Ru(II)-based complexes. Quantum yields are measured in solution rather than in cells.
\r\n\t
",isbn:"978-1-83768-248-5",printIsbn:"978-1-83768-247-8",pdfIsbn:"978-1-83768-249-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8bc7ffd7544fff1901301c787e64fada",bookSignature:"Prof. Magdy Elnashar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",keywords:"Preparation, Characterisation, Applications, Immobilised Cells, Biomaterials, Biofibers, Resins, Polysaccharides, Biocomposites in Health Sciences, Biocomposites in the Chemical Industry, Nanobiocomposites, Nano-Composites",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 27th 2022",dateEndSecondStepPublish:"July 29th 2022",dateEndThirdStepPublish:"September 27th 2022",dateEndFourthStepPublish:"December 16th 2022",dateEndFifthStepPublish:"February 14th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"23 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Magdy Elnashar received his M.Sc. Degree in Chemistry from the Cairo University, Egypt, in 1998, and his Ph.D. Degree in Biochemistry from the University of Leeds (top 100 in the world). He was the head of the Group of Encapsulation and Nanobiotechnology at the Centre of Advanced Sciences in Egypt. Prof. Elnashar has 6 patents, and 11 Awards in teaching, research, and commercialization. His scientific interests include the production of nano to macro beads, biopolymers grafting, and immobilized enzyme",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",middleName:null,surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar",profilePictureURL:"https://mts.intechopen.com/storage/users/12075/images/system/12075.jpg",biography:"Prof. Magdy Elnashar was born in Cairo, Egypt in 1972. He recevied his M.Sc. Degree in Chemistry from the Cairo University, Egypt, in 1998 and his Ph.D. Degree in Biochemistry from the University of Leeds, UK, in 2005. \nProf. Elnashar was awarded several prizes, among which the Prize of the National Research Center for promoting science in the field of Biotechnology in 2010 and the Prize of the President of the National Research Centre for the best applied article in 2009. His current position is the Head of Biopolymers & Nanobiotechnology Group at the Center of Excellence, National Research Center in Egypt. \nProf. Elnashar’s fields of interest are in the production of Nano to Macro Beads, Biopolymers Grafting, Immobilized Enzymes, Drug Delivery Systems, Nano Magnetic Particles, Diagnostic Kits (Immunology) and Water Purification.",institutionString:"Curtin University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Curtin University",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68655",title:"Anticancer Photodynamic Therapy Using Ruthenium(II) and Os(II)-Based Complexes as Photosensitizers",doi:"10.5772/intechopen.88519",slug:"anticancer-photodynamic-therapy-using-ruthenium-ii-and-os-ii-based-complexes-as-photosensitizers",body:'Photodynamic therapy (PDT) is an actively developing anticancer modality that offers advantages compared to conventional treatments (ionizing radiation and chemotherapy). PDT utilizes two components, light and a photosensitizing compound (PS) activated by light upon photon absorption and producing in its activated state highly cytotoxic reactive oxygen species (ROS) [1]. The attractiveness of PDT is in the use of safe nonthermal doses of light and nontoxic concentrations of the PS and evoking cytotoxic and immunologic effects upon activation of the PS by light. PDT is supposed to selectively destroy unwanted and/or malignant cells while largely sparing the surrounding healthy tissue. Another desirable property is the ability to induce antigen-specific therapeutic and/or protective immune responses.
Preferential PS uptake by the tumors would make them exclusive targets for cytotoxicity while sparing normal tissues. Light delivery (both source location and emitted energy) can also be controlled more carefully (within the confines of the effective light attenuation in the tissue), which could make PDT a very efficient and safe modality. PDT effects reply upon a variety of photoreactions. The most commonly considered are the two types dependent on oxygen and associated with ROS production: electron transfer from the excited PS generating hydroxyl radical OH among other species (Type I) and energy transfer to a ground-state molecular oxygen 3O2 generating singlet oxygen 1O2 and superoxide radical anions (Type II) [2]. It is proposed that two more types are possible and are oxygen-independent: Type III as the interaction of the activated PS with native free radicals and Type IV as light-induced structural changes in PS allowing it to bind to subcellular targets [3].
PDT has been approved almost 20 years ago as an anticancer treatment. Nevertheless, despite the potential advantages, it is still underutilized clinically. Only a small number of porphyrin- and chlorine-like photosensitizers, as well as one bacteriochlorophyll-based PS, are approved. The number of indications for each photosensitizer is also very limited and includes primarily superficial cancerous/precancerous lesions and other conditions such as actinic keratosis, basal cell carcinoma, high-grade dysplasia in Barrett’s esophagus, and age-related macular degeneration. As a palliative measure, PDT is approved for obstructive esophageal or lung cancer and centrally located lung cancer [4, 5]. There are several reasons for this.
One of them is a small depth of penetration of visible light into the tissues restricting PDT to superficial lesions with a thickness not exceeding few millimeters. For deeper organs/tissues, an invasive direct delivery of light is required. Light absorbance of longer wavelengths by the PSs is therefore very advantageous. Light in the range of 650–1350 nm (known as “near-infrared window”) [6] has the greatest penetrating ability into biological tissues. This includes parts of red (625–740 nm) and near-infrared (>750 nm) range that can be used for the PS activation.
Another problem is an unsatisfactory selectivity for malignant tissues resulting in PDT-associated damage of normal tissues. For example, Photofrin® is known for this [4]. Prolonged retention of many porphyrin-based PSs in healthy tissues leads to a problem of sensitivity to sunlight and potentially serious damage to the patients’ skin and eye [7, 8]. This could be mitigated by delivery systems selectively targeting malignant cells. These systems employ two modes of action [9]. Passive targeting relies upon the morphological and physiological peculiarities of tumor tissue in combination with physicochemical properties of the PS carrier. Active targeting, in contrast, is based on a molecular recognition of the PS carrier by cancer cells such as binding of specific ligands or antibodies to overexpressed cancer cell receptors. Passive PS delivery systems include nanoparticles, fullerenes, and liposomes and have the advantage of protecting the PS from degradation upon injection. Active systems, on the other hand, have the advantage of improved uptake of the PS. The carriers belonging by themselves to passive targeting systems can be nevertheless supplemented with molecular recognition capacity belonging to the features of active systems, such as decoration with Tf to target Tf receptors overexpressed in malignant cells [10, 11, 12]. Nevertheless, smaller active targeting systems (such as PS-Tf conjugates discussed further in this chapter) could have an advantage of greater mobility upon intracellular uptake and potentially the advantage of the blood-brain barrier crossing.
Lastly, PDT-induced ROS production strongly relies upon oxygen availability, which is well known for the porphyrin-based PSs [13, 14]. Deep bulky tumors have extensive hypoxic regions, which are also associated with the tumor aggressiveness [15, 16]. Although hypoxic regions still can be treated (at a slower rate) by application of fractionated exposure or inducing reperfusion [17, 18], hypoxia severely decreases PDT efficacy [19]. Together with the limited light penetration, this is another reason why PDT in its current state is usually limited to relatively superficial lesions. This problem could be bypassed by PSs employing photoreactions that have little or no dependency on oxygen.
Considering the said above, an advanced PS should have the ability for targeted delivery; penetration through the blood-brain barrier (BBB) and blood-tumor cell barrier (BTCB); activation by a wide range of wavelengths, including NIR light; and employing of different types of photoreactions enabling induction of immune responses to tumor antigens. Solubility in water and/or saline is a great asset for a successful PS as it makes its delivery both easier and safer, without the use of excipients with potential toxicity/side effects on their own.
Metal-based coordination complexes are among the obvious candidates to satisfy these requirements. Specifically, transition metal complexes possess a wide range of metal oxidation states and the complex geometries [5, 20]. These complexes (e.g., Ru(II) polypyridyl complexes) are of increasing interest as PSs in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT) [21]. Importantly, they can have their properties fine-tuned by choosing the central metal and organic ligands (such as bipyridine and 2,2′-biquinoline). These PSs can employ a great variety of excited states associated with the central metal, ligands, or metal-ligand interactions. This is manifested in photoreactions that are ROS-dependent (Type I/II) or ROS-independent (electron transfer to substrates other than molecular oxygen), excitation at different wavelengths, solubility, systemic toxicity, and finally PDT efficacy. Historically, Pt(IV)-, Ru(II)-, and Rh(III)-based complexes were most actively studied as PSs followed by Ir(III) and Os(II) complexes; see the review by Monro et al. [5]. The examples of the most recent studies [22, 23, 24, 25, 26] include a summary on the use of ruthenium complexes as PSs in PDT [27].
This chapter reviews the results obtained by our group and collaborators. The properties and PDT efficacy of Theralase Technologies Inc. PSs [28] and Ru(II)- and Os(II)-based complexes are discussed in the perspective of their clinical application.
The molecular structure of Ru(II)- and Os(II)-based PSs (later referred to as Ru- and Os-based) is shown in Tables 1–3. These are relatively small (approximately 1 kDa) complexes with the ligands involving bipyridine (bip), 2,2′-biquinoline (biq), imidazo[4,5-f][1,10]phenanthroline, and a variable number of thiophene units. A variety of the ligands defines some of the PS properties. For example, the biq ligand is responsible for relatively good absorbance in near-infrared (NIR) light, while the number of thiophene units may be associated with the PS solubility in water [5]. Water solubility, as it was mentioned, represents a serious advantage for this group of PSs as many of the established PSs have poor water solubility [29, 30]. Ru-based PSs are characterized by 1O2 quantum yield that is much higher (up to 99%) than for the established (FDA-approved) porphyrin-based PSs: PPIX, an active metabolite of ALA (0.56) and Photofrin (0.89).
Ru(II)-based complexes. Quantum yields are measured in solution rather than in cells.
Molecular structures of Os(II)-based complexes. Quantum yields are measured in solution rather than in cells.
Ligands involved in the PSs’ molecular structure.
The absorbance spectra of the Ru- and Os-based PSs are shown in Figure 1. Among the Ru-based PSs, methylation of bidentate ligands (bip) decreases absorbance. An increase in the number of thiophene rings redshifts the main absorbance peak and eventually results in a considerable increase in absorbance at longer wavelengths (see TLD-1633).
Absorbance spectra of the Ru(II)- and the Os(II)-based PSs (panels A and B, respectively) in water.
Os-based PSs having biq ligands, in contrast to the Ru-based PSs, have similar spectra. They demonstrate rather uniformly located strong main peak at approximately 340 nm attributed to ligand-centered transitions and a characteristic secondary peak at ≈550 nm attributed to metal-to-ligand charge transfer (MLCT) centered on the non-biq ligands. Importantly, these PSs demonstrate consistent absorbance at longer wavelengths (red to NIR range). The NIR absorbance is attributed to MLCT that involves biq ligands. Altogether, the spectra similarity suggests similar accessible electronic transitions and ground and excited states. Broad absorption band of the Os-based PSs allows for a wider range of photon attenuation coefficients. Considerable absorbance in a clinically important PDT window of 700–900 nm suggests a capacity for one-photon absorption [31]. This asset is emphasized by a good solubility of these PSs in water. Poor solubility in water may hamper PDT potential of PSs even with a good absorbance in this range of the spectrum, as in the case of porphyrin- and phthalocyanine-based PSs [32]. The inclusion of thiophenes and the increase in their number in the ligands (from TLD-OsH2B to TLD-Os14H) not only decreases the main absorbance peak but also markedly redshifts its shape, with a minimal effect on the secondary peak and absorbance in the longer wavelengths (Figure 1B).
If the PS is resistant to photobleaching, this allows less PS being destroyed by the light exposure. In turn, this makes ROS production and subsequent cytotoxic action more efficient, because the process of conversion of photons to cytotoxicity becomes catalytic without stoichiometric consumption of the PS. This allows making the efficacy of PDT treatment independent on the availability of the PS during the treatment.
The bleaching resistance is hence a very valuable property, especially if the delivered light energy must be increased to achieve the desired PDT efficacy. This could be a drawback though in the case of bleaching-based dosimetry during the treatment [33, 34].
Ru-based PSs show notable bleaching under exposure to green light (525 nm). TLD-1433 is slightly more bleaching resistant than TLD-1411 although they have almost identical absorbance at 525 nm. Nevertheless, more than 50% of each PS remains intact even after 200 Jcm−2 of radiant exposure corresponding to 6.6x1019-absorbed photons per cm3. Moreover, while bleaching results in the deterioration of the 416–417 nm UV peak, TLD-1433 absorbance in clinically useful range rapidly increases (1.7-fold at 525 nm, 2.0-fold at 625 nm, 1.8-fold at 800 nm) and remains at this level up to the end of light exposure (200 Jcm−2).
Os-based PSs having biq ligands show variable bleaching resistance under green light (525 nm); TLD-OsH2B is the most resistant and TLD-OsH2dppn the most vulnerable. Compared to the Ru-based PS, the bleaching resistance of the Os-based PSs with biq ligands is greater in general, with at least 75% of their initial absorbance retained. The best performers, TLD-OsH2B and TLD-OsH2IP, showed no more than 10% loss of absorbance in the UV peak, with no absorbance loss in green-NIR range. This provides the photobleaching rates in aqueous solution (calculated based on the incident irradiance) equal to 8.7*10−28 M hυ−1 cm−2 for TLD-OsH2dppn, 4.1*10−27 M hυ−1 cm−2 for TLD-OsH2IP, and 1.5*10−26 M hυ−1 cm−2 for TLD-OsH2B [31]. For comparison, the photobleaching rate for the approved PSs can be much higher (by several orders of magnitude): 5.6*10−24 M hυ−1 cm−2 for benzoporphyrin derivative mono acid A (BPD), 7.3*10−23 M hυ−1 cm−2 for PPIX, and 4.8*10−16 M hυ−1 cm−2 for curcumin [35, 36, 37].
Production of ROS represents a final event of the PS activation by light leading to PDT cytotoxicity. Ru-based TLD-1433 is able to generate hydroxyl radical *OH under red light (625 nm, 119 mWcm−2), although singlet oxygen 1O2 production is not detected. Importantly, ROS is generated despite very low absorbance of TLD-1433 in red light. This, however, requires certain molecular and ionic environment because ROS is generated only in incomplete DMEM cell culture medium (not complemented with FBS and antibiotics) but not in DI water despite almost identically low absorbance.
Exposure to NIR light (808 nm, 720 mWcm−2) produces some amount of ROS (*OH), but it at least an order of magnitude less than under red light. This occurs despite a similar number of absorbed photons and absorbance at 808 nm only 18% less than at 625 nm and greater delivered energy. This may suggest that not only the total delivered energy and number of the absorbed photons but also the photon energy is important for the efficacy in ROS production.
To address the challenge of selective uptake of the PSs by tumors, it would be attractive to utilize serum proteins and natural transmembrane transporters as delivery vehicles. Despite numerous approaches for targeted delivery of the PSs including receptors-assisted uptake (as mentioned in the chapter introduction), neither is related to the use of Tf as a vehicle for transition metal-based complexes. The notable exceptions are the works on the interaction between Tf and Cr(III) complexes [38, 39]. It is also known that Ru(II) complexes can associate with albumin and iron transporter transferrin (Tf) [40, 41]. In addition, overexpression of Tf receptors is a common feature of malignant cells that tend to have an increased Fe3+ uptake [42]. The effect of the association of Ru(II)-based PSs with Tf on their photophysical and photobiological properties needs however more elucidation.
Upon subtraction of the spectra of the complex and Tf from the spectrum of their premix, a characteristic signature of association between the Ru-based complex and Tf can be detected, with two peaks in UV and visible range. The UV peak indicates conformational changes in aromatic rings (the complex itself or transferrin molecule), and the visible range peak is interpreted as an indicator of LMCT (ligand to metal charge transfer) that represents the interaction between the metal of the complex and transferrin [43].
Premixing of Ru-based complexes with apo-Tf (the Tf not saturated with Fe3+) at 4:1 molar ratio demonstrates the signature with UV and visible range peaks (Figure 2A). The absorbance increase in UV range could be due to conformation changes either in the Tf molecule or the complex (as both have UV maxima at similar wavelengths). The peak in visible range indicates a new spectral component distinct (redshifted) from the comparable absorbance peak for the PS alone. This indicates the complex-Tf association and is related to the interaction between the metal in the complex and the Tf molecule.
Spectral signatures of association of the Ru(II)-based (panel A) and Os(II)-based (panels B and C) PSs with apo-Tf. The incubation of Ru-based PSs was performed in 10 mM phosphate buffer +100 mM NaCl (pH = 7.4) and of Os(II)-based PSs in the phosphate buffer (panel B) or incomplete RPMI1640 cell culture media (panel C).
There is also an increase in absorbance between the signature peaks and, importantly, in the long wavelength tail of the spectrum in the visible range and further into the NIR, which is clinically relevant for PDT. Notably, the absorbance of TLD-1433 alone is very low in red to NIR. The increase in absorbance upon the association with Tf is 16.2-fold (MEC = 3125 vs. 193 M−1 cm−1) in red (635 nm) and 5.7-fold (MEC = 1676 vs. 294 M−1 cm−1) in NIR (800 nm), compared to 5.0-fold (MEC = 8027 vs. 1600 M−1 cm−1) increase in the green (535 nm). Notably, the ability of the PS to associate with Tf depends on the number of thiophene rings in the complex. One thiophene ring is not enough for this as evident for TLD-1011. Hence, not only metal but also organic ligands play a role in the association of the complex with Tf.
The association signatures seem to be insensitive to the source of apo-Tf and are very similar for bovine and human Tf. The signatures resemble the signature of Fe3+−Tf binding but are not identical to it. Notably, TLD-1433 can also be associated with Fe3+ saturated holo-Tf although the magnitude of the association signature is lesser than for apo-Tf [43].
Os-based PSs with biq ligands are also able to associate with apo-Tf, but their signatures (Figure 2C) are distinct from those of Ru-based PSs. The visible range peak (observed for TLD-OsH2B and TLD-OsH2dppn but not for TLD-OsH2IP) is however more redshifted (in the range of 500–600 nm), and the signature magnitude is much lesser.
Physiologically, when Tf bound with Fe3+ is taken up into a cell, it releases iron in endosomes when pH is decreased to ≈5.5 [44]. TLD-1433-Tf conjugate, in contrast, remains stable during the gradual acidification emulating this process [43]. This is evident by the stability of absorbance at the two peaks of the signature across different pH values.
Notably, an association of TLD-1433 with holo-Tf also survives the acid environment. The magnitude of the signature peaks is 31–33% lower than for TLD-1433 & apo-Tf at pH = 7.4, but by pH = 5 it increases so the UV peak magnitude catches up with that of TLD-1433 & apo-Tf, and the visible peak magnitude even becomes about 20% greater. Hence, TLD-1433 may remain associated with Tf in the acidic endosome environment. Acidification resistance does not hold however for the increased absorbance in green to NIR range. The increase in red-NIR range due to the association of TLD-1433 with Tf deteriorates completely at low pH, and only in the green range, it shows some resistance: 16% remaining for TLD-1433 & apo-Tf and 66% for TLD-1433 & holo-Tf.
Association with Tf markedly decreases the extent and rate of photobleaching of TLD-1433 under green light (525 nm, 130 mWcm−2). At 0.93*1020 absorbed photons per cm3, more than 59% of TLD-1433 remains intact in 1:1 TLD-1433 & Tf premix. At the comparable absorbed light (0.23*1020 absorbed photons per cm3), 74% of TLD-1433 in the premix persists compared to 45% of TLD-1433 alone [43]. As mentioned above, a decreased bleaching allows for more efficient ROS production with less PS expended, so the advantage of TLD-1433 & Tf conjugate is evident.
Association of TLD-1433 with Tf dramatically increases ROS production upon irradiation with red light (625 nm, 119 mWcm−2). In this case, 1O2 is generated, which does not happen with TLD-1433 alone. The production of *OH is increased twofold at 1.9*1022 absorbed photons per cm3 [43]. The association with Tf is therefore advantageous for ROS production considering that *OH is not only an extremely cytotoxic ROS but can also be produced from 1O2 [45]. The association with Tf is, however, unable to improve ROS production by TLD-1433 under NIR (808 nm, 720 mWcm−2) despite the increase in absorbance in this range.
Transition metal-based PSs hence are able to absorb light at clinically relevant wavelengths and produce cytotoxic ROS, and the association with Tf is beneficial in that. This warrants assessment of this capacity in biological systems. In vitro, the PDT effects are tested using clinically relevant human cancer cell lines (human glioblastoma U87 cells, human bladder cancer HT1376 cells) or nonhuman cells relevant for preclinical models (rat bladder cancer AY27 cells).
The comparative efficacy of the Ru-based PSs on U87 cells is shown in Table 4. PDT efficacy of the Ru-based PSs can be very efficient in green light (LD50 in sub-nanomolar range) and moderately efficient in red light (LD50 in micromolar range in red light), but they are not active in NIR light. Notably, the efficacy of the PSs in red light is observed despite negligible absorbance (measured in water). In complete cell culture medium (and potentially intracellularly), absorbance in red is increased due to associaiton of the PSs with proteins but is still low compared to that at the shorter wavelengths.
U87 cells | Dark | Green | Red | NIR |
---|---|---|---|---|
530 nm | 625 nm | 808 nm | ||
90 Jcm−2 | 90Jcm−2 | 400-600 Jcm−2 | ||
108 mWcm−2 | 125 mWcm−2 | 150 mWcm−2 | ||
TLD-1411 | LD50 (μM): 101.5 (CI95 = 87.8–117.4) | LD50 (μM):0.00595 (CI95 = 0.0050–0.0074) | LD50 (μM): 0.909 (CI95 = n/d-12.36) | Insufficient cell kill |
Maximal kill (%): 49.41 (CI95 = 46.9–52.0) | Maximal kill (%): 71.17 (CI95 = 33.7–124.1) | |||
N = 28 | N = 9 | N = 5 | ||
MEC (water) | 2520 | 151 | 86 | |
TLD-1433 | LD50 (μM): 192.9 (CI95 = 146.8–253.3) | LD50 (μM): 0.00702 (CI95 = 0.00261–0.01891) | LD50 (μM):3.57 (CI95 = 2.99–4.40) | Inconsistent and low cell kill |
Maximal kill (%): 65.9 (CI95 = 59.1–72.8) | Maximal kill (%): 76.2(CI95 = 66.7–85.8) | |||
N = 118 | N = 32 | N = 32 | ||
MEC (water) | 3094 | 158 | 294 | |
TLD-1611 | LD50 (μM): 62.9 (CI95 = 44.9–92.5) | LD50 (μM): 0.002 (CI95 = 0.00117–0.0040) | Inconsistent and low cell kill | No cell kill |
Maximal kill (%):74.8 (CI95 = 65.7–83.9) | ||||
N = 31 | N = 9 | |||
MEC | 24,263 | 4635 | 1167 | |
TLD-1633 | LD50 (μM): 31.13 (CI95 = 14.85 to 63.68) | LD50 (μM): 0.000574 (CI95 = 2.403e-006–0.005691) | Inconsistent and low cell kill | No cell kill |
Maximal kill (%): 100.8 (52.2–171.0) | ||||
N = 14 | N = 6 | |||
MEC (water) | 7468 | 741 | 0 | |
Photofrin® | LD50 (μM): 2974 (CI95 = 245.5–36,027) | LD50 (μM): 0.20 (CI95 = 0.16–0.25) | LD50 (μM): 0.23 (CI95 = 0.17–0.31) | No cell kill |
Maximal kill (%): 79.7 (CI95 = 72.5–87.0) | Maximal kill (%): 91.8 (CI95 = 83.2–100.4) | |||
N = 45 | N = 18 | N = 26 | ||
MEC (water) | 6947 | 3046 | 209 |
In vitro PDT efficacy of Ru(II)-based PSs on U87 cells, in comparison to the FDA-approved Photofrin®.
The cells were incubated with the PS for 4 h, and the PS was removed before PDT. The dose–response provides LD50 (μM) and maximal cell kill (%) for a green and red light and a cell kill for a fixed PS concentration for NIR light. The data are presented as means and their 95% confidence intervals (SEM for NIR PDT).
Depending on the PS, the maximal PDT effect did not reach 100% cell kill. The data at 45 Jcm−2 PDT are not shown, but the increase in the light radiant exposure from 45 to 90 Jcm−2 significantly (P < 0.05) decreased LD50 for the PDT effect in green light. In red light, the PDT efficacy also could be increased with the increase in the radiant exposure from 45 to 90 and then to 180 Jcm−2. This can be explained by the insufficient number of incident photons per a given concentration of the PS at lower radiant exposure but not by a difference in quantum efficacy of the PDT that depends only on the photon energy but not on the radiant exposure. The increase in the number of thiophenes in the PS complexes decreases LD50 for the green light and hence increases PDT efficacy. The dark toxicity is however also increasing. In HT1376 cells, LD50 in red light (90 Jcm−2) is 15.0 μM (CI95 = 9.1–24.9 μM, N = 30). This is a greater value than for U87 cells and suggests lesser PDT sensitivity. The total PDT cell kill is however high, 98.5% (CI95 = 85.6–111.4%). Dark toxicity is, in contrast, low, with LD50 exceeding 200 μM. Importantly, the efficacy of the Ru-based PSs exceeds the efficacy of FDA-approved Photofrin® in green light, although not in red light (Table 4). Judging by LD50, the Ru-based PSs have higher dark toxicity than Photofrin®, but this is of less importance because, in addition to their solubility in water, they are effective at much lesser, nontoxic concentrations.
Pure PDT effect elucidates the PS efficacy for PDT neglecting its dark toxicity, which is justifiable scientifically to reveal mechanisms of the PS action. Clinically, however, in the case of selective uptake of the PS into cancer cells vs. normal cells, cancer cell kill can be achieved both by PDT-mediated and cytotoxic mechanisms, and the total PDT-induced cell kill becomes relevant. Considering this, total cell kill close to 100% can be achieved in green light in sub-micromolar (20 nM for TLD-1633, 30 nM for TLD-1433, and 200 nM for TLD-1411) or even sub-nanomolar range (0.5 nM for TLD-1611). For comparison, Photofrin® achieved 100% total cell kill in U87 cells only at concentrations above 300 nM.
Clinically, the balance between the efficacy and safety of the PS is characterized by the therapeutic ratio that indicates how far a dose for a desired therapeutic effect is from the dose that causes undesired toxicity. Dividing PDT effect LD50 to dark toxicity LD50 provides small numbers that are not convenient to operate with. It is easier therefore to use inverted therapeutic ratio, ITR = Dark LD50/PDT effect LD50. In U87 cells, ITR = 17,061 for TLD-1411, 27,486 for TLD-1433, 31,460 for TLD-1611, and 54,252 for TLD-1633 under green light PDT. This exceeds the ITR = 14,870 for Photofrin® and shows thus a clear clinical advantage of Ru-based PSs over an established porphyrin-based PS.
The comparative efficacy of the Os-based PSs on U87 cells is shown in Table 5.
U87 cells | Dark | Green | Red | NIR |
---|---|---|---|---|
530 nm | 625 nm | 808 nm | ||
90 Jcm−2 | 90 Jcm−2 | 400-600 Jcm−2 | ||
108 mWcm−2 | 125 mWcm−2 | 150 mWcm−2 | ||
TLD-OsH2B | LD50 (μM):395.7 (CI95 = 323.4–484.1) | LD50 (μM):36.0(CI95 = 19.4–365.4) | LD50 (μM):81.5(CI95 = 16.9–393.3) | Kill (%):32.1 (SEM = 14.3) |
Maximal kill (%): 70.7 (CI95 = 19.9–121.6) | Maximal kill (%): 114.3 (CI95 = 7.6–220.9) | |||
N = 43 | N = 7 | N = 12 | N = 4 | |
MEC (water) | 12,328 | 3632 | 2269 | |
TLD-OsH2IP | LD50 (μM):145.8 (CI95 = 67.6–314.6) | LD50 (μM): 3.1 (CI95 = 2.1–13.2) | LD50 (μM): 12.2 (CI95 = 9.2–15.8) | Kill (%): 63.8 (SEM = 13.5) |
Maximal kill (%): (CI95 = 30.67–107.9) | Maximal kill (%): 54.0 (CI95 = 51.5–56.6) | |||
N = 20 | N = 10 | N = 4 | N = 4 | |
MEC (water) | 10,761 | 3119 | 1957 | |
TLD-OsH2dppn | LD50 (μM): 179.1 (CI95 = 112.6–284.8) | LD50 (μM): 0.16 (CI95 = 0.08–0.34) | LD50 (μM): 12.2 (CI95 = 0.7–577.6) | Inconsistent and low cell kill |
Maximal kill (%): 84.2 (CI95 = 70.5–97.8) | Maximal kill (%): 79.1 (CI95 = -2.0–160.3) | |||
N = 20 | N = 10 | N = 4 | ||
MEC (water) | 10,486 | 4828 | 2273 | |
TLD-Os14H | LD50 (μM): 141.2 (CI95 = 107.8–185.0) | LD50 (μM): 2.1 (CI95 = 1.6–3.4) | LD50 (μM): 2.4 (CI95 = 1.8–3.3) | Kill (%): 24.2 (SEM = 4.7) |
Maximal kill (%): 59.4 (CI95 = 46.6–72.3) | Maximal kill (%): 78.2 (CI95 = 69.0–87.5) | |||
N = 54 | N = 33 | N = 53 | N = 10 | |
MEC (water) | 11,716 | 2914 | 1376 |
In vitro PDT efficacy of Os(II)-based PSs on U87 cells (90 Jcm−2).
The cells were incubated with the PS for 4 h, and the PS was removed before PDT. The dose–response provides LD50 (μM) and maximal cell kill (%) for a green and red light and a cell kill for a fixed PS concentration for NIR light. The data are presented as means and their 95% confidence intervals (SEM for NIR PDT).
Additionally, in HT1376 cells, TLD-OsH2IP has a dark LD50 > 200 μM, N = 43, red light PDT LD50 = 15.0 μM (CI95 = 9.1–24.9, N = 30), and a NIR light PDT LD50 = 39.0 μM (CI95 = 30.6–49.6, N = 5). TLD-OsH2dppn has dark LD50 = 203.2 μM (CI95 = 190.2–217.1, N = 61), red light PDT LD50 = 4.1 μM (CI95 = 2.9–5.7, N = 26) and NIR light PDT LD50 = 27.4 μM (CI95 = 7.2–100.4, N = 9).
The presence of imidazo[4,5-f][1,10]phenanthroline and adding dppn to the complex increase PDT efficacy of the Os-based PSs, although it does not exceed the efficacy of Ru-based PSs. Similarly to the PDT LD50, ITR of the Os-based PSs in red light is also not better than that of Photofrin®; in U87 cells, ITR = 4.9 for TLD-OsH2B, 24.8 for OsH2IP, and 14.7 for TLD-OsH2dppn. In HT1376 cells, ITR > 13.3 for TLD-OsH2IP and equals to 49.6 for TLD-OsH2dppn. The advantage of the Os-based PSs, however, is their PDT activity in NIR light, which both Ru-based PSs and Photofrin® are lacking. ITR for NIR PDT is greater than 5.1 for TLD-OsH2IP and equal to 7.4 for TLD-OsH2dppn.
Another set of experiments focused at three Os-based PSs with bis ligands [31] supplements the data on red light PDT (625 nm, 90Jcm−2, 450 mWcm−2). In U87 cells, TLD-OsH2IP is the most efficient PS (LD50 = 57 ± 4 μM) exceeding both TLD-OsH2dppn (LD50 = 87 ± 12 μM) and TLD-OsH2B (125 ± 12 μM). In HT1376 cells, TLD-OsH2dppn is the most efficient (LD50 = 83 ± 4 μM); the remaining two PSs have similar LD50 (121 ± 10 μM for TLD-OsH2B and 141 ± 14 μM for TLD-OsH2IP). The inferiority of TLD-OsH2B in red light over the two other PSs is best reproduced across the presented datasets although comparative efficacy of TLD-OsH2IP and TLD-OsH2dppn is less consistent.
Importantly, the dataset presented in [31] provides LD50 for NIR PDT (808 nm, 600 Jcm−2, 900 mWcm−2), in contrast to the cell kill at a single concentration presented in Table 5. TLD-OsH2IP proves to be most effective among the three in U87 cells (LD50 = 45 ± 5 μM), whereas TLD-OsH2B was the most effective PS for HT1376 cells (LD50 = 121 ± 8 μM). For this wavelength, therefore, the efficacy of TLD-OsH2dppn was the lowest, in contrast to the red light PDT.
Concentration-wise, the PDT efficiency is almost always similar in red and NIR light. The exception is greater efficacy of TLD-OsH2dppn in red vs. NIR in HT1376 cells (P < 0.001). In U87 cells, ITR is 3.3–9.6 for red PDT and 4.2–12.0 for NIR PDT. In HT1376 cells, it is, respectively, 4.6–6.1 and 2.6–6.1. As in the dataset shown in Table 5, this is far behind the ITR value for Photofrin®, but considerable PDT activity in NIR is a decisive asset. This advantage is reinforced by the similar LD50 for red and NIR PDT, which means that (at certain light exposure conditions) NIR PDT can be at least not worse than red PDT.
One should remember however that NIR PDT needs much more energy to be delivered, NIR range photons carry less energy, and absorbance is lesser than for the red range. Red light PDT is still more efficient per absorbed photon than NIR PDT because similar LD50 in μM is achieved at a much lesser number of absorbed photons (P < 0.001). Hence, the NIR PDT advantage of the Os-based PSs must be realized by increasing the delivered energy of light. This does not pose a problem because no thermal effects are observed for 808 nm at 600 Jcm−2.
Additional apo-Tf increases red light PDT efficacy of the Ru-based TLD-1433 in AY27 cells, together with a decrease in dark toxicity [43]. The PDT improvement effect is however significant (PDT effect LD50 = 11.6–11.9 μM vs. 17.0 μM with no additional Tf, P < 0.05) only after a relatively short (30 minutes) TLD-1433 incubation before PDT. If the incubation time is increased to 90 minutes, the beneficial effect of the additional Tf is not anymore evident, masked by the increased TLD-1433 PDT efficacy.
Hypoxia in tumors is one of the major challenges for anticancer therapy because both conventional radiotherapy and PDT rely upon oxygen, a mediator of damage to cancer cells. It is known at the same time that the tumors with hypoxic cores are clinically more aggressive [15].
This means that any modality effective under hypoxic conditions is extremely valuable. Among the four Ru-based and six Os-based PSs, Ru-based TLD-1633 and Os-based TLD-OsH2B proved to be active in hypoxic conditions (at 0.1–0.5% O2) after red light PDT (625 nm, 90 Jcm−2, 125 mWcm−2). Incubation with ALA (having its metabolite PPIX as photosensitizer) is used as a negative control (an oxygen-dependent PS). For TLD-1633, hypoxia resistance is observed at a concentration as low as 4 μM, with significantly non-zero PDT effect = 67.3% cell kill in normoxia (P = 0.022) and 46.2% in hypoxia (P = 0.036), at moderate (25% cell kill) dark toxicity. For TLD-OsH2B, PDT effect is evident only at 320 μM. PDT effect reaches significantly non-zero effect: 59.8% in hypoxia (P = 0.006) vs. 42.2% in normoxia (P = 0.0006), and at considerable (53% kill) dark toxicity. For both PSs, hypoxia resistance occurs at concentrations above the PDT LD50.
It is noteworthy that TLD-1633 is active at low oxygen concentration corresponding to pO2 = 0.76 mmHg. It is very encouraging because it is known that anticancer efficacy of conventional treatment progressively decreases at pO2 below a critical threshold of 15–35 mmHg [46, 47].
High dark toxicity of the OsH2B hypoxia-effective concentration is a clear limitation, but this demonstrates anyways a possibility of hypoxia-effective Os-based PSs that, as it was shown, have also PDT activity in NIR. NIR light has greater penetration depth into tissues than visible light, and this, together with the PS activity under hypoxia, will pose a double benefit for PDT of bulk tumors.
Intracellular accumulation of TLD-1433 was detected earlier, and association with Tf facilitated this process [43]. Hence, one needs to explore whether this translates to the selectivity of TLD-1433 uptake into tumors in vivo.
TLD-1433 is able to accumulate selectively in tumor tissue vs. normal ones even without premixing with Tf. In AY27 rat urinary bladder tumors, characteristic staining can be seen co-localized with tumors (Figure 3) 1 h after instillation of 50 μg/mL TLD-1433.
Accumulation of TLD-1433 in AY27 orthotopic urinary bladder tumors in fisher rats. The bladder was examined 1 h after instillation of 50 μg/mL TLD-1433. The arrows denote the areas of coloration by TLD-1433 implying its accumulation in the lesions.
TLD-1433 accumulation in the tumors is at least one order of magnitude greater than in the adjacent apparently normal tissue: 77 ± 18 mg/kg, N = 6 vs. 0.4 ± 0.09, N = 6, P = 0.007.
The concentration in a tumor, therefore, reaches estimated 76 μM, which is far exceeding in vitro PDT effect LD50 for U87 cells in green light (Table 4). Moreover, the foci of coloration are visible outside of a major tumor. This suggests a possibility of detection of very small malignant lesions not readily visible macroscopically without staining by the PS.
Association of TLD-1433 with apo-Tf is able to increase selectiveness of the PS accumulation in subcutaneous CT26.WT (murine colon adenocarcinoma) tumors in BalbC mice (Figure 4). Four hours after systemic injection of 10 mg/kg TLD-1433 premixed with apo-Tf (molar ratio = 1:1), significantly more TLD-1433 is found in a tumor vs. adjacent muscle tissue (P = 0.038); the selectivity ratio is about 1.8. With TLD-1433 injected, the uptake into a tumor is not significantly different from the adjacent muscle tissue.
Accumulation of TLD-1433 without or with apo-Tf at different molar ratios in CT26.WT tumors in BalbC mice 4 h after systemic (IV) injection (10 mg/kg). N = 5 for TLD-1433 & apo-Tf group; N = 4 for TLD-1433 group.
Averaging of the individual tumor/muscle uptake ratios for each animal confirms the results shown above. The ratio is significantly above 1 upon injection of the TLD-1433-Tf premix (1.81 ± 0.14, N = 5, P = 0.005) indicating the uptake selectivity. With TLD-1433 alone injected, the uptake into the tumors is not selective (0.74 ± 0.18, N = 4, P = 0.247). This firmly suggests that the association of TLD-1433 with apo-Tf increases selectivity of TLD-1433 uptake by a tumor. Apo-Tf per se cannot be taken up because it has to bind Fe3+ to be recognized by the cell surface TfR. Since selective improvement of the uptake of TLD-1433 & apo-Tf premix by the tumors is demonstrated, one can anticipate two possible scenarios: (1) TLD-1433 & apo-Tf still manages to bind Fe3+, and (2) TLD-1433 & apo-Tf conjugate can be recognized by TfR and taken up by the cell without the need to bind Fe3+.
Assessing PDT efficacy in vivo is a necessary step on the way to potential clinical applications. It has however its own challenges to be addressed. Light exposure regime is one of them.
The penetration depth of light at different PDT conditions is crucial for the PDT success. For example, a small penetration depth of green light is because of a strong attenuation by intrinsic chromophores, such as hemoglobins and cytochromes. The calculations estimate the energy attenuation up to 1/8 cm−1 in skin and 1/20 cm−1 in a tumor that has a higher density of vasculature and hence more absorbing chromophores [48]. High absorbance of light by the PS is a very desirable property contributing to its efficacy. This could be a double-edged sword however because high absorbance of the PS close to the tumor surface can shield the deeper tissue from the light exposure and hence result in undertreatment of a tumor. The measurements using a tissue-emulating phantom (a piece of meat having a size of an experimental tumor with an overlaying piece of shaved mouse skin) show indeed that the Os-based PSs (TLD-OsH2B, TLD-Os2IP, and TLD-Os14H) affect the penetration of light into a tumor at different wavelengths. Without PSs, 85–90% of energy is lost across the tumor thickness (about 1 cm) for green (525 nm, 40 mWcm−2), 40% for red (635 nm, 150 mWcm−2) and 45% for NIR (808 nm, 300 mWcm−2) photons. The PSs injected into a tumor further diminishes the light penetration (Table 6).
TLD-OsH2B | MEC (in water) | No PS | 4.5 mg/kg | 9 mg/kg | |
---|---|---|---|---|---|
Green | 12,328 | 0.10–15 | 0.10 | 0.01↓ | |
Red | 3632 | 0.60 | 0.30↓ | 0.08↓ | |
NIR | 2269 | 0.55 | 0.22↓ | 0.15↓ | |
Green | 10,761 | 0.10–15 | 0.07↓ | 0.005↓ | 0.06↓ |
Red | 3119 | 0.60 | 0. | 0.29↓ | 0.05↓ |
NIR | 1957 | 0.55 | 0. | 0.37↓ | 0.08↓ |
Green | 11,716 | 0.10–15 | 0.04↓ | 0.06↓ | 0.06↓ |
Red | 2914 | 0.60 | 0.22↓ | 0.07↓ | 0.05↓ |
NIR | 1376 | 0.55 | 0.11↓ | 0.08↓ | 0.08↓ |
Light attenuation in a phantom tumor (proportion of energy penetrating to the bottom of 1-cm-thick phantom vs. surface) in green (525 nm), red (635 nm), and NIR (808 nm) light.
It is noteworthy that the increase in light attenuation across the wavelengths is PS-specific. At the minimal used dose for each PS, TLD-OsH2B does not attenuate green light penetration, TLD-OsH2IP does not attenuate in red and NIR, while TLD-Os14H does this at all three wavelengths. Also, the increase in the PS concentration results in a progressive and disproportional increase in light attenuation. Notably, the absorbance of the PS measured in water (see Figure 1) is not translated directly into the PS-dependent light attenuation in the tumor phantom.
The limitations of light penetration can be also illustrated by the distribution of PDT-induced damage in tumors. The damage inflicted by red light (660 nm, 90 J/cm−2, 125 mWcm−2) PDT to CT26.WT subcutaneous tumors in BalbC mice after systemic administration of 10 mg/kg of the 1:1 TLD-1433 & apo-Tf premix clearly diminishes as it goes deeper into a tumor (Figure 5C,D). The damage area is not necessarily decreased, but the magnitude of the damage has a definite gradient with coagulative necrosis near the surface and the “general damage” that cannot be defined as coagulative necrosis. The damage is incomplete even when TLD-1433 is associated with apo-Tf (which is expected to facilitate PDT effect as evident from in vitro experiments). Notably, the skin on the way of the light beam is not damaged, which can suggest selectivity of the PS uptake into a tumor. Considering that red light is still delivering 60% of the incident energy at 10 mm depth (Table 6), much more shallow damage (up to about 3 mm) suggests a steep gradient of PDT efficacy as the delivered energy falls below a certain threshold.
Tumor damage (H&E staining) after red light (660 nm, 90Jcm−2, 125 mWcm−2) PDT to CT26.WT subcutaneous tumors in BalbC mice after systemic administration of 10 mg/kg TLD-1433 as 1:1 TLD-1433 & apo-Tf premix. The PDT was performed 4 h after the administration, and the tumors harvested 2 days post-PDT. The Panel a shows untreated tumor, the Panel b shows PS-injected tumor with no irradiation, and the Panels c-d show PDT-treated tumors.
The observed damage should be clearly attributed to PDT but not dark toxicity of the PS in a tumor because, without light, there is no visible damage (Figure 5B).
Figure 6 shows representative examples of coagulative necrosis as a result of damage and a pattern of gradual transition of the damaged zone from an intact tumor to the necrotic area.
Coagulative necrosis and “general damage” in a PDT-treated tumor. The Panel a shows an example of coagulative necrosis area; the Panel b shows a gradient transition from non-damaged tumor area to the necrotic one through the area of “general damage”.
Thermal effect is another consideration because it can potentially occur in a tumor upon light irradiation. For green light, this is possible due to absorption by intrinsic hemoglobin. Hyperthermia is known and used as an anti-tumor modality [49], but in PDT studies, the thermal effect may mask PDT-specific mechanisms of tumor damage.
In the subcutaneous tumor model (CT26.WT tumor in BalbC mice), continuous-wave irradiation with red (635 nm, 150 mWcm−2) or green (525 nm, 40 mWcm−2) light does not show any signs of overheating at the tumor surface. The temperature does not exceed 31–35°C at the end of irradiation even with TLD-Os14H injected intratumorally.
Within a tumor, a combination of deeper-penetrating light and less absorbance by the PS also does not result in considerable thermal effect. Under NIR light alone (808 nm, 600 Jcm−2, 300 mWcm−2), the temperature increases only by 4.8°C (from 26.9 to 31.7°C) during 30 minutes of irradiation. In the presence of Ru-based TLD-1433 (50 mg/kg intratumorally in 100 μL per 20 g BW), the temperature rapidly increases from 28.4°C to 33.6°C (by 5.2°C) at 50 Jcm−2 delivered to a tumor and only by 8.1°C at the end (600 Jcm−2). The temperature reaches no more than 36.5°C showing no PDT-dependent thermal effect. TLD-1433 is responsible only for 3.3°C (41%) of the total PDT-induced increase. Notably, in euthanized animals, the total increase in temperature is similar to that in live animals (although with more linear increase dynamics). This may mean that the active removal of heat by circulating blood is not critical in maintaining the temperature within the safe range during PDT.
In CT26.CL25 subcutaneous tumor model in BalbC mice, intratumoral injection of TLD-1411 or TLD-1433 at 1/20 MTD (1.8 and 5.2 mg/kg, respectively) green (525 nm, 192 Jcm−2, 200 mWcm−2) light PDT resulted in a fast reduction or complete regression of the tumors and a temporary (8–9 days) delay in their growth [50]. This effect was statistically significant (P < 0.05) only for TLD-1433 translating to an increased survival (about 15% of the animals surviving beyond the 90 days follow-up period).
The dose of both PSs has to be increased to 1/2 MTD (18 and 52 mg/kg, respectively) to obtain significant (P < 0.01–0.05) PDT effect of greater magnitude, with only continuous-wave PDT effective. About 50% of the animals survived beyond 60 days for TLD-1411 and about 75% beyond 90 days for TLD-1433. Figure 7 shows an example of the PDT-induced tumor damage and subsequent regression.
An example of successful tumor destruction by 53 mg/kg TD1433-mediated PDT under continuous-wave green light (525 nm, 192 Jcm−2, 200 mWcm−2).
These results are obtained with a green light that has only a superficial light penetration. TLD-1433-mediated (50 mg/kg =47% MTD) PDT using deeper-penetrating NIR light (808 nm, 600 Jcm−2, 400 mWcm−2) does not reach however the efficacy of green light PDT despite 6.7 times greater radiant exposure [43]. Only a trend to improvement in survival (P = 0.164–0.179 vs. dark toxicity and light only) could be observed. This is not surprising by itself considering that TLD-1433 has extremely low absorbance in NIR. Nevertheless, the P values allow hypothesizing that a significant effect could be achieved with more powerful experimental design or greater delivered light energy.
More encouraging is a beneficial effect of combining TLD-1433 with Tf. A highly significant PDT effect in the animals survival can be observed when 4:1 TLD-1433 & apo-Tf premix (50 mg/kg TLD-1433) is injected instead of TLD-1433 only (P = 0.0182–0.0032 vs. dark toxicity and light only). No dark toxicity for tumors (effect of the premix with no light on tumor growth) is detected. Although the difference vs. TLD-1433-induced PDT (P = 0.0633) still does not reach statistical significance threshold, the P value, again, is small enough to talk about a trend toward the improvement. The result reinforces the valuable finding of the benefit of TLD-1433-Tf premix in PDT efficacy improvement under NIR light. This is especially noteworthy because the absorbance of TLD-1433-Tf in NIR range is still very low compared to the absorbance in green light despite the facilitating effect of Tf.
Anyways, 600 Jcm−2 NIR PDT is able to maintain about 70% of the animals surviving beyond 90 days follow-up (vs. only about 30% after PDT mediated by TLD-1433 that was not mixed with Tf), which is not less than survival after 192 Jcm−2 green light PDT. This is especially encouraging considering that NIR PDT is not effective in vitro, either with or without Tf. The failure to detect in vitro PDT effect in NIR is possibly because the short-term viability assay (reflecting metabolic suppression rather than actual cell death) could be not sufficient to detect the effect of NIR that has less energy per photon. The effect
This double benefit of using apo-Tf as a delivery vehicle for TLD-1433 resembles the already mentioned effect in vitro for red light PDT using AY27 cells where TLD-1433-Tf decreased dark toxicity and increased PDT efficacy. Note however that in vitro experiments using cancer cell line determined dark toxicity in cancer cells and hence can be rather an estimate for dark toxicity of the PS in tumors. In contrast, in vivo model considered the benefit for systemic toxicity.
NIR PDT efficacy in vivo can be also demonstrated by direct quantitation of the tumor damage. Even suboptimal PDT (200 instead of 600 Jcm−2) shows a trend (P = 0.104, df = 8, one-tailed) to an increase in the relative area of damage in a tumor as compared to the tumors not subjected to PDT (dark and tumor alone data pooled). The damage area is increased to 33.4 ± 10.2% (N = 4) vs. 17.1 ± 2.5% (N = 6). The effect is only moderate and does not reach statistical significance, but this could be because of suboptimal (200 Jcm−2) radiant exposure.
Among the Os-based PSs (TLD-OsH2B, TLD-OsH2IP, TLD-OsH2dppn), the MTD values vary. TLD-OsH2B is the most toxic (MTD = 1.25 mg/kg) and TLD-OsH2dppn the least toxic (MTD = 47 mg/kg), which is more than one magnitude of difference [31]. For comparison, in vitro dark LD50 for three PSs were much closer to one another (416–617 μM for U87 cells and 476–744 μM for HT1376 cells). As it was mentioned already, however, in vitro dark toxicity for cancer cells and in vivo MTD as systemic toxicity is not directly comparable.
TLD-OsH2IP-mediated (3 mg/kg = 1/2 MTD) continuous-wave red light PDT (635 nm, 192 or 266 Jcm−2) significantly slows down the tumor growth and increases survival vs. light only group (P < 0.01). The effect is however temporary (like TLD-1433, as discussed above). Increasing the radiant exposure to 266 Jcm−2 allows for a better result, with the cases of tumor regression and survival significantly increased vs. both dark and light only groups (P < 0.01) and about 80% of the animals surviving beyond the 50 days follow-up. Considering high photostability of TLD-OsH2IP, further increase in power and energy density for red light PDT is possible. This could potentially allow achieving complete tumor-suppressing success, at least in the framework of this in vivo model.
We have discussed previously that NIR effect is potentially possible even at suboptimal settings with Ru-based TLD-1433-Tf formulation. This formulation has an absorbance in NIR higher than TLD-1433 but still lower than Os-based TLD-OsH2dppn (MEC = 777–1459 vs. 2273 M−1 cm−1, respectively). Hence, we could expect NIR PDT effect for TLD-OsH2dppn because this PS absorbs much better in NIR than TLD-1433. The PDT effect is indeed observed at 3 mg/kg of the PS and 800 nm and 600 Jcm−2, with about 60% of the animals surviving beyond 50-day follow-up vs. dark and light only groups (P < 0.01 and 0.0001, respectively). This result further demonstrates the potential of NIR PDT application using transition metal-based PSs. The NIR PDT still requires delivery of at least 3 times more photons than for red light PDT to match it in efficacy (considering the difference in absorbance and quantum energy), but this does not pose a serious problem because of thermal safety of the light exposure as it was discussed above.
Another anticancer application of PDT using transition metal-based PSs is urothelial non-muscle invasive bladder cancer [52]. As it was mentioned above, Ru-based TLD-1433 accumulated selectively in the orthotopic urinary bladder tumors (instillation with 0.05 mg/mL). At higher concentration of TLD-1433 (6 mg/mL) that is more relevant for the future clinical applications, green light (535 nm, 90 Jcm−2) PDT causes full depth (2–3 mm) necrosis in a tumor that showed a deep red coloration (Figure 8). Importantly, PDT spared the muscle and urothelial tissue adjacent to the tumors, with only a transient local inflammation of the adjacent urothelium. This is a decisive advantage because the collateral muscle damage impairing the bladder function was a reason for the failure of the prior clinical trials on bladder cancer PDT.
Damage to muscle noninvasive AY27 tumor induced orthotopically in fisher rats’ urinary bladder 2 days after TLD-1433-mediated green light (535 nm, 90 Jcm−2) PDT. TLD-1433 at 6 mg/mL was instilled into bladders, and PDT performed after 1 h of incubation and TLD-1433 washing out of the bladder cavity. The macroscopic image and H&E images are shown.
The results of the preclinical research allowed planning and initiation of a clinical trial for non-muscle invasive bladder cancer (NMIBC) at the Princess Margaret Cancer Center in Toronto, Canada. It is noteworthy that although several other Ru-based complexes (NAMI-A, KP1019, and KP1339) have currently entered clinical trials as antineoplastic drugs, TLD-1433 is meanwhile the only transition metal complex tested in a trial as a PS for PDT [5, 53].
TLD-1433-mediated PDT (525 nm, 3 W, target dose = 90 Jcm−2) with intravesical irradiation demonstrated safety and efficacy of the PS in patients with non-muscle invasive urinary bladder cancer (NMIBC) who were previously unresponsive to contemporary anticancer therapy, including the intravesical therapy with Bacillus Calmette-Guérin (BCG) [54]. At therapeutic dose (0.70 mg per cm2 of bladder surface), 2 of 3 patients were tumor-free at the 180-day posttreatment, with no essential adverse effects and minimal systemic absorption of the PS (complete clearance from the plasma within 72 hrs) and no photosensitivity reactions. This outcome is successful enough to warrant further advance to a phase II trial.
It is worth noting that at least one of the PSs under discussion, TLD-1433, can be activated not only by nonionizing electromagnetic radiation but also by ionizing one (X-ray). Transition metal complexes are theoretically prone to this because the atoms of transitional metals can attenuate X-rays. For example, Ru attenuates X-ray photons at 75 keV to an extent comparable to iodine, an established X-ray imaging agent [55]. Activation of the PS by X-ray is very advantageous because it allows treatment of the tumors located considerably deeper than reachable by NIR. TLD-1433 retains its functionality after 75 keV irradiation at doses up to 20Gy and retains its ability to generate postirradiation *OH signal under subsequent red light exposure. In cultured human glioblastoma U87 cells, 20 μM TLD-1433 exerted non-zero radio-enhancement effect after 75 keV X-ray exposure (5 Gy) at the magnitude of 37% cell kill (P = 0.020, df = 3), at dark toxicity of 20% cell kill (P = 0.009, df = 3). Moreover, the effect can be detected in vivo in CT26.WT tumors induced in BalbC mice. At 1 Gy, X-ray resulted in a 2.9-fold increase in coagulative necrosis area in the tumors on day 2 postexposure vs. TL1433 alone and X-ray alone groups pooled (P = 0.007, df = 15) [56]. It is noteworthy that thermal effects at these conditions are highly unlikely because 1 Gy deposits only 0.001 J per gr tissue, which, at the estimated average specific heat capacity C ≈ 3.7 J g−1 K−1 [57], provides a very small (0.0003°C) increase in temperature.
In vitro and in vivo data suggest that transition metal-based complexes are versatile as PSs with diverse photophysical, photochemical, and biological properties. This includes activation over a wide range of wavelengths and high singlet oxygen yield and photobleaching resistance. The Ru(II)-based PSs may have very high cytotoxic efficacy far exceeding the established porphyrin-based PSs. The Os(II)-based PSs are notable in their PDT activity at deeper-penetrating NIR light PDT. Moreover, even Ru(II)-based PSs could be effective in vivo under NIR light. Transition metal-based PSs demonstrate both Type I and Type II photoreactions and can be active in hypoxic conditions, presenting the potential for the treatment of bulky hypoxic tumors. These properties are further facilitated by their ability to associate with endogenous metal transporter molecules, like human apo-Tf, which enables their targeted endocytosis. Furthermore, the association with Tf increases absorptivity at longer wavelengths (far red to NIR range), ROS generation, and finally tumor destroying potential. The observed capacities of the PSs may allow overcoming notorious challenges of PDT: the necessity for deeper light penetration, the selectivity of accumulation in tumors, and activity under hypoxic conditions. Finally, the research has led to the first clinical trial for this class of PSs, with a successful outcome and potential to further clinical advance. This raises justified hopes that with the ongoing technological improvements, such as the development of transition metal complexes (including the advanced Theralase PSs discussed above), and personalized dosimetry with a treatment planning approach, PDT has the potential to become integrated into the mainstream of cancer treatment.
The authors are grateful to the employees of Theralase Inc. for ensuring a very helpful and benevolent working atmosphere and particularly appreciate the contribution of the members of its research team, both past (Jamie Fong, Kamola Kasimova, Yaxal Arenas, and Savo Lazic) and present (Manjunatha Ankathatti Munegowda) for their experimental work and publications used in this chapter. The next acknowledgement is of the invaluable help and crucial support by Prof. Lothar Lilge at Princess Margaret Cancer Centre, Toronto, Ontario, Canada, and his group (including Sarah Forward and Carl Fisher) and of the staff of the other departments, facilities, and services at the center for doing their best to make our work going smoothly and effectively. We greatly appreciate the collaboration with Prof. Sherri McFarland at Acadia University, Wolfville, Nova Scotia, Canada, and her group.
No conflict of interest has been declared.
Cowpea is an important grain legume because it is a major source of cheap dietary protein which ranges from 23 to 32% [1, 2, 3] and 64% carbohydrate [4] that complements the over dependence on low-protein staple cereals and potatos in South Africa. The largest production of this crop is in sub-Saharan Africa, where it is a staple food crop and feed for animals [5]. Cowpea can be prepared in different forms (boiled as pudding and soup, steamed as
According to DAFF [11] the world annual cowpea grain production is about 3 million tons that is produced on 12.5 million hectares but only a small proportion enters the international trade. West and Central Africa is the leading cowpea producing regions in the world, producing 64% of the estimated 3 million tons of cowpea seed that is produced annually. Nigeria is the world’s leading cowpea-producing country followed by Brazil. Other countries in Africa include, Senegal, Ghana, Mali and Burkina Faso. Ghana, Niger and Cameroon are significant producers. The major production areas elsewhere in the world are Asia (India, Myanmar) and America (USA, Brazil, West Indies). Conservative estimates suggest that greater than 12.5 million ha are planted annually to cowpea around the world. Of this area, about 9.8 million ha are contributed from West Africa, making it the region with the largest production of cowpea in the world [2, 11].
DAFF [11] reported that small-scale farmers are the major cowpea producers in South Africa under rain-fed farming conditions but there are no records regarding the size of area under production and yields produced. However, [12] reported that the land area used by farmers to produce cowpea ranges between 0.5 and 2.0 hectares per farmer. Farmers that cultivate land area up to two hectares make use of tractor or motorized implements [7] to save cost and to produce more above their family consumption and the excess is preserved for sale. The major cowpea producing areas in South Africa are Limpopo, Mpumalanga, North-West and KwaZulu-Natal [11]. A study conducted by [7] showed that farmers grow cowpea for consumption and as source of income.
Farmers prefer important traits such as seed color, seed size, growth habit and early maturity varieties. This suggests the great opportunity that exists for the development of cowpea varieties with divers coat colors and high potentials for their demand and marketability. Based on the duration of rainfall, some farmers choose early maturing varieties, as this will assist the crop to escape moisture deficits and frost damage while others choose late maturing types because they are more interested on the fodder for livestock feeding. On the other hand, KwaZulu-Natal farmers preferred cowpea varieties based on growth habit [12]. The diverse preferences by farmers call for the need to develop varieties with different agronomic and quality traits. The purpose of the research was to develop cowpea varieties that would overcome the various limitations encountered by farmers and to meet their needs. To develop varieties that will meet the needs of farmers and consumers, a well-tailored need assessment survey was conducted in some of the cowpea production areas between 2006 and 2007 [12]. Through this survey, the dire needs of farmers and quality trait preferred by consumers were documented and used as the breeding objectives [13, 14]. Therefore aim of the research was to develop cowpea varieties that would overcome these constraints through a well-designed breeding programmes and activities while the specific objectives include:
Development of early maturing varieties (70–90 days). These are grain type of cowpea which are commonly cultivated in regions with short rainfall duration (Figure 1). In higher rain region, they can be used for double cropping (first cropping from October–December and second cropping from January to March). They are best varieties to use to evade terminal drought.
Development of Medium maturing variety (91–100 days). These are dual-purpose cowpea types. They are good for grain and fodder for animal feed (Figure 2).
Development of late maturing varieties (101–120 days). They are mainly for fodder and leafy vegetable production with limited seed production. The medium and the late cowpea types are of high value for integrated livestock production and rural livelihood in rural communities (Figure 3).
Development of high yielding varieties with multiple trait characteristics (adaptation and pest (insect and disease resistance). The prevalent insect pests include aphid, leafhopper, cowpea bruchid and blister beetles [13] and the diseases are bacterial blight, anthracnose as well as nematodes. Multiple pest resistance genes have been incorporated in most of the elite cowpea lines.
To develop high consumer quality trait varieties such as seed size, color, low cooking time and high protein content. To incorporate these quality traits in one commercial variety is practically impossible. Therefore, development of high yielding and pest resistance cultivars with different quality traits is the practice. Seed coat color and texture is an important consumer preferred quality traits. Large seed size with bright coat color command a high premium price in South Africa.
Common insect pests of cowpea
The common insect pests of cowpea include, cowpea aphids, leaf hopper (Figure 4), bruchid, blister beetles and pod-sucking bugs (Figure 5) [13]. The economic importance of these insects vary from one location to another depending on the climatic variables that promote their abundance and the presence of their alternate hosts. It is important to note that the presence of winter for at least 4–5 months in some provinces has reduced drastically the carryover effects of some of these pests from one cropping season to another thereby reducing insect spectra and early incidence in South Africa unlike West Africa where there is no winter. Most of the breeding parents used for the development of the elite genotypes in South Africa were introduced from IITA-Nigeria and they possess multiple resistance to both aphid and bruchid, and were incorporated into the elite lines.
Two different grain cowpea varieties.
Two dual-purpose cowpea varieties.
Two fodder (late) cowpea types (top and bottom-Janafod).
Susceptible cowpea-IT00K-1263 to leafhoper infestation (left) resistant cowpea-UL-1010 (right).
Insect pest of cowpea:
One the major constraints to cowpea production in South Africa is lack of improved varieties. This was identified in the need assessment survey [7, 12]. To solve this constraint, international improved varieties were introduced in 2005/6 from International Institute of Tropical Agriculture (IITA), Nigeria for adaptive breeding purposes. Some of the varieties possess economic traits (high yielding, pest resistance and quality). The introduced varieties formed the breeding stock for the development of new adapted germplasm in South Africa. Based on the screening outcomes, promising varieties were selected for pair-wise crosses with promising local South African germplasm lines such as Glenda and Betchuana white to develop broad-based F2 population which was used to form the various segregation populations for the specific objectives. Some of the varieties possess economic traits (high yielding, pest resistance and quality). The introduced varieties formed the breeding stock for the development of new adapted germplasm in South Africa. Based on the screening outcomes, promising varieties were selected for pair-wise crosses with promising local South African germplasm lines such as Glenda and Betchuana white to develop broad-based F2 population which was used to form the various segregating populations for the specific objectives. Some of these genotypes were screened in hot spots (Bela-Bela and Taung) for adaptation and important traits (yield, aphid resistance, and diseases (bacterial blight and anthracnose) and advanced to subsequent generations. Between 2005 and 2007, intensive screenings were conducted on the segregation populations using Pedigree method. From F4−F8, segregating populations were subjected to selection and advancement (using pedigree selection method) in a replicated field trials for adaptation and validation of important economic traits [7, 14, 15]. From (F9–10)- an advanced fixed generation with promising genotypes from various traits for various specific objectives were tested in multiple locations for G X E [16, 17, 18] for adaptation. During the field evaluation processes, the populations were also subjected to aphids, bacterial blight, anthracnose screenings under natural infestation, and bruchid screening in the laboratory. Promising varieties selected from the evaluations were tested over seasons.
All the data collected were subjected to analysis of variance (ANOVA) procedure using Genstat Version 20 software. Means were separated using Duncan Multiple range Test (DMRT) at P < 0.05.
The common insect pests of cowpea include, cowpea aphids, leaf hopper (Figure 4), bruchid, blister beetles and pod-sucking bugs (Figure 5) [13]. Most of the breeding parents used for the development of the elite genotypes in South Africa were introduced from IITA-Nigeria and have multiple resistance to both aphid and bruchid, and were incorporated into the elite lines (Table 1). This suggests that the parental lines used to develop the elite breeding lines have high heritability and were able to transmit the genes to their offspring [18]. The implication of the multipest resistance is that farmers can grow the varieties with reduced cost of pest control thereby enabling the farmers to maximize profit.
Resistance to | |||||||
---|---|---|---|---|---|---|---|
Pedigree | Grain yield (kg/ha) | Fodder yield (kg/ha) | Aphid | Viruses | bruchid | Leafhopper | Bacterial blight |
IT98K-962 X IT97K-499-35 | 1740.50bc | 1987.70cd | R | R | R | R | R |
IT98K-962 X IT98K-205-8 | 1928.50b | 2679.70b−d | R | R | MR | R | R |
IT98K-962 X TVX 3236 | 1557.90cd | 3611.00a | R | R | MR | R | R |
IT97K-497-2 X IT98K-962 | 1670.60b−d | 2796.50a−c | S | R | R | R | R |
IT97K-497-2 X Oloyin | 1561.70cd | 2658.10b−d | S | R | MR | S | MR |
IT97K-497-2 X IT82D-889 | 1675.40b−d | 2659.50b−d | S | R | MR | R | R |
IT00K-1217 X IT98K-962 | 2595.20a | 2633.10b−d | R | R | R | R | R |
IT98K- 205-8 X Oloyin | 1441.20d | 2283.10b−d | R | R | MS | R | MR |
IT98K-205-8 X IT98K-406-2 | 1807.50bc | 2488.60b−d | R | R | R | R | R |
IT90K-76 X Oloyin | 1891.70b | 3022.00ab | R | R | R | R | R |
BW (Local check) | 1858.70b | 1934.20d | S | S | S | R | R |
Grand mean | 1793.5 | 2614 | |||||
P-level (P < 0.05) | 0.001 | 0.001 |
Yield and pest resistance of elite cowpea breeding lines.
R = resistant, MR = medium resistance, MS = Medium susceptible, S = susceptible (Singh et al., 1997).
The performance of the extra-early and early maturing varieties developed are shown in Table 2. Early maturity was also bred with good quality traits (seed size and color), plant type (erect or semi-erect), high yield, as well as pest resistance [10, 19]. This is to increase the acceptability and adoption of the varieties. In addition, early maturing varieties are regarded as “climate smart” and water use efficient varieties [1, 15]. Farmers in drought-prone regions of Limpopo Province can successfully grow such varieties within the short rainfall duration in their environment. The varieties are also regarded as the grain type cowpea (Figure 1).
Variety | Potchefstroom | Taung | ||||
---|---|---|---|---|---|---|
Grain yield kg/ha | Maturity | 100seed weight (g) | Grain yield kg/ha | Maturity | 100seed weight (g) | |
99 K-494-6 | 3064.6 | 99.22 | 16.49 | 3206.2 | 92.84 | 17.24 |
Pan-311 | 2913.3 | 80.22 | 14.58 | 1873.1 | 92.59 | 13.56 |
IT00K-1217 | 2894.6 | 92.55 | 15.05 | 1719.7 | 92.59 | 15.5 |
TVu 13,464 | 2722.9 | 85.88 | 12.96 | 1968.9 | 91.84 | 12.96 |
97 K-1069-8 | 2377.9 | 97.55 | 15.83 | 2296.2 | 99.59 | 15.43 |
97 K-1069-1 | 2321.1 | 94.22 | 16.99 | 2708 | 99.09 | 17.89 |
95 K-1491 | 2287.2 | 91.55 | 18.55 | 1972.7 | 94.59 | 18.68 |
83D-442 | 2266.7 | 91.55 | 13.18 | 2369 | 95.84 | 12.29 |
97 K-568-18 | 2227.2 | 97.22 | 16.91 | 1784.7 | 98.09 | 18.12 |
98 K-530-1 | 2180.8 | 95.88 | 18.88 | 1642.6 | 97.59 | 17.75 |
93 K-452-1 | 1823.7 | 91.55 | 15.05 | 1908 | 93.59 | 16.85 |
1.44 | 1.25 | 0.61 |
Performance of early and medium maturing cowpea varieties evaluated in two locations.
Medium maturity cowpea varieties were developed for regions with higher rainfall 600–750 mm per annum with summer rainfall duration of 3–4 months. Medium cowpea types are characterized with good grain and fodder yield and are often regarded as the dual-purpose cowpea (Table 3 and Figure 2) [20, 21]. They are also suitable for livestock integration. This type of cowpea also combine good quality traits (seed size and color) with, high yield, plant type (semi-erect) and pest resistance. The list of medium maturity cowpea are shown in Tables 2 and 4. Dual-purpose cowpea varieties under good rainfall distribution produce grain yield far above the grain type because it takes extra time to develop more photosynthetic apparatus such as leaves, canopy, branches and height which enables the varieties to produce flowers and more pods which are translated into high grain yield [19, 20, 21]. The high fodder yield is generated from the branches and leaves [2, 5].
Variety | Grain yield kg ha−1 | Fodder Yield kg ha−1 | Maturity (days) | 100 seed weight (g) | Harvest index |
---|---|---|---|---|---|
TVU 5138 | 2799 | 5529 | 99.25 | 20.96 | 0.506 |
Bechuana white | 2384 | 5520 | 103.50 | 14.74 | 0.441 |
TVU 8464 | 2010 | 3669 | 97.50 | 14.09 | 0.541 |
TVU 13004 | 1993 | 5101 | 103.75 | 15.26 | 0.410 |
TVU 14190 | 1969 | 4912 | 99.50 | 18.71 | 0.429 |
TVU 8016 | 1960 | 5466 | 95.00 | 18.43 | 0.363 |
TVU 2095 | 1639 | 4202 | 104.25 | 18.16 | 0.402 |
TVU 5146 | 1610 | 4311 | 101.75 | 20.42 | 0.387 |
TVU 3416 | 1541 | 6286 | 110.25 | 14.27 | 0.241 |
GLENDA | 1496 | 4293 | 103.50 | 12.50 | 0.362 |
TVU 3391 | 1419 | 5862 | 112.25 | 12.09 | 0.248 |
TVU 13932 | 979 | 6444 | 144.25 | 16.52 | 0.164 |
TVU 1836 | 694 | 2350 | 103.00 | 14.52 | 0.179 |
TVU 9671 | 512 | 2532 | 109.25 | 19.50 | 0.206 |
P Level (P < 0.05) | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 |
Yield of dual-purpose cowpea varieties.
Variety | Grain yield (Kg ha −1) | Fodder yield | 100 seed weight (g) | maturity (days) |
---|---|---|---|---|
6--1--1 | 2610.1b | 8296.4a | 22.67a | 95.0b |
6--4--1 | 3039.9a | 5036.8c | 19.29ab | 95.0b |
6--4--4 | 3059.0a | 6222.2ab | 19.25ab | 96.0b |
6—2—1 | 1895.1d | 2601.3e | 19.08c | 93.0b |
6—2—2 | 2142.6c | 2800.1d | 19.89ab | 95.0b |
6—3—1 | 2080.0c | 3021.98d | 19.20c | 91.0b |
JanaFod | 1650.34e | 6124.67ab | 11.02 d | 118a |
P Level (P < 0.05) | 0.001 | 0.0001 | 0.002 | 0.04 |
Yield of some advanced medium maturity elite cowpea breeding lines.
Early maturity = 80–90 days, Medium maturity 91–100 days, Late maturity = >101 days.
One of the ways that cowpea contribute to food security and nutrition is through the pods and leaves (Figure 3) which are eaten as vegetable to relish meals. This is an important cowpea menu in South Africa. It is locally called “
Four advanced vegetable cowpea types with long pods ranging from 30 - 75 cm.
Vegetable varieties offer a regular source of income to farmers as they have easy buyers of their produce in the rural markets who sell the green pods with other leafy vegetables, spinach and lettuce. The adoption of these varieties will increase family intake and improve their diet and nutrition reduce malnutrition in rural communities [6, 7].
Intercropping is an integral part of cropping system in many provinces of South Africa particularly by smallholder farmers where communal land is limiting and drought-prone. In South Africa, many small scale farmers practice intensive crop production to reduce the risk of crop failure and maximize profit per unit area [6]. Additional reason for intercropping is to reduce pest incidence. Specific varieties were developed with particular plant architecture and canopy structure designed for alternate row and double row cereal-cowpea intercropping system for maximization of land equivalent ratio (LER). Cowpea with narrow leaf blade and canopy width has been developed for alternate row intercropping system with cereals (Figures 7 and 8). They require reduced inter- and intra-row spacing for maximization of plant density per hectare. The varieties developed for intercropping particularly the early maturing varieties can always fit in any intercropping system. The implication of this is that the varieties increase the productivity and profitability of the farmers using poor marginal soils (Figure 8) [8, 14].
Narrow leaf cowpea types developed for high density monocropping and intercropping.
Cowpea shows its ability to meet its nitrogen requirement as compared to maize.
One of the ways to reduce over dependence on chemical spray for the control of prevailing pest spectrum of cowpea is to develop varieties with increased host plant resistance. This has been achieved by deploying varieties with combined insect pest resistance as breeding parents to develop new germplasm with medium to high resistance to different insect pests (Table 1). The promising genotypes were screened for resistance for each insect pest for confirmation of resistance using appropriate screening technique [22, 23]. The elite lines with combined pest resistance have the advantage of requiring minimum insect spray. This will ultimately reduce production cost and increase the profit margin of the farmers.
Few varieties were developed for late maturity. They are photosensitive and suitable for fodder and leafy vegetables (Table 5 and Figure 3). The fodder yield is very high with low grain yield. Some varieties if planted in October/November may not produce seed until the month of March when day length is shorter. To produce seed of such varieties, planting should be done during the first week of January while for fodder production planting can be done in the months of October or November. JanaFod is one of the late maturing varieties (Table 6 and Figure 3) developed for fodder and could produce 6000 kg ha−1 of haulm [2]. The advantage of producing late maturing varieties is that it will enhance hay/fodder production particularly by commercial farmers who can use irrigation in their production system. The fodder produced can be bailed and sold to other farmers during offseason or farmers who cannot produce fodder for their animals. The fodder production from the developed varieties will enhance feed security for livestock industry in South Africa.
Variety | Grain yield kg/ha | Fodder yield kg/ha | Maturity | 100-Seed weight (g) | Harvest index |
---|---|---|---|---|---|
TVu 3310 | 3947 | 21,293 | 140.937 | 10.30 | 0.1539 |
TVu 13,437 | 525 | 13,524 | 123.604 | 11.93 | 0.0560 |
TVu 1878 | 2371 | 10,584 | 134.270 | 17.41 | 0.2235 |
TVu 7530 | 2076 | 6255 | 89.134 | 14.33 | 0.4315 |
TVu 11,955 | 2220 | 6065 | 92.937 | 14.30 | 0.4213 |
TVu 1645 | 3170 | 6026 | 94.604 | 9.49 | 0.6635 |
TVu 1979 | 1940 | 5966 | 92.937 | 11.85 | 0.3352 |
Bechuana white | 2223 | 5005 | 103.270 | 14.88 | 0.4424 |
TVu 13,953 | 127 | 4669 | 136.937 | * | 0.0215 |
TVu 14,719 | 2424 | 4323 | 98.604 | 12.71 | 0.5576 |
IT00K-1060 | 1110 | 4280 | 103.937 | 18.42 | 0.2942 |
TVu 7757 | 1886 | 3053 | 88.604 | 11.16 | 0.6177 |
Glenda | 1179 | 3019 | 106.937 | 13.72 | 0.4033 |
P-level (P < 0.05) | 0.010 | 0.01 | 0.001 | 0.001 | 0.002 |
Performance of fodder cowpea varieties evaluated at Taung.
Variety | Fresh pod weight | Maturity | 100-seed |
---|---|---|---|
Kg ha−1 | (days) | weight (g) | |
TVu 1916 | 5143a | 99b | 13 |
TVu 1727 | 2743b | 106a | 18.4a |
TVu 15654 | 2183c | 89c | 18a |
TVu 6439 | 1888d | 96b | 15.3d |
TVu 14868 | 1303e | 92c | 16.1c |
Tvu 14,868 | 1232f | 90c | 16c |
TVu 2852 | 825 g | 98b | 15d |
TVu 6477 | 721 g | 107a | 14.4e |
TVu 14861 | 684 h | 92c | 15.8d |
P Level (P < 0.05) | 0.001 | 0.001 | 0.001 |
Performance of vegetable cowpea varieties.
Important quality traits apart from the nutrient elements addressed through breeding programme include, seed coat color, texture and size. These traits influence consumer preferences and demand pull [24]. Fortification of the varieties with nutrients such as protein, zinc and iron is an integral part of our breeding activities. Elite varieties are subjected to nutrient analyses in search of varieties with higher nutrient contents to be used as breeding parents (Tables 7 and 8). To meet the needs of consumers, different seed coat, and eye colors (Figure 9) with different coat textures (smooth, rough and wrinkled) were developed. Consumers’ feedback suggests that rough and wrinkled seeds cook faster because they imbibe water faster during cooking as compared to smooth–coated varieties. These quality traits were achieved by crossing parents with different coat colors, eye colors and seed coat textures as well as seed size. The variation in nutrient content indicates variation in the genetic makeup of the varieties. The fortification of the varieties with nutrients especially zinc and iron will enhance the nutrition of the consumers and in addition, it offers opportunity for the varieties to be used for further crop improvement to generate new genotypes with higher nutrient contents. The different quality traits exhibited by the varieties give the farmers the opportunity to make choice and select their preferred varieties. This will improve their intake and nutrition and reduce malnutrition [7]. The availability of the varieties will enhance food security and nutrition in South Africa. .
Genotypes | Maturity days | Maturity periods | Seed weight | Seed size | Seed color | Eye color | Coat Texture |
---|---|---|---|---|---|---|---|
IT98K-962 X IT97K-499-35 | 94 | Early | 20.46 | Large | White | Black | Wrinkled |
IT98K-962 X IT98K-205-8 | 91 | Early | 18.30 | Large | White | Black | Wrinkled |
IT98K-962 X TVX 3236 | 96 | Early | 18.61 | Large | White | Brown | Wrinkled |
IT97K-497-2 X IT98K-962 | 93 | Early | 22.70 | Large | White | Black | Rough |
IT97K-497-2 X Oloyin | 95 | Early | 18.60 | Large | Cream | Brown | Smooth |
IT97K-497-2 X IT82D-889 | 95 | Early | 20.52 | Large | Brown | Brown | Smooth |
IT00K-1217 X IT98K-962 | 96 | Early | 22.08 | Large | White | Black | Smooth |
IT98K- 205-8 X Oloyin | 95 | Early | 19.28 | Large | Brown | Black | Rough |
IT98K-205-8 X IT98K-406-2 | 89 | Early | 19.39 | Large | White | Black | Rough |
IT90K-76 X Oloyin | 94 | Early | 21.86 | Large | White | Brown | Wrinkled |
BW (Local check) | 95 | Early | 15.67 | Medium | White | Gray | Smooth |
Some quality traits (seed size, seed color, eye color and coat texture) of elite cowpea breeding lines.
Early maturity = 80–90 days, Medium maturity 91–100 days, Late maturity = >101 days. Large seed = above 18 g, Medium size = 12–18 g.
Variety | CP (%) | Zn (ppm) | Fe (ppm) |
---|---|---|---|
Bechuana W. | 20.30a | 16.55abc | 49.95abc |
Glenda | 24.70a | 36.73abc | 79.43abc |
IT00K-1060 | 25.72a | 36.50abc | 107.08abc |
IT00K-1263 | 25.26a | 26.88abc | 94.65abc |
IT84S-2246-4 | 24.35a | 18.05abc | 123.30abc |
IT86D-1010 | 19.03ab | 59.57ab | 145.77ab |
IT86D-719 | 24.05a | 59.75ab | 150.55a |
IT95K-1156-3 | 25.00a | 38.80abc | 113.70abc |
IT95 K-1491 | 27.05a | 42.35abc | 108.60abc |
IT97K 390–2 | 25.45a | 60.45a | 121.55abc |
IT98K-1105 | 25.30a | 15.75abc | 47.35abc |
IT98K-463-6 | 29.85a | 17.13abc | 55.67abc |
IT98 K-530-1 | 23.23a | 34.00abc | 133.80abc |
IT98K-690 | 26.63a | 30.97abc | 130.03abc |
IT99K-316-2 | 22.25a | 44.20abc | 110.65abc |
IT99 K-494-6 | 26.60a | 46.3abc | 94.33abc |
IT99K-529-1 | 27.90a | 18.60abc | 47.20abc |
JanaFod | 26.40a | 39.40abc | 20.00c |
TVu 13464 | 21.25a | 38.55abc | 108.45abc |
P-Level | 0,04 | 0,04 | 0,03 |
Nutrient contents of improved cowpea varieties.
Different seed coat colors bred for south African consumers.
As many genotypes are in the pipeline of development and selection, some of the advanced breeding lines that have been test in multiple locations and seasons were submitted for registration with the intension to release them for commercialization. In the light of this, four cowpea varieties have been registered for a release at the National Department of Agriculture (DAFF), Genetic Resources, Pretoria. The varieties are:
JanaFod (ARC-09-001, ZA 20125043) cream cowpea
ARC-GCI-CP76 (VL 2009/7536) brown cowpea
UL-589 (VL 2017/10266) white cowpea
UL-1010 (VL 2017/10267) white cowpea
In addition, six early/medium maturity cowpea varieties have been submitted for registration at the National Department of Agriculture (DAFF), Genetic Resources, Pretoria and they include
UL-11
UL-12
UL-13
UL-14
UL-15
UL-16
These varieties upon registration and release will enhance the food and nutrition security of people in South Africa. Farmers will have seed of improved and pure varieties available to plant, and as they cultivate these varieties their profit margin will increase with better nutrition. This will also create jobs for all the value chain in cowpea production [7].
Cowpea production in South Africa is limited by lack of improved varieties that exhibit good agronomic traits and pest resistance. In the last decade and a half, significant breeding efforts as shown in the results of this study have attained great achievements in cowpea improvement to address the limitations in cowpea production. Several elite cowpea genotypes in the pipeline of development have been achieved, varieties that exhibit good agronomic and quality traits to enhance intake and nutrition in the rural communities have been developed 10 genotypes expressed high grain yield with combined pest resistance (aphids, bruchid, virus, leafhopper and bacterial blight). The implication of this achievement is that farmers can attain more grain yield per unit land area. In addition, the cultivation of these genotypes will reduce the cost of pest control and increase the profit margin of the farmers. Another important achievement of the study is that four elite varieties (JanaFod, ARC-GCI-CP76, UL-58 and UL-1010) have been registered while six varieties (UL-11, UL-12, UL-13, UL-14, UL-15 and UL-16) have been submitted for registration. The future activity is to commercialize the varieties to enhance uptake and availability of seeds to seed growers, farmers and consumers. The availability of seeds of these varieties will increase cultivation by farmers, enhance food security and nutrition and reduce malnutrition in South Africa. Since breeding is a continuous process, some of the varieties and other promising genotypes will be used through recurrent selection to develop new germplasm that are more adapted to the region as well as being climate smart.
The financial assistance of Department of Agriculture Fishery and Forestry, Pretoria, South Africa and Agricultural Research Council, Pretoria is gratefully acknowledged. The author is grateful for technical assistance from SandileNgcamphalala, Isaac Ntshalishali and Vuhlahani Thaphathi.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2460},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17721}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:394},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"297",title:"Animal Science",slug:"animal-science",parent:{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"},numberOfBooks:20,numberOfSeries:0,numberOfAuthorsAndEditors:510,numberOfWosCitations:405,numberOfCrossrefCitations:329,numberOfDimensionsCitations:671,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"297",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11008",title:"Sheep Farming",subtitle:"Herds Husbandry, Management System, Reproduction and Improvement of Animal Health",isOpenForSubmission:!1,hash:"992f691327b36848b6e1137b70d921d5",slug:"sheep-farming-herds-husbandry-management-system-reproduction-and-improvement-of-animal-health",bookSignature:"Manuel Gonzalez Ronquillo and Carlos Palacios Riocerezo",coverURL:"https://cdn.intechopen.com/books/images_new/11008.jpg",editedByType:"Edited by",editors:[{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:"Challenges and Advances",isOpenForSubmission:!1,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:"bovine-science-challenges-and-advances",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:"advanced-studies-in-the-21st-century-animal-nutrition",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:"Edited by",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9081",title:"Equine Science",subtitle:null,isOpenForSubmission:!1,hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",slug:"equine-science",bookSignature:"Catrin Rutland and Albert Rizvanov",coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,isOpenForSubmission:!1,hash:"32ef5fe73998dd723d308225d756fa1e",slug:"reproductive-biology-and-technology-in-animals",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",editedByType:"Edited by",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",isOpenForSubmission:!1,hash:"2aa2a9a0ec13040bbf0455e34625504e",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",bookSignature:"Naceur M'Hamdi",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",editedByType:"Edited by",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8288",title:"Bacterial Cattle Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f45b8b4974eb0d7de8719ef6b9146200",slug:"bacterial-cattle-diseases",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8288.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6898",title:"Comparative Endocrinology of Animals",subtitle:null,isOpenForSubmission:!1,hash:"1c615706c8e4220ea5a24d231947ac7a",slug:"comparative-endocrinology-of-animals",bookSignature:"Edward Narayan",coverURL:"https://cdn.intechopen.com/books/images_new/6898.jpg",editedByType:"Edited by",editors:[{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6993",title:"Bovine Science",subtitle:"A Key to Sustainable Development",isOpenForSubmission:!1,hash:"fe7bdc1a2e1aa960e1f51dae7c705002",slug:"bovine-science-a-key-to-sustainable-development",bookSignature:"Sadashiv S. O. and Sharangouda J. Patil",coverURL:"https://cdn.intechopen.com/books/images_new/6993.jpg",editedByType:"Edited by",editors:[{id:"176334",title:"Dr.",name:"Sadashiv",middleName:null,surname:"S. O.",slug:"sadashiv-s.-o.",fullName:"Sadashiv S. O."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:20,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"39623",doi:"10.5772/50192",title:"Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet",slug:"use-of-yeast-probiotics-in-ruminants-effects-and-mechanisms-of-action-on-rumen-ph-fibre-degradation-",totalDownloads:7908,totalCrossrefCites:17,totalDimensionsCites:38,abstract:null,book:{id:"2991",slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Frédérique Chaucheyras-Durand, Eric Chevaux, Cécile Martin and Evelyne Forano",authors:[{id:"151065",title:"Dr.",name:"Frederique",middleName:null,surname:"Chaucheyras-Durand",slug:"frederique-chaucheyras-durand",fullName:"Frederique Chaucheyras-Durand"},{id:"151068",title:"Mr.",name:"Eric",middleName:null,surname:"Chevaux",slug:"eric-chevaux",fullName:"Eric Chevaux"},{id:"151069",title:"Dr.",name:"Evelyne",middleName:null,surname:"Forano",slug:"evelyne-forano",fullName:"Evelyne Forano"},{id:"160177",title:"Dr.",name:"Cécile",middleName:null,surname:"Martin",slug:"cecile-martin",fullName:"Cécile Martin"}]},{id:"16107",doi:"10.5772/16563",title:"Effect of Cryopreservation on Sperm Quality and Fertility",slug:"effect-of-cryopreservation-on-sperm-quality-and-fertility",totalDownloads:15477,totalCrossrefCites:10,totalDimensionsCites:35,abstract:null,book:{id:"185",slug:"artificial-insemination-in-farm-animals",title:"Artificial Insemination in Farm Animals",fullTitle:"Artificial Insemination in Farm Animals"},signatures:"Alemayehu Lemma",authors:[{id:"25594",title:"Dr.",name:"Alemayehu",middleName:null,surname:"Lemma",slug:"alemayehu-lemma",fullName:"Alemayehu Lemma"}]},{id:"57645",doi:"10.5772/intechopen.71780",title:"Antibiotics in Chilean Aquaculture: A Review",slug:"antibiotics-in-chilean-aquaculture-a-review",totalDownloads:1939,totalCrossrefCites:17,totalDimensionsCites:29,abstract:"Aquaculture in Chile has been practiced since the 1920s; however, it was not until the 1990s that aquaculture became an important sector here. Important species in Chilean aquaculture include salmonids, algae, mollusks, and turbot. Salmonids are the dominant species in Chilean aquaculture for both harvest volume and export value, their production reaching greater than 800-thousand tons in 2015. However, this growth has been accompanied by an increase in disease presence, requiring greater drug use to control. This increase in drug use is an environmental and public health concern for the authorities, the salmon industry itself, and the destination markets. In this chapter, we review the literature on drug use, antibiotic resistance, regulatory framework, and alternatives, with focus on Chile.",book:{id:"6179",slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Ivonne Lozano, Nelson F. Díaz, Susana Muñoz and Carlos Riquelme",authors:[{id:"208847",title:"Dr.",name:"Ivonne",middleName:null,surname:"Lozano",slug:"ivonne-lozano",fullName:"Ivonne Lozano"},{id:"208895",title:"Dr.",name:"Nelson F.",middleName:null,surname:"Díaz",slug:"nelson-f.-diaz",fullName:"Nelson F. Díaz"},{id:"208897",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"},{id:"208898",title:"MSc.",name:"Susana",middleName:null,surname:"Muñoz",slug:"susana-munoz",fullName:"Susana Muñoz"}]},{id:"58486",doi:"10.5772/intechopen.72865",title:"Quality of Chicken Meat",slug:"quality-of-chicken-meat",totalDownloads:3303,totalCrossrefCites:18,totalDimensionsCites:26,abstract:"Chicken meat is considered as an easily available source of high-quality protein and other nutrients that are necessary for proper body functioning. In order to meet the consumers’ growing demands for high-quality protein, the poultry industry focused on selection of fast-growing broilers, which reach a body mass of about 2.5 kg within 6-week-intensive fattening. Relatively low sales prices of chicken meat, in comparison to other types of meat, speak in favor of the increased chicken meat consumption. In addition, chicken meat is known by its nutritional quality, as it contains significant amount of high-quality and easily digestible protein and a low portion of saturated fat. Therefore, chicken meat is recommended for consumption by all age groups. The technological parameters of chicken meat quality are related to various factors (keeping conditions, feeding treatment, feed composition, transport, stress before slaughter, etc.). Composition of chicken meat can be influenced through modification of chicken feed composition (addition of different types of oils, vitamins, microelements and amino acids), to produce meat enriched with functional ingredients (n-3 PUFA, carnosine, selenium and vitamin E). By this way, chicken meat becomes a foodstuff with added value, which, in addition to high-quality nutritional composition, also contains ingredients that are beneficial to human health.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Gordana Kralik, Zlata Kralik, Manuela Grčević and Danica Hanžek",authors:[{id:"207236",title:"Dr.",name:"Gordana",middleName:null,surname:"Kralik",slug:"gordana-kralik",fullName:"Gordana Kralik"},{id:"227281",title:"Prof.",name:"Zlata",middleName:null,surname:"Kralik",slug:"zlata-kralik",fullName:"Zlata Kralik"},{id:"227283",title:"Dr.",name:"Manuela",middleName:null,surname:"Grčević",slug:"manuela-grcevic",fullName:"Manuela Grčević"},{id:"227284",title:"BSc.",name:"Danica",middleName:null,surname:"Hanžek",slug:"danica-hanzek",fullName:"Danica Hanžek"}]},{id:"39624",doi:"10.5772/50320",title:"Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal Health",slug:"dairy-propionibacteria-less-conventional-probiotics-to-improve-the-human-and-animal-health",totalDownloads:5781,totalCrossrefCites:11,totalDimensionsCites:24,abstract:null,book:{id:"2991",slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Gabriela Zárate",authors:[{id:"150953",title:"Dr.",name:"Gabriela",middleName:null,surname:"Zárate",slug:"gabriela-zarate",fullName:"Gabriela Zárate"}]}],mostDownloadedChaptersLast30Days:[{id:"56612",title:"Reproduction in Goats",slug:"reproduction-in-goats",totalDownloads:2896,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Reproductive activity of the goat begins when the females reach puberty, which happens at 5 months of age. The ovarian or estrous cycle is the period between two consecutive estrus. It is also the time that lasts the development of the follicle in the ovary, until rupture occurs and ovulation takes place, which coincides with the appearance of estrus. This chapter will describe the physiological and endocrinological bases of estrus in the goat. Likewise, factors affecting the presence of estrus and ovulation will be described. At another point, synchronization of estrus and ovulation, factors affecting the presence of estrus and external symptoms of estrus, will be described. To achieve synchronization of estrus or induction of ovulation within or outside the breeding season, it may be necessary to manage light hours, male effect, and/or use of hormones. The importance of artificial insemination is described, as well as the current situation of this technique worldwide. Currently, the techniques of artificial insemination in goats have been limited worldwide, due to the lack of resources of producers and trained technicians. The techniques of artificial insemination with estrous synchronization programs and ovulation with current research results will be described.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"Fernando Sánchez Dávila, Alejandro Sergio del Bosque González\nand Hugo Bernal Barragán",authors:[{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila"},{id:"206127",title:"Dr.",name:"Alejandro Sergio",middleName:null,surname:"Del Bosque-Gonzalez",slug:"alejandro-sergio-del-bosque-gonzalez",fullName:"Alejandro Sergio Del Bosque-Gonzalez"},{id:"206128",title:"Dr.",name:"Hugo",middleName:null,surname:"Bernal-Barragán",slug:"hugo-bernal-barragan",fullName:"Hugo Bernal-Barragán"}]},{id:"58095",title:"The Innovative Techniques in Animal Husbandry",slug:"the-innovative-techniques-in-animal-husbandry",totalDownloads:3766,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"Technology is developing rapidly. In this development, the transfer of computer systems and software to the application has made an important contribution. Technologic instruments made farmers can work more comfortable and increased animal production efficiency and profitability. Therefore, technologic developments are the main research area for animal productivity and sustainability. Many technologic equipment and tools made animal husbandry easier and comfortable. Especially management decisions and applications are effected highly ratio with this rapid development. In animal husbandry management decisions that need to be done daily are configured according to the correctness of the decisions to be made. At this point, smart systems give many opportunities to farmers. Milking, feeding, environmental control, reproductive performance constitute everyday jobs most affected by correct management decisions. Human errors in this works and decisions made big effect on last product quality and profitability are not able to be risked. This chapter deal with valuable information on the latest challenges and key innovations affecting the animal husbandry. Also, innovative approaches and applications for animal husbandry are tried to be summarized with detail latest research results.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Serap Göncü and Cahit Güngör",authors:[{id:"215579",title:"Prof.",name:"Serap",middleName:null,surname:"Goncu",slug:"serap-goncu",fullName:"Serap Goncu"},{id:"218971",title:"Dr.",name:"Cahit",middleName:null,surname:"Güngör",slug:"cahit-gungor",fullName:"Cahit Güngör"}]},{id:"58486",title:"Quality of Chicken Meat",slug:"quality-of-chicken-meat",totalDownloads:3293,totalCrossrefCites:18,totalDimensionsCites:26,abstract:"Chicken meat is considered as an easily available source of high-quality protein and other nutrients that are necessary for proper body functioning. In order to meet the consumers’ growing demands for high-quality protein, the poultry industry focused on selection of fast-growing broilers, which reach a body mass of about 2.5 kg within 6-week-intensive fattening. Relatively low sales prices of chicken meat, in comparison to other types of meat, speak in favor of the increased chicken meat consumption. In addition, chicken meat is known by its nutritional quality, as it contains significant amount of high-quality and easily digestible protein and a low portion of saturated fat. Therefore, chicken meat is recommended for consumption by all age groups. The technological parameters of chicken meat quality are related to various factors (keeping conditions, feeding treatment, feed composition, transport, stress before slaughter, etc.). Composition of chicken meat can be influenced through modification of chicken feed composition (addition of different types of oils, vitamins, microelements and amino acids), to produce meat enriched with functional ingredients (n-3 PUFA, carnosine, selenium and vitamin E). By this way, chicken meat becomes a foodstuff with added value, which, in addition to high-quality nutritional composition, also contains ingredients that are beneficial to human health.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Gordana Kralik, Zlata Kralik, Manuela Grčević and Danica Hanžek",authors:[{id:"207236",title:"Dr.",name:"Gordana",middleName:null,surname:"Kralik",slug:"gordana-kralik",fullName:"Gordana Kralik"},{id:"227281",title:"Prof.",name:"Zlata",middleName:null,surname:"Kralik",slug:"zlata-kralik",fullName:"Zlata Kralik"},{id:"227283",title:"Dr.",name:"Manuela",middleName:null,surname:"Grčević",slug:"manuela-grcevic",fullName:"Manuela Grčević"},{id:"227284",title:"BSc.",name:"Danica",middleName:null,surname:"Hanžek",slug:"danica-hanzek",fullName:"Danica Hanžek"}]},{id:"56453",title:"Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer",slug:"goat-system-productions-advantages-and-disadvantages-to-the-animal-environment-and-farmer",totalDownloads:4331,totalCrossrefCites:5,totalDimensionsCites:21,abstract:"Goats have always been considered very useful animals. Goats success is related to its excellent adaptability to the difficult mountain conditions, extreme weather and low value feed acceptance, versatile habits and high production considering their size. These are some reasons because goats are among the first animals to be domesticated. In terms of evolution, goats could be separated by their dispersion area in three large groups: the European, the Asian, and the African. Global goat populations, mainly in Africa and in Asia, have increased for centuries but very strongly in the past decades, well above the world population growth. They are also used for forest grazing, an integrated and alternative production system, very useful to control weed growth reducing fire risk. Despite some exceptions, no large‐scale effort to professionalize this industry has been made so far. There are consumers for goat dairy products and there is enough global production, but misses a professional network between both. Regarding goat meat, the world leadership also stays in Africa and Asia, namely in China, and there is a new phenomenon, the spreading of goat meat tradition through Europe due to migrants from Africa and other places with strong goat meat consumption.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"António Monteiro, José Manuel Costa and Maria João Lima",authors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"203680",title:"Prof.",name:"Maria João",middleName:null,surname:"Lima",slug:"maria-joao-lima",fullName:"Maria João Lima"},{id:"203683",title:"MSc.",name:"José Manuel",middleName:null,surname:"Costa",slug:"jose-manuel-costa",fullName:"José Manuel Costa"}]},{id:"70760",title:"Induction and Synchronization of Estrus",slug:"induction-and-synchronization-of-estrus",totalDownloads:1720,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Estrus cycle is a rhythmic change that occur in the reproductive system of females starting from one estrus phase to another. The normal duration of estrus cycle is 21 days in cow, sow, and mare, 17 days in ewe, and 20 days in doe. The species which exhibit a single estrus cycle are known as monstrous and species which come into estrus twice or more are termed polyestrous animals. Among them some species have estrus cycles in a particular season and defined as seasonal polyestrous. It includes goats, sheep, and horses. On the other hand, cattle undergo estrus throughout the year. The estrus inducers can grossly be divided into two parts, that is, non-hormonal and hormonal. Non-hormonal treatments include plant-derived heat inducers, mineral supplementation, uterine and ovarian massage, and use of Lugol’s iodine. The hormones that are used in estrus induction are estrogen, progesterone, GnRH, prostaglandin, insulin, and anti-prolactin-based treatment. Synchronization can shorten the breeding period to less than 5 days, instead of females being bred over a 21-day period, depending on the treatment regimen. The combination of GnRH with the prostaglandin F2α (PGF2α)- and progesterone-based synchronization program has shown a novel direction in the estrus synchronization of cattle with the follicular development manipulation.",book:{id:"8545",slug:"animal-reproduction-in-veterinary-medicine",title:"Animal Reproduction in Veterinary Medicine",fullTitle:"Animal Reproduction in Veterinary Medicine"},signatures:"Prasanna Pal and Mohammad Rayees Dar",authors:[{id:"299126",title:"Dr.",name:"Mohammad Rayees",middleName:null,surname:"Dar",slug:"mohammad-rayees-dar",fullName:"Mohammad Rayees Dar"},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal"}]}],onlineFirstChaptersFilter:{topicId:"297",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:38,paginationItems:[{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82291",title:"The Role of Oxidative Stress in the Onset and Development of Age-Related Macular Degeneration",doi:"10.5772/intechopen.105599",signatures:"Emina Čolak, Lepša Žorić, Miloš Mirković, Jana Mirković, Ilija Dragojević, Dijana Mirić, Bojana Kisić and Ljubinka Nikolić",slug:"the-role-of-oxidative-stress-in-the-onset-and-development-of-age-related-macular-degeneration",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific research, Brain functions, Human development, UN’s human development index, Self-awareness, Self-development",scope:"