD, Mendonça S, Carmona PAO, Guimarães MB, da Cunha RNV, Souza, M. T. Chemical characterization of the American oil palm from the Brazilian Amazon forest. Crop Science. 2018;58(5): 1982-1990. DOI: https://doi.org/10.2135/cropsci2018.04.0231'},{id:"B55",body:'Hormaza P, Fuquen EM, Romero HM. Phenology of the oil palm interspecific hybrid Elaeis oleifera×Elaeis guineensis. Scientia Agricola. 2012;69(4), 275-280. https://doi. org/10.1590/S0103-90162012000400007'},{id:"B56",body:'Trindade DR. Ações de pesquisas, objetivando a identificação do agente causal do amarelecimento fatal-AF do dendezeiro. Embrapa Amazônia Oriental-Outras publicações científicas (ALICE), 1995'},{id:"B57",body:'Harrison NA, Helmick, E. E., & Elliott, M. L. Lethal yellowing-type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Annals of Applied Biology. 2008;153(1), 85-94 DOI: https://doi.org/10.1111/j.1744-7348.2008.00240.x'},{id:"B58",body:'Santos AF, Valois AC, Hartz JL. Workshop sobre a cultura do dendê. In: Workshop sobre a cultura do dendê; 24-27 october 1995. Manaus, Amazona. 1995'},{id:"B59",body:'Bertaccini A. Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci. 2007;12(2):673-689. 10.2741/2092'},{id:"B60",body:'Bertaccini A, Duduk B. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia mediterranea. 2009;48(3):355-378. DOI: 10.14601/Phytopathol_Mediterr-3300'},{id:"B61",body:'Harrison NA, Helmick EE, Elliott ML. Lethal yellowing-type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Annals of Applied Biology. 2008;153(1):85-94. DOI: 10.1111/j.1744-7348.2008.00240.x'},{id:"B62",body:'Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences. 2014;5, 1763-1788: DOI: 10.4236/ajps.2014.512191'},{id:"B63",body:'Trivellone V. An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodiversity data jornal. 2019;7:e32910. DOI: 10.3897/BDJ.7.e32910'},{id:"B64",body:'Montano HG, Brioso PS, Pimentel JP. List of phytoplasma hosts in Brazil. Bulletin of Insectology. 2007; 60:129-130'},{id:"B65",body:'Montano HG. Fitoplasmas e fitoplasmoses no Brasil. Revisão Anual de Patologia de Plantas (RAPP). 2013;21:034-095'},{id:"B66",body:'Musetti R, Favali MA. Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. Multidisciplinary Microscopy Research and Education. 2004. 2:72-80'},{id:"B67",body:'Brioso PST, Montano HG, Trindade DR, Poltronieri LS, Barcelos E, Veiga AS, Furlan-Júnior J. Fitoplasma do grupo 16S rRNA I associado ao amarelecimento fatal de Elaeis guineensis. In Congresso Paulista de Fitopatologia (Vol. 26); 2003'},{id:"B68",body:'Brioso PST, Montano HG, Figueiredo DV, Poltronieri LS, Furlan Junior J. Amarelecimento fatal do dendezeiro: sequenciamento parcial do fitoplasma associado. Summa Phytopathologica. 2006;32-35'},{id:"B69",body:'Silva HM. Relatório de atividades junto ao consultor em nematologia; 1995'},{id:"B70",body:'Silva HM. Relatório de avaliação dos trabalhos com amarelecimento fatal. Belém, PA; 1989. 5 p'},{id:"B71",body:'Mendonça, 2016'},{id:"B72",body:'Ferraz LCCB. Relatório final - Apoio técnico na especialidade de nematologia de plantas. In: DENPASA. 2021'},{id:"B73",body:'Lin MT. Study on fatal yellowing of oil palms: two technical reports research contract Denpasa-Bioplanta.1990; 24 p.Typescripts (unpublisshed)'},{id:"B74",body:'Lin MT. Comparative analysis of oil palm tissues with and without fatal yellowing symptoms by centrifugation: technical report-research contract Denpasa-Bioplanta. 1989; 5 p. Typescripts (unpublisshed)'},{id:"B75",body:'Kitajima EW. Report to Uepae de Belém about E. M. observations on tissues of healthy and by AF affected palms from Denpasa. Brasilia, DF: Universidade de Brasília – Departamento de Biologia Celular. 1991. 2 p. Typescript (unpblished)'},{id:"B76",body:'Singh RPAG, Avila AC, Dusi AN. Boucher A, Trindade DR, Van Slobbe WG, Ribeiro SG, Fonseca MEN, Association of viroid-like nucleic acids with the fatal yellowing diseases of oil palm. Fitopatologia Brasileira.1988; 13(4):392-394'},{id:"B77",body:'Dollet M, Mazzolini L, Bernard V. Research on viroid-like molecules in oil palm. In: ACIAR PROCEEDINGS. Australian Centre for International Agricultural Research, 1993. p. 62-62'},{id:"B78",body:'Bergamin-Filho A, Amorim L, Laranjeira FF, Berger RD, Hau B. Análise temporal do amarelecimento fatal, do dendezeiro como ferramenta para elucidar sua etiologia. Fitopatologia Brasileira. 1998; 23(3): 391-396'},{id:"B79",body:'Laranjeira FF, Bergamin-Filho A, Amorim L, Berger RD, Hau B. Análise espacial do amarelecimento fatal do dendezeiro como ferramenta para elucidar sua etiologia. Fitopatologia Brasileira. 1998; 23(3): 397-403'},{id:"B80",body:'Viégas IJM, Frazão DAC, Furlan-Júnior J, Trindade DR, Thomaz MAA. Teores de micronutrientes em folhas de dendezeiros sadios e com sintomas de amarelecimento fatal. In: XXV Reunião Brasileira de Fertilidade do Solo e Nutricão de Plantas, VIII Reunião Brasileira Sobra Micorrizas, VI Simpósio Brasileiro de Microbiologia do Solo, III Reunião Brasileira de Biologia do Solo. 22-26 October 2000; Santa Maria. Rio Grande do Sul. 2000. p. 1-4'},{id:"B81",body:'Silveira RI, Veiga AS, Ramos EJA, Parente JR. Evolução da sintomatologia do amarelecimento fatal a adubações com omissão de macro e micronutrientes. Belém, PA: Denpasa, 2000. 35 p'},{id:"B82",body:'Bernardes MSR. Relatório de visitas à plantação de Paricatuba, na Denpasa, visando à identificação das causas do AF (1999). In: DENPASA. Pesquisa sobre amarelecimento fatal. Belém, PA, 2001'},{id:"B83",body:'Muniz RS. Alterações do fluxo hídrico e seus efeitos na dinâmica do ferro e na estrutura de um Latossolo Amarelo na Amazônia [thesis]. Rio de Janeiro: Universidade Federal do Rio de Janeiro. 2017'},{id:"B84",body:'Teixeira W, Pina ADA, Boari ADJ, Martins GC, Lima WAA, Muniz RS, Gonçalves AO, Encinas OC, Araújo AC. A hipótese abiótica como agente causal do amarelecimento fatal (AF) da palma de óleo (Elaeis guineensis Jacq.) no Brasil. In XXXVI Congresso Brasileiro de Ciência do Solo. 30-04 august 2017; Belém. Pará; 2017'},{id:"B85",body:'Encinas OC. Dinâmica da água e nutrientes na solução do solo em um dendezal (Elaeis guineensis Jacq.) na Amazônia Central [thesis]. Manaus: Universidade Federal do Amazonas; 2016'},{id:"B86",body:'Hosainzadegan H, Khalilov R, Gholizadeh P. The necessity to revise Koch’s postulates and its application to infectious and non-infectious diseases: a mini-review. European Journal of Clinical Microbiology & Infectious Diseases. 2020 Feb;39(2):215-218. DOI: 10.1007/s10096-019-03681-1'},{id:"B87",body:'Antonelli G, Cutler S. Evolution of the Koch postulates: towards a 21st-century understanding of microbial infection. Clinical Microbiology and Infection. 2016 Jul;22(7):583-584. DOI: 10.1016/j.cmi.2016.03.030'},{id:"B88",body:'Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews Genetics. 2019;20(6):356-370. DOI: 10.1038/s41576-019-0108-4'},{id:"B89",body:'Giwa AS, Ali N, Athar MA, Wang K. Dissecting microbial community structure in sewage treatment plant for pathogens’ detection using metagenomic sequencing technology. Archives of Microbiology. 2020 May;202(4):825-833. DOI: 10.1007/s00203-019-01793-y'},{id:"B90",body:'Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biology. 2019 Oct 28;17(1):84. DOI: 10.1186/s12915-019-0704-y'},{id:"B91",body:'Li X. Metagenomic screening of microbiomes identifies pathogen-enriched environments. Environmental Sciences Europe. 2019 Dec;31(1):37. DOI: 10.1186/s12302-019-0217-x'},{id:"B92",body:'Tupinambá DD, Cantão ME, Costa OYA, Bergmann JC, Kruger RH, Kyaw CM, et al. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm. Archaea. 2016 Feb 24;2016:3762159. DOI: 10.1155/2016/3762159'},{id:"B93",body:'Alteio LV, Schulz F, Seshadri R, Varghese N, Rodriguez-Reillo W, Ryan E, et al. Complementary metagenomic approaches improve reconstruction of microbial diversity in a forest soil. mSystems. 2020 Mar 10;5(2). DOI: 10.1128/mSystems.00768-19'},{id:"B94",body:'Liu X-F, Liu C-J, Zeng X-Q , Zhang H-Y, Luo Y-Y, Li X-R. Metagenomic and metatranscriptomic analysis of the microbial community structure and metabolic potential of fermented soybean in Yunnan Province. fst. 2020 Mar;40(1):18-25. DOI: 10.1590/fst.01718'},{id:"B95",body:'Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS One. 2020 Jan 16;15(1):e0227434. DOI: 10.1371/journal.pone.0227434'},{id:"B96",body:'Fadiji AE, Babalola OO. Metagenomics methods for the study of plant-associated microbial communities: A review. J Microbiol Methods. 2020 Mar;170:105860. DOI: 10.1016/j.mimet.2020.105860'},{id:"B97",body:'Bandla A, Pavagadhi S, Sridhar Sudarshan A, Poh MCH, Swarup S. 910 metagenome-assembled genomes from the phytobiomes of three urban-farmed leafy Asian greens. Scientific Data - Nature. 2020 Aug 25;7(1):278. DOI: 10.1038/s41597-020-00617-9'},{id:"B98",body:'Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science. 2019;10:1741. DOI: 10.3389/fpls.2019.01741'},{id:"B99",body:'Chen S, Harmon A.C. Advances in plant proteomics. Proteomics. 2006; 6(20), 5504-5516. DOI:10.1002/pmic.200600143'},{id:"B100",body:'Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. Journal of proteomics. 2011;74(8), 1301-1322. DOI: 10.1016/j.jprot.2011.02.006'},{id:"B101",body:'Quirino BF, Candido ES, Campos PF, Franco OL, Krüger RH. Proteomic approaches to study plant–pathogen interactions. Phytochemistry. 2010;71(4), 351-362. DOI: https://doi.org/10.1016/j.phytochem.2009.11.005'},{id:"B102",body:'Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, ... & Lee, B. H. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Biosciences, 35(1), 49-62. DOI: 10.1007/s12038-010-0007-5'},{id:"B103",body:'Nakazono M, Tsuji H, Li Y, Saisho D, Arimura SI, Tsutsumi N, Hirai A. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiology. 2000;124(2), 587-598. DOI: 10.1104/pp.124.2.587'},{id:"B104",body:'Nakabayashi R, Saito K. Metabolomics for unknown plant metabolites. Analytical and bioanalytical chemistry. 2013;405(15), 5005-5011. DOI: 10.1007/s00216-013-6869-2'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Cleiton Barroso Bittencourt",address:null,affiliation:'
Universidade Federal de Lavras (UFLA), Brazil
'},{corresp:null,contributorFullName:"Philippe de Castro Lins",address:null,affiliation:'
Universidade de Brasília (UnB), Brazil
'},{corresp:null,contributorFullName:"Alessandra de Jesus Boari",address:null,affiliation:'
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11721",title:"Hypothermia and Hyperthermia - Physiology Concepts and Clinical Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b0d0d929b72cece233f4b8cd014550c",slug:null,bookSignature:"Dr. Marinos Kosmopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/11721.jpg",editedByType:null,editors:[{id:"442908",title:"Dr.",name:"Marinos",surname:"Kosmopoulos",slug:"marinos-kosmopoulos",fullName:"Marinos Kosmopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:394},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"27",title:"Agricultural Science",slug:"agricultural-science",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:157,numberOfWosCitations:37,numberOfCrossrefCitations:47,numberOfDimensionsCitations:92,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"27",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11016",title:"Maize Genetic Resources",subtitle:"Breeding Strategies and Recent Advances",isOpenForSubmission:!1,hash:"5e0422e2f711a4b69c3cbc3ec31e9afb",slug:"maize-genetic-resources-breeding-strategies-and-recent-advances",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/11016.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8135",title:"Agricultural Development in Asia",subtitle:"Potential Use of Nano-Materials and Nano-Technology",isOpenForSubmission:!1,hash:"a3b5f35c39fb76b1853e4d480457462d",slug:"agricultural-development-in-asia-potential-use-of-nano-materials-and-nano-technology",bookSignature:"Md. Asaduzzaman and Mafruha Afroz",coverURL:"https://cdn.intechopen.com/books/images_new/8135.jpg",editedByType:"Edited by",editors:[{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10142",title:"Agricultural Economics",subtitle:null,isOpenForSubmission:!1,hash:"8b9b033fcc4dac6fa6970ec38864bad2",slug:"agricultural-economics",bookSignature:"Ifeoluwapo O. Amao and Iyabo B. Adeoye",coverURL:"https://cdn.intechopen.com/books/images_new/10142.jpg",editedByType:"Edited by",editors:[{id:"223341",title:"Dr.",name:"Ifeoluwapo",middleName:null,surname:"Amao",slug:"ifeoluwapo-amao",fullName:"Ifeoluwapo Amao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6988",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"113e59b70ead35364159d2d954eca1ad",slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",bookSignature:"Jan Moudrý, Kassio Ferreira Mendes, Jaroslav Bernas, Rafael da Silva Teixeira and Rodrigo Nogueira de Sousa",coverURL:"https://cdn.intechopen.com/books/images_new/6988.jpg",editedByType:"Edited by",editors:[{id:"170254",title:"Associate Prof.",name:"Jan",middleName:null,surname:"Moudrý",slug:"jan-moudry",fullName:"Jan Moudrý"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8952",title:"Coffee",subtitle:"Production and Research",isOpenForSubmission:!1,hash:"ec7add8fac804b29cdb70b142414b49e",slug:"coffee-production-and-research",bookSignature:"Dalyse Toledo Castanheira",coverURL:"https://cdn.intechopen.com/books/images_new/8952.jpg",editedByType:"Edited by",editors:[{id:"303770",title:"Dr.",name:"Dalyse",middleName:null,surname:"Toledo Castanheira",slug:"dalyse-toledo-castanheira",fullName:"Dalyse Toledo Castanheira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6166",title:"Maize Germplasm",subtitle:"Characterization and Genetic Approaches for Crop Improvement",isOpenForSubmission:!1,hash:"c417c25f765a026f5ebbf9d3119edb2e",slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/6166.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5978",title:"New Perspectives in Forage Crops",subtitle:null,isOpenForSubmission:!1,hash:"129c29bcddd8225ed58e908138b2cda5",slug:"new-perspectives-in-forage-crops",bookSignature:"Ricardo Loiola Edvan and Leilson Rocha Bezerra",coverURL:"https://cdn.intechopen.com/books/images_new/5978.jpg",editedByType:"Edited by",editors:[{id:"283266",title:"Dr.",name:"Ricardo",middleName:null,surname:"Loiola Edvan",slug:"ricardo-loiola-edvan",fullName:"Ricardo Loiola Edvan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55856",doi:"10.5772/intechopen.69616",title:"Halophytes as Forages",slug:"halophytes-as-forages",totalDownloads:1496,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"It is the chemical composition of the halophyte forages and the digestion process of these forages that matter. As the science gets more advanced and the information about these two points becomes clearer, the view of this information might modify our understanding to these processes. Then, some topics might be dropped, and others might be raised or become more obvious. However, the feeding of halophyte forages as per se has several drawbacks and therefore, they have to be fed in mixed rations, fortifying these rations with energy supplements.",book:{id:"5978",slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Salah A. Attia-Ismail",authors:[{id:"204190",title:"Emeritus Prof.",name:"Salah",middleName:"Abdelaty",surname:"Attia-Ismail",slug:"salah-attia-ismail",fullName:"Salah Attia-Ismail"}]},{id:"72082",doi:"10.5772/intechopen.92303",title:"Revalorization of Coffee Waste",slug:"revalorization-of-coffee-waste",totalDownloads:1087,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"One of the household methods most used to prepare the coffee beverage is the coffee dripping method, which generates millions of tons of coffee waste (CW). Its disposition without control causes environmental matters due to the high consumption of oxygen during its discomposing process. However, the high availability, low cost, and chemical composition of CW (cellulose, hemicelluloses, lignin, ashes, protein, aliphatic acids, fats, and water) make them useful material for obtaining added-value products and bioenergy. In this chapter, the state of the art of different sustainable alternatives to revalorize CW is shown. CW has been successfully applied as an adsorbent for removing pollutants from wastewater and gas, a precursor for obtaining activated carbon, and a feedstock for producing energy and valuable products using mono-process extraction and biorefinery.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Felipe J. Cerino-Córdova, Nancy E. Dávila-Guzmán, Azucena M. García León, Jacob J. Salazar-Rabago and Eduardo Soto-Regalado",authors:null},{id:"56029",doi:"10.5772/intechopen.69614",title:"Production of Spineless Cactus in Brazilian Semiarid",slug:"production-of-spineless-cactus-in-brazilian-semiarid",totalDownloads:1889,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"The term “spineless cactus” is used in Brazil to designate cultivars of Opuntia ficus indica Mill and Nopalea cochenillifera Salm Dyck. The spineless cactus was consolidated in Brazilian semiarid as a strategic fundamental food resource in several production livestock systems, constituting a plant with enormous productive potential. Thus, the spineless cactus has been widely cultivated and used for several decades, by enabling the animal feeding in critical periods of year because of its characteristics, morpho‐anatomical and physiological (CAM), which makes it tolerant to long droughts, being a crop that presents high productivity in droughts conditions, when compared to other forages. Nevertheless, the spineless cactus is a crop relatively picky about soil and climate characteristics of region, presenting greater growth in fertile soils, as well as in regions where nighttime temperatures are cool and the air humidity is relatively high. Although the crop be adapted to long droughts periods, many times it’s necessary to perform irrigation in its production system, mainly in regions of low rainfall, for to supply its water needs, thus ensuring productivity and survival of crop. Therefore, the knowledge of characteristics of plant, as well as of appropriate management techniques to crop, is essential for the good performance of spineless cactus.",book:{id:"5978",slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Wilma Cristina Cavalcante dos Santos Sá, Edson Mauro Santos,\nJuliana Silva de Oliveira and Alexandre Fernandes Perazzo",authors:[{id:"139631",title:"Dr.",name:"Edson Mauro",middleName:null,surname:"Santos",slug:"edson-mauro-santos",fullName:"Edson Mauro Santos"},{id:"180036",title:"Dr.",name:"Juliana",middleName:null,surname:"Oliveira",slug:"juliana-oliveira",fullName:"Juliana Oliveira"},{id:"203022",title:"MSc.",name:"Wilma",middleName:null,surname:"Sá",slug:"wilma-sa",fullName:"Wilma Sá"},{id:"207265",title:"Dr.",name:"Alexandre",middleName:null,surname:"Perazzo",slug:"alexandre-perazzo",fullName:"Alexandre Perazzo"}]},{id:"70151",doi:"10.5772/intechopen.89224",title:"The Harvest and Post-Harvest Management Practices’ Impact on Coffee Quality",slug:"the-harvest-and-post-harvest-management-practices-impact-on-coffee-quality",totalDownloads:1802,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"Coffee is one of the most important agricultural commodities in the world. The coffee quality is associated with pre-harvest and post-harvest management activities. Each step starting from selecting the best coffee variety for plantation until the final coffee drink preparation determines the cupping quality. The overall coffee quality influenced by the factors which involve in changes the physicochemical properties and sensorial attributes, including the post-harvest operations. The post-harvest processing activities contribute about 60% of the quality of green coffee beans. The post-harvest operations include pulping, processing, drying, hulling, cleaning, sorting, grading, storage, roasting, grinding, and cupping. This chapter comprises the harvest and post-harvest operations of coffee and their impacts on coffee quality.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Mesfin Haile and Won Hee Kang",authors:null},{id:"69900",doi:"10.5772/intechopen.89508",title:"Coffee By-Products: Nowadays and Perspectives",slug:"coffee-by-products-nowadays-and-perspectives",totalDownloads:1148,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Coffee is one of the most consumed products around the world; 2.25 billions of coffee cup are consumed everyday in the world. For coffee crop production, different by-products are produced, such as coffee peel, coffee husk, parchment, and spent coffee grounds. These by-products have several problems associated at the final disposition. In this book chapter, we study the main coffee varieties produced in the world, the by-products produced, and its composition and finally assess the potential of supramolecular solvents (SUPRAS) and water as green solvents for high-added-value compound extractions. Bioactive compounds were extracted from fresh and dried coffee peel in an acceptable rate for industrial applications. SUPRAS offer advantages in terms of rapidity (5 min) and simplicity (stirring and centrifugation at room temperature), thus avoiding costly processes based on high pressure and temperature. Extractions carried out using water as solvent is another technique of extraction mixing temperature (above 60°C) and time (4.5 min) obtained a beverage or solution with presence a bioactive compounds how caffeine, chlorogenic acid and polyphenols.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Laura Sofía Torres-Valenzuela, Johanna Andrea Serna-Jiménez and Katherine Martínez",authors:null}],mostDownloadedChaptersLast30Days:[{id:"71528",title:"A Detail Chemistry of Coffee and Its Analysis",slug:"a-detail-chemistry-of-coffee-and-its-analysis",totalDownloads:2331,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"This review article highlights the detailed chemistry of coffee including its components; chemical constituents like carbohydrates, proteins, lipids, and caffeine; aromatic principles; oil and waxes; and minerals and acids. The high extent of caffeine can be found in the coffee plants; hence, in the second part of the study, various analytical methods are designed for the proper identification, separation, optimization, purification, and determination of caffeine present in coffee, tea, and marketed coffee. These analytical methods are appropriated for the separation and quantification of caffeine. The various analytical methods include spectroscopy methods like UV, IR, and NMR spectroscopy; chromatographic methods like paper, TLC, column, HPLC, and gas chromatography; and hyphenated techniques like LC–MS, GC–MS, and GC–MS/MS. This article compares and contrasts the amount of caffeine by various analytical methods.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Hemraj Sharma",authors:null},{id:"70151",title:"The Harvest and Post-Harvest Management Practices’ Impact on Coffee Quality",slug:"the-harvest-and-post-harvest-management-practices-impact-on-coffee-quality",totalDownloads:1793,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"Coffee is one of the most important agricultural commodities in the world. The coffee quality is associated with pre-harvest and post-harvest management activities. Each step starting from selecting the best coffee variety for plantation until the final coffee drink preparation determines the cupping quality. The overall coffee quality influenced by the factors which involve in changes the physicochemical properties and sensorial attributes, including the post-harvest operations. The post-harvest processing activities contribute about 60% of the quality of green coffee beans. The post-harvest operations include pulping, processing, drying, hulling, cleaning, sorting, grading, storage, roasting, grinding, and cupping. This chapter comprises the harvest and post-harvest operations of coffee and their impacts on coffee quality.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Mesfin Haile and Won Hee Kang",authors:null},{id:"72400",title:"Factors Affecting Efficiency of Vegetable Production in Nigeria: A Review",slug:"factors-affecting-efficiency-of-vegetable-production-in-nigeria-a-review",totalDownloads:803,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Vegetables are important for maintenance of good health; their production and marketing are veritable sources of employment and livelihood. To promote vegetables’ contribution to the above, there is a need for sustainable and efficient production process. The paper reviewed production, socioeconomic factors, and constraint affecting efficiency of production of three important vegetables (tomato, pepper, and onion). The review showed that socioeconomic factors found to increase technical efficiency in vegetable production were educational level, extension contact, and household size. Influence of farmer age on technical efficiency was inconclusive due to varied opinions. Increase in farm size, quantity of seed, amount of fertilizer, and agrochemical were found to have positive influence on output. Majority of the literature reviewed opined that increase in quantity of labour raises productivity; however, it must be utilized efficiently. The mean technical efficiency of the vegetables varied from the southern to the northern part of the country. The cross cutting constraints in vegetables production are pest and diseases, inadequate storage facilities, and high cost of improved inputs. The study recommends increase awareness and sensitization on optimum levels of resource use for increased productivity and appropriate intervention to constraints in the value chain.",book:{id:"10142",slug:"agricultural-economics",title:"Agricultural Economics",fullTitle:"Agricultural Economics"},signatures:"Iyabo Bosede Adeoye",authors:[{id:"317695",title:"Dr.",name:"Iyabo Bosede",middleName:null,surname:"Adeoye",slug:"iyabo-bosede-adeoye",fullName:"Iyabo Bosede Adeoye"}]},{id:"65591",title:"Insect Pest Management in Organic Farming System",slug:"insect-pest-management-in-organic-farming-system",totalDownloads:2595,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Due to the regulations of organic farming, few options remain for organic farmers to manage pests and diseases in their crops compared to conventional farming. However, major pests could still be managed through manipulation of the agroecosystem processes in advantage of the crops and disadvantage of pests. The limited number of active plant protection substances authorized for use in organic farming can provide support to natural and biological control agents in suppression of pests and diseases. This chapter highlights the principles and strategies of crop protection in organic farming, the cultural practices adopted, the active substances allowed for use to suppress pests, and the impacts on faunal and floral biodiversity. A case study of organic date palm cultivation is discussed.",book:{id:"6988",slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",fullTitle:"Multifunctionality and Impacts of Organic and Conventional Agriculture"},signatures:"Hamadttu Abdel Farag El-Shafie",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"69412",title:"Soil Management and Water-Use Efficiency in Brazilian Coffee Crops",slug:"soil-management-and-water-use-efficiency-in-brazilian-coffee-crops",totalDownloads:806,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Brazil is a world leader in coffee production. However, currently, it coexists with recurrent and severe droughts, accompanied by intense heat, strong insolation and low relative humidity. As the cultivation is carried out primarily in the rainy season, these world climate variations have affected crops yields and fruits quality, requiring innovative actions that promote efficient use of water stored in the soil. Among several soil management practices that promote a more rational use of water, deep tillage combined with liming, gypsum and fertilizer amendments lead to an increase in effective depth of coffee roots, therefore reducing water stress. Moreover, intercropping with Urochloa sp. is highly efficient in enhancing soil structure, water infiltration and plant available water capacity. Additionally, other innovative techniques and practices are also introduced in this chapter.",book:{id:"8952",slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Bruno Montoani Silva, Geraldo César de Oliveira, Milson Evaldo Serafim, Carla Eloize Carducci, Érika Andressa da Silva, Samara Martins Barbosa, Laura Beatriz Batista de Melo, Walbert Junior Reis dos Santos, Thiago Henrique Pereira Reis, César Henrique Caputo de Oliveira and Paulo Tácito Gontijo Guimarães",authors:null}],onlineFirstChaptersFilter:{topicId:"27",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:319,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:320,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/69091",hash:"",query:{},params:{id:"69091"},fullPath:"/chapters/69091",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()